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“Your assumptions are your windows on the world. Scrub them off every once in

a while, or the light won’t come in.

— ISAAC ASIMOV
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ABSTRACT

Several challenges in computer vision and robotics involve developing algorithms capable

of using partial spatial information to generate a reliable 3D perception of the world. Var-

ious breakthrough applicable technologies such as Mixed Reality, Autonomous Robotics,

Autonomous Driving, Reverse Engineering, 3D Printing, among others, depend on this

research topic to move forward. In order to implement a complete application to build

3D reconstructions for individual objects, this master’s thesis presents an online pipeline

for incremental 3D reconstruction and 6-DoF camera pose estimation based on colored

point clouds captured by consumer RGB-D cameras. The proposed approach combines

geometric and photometric matching of data provided by both depth and color sensors

through an adaptive weighting scheme that copes with eventual misalignment errors be-

tween RGB and depth data. Our experimental results indicate that the 3D reconstructions

achieved by the proposed scheme are visually better than competitive approaches.

Keywords: 3D reconstruction. visual odometry. RGB-D Cameras. frame-to-model.



Modelo online para reconstrução 3D usando informação RGB-D

RESUMO

Muitos dos desafios da visão computacional e da robótica envolvem o desenvolvimento

de algoritmos capazes de usar informação espacial parcial para a geração de uma per-

cepção 3D confiável do mundo. Várias tecnologias inovadoras aplicadas como Realidade

Mista, Robótica Autônoma, Veículos Autônomos, Engenharia Reversa, Impressão 3D,

entre outras, dependem desta área de pesquisa para seguirem evoluindo. Para implemen-

tar uma aplicação completa, que seja capaz de realizar reconstruções 3D para objetos

individualmente, esta dissertação apresenta um pipeline de reconstrução 3D incremental

e de estimativa de pose de câmera baseado em nuvens de pontos coloridas capturadas

por câmeras RGB-D de uso doméstico. A abordagem proposta combina casamento geo-

métrico e fotométrico de dados fornecidos pelos sensores de profundidade e cor através

de um esquema adaptativo de ponderação que lida com eventuais desalinhamentos entre

os dados RGB e de profundidade. Os resultados experimentais indicam que as recons-

truções 3D obtidas com esquema proposto são visualmente melhores que a abordagem

competidora.

Palavras-chave: Reconstrução 3D, odometria visual, câmeras RGB-D, frame-to-model.



RESUMO EXPANDIDO

Muitos dos desafios da visão computacional e da robótica envolvem o desenvolvi-

mento de algoritmos capazes de usar informação espacial parcial para a geração de uma

percepção 3D confiável do mundo. Várias tecnologias inovadoras aplicadas como Real-

idade Mista, Robótica Autônoma, Veículos Autônomos, Engenharia Reversa, Impressão

3D, entre outras, dependem desta área de pesquisa para seguirem evoluindo. Para imple-

mentar uma aplicação completa, que seja capaz de realizar reconstruções 3D para objetos

individualmente, esta dissertação apresenta um pipeline de reconstrução 3D incremental

e de estimativa de pose de câmera baseado em nuvens de pontos coloridas capturadas

por câmeras RGB-D de uso doméstico. A abordagem proposta combina casamento ge-

ométrico e fotométrico de dados fornecidos pelos sensores de profundidade e cor através

de um esquema adaptativo de ponderação que lida com eventuais desalinhamentos entre

os dados RGB e de profundidade.

No Capítulo 2, apresentamos os fundamentos teóricos envolvidos em cada etapa

do pipeline. Explicamos a matemática utilizada na modelagem de uma câmera pinhole,

o papel da álgebra de Lie na busca de soluções no espaço de transformações rígidas, o

funcionamento do algoritmo de mínimos quadrados não-linear empregado na otimização

do problema associado ao alinhamento das nuvens de pontos, apresentamos as diferentes

abordagens sobre o problema Perpective-n-Point e a obtenção de estimativas robustas

contra outliers utilizando o método RANSAC e finalmente conceituamos odometria vi-

sual.

Posteriormente, no Capítulo 3, apresentamos os trabalhos relacionados à área de

reconstrução 3D e suas aplicações no contexto da implementação proposta. Apresen-

tamos uma divisão de classes de técnica de reconstrução entre técnicas locais e técnicas

globais e explicamos como este trabalho se localiza na classe das técnicas locais. Também

revisamos técnicas que usam nuvens de pontos com e sem informação de cor associada.

A técnica proposta nesta dissertação é apresentada no Capítulo 4. O procedimento

de reconstrução 3D proposto permite que o usuário reconstrua um objeto a partir de ima-

gens obtidas sequencialmente de uma câmera RGB-D qualquer. Alinhamos as nuvens de

pontos coloridas em um modelo do objeto que vai sendo consolidado incrementalmente,

conforme novos pontos de vista do objeto vão sendo capturados.

Inicialmente filtramos as imagens a fim de remover possíveis ruídos e melhorar

o desempenho do alinhamento fotométrico utilizando de um filtro bilateral. Para obter



uma boa estimativa de pose de camera inicial para o sistema não-linear utilizado neste

trabalho, utilizamos o algoritmo EPnP dentro de um método RANSAC, a fim de descartar

features ORB que tenham casamentos espúrios. Este casamentos de features ORB são

feitos entre cada dois pares de frames consecutivos das imagens de entrada da câmera.

A partir da estimativa de pose inicial refinamos o alinhamento das nuvens de pon-

tos minimizando uma função de erro que leva em conta tanto a função de erro fotométrico

quando o erro geométrico gerado pelo alinhamento. Estas duas funções de erro são com-

binadas em uma função que nomeamos de função de erro combinado. O erro combinado

usa um fator de ponderação que busca tanto aproximar a posição dos pontos casados no

espaço 3D quanto considera as semelhanças entre as intensidades de cores que estes pos-

suem. Essa característica permite que o algoritmo seja mais robusto em situações onde

o objeto reconstruído possui pouca informação discriminativa de cor, como por exemplo

um objeto de cor única, ou com pouca informação discriminativa geométrica, como por

exemplo uma esfera.

O erro combinado é minimizado no espaço dos 6 graus de liberdade permitindo

a reconstrução com liberdade total de movimento da câmera (translação e rotação). A

função de erro combinado é minimizada mudando os parâmetros do movimento de câmera

de forma iterativa com o algoritmo de Gauss-Newton. Para diminuirmos o espaço de

parâmetros necessários para minimização utilizamos o que chamamos de coordenadas

exponenciais e para isso utilizamos uma aproximação do espaço das rotações usando a

álgebra de Lie. As transformações finais no espaço de transformações rígidas são obtidas

pela exponenciação de matrizes.

O somatório das diferenças pixel a pixel entre os frames consecutivos são ponder-

adas por uma função que leva em consideração a confiabilidade da informação geométrica

obtida pela câmera, minimizando ou mesmo removendo a influência de pixels de profun-

didade errôneos. O modelo é incrementado com novas vistas a cada frame de entrada uti-

lizando uma estrutura de dados volumétricos chamada TSDF (Truncated Signed Distance

Function) o que permite criar uma superfície de malha de triângulos do objeto sempre

atualizada a cada imagem nova obtida. O modelo é renderizado e seu buffer de profun-

didade é utilizado como a imagem de profundidade anterior à mais recentemente obtida

pela câmera. Desta forma o modelo serve como referência no processo de alinhamento

com a nova nuvem de pontos que chega da câmera o que chamamos de abordagem frame-

to-model.

A avaliação experimental da técnica proposta é descrita no Capítulo 5. Foram



feitas análises quantitativas utilizando métricas de trajetória de câmera tradicionais como

Absolute Trajectory Error (ATE) e Relative Pose Error (RPE), bem como métrica sobre o

modelo final gerado chamada de Signed Cloud to Mesh Difference (C2M). Ainda foi feita

uma análise qualitativa que buscou evidenciar as diferenças entre os modelos de objetos

reconstruídos com a técnica proposta e com a técnica concorrente.

Nossos resultados experimentais indicaram que as reconstruções 3D obtidas pelo

esquema proposto são visualmente melhores que a implementação que usamos como

padrão de comparação. Adicionalmente, verificamos que as métricas de odometria vi-

sual também são melhores utilizando a abordagem proposta, especialmente no contexto

de cenas capturadas com a câmera executando uma trajetória mais errática, como por

exemplo quando esta é carregada pelas mãos do operador.

Finalmente, o Capítulo 6 apresenta as conclusões desta dissertação de mestrado.

O capítulo também apresenta problemas em aberto e possíveis direções para trabalhos

futuros.



LIST OF ABBREVIATIONS AND ACRONYMS

2D 2-Dimensional

3D 3-Dimensional

6-DoF 6 Degrees of Freedom

ATE Absolute Trajectory Error

BRIEF Binary Robust Independent Elementary Features

C2M Cloud to Mesh Distance

CPU Central Processing Unit

ePnP Efficient Perspective-n-Point

FPFH Fast Point Feature Histograms

GPU Graphics Processing Unit

ICP Iterative Closest Point

NICP Normal Iterative Closest Point

ORB Oriented FAST and rotated BRIEF

PFH Point Feature Histograms

PnP Perspective-n-Point

RANSAC RANdom SAmple Consensus

RGB Red, Green and Blue

RGB-D Red, Green, Blue and Depth

RPE Relative Pose Error

SIFT Scale-Invariant Feature Transform

SURF Speeded Up Robust Features

SfM Structure from Motion

SHOT Signature of Histograms of OrienTations

ToF Time of Flight

TSDF Truncate Signed Distance Function



LIST OF FIGURES

Figure 1.1 BMW lidar mapping......................................................................................15
Figure 1.2 Scandy Pro App .............................................................................................15
Figure 1.3 Matterport Scanning Example .......................................................................15
Figure 1.4 Structure from motion based reconstruction .................................................16
Figure 1.5 RGB-D 3D Reconstruction............................................................................16

Figure 2.1 A Pinhole Camera diagram............................................................................20
Figure 2.2 Pose transform between two points of view of the same point cloud ...........27
Figure 2.3 Bad linear model estimate .............................................................................29
Figure 2.4 Good linear model estimate ...........................................................................29

