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RESUMO

No trabalho a seguir é proposto um novo método híbrido para a

resolução de problemas em poluição aquática. O método fornece soluções

aproximadas em forma analítica para a equação de transporte bidimensional,
para situações nas quais o acoplamento entre os modelos hidrológico e de
transporte pode ser ignorado. A alta velocidade de processamento do
esquema híbrido permite simular a dispersão de poluentes em tempo real,
empregado microcomputadores de baixa performance.

ABSTRACT

In this work a new hybrid method for solving problems in water
pollution is proposed. The method furnishes approximate solutions for the

two-dimensional transport equation in analytical form, in cases when the

coupling between the hydrological and transport models can be neglected.

The high speed processing of the scheme allows to simulate the transient

dispersion in real time using low performance microcomputers.
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1 -INTRODUCTION

The formal solution of two dimensional problems in transport

theory often requires a large ammount of analytical handling or time

processing to be transformed in a praclical result. In water pollulion problems,
an approximation in analylical form is useful for evaluating the evolulion of

concenlration profiles in real time, either to obtaining numerical results or to
analize the dynamical behavior of the hydric corp in a qualitative way.

The formal solulion is the starting point for many numerical and

analytical methods used to solve transient problems, which usually involves

the evaluation of high powers of evolulion operators. Successive powers of an

evolution operator, when applied on the function describing the initial state of

the system, provides the successive states of the system along the time.

For some practical applications, the calculation of successive

states of the system are not necessary, being desirable to skip time steps in
order to reach the final state as fast as possible. In most practical water
pollution problems, there is no necessity to determine with high precision the

concentration of the pollutant and the shape of the affected area in order to
prevent damages on regions of special interest.

This work presents a method for obtaining approximate

solulions for water pollulion problems in analytical formoThe method consists
in fitting funclions of operators, present in lhe formal solution, by polynomials.
The funclions are fitted in an interval containing the eigenvalues of the spalial

operalor, which are estimated indirectly by variational formulations recentiy
developed. These formulalions follows from lhe idea of componenl
suppression, proposed in lhe universal alghorilms for solving linear algebraic
systems [1], and extend its applications to ill-posed problems in infinite

dimensional space. The main features of these formulations are the high

speed proccessing and the independence of a priori information about lhe
desired solulion, which is required for lhe most usual melhods employed for
solving iII-posed problems [2]. Some hybrid methods based on analogous
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formulations were applied succesfully in Chemistry and Transport Theory

(reactor modelling and neutron scattering [3-8]). A numerical simulation is

reported.

2 -GENERAL DESCRIPTION
Consider the following operator equation

(1)

where A is a linear operator, t denotes the time and c is a numerical constant.

The corresponding initial condition is f(r,O)=fo(r), in which r denotes the spatial

coordinates, and the medium is taken as infinite (there is no boundary

conditions). The formal solution for this problem is given by

f =ecAt fo (2)

The McLaurin series in the time variable, truncated in the linear term,

produces a solution valid for small values of t:

f == (I + c~tA)fo = Efo, O<~t«l, (3)

where I denotes the identity operator and ~t represents a small time interval.

In this equation appears the evolution operator E, whose successive powers

applied on fo furnishes the states of the physical system along the time, which

constitutes approximations for the formal solution:

(4)

The powers Ek can be approximated by a polynomial in the interval containg

the spectrum of E:

(5)

where n is the degree of the polynomial. Since L'1tis small, the eigenvalues of

E are concentrated in a small interval around 1, unless A being unbounded.
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Although the most usual operators in physics being unbounded, because

physical problems are usually described by differential equations, there is a
practical way to overcome this difficulty. It consists in approximating the
integer order derivatives by fractional ones whose order are slightly lower:

801 801-1'

8ulll = 8um-1' ,
0< J.! « 1. (6)

The numerical value of I-l depends upon the desired accuracy. As I-l tends 10

zero, the spectral radius of E grows, and lhe contribulions of the associated

eigenfunctions to the final solution are progressively included in the

approximation. Replacing E in equation (5) by the corresponding bounded

operator B, obtained by means of the fractional derivative approximation, and
substituing in (4), the approximated solution for the transient problem
becomes

f == Pn (B)fo (7)

The coefficients of the polynomial are obtained via least square fitting from an

equally spaced sei of points in the interval (1- c ~t p,1+ c M p), where p is the

spectral radius of A or its fractional derivative approximation, when A is

unbounded.

