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ARTICLE INFO ABSTRACT

Keywords: Global and regional trends indicate that energy demand will soon be covered by a widespread deployment of
Non-dispatchable energy sources renewable energy sources. However, the weather and climate driven energy sources are characterized by a
Reliability significant spatial and temporal variability. One of the commonly mentioned solutions to overcome the mis-
yaer;ilieielri:;riven match between demand and supply provided by renewable generation is a hybridization of two or more energy

sources into a single power station (like wind-solar, solar-hydro or solar-wind-hydro). The operation of hybrid
energy sources is based on the complementary nature of renewable sources. Considering the growing importance
of such systems and increasing number of research activities in this area this paper presents a comprehensive
review of studies which investigated, analyzed, quantified and utilized the effect of temporal, spatial and spa-
tiotemporal complementarity between renewable energy sources. The review starts with a brief overview of
available research papers, formulates detailed definition of major concepts, summarizes current research di-
rections and ends with prospective future research activities. The review provides a chronological and spatial
information with regard to the studies on the complementarity concept.

Complementarity index

1. Introduction and motivation the process of VRES integration:

Over the last years, variable renewable energy sources (VRES) have e interconnecting spatially distributed generators;
become a cost-competitive and environment-friendly alternative to e using complementary or/and dispatchable generators in hybrid
supply power to isolated and central/national power grids around the configurations;
globe. Nevertheless, because of their intermittent/variable/stochastic/ e application of demand-response and flexible loads;
non-dispatchable characteristic, they cannot provide the grid with e deploying energy storage;
various additional and mandatory services other that delivering a cer- ® oversizing and power to X;
tain volume of energy.' In order to explore how to effectively improve e using the concept of vehicle to grid — use of electric vehicles as

VRES integration into the power systems, more needs to be known storage;
about the underlying behavior patterns and dynamics of their power o forecasting of VRES generation.
generation. Consequently, over the recent years many investigations

have focused on the VRES grid integration (Cheng et al., 2019; Notably, two of the referenced concepts mention the use of a

Denholm et al., 2018; Weitemeyer et al., 2015).
Several solutions worth mentioning were presented by Jacobson
and Delucchi (2011) who suggested to apply them in order to facilitate
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combination of VRES sources, which exhibit a complementary nature of
their operation. First is the hybridization of energy sources (like solar-
wind, wind-hydro, etc.) and the second is the use of spatial distribution

11t is worth mentioning that besides active power, inverters of renewable power generators can also provide reactive power for voltage control and could be

programmed to provide inertia (Kroposki et al., 2017).
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of generators to smooth the power output of given VRES. Both concepts
are based on the complementary (to various extent) nature of renew-
able energy sources.

From the literature point of view, we would like to draw attention to
works by Hart et al. (2012) and Engeland et al. (2017). Although not
explicitly, both considered the concept of VRES complementarity in
their analysis. The first paper provided an in-depth analysis from the
power system operation perspective, whereas the second looked at it
rather from a climate/meteorological perspective.

The objectives of this review paper are to: provide a thorough
overview on the past research activities concerning the concept of en-
ergetic resources complementarity; analyze and assess the existing state
of knowledge; provide guidelines for potential future research direc-
tions. More specifically, we aim at answering the following research
questions:

e What is and how is the concept of energetic complementarity de-
fined?

e Which are the types of energetic complementarity?

e How did the studies on complementarity evolve and what are major,
still unresolved shortcomings?

® Which metrics/indices are used to evaluate complementarity?

e What are potential applications of complementarity metrics?

In our research, we have applied a narrative approach of writing a
review paper. Consequently, we have focused on comparing, and
summarizing the existing theory/models and formulating conclusions
on qualitative level. The investigated topic has been structured based
on methodological approaches (indices and methods for com-
plementarity assessment), chronological order and geographical loca-
tion. To ensure a wide coverage of studies investigating com-
plementarity concept we have used the following search engines:
Science Direct, Scopus and Google Scholar. After the initial screening of
papers containing the keyword “complementarity”, we have performed
an additional search based on the references present in those papers and
included those relevant to the subject. According to the Cooper’s tax-
onomy (Cooper, 1988) this review can be described as summarized in
Table 1.

The rest of this paper is structured as follows: in Section 2 we start
with a clear and updated definition of the “complementarity” concept.
In Section 3 we present the historical and geographical overview of the
research on the complementarity — simply statistics on complementarity
research. In Section 4 we analyze and describe the various metrics used
to assess the complementarity. In Section 5, we discuss current possi-
bilities of applying the concept of complementary and we formulate
further potential applications. The paper ends with Section 6, which
summarizes the review and presents potential future research direc-
tions. The Appendix A contains a table which gathers all relevant pa-
pers and presents their content in a structured way.

2. Definition of the complementarity concept

According to the Oxford dictionary, the term complementarity is: “a
relationship or situation in which two or more different things improve

Table 1
Characteristics of this review based on Cooper's taxonomy.
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or emphasize each other's qualities”. Considering the context of energy
sources, the complementarity should then be understood as the cap-
ability of working in a complementary way. Complementarity can be
observed in time, space and jointly in both domains. The graphical
explanations are provided in Figs. 1 and 2. On both figures, sine func-
tions with different phase angles were used to “simulate” the theoretical
and idealized operation of renewable energy sources. In these particular
cases, the time domain (horizontal axis) is irrelevant and can either
refer to seconds, hours, months or years. Fig. 1 presents five different
situations (charts A-E) where the renewable sources exhibit different
level of complementarity (expressed here as coefficient of correlation).
For this idealized situation, only the sources presented on chart E are
capable of satisfying the load whereas in the remaining cases we ob-
serve either oversupply or deficient generation. The solution to over-
come the problems presented on charts B-D would be either to oversize
the system or apply energy storage. In case presented on chart A both
sources reach “0” generation in the same time, therefore only energy
storage could be considered, or spatial distribution of generators as
visualized in Fig. 2. On this figure two cases were presented, and they
show that despite VRES being spatially distributed their generation can
still follow the same patterns which will result in load not being cov-
ered. Nevertheless, the combination of spatial distribution and tem-
poral complementarity can improve the overall reliability of the system.
This issue will be discussed further in later sections.