Figure 3.1 Point cloud iterative alignment. Black arrows indicate point selection
and local motion. Thick blue arrows indicate different iteration steps...................34

Figure 4.1 Proposed iterative pipeline.............................................................................36
Figure 4.2 Flying pixels generated by ToF Camera ........................................................37
Figure 4.3 Plot of the photometric weight function wP . .................................................42
Figure 4.4 Color bleeding caused by wrong RGB and depth registration at depth

discontinuities. ........................................................................................................43

Figure 5.1 Frames of 3D Printed Dataset........................................................................49
Figure 5.2 Trajectory Turntable: Visual comparison ......................................................53
Figure 5.3 Trajectory Handheld: Visual comparison ......................................................54
Figure 5.4 Example of histogram of C2M error .............................................................55
Figure 5.5 Top to Bottom: Leopard Handheld, Teddy Handheld and Tank Hand-

held datasets. From left to right: GT model, Proposed and Open3D. ....................57
Figure 5.6 Teddy T. Log C2M Difference. Top: Proposed. Bottom: Open3D...............58
Figure 5.7 Teddy H. Log C2M Difference. Top: Proposed. Bottom: Open3D ..............59
Figure 5.8 Two views (top and bottom) of a partial body Scanning. Left: Proposed,

Right: Open3D........................................................................................................60
Figure 5.9 Full 360 body scanning. Top Proposed and Open3D. Bottom: view

showing loop closure error using our method.........................................................61
Figure 5.10 Full 360 small object scanning: Proposed vs Open3d.................................62
Figure 5.11 Handheld motion scanning: Proposed vs Open3d.......................................62
Figure 5.12 Teddy Turntable: Proposed, Proposed + Pose Graph and GT.....................64
Figure 5.13 Bunny Turntable: Proposed, Proposed + Pose Graph and GT ....................64



LIST OF TABLES

Table 5.1 RPE RMSE results, scaled by a factor of 103 .................................................51
Table 5.2 ATE RMSE results scaled by a factor of 102 ..................................................52
Table 5.3 C2M Mean ± Std. Dev. scaled by a factor of 104 ..........................................56
Table 5.4 Average in milliseconds per frame..................................................................63



CONTENTS

1 INTRODUCTION.......................................................................................................14
1.1 Motivation................................................................................................................14
1.2 Goals and contributions .........................................................................................18
1.2.1 Contributions..........................................................................................................18
1.3 Chapters organization ............................................................................................18
2 FUNDAMENTALS .....................................................................................................20
2.1 Pinhole Camera Model ...........................................................................................20
2.1.1 Intrinsic parameters................................................................................................21
2.1.2 Extrinsic parameters...............................................................................................22
2.1.3 Central Projection Using Homogeneous Coordinates ...........................................22
2.2 Rigid Body Motion using Lie Algebra of Twists ..................................................23
2.3 Non-Linear Least squares estimation ...................................................................24
2.4 Perspective-n-Point .................................................................................................26
2.5 RANSAC - Random Sample Consensus ...............................................................28
2.6 Visual Odometry .....................................................................................................29
2.7 Conclusions of Chapter ..........................................................................................30
3 RELATED WORK .....................................................................................................31
3.1 Global Registration.................................................................................................31
3.1.1 Features and Descriptors........................................................................................32
3.1.2 PnP Algorithm Variants .........................................................................................33
3.2 Local Registration...................................................................................................33
3.3 Conclusion of chapter .............................................................................................35
4 THE PROPOSED APPROACH ................................................................................36
4.1 Color and Depth Bilateral filtering .......................................................................36
4.2 Normal Map and Weight Map Estimation ...........................................................37
4.3 Rough Initial Registration based on ePnP............................................................38
4.4 Refined Registration ...............................................................................................39
4.4.1 Photometric Error...................................................................................................39
4.4.2 Geometric Error .....................................................................................................41
4.4.3 Point weighting ......................................................................................................42
4.4.4 Joint Error Optimization ........................................................................................43
4.5 TSDF Integration and Model generation .............................................................45
4.6 Model projection .....................................................................................................46
5 EXPERIMENTAL RESULTS ...................................................................................48
5.1 Open3D Library and Colored Point Cloud Registration ....................................50
5.2 Parameter setting ....................................................................................................50
5.3 Quantitative evaluation of camera trajectory (pose) ...........................................50
5.3.1 Relative Pose Error (RPE) .....................................................................................51
5.3.2 Absolute Trajectory Error (ATE) ...........................................................................51
5.4 Quantitative comparison of the 3D models ..........................................................55
5.5 Qualitative evaluation.............................................................................................56
5.6 Execution speed.......................................................................................................62
5.7 Pose Graph Optimization Results .........................................................................63
6 CONCLUSIONS .........................................................................................................65
REFERENCES...............................................................................................................66



14

1 INTRODUCTION

1.1 Motivation

In computer vision, 3D reconstruction is the process of estimating the 3D structure

(shape and appearance) of objects. This research topic is the core of many applications

that use 3D spatial information, such as Mixed Reality (NEWCOMBE et al., 2011; IZADI

et al., 2011; Rematas et al., 2018), Autonomous Robotics (Mur-Artal; Montiel; Tardós,

2015; ENGEL; SCHÖPS; CREMERS, 2014), Reverse Engineering (NEWCOMBE et al.,

2011; KERL; STURM; CREMERS, 2013), and Additive Manufacturing (STURM et al.,

2013).

Many good examples of commercial applications that involve 3D reconstruction

are already applied in our daily lives. For example, we can cite some autonomous ve-

hicles, such as some BMW models (Figure 1.1) or reconstruction apps to smartphones

reconstruct small 3D objects, such as Scandy (Figure 1.2), or large-scale 3D reconstruc-

tion, such as Matterport solutions (Figure 1.3).
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Figure 1.1: BMW lidar mapping

Source:<https://spectrum.ieee.org/cars-that-think/transportation/sensors/
embargoed-until-7am-edt-thursday-25-april-bmw-will-use-solidstate-lidar-from-innoviz>

Figure 1.2: Scandy Pro App

Source: <https://prmac.com/release/82969>

Figure 1.3: Matterport Scanning Example

Source: <https://matterport.com/industries/gallery/insta360-vacation-rental-corfe-castle-purbecks>

https://spectrum.ieee.org/cars-that-think/transportation/sensors/embargoed-until-7am-edt-thursday-25-april-bmw-will-use-solidstate-lidar-from-innoviz
https://spectrum.ieee.org/cars-that-think/transportation/sensors/embargoed-until-7am-edt-thursday-25-april-bmw-will-use-solidstate-lidar-from-innoviz
https://prmac.com/release/82969
https://matterport.com/industries/gallery/insta360-vacation-rental-corfe-castle-purbecks
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Several techniques can be used to obtain a 3D model of an object, such as set of

color captures of the object from different views (which is the core of Structure-from-

Motion – SfM – in Computer Vision, as illustrated in Figure 1.4, or a set of point clouds

acquired from different views (using a laser scan or time of flight camera, for instance),

as shown in Figure 1.5 .

Figure 1.4: Structure from motion based reconstruction

Source:<https://www.fxphd.com/fxblog/new-course-photogrammetry-with-metashape-and-nuke>

Figure 1.5: RGB-D 3D Reconstruction

Source: Authors

Nowadays, we have a large availability of low-cost RGB-D sensors, making 3D

scanning software a popular application for the maker culture. These RGB-D sensors

capture simultaneously color (RBG) and depth (D) information, generating a colored 3D

point cloud as output. Although using color as an additional cue to depth information

https://www.fxphd.com/fxblog/new-course-photogrammetry-with-metashape-and-nuke
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might seem straightforward, there might be some complicating factors. In general, color

and depth data are captured by different sensors (sometimes with different Field-of-Views

– FoVs) that are aligned to generate a colored point cloud. This alignment is based on

the intrinsic and extrinsic parameters of the two sensors, and small errors might produce

mis-aligned colored point clouds.

Another issue related to RGB-D cameras is that some of these sensors focus on

near-range applications, being useful to build natural user interfaces, 3D object scanning

and face recognition, for example. On the other hand, other methods are able to cap-

ture longer-range depth values, being designed to build applications that needs a wider

perception of the environment like autonomous cars, robot navigation and scene recon-

struction, to name a few applications. Although the mathematical formulation for shorter-

or longer-range applications are the same, the nature of captured scenes are considerably

different. For example, algorithms for 3D alignment that use mid-range sensors (2 to 4

meters) focus on the reconstruction of larger scenes (e.g. full indoor environments), such

as (DAI et al., 2017). In these cases, the sensor is able to capture several 3D objects at

different locations and orientations (e.g. walls, chairs, tables), so that many point and

depth correspondences across different frames can be obtained. Also, the full FoV of

the sensor might contain scene objects, and it was recently shown in (SILVEIRA; JUNG,

2019) that using features that are spatially spread tends to produce more accurate results

in the context of epipolar matrix estimation (and hence, pose estimation). On the other

hand, scanning smaller objects requires near-range sensors (0.5 meters to 1 meter) to ob-

tain enough geometric and textural details. In this scenario, the captured image contains

mostly the object (typically in the central part of the camera FoV) and some background,

leading to limited geometry/color/texture variability. As a consequence, finding corre-

spondences across different views is a more challenging task, which compromises both

camera pose estimation and 3D reconstruction.

A common problem to both short- or long-range applications is the temporal con-

tinuity of the input data. For instance, depth information can suffer variations even when

no motion has been applied to the camera with respect to the object due to sensor noise

or errors in pose estimation. When using frame-to-frame alignments, this temporal dis-

continuity can lead to worse alignments because of the influence of noise or outlier mea-

surements. In frame-to-model schemes, depth data is accumulated and filtered in order to

generate a smooth model that cope with noise and outliers in depth data.
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1.2 Goals and contributions

Our main goal in this work is to develop a suitable pipeline to process sequences

of RGB-D images in order to reconstruct 3D models of rigid objects in near range using

RGB-D cameras like Kinect. To obtain a 3D model, the user captures images around

the object continuously, and the object is reconstructed online while the user records the

images. To improve the results we address a set possible sources of alignment problems

when 3D scanning is performed: noise in the input images, large displacements between

adjacent camera poses, and objects with low descriptive geometric or texture information.