For steady problems, the treatment is slightly different, but
follows from the same basic idea of lhe universal alghoritms. Consider now
the stationary equation

Af=g (8)
where 9 is a forcing function. The formal solution of equation (8) can also be

approximated by means of component suppression, since

(9)

where r(x) represents a polynomial which approximates 1/x in the interval

containing spec(A). Applying the operator A on both sides of equation (9), it

results
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Af = g ~ Ar(A)g (10)

or

g ~ p(A)g (11)

where p(A) is a polynomial without independent termo This means that the

original problem Af=g becomes a curve fitting, in which 9 is approximated by a

linear combination of known functions, i.e.

g~cIAg+C2A2g+ ... +cnAOg=Clgl+C2g2+'" +cngo' (12)
The coefficients of the linear combination are determined by choosing n

coIlocation points in the domain and solving the resulting linear algebraic

system:

(13)

In this system, p: denotes lhe coordinales of lhe i1h colJocalion poinl and lhe

index j specifies the function of lhe linear combination. Once obtained the

coefficienls c, lhe approximate solulion is explicitly delermined by applying

the inverse operator A-' on (12):

f~clg+c2Ag+ ... +Co_IAO'lg (14)

A-I ~ clI +c2A + 000 +cn_IA o-I= P (15)

Hence, a polynomial approximalion for A' is given by

This operalor is used 10 improve lhe solulion oblained. A perturbalion operalor

L\P can be defined in such a way that

A(P+~P) = I (16)
or

MP = I-AP (17)
Therefore, a polynomial approximalion for L\P is obtained if P is applied on

both sides 0((17):

~P = A -I(I - AP) ~ P(I - AP) (18)
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and a new approximation for A1 arises:

PI = P + P(I - AP) = P(2I - AP) (19)
The praccess can be repeated, generating a recurrence relation in the form

Pk+1= Pk (21 - APk) (20)
In practice, this proccess never exceeds two iterations (k<2), and frequently

equation (14) provides a good aproximation for the concentration profile.

3 -ERROR ANALYSIS
The errar in the praposed solutions can be estimated by means

of the general component suppression alghoritm. In the steady problem, when

the forcing function 9 is expanded in the eigenfunctions of A, the expression

for the resulting error is readily obtained. Rewritting 9 as

(21)

where hi denotes the eigenfunctions of the operator A, the exact solution f and

the approximated one fi results

f=" ~h
~À. J

J

(22)

and

(23)

in which Ài represents the eigenvalues associated to the eigenfunctions h.The
error in the approximated solution yields

(24)

Thus, the accuracy of lhe fitting polynomial p(xrllx determines the error of

the approximation. For transient problems, when the calculation of the power
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k of the evolution operator is required, the polynomial must represent the

function i instead of 1/x. In the general case, the error is given by

(25)

where «Prepresents the function to be applied on the operator. For instance, if

a transient problem is solved directly from equation (2), «p(Ài)=exp(Ài),because

the exponential of the operator is required to obtain the corresponding formal

solution.

4 - RESUL TS ANO OISCUSSION

The method were used to simulate an outflow of methanol in
Guaíba river, a hidric corp employed in transport of petrochemicals (see
figure 1). Initially, 200 tons of methanol are discharged around the position

indicated by the arrow. The initial isocurves are considered circular, and the

radial dependence of the concentration is approximated by a gaussian profile.

The two-dimensional model adopted to describe the problem is given by

D(8
2C + 8

2CJ_u 8c -v~-kc= 8c (26)
8X2 8 y2 8 X 8 y 8 t

subjected to the initial condition c(x,y,0)=exp{-.05[(x-xc)2+(y_Yc)2]},where Xo

and yo represents the coordinates of the center of the isocurves. In equation
(26), c is the concentration, O is the effective difusion coefficient and k is the
decay constant. The components u and v of the velocity vector (in x and y

directions respectively) are established beforehand, and considered constant

for small regions along the f1ow.The discretization of u and v is necessary to

carry out the linearization of equation (26), and imposes a restriction on the

application of the method. When the load of pollutant is sufficiently large to
produce perturbations on the velocity field, or in other cases when the

coupling between the hidrodynamic and transport equations must be taken

into account, the method becomes unpractical, since it demands several
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linearizations along the time, reducing considerably the processing speed of

the system.

Figure1 -Position of the outflow

The concentration profiles afler 7 and 15 hours are depicted,
respectively, in figures 2 and 3. These results are qualitatively consistent wíth

experimental data related to the dispersion of coliforms [7,8), whose

parameters O and k differs from those for methanol, although the mechanisms
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of propagation being essentially the same. It is important to emphasize that

the time processing required allows to furnish results on-line, once the

average time for simulating 10h of propagation is approximately 5 minutes,

running in VB 5.0 and using a Pentium 166MHz.

Figure 2 -Concentration profile after 7 hours
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Figure 3 - Concentration profile after 15 hours
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5 • CONCLUSIONS

The proposed method, based on the component supression

schemes, which were originally conceived for discrete formulations, is also

applicable to infinite-dimensional problems. The main feature of the method is
the low time processing required to evaluate the successive concentration

distributions (about 5 minutes for simulating 10h of propagation). However,

the velocity field must be known beforehand, in order to provide the linearity of

the advective terms in the transport equation. Hence, the method cannot be
applied in cases where the coupling between the hidrodynamic and
propagation models must be considered.
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