

Universidade: presente!

XXXI SIC

21.25. OUTUBRO . CAMPUS DO VALE

A Systematic Literature Review of Enzyme Replacement Therapy for Early and Late-Onset Pompe Disease

Aluno: Ana Paula Pedroso Junges (apjunges@hcpa.edu.br)
Orientadora: Prof. Dra. Ida Vanessa Doederlein Schwartz
Instituição: Universidade Federal do Rio Grande do Sul

Introduction

Pompe disease (PD) is an inherited lysosomal storage disorder characterized by deficiency of acid alpha-glucosidase that prevents the breakdown of glycogen into glucose, leading to the progressive accumulation of glycogen in and tissues of the body (Table 1). Previous systematic review (SR) on early-onset PD (EOPD) and on late-onset PD (LOPD) haven't evaluated important endpoints for enzyme replacement therapy (ERT), thus creating the need for reassessing clinical outcomes.

Objectives

To evaluate efficacy and safety of alglucosidase alfa for EOPD and LOPD.

Methods

We systematically searched for studies published until September 2018, using the following search strategy:

- Pubmed: "Glycogen storage disease type ii" and "alpha-glucosidases"
- Embase: ('Glycogen storage disease type 2'exp) and ('recombinant glucan 1,4 alpha glucosidase'/exp or 'recombinant glucan 1,4 alpha glucosidase') Outcomes of interest were defined a priori (Table 2). Assessment of quality of evidence (QOE) was performed according to GRADE. This study is registered in Prospero under the numbers 123700 AND 135102.

Table 2: Outcomes defined a priori

EOPD: Cardiomyopathy, Time to Onset Ventilation, Myocardial Function, Safety, Survival, Neuropsychomotor Development, Quality of Life (QOL), Hypotonia, Swallowing Disorder.

LOPD: 6-minute-walking-test, Forced Vital Capacity, Safety, Muscle Strength, Quality of life, Walton Gardner Medwin Score, Ventilation hours/day, Survival, Sleep quality, Swallowing.

For the evaluation of the effectiveness of ERT in both forms of PD, the first inclusion criterion is being a randomized controlled trial (RCT). If fewer than five RCTs are identified, open-label and nonrandomized trials, controlled or uncontrolled (quasi-experimental), including ≥ five patients, and evaluating relevant outcomes defined a priori, will also be included.

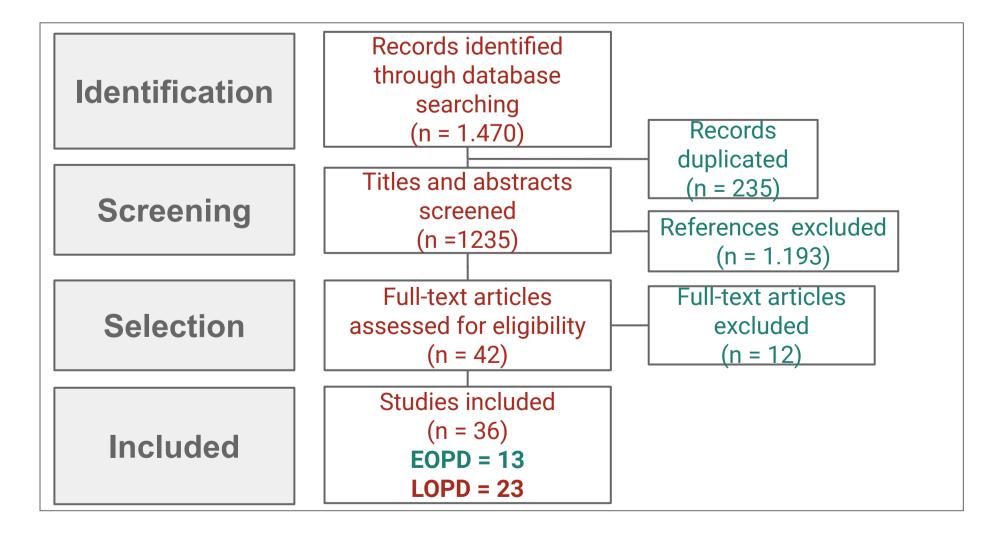
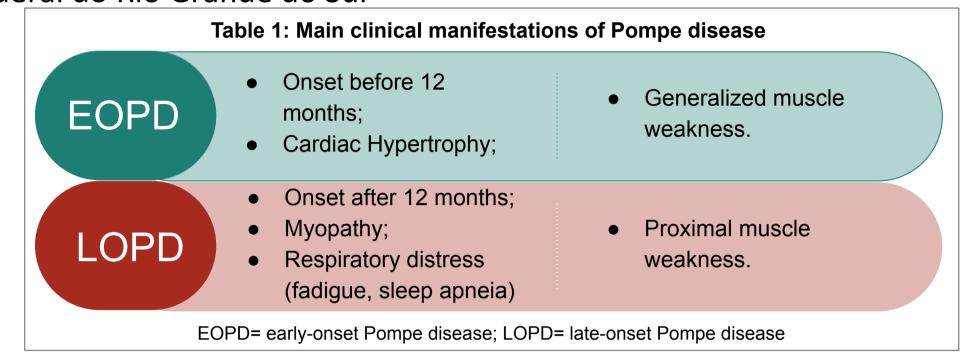



Figure 1: PRISMA flowchart of search results.

