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RESUMO 

 

Conhecer, predizer e modificar como estruturas atingem o colapso é um desafio para a 

engenharia e também uma chave tecnológica no desenvolvimento de estruturas. Entre os 

materiais utilizados, aqueles que possuem comportamento dúctil, como é o caso de metais, 

apresentam um processo de dano que é estudado dentro da teoria da plasticidade, permitindo 

manter a hipótese dos meios contínuos até determinado grau de deterioração. No caso de 

matérias quasi-frágeis, como é o caso de cerâmicos, alguns tipos de rochas e concreto, a 

hipótese de modelos utilizados em materiais dúcteis é no mínimo discutível quando o nível de 

dano está em elevados patamares, havendo neste caso fenômenos particulares, como a 

localização, a iteração entre clusters de microfissuras e o efeito de escala, entre outros. É de 

interesse relacionar os resultados obtidos dentro do âmbito da mecânica do contínuo com teorias 

que preveem um conjunto de descontinuidades que podem crescer e interagir. Notavelmente, 

métodos alternativos baseados na mecânica do descontínuo tem apresentado resultados 

promissores. Neste cenário, o domínio é representado por nós vinculados entre si por funções 

de interação baseados em campos de forças. Estes métodos permitem incorporar naturalmente 

o dano e/ou a fratura. Na presente dissertação, uma versão do método dos elementos discretos 

é aplicada primeiramente para simular campos descontínuos que tem solução analítica 

conhecida dentro da mecânica do contínuo. Os parâmetros convencionalmente empregados na 

mecânica do contínuo e os conceitos de micromecânica são empregados para permitir 

comparações entre a solução analítica (mecânica do contínuo) e a extraída numericamente 

(modelo discreto). O efeito da mudança do número de trincas e de seus respectivos tamanhos é 

também estudada. Numa segunda aplicação, o modelo discreto é submetido a danos 

progressivos devido a carregamentos cíclicos proporcionais e não-proporcionais, permitindo 

avaliar como as propriedades mecânicas se degeneram ao longo do tempo. Por fim, é feito um 

estudo mostrando o efeito da subdivisão do domínio discreto, observando-se o erro associado 

ao se realizar este tipo de procedimento. Diversas observações feitas durante o trabalho 

permitem verificar não só a validade da metodologia, mas também interpretar os resultados 

obtidos dentro de cada teoria. 

 

Palavras chave: Método dos elementos discretos; Mecânica do dano; Mecânica da fratura; 

Processo de homogeneização; Carregamento não-proporcional. 

 



 

vi 
 

ABSTRACT 

 

Knowing, predicting and modifying how the structure reaches the collapse is an engineering 

challenge and also a technological key for the development of structures. Among the materials, 

those with ductile behavior, as metals, are evaluated considering the damage process within the 

plasticity theory framework and, in this case, the hypothesis of a continuum medium is accepted 

up to a certain degree of deterioration. For quasi-fragile materials, such as ceramics, some types 

of ground stones and concrete, the hypothesis applied in ductile materials models is, at the very 

least, questionable when the damage level is high.  In this situation, singular phenomena like 

the localization, interaction between the microcracks clusters, scale effect, among others, can 

happen. It is of interest to relate continuum mechanics results with theories that allow the 

material to present a set of interactive and growing discontinuities. Notably, the application of 

methods based on discontinuous mechanics has presented promising results. In this scenario, 

the domain is represented by nodes bounded with each other through interacting functions based 

on field forces. These methods permit to incorporate the damage and/or the fracture naturally. 

Firstly, in the present dissertation, a version of the discrete element method is applied to 

simulate discontinuous fields with a known analytical solution in the context of the continuum 

damage mechanics. The parameters conventionally applied in continuum mechanics and the 

concepts of micromechanics are incorporated to allow comparisons between the known 

analytical (continuum mechanics) and the extracted numerical approach (discrete model). The 

effect caused by the number of cracks and their corresponding sizes is also studied.  In the 

second application, the discrete model is submitted to progressive damage due to proportional 

and nonproportional cyclic loading, allowing to discuss and evaluate how the material 

properties degenerate over time. Lastly, a scenario showing the effect of the domain’s 

subdivision is made to visualize the associated error while performing this type of analysis. 

Many observations made during this work permit to verify not only the validity of the 

methodology but also to interpret the obtained results in the frameworks of the continuous 

damage mechanics and fracture/damage mechanics.  

 

Keywords: Lattice discrete element method (LDEM); Damage mechanics; Fracture mechanics; 

Homogenization process; Nonproportional load. 
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1 INTRODUCTION 

 

The evolution of the damage process in quasi-fragile materials, like ground stones, 

concrete, ceramic materials, reinforced concretes and other synthetic composites, is an open 

problem in solid mechanics. The damage that rules the mechanical behavior until the rupture is 

described as microcracks spread over the body, inducing anisotropy and loss of stiffness. The 

characteristic effects of this type of material are the localization of macrocracks characterized 

by clusters of microcracks, the scale effect and the form that the clusters interact with each 

other. For these types of materials at low levels of damage, it is conceivable to consider the 

approximations that the homogenization procedure allows. These models are based on 

Eshelby’s proposal, which enables us to compute inhomogeneities, such as oriented or random 

cracks embedded in a medium.  

The discussion developed by Krajcinovic, 1996, dealing with the classical damage 

methodology is inspiring. He and other authors developed and presented the discrete element 

method (DEM) as an alternative where the continuum mechanics assumptions are loosened up 

to a certain point at which the random distribution of properties can be easily incorporated. The 

discrete element models based on mass particles that interact by field functions, such as the one 

developed by Silling et al., 2007, is one of the alternatives. Another branch of research involves 

defining the interaction between the elements applying links that establish a regular or a non-

regular structure. The latter method is hereon called the Lattice Discrete Element Method 

(LDEM), where the solid is characterized by an interconnected web of uniaxial elements with 

the masses located at the nodes.  

 

1.1 Overview and Purpose 

 

The present work will initially introduce concepts related to continuum damage 

mechanics, fracture mechanics, micromechanics concepts and homogenization techniques to 

serve as a base to describe the method that incorporates the LDEM approach into a continuum 

mechanical description. Therefore, a procedure for the extraction of mechanical properties 

defined by a representative lattice structure is developed.  

The purpose of the developed technique is to enable the Analyst of an LDEM structure 

to visualize the loss of stiffness of a specific domain that undergoes a damaging process. 
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Therefore, characteristic features, as the changes of the representative constitutive tensor, can 

be evaluated for a given time-dependent LDEM analysis. It is important to emphasize that the 

study does not generate damage. It is a method that assesses how the mechanical properties of 

a given structure degenerate in a specific moment of a cumulative damage process.  

 

1.2 Main Goals 

 

Global Goal:  

- Explore the capacity of the version of the lattice discrete element method (LDEM) in 

simulating the damage process in quasi-fragile materials through the application of damage 

mechanics concepts.  

 

Specific Goals: 

- Verify the LDEM ability to represent the analytical solutions found in the classical 

micromechanical approach using a finite element procedure. 

- Suggest a methodology to evaluate the effective properties at different stages of an 

increasing damage process for an LDEM structure. 

- Implement a method to define an appropriate representative volume element (RVE) of 

a discrete model (see Section 2.3.1 for the RVE definition). 

- Describe comparative solutions between “open” and “closed” cracks avoiding 

complicated conjectures of damage mechanics.  

 

 The work focuses on applying the homogenization procedure defined by 

micromechanics concepts to evaluate damage in a specific type of discrete model. Scripts 

developed in Matlab ® and Ansys APDL ® are used to investigate the damage process and to 

establish new constitutive tensors as the damage evolves. In other words, the goal is to relate 

the loss of strength of uniaxial elements in a lattice structure with the modifications occurring 

in the continuum mechanics properties.  

 

1.3 Organization of the Dissertation 

 

Figure 1.1 presents the Chapters and Sections that constitute this work. The main sections 

regarding the theoretical background are highlighted in bold. The remaining bibliographical 

review is used as a support for the reader not acquainted with the main subjects here discussed. 
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After the theoretical background composed of six Sections (Chapter 2), the Development 

(Chapter 3) displays the workflow in detail covering the Methodology, Results and the 

Appendices. An overview of the state-of-the-art in Discrete Models is set apart in Chapter 2.7, 

highlighting different approaches that have been researched lately. The reader can find in the 

last part of this work (Appendix F) the adapted version of the paper based on the primary results 

discussed. 
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* Chapter 3 (Development) presents the workflow 

linking the subjects of Section 3.1 (1st Scenario), 

Section 3.2 (2nd Scenario) and the Appendices.  

      Appendices 

•Concepts of G, K

•Ductile-fragile transition

•M.E.F.L (S.S.Y.)

•CTOD / Integral J

Fracture 
Mechanics 

Section 2.1

•Transition D.M and F.M

•Represent. damage

•Ductile damage

•Fragile damage

Damage 
Mechanics 

Section 2.2

•Hypothesis of RVE 

•Averaging process

•Boundary field 
fluctuations 

•Eshelby's solution

•Microcracks

•Dilute solution

•SC solution

Micro 
mechanics      

Section 2.3

•Material's behavior

•Example in lattice 
structures

Damage
Models 

Section 2.4

•Anysotropy

•Matrice representation

•Types of anytropy

Const. 
Relations

Section 2.5

•Geometry and method

•Math. formulation

•Constituve law

•Properties fluctuation 
(G)

Discrete 
Model 
(LDEM) 

Section 2.6

•Structure/Material

•Boundary Conditions

•Properties extraction

•FEA implementation

•Methodology

•Results

1st Scenario* 

Chapter 3.1

•Methodology for the  
loading case

•Results for the loading 
case

•Methdology for the 
subdivision

•Results for undamaged 
subdivision

•Methodology for the 
subdivision with cyclic 
loading

•Results for the 
subdivision with cyclic 
loading

2nd Scenario* 

Chapter 3.2

•Final observation

•Possible future works

Conclusion

Chapter 4

•Apendices A,B,C (Codes)

•Apendix D (Polarization)

•Apendix E (Add. sol.)

Appendices*

•Summarized Version of all 
dissertation

Paper* 
Apendix F 

      Theoretical Background 

Methodology / Results 

Figure 1.1 - Macro organization of the work defining the Chapters/Sections with theoretical 

background, methodology/results and appendices. 
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2 BIBLIOGRAPHICAL AND THEORETICAL REVIEW 

 

The following sections will address different aspects of the damage, fracture and 

micromechanics, considering the basic and most essential concepts for the conception of the 

present work. Initially, Section 2.1 introduces the basic ideas of energy release rate and fracture 

toughness (� and �). Also, a short overview about Integral J and Crack Opening Displacement 

(COD) is offered with the discussion of stable and unstable cracks as an R-resistance curve 

dependency.  Section 2.2 discusses the basic features of continuum damage mechanics (CDM), 

introducing the damage parameter in the elastic and plastic situations. Section 2.3.1 is added 

separately due to the importance of establishing a definition for the Representative Volume 

Element (RVE) within the micromechanics studies. Section 2.3.2 and 2.3.3 show how the 

material properties and fields can be averaged over the domain, introducing the micromechanics 

concepts later applied to the Eshelby solution in Section 2.3.4. Section 2.4 discusses lattice 

structures utilized to evaluate damage in brittle and quasi-brittle materials, focusing mainly on 

the profuse works of Krajcinovic, while Section 2.5 describes the concepts of anisotropy. 

