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We introduce a new model to study the effect of surface roughness on the jamming transition. By
performing numerical simulations, we show that for a smooth surface, the jamming transition density and
the contact number at the transition point both increase upon increasing asphericity, as for ellipsoids and
spherocylinders. Conversely, for a rough surface, both quantities decrease, in quantitative agreement with
the behavior of frictional particles. Furthermore, in the limit corresponding to the Coulomb friction law, the
model satisfies a generalized isostaticity criterion proposed in previous studies. We introduce a counting
argument that justifies this criterion and interprets it geometrically. Finally, we propose a simple theory to
predict the contact number at finite friction from the knowledge of the force distribution in the infinite
friction limit.
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Introduction.—Upon compression, a granular material
suddenly acquires a finite mechanical pressure at a certain
jamming transition density φJ at which constituent particles
start to touch each other [1–9]. One of the most popular and
simplest models of the jamming transition is a system
consisting of frictionless spherical particles interacting via a
purely repulsive potential. A notable property of the model
is the so-called isostaticity: the number of degrees of
freedom equals the number of constraints imposed by
the contacts among constituent particles. A simple counting
argument predicts that when a frictionless spherical system
is isostatic, the contact number per particle is z ¼ 2d in d
spatial dimensions. Experiments [4] and numerical simu-
lations [10,11] show that the contact number at φJ indeed
satisfies zJ ¼ 2d. Remarkably, recent numerical and theo-
retical progress unveiled that isostatic systems, which
encompass some classes of neural networks [8,9,12,13]
in addition to frictionless spherical particles, belong to the
same universality class [14–18].
However, in experiments, friction has a significant effect

on the jamming transition. Systematic numerical studies
have been performed for spherical particles with the famous
Mohr-Coulomb law: the tangential force ft between two
particles in contact is proportional to the displacement from
the point of contact as long as jftj ≤ μfn, where fn denotes
the normal force and μ denotes the friction coefficient [19].
When the tangential force reaches the Coulomb threshold
jftj ¼ μfn, the contact breaks and the particles start to slip
with respect to each other. If we assume that each contact
constrains one translational motion and d − 1 tangential
motions, the counting argument predicts zJ ¼ dþ 1 when

the system is isostatic [1,20]. However, numerical simu-
lations show that zJ smoothly decreases from 2d upon
increasing μ, and converges to dþ 1 only in the large
friction limit μ → ∞ [21,22]. Isostaticity thus seems to be
broken for frictional particles. However, more recently, it
has been realized that more careful considerations are
necessary to derive the isostatic condition for frictional
particles [23–25]. The point is that a finite fraction of the
fully mobilized contacts satisfy the Coulomb threshold
jftj ¼ μfn, and those contacts do not constrain the tangen-
tial motion. This observation leads to a generalized iso-
staticity condition zJ ¼ dþ 1þ 2nm=d, where nm denotes
the number of fully mobilized contacts per particle [25].
Numerical simulations prove that frictional particles indeed
satisfy generalized isostaticity at φJ when slowly equili-
brated [24,25].
Compared to frictionless particles, studies of the jam-

ming of frictional particles, e.g., to unveil the mechanisms
yielding the generalized isostaticity condition and their
universality class, are still in their infancy. A reason is the
strong nonanalyticity of the Coulomb law at the Coulomb
threshold jftj ¼ μfn, which makes the contact network ill
defined [25], and the lack of a well-defined potential energy
[26]. A way to avoid this difficulty is to revisit the
microscopic origin of the empirical Coulomb friction
law. Although there are several possible origins of friction
[27], here we focus on the geometric friction caused by
surface roughness, which has gained a lot of attention due
to the recent development of experimental techniques such
as 3D printing [28,29], and advanced computational
techniques for complex-shaped particles [30,31]. In this
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work, we construct a new model to take into account the
effect of surface roughness by means of a perturbative
expansion around the reference case of spherical disks. By
performing numerical simulations, we show that, for a
smooth surface, zJ of the model increases upon increasing
asphericity, suggesting that a small deviation from perfect
disks plays a similar role to the asphericity of convex-
shaped particles [5,32–38]. Contrarily, for a rough surface,
zJ decreases upon increasing asphericity, as for frictional
particles. Furthermore, we show that our model gives a
clear explanation for why particles with Coulomb friction
satisfy the generalized isostaticity condition. Finally, we
propose a simple approximation scheme to calculate zJ for
frictional particles.
Model.—We consider two-dimensional particles inter-

acting with the repulsive harmonic potential [10]:

VN ¼
X1;N
i<j

v(hijðxi;xj;ui;ujÞ); vðhÞ¼h2

2
Θð−hÞ; ð1Þ

where ΘðxÞ denotes the Heaviside step function, xi ¼
fxi; yig and ui denote the position and angle of the ith
particle, respectively, and hij denotes the overlap function,
which represents the minimal distance between particles i
and j. When particles i and j are overlapped, hij ≤ 0, and
otherwise, hij > 0. The calculation of hij is a nontrivial task
for general shapes of nonspherical particles. To simplify the
treatment, we assume that the shape of the particles is close
to a disk. By means of a perturbation expansion around the
reference disks, we obtain [36,38]

hij ¼ jhijj ¼ jh0ijj þ δhij ·
xi − xj
jxi − xjj

þOðδh2ijÞ

≈ jxi − xjj − Ri − Rj þ Fðxi; xj; ui; ujÞ; ð2Þ

where hij and h0ij, respectively, denote the vectors con-
necting the minimal paths between the surfaces of two
particles and reference disks (Fig. 1), δhij ¼ hij − h0ij
denotes the deviation of the minimal path from the disks,

Ri denotes the radius of the particles i, and we have
introduced the auxiliary function F≡ δhij · ðxi − xjÞ=
jxi − xjj. To express the surface roughness, we require
that F is invariant under the following transformations:
(i) the rotation without slip ui → ui þ δ=Ri and
uj → uj − δ=Rj, where δ denotes an arbitrary constant
with a dimension of length, and (ii) the global rotation. A
functional form satisfying the above conditions is [39]

Fðxi; xj; ui; ujÞ ¼ ðRi þ RjÞfðωijÞ;

ωij ¼
Riui þ Rjuj
Ri þ Rj

− θij; ð3Þ

where θij denotes the angle between the relative vector
xi − xj and positive x axis, namely, θij ¼ atan2ðyj − yi;
xj − xiÞ. Although fðθÞ can be any periodic function of
period π, to make the connection with the Coulomb friction
law, we consider the following specific form:

fðθÞ ¼ μ
2π

n
Triε

�
n
2π

θ

�
; ð4Þ

where n denotes an even number, and we have introduced a
smoothed triangle wave function:

TriεðxÞ ¼

8>>>>>>>><
>>>>>>>>:

− x2
2ε þ 1

4
− ε

2
x ∈ ½0; εÞ

−xþ 1
4

x ∈ ½ε; 1=2 − εÞ
ðx−1=2Þ2

2ε − 1
4
þ ε

2
x ∈ ½1=2 − ε; 1=2þ εÞ

x − 3
4

x ∈ ½1=2þ ε; 1 − εÞ
− ðx−1Þ2

2ε þ 1
4
− ε

2
x ∈ ½1 − ε; 1Þ;

ð5Þ

and Triεðx� 1Þ ¼ TriεðxÞ. We show the typical behavior of
fðθÞ in Figs. 2(a) and 2(b). fðθÞ depends on three
parameters: n, μ, and ε. Upon increasing n, the number
of minima of fðθÞ increases. Although solely fðθÞ is not
enough to determine the precise shape of particles, it is
clear that the number of minima on the surface of a particle
also increases with n, as schematically shown in Fig 2(c),
suggesting that n controls the roughness. μ=n represents the
deviation from the reference disks, and our perturbative
approach is justified only for μ=n ≪ 1. To make the
physical meaning of μ clearer, we calculate the ratio
between the normal and tangential forces between two
particles in contact:

���� ftfn
���� ¼ Ri þ Rj

jxi − xjj
jf0ðωijÞj; ð6Þ

where fn ¼ ∂xnvðhijÞ and ft ¼ ∂xtvðhijÞ. ∂xn and ∂xt ,
respectively, denote the derivatives along the parallel and
orthogonal directions to xi − xj. For n ≫ 1 and at φJ,
jxi − xjj ≈ Ri þ Rj, and we get jft=ftj ≈ f0ðωijÞ ≤ μ,

FIG. 1. Schematic picture of the surfaces of two particles. The
solid lines represent the surfaces of particles, while the dashed
lines represent the surfaces of the references disks. The solid and
dashed arrows represent the minimal paths connecting the
surfaces of particles and reference disks, respectively.
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implying that μ represents the effective friction coefficient.
One may thus expect that the behavior of frictional particles
can be recovered in the limit of a rough surface, n → ∞
with fixed μ. However, taking this limit is not enough
because for ε > 0, jft=fnj ¼ f0ðωijÞ varies depending on
ωij even when slip sets in, while jft=fnj ¼ μ for the
Coulomb friction law [19]. The Coulomb friction law
corresponds to the double limit n → ∞ and ε → 0, where
jft=fnj < μ if ωij is trapped in a minimum of fðωijÞ, and
jft=fnj ¼ μ if slip sets in and ωij∈ ½ε;1=2−εÞ∪ ½1=2þε;
1−εÞ.
Numerics.—We perform numerical simulations for N ¼