Based on the above figures and literature review the following
paragraphs aim to provide the brief definition of complementarity
types:

Spatial complementarity — can be observed between one or more
types of energy sources. It is a situation when energy resources com-
plement each other over certain region. Scarcity of one VRES in region
x is complemented by its availability in region y at the same time. An
example of space complementarity can be the smoothing effect of
spatially distributed wind generators whose energy production trends
exhibit decreasing coefficient of correlation with an increasing distance
between sites.

Temporal complementarity — can be observed between two or
more energy sources in the same region. It is understood as a phe-
nomenon when VRES exhibit periods of availability which are com-
plementary in the time domain. As an example, it is possible to mention
the annual patterns of wind and solar energy availability over Europe,
where the former is abundant in Autumn - Winter whereas the latter is
abundant in the Spring-Summer period. An example of temporal com-
plementarity for a single source is provided in the note below Table 2.
This table presents the characteristics of the different types of com-
plementarity.

Spatio-temporal complementarity — (complementarity in time
and space) is considered for a single or multiple energy sources whose
complementary nature is investigated simultaneously in time and space
domains. A good example is the Brazilian power system and its hy-
dropower resources, which lead to an interconnection of the south-
southeastern and north-northeastern subsystems.

The energetic complementarity can be assessed based on various
indices and metrics, with the most relevant being described in Section
4.

Characteristic Cooper’s definition Authors’ selection

Focus The material that is of central interest of the reviewer Research methods, outcomes, theories and applications
Goal What the author hopes the review will reveal Integration of available knowledge, criticism
Perspective Reviewer point of view Neutral

Coverage The extent to which reviewer includes the relevant works Representative

Organization Paper organization Methodological

Audience Intended paper audience Specialized scholars/decision makers
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B, CC = 0.5, phase: n/6

Time

C, CC =0, phase: /4

Time

D, CC = -0.5, phase: m/3

Time

E, CC = -1, phase: /2

Time

Time

I Source A [ Load not covered
[ Source B ———-- Load

Chart Load not Min/Max
covered generation
A 31.4% 0/4
B 27.2% 0.27/3.73
C 22.2% 0.58/3.42
D 15.7% 1/3
E 0.0% 2/2

Sources generation range: 0-2. Load: constant 2.

Fig. 1. Complementarity concept explained by means of sine signal. CC — coefficient of correlation.

3. Research on complementarity
3.1. Historical perspective

We have performed an in-depth analysis of available literature on
the complementarity concept and found that the first papers dedicated
to this topic were published in the late-seventies. Two papers by Kahn
(1979, 1978) and a paper by Takle and Shaw (1979) investigated
complementarity, mostly focusing on reliability of spatially distributed
wind generators. The aim of their works was to answer the question
whether spatial dispersed wind parks can provide firm power to the
system, thus allowing replacing conventional fuel based generators.
Kahn stated that the study of energetic complementarity is a very
promising area of research, and its assessment should be considered
when pondering VRES integration to power systems. On the other hand,
the paper by Takle and Shaw (1979) investigated the temporal com-
plementarity between solar and wind resources in Iowa. Their findings
show strong complementary on an annual basis but only slight on a
daily scale. Along with the series of studies summarized by Justus and
Mikhail (1979), the aforementioned works can be considered as the
pioneer research contributions in the area of complementarity between
renewable sources. Over the recent years the number of papers dealing
with the complementarity concept widely varied, however, the period
from 2016 to 2018 has been the most productive, as seen in Fig. 3. This
might be associated with the growing importance of renewable sources
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and their integration in the power systems.
3.2. Spatial coverage

Research case studies on the complementarity concept have not
been spatially uniformly distributed across the world. According to the
conducted literature review, the majority of research papers con-
centrates on Brazil, China, USA and Europe. Such concentration of re-
search is not a surprise considering the fact that the mentioned regions
either historically had a large share of renewable generation (e.g.:
Brazil with hydropower) or are currently putting a lot of effort into
increasing the share of renewable resources in their power systems
(Figs. 4 and 5). The spatial coverage and statistics presented in this
review are the ones found within the search algorithm described in the
introduction section, however, it is probable that further works might
be available as theses, reports, etc., written in languages different from
English.

3.3. Structure of research on complementarity

In this section, we briefly present the reader with the overall sta-
tistics regarding the documental database created for this review on
renewables complementarity. Overall, the research is dominated by
analyses focusing on complementarity between two selected renewable
energy sources (over 60% of papers), as seen in Fig. 6. Out of these, 34



J. Jurasz, et al.

Time

N Source 1:A
N Source 2:A
[ source 1:B
I Source 2:B

Solar Energy 195 (2020) 703-724

Energy

Time

Coefficient of Correlation

TA

2:A

1B 2:B

TA

2:A 1B 2:B

Fig. 2. Conceptual visualization of spatio/temporal complementarity. Legend/axis reads: “1:A” energy source “1” in location “A” etc. Left chart a perfect spatial and
temporal complementarity between energy sources. Right chart a perfect complementarity between the same source located in two different sites “A” and “B”, good
complementarity between sources “1” and “2” in location “B” lack of complementarity between sources “1” and “2” in location “A” as well as between “1” and “2” in

locations “A” and “B”.

papers focused on solar-wind complementarity, whereas the remaining
works evaluated complementarity between solar-hydro and wind-hydro
resources. Research on complementarity between more than two re-
newable sources is gaining popularity in recent years, however, most of
these studies focus on complementarity in terms of optimal sizing and/
or operation of solar-wind-hydro systems.

The selection of the temporal resolution is extremely important
when analyzing the balance between power supply and demand. Most
energy analysis models are based on time series with hourly or sub
hourly (15 min) time steps. From the documents analyzed in this paper,
it is possible to observe that the majority of those works made their
analysis based on time series divided in hourly time steps (see Fig. 7) —
what is in line with the approach used in modelling activities. It is
however important to underline that a significant part of the papers
included in this review investigated complementarity for multiple time
scales.

Time series for assessing availability and variability of VRES can be
obtained from various sources. The most commonly used are ground
measurements, satellite measurements and numerical models/re-
analysis.

Table 2
Characteristics of the different types of energetic complementarity.