Section 2.6.1 displays the specific discrete model that will be applied in this work and Section 

2.7 discusses current works that apply different approaches to the domain of discrete methods. 

 

2.1 Fracture Mechanics Concepts  

 

The continuum mechanics establishes the concepts of stress and strain in a tensor form. 

This interpretation allows the characterization of each point in a body describing the 

strain/stress state in every direction. The transformation and rearrangement of these entities 

yield single values that can be compared to some standard value later. The maximum distortion 

energy criterion uses, e.g., the second deviatoric stress invariant to generate a value and 

correlate it with a material subjected to uniaxial tests. This well-established systematic 

succeeded at continuous, homogenous and undamaged structures. By the end of the XIX 

century and the beginning of the XX century, proposals such as Inglis, 1913, calculated the 

stress distribution in a plate when an inserted elliptical defect distorts a constant stress field.  

Nevertheless, when the ellipse stretches up to a point where the geometry becomes a 

macroscopic line, the stresses at both vertices tend to infinity. That is the moment when the 

classical continuum mechanics fails to evaluate the real-world observations. Alongside this, the 

engineering materials are never homogenous and continuous. Therefore, the fracture mechanics 

theory came to introduce new tools to deal with these unsolved scenarios. 
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Griffith, 1920, considering the state of equilibrium established by the minimum potential 

energy theorem, defined a new approach for the rupture phenomenon. He stated in his classical 

work: “if the equilibrium is possible, must be one in which rupture of the solid has occurred if 

the system can pass from the unbroken to the broken condition by a process involving a 

continuous decrease in potential energy.” To find the breaking load of real solids, “it is 

necessary to account of the increase in potential energy which occurs in the formation of new 

surfaces in the interior of such solid.” 

This statement defines that the energy available for crack growth must overcome the 

material resistance, which includes surface energy, plastic work and other forms of dissipation. 

Griffith’s energy release rate � is introduced as the change rate in the potential energy � with 

the crack area. The moment of fracture is then defined when � approaches a critical value �p. 

The most classical representation is described as in Equation 2.1, where it establishes the 

relation among �, crack size 2�, Elastic Modulus � and a remotely applied uniaxial stress � 

for an infinite and thin plate.  

 

� = � ∙ �_ ∙ ��  (2.1) 

 

 The critical resistance to fracture �p occurs when a combination of critical stress �p and 

a critical crack size �p is reached. The basic assumptions of this approach are that the energy 

release rate does not consider the specimen size or geometry and also that it can be applied 

predominantly for linear elastic bodies.  

Irwin, 1957, introduces another form of considering the local crack analysis. A field is 

used to describe the stress state in the vicinity of a hypothetical crack tip, as represented by 

Equation 2.2. This field is a function of the angular position �, radius from the crack tip � and 

the stress intensity factor �. Additionally, the boundary conditions defined by the load 

configuration of one or a combination of the three fracture modes presented in Figure 2.1c will 

also have influence.  In general, the load scenario is a linear superposition of mode I and mode 

II for planar cases. In three dimensional cases, the mode III is added to the two previous ones.  

Equation 2.2, along with Equation 2.3, demonstrates that the stress at a point approaching 

the crack tip reaches infinity.  The field is controlled by the stress intensity factor � which is 

typically described by three independent terms and its fracture mode: the imposed stress at the 

boundary conditions �, the size of the crack � and the geometry factor �q. The geometry factor 
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�q can be easily found for simple cases in handbooks of stress analysis or can be stipulated for 

complex geometries using Finite Element Analysis (FEA). 

 

 

 

 

 

 

 

 

 

 

 

�©ª = (�«,«« 4¬ «««) ∙ 
©ª«,«« 4¬ «««(�) ∙ (2��)�­® (2.2) 

  �«,«« 4¬ ««« = �q ∙ � √�� (2.3) 

 

The stress intensity factor �, as for the energy release rate �,  can be compared to a critical 

value �¯ (fracture toughness) to establish the crack propagation. Despite the different 

approaches for � and �, it is possible to derive a relationship between the two entities. For 

example, considering mode I, Figure 2.1a and b presents the description from Equation 2.4 for 

the stresses in the y-direction �__ during the crack opening ∆�. 

 

�__ = �«(�)√2��    
��  0 < � ° ∆� 
(2.4) 

 

The energy release rate � is the negative work done by the traction �__ which integrating 

over the crack opening leads to Equation 2.5, where the term ±�(0�) − �(0�)² is related to the 

crack faces’ separation.  

 

� = − ��(�)�� = 12 ∙ ∆� ³ �__ ∙ ±�(0�)∆´
µ − �(0�)²  #) 

(2.5) 

 

Figure 2.1 - (a) The stress profile close to the crack tip with size a. (b) the crack growth causes 

new free surfaces ∆a [Hutchinson, 1979].  (c) The classical fracture modes [Iturrioz, 1995]. 

(a) (b) (c) 
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The combination of both Equations brings to a solution for plane strain and plane stress 

(Equation 2.6). For three-dimensional bodies, Rice et al., 1971 derived one solution for � as a 

linear combination of the three modes (Equation 2.7).  

 

� = 1 − �_� ∙ �«_     (&·�	� �¸��¹	)     � = �«_�     (&·�	� �¸����) 
(2.6) 

 

� = 1 − �_� ∙ º�«_ + �««_¼ + 12�n½o´¬ ∙ �«««_                 (3 −  ) 
(2.7) 

 

The use of � and � pursuits to avoid the intrinsic problems caused by plastification at the 

vicinity of the crack tip when any load is applied. However, the plastification zone must be 

small enough to be still able to use the Linear Elastic Fracture Mechanics (LEFM). When the 

toughness of the material is considerably high and the plastic zone is large, the employment of 

Nonlinear Fracture Mechanics must be considered. The use of LEFM can be defined using the 

concept of Small-Scale Yielding (S.S.Y). Roughly speaking, in most instances, S.S.Y seems to 

be reasonable as long as the applied load is below one half of the plasticity load [Hutchinson, 

1979]. For this consideration, the characteristic length (crack length or uncracked ligament) 

must be much larger than the plastic zone length. However, except under brittle condition like 

glasses and rocks, the observed  �p is several orders of magnitude higher than the calculated.  

Despite � and � being equivalent, the application of � is more convenient and it was also 

extended to large scale yielding in the last decades. It is also essential to clarify that the stress 

fracture toughness (�p) varies widely with temperature leading to brittle-ductile transition. 

Also, different responses will be achieved with thin sheets (plane stress) or thick blocks (plane 

strain). Figure 2.2 shows the changes in �¯ according to the thickness and temperature. Except 

for thin foils/sheets, the fracture toughness is defined as a plane strain condition, i.e., the lowest 

critical value for thicker samples. The recorded measurements are usually determined by the �¯  tests standards (ASTM test – Fracture toughness testing method). 
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When the linear behavior no longer prevails, the nonlinear fracture mechanics, which 

includes Elastic-plastic, viscoelastic and viscoplastic fracture, will drive the solution approach. 

As the material toughness increases, the Linear Elastic Fracture Mechanics (LEFM) collapses 

and the failure mode is governed by flow properties. The two main criteria used in these cases 

are the crack tip opening displacement (COD) and the Integral J.  

Wells, 1961, studying structural steels, demonstrated that these materials are too tough to 

consider the use of Linear Elastic Fracture Mechanics. His studies have shown that the crack 

tip normally blunted due to plastic deformation avoiding the propagation of the discontinuity 

[Anderson, 1994]. Along with Irwin’s work, related to small plasticity at the vicinity of the 

crack tip, Wells proposed a correlation between the stress intensity factor and the Crack 

Opening Displacement assuming an effective crack length equal to � + �3, where �3 is the first 

order plastic zone approximation.  Assuming no strain hardening and a plane stress state, 

Irwin’s approach brings to a relation between �3, stress intensity factor �« and the yielding stress �3 as presented in Equation 2.8. As a result, an effective stress intensity factor �oqq will be 

defined due to the longer effective crack length �oqq. Figure 2.3b shows the correction and the 

stress distribution due to the plastic zone �¿. �3 is defined as half of the �¿ value (Figure 2.3c). 

Using Equation 2.8 and considering the LEFM formulation [see Branco, 1986], it is 

possible to find the Crack-tip Opening Displacement � directly and relate it to the stress 

intensity factor and energy release rate. Equation 2.9 is an example in the plane stress state of 

how the COD method can be used as a parameter to characterize the crack tip evolution.  

 

 

 

 

(a) 

thickness 

(b)  

Figure 2.2 - (a) �p changes are owing to the plate thickness. (b) �p changes are owing to 

temperature changes [Hutchinson, 1979]. 

temperature 
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�3 = 12� À�«�3Á_
 

(2.8) 

 

� = 2 ∙ �3 = 4� �«_�3 ∙ � = 4� ��3   
 

(2.9) 

 

Conventionally, a three-point bending test is proposed to evaluate indirectly the 

displacement �. The procedure can be vastly found in the literature.  

Integral l is another approach proposed by Rice, 1968. It is similar to Griffith's energy 

release rate but employed for non-linear elastic materials. Therefore, it can be represented as 

the potential energy variation due to a growing crack as presented in Equation 2.5 but changing 

from factor- � to factor- l. Landes and Begley, 1972, measured experimentally l using several 

specimens of the same size, same material, same geometry, but with different crack lengths. 

They plotted the load versus displacement, which makes the area below the curve the energy 

absorbed. The differential of these curves defines the l critical values.  

However, the options presented until now are only capable of predicting the crack 

opening as the factors �, � or l approach a critical value. The stable or unstable crack 

development is dependent on material resistance to crack extension called factor-~. Therefore, 

for a specific condition of stress, the relation 

 #�#�  > #~#�     ��    #l#� >  #~#� 
(2.10) 

Figure 2.3 - (a) Crack Opening Displacement �. The crack blunts resulting in a finite 

displacement. (b) Irwin plasticity correction. An effective stress intensity factor is resultant 

from an increased effective crack length caused by the factor �3. (c) unilateral displacement 

considering the plastic region �3.[Anderson, 1994] 

(a) (b) (c) 



 

11 

 
 

 

must also be fulfilled for unstable growth.  For brittle material, the R-curve is usually flatter 

and for a dominant plastic material is more challenging to obtain the curve due to the size of 

the yielded region, the complexity of the geometry and the load configuration. Figure 2.4 shows 

the curves for � and l at the critical point where the unstable condition must occur. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Continuum Damage Mechanics Concepts 

 

The Continuum Damage Mechanics (CDM) describes the material evolution from an 

initial undamaged scenario until a state of macrocracks initiation. The concepts were first 

introduced by Kachanov, 1958, when studying the creep evolution and its relation with fracture. 