Results

The search results and the selection of articles are described in **Figure**1. **EOPD** results are described in **Table 3** and **LOPD** results are described in **Table 4**.

Table 3 - EOPD Analyzed Endpoints

Survival	TOV*	Safety	Cardiomyopathy
studies and increased in all	studies and 4/7 showed its increase by	6 studies described (QOE very low). All studies analyzed antibody formation, present in at least 85% of patients evaluated.	left ventricular mass, reduced in 10/13 studies after ERT (QOE

TOV - Time to Onset Ventilation

Table 4 - LOPD Analyzed Endpoints

Quality of Life (QOL)	6MWT	Muscle strength (MS)	Safety
studies and 5/6 used the SF-36	showed improvement in all 12 studies (QOE	were unable to show improvement	studies (QOE very low).

In both **EOPD** and **LOPD**, antibody titers were not correlated with severe adverse events (AEs) or infusion-associated reactions (IARs) nor were associated with treatment efficacy and clinical outcomes. Most IARs were mild to moderate in both cases.

Discussion/Conclusions

Despite very low QOE, our results add information over previous published studies on ERT:

- EOPD: ERT is beneficial for survival, cardiomyopathy and TOV;
- LOPD: the results corroborate previously published SR on ERT impact on 6MWT and show positive effect on QOL and MS;
- ERT is safe in both forms, once most AEs were mild to moderate and antibody formation did not seem to interfere with any outcome evaluated;
- Moreover, one should take into account that it is a rare disease.

References

(1)Güngör et al. Orphanet journal of rare diseases vol. 8 49. 27 Mar. 2013. (2)Güngör D et al. Orphanet J Rare Dis. 2013;8:49. (3)Anderson LJ et al.J Inherit Metab Dis. 2014;37(6):945-52. (4)Schoser B et al.J Neurol. 2017;264(4):621-30. (5)Toscano A, Schoser B.J Neurol. 2013;260(4):951-9. (6)Kuperus E et al. Neurology. 2017;89(23):2365-73. (7)Strothotte S et al. J Neurol. 2010;257(1):91-7. (8)van der Ploeg AT et al. N Engl J Med. 2010;362(15):1396-406. (9)van Capelle CI et al. Neuromuscul Disord. 2010;20(12):775-82. (10) Orlikowski D et al. Neuromuscul Disord. 2011;21(7):477-82. (11) Angelini C et al. J Neurol. 2012;259(5):952-8. (12) Regnery C et al. J Inherit Metab Dis. 2012;35(5):837-45. (13) van der Ploeg A et al. Mol Genet Metab. ,2016;119(1-2):115-23. (14) van der Ploeg AT et al. Mol Genet Metab. 2012;107(3):456-61. (15) de Vries JM et al. Orphanet J Rare Dis. 2012;7:73. (16) de Vries JM et al. Genet Med. 2017;19(1):90-7 (17)Vianello A et al. Lung. 2013;191(5):537-44. (18)Bembi B et al. J Inherit Metab Dis. 2010;33(6):727-35. (19) Montagnese F et al. J Neurol. 2015;262(4):968-78. (20)Angelini C et al. J Neurol. 2012;259(5):952-8. (21)Papadimas GK et al. Clin Neurol Neurosurg. 2011;113(4):303-7. (22) Furusawa Y et al. J Inherit Metab Dis. 2012;35(2):301-10. (23) Ravaglia S et al. Mol Genet Metab. 2012;107(1-2):104-10. (24) Levine JC et al. Pediatr Cardiol. 2008;29(6):1033-42. (25) Kishnani PS et al. Neurology. 2007;68(2):99-109. (26) Kishnani PS et al. Pediatr. 2006;149(1):89-97. (30)van Capelle CI et al.Int J Cardiol. 2018;269:104-10. (31)van Gelder CM et al. J Inherit Metab Dis. 2016;39(3):383-90. (32) Nicolino et al. Genet Med. 2009;11(3):210-9. (33) Chien YH et al. Pediatrics. 2009;124(6):e1116-25. (34) Spiridigliozzi GA et al. Mol Genet Metab. 2012;105(3):428-32. (35) Barker PC et al.Mol Genet Metab. 2010;101(4):332-7. (36) Chen M, Zhang L, Quan S. Cochrane Database Syst Rev. 2017;11:CD011539.