From the consulted references it was found that more than half of
the considered studies were based on time series created from ground
measurements, whereas the remaining papers relied on mixed data
sources or single satellite or reanalysis data sources. For clarification, a
reanalysis is a data assimilation project that combines a physical model
with historical observational data into a single consistent dataset.
Within the considered literature, studies that relied on reanalysis were
mostly based on Numerical Weather Prediction (NWP) and physical
models, i.e. numerical models that use physical laws to simulate the
atmosphere, such as MERRA-2 (Global Modeling and Assimilation
Office - GMAO, 2015).

4. Quantifying energetic complementarity: indices, metrics and
other approaches

Since the early works about energetic complementarity between
VRES, authors have been trying to assess this complementarity by
means of statistical metrics and other indices. This assessment has be-
come more relevant with the current trend of increasing renewable
penetration in national power grids, while maintaining high levels of

Type of complementarity Number of sources considered

Number of sites/regions considered

Factor driving the existence of complementarity

Temporal =2 =1
Spatial =1 =2
Spatio/temporal =1 =2

Different availability in time
Different availability in space
Time/space different availability

* In case of temporal complementarity, a single energy source can be also considered by using the “flexibility” offered by technology. For example, the com-
plementarity (smoother power output over the day/year) of single PV system can be increased by mounting PV arrays at different azimuths and inclination angles.
The same applies to the wind farm where different wind turbines can be used with various hub heights or power curves.
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Fig. 3. Number of papers per year in area of renewable energy sources complementarity considered in this review.

reliability and optimizing the financial resources available.

One of the first examples of using metrics for evaluating energetic
complementarity can be found in the paper by Takle and Shaw (1979).
Besides using superposition to analyze combined solar and wind energy
per unit area, these authors have evaluated the product of deviations of
the daily total from the expected amount for solar and wind resources,
using the monthly and annual averages of these results for drawing
their conclusions and suggesting some applications and considerations
based on complementarity between the two energy sources.

Since then, several works have been conducted on metrics and in-
dices to evaluate complementarity, as evidenced in Appendix A. In this
section, we will present the most common and relevant metrics, indices
and approaches that have been applied in assessing complementarity
between renewable energy sources.

Throughout the section, we
{G’ g1 RTINSt gn)}, where g’, g[ are generation time series of s and s’,
that could differ by technology or location. The lower index refers to
the time step and the difference between two timesteps A, is typically
given in hours or days.

assume given paired data

4.1. Correlation

Correlation is the most widely used measure of dependence between
two randomly distributed variables. In a broad sense, it can be defined
as a metric that directly quantifies how variables are linearly related
(Carmona, 2014). Correlation has been the metric most commonly used
in papers dealing with complementarity measurements.

The Pearson correlation coefficient r is defined as

14

Number of papers
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Also called the simple correlation coefficient, this coefficient mea-
sures the association strength between two variables, with values ran-
ging from —1 to +1. A value of 0 implies that no association exists
between the two variables; a positive value indicates that as the value of
one of the variable increases or decreases, the value of the other vari-
able has a similar behavior; on the other hand, a negative value signifies
that as the value of one variable increases, the value of the other
variable decreases, and vice versa (Vega-Sanchez et al., 2017).

The most common purposes for calculating the Pearson correlation
coefficient regarding energetic complementarity are:

e conducting statistical analyses for evaluating if the renewable en-
ergies available in one region could allow the configuration of ef-
ficient power systems based on renewables (e.g.: Miglietta et al.,
2017; Shaner et al., 2018; Slusarewicz and Cohan, 2018);

® as a tool for improving the operation or planning of existing power
plants or systems (e.g.: Cantdo et al., 2017; Denault et al., 2009;
Jurasz et al., 2018a; Ramirez, 2015);

® as part of the set of equations, parameters and inequalities in an
optimization model (e.g.: Aza-Gnandji et al., 2018; Naeem et al.,
2019; Zhu et al., 2018b).

A list of papers considering simple correlation for assessing en-
ergetic complementarity can be found in the Appendix A at the end of
the document.

Another type of correlation coefficient, the Kendall correlation
coefficient, usually called Kendall’s Tau, with notation t, is a non-

M M |_| mnmn M |_| |_| nn M n A mmA |_| M M
& PP FE S ESS S S S & &S LS T
L o &L @\\’bcs;"\o\&@eﬁ\‘v ozP@@&Q '
F T T IS ¥ “%(\o‘:{;ﬁ T &
Q‘SO e& %@ K %‘b
= ¢
Ao
Country/region

Fig. 4. Number of papers per country/region which investigated the concepts related to energetic complementarity of VRES.
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Fig. 5. Spatial coverage of studies considered in this review on renewable resources complementarity.

parametric measure of the rank dependence between two sets of
random variables (Carmona, 2014).

Any pair of values (g°, g’) and (gf, gfv) is called concordant, if the
ranks of both elements agree, that is either g’ > g} and g’ > gt‘f‘ or

g < g’ and g’ < gj‘. Otherwise, this pair is called discordant. Let C be
the number of concordant pairs and D be the number of discordant
pairs.

Kendall's correlation coefficient is then defined as

& _C-D
(g% 8') = FICER
2 ()]
Since "™~1 s the number of possible pairs, 7(g%, g*) € [-1, 1].

In terms of energetic complementarity, a perfect agreement between
two rankings would yield T = 1, meaning concurrent behavior between
resources. Consequently, if one ranking is the reverse of the other, then
T —1, indicating the best possible complementarity between the
sources.

There are some authors that have applied the Kendall correlation
coefficient for energetic complementarity assessments. Denault et al.

40
§ 35 -
Q
= 30
5
S 25
3
§ 20
Gy
© 15
b
g 10
z

m M

0

S w S-w

(2009) used it as one of the copulas for modeling the dependence be-
tween wind and hydropower resources in the province of Quebec to
evaluate the possible effect of wind power in reducing the risk of water
inflow shortages. Xu et al. (2017) have assessed the spatial and tem-
poral characteristics of wind and solar complementarity in China in
their paper, where they have employed the Kendall rank correlation
coefficient as the dependence measure and regionalization index. A
recent paper by Han et al. (2019) has compared the results obtained by
the method proposed by them with Kendall’s tau to describe the com-
plementarity between three renewable sources, including fluctuation
and ramp effects in their calculations.