Both fracture and damage mechanics are concerned with the behavior of the damaged medium 

to address the safety of a particular structure. However, in CDM, the defect is treated on a 

microscale and they are continuously distributed throughout the material. The macro properties 

such as strength and toughness are dependent on the micro effects caused by voids, 

discontinuities, micro-cavities and/or defects. On the other hand, the fracture mechanics 

considers the cracks tip singularity and its impact locally. Figure 2.5 shows a diagram that 

clarifies these two fields subdivision [Zhang, 1995].  

“The ultimate goal of damage mechanics is to represent a discontinuous state by a 

continuous variable” [Lemaitre and Dufailly, 1987].  

 

Figure 2.4 - (a) Energy release rate and factor-R curves defining the instability point 

according to critical crack size �p. (b) Integral J according to displacement-controlled test ∆Ã 

and a force-controlled test 
Ã. [Anderson, 1994] 

(a) (b) 
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The purest form of mathematically representing a damaged body using the concepts of 

RVE is considering a normal plane 	y⃗ , an overall area " and the decreasing resistance according 

to the damaged area "Ä (Figure 2.6). The relation between the effective area "oqq and the total 

area " results in a scalar damage value  Ä. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the cases where  Ä is a function of the orientation of the plane 	y⃗ , the entity evolves 

into a tensorial form. When the value of  Ä is invariant to 	y⃗ , the damage is called isotropic, 

which means cracks and cavities are equally distributed in all directions. Equation 2.11 relates 

the usual engineering stress � with the damage factor, introducing the concept of effective stress �oqq owing to the decreasing area. 

Figure 2.5 - The subjects defined normally as belonging to damage and fracture mechanics. 

[Zhang, 1995] 

ÅÆÇÇ = Å − ÅÈ 

Figure 2.6 – Damaged element considering the reduction of the effective resistance area due to 

the presence of cracks and voids. [Lemaitre, 1984] 
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 Ä = " − "Ä" = "oqq" , �oqq =  �1 −  Ä  
(2.11) 

 

 The strain equivalence principle by Lemaitre, 1971 [apud Lerma et al., 2018] establishes 

that the constitutive formulation of any damaged material is attained as those for a virgin 

material, which means substituting the stress with the effective stress. For an elastic material 

and a uniaxial case, the relation in Equation 2.12 will conduct to the definition of an effective 

Young Modulus �oqq and into a direct relationship of damage and elastic strain 'o.   

 

'o = �oqq� = ��(1 −  Ä) , �oqq = �(1 −  Ä) (2.12) 

 

 As an example of damage evolution, Figure 2.7 shows the uniaxial test of a ductile steel. 

In Figure 2.7a, the necking process changes the actual transversal area. The progressing damage 

alters �oqq according to Figure 2.7b up until the rupture stress �¬. Figure 2.7c is the 

representation of the damage evolution term from the ultimate stress �É until rupture. For 

metals, normally the critical  Äp is between 0.2 and 0.8 [Lemaitre, 1984]. 

 

 

 

 

 

 

 

 

 

 

 

For brittle materials, as the necking does not occur, the discussed concept would not lead 

to a damaging process, nevertheless, in the following sections, a different approach will be 

presented to evaluate damage in fragile materials. 

Further development of CDM considers the introduction of the energy density release rate �, which is related to the strain energy � (�� = ��'). Under uniaxial/linear case and 

Figure 2.7 - (a) The uniaxial traction test in ductile material presenting the changes in �. (b) 

The relation between �oqq and �. (c) The damage evolution from the ultimate stress �É on 

due to the necking process. [Lerma et al., 2018] 

(a) (b) (c)  Ä �oqq�  

' ' ' 

� �É �3 �¬ �¬ 
 Äp �oqq�oqq
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considering the equivalence principle for damaged materials, Equation 2.13 presents the 

simplest example of these entities.  

 

� = 12 � ∙ ' = 12 �_�(1 −  Ä) , ��� Ä = − �1 −  Ä = −� 
(2.13) 

 

This Equation represents the reduction that the damage causes at the elastic strain energy 

density �. This reduction is defined as the density release rate �.  

When the linear isotropic elasticity is coupled with damage directly, a tensor form can 

also be defined. The damage, in this section, will be kept as a scalar  Ä (isotropic damage) 

despite the possibility to define a tensor  ©ªÊËÄ  for anisotropic damage. The three-dimensional 

development using linear elastic equations will result in a Damage Equivalent Stress Criterion. 

The damage mechanism is influenced by energy density �, which can be defined as the 

deviatoric components of stress (�©ªÄoÌ) and strain ('©ªÄoÌ) and another part as the hydrostatic 

component of stress (�½) and strain ('½), as shown in Equation 2.15. 

 

�©ª = $©ªÊË'ÊËo (1 −  Ä), '©ªo = 1 + ��(1 −  Ä) �©ª − ��(1 −  Ä) �ÊÊ�©ª 
(2.14) 

 

� = ³ �©ª #'©ªo = ³ �©ªÄoÌ #'©ªÄoÌ + �©ª�©ª ³ �½ #'½ 
(2.15) 

 

The coupled damage relation also defines that 

 

�©ªÄoÌ = �(1 −  Ä)1 + � ∙ '©ªÄoÌ          �	#         �½ = �(1 −  Ä)1 − 2� ∙ '½            (2.16) 

 

which substituting Equation 2.16 into Equation 2.15 yields 

 

� = �ÌÍ_2�(1 −  Ä) ∙ Î23 (1 + �) + 3(1 − 2�) À �½�ÏÐÁ_Ñ = �ÏÐ_2�(1 −  Ä) ∙ ~Ì 
(2.17) 

 

where the �ÏÐ is the von mises stress and the term ~Ì is called the triaxiality function related 

to the hydrostatic contribution. In uniaxial tests, the term ~Ì is equal to unity bringing back the 
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formulation to Equation 2.13.  The triaxiality function takes into account the hydrostatic stress 

and its effects on energy density. The presented Equations are a form to relate uniaxial tests 

with scenarios where the stress state is complicated, generating a tool to diagnose the damage 

process. It is possible to visualize that, defining a damage equivalent stress �ÒoÓ and comparing 

Equation 2.17 with Equation 2.13 [Ibijola, 1998]: 

 �ÒoÓ = �ÌÍ ∙ ~ÌÔ/_ (2.18) 

  

The difference between the damage equivalent stress �ÒoÓ and the von mises stress �ÌÍ 

is the function ~Ì. It is interesting to note that for brittle materials, there is not a considerable 

plastic strain and, as the strain is related to the increasing damage, the damage term is null, 

transforming Equation 2.13 into Equation 2.19. The stress �É is the maximum stress before 

fracture and � represents the total dissipated energy during fracture.   

 

� = �É_2 ∙ � 
(2.19) 

   

 Another interesting approach is to consider a relationship between the required energy 

during crack growth using fracture mechanics and the involved energy in the damaging process 

of a cubic cell. Considering a brittle material, a cell with a volume #� and a crack with size �_, 

Lemaitre and Dufailly, 1987 introduced the relation between �p and �p resulting in Expression 

2.20. For fragile material,  � is a constant and, therefore, it is already a critical value. 

 

 Ä = �_#_ �p�p ∙ # = AÄ ∙ �p�p ∙ #� 
(2.20) 

 

 The value of �p can be easily found with the knowledge of �p (books of fracture 

mechanics) according to Equation 2.6. �p can be derived from Equation 2.13 and can be found 

through uniaxial tests. If we consider a body with size length �ÕÖ described as the summation 

of small cubes of length size #, the damage of the volume is taken as the mean value of the 

partial damages at each cell. This approach will lead to Equation 2.21. 
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 Ä = �p�p ∙ # ∙ �ÕÖ_ × �©_Ãº 4q poËËn
©ÙÔ  

(2.21) 

 

 A compelling case is when all the cracks have a length size # and the total damage is 

equal to unity. Equation 2.21 and Equation 2.20 yields a relation equal to Expression 2.22, 

where it is easy to observe that the damage is complete when all cells have the crack length the 

same to #.  

 

 Äp = ∑ �©_Ãº 4q poËËn©ÙÔ�ÕÖ_  
(2.22) 

 

An essential factor for the damage analysis, but not discussed in this work, is the 

configuration of the damage evolution law. The previous Equations ground its assumption 

considering the damage rate  V  as proportional to the plastic strain rate '¿V  and by an energy 

relation (�)nÙÔ. The s-factor is dependent on the material and temperature in which the test is 

performed and it can have different values for quasi-brittle, ductile and creep scenarios 

[Lemaitre and Desmorat, 2001].  

 

2.3 Micromechanics Concepts 

 

2.3.1 Representative Volume Element (RVE) Definition 

 

Any real material is intrinsically heterogeneous at a particular scale, although most of the 

engineering application entails the existence of continuous and homogeneous materials. It is 

always a matter of analysis scale.  Metals are the most known case where different alloying 

elements are applied to modify material properties. The assembly of phases, generating the so-

called multi-phase materials, can significantly change material properties as, e.g., strength, 

hardness, stiffness and wear resistance. In the past decades, foams and composites received 

considerable attention due to functional enhancements in weight and resistance capabilities. 

Understanding the correlation between micro and macro-scale behavior provides a tool to 

design the material’s microstructure and create possibilities not conceived before.  

The simplest form to homogenize a structure composed of two or more materials is 

considering the volume proportion of each one of the constituents. The properties are, therefore, 



 

17 

 
 

based on the average portion and disregard the interactions among the different materials. 

Eshelby, 1957 established a more sophisticated approach followed by others as Mori and 

Tanaka, 1973 and Hashin, 1962.  The equivalent material properties are, in these cases, 

analytical solutions for ellipsoidal inclusion and cannot be applied when complex interactions 

between the materials’ interface exist. The primaries and most common hypotheses for 

homogeneous materials are [Kousznetsova, 2002]: 

- The material must be considered sufficiently macroscopically homogeneous. 

- The microscopic scale is much larger than the atomic and molecular size to apply 

continuum mechanics formulation. 

- The material morphology can be distinguishable being easily defined by inclusion, 

cavities, grains, matrix, and so forth. 

- There must be an order of magnitude between microscale and macroscale to establish a 

principle of scale separation. 