128 particles consisting of the same number of large and
small particles under periodic boundary conditions. The
radii of small and large particles are RS ¼ 0.5 and
RL ¼ 0.7, respectively. We find φJ by combining slow
isotropic compression and decompression as follows [10].
We first generate a random initial configuration at a small
packing fraction φ ¼ 0.1. Then, we slowly compress the
system. For each compression step, we increase the packing
fraction with a small increment δφ ¼ 10−4, and succes-
sively minimize the energy with the FIRE algorithm [40]
until the squared force acting on each particle becomes
smaller than 10−25. After arriving at a jammed configura-
tion with VN=N > 10−16, we change the sign and ampli-
tude of the increment as δφ → −δφ=2. Then, we
decompress the system until we obtain an unjammed
configuration with VN=N < 10−16. We repeat this process
by changing the sign and amplitude of the increment
as δφ → −δφ=2 every time the system crosses φJ.
We terminate the simulation when VN=N ∈ ð10−16;
2 × 10−16Þ. Then, we remove the rattlers that have zero
or one contact, and calculate the physical quantities. To
improve the statistics, we average over 10 independent
samples.

Results.—First, we discuss the behavior for ε ¼ 0.1. In
Fig. 3(a), we show the contact number per particle at the
jamming transition point zJ. For small n, zJ increases upon
increasing μ; see the data for n ¼ 10. Since μ=n represents
the deviation from disks, this behavior is qualitatively
similar to that observed in convex-shaped particles [5,32–
38]. Contrarily, for large n, zJ decreases with μ [41]. For the
largest value of n, n ¼ 104, zJ quantitatively agrees with
previous results generated by isotropic compression of
frictional particles for the same system size, N ¼ 128 [42].
In Fig. 3(b), we show the jamming transition point φJ. As
for zJ, φJ increases with μ for small n, and decreases for
large n. For n ¼ 104 and μ≲ 1, the behavior of φJ is similar
to that of the Coulomb friction model, while for μ≳ 1, there
is a small but visible deviation. We guess that this
discrepancy for large μ is due to the difference in the
algorithms used for the minimization: for our model, the
energy was minimized by the FIRE algorithm, while for
frictional particles, the kinetic energy was minimized by
molecular dynamics simulation with a damping propor-
tional to the force [42]. Further studies are necessary to
clarify this point. To see the ε dependence, in Fig. 4 we

FIG. 2. (a) fðθÞ=μ for ε ¼ 0.1 and several n. The number of
minima increases with n. (b) fðθÞ for n ¼ 2 and several ε. The
triangle wave is recovered when ε ¼ 0. (c) Schematic pictures of
a particle shape. The shape deviates from the reference disk with
μ, and the surface becomes rougher for larger n.
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FIG. 3. μ dependence for fixed ε ¼ 0.1 of (a) the contact
number per particle at the jamming transition point zJ and (b) the
jamming transition point φJ . The data for the Coulomb friction
model were taken from Ref. [42].
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FIG. 4. μ dependence for fixed n ¼ 104 of (a) the contact
number per particle at the jamming transition point zJ and (b) the
jamming transition point φJ . Markers denote the numerical
results, while the dashed line denotes the theoretical prediction;
see main text.
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show zJ and φJ for n ¼ 104 and several ε. zJ and φJ do not
exhibit a significant ε dependence and agree well with the
results for the Coulomb friction law.
In Figs. 5(a)–5(c), we show the cumulative distribution

function (CDF) of jfn=μftj for n ¼ 104 and several ε.
For ε ¼ 0.25, the CDF smoothly increases with jfn=μftj.
Contrarily, for ε < 0.25, the CDF has a singular peak at
jfn=μftj ¼ 1. The peak grows upon decreasing μ and ε. In
Fig. 5(d), we show the CDF of jfn=ftj for n ¼ 104 and
ε ¼ 0.01. The CDF converges to a constant distribution for
large μ.
The strong peak of the CDF at jft=μfnj ¼ 1 indicates

that there are a finite fraction of contacts satisfying the
Coulomb threshold jftj ¼ μfn. Those contacts are referred
to as the fully mobilized contacts [1]. As the fully
mobilized contacts do not constrain the tangential motion,
the total number of constraints imposed by the contacts
is Nz − Nnm, where Nnm denotes the number of fully
mobilized contacts. This should be equated to the number
of degrees of freedom 3N when the system is isostatic.
Therefore, for an isostatic system, nm is [25]