Spearman’s rank correlation coefficient is another measure of rank
dependence. The Spearman’s correlation coefficient can be described as
Pearson correlation applied to ranks (Myers and Well, 2003). For a
distribution or an infinite population, it is required to transform both
variables by their univariate marginal cumulative distribution functions
(CDF), allowing to compute the Pearson correlation coefficient for the
transformed variables (Ruppert and Matteson, 2015). ,

First, the ranks rg(g;) and rg(gf) for datasets g’ and gts are com-
puted, allowing to calculate the Spearman's rank correlation coefficient:

] .

S-W-H Other

o

Resources considered in complementarity research

Fig. 6. Number of studies investigating different complementarities (S — Solar, W — Wind, H — Hydropower, S-W - Solar-Wind, etc.). Other refers to combination of
solar and/or wind with biomass, wave. — for more details please see Appendix A.
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3

For studies related to energetic complementarity, Spearman’s rank
correlation coefficient has been used by Denault et al. (2009) along
with the Pearson and Kendall’s tau as the copulas for assessing de-
pendence between wind and hydropower resources in Quebec. Using
Pearson’s and Spearman’s correlation coefficients, Cantdo et al. (2017)
have produced wind and hydropower complementarity maps for the
entire Brazilian territory based on the weather stations used to create
Voronoi cells (or Thiessen polygons).

A technique developed in the 1930’s using correlations, the cano-
nical correlation analysis (CCA) can be described as a multivariate
statistical technique used for identifying possible links between sets of
multiple dependent variables and multiple independent variables
(Santos-Alamillos et al., 2015). Whereas multiple regression techniques
found the most suitable equation for a single dependent variable based
on a set of independent variables, CCA tries to simultaneously estimate
the value of multiple dependent variables from the set of available in-
dependent variables, using weighted functions for maximizing corre-
lation between these two sets (Santos-Alamillos et al., 2012). Some
examples are the relation between governmental policies and the dif-
ferent economic growth indicators, relation of price variables (initial
price, salvage value, etc.) of a car and its features, relation between job
performance and company characteristics. The CCA method is fully
described in Hérdle and Simar (2015).

With the southern half of the Iberian Peninsula as a case study,
Santos-Alamillos et al. (2012) used CCA with the aim of finding the
optimal distribution of wind and solar farms over the region, while
keeping a regular energy input into the power system, using coupled
spatiotemporal canonical patterns for their analysis. In a follow-up
paper, Santos-Alamillos et al. (2015), this time using the region of
Andalucia as a case study, used Principal Component Analysis (PCA)
coupled with CCA to evaluate if a combination of wind power and
concentrating solar power (CSP) could provide an adequate baseload
power to the region. PCA is a technique that allows reducing an initial
dataset from several quantitative dependent variables (usually corre-
lated) to a few representative variables, known as principal compo-
nents, which are obtained as linear combinations of the initial variables
(Santos-Alamillos et al., 2014).

The cross-correlation function is a measure of similarity that com-
pares two component series of a stationary multivariate time series,
where a delayed similarity exists (Li et al., 2009; Ruppert and Matteson,
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2015). For two real valued sequences of the same time series and de-
layed by &t, cross-correlation values range from —1 to 1 and are given
by the Pearson correlation of the time series with its time-shifted copy:

Ztnzl (gtS - g_s)(gti-& - g[i:?[) ]
VZm @ = 8T @ (857D @

Cross-correlations can help to understand the relation between the
component series or how they are influenced by a common factor.
However, like all correlations, they are only a statistical measure of
association, not causation, therefore, determining causal relationships
requires further knowledge and analysis (Ruppert and Matteson, 2015).

Cross-correlation was the main metric employed by Justus and
Mikhail (1979) for assessing spatial energetic complementarity between
pairs of sites. In their report, these authors summarized the results from
a series of studies made in the 1970’s of wind and power distributions
for large arrays of wind turbines in the United States. This metric has
been also employed in studies related to assessing the possible benefits
of distributed wind power generation in Europe (Su and Gamal, 2013),
measuring the complementarity between demands and wind and solar
resources in Australia (Li et al., 2009), PV power fluctuations in the
Iberian peninsula (Marcos et al, 2012), and calculating com-
plementarity between renewable energy resources in Brazil (Dos Anjos
et al., 2015; Silva et al., 2016).

5,8 =
e’ 8ivs

4.2. Indices

An index is a metric used to summarize a set of features in a single
value. Some authors have proposed this kind of metrics for evaluating
energetic complementarity, and three of them are briefly described in
this section.

4.2.1. Time-complementarity index

This index for assessing energetic time-complementarity has been
proposed by Beluco et al. (2008). It has been tested for analyzing en-
ergetic complementarity between solar and hydropower resources in
the state of Rio Grande do Sul, Brazil. The time-complementarity index
created by the aforementioned authors is calculated as the product of
three partial indices: (1) Partial time-complementarity index (which
evaluates the time interval between the minimum values of two
sources); (2) Partial energy-complementarity index (which evaluates
the relation between the average values of two sources); (3) Partial
amplitude-complementarity index (which assesses the differences be-
tween maximum and minimum values of the two energy sources). Each
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one of the partial indices ranges between 0 and 1, therefore, a value of 0
for the time complementarity index indicates that both resources are
concurrent, and a value of 1 suggests full complementarity. This index
was used in other papers (e.g.: Borba and Brito, 2017; During Fo et al.,
2018; Risso et al., 2018) as the energetic complementarity metric,
mainly for estimating or reducing energy storage requirements; for
creating a spatial representation of complementarity or for evaluating
energetic time-complementarity in other regions, as shown in the
Appendix A.

The individual components and the value of the metric proposed by
Beluco et al. (2008) can be calculated as follows:

(1) First, the partial time complementarity k; is calculated via
K = lds — d|
JIDs = dID; —d/1’ 5)

where Dy , Dy are the numbers of the days when maximum energy
generation from the corresponding sources s and s’ were observed, d;
and dy are the numbers of the days when minimum energy generation
from the corresponding sources s and s’ were observed.

(2) Second, the partial energetic complementarity k, is calculated. This
parameter estimates the relation between the mean values of the
energy resources availability functions,

N2
2[ gtS - zt gtS
2.8+ 2.8

(6)

(3) The last partial component is the partial amplitude com-
plementarity k,. This component evaluates the relation between the
values of the difference (§) between the maximal and minimal of
the two energy sources availability functions.

i

a-g)°
(1= 8g)? + (85— &)?