- An assumed global periodicity of the microstructure with a spatially repeated structure 

defines a macroscopic specimen. In the case of complex configurations, a local recurrence can 

be determined (Figure 2.8). 

 

The definition of the representative volume is a tricky task. The boundaries must be 

chosen large enough to represent the microstructure but small enough to evaluate variation in 

the macro properties. This means that the smallest microstructural volume that represents an 

overall macroscopic property of interest is the RVE (Figure 2.9). 

The RVE is used to obtain the response of a homogenized microscopic continuum in a 

macroscopic region. Hill, 1963 complements arguing that a well-defined RVE is the one in 

which the response under uniform displacement and traction boundary conditions coincides. 

Figure 2.8 - (a) local periodicity of the microstructure which implies different properties in 

sufficient distance locations. (b) the complete body has the same periodicity. [Kousznetsova, 

2002] 

(b) (a) 



 

18 

 
 

 

 

The continuum mechanics assumes that for a specific point or material neighborhood, the 

material distribution, strain and stress are necessarily considered uniform (Point P - Figure 

2.10). However, on the microscale level, the surrounding area of a specific region is not 

necessarily continuous and uniform, having possibly various constituents with its shapes and 

properties.  Within the microscale, defects, grain boundaries and inclusions, among other 

inhomogeneities, can be described. The sum of their characteristics will yield averaged 

properties at the macro scale. To be representative, as mentioned, the RVE must have a large 

number of such microheterogeneities where the relation D (macroscale)/d (microscale) >>1 is 

preserved regardless of the fulfillment of periodicity and randomness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 - The size of RVE must be large enough to reproduce microscopic effects but 

large enough to capture macroscopic response variations. [Kousznetsova, 2002] 

Figure 2.10 - Transition between macroscopic continuum and microscale. At microscale a 

variety of perturbation as inclusions, cracks and voids are presented. [Nemat-Nasser and Hori, 

1999] 
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The definition of such RVE is complicated and depends on a particular problem and a 

specific concept. It is one of the most vital decisions the analyst must define.  

 

2.3.2 Hill’s Principle 

 

The averaging process used in micromechanics defines averaged quantities that can be 

applied to represent characteristics of the RVE. The notation <M> can be used as a form to 

denote an averaged volume of a spatially and integrable quantity. M can represent stress or 

strain or any other quantity of interest, as defined in Equation 2.23. 

 

< ! >ÏÛÜÝ= 1%ÞÏß ∙ ³ !()) ��Ì  
(2.23) 

 

In this work, only small-displacement and linear elastic constituents are employed. The 

RVE is, therefore, established by a direct and dependent relationship between stress � and strain '. The increment of average stress, ��´Ìà or average strain, �'´Ìà, generates a representative 

constitutive tensor which represents the RVE’s macro mechanical properties based on the 

micromechanical constituents: 

 ��´Ìà = $  ∶   �'´Ìà    →     �©ª = $©ªÊË'ÊË   (2.24) 

 

As stated by Zohdi, 2002, “the mission of micro-macro mechanics is to determine 

relationships between the microstructure and the macroscopic response or ‘structural property’ 

of a material, using models on the microscale that are as simple as possible.” 

 

For linear elasticity cases, the relationship between averages for the stress and strain fields 

implies the definition of an effective property C* which is not related to material property, but 

a mean of computing the correlation between different averaged fields: 

 < � >ÏÛÜÝ  = $∗ < ' >ÏÛÜÝ  �� < ' >ÏÛÜÝ  = $∗ã­ < � >ÏÛÜÝ   (2.25) 

 

The first to evaluate the microheterogeneities in a solid form was Voigt in 1892, where 

he assumed the constant strain field within the RVE leading to an expression for C*. The work 
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of Reuss, 1929, complemented Voigt’s development by defining a continuous stress field. 

These initial papers, led Hill, 1952 to establish the relationship (< $∗ã­ >ÏÛäåææ)�Ô ° $∗ ° < $∗ >ÏÜçèéê  which assign Voigt and Reuss as the extreme conditions for any well-established 

microheterogeneous material. Hill also defined what is called Hill’s condition that provides a 

more precise mathematical formulation for the determination of the Representative Volume 

Element. The equality < � ∶ ' >ÏÛÜÝ  =< � >ÏÛÜÝ : < ' >ÏÛÜÝ  must be fulfilled when a pure 

linear displacement or traction is applied at the boundaries. The requirement is defined by a 

comparison of the strain energy density at the volume in the micro and macroscale. In the event 

of a nonuniform load applied at the boundaries, a well-defined RVE must be large enough to 

have small variations compared to its size. 

 

 “Our requirement that the sample must be large enough to have relatively small boundary 

field fluctuations relative to its size and small enough relative to the macroscopic engineering 

structure, forces us to choose boundary conditions that are uniform. This is not optional” 

[Zohdi, 2002]. 

 

Usually, the homogenization process is achieved applying the solution for the boundary 

value problem. In a plane state, only three linearly independent boundary conditions are 

necessary to define all the components of the stiffness or compliance matrix, where � is the 

prescribed strain  'Õ¯   or stress  �Õ¯  at the boundary surface of the RVE: 

 

  'Õ¯�� �Õ¯ = ë�Ô 0 00 0 00 0 0ì , ë 0 �Ô_ 0�Ô_ 0 00 0 0ì  �	# ë0 0 00 �_ 00 0 0ì  (2.26) 

 

From the previous form, three different Equations emerge at each one of the three load 

conditions. Applying these constant boundary conditions in a presumably micro 

inhomogeneous isotropic material, the effective bulk r∗ and shear moduli �∗ can be defined as 

[Zohdi, 2002]: 

 

r∗ = 13 < �©ª >ÏÛÜÝ< '©ª >ÏÛÜÝ  �	# �∗ = 12 í< �©ªÄoÌ >ÏÛÜÝ : < �©ªÄoÌ >ÏÛÜÝ< '©ªÄoÌ >ÏÛÜÝ : < '©ªÄoÌ >ÏÛÜÝ   (2.27) 
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Once again, a scale factor establishes the feasibility of this proposal, which demands that 

the RVE must be small enough to account as a material point and large enough to represent the 

microstructure statistically.  

As the material changes from a complete homogeneous into a microheterogeneous 

medium, one of the forms to account for the perturbations is to separate the strain and stress 

into a uniform field and into a deviatoric field induced by the defects. This deviation will be 

called equivalent eigenstrain or eigenstress, allowing us to add the effects of the inclusions into 

the constitutive properties.  

 

2.3.3 Field Fluctuation at the Boundary Conditions 

 

From the Hill’s condition previously reported and applying the divergence theorem and 

the equilibrium conditions, it is possible to derive Equation 2.28, where, the sum of the 

fluctuations related to the average is null. Figure 2.11 shows this interpretation where it is clear 

that to be energetically equivalent, the expression must be fulfilled.   

 1%ÞÏß ∙ ³ º�©−< '©ª > )ª¼º�©Ê−< �©Ê > )ª¼	Ê#"îïÛÜÝ = 0 
(2.28) 

 

 

 

Figure 2.11 – The variations at the boundary conditions in the microscale and the averaged 

macroscale. The fluctuations between both are a measure of error conceived by the Hill’s 

conditions. [Gross and Seelig, 2006] 
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2.3.4 Eshelby Solution 

 

Eshelby, 1957 develop the solution for an ellipsoidal inclusion embedded in an infinite 

medium under a uniform load. A certain eigenstrain region 'ð unconstrained by a surrounded 

matrix will not yield by itself stress at the body. However, the constraining process will 

establish a relation among the total strain ', the elastic strain 'o  and the eigenstrain 'ð. Equation 

2.29 and Equation 2.30 present this association and introduce the four-order Eshelby Tensor 0o©ªÊË which relates to the total strain and the eigenstrain. The solutions are valid only for 

constant strains and for the inner region of the inclusion.  

 '©ªñò4ð.nð¬´©Ã = 'ÊËðño©àoÃnð¬´©Ã + 'ÊËoñoË´nð.nð¬´©Ã →    �©ª = $©ªÊË ∙ 'ÊËo    →   �©ª = $©ªÊË ∙ ('©ª − 'ÊËð  ) (2.29) 

 '©ª  = 0o©ªÊË ∙  'ÊËð        →      �©ª = $©ªÊË ∙ (0oÊËÍÃ − 1ÊËÍÃ)'ÍÃð    (2.30) 

 

When an ellipsoidal inclusion degenerates into a spherical one, the solution for the 

Eshelby Tensor can be written as in Equation 2.31. Note that the geometry of the sphere is 

disregarded and the Eshelby Tensor is only dependent on the Poisson’s ratio �. For non-

spherical geometries, the components of the Eshelby Tensor can be found in Mura, 1983.  

 

0o©ªÊË = 1 + �3(1 − �) ∙ 13 �©ª�ÊË + 2(4 − 5�)15(1 − �) ôõ©ªÊË − 13 �©ª�ÊËö 
(2.31) 

 

The solution presented can be extended to evolve a perturbated field when an external 

displacement �()) or traction ¸()) is applied at the extreme boundaries �Ω4. The stiffness 

tensor, considering the linear superposition, can be defined as Equation 2.32 and it is shown 

graphically in Figure 2.12 for better understanding. 

 $())©ªÊË  = $µ©ªÊË + $())������©ªÊË (2.32) 

  

$µ©ªÊË: Constant stiffness tensor of the matrix material in Ω4. $())������©ªÊË: Piecewise complement owing to the presence of inclusions ΩÔ, Ω_, Ω� etc. 

Nonzero value only inside the heterogeneities. 
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$())©ªÊË: Resultant tensor for the whole body being complemented by $())������©ªÊË inside the 

inclusion. 

 

 

Note that the local fields can also follow the same superposition principle. As a result, 

strain, displacement and stress can follow the same rule as presented in Equation 2.33. 

 '())©ª  = 'µ©ª + '())������©ª  ,     �())©ª = �µ©ª + �())������©ª      ,    �())©  = �µ© + �())������© (2.33) 

  

 The Eshelby results can be applied only for weakly or non-interacting particles. 

Therefore, the analysis of just one ellipsoidal particle suffices. The system can be replaced from 

a heterogeneous problem with two constituents by one equivalent defined by a stress-free 

eigenstrain '©ªð  replacing the inclusion. From the term �())©ª in Equation 2.33 and substituting 

the tensorial terms by the constitutive relations, it becomes easy to derive: 

 

�())������©ª  = $µ©ªÊË  ÷'())������©ª + $µ©ªÊË �Ôø$())ÊËÍÃ − $µÊËÍÃù'())©ªúûûûûûûûûûûüûûûûûûûûûûý�þ(�)êè� (n©Í©Ë´¬ ð4 o©àonð¬´©Ã)
� = $µ©ªÊË  �'())������©ª − '())ð©ª� (2.34) 

  

 The definition of the Eshelby Tensor in Equation 2.30 for the region inside the inclusion 

and the application of Equation 2.34 into 2.33 allows us to substitute the terms and arrive in 

Equation 2.35. As the general conditions are constants, $()) becomes the tensor $Ô representing 

the inhomogeneity at the volume ΩÔ and $µ defines the constitutive matrix tensor $Ð. The 

Figure 2.12 - Eshelby ellipsoidal inhomogeneities embedded in an infinity medium under 

far-fields �()) and ¸()). [Svoboda et al., 2016] 
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term "« that relates the total strain '©ª inside the inhomogeneity ΩÔ and the external far-load 'µÊË is called Influence Tensor.  