1.2.1 Contributions

The main contributions proposed in this thesis are:

• Development of a complete frame-to-model pipeline that uses combined color and

depth information, obtaining low drift estimates;

• Proposal of a coarse initial alignment using a Perspective-n-Point (PnP) approach

to cope with large displacement between adjacent frames;

• Introduction of a weighting scheme to avoid alignment problems when the depth

image have pixels with low confidence, which relates to depth discontinuities (and

affects the alignment with the color sensor).

1.3 Chapters organization

In Chapter 2 we introduce and reference some of the fundamental concepts of

camera modeling and mathematical optimization techniques that are extensively used in

this work. chapter 3 revises important papers in the 3D reconstruction area, these works

are divided by techniques that rely on local minimization techniques and global mini-

mization techniques. At the end of chapter is introduced the competitor technique to this

work.

In chapter 4 we describe the pipeline used to obtain robust alignment of continuous

incoming RGB-D data from a depth camera. All stages of the pipeline involving image

filtering, initial pose estimation, pose refinement, and model integration.

The experimental results are presented in Chapter 5, where we also define the used
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datasets, as well as the qualitative and quantitative metrics to assess the performance of

the system in both camera pose estimation and final model geometric/appearance fidelity.

Finally, Chapter 6 presents the final conclusions and directions for future work.
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2 FUNDAMENTALS

This chapter presents mathematical/geometrical concepts and underlying numeric

techniques necessary to understand the implementation of the algorithm to solve the 3D

reconstruction problem.

2.1 Pinhole Camera Model

The acquisition of images by a standard camera can be modeled as the Pinhole

Camera Model described in the work of Hartley and Zisserman (2000). This model de-

scribes a camera based on a box that presents a very small aperture in the center of one

of its sides. The rays of light pass through the aperture and are projected at the opposite

side of the box. By being an abstraction to a real camera this model ignores geometric

distortion and other effects, with the advantage of being easier to understand and work.

Figure 2.1: A Pinhole Camera diagram

Source: The authors

The process of transforming a point in the world coordinate frame to the image

plane is described by the camera matrix. Camera matrix is composed of two other ma-

trices: Intrinsics camera parameters matrix or camera calibration matrix; and Extrinsics
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camera parameters matrix.

The intrinsics matrix contains parameters concerning to focal length and principal

point, and for digital cameras it also encodes information about the discrete geometry

of pixels. The extrinsic matrix [R|t] describes the transformation between 3D world

coordinates and camera coordinates (rotation and translation).

2.1.1 Intrinsic parameters

As noted in Figure 2.1, the projection of a 3D object based on the pinhole camera

model generates similar triangles, from which we can devise the projection equations.

These projections are encoded by a matrix called calibration matrix or intrinsics camera

parameters matrix. This is a 3× 3 upper-triangular matrix given by

Kp =


f 0 px

0 f py

0 0 1

, (2.1)

where f is the focal length (distance between the image plane and aperture), px and py

are the principal point coordinates (central coordinates where a ray perpendicular to the

image plane converges).

In a digital camera, the photosensitive sensor is discrete (leading the the notion of

pixels). As such, it is modeled by an extension of the pinhole camera model called “Finite

Projective Camera Model” that also takes into account the discrete sensor. It is given by

K =


αx γ u0

0 αy v0

0 0 1

, (2.2)

where αx and αy are the focal lengths in both spatial axis (given in pixels), and (u0, v0)

are the principal point coordinates in pixels. Parameter γ represents the skew coefficient

between the x and the y axis, which often is 0.
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2.1.2 Extrinsic parameters

The extrinsic parameters matrix stores the coordinate system transformations from

the 3D world coordinates to 3D camera coordinates. It also encodes the position of the

camera center and the camera’s direction in world coordinates. The extrinsic parameters

are fundamental in visual odometry algorithms, since we can find the camera position in

world coordinates C as C = −R−1t = −R>t, noting that R is a rotation matrix (and

hence, orthogonal). The extrinsic parameters matrix is typically represented in the form

below

[
R|t
]

=
[
R3×3 t3×1

]
=


r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3

 (2.3)

2.1.3 Central Projection Using Homogeneous Coordinates

A convenient way to transform 3D points from world coordinates to camera coor-

dinates and after to image plane coordinates is using homogeneous coordinates.

A point in world coordinates [xw, yw, zw, 1]> in the homogeneous form is trans-

formed to the camera coordinate space by the multiplication with the extrinsics matrix

[R|t] (2.3). After that, the point – now in the camera space – is projected into a image

plane by multiplication with the intrinsics matrix K (2.2). The process of mapping from

3D space to camera image plane space is summarized as


u/w

v/w

1

 ∼

u

v

w

 = K
[
R|t
]

xw

yw

zw

1

 , (2.4)

where [u/w,w/v]> are the final image coordinates expressed in pixel units, and∼ denotes

that the two points are in the same line of projection.
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2.2 Rigid Body Motion using Lie Algebra of Twists

A twist in its vector form (exponential coordinates) is are very useful because they

can represent a rigid body motion matrix T ∈ SE(3) using a minimal vector representation

ξ ∈ <6 in exponential coordinates. It is given by

ξ = (ξ1, ..., ξ6)
> = (u1, u2, u3, ω1, ω2, ω3)

> = (u>,ω>)>, (2.5)

where u ∈ <3 and ω ∈ <3 represent the translational and rotational velocities, respec-

tively.

Let us also define the operator [.]x given by

[.]x : <3 → so(3) ⊂ <3×3; [ω]x =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (2.6)

which operates on a 3D vector and produces a 3×3 matrix that corresponds to the vectorial

cross-product, i.e., p× q = [p]x q.

Let us also define the hat operator (∧) that combines rotation and translation pa-

rameters into an intermediate matrix form, which can be mapped to SE(3) Lie group

matrix:

∧ : <6 → se(3) ⊂ <4×4; ξ̂ = ξ∧ =

u

ω

∧ =

[ω]x u

0 0

 (2.7)

The mapping between the twist skew symmetric matrix in se(3) and the SE(3) Lie

group is done by matrix exponentiation:

exp : se(3)→ SE(3); exp(ξ̂) = exp

[ω]x u

0 0

 =

e[ω]x Vu

0 1

 =

R t

0 1

 ,
(2.8)

where the exponential of a square matrix is defined as the Taylor series expansion applied

to the matrix. In fact, we can obtain a closed-form for e[ω]x and V by simplyfing the

Taylor series, which is called the Rodrigues rotation formula:

φ = ‖ω‖ ; n =
ω

φ
(2.9)
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e[ω]x = e[n]xφ = I + sinφ[n]x + (1− cosφ)[n]2x (2.10)

V = I +
1− cosφ

φ
[n]x +

φ− sinφ

φ
[n]2x (2.11)

These operators are applied in order as below:

ξ ∈ <6
∧(hat)
�
∨(vee)

ξ̂ ∈ se(3)
exp

�
log

T ∈ SE(3), (2.12)

and the backward order is possible by using the inverse operators log and ∨ operator.

These operators are not used in this work as we only need to apply these transformations

in the forward direction.

Note that for 3D reconstruction and pose estimation we need to obtain the transfor-

mation parameters (rotation, translation) based on observed data. Since these parameters

appear in a non-linear form, linearization is typically applied. One important feature of

the motion parametrization based on twist coordinates is that the Jacobian of twists of

each 3D point X is very simple to compute, as it does not involve any trigonometric

operations and depends only on the point coordinates xi as provided next:

Jξ =
∂X

∂ξ
=


1 0 0 0 x3 −x2
0 1 0 −x3 0 x1

0 0 1 x2 −x1 0

 (2.13)

2.3 Non-Linear Least squares estimation

Least squares estimation is a common technique to compute approximated solu-

tions of overdetermined systems. There are two classes of least-squares problems: Linear

and non-linear. In general, most of the problems have non-linear formulations, and thus

non-linear estimation algorithms are useful in a wider set of problems.

The technique aims to minimize the sum S of the squares of the residual terms ri:

S =
n∑
i=1

ri
2, (2.14)
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where residual term ri is given by

ri = yi − f(xi,β). (2.15)

In Equation (2.15), xi and yi are the observed values for the independent and

dependent variables, respectively. Also, f is a fitting function that depends on a set of

parameters given by vector β, such that yi should be close to f(xi,β).

Assuming that S is convex, its minimum is obtained by setting the n gradient

equations to zero:

∂S

∂βj
= 2

∑
i

ri
∂ri
∂βj

= 0, for j = 1, . . . , n, (2.16)

which leads to a linear system when f is linear w.r.t. β. For non-linear relationships,

Equation (2.16) leads to system of non-linear equations, and S is typically minimized

using an iterative numerical scheme.

Most of non-linear formulations strongly depend on good initial values for param-

eters, is this case “good” means parameters close enough to the global optimal solution.

Assuming that we have a good initial state β0
j the parameters are refined iteratively by the

successive the approximation rule:

βk+1
j = βkj + ∆βj, for k = 1, 2, 3, . . . (2.17)

To find the shift vector ∆βj at each iteration, the model is linearized by a first-

order Taylor expansion about βk where k is the current iteration number:

f(xi,β) ≈ f(xi,β
k) +

∑
j

∂f(xi,β
k)

∂βj

(
βj − βkj

)
= (2.18)

f(xi,β
k) +

∑
j

Jij ∆βj, (2.19)

noting that the jacobian J changes at each iteration. If we define

∆yi = yi − f(xi,β
k), (2.20)
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we can write

ri = yi − f(xi,β) =
(
yi − f(xi,β

k)
)

+
(
f(xi,β

k)− f(xi,β)
)
≈ ∆yi −

n∑
s=1

Jis∆βs.

(2.21)

Substituting the above equations into (2.16) yields:

−2
m∑
i=1

Jij

(
∆yi −

n∑
s=1

Jis ∆βs

)
= 0, (2.22)

which can be reorganized to get the n normal equations:

m∑
i=1

n∑
s=1

JijJis ∆βs =
m∑
i=1

Jij ∆yi for j = 1, . . . , n, (2.23)

and finally can be expressed in matrix notation as:

(
J>J

)
∆β = J>∆y. (2.24)

A weighted version of the sum of the squared could be used in the case different

confidence levels of the parameters of the model is presented below:

S =
m∑
i=1

Wiir
2
i , (2.25)

and the corresponding normal equations in this case are:

(
J>WJ

)
∆β = J>W∆y, (2.26)

where W is a diagonal matrix with the weighting values for each parameter.