(& —3)?

ky =

] for &5 > 6 o

(4) To obtain values of 8y and &, another formula has to be introduced

which reads as follows:

S.=1+ max{(g*) — min{ (g})
s T d_[d ’

(8)

where max? and min¢ refer to the maximum and minimum daily values
of the corresponding generation time series and d¢ is the average daily
consumption.

4.2.2. Load tracking index

In their scheduling optimization model, Zhu et al. (2018a,b) have
combined wind, solar and hydro power output, and defined this en-
semble as a virtual power (VP) plant, according to their complementary
features. The capacity of the VP output to follow the load is measured
by the load tracking index. Lower values of this index indicate a better
performance by the VP, thus, the minimization of the load tracking
index is the objective function of this model for assessing energetic
complementarity in multiple time-scales. The load tracking index is
defined asN, (smaller values of this index indicate the better ability of
the virtual power plant to follow the load):

N, =D, + Dy + D.. ©)]
The first term of the load tracking index is defined as
[1 n ) 2
D == /- s
= 3\ L (X8 -d) 10)

where d is the energy demand. The second term is defined as:
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an
and, finally, the third term is defined as:
mtax(d[ -2.8) - mtin(d[ -2.8)

- nAT ' (12)

4.3. Metrics related to failures and reliability

In terms of power supply, a failure can be defined as any situation
where the total power supplied by the system composed by the gen-
erating units and energy storage devices is less than the demand. Some
authors have assessed energetic complementarity from that perspective.
Stoyanov et al. (2010) have quantified the number of times and total
hours of load faults for a case study in Bulgaria, assessing if com-
plementarity between solar and wind resources followed the electrical
consumption.

Beluco et al. (2012) have used a failure index to evaluate the per-
formance of a PV-hydro hybrid system, and from their results they have
concluded that a smaller failure index is associated to a higher temporal
complementarity between the resources.

Assessing the potential of energetic complementarity for increasing
system’s reliability was one of the first research interests on this subject
(Kahn, 1979). Since the early works by Kahn (1979, 1978), a common
metric used in papers assessing the reliability of hybrid power systems
is the loss of load probability (LOLP), which can be defined as the
probability for a system of being unable to meet the demand in a given
time. Indirectly, this metric accounts for one of the main concerns about
renewables and their complementarity: the power output fluctuation.
The LOLP is calculated as

Zs ng’ 0)
Z:l:1 d; ’

where the numerator is the energy deficit and the denominator is the
total energy demand for time intervals from t = 1 to t = n. This metric
has been used by Schmidt et al. (2016) as a constraint in the optimi-
zation model. The LOLP parameter has also been employed in the paper
by Jurasz et al. (2018a) in their analysis on how complementarity af-
fects power system reliability.

By using several descriptive statistics and other techniques like
correlation and linear regression, Shaner et al. (2018) have analyzed
how the geophysical variability of solar and wind resources affects the
system’s reliability that can be achieved by different mixes of these two
sources. Their findings indicate that energy storage and electricity
transmission infrastructure requirements would be a function of the
generation mix.

n
LOLP = Loy max(d: =

a3

4.4. Assessments based on fluctuations

One of the main concerns related to increasing the fraction of
variable renewables in large scale power grids is the disturbance caused
by significant oscillations of these sources in time. For example, the
temporal variability or fluctuation of the solar resource has two main
causes: (1) the daily motion of the sun in the sky and the earth’s dis-
tance from the sun along the year, which are fairly predictable and
traceable; (2) the motion of clouds and weather systems, which is much
harder to track and predict (Perez et al., 2016). Similarly, wind speed
variability is associated with mesoscale circulations as well as with
localized factors like topographic features and thermal contrasts due
the proximity to water bodies (Santos-Alamillos et al., 2012). Based on
this, some authors have evaluated the potential of spatial and temporal
energetic complementarity for limiting or avoiding these fluctuations,
and three main approaches (often assessed simultaneously) are briefly
discussed in this section, with representative papers for each case.
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4.4.1. Output fluctuations

The paper by Gburcik et al. (2006) used the Serbian territory for
assessing how complementary regimes of solar and wind energy could
be used for reducing these output fluctuations in national grids. An-
other evaluation of energetic complementarity considering output
fluctuations is observed in the model proposed by Widén, (2015) which
had the objective of estimating the integrated variability in irradiance
continuously distributed over an area, caused by the movement of
clouds over the region. The paper by Murata et al. (2009) investigated
the relationship between the largest output fluctuation by means of
output fluctuation coefficients, using solar power information from 52
sites in Japan. Their findings suggest that the largest output fluctuation
of distributed photovoltaic generation can be predicted by using these
output fluctuation coefficients and geographical correlation. For cal-
culating the output fluctuation coefficient, the method proposed by
these authors requires finding the variable X based on available time
series of power output fluctuations. Within this context, output fluc-
tuations are defined as the difference between two timesteps,

Xeg =8 — & s 14)

Murata et al. (2009) have introduced an output fluctuation coeffi-
cient kp; which is defined as the quotient of the largest output fluc-
tuation for a time window with width T divided by the standard de-
viation of variable X:

(15)

Marcos et al. (2012) have demonstrated that short-term power
fluctuations produced by a set of large PV plants geographically dis-
persed are considerably diminished when compared with a single PV
plant of the same capacity of the ensemble; both in terms of the largest
output fluctuation and the relative frequency. The method for power
fluctuations estimation proposed by the authors is based on the output
fluctuations as defined before.

4.4.2. Ramp rate assessment

The ramp rate is a common metric in power generation that ex-
presses how quickly the power output changes over time, and is usually
expressed in MW/min. This parameter is established to keep an ade-
quate balance between power supply and demand, preventing un-
desirable effects in the power system and grid due to these rapid fluc-
tuations in loading or discharge, and their impact on the system’s
reserve (Zhang et al., 2018a). The ramp rate offers a simple metric for
analyzing power transients (Tarroja et al., 2013), and because of this,
some authors have included ramp rates assessments in their energetic
complementarity studies (Tarroja et al., 2013; Widén, 2011; Zhang
et al., 2018a). According to Kleissl (2013), the ramp rate of any given
plant output is calculated by subtracting values of the power-output
time series and dividing it by the timescale. The formula for ramp rate
(RR) at time scale At reads:

A 1

t+At t
RR; = A_t(zt gzs - Et_m gzs)‘

It is vital to understand the importance of the selected time step,
because the mean value of RR calculated on short time steps will be
smaller than on longer time steps (Kleissl, 2013). It is recommended to
analyze the RR values in form of a cumulative distribution plot and pay
attention to the extreme values, which are of great importance to the
power system operator.