 

'©ª  = �1©ªÊË + 0o©ªÍÃ $ÐÍÃ¿4�Ô �$Ô¿4ÊË − $Ð¿4ÊË���Ô 'µÊË = "«©ªÊË 'µÊË    (2.35) 

 

 The application of the relation �©ª = $Ô©ªÊË'ÊË  for the inclusion and �µ©ª = $Ð©ªÊË'µÊË 
for the matrix in Equation 2.35 will evolve to a solution for the stress inside the inhomogeneity:  

 �©ª = �$Ô©ªÍÃ"«ÍÃ¿4 $Ð¿4ÊË�Ô��µÊË = �õ¹	r· �µÊË     (2.36) 

  

The solutions here described are only applicable inside the perturbation while the outer 

fields have an asymptotic behavior. For most of the geometries, besides ellipsoidal 

inhomogeneities, the solution does not have a closed form. The inclusion also cannot be 

neighboring each other due to yielding field distortions. Figure 2.13 presents the simplification 

of the original problem graphically into an eigenstrain problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 Considering the Hill’s condition and that the influence tensors �«©ªÊË ()) and "«©ªÊË  ()) 

are equal to unity when the average value of its functions is performed at the domain,  a solution 

for the average stiffness tensor $∗ can be obtained [Gross and Seelig, 2006]. Equation 2.37 

defines this entity considering a constant strain field (A) or a constant stress field (B) at Ω4. The 

equality of $∗Õand $∗ï is a way to measure the quality of these averages. 

Figure 2.13 – (a) The complete problem with inhomogeneity. (b) The supplement with an 

external load applied. (c) homogeneous inclusion adding an eigenstrain feature. [Svoboda et 

al., 2016] 

(a) (b) (c) 
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  $∗Õ =< �ò: $�Ô:� >�ÔÏÛÜÝ  ��  $∗ï =< "ò: $: " >ÏÛÜÝ   (2.37) 

 

 Most scenarios in micromechanics only consider two phases. The development of 

Equation 2.37 considering the concentration of the inhomogeneity $Ô inside a matrix $Ð will 

entail two expressions defined by Equation 2.38. 

 $∗Õ = ($Ð�Ô + �Ô($Ô�Ô − $Ð�Ô):�«)�Ô ��  $∗ï = $Ð + �Ô($Ô − $Ð) ∶ "« (2.38) 

 

2.3.5 Microcracks 

 

Typically, the first thought when dealing with voids in the previously presented 

approximation, would be to define $Ô as zero. For crack applications, a natural configuration 

would establish one dimension of the ellipsoidal inclusion much larger than the other two. 

However, a different approach will be assumed due to the changes in the boundary value 

problem and the stress-free state at the crack surface. 

The divergence theorem, taking into account the average strain field for a RVE, will result 

in surface integral as presented in Equation 2.39 and Equation 2.40 where 	ª  is the normal 

vector related to the cavity/crack and �ª  is the displacement of such surface (Figure 2.14).  

 

< '©ª >p =  1% ∙ ³ '©ª())��Ì = 12% ∙ ³ �©	ª + �ª	©  �"ï     (2.39) 

 

< �©ª >p =  1% ∙ ³ �©ª())��Ì = 12% ∙ ³ ¸©)ª�"ï     (2.40) 

 

 It holds valid approaching a vanishing stiffness as well. The fragmentation of the entire 

RVE defines a constant that can be used as a weight parameter (�Ã = %Ã/%ÞÏß). �Ð is the 

relative volume of the matrix material, while �Ô is the partial volume of the inclusion number 

one and �p is the partial volume of the crack.  As the crack has no contribution to the total 

volume, one can define the overall strain as the matrix strain  < '©ª >Ð and �Ð equal to one as 

the fraction of the crack �p is nearly null. Applying the divergent theorem at the external area 

of the body �% and including the internal surface of the crack �Ωp, the derivation of Equation 
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2.41 can be made. Observe how Equation 2.42 is similar to Equation 2.29, which is related to 

the eigenstrain formulation. 

 

< '©ª >= �Ð < '©ª >Ð+ 12% ∙ ³ �©	ª + �ª	© �"î
� = < '©ª >Ð+  < '©ª >púûüûýp¬´pÊ oqqopð  (2.41) 

 < �©ª > = $©ªÊËÐ(< 'ÊË >Ð + < 'ÊË >púûüûý)p¬´pÊ oqqopð  (2.42) 

 

 So far, all the scenarios converge in a transformation from a statistically homogenous 

material with cracks, voids and other phases into a simplified case where an eigenstrain is 

imposed to simulate the influence of the micro constituents.  

 The expressions from Equation 2.38 related to the averaged material properties of the 

two-phase media cannot be applied directly for the voids and cracks cases. In this case, the 

crack strain tensor 'p is related to the average strain field 'µ by a damage influence tensor 

defined as  Ä. Conversely, the stress path will lead to fÄ. Equation 2.43 designates the 

effective elasticity tensor, where it is clear to visualize the reduction of the matrix stiffness due 

to the presence of the damages inside the representative volume.  

 $∗Õ = ($Ð�Ô + fÄ)�Ô ��  $∗ï = $Ð: (1 −  Ä)  (2.43) 

 

 

 

Figure 2.14 – The presence of voids/cracks defines a normal direction of an inner surface �Ωp 

adding to the problem a stress-free consideration at the boundaries. [Nemat-Nasser and Hori, 

1999] 
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All the Equations mentioned earlier are applicable for evenly spread cracks, voids and 

faults and there is no field interference among different inhomogeneities. Henceforth, this type 

of analysis will be called a Dilute solution. 

 

2.3.6 Dilute Distribution of Cracks 

 

The consideration of a crack placed in a )Ô − )_ plane with a total length of 2� ()Ô =−� ¸� )Ô = �) allows defining the displacement vector �© as a function of crack size, position 

and stress components. Equation 2.44 provides us with the characterization of  �© for plane 

strain and plane stress condition, where � is set as the in-plane shear modulus and κ is dependent 

on the plane strain or plane stress state according to Figure 2.15 orientation. The Equation is 

valid for |)©| ° �. κ = 3 − 4ϑ for plane strain and κ = (3 − ϑ)/(1 − ϑ) for plane stress.   

 

ë�Ô�_��ì = 
�_ − )Ô_ ∙ 4�� ë�Ô_4�__40 ì  → �� = 8�κ + 1 = � �1 − �_    &·�	� �¸��¹	�              &·�	� �¸����  (2.44) 

 

In the hypotheses of alignment of all the cracks with the )_-axis as presented in Figure 

2.15, the changes in the properties will be similar to a uniaxial tension test equal to �__. 
Conversely, under compression, the cracks close and no effect will be observed.  

 

 

Under dilute circumstances and multiple cracks, a definition called crack density 

parameter 
  facilitates our approach to the problem. The constant 
 is defined as the number 

Figure 2.15 – Crack configuration of size 2� with uniaxial far-field stress �__4 .  [Nemat-

Nasser and Hori, 1999] 
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of cracks wq per unit area multiplied by the crack size parameter �_, i.e., 
 =  wq ∙ �_ regarding 

that all cracks have the same size 2�. From Equation 2.39 and integrating the displacement over 

the crack length, it will result in Expression 2.45, which relates the induced crack strain and 

far-field stress over the )_-axis. 

  

'__p = wq ∙ �_ ∙ 1�_  ³ �_#)Ô´
�´ = 
 2���  �__4 

(2.45) 

 

The same analysis can be performed for �Ô_ which allows deriving the matrix form of a 

new constitutive tensor applying Equations 2.41 and 2.42. The macrostress path will lead to the 

tensor fÄ that will modify the compliance tensor 0Ð yielding an average compliance tensor 0∗. 

Expression 2.46 presents the formulation for a plane stress state (PSS) and for plane strain state 

(PSN), while Equation 2.47 presents the same scenario for a macrostrain field. Note that the 

Expressions are for wq cracks with size 2� aligned according to Figure 2.15 in an isotropic 

medium. The Equations below is just valid under traction, which imposes the necessity to add 

the Heaviside step function f to only positive far-field values. This is called a “closed” crack 

form. If the compressive state behaves similarly to the traction mode, the Heaviside function is 

not necessary and the process becomes a permanent “open” form independent on the load 

condition. Section 3.1 will address a clear differentiation between these two schemes (open and 

close form). For the sake of simplification, the presented formulations will consider only the 

“open” type.   

 

0∗ = 0Ð + fÄ = 1�  
⎝⎜
⎛κ + 18 κ − 38 0κ − 38 κ + 18 00 0 1⎠⎟

⎞+ 
 �(κ + 1)4� ë0 0 00 1 00 0 1ì 

(2.46) 

 

$∗ = $Ð + $Ð:  Ä =  �
⎝
⎜⎛

κ + 1κ − 1 − (κ − 3)(κ − 1) 0
− (κ − 3)(κ − 1) κ + 1κ − 1 00 0 1⎠

⎟⎞+ 
 �(κ + 1)G4(κ − 1)_
⎝
⎜⎜⎛

(κ − 3)_ − (κ − 3)(κ + 1) 0
− (κ − 3)(κ + 1) (κ + 1)_ 00 0 (κ − 1)_⎠

⎟⎟⎞ 

(2.47) 

 

 The development of Equation 2.46 in macrostress, can evolve to a mathematical 

expression for an in-plane nominal Young’s Modulus �_��� at the )_-axis and for an in-plane shear 

modulus �Ô_�����. 
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�_��� = ��1 + 2�
    �	#   �Ô_����� = �1 + 
 �(��Ô)�   (2.48) 

 

For the )Ô-axis, as the alignment was performed perpendicular to it, it is evident that the 

Young modulus �Ô��� will not change: 

 �Ô��� = ��  (2.49) 

  

Similar expressions for �_���, �Ô_����� and �Ô��� can be derived considering a macrostrain field. 