nm ¼ z − 3: ð7Þ

In Fig. 6, we test this conjecture for n ¼ 104. The plot
clearly shows that the numerical data converge to the

theoretical prediction, Eq. (7), in the Coulomb friction
limit ε → 0.
Theory.—Here we show that the generalized isostaticity

in the ε → 0 limit can be explained by a simple counting
argument, which slightly generalizes the corresponding one
for nonspherical particles in two dimensions [1]. At φJ,
hij ¼ 0 for all contacts. This can be satisfied when the
number of degrees of freedom 3N is larger than the number
of contacts NzJ=2:

3N ≥
NzJ
2

→ zJ ≤ 6: ð8Þ

Additionally, a stable system should satisfy the 3N force
balance equations:

∂VN

∂xi ¼ 0;
∂VN

∂yi ¼ 0;
∂VN

∂ui ¼ 0: ð9Þ

Those are linear combinations of the normal and tangential
forces, fn and ft, between particles in contact. Considering
that there are Nnm fully mobilized contacts, the degree of
freedom of fn and ft is NzJ − Nnm. Therefore, Eqs. (9)
have nontrivial solutions only if [24,25]

3N ≤ NzJ − Nnm → zJ ≥ 3þ nm: ð10Þ

This inequality generally holds for any ε; see Fig. 6. From
Eqs. (8) and (10), at φJ, we have

3þ nm ≤ zJ ≤ 6; ð11Þ

implying that the generalized isostaticity does not hold in
general.
We can improve the counting argument in the ε → 0

limit, where ωij of nonmobilized contacts should be located
precisely at a minimum of fðωijÞ because the correspond-
ing stiffness diverges as f00ðωijÞ ∼ ε−1. This provides
NzJ=2 − Nnm additional constraints. Thus, Eq. (8) should
be modified as

3N ≥ NzJ − Nnm → zJ ≤ 3þ nm: ð12Þ
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FIG. 5. (a)–(c) Cumulative distributions of jfn=μftj for n ¼ 104 and ε ¼ 0.25, 0.1, and 0.01, respectively. (d) Cumulative distribution
of jfn=ftj for n ¼ 104 and ε ¼ 0.01.
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denote numerical results. The solid line denotes the theoretical
prediction nm ¼ z − 3 corresponding to generalized isostaticity.
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Equations (10) and (12) prove the generalized isostaticity
Eq. (7). It is not straightforward to generalize the above
argument to higher dimensions. We left it as future work.
A theoretical challenge is to predict the μ dependence of

zJ. In Fig. 4(a), we show that zJ does not show a strong ε
dependence. This allows us to focus on small ε, e.g.,
ε ¼ 0.01, where the generalized isostaticity, Eq. (7), may
simplify the treatment, as it directly connects zJ to nm. We
tentatively approximate nm by neglecting the μ dependence
of the distribution of jft=fnj and calculate nm as

nm ≈
Z

∞

μ
dxP∞ðxÞ ¼ 1 − CDFðjft=fnj ¼ μÞ; ð13Þ

where P∞ðxÞ denotes the distribution of jft=fnj in the limit
μ → ∞. As shown in Fig. 5(d), the CDF of jft=fnj for
ε ¼ 0.01 is converged to a constant distribution for μ ≳ 2.
So, we use the CDF for μ ¼ 4. In Fig. 4(a), we show our
theoretical prediction zJ ≈ nm þ 3 ≈ 4 − CDFðjft=fnj ¼
μÞ with the black dashed line. The agreement is not perfect
but still surprisingly nice, considering the simplicity of the
theory and the fact that there are only a few theories for the
jamming of frictional particles [43,44].
Conclusions.—We constructed a model that takes into

account the effect of surface roughness by means of a
perturbation expansion around ideal disks. By changing the
surface roughness, the model can smoothly interpolate the
phenomenology of frictionless convex-shaped particles and
frictional disks.
We found that the fraction of fully mobilized contacts

strongly depends on ε, and, consequently, the generalized
isostaticity condition is satisfied only in the limit of the
Coulomb friction law, ε → 0. However, our investigation is
limited to a specific class of functions fðωijÞ described by
Eq. (4), and we also assumed that two particles have at most
one contact and neglected the effect of multiple contacts.
It would be desirable to investigate a broader class of
fðωijÞ, allowing multiple contacts, to clarify under which
conditions the system satisfies generalized isostaticity.
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