(16)

4.5. Other relevant metrics

As seen along this section of the paper, complementarity assess-
ments have been conducted through different approaches. There are
some that are not possible to categorize in the previous subsections, but
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worth mentioning in this document.

The smoothing effect refers to the reduced output variability if
several locations of power generation are aggregated. It is a common
terminology in investigations on variability and has been commonly
studied in a variety of papers. Liu et al. (2013) assessed this feature by
investigating the duration curves of the single sites and the duration
curve of their sum. They found a considerably smaller spread of values,
particularly for wind. Hoicka and Rowlands (2011) quantified
smoothing of the joint generation from wind and solar resources com-
pared to single sources in Ontario, Canada and found that instances of
high and low production are less frequent when the complementary
behavior is considered.

Krutova et al. (2017) evaluated the smoothing effect of Wind-PV
mixes in an optimization model, using as case study the entire Afro-
Eurasia region. They found a significant balancing potential on these
continent-wide scales. Jurasz and Ciapata (2017) observed that is pos-
sible to smooth the energy demand curve by means of complementarity,
as in their paper they evaluate a hybrid PV-run-of-river system. Spatial
and temporal wind and solar power characteristics are analyzed by
Tarroja et al. (2013, 2011). Their findings indicate that size and spatial
distribution of these power plants significantly reduces the magnitudes
of hourly power fluctuations.

In the manuscript by Berger et al. (2018), they show that low wind
power production events can be counterbalanced on a regional scale by
taking advantage of the different wind patterns across the region
(western Europe and southern Greenland in their case study). Their
findings evidenced that wind power production on different continents
might decrease the number of low wind power production events,
making a case for evaluating the potential benefits of intercontinental
electrical interconnections.

Glasbey et al. (2001) created a method for the statistical modelling
of spatiotemporal variations of global irradiation on a horizontal plane,
using covariance as the main metric for assessing the impact of time lag
and distance on irradiation complementarity in two sites.

The Power Spectral Density (PSD), which is a measure of power
content versus frequency, has been used for characterizing the observed
variability of wind and solar power plants as function of different time
scales and locations. The procedure and complete formulation is de-
scribed in detail in Klima and Apt (2015). The PSD metric has been also
used by Katzenstein et al. (2010) and Tarroja et al. (2013, 2011) for
assessing energetic complementarity.

Risso and Beluco (2017) proposed a method for performing a gra-
phical representation of temporal complementarity of resources at dif-
ferent locations, by means of a chart of complementarity as a function
of distance, using a hexagonal cell network for dividing the case study
region. In a follow-up paper (Risso et al., 2018), the method was ex-
tended, with the graphical representation now portrayed as com-
plementary roses, with the length of the petals denoting the distance to
another cell and their color the magnitude of energetic com-
plementarity between these cells.

Spatial and temporal complementarity (synergy) of wind and solar
resources in Australia was assessed by Prasad et al. (2017). The Robust
Coefficient of Variation was the main metric employed for evaluating
the variability of these renewables, and besides this, the method mostly
consisted in measuring the occurrence of solar and wind resource above
a minimum threshold. The Robust Coefficient of Variation differs from
the common Coefficient of Variation in its use of the median instead of
the mean. By doing so, affectations caused by extreme values are
avoided. Gunturu and Schlosser (2012) provide the Robust Coefficient
of Variation (RCoV) equation as follows:

dian(1g® — medi I
RCOV — median(lg’ — median(g’)!)

>

median (g) 17)

The RCoV metric can be used to study the variability of wind and
solar resources. If two regions (or power plants) are considered and
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have the same power densities, the one with a lower absolute deviation
about the median will be characterized by a lower RCoV, and therefore,
it will have a more constant power generation.

The concept of critical time windows, which represent periods
within the time series with low average capacity factors, is proposed by
Berger et al. (2018) for the systematic assessment of energetic com-
plementarity over both space and time. These critical time windows
provide an accurate description of extreme events within the time
series, while retaining chronological information. These authors also
propose a criticality indicator that quantifies the fraction of time win-
dows during which generation from variable renewables is below a
certain threshold, allowing a comprehensive evaluation of energetic
complementarity at the different locations over arbitrary time scales.

The local synergy coefficient was a metric employed by Zhang et al.
(2018a) for representing the mutual complementarity between VRES at
one site, based on the normalized capacity factors of the sources.

The stability coefficient Cy;, was developed by Sterl et al. (2018) as
a measure that quantifies the added value of one VRES to balance the
daily power output from another VRES. In their paper, these authors
assess the capacity of wind power for balancing PV power in West
Africa, based on diurnal timescales of the capacity factors of a hybrid
power system with equal installed capacity of PV and wind power.
According to these authors, the Cyq, coefficient can be calculated as
follows:

s 5\ 2

\/ o (% - %)

In the Cyqp, formula, G is the absolute capacity, which can be defined

as the maximum possible output from a power plant, over a period of

time. The interpretation of the results is as follows: by definition the

Cstap is smaller or equal to 1. Cyy, = O indicates that the hybridization of

wind and solar sources does not bring benefits in terms of power gen-

eration stability, whereas Cy,, = 1 means that a perfect synergy be-

tween sources is observed (similarly as in case of coefficient of corre-
lation equal to —1)

Csstab =1-

(18)

4.6. Assessing complementarity between more than two sources

From the previous paragraphs, it can be observed that com-
plementarity is usually measured between two VRES. However, there
are authors that have extended the existing methods in literature, in
order to allow the assessments of energetic complementarity between
more than two sources. Borba and Brito (2017), extending on the
method presented in Beluco et al. (2008), proposed a dimensionless
index for calculating temporal complementarity between two or more
energy resources. In their paper, the complementarity index is calcu-
lated as the ratio between the actual generation discarding excess
power, and the average generation.