However, a more interesting approach for the ongoing study is presented by Horii and 

Nemat-Nasser, 1983, where a random orientation of the cracks is defined. It means that the 

orientation angle of each fault is not equal to each other, making it not relevant to the averaging 

process. Nevertheless, the assumption of “open” cracks must be defined and the influence 

tensor fÄ and $Ð:  Ä must be set as naturally isotropic. Expressions 2.50 and 2.51 present the 

matrix form for the averaged compliance tensor (macrostress) and for the averaged stiffness 

tensor (macrostrain), respectively. It is possible to derive the overall properties as a function of 

the crack density 
 are shown as in Equation 2.52 for a macrostress scenario. Similar results 

can be extracted from a macrostrain scheme.  

 

0∗ = 0Ð + fÄ = 1�  
⎝⎜
⎛κ + 18 κ − 38 0κ − 38 κ + 18 00 0 1⎠⎟

⎞+ 
 ��′ ë1 0 00 1 00 0 2ì  
(2.50) 

 

$∗ = $Ð + $Ð:  Ä =  $Ð + $Ð  ∙ 
 �(κ + 1)8(κ − 1) � κ + 1 −(κ − 3) 0−(κ − 3) κ + 1 00 0 2(κ + 1) � 
(2.51) 

 

�Ô ´ÃÄ _���������� = ��1 + �
  �	# �Ô_����� = �1 + 
 �(��Ô)�     (2.52) 

 

The exemplified solutions presented above only considers frictionless faults and crack 

size parameter 
 ≪ 1 due to non-interacting fields condition.   
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2.3.7 Self-Consistent Estimative for Cracks Distribution 

 

The dilute distribution assumes an external far-field '4 or �4 and a noninteracting 

perturbation among the faults, cracks, inclusion or inhomogeneities in general. Mori and 

Tanaka, 1973 introduced a new form, where an averaged matrix far-field  'Ð or �Ð is accounted 

for each individual inhomogeneity.  Still, the system is vastly influenced by position-

dependency and the local fluctuations must be neglected. In these two direct approaches, the 

concentrations and the Eshelby tensors must be averaged over the RVE. The study of the effect 

caused by a significant second phase concentration can be found in Nemat-Nasser and Hori, 

1999, Svoboda et al., 2016 and Gross and Seelig, 2006. It is easily shown that when the 

concentration cÔ tends to unity, the solution will be similar to the Dilute approximation, which 

is the case for crack analysis. 

When the inclusions interact up to a certain extent, the Self-consistent model is a better 

approach to the problem. It is an energy averaging method through the equalization of the strain 

energy stored in the heterogeneous medium and in the equivalent homogeneous medium. There 

is no need to add field averaging. “A representative fragment of this model contains an inclusion 

embedded in a concentric layer of the matrix material of the prescribed volume fraction, which 

in turn is embedded in an infinite medium possessing the unknown effective properties” [Lurie 

et al., 2018]. The solution will lead to uniform boundary conditions and the description of the 

fields inside the phases as well as the averaged properties. The application of the Self-consistent 

method for oriented cracks, as presented in the dilute method, will lead to a cumbersome 

analysis due to the necessity to evaluate the solution of every single fault in an anisotropic 

medium. The development of this theory is not treated in this study, and typically can be found 

in advanced micromechanics books. The solutions presented here are for randomly and equally 

distributed cracks defining an isotropic behavior.  

The Influence tensor in the Self-consistent method fÄ(�¯) can be presented with the 

fourth-order tensor as in Equation 2.55. However, two new variables κ� and �̅ must be solved 

before using Equations 2.53 and 2.54. The solutions are valid for macrostress and macrostrain 

approach.   

� (�¯)������� = �(1 − 
 �)1 − 
 � (���)�     (2.53) 
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κ (�¯)������ = κ �1 − 
 � (���)�� ��1 − 
 � (���)� �    (2.54) 

 

f©ªÊËÄ(�¯) =  
 �ºκ (�¯)������ + 1¼16� (�¯)�������  º�©Ê�ªË + �©Ë�ªÊ¼  (2.55) 

 

Figure 2.16 presents the changes in the overall shear and Young Moduli according to the 

increasing crack size factor 
 [Nemat-Nasser and Hori, 1999]. The DD:Σ represents the Dilute 

solution using the macrostress approach, while DD:E is the solution according to the strain path. 

SC is the representation of the Self-consistent method. The Poisson’ ratio � was set as 1/3 and 

a plane stress condition was defined.  Observe the divergence as the crack fraction 
 increases. 

Even though, for values larger than 
 >>0.15, neither Self-consistent nor Dilute methods are 

reliable.  This interpretation can also be seen in Gross and Seelig, 2006 for a random distribution 

of circular faults.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direct equations can be obtained, deriving the expression above to calculate the most 

common isotropic parameters. Table 2.1 shows the Equations for �, � and � applying plane 

stress (PSS) and plane strain (PSN) and the Self-consistent method. This method takes into 

Figure 2.16 - Modification of the overall parameter according to increasing random 

distributed cracks 
 with size 2a. DD:Σ the solution for the dilute case with macrostress 

applied. DD:E is the solution for macrostrain. SC is the solution using Self-consistent 

method. Poisson’s ratio � set as 1/3. Plane stress regime. (a) The evolution of the shear 

modulus. (b) The evolution of Young’s Modulus. [Nemat-Nasser and Hori, 1999] 

 [  
![! 

(a) (b) 
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account a certain degree of interaction among the cracks and, therefore, it is considered a more 

reliable and accurate approach to establish the overall properties of the RVE. 

 

Table 2.1 - Expression for Poisson's ratio, shear and Young Moduli according to the Self-

Consistent method. Plane stress (PSS) and Plane strain (PSN) are presented. Isotropic crack 

distribution. 

Plane Stress (PSS) Plane Strain (PSN) 

� (�¯)������� = �(1 − 
π) ô1 − 
 ��1 + �ö�Ô
 

� (�¯)������� = �(1 − 
 π)(1 − 
 ��)�Ô 

� (�¯)������� = �′(1 − 
 π) � (�¯)������� = �′(1 − 
π)(1 − 
��_)�Ô � (�¯)������� = �(1 − 
π) � (�¯)������� = �(1 − 
 π)(1 − 
 ��_)�Ô 

 

 

2.4 Materials Behavior and Damage Models in Lattice Structures 

 

During uniaxial loading and unloading scenarios for pure ductile materials, the elastic 

slope in the stress-strain plot remains constant, determining a constant elastic modulus 

independent on the strain extension (Figure 2.17a). Conversely, brittle behavior is associated 

with nucleation and growth of microcracks without damage accumulation, which leads to the 

loss of interatomic bonds abruptly (Figure 2.17b). Quasi-brittle materials present the loading 

curve not necessarily linear due to a progressive accumulation of damage. There is not a bond 

rupture but instead a bond deterioration which drives to stiffness decrement with loading 

(Figure 2.17c). Assuming a perfect quasi-brittle material, the absence of bonds sliding conducts 

its unloading process to the origin. The residual stress is negligible and the loss of stiffness can 

describe the loading history. Conventional materials are never perfectly brittle or ductile, 

leading to a mix as plotted in Figure 2.17d. The phenomenon of cleavage in fragile media is 

related to the atomic decohesion, which is macroscopically characterized by the damage, while 

dislocation and propagation of the crack tip are associated with the ductile structures 

[Krajcinovic, 1996].  

Additionally, it is advisable to consider in the microstructure a certain degree of 

randomness in its properties in order to compute and simulate real engineering materials. The 

statistical models introduce disorder, which varies the characteristics and properties of the 

continuum. The fact that more and more new composites are under development, characterized 
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by microstructural heterogeneities and, therefore, with an intrinsic statistical distribution of one 

or more properties, makes the use of such models suitable or even imperative for the analysis.  

 

 

 

 

 

 

 

 

 

The simplest model [Krajcinovic and Silva, 1982 apud Krajcinovic, 1996] to compute 

damage is a loose bundle of parallel bars. Each bar has a portion of the total stiffness �. Each 

bar, therefore, has individual stiffness �/w, being w the total representative number of bars. 

The links differentiate one from another by defining a probability density function for the 

rupture strength 
¬É¿. The increments of force ` (Figure 2.18a) or displacement happen 

considering a quasi-static process. For brittle deformation, when the forces at the weaker link 

(
©) exceed the rupture strength 
¬É¿, all other bar must withstand the total applied load. The 

effective number of links 	 decreases from the initial configuration w yielding a new effective 

secant stiffness constant  �nopoqq. The relation 	/w can be established as a measure of damage 

or, due to its intrinsic cumulative characteristic, the integral of the rupture force’s probability 

function &º
¬É¿¼. 

Figure 2.18b shows the dotted area relative to the energy released #Ä due to damage. The 

plot represents the overall relation of Force x Displacement where Í̀ represents the maximum 

force supported by the strongest link. In a force-controlled system, after that point, the total 

rupture would occur in an avalanche mode since the domain is unable to carry forces that 

surpasses Í̀. 

 

 

 

 

 

 

Figure 2.17 - (a) Ductile. (b) perfectly brittle. (c) Quasi-brittle. (d) Ductile-brittle. Uniaxial 

force P x displacement u. Response according to the material categories. [Krajcinovic, 1996] 

(a) (b) (c) (d) 
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The description in Equation 2.56 until Equation 2.58 shows the mathematical formulation 

for this simple system. A uniaxial damage parameter is introduced as aforementioned and 

adding the probability function according to a natural distribution of properties over the body.   

 

` = × 
©
$

©ÙÔ = � �1 − 	w� ∙ � = �(1 −  Ä) ∙ � = �nopoqq ∙ � 
(2.56) 

 �nopoqq = �(1 −  Ä) (2.57) 

 

 Ä = ³ &º
¬É¿¼#
¬É¿ÊÉ
q%è&  

(2.58) 

 

The probability function choice is crucial to define the material behavior. The failure 

occurs very abruptly when systems with small variations from the average value took place. 

The considered response is brittle as no damage accumulation occurs (damage sensitive).  For 

substantial bandwidth rupture strength, the material is microheterogeneous and it is associated 

with ductile fracture (damage tolerant). The description using one dimension, nevertheless, is 

not capable of representing the majority of state stress in engineering materials. Lattices formed 

by links and nodes, therefore, are an appealing approximation form to evaluate the continuum.  

As previously discussed in Section 2.3.1, the mathematical considerations for an RVE 

region must follow Equations 2.59. 

Figure 2.18 - (a) Bundle of parallel bars with random strength distribution. (b) Force x 

displacement of the overall bundle. The dotted area is the rupture energy and the dashed lines is 

the unloading process for quasi-brittle materials. [Krajcinovic, 1996] 

(a) (b) 
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#Í©p¬4p4Ãnð. ≪  ÞÏß ≪  Í´p¬4      �	#      '��4�) ' ÞÏß ≪ �4  (2.59) 

 

In the cases of microcracks, their orientation and position in the RVE cannot affect the 

overall response. Therefore, the cracks are comparable to the size of the microconstituents. The 

translational invariance can only alter the global properties only through their density function 

and the interaction among the cracks must be negligible.   