2.4 Perspective-n-Point

Perspective-n-Point is well-known problem that aims to recover the relative cam-

era pose between a calibrated camera (i.e., intrinsic parameters are known) and the origin

of a certain coordinate system, given a set of n points in 3D and their corresponding

2D projections in the image (MARCHAND; UCHIYAMA; SPINDLER, 2016). As men-

tioned before, the camera pose presents six degrees-of-freedom (6-DoF), which are re-
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lated to the translational (x,y,z) and the rotational motion (roll, pitch, yaw). These 6-DoF

parameters describes the relative motion (World coordinates to Camera coordinates) be-

tween two points of view of the same scene as shown in Figure 2.2.

Figure 2.2: Pose transform between two points of view of the same point cloud

Source: The authors

Although the Direct Linear Transformation (DLT) is the straightforward solution

for the case where the number of points is n > 5 (HARTLEY; ZISSERMAN, 2000) many

authors proposed solutions to this error function by using fewer points, for example, n = 3

which is called the P3P problem. Different algorithms were developed to solve the P3P

problem as for example the work of Gao et al. (2003) and even for the cases when n > 4

as ePnP (LEPETIT; MORENO-NOGUER; FUA, 2009).

The formulation considered the “gold standard” error for PNP problem (HART-

LEY; ZISSERMAN, 2000; MARCHAND; UCHIYAMA; SPINDLER, 2016) consists on

finding the 6-DoF transformation between the camera and world frames cTw ∈ SE(3) that

minimizes the Euclidean distance error of the projected points, as follows:

q̂ = arg min
q

N∑
i=1

d(xi,Π Tw
wXi)

2. (2.27)
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In equation (2.27) the motion is denoted by q ∈ se(3) as q = [ctw, θu]> where θ and u

are the angle and the axis of rotation and ctw represents the translation motion. The error

is obtained by calculating the Euclidean distance between 2D point xi and the 3D point

Xi transformed and projected by Tw and Π respectively.

The solution of the problem relies on iterative methods like Gauss-Newton algo-

rithm. An exponential mapping of q is applied to obtain the cTw transformation (MA et

al., 2003).

2.5 RANSAC - Random Sample Consensus

RANdom SAmple Consensus, or RANSAC, is an iterative method to estimate

parameters of mathematical models when the data contains outliers, where an outlier is a

point that is “different” from the expected observations. In the case of images, outliers can

be erroneous pixels generated by the various sources of noise in the digital photography

process, or a wrong depth estimate due to object characteristics (e.g., dark objects do not

reflect much light, which affect time-of-flight cameras) or illumination conditions.

A classical application of RANSAC is line fitting based on a set of roughly aligned

2D points containing outliers. In this case, the result obtained with conventional meth-

ods like Linear Regression will be affected by the most distant points from the expected

observation, since the squared error is large at outliers. An example of (wrong) linear

regression is shown in Figure 2.3, while a desirable result would the case is shown in

figure 2.4.

To avoid outlier influence in the final result, RANSAC chooses randomly n data

points in order to estimate the desired model, then it checks how many points of the full

dataset are well approximated by this guess. If the random selection leads to “good”

points, the model will be adequate and the other points will be well explained by the

fitted model. Otherwise, the process keeps going until it reaches a maximum number

of iterations or it provides a good enough model. A general explanation is shown in

Algorithm 1.

To avoid problems with noisy estimates of depth and color RANSAC when us-

ing ePNP we need to put ePNP estimates inside of RANSAC iterative process as the

fitting model step of the algorithm. Fortunately we have this already implemented in the

OpenCV Library (BRADSKI, 2000).
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Figure 2.3: Bad linear model estimate

Public Domain Image - Retrieved from <https://commons.wikimedia.org/wiki/File:
RANSAC_LINIE_Animiert.gif>

Figure 2.4: Good linear model estimate

Public Domain Image - Retrieved from <https://commons.wikimedia.org/wiki/File:
RANSAC_LINIE_Animiert.gif>

2.6 Visual Odometry

Visual odometry is the process of determining the pose and orientation of a mov-

ing camera based on visual information. This is a key task in robotics, and it is useful

to keep track of the robot’s position and orientation in time. A famous example of appli-

cation to this technique is the Mars Exploration Rover, since it operates in a GPS denied

environment (MAIMONE; CHENG; MATTHIES, 2007). For more information on visual

https://commons.wikimedia.org/wiki/File:RANSAC_LINIE_Animiert.gif
https://commons.wikimedia.org/wiki/File:RANSAC_LINIE_Animiert.gif
https://commons.wikimedia.org/wiki/File:RANSAC_LINIE_Animiert.gif
https://commons.wikimedia.org/wiki/File:RANSAC_LINIE_Animiert.gif
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Algorithm 1: Random Sample Consensus
Data: data – A set of observations.
model – A model to explain observed data points.
n – Minimum number of data points required to estimate model parameters.
k – Maximum number of iterations allowed in the algorithm.
t – Threshold value to determine data points that are fit well by model.
d – Number of close data points required to assert that a model fits well to
data.
Result: bestFit – model parameters which best fit the data (or nul if no good

model is found)
iterations := 0;
bestFit := nul;
bestErr := something really large;
while iterations < k do

maybeInliers := n randomly selected values from data;
maybeModel := model parameters fitted to maybeInliers;
alsoInliers := empty set;
for every point in data not in maybeInliers do

if point fits maybeModel with an error smaller than t then
add point to alsoInliers;

end
end
if the number of elements in alsoInliers is > d then

betterModel := model parameters fitted to all points in maybeInliers
and alsoInliers;

thisErr := a measure of how well betterModel fits these points;
if thisErr < bestErr then

bestFit := betterModel;
bestErr := thisErr;

end
end
iterations++;

end

odometry we redirect the reador to the work of Scaramuzza and Fraundorfer (2011), who

introduce the main concepts, present and analyzes different algorithms.

2.7 Conclusions of Chapter

This chapter presented the main concepts and basic techniques typically used for

3D camera pose estimation and 3D reconstruction. It indicates that there are several

challenges and steps involved in the aforementioned problems, and some of them will be

tackled in the next chapters.
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3 RELATED WORK

Various approaches have been proposed to address the 3D reconstruction prob-

lem using RGB-D cameras. Some of them depend on reliable point matching between

point clouds to estimate a rigid transformation that describes camera movement between

these frames, others do not need explicit correspondences but work well only if the points

clouds are close to each other. This review will focus on methods that explore point-cloud

data (with or without associated color information). To explain how a 3D model can be

generated from point cloud data we direct the reader to (BERGER et al., 2017) for a

survey on surface reconstruction from point clouds.

3.1 Global Registration

Global registration techniques aims to find the transformation matrix that aligns

two point clouds without any assumption on the initial pose of the cameras that captured

the point clouds. There are two main approaches to this end: Voting Methods and Geo-

metric Descriptors.

In the case of voting method algorithms, an exhaustive search is performed by

varying the rigid transformation parameters. To speed up the process, many techniques

were developed like Generalized 3D Hough Transform (KHOSHELHAM, 2007) and

Pose Clustering (OLSON, 1999). As described in the work of Gelfand et al. (2005),

although voting methods can guarantee to find optimal solutions, these techniques have a

very high computational cost making implementation impractical to be used in interactive

applications.

Geometric (RUSU et al., 2008; TOMBARI; SALTI; STEFANO, 2010) and im-

age (RUBLEE et al., 2011; LOWE, 2004; BAY et al., 2008; CALONDER et al., 2010)

descriptors can be used to establish sufficiently reliable correspondences between point

clouds or images, aiming to obtain acceptable results at lower running times. By finding

these correspondences we can estimate the transformation that aligns point clouds by us-

ing various algorithms as SAC-IA (RUSU; BLODOW; BEETZ, 2009), 3D-NDT (MAG-

NUSSON, 2009) or Extended Gaussian Images (MAKADIA A. PATTERSON, 2006)

alone or combining with outlier robustification techniques like RANSAC (FISCHLER;

BOLLES, 1981).

Usually, faster global registration algorithms rely on point matching. Errors on
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point matching lead to an inaccurate alignment, needing the use of local methods such as

ICP (BESL; MCKAY, 1992) to refine the transformations. In spite of this, Zhou, Park

and Koltun (2016) claim that their global registration method is even better than ICP.

Next we present some depth or color descriptors that can be used for feature

matching, and then possibilities for PnP that explore such matched features to estimate

the desired camera pose.

3.1.1 Features and Descriptors

To get correspondences between point clouds, one must detect points of interest

that are salient and repeatable in depth/geometry or color in order to generate information

that describes these points. This descriptive information is used later to find matchings

between point clouds or images.

A well-known descriptor and feature detector to work with geometric data is

PFH (RUSU et al., 2008), and its faster version FPFH (RUSU; BLODOW; BEETZ, 2009)

is implemented in the PCL Library (RUSU; COUSINS, 2011). When using these types

of descriptors, the neighborhood of 3D points is used to generate a signature of the region

around each point. Similarly, SHOT features (TOMBARI; SALTI; STEFANO, 2010) is

another option of 3D features that offers a faster alternative.

In the case of 2D RGB images, similar approaches like SURF (BAY et al., 2008)

and ORB (RUBLEE et al., 2011) are available, with the advantage of allowing lower com-

plexity implementations while keeping good accuracy. The descriptors called LIFT (YI

et al., 2016) and SuperPoint (DETONE; MALISIEWICZ; RABINOVICH, 2018) use

machine learning techniques to find discriminative keypoints and descriptors, achieving

state-of-the-art results. However, the dependency of the training sets used in machine

learning approaches and the test images is still a point to be investigated.

As one can observe, an extensive variety of feature detectors and descriptors are

in constant development, some of them are less robust to variability in data, while others

may try to be invariant to scale, rotation, or affine transformation. In this work, we chose

to use ORB, which is fast and showed to be robust enough (has rotational invariance) to

obtain the coarse approximations that initialize our pose refinement step of the pipeline.