Borba and Brito (2017) remark that the role/contribution of each
source may vary over time, but if the combination of all sources is
constant, then they operate in a perfect synergy/complementarity. They
state that p(x) = n-g is the measure of how far below average is the
current power generation for a set of plants. Next, they formulate the
complementarity metric k which does not considers the power gener-
ated above the average.

With g, = 3 g}, the complementarity metric is defined as:

1 n Lo
Z thl min(g, g,).

k =

n 19)

Another approach in the literature for assessing energetic com-
plementarity is presented by Han et al. (2019). These authors have
evaluated complementarity between wind, solar and hydropower gen-
eration by means of comparing fluctuations and ramp rates between
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individual power generation (IPG) and combined power generation
(CPG). The method has been tested using a region in China as a case
study, and their findings suggest that complementarity can be improved
by adjusting the proportion of solar and wind power. The method for
calculating these metrics can be summarized as follows:

e For quantifying fluctuations at adjacent moments in the time series,
the authors define fluctuations as the change in power generation at
adjacent time points.

n—1
s
z,Zl |yl Iy

_ 8ire — &
W=

FR =

n—1 (20)

2D

where G is absolute capacity.
FR denotes the degree of random fluctuation at adjacent periods.
Smaller values of y; and FR, account for better stability.

e Next, the complementarity rate of fluctuations (CROF) and com-
plementarity rate of ramps (CROR) are calculated by Han et al.
(2019) by means of the following equations:

n—1 :
CROF =1 - IEPIL
- Sl
PO (22)
RROC
CROR =1 — ,
RROI (23)
a,RRS
RROI =1 — ZS—S
2 Gs 24

where o, — the proportion of the k™ kind of energy in CPG, based on the
power generation ratio of energies in the combination. The value of
CROF accounts for the degree of difference in output fluctuation be-
tween CPG and IPG, ranging from 0 to 1, with higher values meaning a
better complementary in terms of CPG. The RROC parameter is the
ramp ratio of the CPG, while RROI is the sum of the ramp rates of
individual energies, and RR* is the ramp ratio of the k™ kind of energy.
Similar to CROF, the CROR values range between 0 and 1, with higher
values denoting a better complementary.

5. Discussion

The concept of complementarity itself is considered in the scientific
literature from several perspectives such as developing/proposing new
indices/tools for complementarity assessment/visualization, com-
plementarity assessment with or without further discussion about its
potential implications and complementarity being implicitly used, for
instance in optimization models, where it is not discussed in details.
Typical applications of complementarity are given in Fig. 8.

Most commonly renewable hybrid energy systems consist of a
combination of solar and wind generators. Such systems are often
considered as a viable supply option for off-grid communities, because
they reduce issues of single sources such as the prominent day-night
pattern of solar generation, which leads to vast requirements for storage
The use of hybrid systems can therefore increase the overall reliability
and reduce the cost of electricity or increase its value depending on the
operation mode. The underlying principle of hybrid energy sources
(utilizing non-dispatchable renewables) is the complementary nature of
their energy generation patterns.

(Jurasz et al., 2018a) have recently shown that the varying degree
of complementarity can lead to different levels of hybrid system relia-
bility. Fig. 9 shows an example of the varying degrees of com-
plementarity impact on the systems performance and the use of re-
newable generation. In this work, a wind-PV hybrid system was
considered to cover a constant load. Both sources generated the same
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Fig. 8. Use of complementarity in different energy-related research areas.
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Fig. 9. Reliability and renewable generation utilization for a solar-wind hybrid
system with different complementarity values between variable generators.
Adapted from (Jurasz et al., 2018a).

overall amount of energy, which on average was equal to the load. As
shown, complementary sources provide higher reliability of supply and
ensure better utilization of generated energy. An interesting future re-
search direction here is to enhance the knowledge and practical im-
plications resulting from the different levels of complementarity.
Energy systems designed for complementarity can also enhance
participation on day-ahead and intraday energy markets by exploiting
the partial dispatchability of hydropower coupled with wind or solar
generators. As indicated by Jurasz and Ciapata (2017) and Kougias
et al. (2016), the power output from variable generators can be
smoothed by their joint operation. For example, an appropriate energy
management strategy for joint solar-hydro generation can smooth the
generation patterns and improve the performance of a power system
with respect to power fluctuations, when compared to generation from
a PV system alone. Based on the paper by Jurasz and Ciapata (2018),
Fig. 10 presents a PV and hydropower station operating as a hybrid
station. The optimization objective has been to increase the penetration
of variable PV generation by smoothing its power output by means of
hydropower to that theoretically observed under clear-sky conditions.
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Fig. 10. Duration curves for PV and hydropower station operating as hybrid
station. Adapted from (Jurasz and Ciapata, 2018).

The operation was constrained by the potential limitation of the hy-
dropower capacity factor. The considered system comprises PV gen-
erators with a capacity of 83.4 kW, a water turbine with a throughput of
0.25 m®/s and a pondage capacity of 2.64 MWh. For the considered
region the hydropower and solar energy tends to exhibit com-
plementarity on an annual (calculated via monthly sums) time scale.

Furthermore, the combination of complementary solar-hydro, wind-
hydro and solar-wind-hydro hybrids can enable their participation on
intraday and day-ahead markets without the risk of excessive energy
curtailment or penalties for not realized bids (if such operation is ac-
ceptable within given energy system regulatory framework), and of
course, this is only possible if an appropriate operation strategy is im-
plemented. The results of such exemplary system operation are pre-
sented in Fig. 11. The bidding of the generation of non-dispatchable
generators (wind/solar) is purely based on the forecasted generation
and is prone to the forecasting errors. A joint operation with a com-
plementary hydro station is a feasible option to compensate for the
forecasting errors of solar/wind generation. The joint operation of PV
generators and the hydropower station on a day-ahead energy market is
shown in Fig. 11. It can be observed that the small water retention can
be increased by an optimal operation of the reservoir without jeo-
pardizing economic performance of both energy sources.