An irreversible thermodynamic process defines damage as a decreasing amount of 

material bonds and an increasing total internal RVE’s area. Unfortunately, the direct evaluation 

of the microcracks evolution is not possible, being necessary to measure it indirectly by the 

effects on the stiffness tensor. Therefore, damage evolution is a macroscopic manifestation of 

the net loss of interatomic bonds in the course of the nucleation of new and growth of the 

existing microcracks [Krajcinovic and Vujosevic, 1998]. 

The Griffith elastic energy release rate � has an essential role in this evaluation. The crack 

growth only is possible when at the vicinity of the crack tip, � surpasses the bond 

thermodynamic force ~ at a specific stress level. Nevertheless, � and ~ are very difficult to be 

defined precisely. The cracks are seldom planar, have an irregular shape and typically are not 

embedded in an isotropic and homogeneous continuum. The accumulated damage and barriers, 

like grains contour, also affect greatly ~, which implies that these constants are random 

distribution function over the domain. 

A damage tolerant material is when the probability distribution ~()) has a large 

bandwidth to prevent or hinder the crack from growing. This scenario occurs when a large 

number of microheterogeneous generates restraints for crack evolution.  On the other hand, a 

damage sensitive material has a narrow ~()) bandwidth, which means a more homogeneous 

microstructure. This leads to typical unstable circumstances.  

As the random nucleation evolves and the number of defects increases, the locals of stress 

concentrations spread. This fact widens the � probability function and as a result, the 

probability of the relation between � and ~ surpassing the unity value increases. From that 

point on, the balance tilts from microcracks nucleation to defect growth. Figure 2.19 presents 

the case for damage tolerant and damage sensitive materials. On the right, it shows the 

damaging effect on the � factor.  
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�º�()4)¼ ≫  ~()4)    
 

(2.60) 

 

 

 

 

 

 

 

 

The nucleation process is a random feature over the domain which secures the 

homogeneity characterization. The damage density increases over time and the damage clusters 

start to interact with each other. The strain intensifies and the cooperative effect of the 

interacting cracks defines a local inhomogeneity. The length of the microcrack approaches the 

RVE size leading to the collapse of the homogenization hypothesis.  

Figure 2.20 shows a 2D lattice with 3535 particles (nodes) connected by Hookean links 

of equal stiffness simulating a quasi-brittle material. The particular description of the lattice 

structure type is not presented in this work, but it can be found in Krajcinovic and Vujosevic, 

1998. As the loading process increases at the borders of the lattice structure, the concentration 

of a large strain field which characterizes a band of faults is visualized.  Due to the strain-

controlled simulation, as a specific fault region prevails, the stresses at the borders are relaxed 

and other possible new bands are not created.   

 

Figure 2.20 - Lattice simulation of quasi-brittle material showing the strain deformation as the 

damage spread over the plate until a peak is observed in specific regions forming the so-called 

band fault. [Krajcinovic and Vujosevic, 1998] 

Figure 2.19 - (a) damage tolerant material. (b) damage sensitive material. (c) Changes in 

parameter � due to damage increment. [Krajcinovic and Vujosevic, 1998] 

(c) (a) (b) 
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The procedure to characterize percolation is by introducing defects (voids or slits) 

randomly distributed over the domain and, secondly, by externally quasi-static traction to 

determine the components of the stiffness tensor. The load must be small enough to avoid any 

type of propagation. These two steps can be continuously repeated. At some moment, the 

defects will overlap and the formation of clusters will begin.  The definition of the onset of 

percolation is then described as: 

 #p¬´pÊ,nË©ð 4¬ Ä´Í´ào  →  Í´p¬4       (2.61) 

 

The damage induced yields the parameter  Ä which can be described as the effect of 

porosity, voids and slits on the constitutive matrix. The Expression in 2.62 is applicable only 

on the limit of the dilute concentration of defects, which means the condition #Í©p¬4p4Ãnð. ≪ Í´p¬4 must be sustained.  

 $©ªÊËÄ´Í´àoÄ = $©ªÊËÉÃÄ´Í´àoÄ ∙ º1©ªÊË −  ©ªÊËÄ ¼      (2.62) 

 

According to Krajcinovic, 1996 the effective secant modulus $nopoqq, defined by the 

unloading process, reduces when the damage density 
Ä is close to the critical damage density 
p¬©ð. When the constant  � in Expression 2.63 is greater than unity, it means lightly changes in  $nopoqq occur close to the percolation.  

 $nopoqq ∝  (
Ä − 
p¬©ð)¬ �� 
Ä → 
p¬©ð      (2.63) 

 

Equation 2.62 is valid for � equal to unity and cannot be used in the vicinity of percolation. 

Another author, Jasiuk et al., 1994, evaluated the relation between damage concentration and 

elastic stiffness, introducing an increasing number of voids in a 210 x 210 triangular lattice. 

The plots in Figure 2.21 show the theoretical agreement of Eshelby solutions (section 3.1) with 

the simulated lattice with the distribution of random voids. The x-axis represents the fraction 

area 
 composed by these discontinuities. Up until 
 equal to 0.15, the solutions are 

considerably approximate.  
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Rinaldi et al., 2006 also applied the use of a Delaunay lattice to evolve quasi-brittle 

materials. It describes that the primary microstructural failure associated with these materials 

is due to the rupture of interfaces caused by an inferior strength or lower fracture energy when 

compared to the microscale constituents. Therefore, the separation of links defined by stochastic 

adhesion distribution represents the damage. When a link reaches critical strain, a permanent 

breach occurs, leading it to null tensile stiffness.  

 

2.5 Constitutive Equations and Anisotropy 

 

A damaged structure usually will induce some property modification in a specific 

direction. This will change the response of the body to a defined load and, therefore, the value 

of the constitutive tensor will no longer be as in an undamaged domain.   

This section will prompt some aspects of constitutive equations that do not have the same 

response in every direction, the so-called anisotropic behavior.  The goal is to relate the intrinsic 

anisotropy of materials with an induced anisotropy of cracked structures. 

The scope of this work will only deal with a direct relation between strain and stress 

defined by an independent fourth-order stiffness tensor $©ªÊË or a fourth-order compliance 

tensor 0©ªÊË. Due to the symmetry of the second-order stress tensor �©ª → �ª© and of the strain 

tensor 'ÊË → 'ËÊ, the stiffness and compliance tensor have a minor symmetry ($©ªÊË =  $ª©ÊË  ↔

Figure 2.21 - (a) The dashed lines are the theoretical prediction of the dilute solution for 

ellipsoidal voids. The points are the compliance tensor terms (0) from the lattice simulation 

with randomly oriented faults. (b) The same scenario, but showing the evolution of Young’s 

Modulus. The x-axis represents the relative fraction area 
 of the cracks. [Jasiuk et al., 1994] 

(a) (b) 
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$©ªÊË →  $©ªËÊ). Naturally, the eighty-one constants reduce to thirty-six unknowns, but due to 

requirements for the elastic energy to be wholly defined, a system of twenty-one material 

constants relates strain and stress completely. A more convenient and visual expression can be 

set using Voigt notation, reducing the order of the second-order tensor to a vector and a fourth-

order to a second-order tensor as presented in Equation 2.64. The inverse of this relation 

introduces the compliance matrix 0. 

 These materials are called anisotropic due to its directional dependence. Equation 2.64 

is the more complex form and it is referred to as Triclinic. There is no plane or axis of 

dependency. 

 

⎝
⎜⎛

�ÔÔ�__����_��Ô��Ô_⎠
⎟⎞ =

⎝
⎜⎜⎜
⎛$ÔÔÔÔ $ÔÔ__ $ÔÔ�� $ÔÔ_� $ÔÔ�Ô $ÔÔÔ_$____ $__�� $___� $__�Ô $__Ô_$���� $��_� $���Ô $��Ô_$_�_� $_��Ô $_�Ô_$�Ô�Ô $�ÔÔ_$Ô_Ô_⎠

⎟⎟⎟
⎞ .
⎝
⎜⎜⎛

'ÔÔ'__'��2'_�2'Ô�2'Ô_⎠
⎟⎟⎞ 

(2.64) 

 

 A plane of symmetry is defined as a plane in which the elastic properties have reflection 

symmetry. When there is one plane of symmetry at the 1-2 plane, the tensor reduces to thirteen 

constants. The fact that the 1-3 plane and 2-3 plane are not symmetrical leads to a shear stress 

relation dependent only on the shear strain at that axis or vice-versa. Some examples of these 

monoclinic materials are specific types of mineral crystals like the Selenite: 

 

$Í4Ã =
⎝
⎜⎜⎜
⎛$ÔÔÔÔ $ÔÔ__ $ÔÔ�� 0 0 $ÔÔÔ_$____ $__�� 0 0 $__Ô_$���� 0 0 $��Ô_$_�_� $_��Ô 0$�Ô�Ô 0$Ô_Ô_⎠

⎟⎟⎟
⎞

 

(2.65) 

 

 For three planes of symmetry, the material is called Orthotropic (Figure 2.22b). Usually, 

fiber-reinforced composites are in this class, therefore, of tremendous engineering interest.  The 

tensor reduces to nine constants, as presented in Equation 2.66 for plane stress case. Each axis 

has its own Poisson’s ratio, shear modulus and Young’s modulus. In these materials, the shear 

stresses and shear strain are only dependent on each other: 
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04¬ð½4 =

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

1�Ô − �_Ô�_ − ��Ô�� 0 0 0
− �Ô_�Ô

1�_ − ��_�� 0 0 0
− �Ô��Ô − ��_�_

1�� 0 0 0
0 0 0 1�_� 0 0
0 0 0 0 1�Ô� 0
0 0 0 0 1�Ô_⎠

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

,
��_�_ = ��_���_Ô�_ = �Ô_�Ô�Ô��Ô = ��Ô��

 

(2.66) 

 

 The previous tensor can degenerate into a transversely isotropic material (hexagonal) 

where one plane, defined by z-axis in Figure 2.22a, has the same properties in all directions. A 

random distribution of fibers also would lead to in-plane isotropy. The transversely isotropic 

model has five independent constants, as presented in Equation 2.67 for a plane stress case.  

Figure 2.22b shows a complete orthotropic material, where the ellipsoidal fibers will induce 

different behavior in each direction. Distribution and form are not random in this case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An essential feature of these orthotropic materials (orthorhombic) is that there is no shear 

coupling concerning the material axes. Normal stresses yield normal strains and shear stresses 

produce shear strains only. However, if the material directions 1, 2 and 3 and the loading case 

Figure 2.22 – (a) Transversely isotropic material (hexagonal). Circular fibers generating an 

isotropic behavior at the xy-plane. (b) The ellipsoidal or oval fibers which induces three 

orthogonal planes of symmetry defining an orthotropic material. [Kelly, 2015] 

(b) (a) 



 

41 

 
 

are not aligned, a transformation will lead to a shear coupling case. The stiffness matrix will 

have to be rotated according to a procedure not presented in this work. Barbero, 2014 offers the 

systematic to deal with such circumstances.  