As mentioned above, geometric (Depth) and image features (RGB) work with different

characteristics of RGB-D information. Depth-based features can be useful when only

homogeneous or repetitive color information is available; on the other hand, color-based
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features may be useful when depth data is mostly planar or with low geometric variation,

leading to an ambiguous situation to find matching correspondences.

3.1.2 PnP Algorithm Variants

The Perspective-n-Point problem presented in Section 2.4 has many proposed so-

lutions. A common classification the proposed solutions is the minimum number of points

n needed to find the pose of camera e.g. n = 3 (P3P), n = 4 (P4P) and so on.

Several solutions to the P3P problem were proposed (MERRITT, 1988; Xiao-

Shan Gao et al., 2003; WANG et al., 2018), most of them is based on the law of cosines

to generate three quadric equations about the lengths between the three 3D points and the

camera origin (Zhou; Kaess, 2019). A detailed review of the P3P algorithms can be seen

in the work of Haralick et al. (1994).

To solve PnP where n > 4, many other solutions were proposed as well (Lu;

Hager; Mjolsness, 2000; SCHWEIGHOFER; PINZ, 2008; LI; XU; XIE, 2012; Zhou;

Kaess, 2019). The work of Lepetit, Moreno-Noguer and Fua (2009) presents the first

O(n) algorithm to solve PnP. To achieve this, they introduce the notion of control points.

More precisely, the authors define four 3D virtual control points that have their coordi-

nates estimated by computing weights of the null space eigenvectors by solving a fixed

and small number of quadratic equations. The final transformation is refined obtaining

the weights of the control points using Gauss Newton iterative optimization in the error

of distances between control points.

3.2 Local Registration

Local registration methods are techniques that need a good initial pose to estimate

accurate transformation between point clouds. This limitation is mostly true to all tech-

niques that work optimizing non-linear functions. The most popular technique of this

kind is the Iterative Closest Points (ICP) introduced works of Besl and McKay (1992)

and Chen and Medioni (1992).

Iterative Closest Points is a very explored algorithm with various variants by the

tuning of many steps of the classical implementation. The most conventional types of

formulation are the point-to-point distance (CHEN; MEDIONI, 1992; BESL; MCKAY,
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1992) and point-to-plane distance (LOW, 2004). An overview of the variants of this class

of algorithms is presented in (RUSINKIEWICZ; LEVOY, 2001).

The objective of ICP, as indicated by its name, is to approach the nearest points of

two-point clouds by keeping a reference point cloud fixed, while the other one is moved

in 6-DoF space to match as much as possible with the reference cloud. To achieve this

goal, a generic list of steps is executed:

• Selection of the matching points of interest on each point cloud. Typical choices

are: using all or most of the data (dense information), or selecting discriminative

sparse points. A measurement of which is closest point to a specific point varies:

Euclidian distance, projective association, normal shooting, etc.

• Weighting or rejection of the selected points by confidence measurement: Weight-

ing or rejection of some erroneous point gives robustness to the system.

• Minimization of a chosen error metric: Minimization can be done by classical algo-

rithms like gradient descent, Gauss-Newton or even closed-form solutions depend-

ing of the chosen error metric.

• Iterate (repeat all steps above)

Figure 3.1: Point cloud iterative alignment. Black arrows indicate point selection and
local motion. Thick blue arrows indicate different iteration steps

Source: The authors

The overall algorithm can be summarized as the loop of these steps above with

each new iteration updating the transformation of the new cloud with respect with refer-

ence one. A graphical illustration of the method is shown in Figure 3.1.

In the work of Newcombe et al. (2011) called KinectFusion is presented a 3D

real-time reconstruction pipeline. The main contributions of their work are the imple-

mentation of ICP using the point-to-plane error metric with projective association and a
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Truncated Signed Distance Function (TSDF) which continuously smooths the obtained

surfaces while running on GPU yielding real-time performance. Since the implementa-

tion can perform integration of depth data at fast frame rates, it allows tracking based on

the generated map by aligning the incoming point clouds to the smooth accumulated map,

this is called frame-to-model alignment.

A more robust ICP variation is the Dense Normal Based Point Cloud Registration

(NICP) (SERAFIN; GRISETTI, 2015), which introduces a minimization function that as

KinectFusion, uses only geometric data. It generated extended measurements by using

normal and tangent information of the points. Its error function formulation aims to min-

imize the Mahalanobis distance of the extended geometric information together with the

usual point distance error. To prune bad correspondences normals, distance and curvature

are used to improve the robustness of the system. The system is able to run real-time

using only CPU.

Color information is coupled to the ICP point-to-plane cloud alignment problem in

the paper of Park, Zhou and Koltun (2017). They use colors converted to the grayscale for

solving a photometric error together with depth data in order to obtain better alignment

between colored point clouds. However, they do not deal with the color-depth sensor

misalignment that is present in consumer cameras.

3.3 Conclusion of chapter

This chapter presented different possibilities and approaches used by researchers

to tackle the problems of pose estimation and 3D reconstruction. In general, global reg-

istration methods need more time to compute global optimal solutions, but yields better

results. Some of the global techniques use point matching in order to reduce the compu-

tation time, with the tradeoff of being less accurate. It also indicates that the use of joint

color and depth is used by some authors, but existing approaches do not account for the

potential mis-alignment between these two sensors.
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4 THE PROPOSED APPROACH

In this thesis, we propose a pipeline that can build 3D models on-the-fly, fusing

the acquired point cloud into a consolidated refined model, considering that at first the

consolidated model is just the first acquired point cloud. We use the current pose to

project the model, creating a depth map at time t that will be used to find the next camera

pose at time t+ 1 using a weighted combination of photometric and geometric features.

The first step of our method is to filter the input depth data, aiming to reduce

noise. A normal map is obtained with the depth data and a weighting value is computed

at each pixel. A rough initial camera pose is then obtained using a PnP algorithm, and a

non-linear optimization method that jointly explores color and depth is used to refine the

camera pose estimate. Depth data of the current frame is integrated to the model using

Truncate Signed Distance Fields (TSDF), and each new depth image is aligned to the

renderization of the model from the last pose. An overview of the proposed approach is

illustrated in Fig. 4.1, and each step is detailed next.

Figure 4.1: Proposed iterative pipeline

4.1 Color and Depth Bilateral filtering

Cheap RGB-D Cameras have very limited image quality, particularly when it

works under low illumination conditions. In the case of depth data, color and reflectance

properties of the scene often cause pixels to be obtained with bad depth estimates, which

are undesirable both to the registration process and model integration process. To improve

the quality of the final model, normal map estimation and get better results at photomet-

ric/depth alignment, we perform a fast bilateral filtering (PARIS; DURAND, 2009) on
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input RGB and depth images. This filter reduces noise of depth measurements and RGB

pixels preserving the edges of the original image based on two parameters: σs to control

spatial smoothing and σr controls range smoothing.

4.2 Normal Map and Weight Map Estimation

Although the pipeline presented in this work is generic for any point cloud capture

device, we note that devices that explore Time of Flight (ToF) or structured light present

limitations when the scanned surface is locally orthogonal (or close to orthogonal) to the

emitting rays. In these cases, the amount of reflected light back to the sensor (in the case

of ToF cameras) is small, so that the depth estimate (and consequently the corresponding

3D camera coordinates) might be inaccurate or generating “flying pixels” that are discon-

nected from the object. An example of such artifacts is shown in Figure 4.2, highlighted

by gray ellipses.

Figure 4.2: Flying pixels generated by ToF Camera

Source: (Reynolds et al., 2011)

To avoid generating point cloud models with flying pixels or similar artifacts, we

first prune the acquired point cloud using a pre-processing step based on surface normals.

More precisely, we compute the angular distance θ(nc,np) between the local normal

vector np at each point of the cloud and an inverted virtual camera axis vector nc =
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(0, 0,−1)> (normals with negative z coordinate points towards the camera) at the same

coordinate frame origin given by

θ(nc,np) = arccos < np,nc >, (4.1)

where < ·, · > denotes the inner product. If the angle is sufficiently large (based on a

threshold Tθ, in this case 70◦), the point is removed from the point cloud.

4.3 Rough Initial Registration based on ePnP

Although we assume a relatively temporally continuous capture of the object,

rapid camera (or object) motion might generate adjacent point clouds that are signifi-

cantly apart from each other. Since our fine alignment scheme (that will be described

next) might not converge in such cases, we first perform a rough alignment of the point

clouds.

A key aspect in PnP algorithms is obtaining point correspondences, which can be

done based on geometric (point cloud) or textural (color) information. When analyzing

objects at a near distance, which is the case of this work, our tests with geometric de-

scriptors like PFH (RUSU et al., 2008), FPFH (RUSU; BLODOW; BEETZ, 2009), or

SHOT (TOMBARI; SALTI; STEFANO, 2010) did not show very stable matching results.

Hence, we opted to use image-based features instead, assuming that objects to be scanned

provide textural information. More precisely, we selected ORB image features (RUBLEE

et al., 2011), due to the good compromise between quality and execution time. To es-

timate the 3D position of extracted keypoints from the reference view, we unproject the

keypoints to 3D space using the reference depth map frame. Assuming that the depth cam-

era is calibrated (which is the case, since this information is used to fuse RGB and depth

values), we end up with the classical Perspective-n-Point (PnP) problem. From the sev-

eral existing solutions, we chose the EPnP algorithm (LEPETIT; MORENO-NOGUER;

FUA, 2009) due to its speed. We also include a RANSAC-based outlier removal scheme

over EPnP.

To prune bad point matchings, for each detected ORB feature in the actual frame

we list only the top-2 best ORB feature matchings from the previous frame, where the

matching score is done with Hamming distance between the binary descriptors. We define

the point matching as valid when the Euclidian distance on the image domain between two
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matched points is below 100 pixels (since we are using images with 640× 480 resolution

this distance allows wide motion between frames). Moreover, the Hamming distance

of best matched descriptor must be smaller than 80% of the Hamming distance of the

second-best match, to avoid selecting ambiguous matches.

In cases where RANSAC can not obtain 90% of inliers (as inlier we mean points

with reprojection error below 1-pixel distance), we coniseder that PnP did not produce a

valid pose. In that case, we choose the identity matrix as the initial transformation for the

non-linear refinement.