Another example of an energy management strategy for com-
plementary renewables was presented by (Ming et al., 2018). Their
management schemes aim at improving the available hydropower uti-
lization, whilst integrating the variable PV generation to the energy
system. Fig. 12 shows the results related to the operation of the PV-
hydro power station, which was optimized in order to reduce the water
consumption. The results of deterministic and stochastic models can
minimize the water consumption by 1.5% and 1% compared to the
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Fig. 11. The joint operation of PV and hydropower station on a day-ahead
energy market. CF — capacity factor. Adapted from (Jurasz et al., 2019).
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Fig. 12. Operation of PV-hydro power station considering various optimization scenarios. Adapted from Ming et al. (2018).
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Fig. 13. Simplified procedure which can be applied for studies aiming at sol-
ving energy system problem whilst considering the complementarity between
energy sources. Approach is applicable also for inter-sector researcher.

current strategy.

Although we have indicated that the concept of complementarity
can be used in a large variety across areas of energy-related research
activities it is worth to underline that most commonly different aspects
are considered. For example, even if the complementarity is analyzed
from the perspective of the reliability of an off-grid system, at the same
time it is within the interest of the energy management strategies

714

research. Another example is an already mentioned improvement of the
energy management strategy of complementary solar-hydro stations,
which at the same time addresses the problem of an efficient utilization
of water resources (water-energy nexus) and integration of variable
renewables.

Based on the conducted literature review it can be observed that the
complementarity is playing an especially important role when it comes
to the power system planning and decisions/research made at the verge
of two (or more sectors). Often it is not directly mentioned by the au-
thors, but it can be concluded that the spatial and temporal ability of
VRES to complement each other is the foundation supporting obtained
results. From the literature analysis, a following simplified procedure
with regards to the research including complementarity on a multi-
faceted level can be drawn (Fig. 13):

An example of research which considered the existing relations
between energy, water and food sectors was presented by (de Jong
et al., 2013). In their analysis they have investigated the potential use of
the availability of one source over the course of a certain period to
reduce the exploitation of another one which is used for different
purposes. A good case is a power system dominated by hydropower,
where the reservoirs are often used for energy generation as well as
irrigation purposes (food-energy nexus). In such cases, the hydropower
generation can be reduced during dry periods by utilizing photovoltaics
or wind power (if beneficiary complementary nature of those sources is
observed, as shown in Fig. 14).

Another example is the joint operation and scheduling of hydro-
power-solar/wind stations with biomass facilities. It is a known pro-
blem that dry years result in a lower crops harvest which in con-
sequence may cause problems on the supply side of the power stations
using biomass. In such situations it may be beneficiary to substitute
some hydropower generation by wind/solar and use the water when
required for irrigation purposes. The energy will still be generated by
the hydropower station although not in such a flexible manner when
compared to the usual operation scheme.

Although the concept of complementarity is often not directly dis-
cussed, complementarity of renewable resources is often implicitly used
in the optimization of energy systems of different scales. Heide et al.
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Fig. 14. Relationship between solar/wind and hydropower resources avail-
ability compared with the electrical load in Brazil. Clearly significant solar and
wind generation from July to August can reduce the use of water in reservoirs,
which later can be used for different purposes like irrigation. It must be noted
that the figure presents monthly values and in consequence the actual (in-
traday) variability is not visible. Adapted from de Jong et al. (2013).

(2010) have quantified the standard deviation of generation and need
for energy from storage and found it to be lowest at mixes between
approximately 40-60% of wind and solar respectively. Compared to
wind only and solar only, this is a reduction of the need for storage
energy by approximately 50%. For this mix, the standard deviation of
generation is reduced by 80% compared to a secenario, where gen-
eration is entirely based on wind. The study by Schmidt et al. (2016)
has identified the optimal mix in Brazil to be 37% of PV, 9% of wind
and 50% of hydropower, where the risk of deficit increases tenfold in a
hydro-thermal only scenario. In the paper by Chattopadhyay et al.
(2017) these authors optimized the need for balancing energy and
storage with respect to tilts/angles of solar modules and found a po-
tential reduction of the balancing need by 11% compared to South-
facing optimally inclined with respect to energy yield PV modules
alone.

In reality, complementary design and operation of renewables face
economic obstacles but they are also subject to incentives and gov-
ernmental support. Renewable expansion is in many countries sup-
ported by feed-in tariffs and net-metering schemes, which provide little
incentive for renewable-friendly integration as explained in the works
by Kougias et al. (2016) and Hirth and Miiller (2016). Some countries
have however adapted financial schemes that are better suited to in-
tegrate system-friendly complementary renewables such as the market
premium recently introduced in Germany. Another option to support
the integration of complementary renewables could be a reform of
transmission grid charges including incentives for grid-relaxing power
injections.

6. Conclusions

From the extensive literature review conducted on papers assessing
energetic complementarity between renewable sources, the following
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conclusions and potential research directions can be formulated:

e There are many geographical areas for which VRES energetic com-
plementarity has not been evaluated yet (mostly parts of Africa and
Asia). Furthermore, due to the variety of different indices used by
authors a direct (a lack of common/consistent methodology) com-
parison of results is a challenging task;

Some of the existing complementarity metrics can be extended to
consider other aspects related to VRES like the relation between
capacity factor and levelized cost of energy, since better com-
plementarity does not always result in lower overall cost of the
system.

Future studies should extend the complementarity assessments for
allowing the user to understand not only on the statistical re-
lationship (complementarity) between the energy sources, but also
to obtain additional information related to the practical application
of those metrics;

Complementarity metrics have been included in several optimiza-
tion models in order to find the best design and/or operation
schedule of hybrid power systems. However, the extent of potential
applications can be extended to hydrological models (involving
water-energy-food nexus) or power system planning;
Complementarity metrics should be compared based on the same
data sample and their performance should be assessed based on the
same criterion to clearly formulate their strong and weak sides;
Since a majority of complementarity studies focusses on the wind/
solar/hydro combination, future research should include some ad-
ditional renewable sources like wave or tidal energy that have
gained recent attention

The research on complementarity should not be based only on his-
torical datasets, but also consider future climate models and the
impact of changes in renewables complementarity.

Climate change will have tremendous impact on renewable re-
sources and likely their complementarity as well. This gives a high
priority to studies of renewable complementarity with regard to the
climate change.

Little attention has been paid so far to the question how results on
complementarity from measurement-based to model-based data
differ. It is possible that some results of wind-solar PV com-
plementarity in models arises from intrinsic model properties such
as the parametrization schemes or spatial and temporal resolutions.
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