The parameters/thresholds presented above were obtained during the empirical

tests, assuming that camera motion is mostly smooth and the matching refinement criteria

remove most of outliers from data.

4.4 Refined Registration

After the initial pose estimation provided by EPnP, we fine-tune the estimate by

solving a convex optimization problem that aims to minimize intensity and depth differ-

ences between pixels of each pair of the RGB-D images in two consecutive video frames.

The goal of the optimization problem is to obtain optimal parameters of a rigid trans-

formation matrix T that describes the 6-DoF synthetic camera pose that renders the best

alignment between two colored point clouds: the first one is the current model, rendered

by a synthetic RGB-D camera at the location of the last camera pose, and the second one is

the RGB-D frame currently being captured by the sensor. We find the optimal rigid trans-

formation between these two frames using a fine-tuned Gauss-Newton algorithm over a

joint photometric and geometric error function.

Following the approach proposed in (PARK; ZHOU; KOLTUN, 2017), we have

the photometric and geometric errors combined in the same objective function. As in

their work, our algorithm receives as input a pair of registered RGB-D images (Ii,Di),

(Ij,Dj) and a transformation T that roughly aligns the images, obtained from ePnP.

4.4.1 Photometric Error

The Photometric Error EP is formulated as the sum of squared intensity differ-

ences, as introduced in works of Park, Zhou and Koltun (2017), Steinbrucker, Sturm
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and Cremers (2012), Kerl, Sturm and Cremers (2013). As argued by these authors, the

choice of combining RGB channels in one gray scale value reduces the computational

cost without significant loss of accuracy. In this work, we consider findings of Nguyen,

Izadi and Lovell (2012), Khoshelham and Elberink (2012), Mallick, Das and Majumdar

(2014) and introduce a sensor independent weighting function wP (p) for each pixel at the

location p that aims to reduce the importance of residuals which the depth estimate might

be degraded. As this depth accuracy degradation might produce erroneous RGB to Depth

matching, we prefer to give progressively less weight to the color pixels that are aligned

with poor depth estimates.

The photometric error EP is given by

EP (T ) =
∑
p,q

wP (p) (Ii(p)− Ij(q))2 , (4.2)

where p = (u, v)T is a pixel in the registered (Ii,Di) image pair and q = (u′, v′)T is its

correspondent pixel in the (Ij,Dj) image pair. This correspondence is found by unpro-

jecting q back to the 3D space (using pixel location, depth estimate and camera intrinsic

parameters), applying the transformation T and re-projecting it into pixel coordinates of

the (Ij,Dj) pair:

p = σuv(s(π
−1(Dj(q)),T )), (4.3)

Where s is the function that applies rigid transformation to the homogeneous points ac-

cording to:

s(x,T ) = Tx. (4.4)

Also, the inverse point projection π−1 from depth map to homogeneous 3D point is de-

fined as:

π−1(u, v, d) =

d(u− cx)
fx

,
d(v − cy)

fy
, d, 1

> , (4.5)

where fx and fy are focal lengths and (cx, cy) is the principal point coordinate of the

camera. The function π maps a 3D point w = (wx, wy, yz, 1)> into image coordinates u,

v plus an additional coordinate d to store depth information based on how much a point

is away from the sensor.
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π(wx, wy, wz) =

wxfx
wz

+ cx,
wyfy

wz
+ cy, wz

> , (4.6)

To extract information from images we defined two convenient functions, namely

σuv and σd. Function σuv returns the first two coordinates of π, which are the pixel

coordinate on the image plane (Ii,Di), while function σd returns only the last coordinate

which stores the depth of the point.

4.4.2 Geometric Error

The Geometric Error EG is obtained in a similar way to the ICP point-to-plane

formulation of (LOW, 2004), except that we choose using only the third component from

normalsNi(p) and 3D points of depth mapsDi andDj .

We are first intending to align confident points from planes that are parallel to the

camera’s image plane while avoiding alignment of noisy points that lies on planes that are

almost orthogonal to the image plane. As nz = cos(θ), we are giving greater weighting

to the fronto-parallel tangent planes of the incoming point cloud.

Differently from the proposed photometric error modelling, here we can easily

measure how much the values of the correspondent points change as the camera moves

and the difference must be calculated using values obtained from σd composed withDi(p)

in order to get the modified depth values ofWj(q) at each pose step. As in the photometric

error we also use a weighting scheme, and define

Wj(q) = s(π−1(Dj(q)),T )) (4.7)

EG(T ) =
∑
p,q

wG(p)Ni(p) (Di(p)− σd(Wj(q)))
2 , (4.8)

where wG(p) is a weighting function for the geometric error. In this work we chose set

wG = wP , and this common weighting function will be detailed in Section 4.4.3.
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4.4.3 Point weighting

As discussed in Section 4.1, time of flight and structured light depth cameras are

more accurate when scanning fronto-parallel regions, since the amount of reflected/captured

light is larger. The previous statement is confirmed in the case of Kinect v1 and v2

sensors as presented in the works of Nguyen, Izadi and Lovell (2012) and Grossmann

(2017). Besides using this information for removing potentially bad points, we also ex-

plore it for weighting the global photometric and geometric distances. More precisely, the

largest weight should be assigned to points that present tangent planes fronto-parallel to

the camera sensor, and progressively less weight as the tangent planes become closer to

fronto-orthogonal. This behavior is captured by the angle θ(nc,np) between the camera

viewing direction np and the normal vector np to the tangent plane of the point p under

consideration. Our weighting function wP is given by

wP (p) = max{0, cos (τθ(nc,np))}, (4.9)

where τ is a parameter that controls how fast the weight decreases as the angle θ increases,

so that θ values above π/(2τ) lead to null weights (i.e., the corresponding points are

discarded from the analysis). We selected τ = 1.3 based on experiments and by the strong

indication in the works of Nguyen, Izadi and Lovell (2012), Grossmann (2017) that most

of Z-axial error (depth measurement) occurs when tangent plane angle varies from 70◦

to 90◦ with respect to the camera pointing vector. The plot of wP for 0◦ ≤ θ ≤ 90◦ is

provided in Fig. 4.3, and angular differences above ≈ 67◦ generate null weights.

Figure 4.3: Plot of the photometric weight function wP .
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It is important to note that using wP (p) weighting function also helps with another

common issue when dealing with RGB-D cameras: “color bleeding”. Note that depth and

color information are captured by different calibrated sensors, and later fused together

based on the (intrinsic and extrinsic) parameters of each sensor. Since these parameters

typically present some error, the registration of the two sensors is not perfect. In particular,

the mis-alignment is more noticeable along depth discontinuities (which typically arise on

the boundaries between two objects). At these locations, the colors of one object might

be wrongly projected to the other object, as illustrated in Fig. 4.4, which could lead to

inconsistencies between EP and EG. Since depth discontinuities tend to generate a front-

orthogonal local tangent plane, its effect is implicitly alleviated by our weighting function.

Figure 4.4: Color bleeding caused by wrong RGB and depth registration at depth discon-
tinuities.

4.4.4 Joint Error Optimization

We previously presented individual photometric and geometric errors, but we seek

for a solution where both objective functions are minimized as much as possible. For that

purpose we build a joint objective function that combines these errors through a weighted

sum:

E(T ) = EP (T ) + λEG(T ), (4.10)
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where λ ≥ 0 controls the relative weight of the geometric error. Note that if we set λ > 1,

we are favoring geometric over photometric alignment.

To represent the 6-DoF with a minimal representaion we use the twist vector

ξ = [ωx, ωy, ωz, tx, ty, tz]
> that combines rotational and translational motion parameters

to describe a rigid motion. This twist vector has its Lie algebra correspondence in matrix

form ξ̂ ∈ se(3) as follows:

ξ̂ =


0 −ωz ωy tx

ωz 0 −ωx ty

−ωy ωx 0 tz

0 0 0 0

 . (4.11)

From this matrix we can obtain the 6-DoF transformation T ∈ SE(3) matrix using

the matrix exponential function T = exp(ξ̂). To find the best transformation to this

non-linear objective function, we use the Gauss-Newton method since it provides fast

convergence. To calculate the Jacobian for residuals of the projected RGB and Depth

pixels rP , rG we need to compute JrP and JrG as shown below:

JrP =
∂rP

∂ξ
=
∂rP

∂x

∂x

∂X

∂X

∂ξ
, (4.12)

JrG =
∂rG

∂ξ
= λ

Nr

∂X

∂ξ

 , (4.13)

where ∂rP
∂x

are the image gradients from the gray intensity image obtained from the orig-

inal RGB data processed with the Scharr operator, Nr are the pixel-associated normal

vectors obtained from the depth map using the technique described on paper of Badino

et al. (2011), ∂X
∂ξ

is the 6-DoF motion derivative of points in 3D with respect to motion

parameters in Eq. (2.13), and ∂x
∂X

are the perspective projection derivatives as follows:

∂x

∂X
=

αxZ 0
−αxX
Z2

0
αy
Z

−αyY
Z2

 . (4.14)
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Based on the computed jacobians, we define:

Jξ = (JrP ,JrG)> , (4.15)

r = (rP , rG)> , (4.16)

and we use these variables to solve the following linear system in order to obtain motion

increments ∆ξ:

J>ξ Jξ∆ξ = −Jξr. (4.17)

To check if we have found a new motion increment that minimizes the objective

function, we update the matrix ξ̂ to calculate the rigid motion matrix Tt = exp(ξ̂) that

aligns the model with the current frame. This process is repeated until the objective func-

tion no longer decreases its value or has reached to the maximum of iterations allowed.

The pipeline keeps an updated matrix T̃t−1 containing the last pose of camera until this

last estimate. By concatenating the last pose matrix and the inverse of the last found

transformation T−1t we get the new actual camera pose matrix:

T̃t = T̃t−1T
−1
t (4.18)

4.5 TSDF Integration and Model generation

To incrementally build the mesh and use it as a smooth reference model, we

use a type of Signed Distance Function (CURLESS; LEVOY, 1996) and integrate point

cloud data into a Truncated Signed Distance Function (TSDF) as in KinectFusion (NEW-

COMBE et al., 2011). The core idea of this step is to accumulate the measured distances

between points that fall into the same voxel space with a weighted running average given

by:

Di+1(p) =
Wi(p)Di(p) + wi+1(p)di+1(p)

Wi(p) + wi+1(p)
, (4.19)
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Wi+1(p) = Wi(p) + wi+1(p), (4.20)

where Di(p) is the accumulated average of signed distance of the point p to the cen-

troid ci of the voxel that contains the point, Wi(p) is a function that returns the previous

voxel accumulated weight, wi+1(p) is defines the incremental weight (set to 1). The term

di+1(p),is the new point distance to surface scaled by the truncation value µ that will be

accumulated into the same voxel, given by:

di+1(p) =

sgn(φi(p)) if |φi(p)| > µ

φi(p)/µ otherwise
(4.21)

where φi(p) denotes signed distance between point p and the voxel centroid, given by

φi(p) = π(ci)− π(p) (4.22)

At the very first integration of a point cloud to the TSDF structure we initialize

all the with voxels with Wi(p) = 0 and Wi+1(p) = 1 and the update voxels where the

incoming points falls with di+1(p) function. Finally to extract the surface from the TSDF

voxels at every iteration, the classical Marching Cubes algorithm (LORENSEN; CLINE,

1987) is used.

4.6 Model projection

The core of the proposed approach described in Section 4.4 requires a pair of color

and a pair of depth images (at adjacent frames). Although all these four images are pro-

vided by the RGB-D camera, we adopted a frame-to-model alignment. More precisely, we

synthetically generate the depth image Di by projecting the model from the last tracked

pose of the camera, rendering only the closest visible points of the model concerning

the current camera position. This is easily obtained from the depth buffer obtained from

Open3D’s visualization module.

The synthetic generated depth image is smoother than the depth image produced

by the sensor, as it is rendered from a mesh obtained from the accumulated depth values

of TSDF. This improves the alignment process, reducing measurement errors. On the

other hand, a RGB image obtained by synthesizing a view from the current 3D model is
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not suitable because it tends to accumulate errors due to color bleeding when RGB and

depth present any misalignment. Hence, we use a hybrid approach: the color image pair

is obtained directly from the sensors; for the depth image pair, one image is obtained

from the sensor (current frame), and the other (previous frame) obtained by rendering the

consolidated model from the last camera pose.
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5 EXPERIMENTAL RESULTS

We implemented our algorithm in C++11, with the help of the libraries OpenCV

for image manipulation and Open3D for 3D visualization and TSDF data structures. All

tests were run on a PC running Linux Mint 18.3 in an Intel i5-7400 processor with 8 GB

of RAM. All the pipeline runs only on CPU, except for visualization tasks that explore

GPU processing.

To evaluate the accuracy of our reconstruction approach, we performed tests using

the 3D-Printed RGB-D Object Dataset introduced in (SLAVCHEVA et al., 2016). This

dataset consists of a selection of five different 3D-printed objects that were scanned us-

ing RGB-D sensors of different quality and with two types of scanning camera motions:

stopped camera pointing to the object on a turntable and a handheld camera motion (more

erratic) around the object. Here we use only the Kinect recorded scenes of the dataset

because only these can emulate an application using off-the-shelf cameras, noting that the

customized phase shift camera and synthetic data available in this dataset are not suitable

to the scope of this work. In this dataset, the objects lies over a textured table with fiducial

markers in order to obtain the ground truth poses, as we can see in Figure 5.1. Since the

ORB features used in our method might artificially benefit from these fiducial markers,

we have also captured other datasets with a Kinect sensor to evaluate our approach.

Ground truth camera motion data is provided with the dataset, which enables us

to quantitatively evaluate the performance of the camera pose estimation of the algorithm

using the Relative Pose Error (RPE) and Absolute Trajectory Error (ATE), which were

presented in (Sturm et al., 2012).

To evaluate the quality of the final reconstruction, which is the main goal of

this work, we compare each model created using the ground truth data with the mod-

els created by Open3D (PARK; ZHOU; KOLTUN, 2017), our proposed approach, and

our implementation without any weighting scheme. To this end, we use CloudCom-

pare (GIRARDEAU-MONTAUT, 2003) software using the C2M (Cloud to Mesh) Dis-

tance, which provides a list of distances between each point of a point cloud to a (ground-

truth) 3D mesh.
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Figure 5.1: Frames of 3D Printed Dataset
(a) Teddy Turntable (b) Teddy Handheld

(c) Bunny Turntable (d) Bunny Handheld

(e) Kenny Turntable (f) Kenny Handheld

(g) Tank Turntable (h) Tank Handheld

(i) Leopard Turntable (j) Leopard Handheld
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5.1 Open3D Library and Colored Point Cloud Registration

Open3D is a recent open source library that support development of software that

works with 3D data. This library includes modules to provide visualization, 3D point

cloud registration, visual odometry, cloud filtering and many other tasks (ZHOU; PARK;

KOLTUN, 2018).

In this work we use its 3D visualization module to visualize our results and gen-

erate depth model frames. To integrate depth data we use its TSDF data structure imple-

mentation and to compare performance we use its colored point cloud alignment algo-

rithm (PARK; ZHOU; KOLTUN, 2017) as baseline.

5.2 Parameter setting

We set λ = 5 in Equation (4.10) favoring a tight depth alignment while using color

information to disambiguate point matchings on planar regions of depth data. Larger

values of λ tend to make the error function behave like the common ICP distance error.

Conversely, lower λ values tend to preserve photometric errors at lower levels but not

necessarily with a proper depth alignment. This value for λ was found based on empirical

tests covering all the scenes of the used dataset.

For the edge-aware smoothing using the bilateral filter, we selected σs = 3 and

σr = 5, also based on visual inspection of the images. We look for parameters that lead

homogeneous areas to be almost equal in local ranging of values while areas with edges

being preserved.

To remove possible flying points we use a conservative pruning angle value Tθ =

70◦ was chosen for Equation (4.1), which might also remove some good points. However,

we noted that removing a few good points at some frames is better than keeping bad

estimates, since missed good points tend to appear again (at a better angle) during other

frames of the capture.

5.3 Quantitative evaluation of camera trajectory (pose)

We used the translational RPE and ATE metrics to compare our results with state-

of-art work by Park, Zhou and Koltun (2017), which is implemented in the Open3D li-
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brary (from this point we will refer to Open3D as the Colored Point Cloud registration

module of the library). For a fair comparison, Open3D is used as a substitute for the

“Frame-to-Model Registration” step of our algorithm presented in Figure 4.1.

5.3.1 Relative Pose Error (RPE)

This evaluation metric error measures local accuracy of the camera trajectory esti-

mate, being used as a methodology to measure the drift that occurs at each pair of consec-

utive frames. In this evaluation, we use the well-known root-mean-square error (RMSE)

measure, and compare results using the percentage difference between results putting in

evidence relative gain of our technique over Open3D.

Table 5.1: RPE RMSE results, scaled by a factor of 103

Dataset Open3D Proposed W/o weight
Teddy Turntable 1.66 0.60 0.61
Bunny Turntable 9.58 0.57 0.58
Kenny Turntable 2.88 0.60 0.62
Tank Turntable 3.61 0.56 0.57
Leopard Turntable 2.98 0.62 0.65
Teddy Handheld 12.05 7.34 7.44
Bunny Handheld 10.34 4.79 7.50
Kenny Handheld 6.75 1.60 2.20
Tank Handheld 10.82 6.83 5.38
Leopard Handheld 10.57 5.76 7.40
Average 7.12 2.93 3.29

As shown in Table 5.1, our algorithm consistently yields better results than Open3D

in all scenes. When comparing the results with and without the weighting scheme, it is

interesting to note that both approaches present similar errors for the datasets acquired

with a turntable. However, the difference is noticeable when using the less constrained

handheld capture mode, for which the weighing scheme yields improvements up to 63%.

5.3.2 Absolute Trajectory Error (ATE)

This evaluation metric measures the global accuracy of the camera pose estimates

comparing the ground truth camera trajectory and the estimated camera trajectory. For a

3D reconstruction system, it can be an important quantity as the error in global trajectory
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can lead to gross errors in the final generated model.

Table 5.2: ATE RMSE results scaled by a factor of 102

Dataset Open3D Proposed W/o weight
Teddy Turntable 1.39 1.29 1.13
Bunny Turntable 2.80 0.81 0.79
Kenny Turntable 1.39 1.15 1.16
Tank Turntable 1.22 1.12 1.13
Leopard Turntable 1.24 1.11 1.10
Teddy Handheld 1.83 1.16 1.30
Bunny Handheld 1.52 0.99 1.25
Kenny Handheld 0.90 0.75 1.02
Tank Handheld 2.21 1.49 1.41
Leopard Handheld 1.87 0.92 1.21
Average 1.64 1.08 1.15

Observing the results in Table 5.2, again our technique presents better results than

Open3D. The differences are smaller for some datasets, such as for “Teddy Turntable”,

but in others, the results produced by our approach presents a considerably smaller error.

For instance, our error for the “Bunny Turntable” dataset was one-third of the error ob-

tained by Open3D. We can also observe that using the weighting scheme increases the

ATE RMSE error for some datasets, but on average it is better than the version without

weighting.

A full visual comparison of all the obtained camera trajectories is shown in Fig-

ures 5.2 and 5.3. The black line represent the ground truth motion, the blue is the es-

timated motion and the red lines connects ground truth and estimated poses to improve

visualization of the difference between them. As one can see our approach was better in

all scenarios in both motion types (Handheld and Turntable).
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Figure 5.2: Trajectory Turntable: Visual comparison
(a) Teddy Turntable Proposed (b) Teddy Handheld Open3D

(c) Bunny Turntable Proposed (d) Bunny Turntable Open3D

(e) Kenny Turntable Proposed (f) Kenny Turntable Open3D

(g) Tank Turntable Proposed (h) Tank Turntable Open3D

(i) Leopard Turntable Proposed (j) Leopard Turntable Open3D
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Figure 5.3: Trajectory Handheld: Visual comparison
(a) Teddy Handheld Proposed (b) Teddy Handheld Open3D

(c) Bunny Handheld Proposed (d) Bunny Handheld Open3D

(e) Kenny Handheld Proposed (f) Kenny Handheld Open3D

(g) Tank Handheld Proposed (h) Tank Handheld Open3D

(i) Leopard Handheld Proposed (j) Leopard Handheld Open3D
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5.4 Quantitative comparison of the 3D models

Although smaller pose estimation errors are expected to generate better 3D mod-

els, that might not be always the case. To quantitatively evaluate the quality of the pro-

duced 3D models, we compare the 3D point distances of the obtained models with the

corresponding “ground-truth” model generated using ground truth pose data. By using

the Cloud-to-Mesh (C2M) tool provided by CloudCompare (GIRARDEAU-MONTAUT,

2003), we can obtain a histogram of distance differences, which is calculated with a point

cloud and a mesh: one is the ground truth mesh, and the other is a point cloud sampled

from the mesh created with our pipeline. Each of the points of the sampled cloud has its

distance calculated with respect to the closest triangle from the ground truth mesh, and

these distances are accumulated in a histogram as in Figure 5.4. We can obtain a measure

of the mesh fidelity by computing the mean value and standard deviation of the error his-

tograms. Although both the mean and variance can be strongly affected by outlier data,

our visual inspection of the error histogram showed no signs of bad outliers.

Figure 5.4: Example of histogram of C2M error

Source: The authors

We summarize the results in Table 5.3, using the average of absolute distance error

(note that distances might be positive or negative, depending if a given point is inside or

outside the mesh) and standard deviation of the signed distance error. The first one is

used to verify if the generated mesh presents its points close to the ground truth mesh,

which might indicate if the mesh has as global shift with respect to the geometry of the

ground truth mesh. The standard deviation with the signed distance error measures the

deviation from the error average: if it is large, we can expect more deformations in the
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final generated mesh. All of these measurements assume that two meshes are sufficiently

well-registered by the native ICP of CloudCompare software. A posterior inspection is

applied with manual adjustment if necessary to initialize a new ICP process until we get

the minimal distance between the correspondence points.

Table 5.3: C2M Mean ± Std. Dev. scaled by a factor of 104

Dataset Open3D Proposed W/o weight
Teddy T. 13.30± 21.53 11.54± 18.71 12.50± 19.85
Bunny T. 90.39± 119.07 11.66± 17.56 11.97± 18.40
Kenny T. 2.64± 14.47 8.64± 14.15 10.14± 17.66
Tank T. 5.65± 11.01 10.20± 17.87 10.58± 19.37
Leopard T. 7.85± 14.27 11.49± 18.70 12.07± 20.04
Teddy H. 33.68± 65.37 9.48± 18.05 9.75± 19.11
Bunny H. 12.58± 30.53 6.20± 9.71 7.22± 11.55
Kenny H. 7.17± 17.98 12.30± 20.61 7.72± 14.21
Tank H. 16.03± 30.90 4.93± 8.60 7.90± 12.90
Leopard H. 16.94± 30.69 8.35± 16.88 18.78± 44.66
Average 20.62± 35.58 9.48± 16.08 10.86± 19.77

Table 5.3 indicates that the use of the weighting scheme provides consistently

better results than not using it (both in terms of the mean and standard deviation). Also,

our full approach (with weighting) presented smaller both average error and standard

deviation than the baseline considering all datasets (see last row of the table). In particular,

the improvement is more noticeable in the handheld sequences, which indicates that our

methods can better handle erratic camera motion.

5.5 Qualitative evaluation

Although C2M presents a quantitative way of comparing 3D models, visual in-

spection is paramount for identifying the introduction of possible artifacts. In particular,

the preservation of geometric details and thin structures of the generated models is essen-

tial for evaluating if the reconstruction succeeded. Figure 5.5 shows the GT model and

the results produced by our approach and Open3D for three datasets, where the red rect-

angles highlight regions for which Open3D generated artifacts. Some artifacts are errors

in geometry reconstruction, while others are observed as wrong color blending. It is also

interesting to note that our reconstruction results were very similar to the GT model.

To get a better feel of the results, we also show a visualization of the scalar field
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Figure 5.5: Top to Bottom: Leopard Handheld, Teddy Handheld and Tank Handheld
datasets. From left to right: GT model, Proposed and Open3D.

generated by CloudCompare in Figures 5.6 and 5.7. These scalar fields represent the

C2M distance in logarithm scale to better visualize very small differences. In the figures,

red/orange areas represent larger errors, while green/blue areas represent smaller differ-

ences to the ground truth values. Looking at these results, one can observe that there are

more red/orange areas (larger error) when Open3D alignment is applied than when our

proposed approach is used.

As additional visual results, we have also created datasets related to 3D body scans

and compared our results with Open3D. Figure 5.8 shows two views of a partial body

scan produced by the two methods using 220 RGB-D frames to reconstruct these meshes.

These frames were captured within a distance of 1 meter from the subject and the cap-

ture process took about 12 seconds. Although the results of both methods look coherent, a

closer inspection indicates that the shirt texture on the shoulder of the person in Figure 5.8

(top) was somewhat deformed by Open3D, and the nose of the person in Figure 5.8 (bot-

tom) was better preserved by our approach than Open3D. We have also performed a full

360 degree scanning of the same subject shown in Figure 5.9 using both methods. In

this process, Open3D was not able to provide good alignments in the back of the person,

and we aborted the execution. Our approach, on the other hand, did not show such drifts



58

Figure 5.6: Teddy T. Log C2M Difference. Top: Proposed. Bottom: Open3D
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Figure 5.7: Teddy H. Log C2M Difference. Top: Proposed. Bottom: Open3D
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(results shown in Figure 5.9). For this full scan, we captured 438 RGB-D images with

distance to subject about 1 meter and total time of scene was captured in 23 seconds. The

Figure 5.9 (bottom) shows a specific view when the first and last views meet. As it can be

observed, the visual error in the loop closure was small.

Figure 5.8: Two views (top and bottom) of a partial body Scanning. Left: Proposed,
Right: Open3D
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Figure 5.9: Full 360 body scanning. Top Proposed and Open3D. Bottom: view showing
loop closure error using our method.
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Smaller objects with low geometric details like boxes may be scanned as well by

rotating the object over a texturized planar surface to take advantage of color alignment,

as shown in Figure 5.10. This helps EPnP and refinement steps to give better appear-

ance to the objects. In this case, one can observe a trade-off of geometry accuracy versus

appearance accuracy of each approach. Another handheld scanned scene shown in Fig-

ure 5.11. Although both results are visually good, Open3d generates small artifacts in

some geometrical structures, as highlighted by the red rectangles.

Figure 5.10: Full 360 small object scanning: Proposed vs Open3d

Figure 5.11: Handheld motion scanning: Proposed vs Open3d

5.6 Execution speed

Although the tested implementation is not optimized for parallel processing and

did not explore GPU acceleration, we check the execution times for each pipeline step

in order to check for possible processing bottlenecks. Running thought several frames

we compute the average time per frame (in of the milliseconds) for each of steps of the

proposed pipeline.
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We confirm by measurements that time performance was affected mainly by the

two components that had major complexity, Bilateral Filtering, and RGB-D Alignment

as shown in Table 5.4. These two components are fully parallelizable, but for now, our

implementation did not have this concern in mind. Open3D alignment step have the

average of 856 milliseconds per iteration working with 640 × 480 pixels on depth and

RGB images.

Table 5.4: Average in milliseconds per frame
Bilateral

Filter
Normal

Map
Rough

Initialization
RGB-D

Alignment
TSDF

Integration
1004 168 68 1045 251

5.7 Pose Graph Optimization Results

As a final experiment, we evaluated the effect of adding a post-processing scheme

based on loop closure, which is adequate when performing full 360◦ scans which the

initial frame and the final frame are obtained from the same camera pose. More precisely,

we coupled the pose graph optimization algorithm (Sungjoon Choi; Zhou; Koltun, 2015)

implemented in the Open3D library (ZHOU; PARK; KOLTUN, 2018) to the obtained

camera trajectory with the constraint that initial and final camera poses are the same.

Figures 5.12 and 5.13 illustrate some visual results, and they indicate that the overall

geometry of the meshes is improved with the post-processing step. Interestingly, the

texture on the planar surface was blurred after the optimization step, which corroborates

the hypothesis of mis-alignment of color and depth sensors. This final step takes a few

seconds to optimize the poses graph (usually around 2 or 3 seconds). To reintegrate all

frames to TSDF again, it might take a few minutes depending of the size of the dataset.

As shown before, each TSDF integration takes 251 milisseconds to process.
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Figure 5.12: Teddy Turntable: Proposed, Proposed + Pose Graph and GT

Figure 5.13: Bunny Turntable: Proposed, Proposed + Pose Graph and GT
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6 CONCLUSIONS

We have presented an online 3D reconstruction pipeline based on RGB-D video

sequences focused on near-range captures. The core of the proposed approach is an iter-

ative pose alignment procedure that considers a weighted combination of color and depth

images aiming to reduce the inherent noise of depth sensors that also accounts for possi-

ble misalignment between the color and depth sensors. As additional contributions, we

perform a rough alignment based on PnP that is able to handle larger motion between

adjacent frames of the sequence, and the use of a frame-to-model registration scheme that

further reduces the influence of noise in the depth image,

Our experimental results indicate that both the pose and the obtained 3D models

with our method are comparable to or better than a state-of-the-art method. A qualitative

analysis (visual inspection) indicates that the proposed model is capable of keeping ge-

ometric texture and thin structures, and at the same time, avoids color bleeding artifacts

that arise due to the misalignment of depth and color sensors. The use of a pose graph

optimization step based on loop closure as a post-processing step can refine the online

camera poses, leading also to better 3D models.

As future work, the most immediate issue to address is code optimization to ac-

celerate the bilateral filter and the RGB-D alignment performance. In addition, the idea

of weighting the correspondences could be improved through the use of machine learn-

ing techniques, by recognizing image areas where we could set larger weights in order to

ensure the best alignment of point clouds. As an alternative to the projective correspon-

dence implemented in this work, the nearest neighbor correspondence could be used as

in Open3D technique, possibly resulting in smoother alignments. A promising experi-

ment would be using machine learning techniques in order to find a model that is able to

recognize good and repeatable points of interest in RGB-D data. This would enable the

presented pipeline use weighting on regions of images to improve results.
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