 

0ð¬´ÃnÌ.©n4 =

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

1�Ô − �Ô_�Ô − ��Ô�� 0 0 0
− �Ô_�Ô

1�Ô − ��Ô�� 0 0 0
− �Ô��Ô − �Ô��Ô

1�� 0 0 0
0 0 0 1�_� 0 0
0 0 0 0 1�Ô� 0
0 0 0 0 1�Ô_⎠

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

, �Ô��Ô = ��Ô���Ô_ = �Ô2(1 + �Ô_)  

(2.67) 

 

The isotropic materials are the simplest configuration possible where any plane can be 

considered a plane of symmetry. The two Lamé constants � and � are independent and can be 

related to Poisson’s ratio �, Young’s modulus � and bulk modulus r.  The general expression 

for the matrix 0 can be simplified as Equation 2.68 for a plane stress case.   

 

0©n4 =

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1� − �� − �� 0 0 01� − �� 0 0 01� 0 0 01� 0 01� 01�⎠

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 ,
� = �2(1 + �)� = � �(1 + �)(1 − 2�)k = �3(1 − 2�)

 

(2.68) 

 

For any given tensor that is extracted from a material, it possible to decompose the elastic 

tensor into a sum of orthogonal tensors that are related to different classes of symmetry, such 

as the ones described previously. This characterization can define the degree of anisotropy of a 

specific material under investigation. The present work will apply a technique developed in 
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Matlab® algorithm by Walker and Wookey, 2012. This program breaks the anisotropic tensor 

into isotropic, hexagonal, tetragonal, orthorhombic, monoclinic and triclinic components.  

 The MSAT ® code is a Matlab ® Seismic Anisotropy Toolkit developed to study 

seismic and elastic anisotropy. Geologists use these anisotropy measurements to infer about 

conditions of the mantle and geophysics characteristics. The propagation of different types of 

waves allows establishing, per example, the types of rocks and cracks at the Earth's crust. Each 

type of mineral generally possesses anisotropic characteristics formed by what is called crystal 

lattice structures. A description of hexagonal, tetragonal and orthorhombic formulation and 

their application for the analysis of crystals at the Earth crust can be found in Chevrot and 

Browaeys, 2004. They explain the symmetries of minerals and how the 21-dimensional 

vectorial space of the elastic tensor is projected into subspaces to break it into specific types of 

tensors.  

 For this study, the only concern is to distinguish the isotropic and a non-isotropic part 

and to establish a percentage value of anisotropy caused by cracks: 

 $´Ã©n4ð¬4¿©p = $©n4ð¬4¿©p + $½o�´à4Ã´Ë + $ðoð¬´à4Ã´Ë + $4¬ð½4¬½4Í+©púûûûûûûûûûûûûüûûûûûûûûûûûûý¯&ç&ãèæçê,ç-è�
 (2.69) 

 

 The decomposition, considering a vectorial representation of the tensors as {⃗, allows 

extracting the norm w({⃗) of each one to compute a related percentage of the material/mineral 

under analysis, as presented in Equation 2.70. Enstatite and Olivine minerals, e.g., are described 

79.3% and 90.8% isotropic, respectively [Chevrot and Browaeys, 2004]. 

 100% = w�_º{⃗¼ ∙ øw_º{/n4yyyyyyy⃗ ¼ + w_º{½o�yyyyyyyy⃗ ¼ +  w_º{ðoð¬´yyyyyyyyyyy⃗ ¼ + w_º{4¬ð½4yyyyyyyyyyyy⃗ ¼ù (2.70) 

 

2.6 Discretization of the Continuum 

 

According to Krajcinovic, 1996, two large groups of studies can be applied to analyze 

damage in quasi-fragile materials. One is related to the classical approach, the continuum 

mechanics; the other is related to statistical models. The former encounter problems regarding 

scale effect and damage localization while the latter loses versatility, such as the finite element 

method. However, it solves the localization issue and also accounts for the anisotropic damage 

more efficiently. The Lattice Discrete Element Method (LDEM) is one of the formulations that 
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can use statistical formulation. The solid body is described as an interconnected web of uniaxial 

elements where the masses are located at the nodes. The stiffness of each of these uniaxial 

elements is correlated directly with the solid material properties. Different approaches than the 

one applied in this work using LDEM can be found in Krajcinovic and Vujosevic, 1998, Sagar 

and Prasad, 2009, Nagy et al.,2010, Schalanger,1995 and Rinaldi, 2011. Some interesting 

results were presented in Chapter 2.4. The line elements yield a force field among the nodes 

that hold them together, but they are not per se physical. The fracture is characterized in these 

cases as the result of an extreme reduction of the forces among nodes.  

Another approach establishes a discrete particle method where the body is divided into 

many cells described with individual central nodes. Equations of continuum mechanics are 

incorporated, where a point x of the body interacts with the surrounding neighbor points x’ 

within a finite distance. Therefore, any point is connected to others by bonds that can be 

described with peridynamic balance equations proposed by Silling et al., 2007. This assumption 

extends the formulation for a nonlocal approach, i.e., the mechanical effects at a given point are 

not only related to zero distance length but within a region limited by a “horizon.” A broader 

view about this matter, and other possible forms to deal with damage/fracture analysis, is 

addressed in Chapter 2.7 to demonstrate how a specific problem can be deal with.  In the 

following subsection, the chosen Discrete Model is depicted.  

 

2.6.1 Discrete Model Applied in the Present Work 

 

Riera,1984 [apud. Rodrigues, 2015] proposed the lattice model applied as the base in this 

work. The model was used with great success to determine dynamic responses in concrete plates 

and shells under impact scenarios [Riera and Iturrioz, 1995, 1998]. Later it was implemented 

in other studies such as the scale effect in concrete [Rios and Riera, 2004], fracture parameter 

calculation in dynamic and static problems [Kosteski et al., 2011, 2012] and the studies 

regarding fragile material resistance at high strain rate [Riera et al., 2011]. 

The LDEM is based on a cubic arrangement with uniaxial element assuming a truss 

structure, therefore only with three degrees of freedom. The basic module can be described with 

twenty bars and nine nodes conceived initially by Nayfeh and Hefzy, 1978 (Figure 2.23). The 

problems regarding dynamic issues assume the masses concentrated at the nodes where the 

central node has half of the total mass, while each one of the remaining eight nodes has one-

sixteenth of the total mass of the representative cube. They initially used this model to create a 
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transformation system of the truss-like structure into a continuum media trying to avoid the 

handling of vast quantities of degrees of freedom such as large periodic panels and shelters.  

Hayashi, 1982 introduced a reversed process where the continuum is transformed into a 

truss structure. The connections among the nodes are through links (bars) under compression 

and traction only. All the elements have the same Young Modulus, but the length and area of 

the diagonal and normal bars differ from each other. The normal elements ("Ã −blue in Figure 2.23) are defined by six elements connected to the central node and twelve 

elements at the corners. The diagonal links ("Ä − red in Figure 2.23) are defined by eight 

segments. 

Using this configuration, Hayashi, 1982 and Batista, 2007 demonstrated the contribution 

of each bar for a representative constitutive tensor. If the domain is considered isotropic, the 

stiffness matrix can be defined as described in Expression 2.71 and 2.72. The diagonal bars 

with a cross-section "Ä, the normal bars with a cross-section "Ã along with the cube length L, 

Poisson’s ratio � and the material Young’s modulus �, can adequately describe the isotropic 

stiffness tensor when the Poisson’s ratio  � is equal to 0.25.  Comparing Equation 2.71 with an 

isotropic stiffness tensor, it will be possible to visualize the difference when the Poisson’s ratio 

changes from 0.25. The diagonal terms no longer support the compatibility between the 

continuum and the truss-like model. 

 

 

 

Figure 2.23 - Basic block of the Discrete Element Model applied for the present work. Initially 

proposed by Nayfeh and Hefzy, 1978. 
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⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛1 + 49 � 49 � 49 � 0 0 049 � 1 + 49 � 49 � 0 0 049 � 49 � 1 + 49 � 0 0 0
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⎟⎟⎟
⎟⎟⎟
⎞

  

(2.71) 

 

� = 9 ∙ �4 − 8 ∙ �           "Ã = �_ ∙  (9+ 8 ∙ �)2 ∙ (9+ 12 ∙ �)               "Ä = 2 ∙ � ∙  "Ã√3   
 

(2.72) 

 

Kosteski, 2012 shows the comparison between this LDEM configuration and the 

continuum applying shear stress. For example, the theoretical and simulated shear modulus � 

are presented in Figure 2.24. In the scenario of materials with large differences in the Poisson’s 

ratio, the current LDEM configuration is no longer supported and an alternative structure must 

be considered. However, the Poisson’s ratio has typically little influence on the damage and 

fracture mechanics, considering that in the vicinity of collapse, the isotropy is lost.  More 

comments about this effect can be found in Rinaldi et al., 2008 and Iturrioz, 1995.  

 

 

Figure 2.24 - Poisson's ratio � influence on the shear modulus � when the values moves 

from 0.25. The blue is the analytical solution and the red one is the simulated LDEM under 

shear load. [Kosteski, 2012] 
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The expansion and connection of the primary cubic cell presented in Figure 2.23 enable 

us to achieve the desired geometry. Figure 2.25 shows a set of 4 x 3 x 2 cubic cells with only 

the first layer highlighted for visualization convenience. Nevertheless, when the total thickness 

is equal to one, solutions and simulation at plane strain (PSN) or plane stress (PSS) can be 

performed constraining the displacement of the nodes according to the two-dimensional 

assumption.  

 

As can be seen, the use of LDEM vastly increases the capacity to reduce the number of 

degrees of freedom of a body under analysis. This allows us to apply, e.g., the Finite Difference 

Method to solve an uncoupled system of Differential Motion Equations. The mass matrix ! 

and damping matrix $ are typically set diagonal, which makes it possible to integrate the system 

of 	 equations over time. However, the damping values are tricky to be defined due to the 

necessity to account for the numerical stability, the unknown material damping and the 

constraint of high natural frequencies. Iturrioz, 1995, developed some arguments involving this 

issue. 

Equation 2.73 shows the motion equation in the matrix form, where the right side 

represents the differences between the internal and external forces at each node. For the 

integration scheme to converge, the Courant-Friedrichs-Lewy criterion [Bathe, 1996] defines 

the maximum allowed time increment based on the material density �, elastic modulus � and 

side length �. The system is uncoupled and a central finite differences approach can be applied 

to integrate the motion equation over the time domain. The nodal coordinates are updated at 

each time-step, which allows large displacements to be accounted for naturally. 

 

Figure 2.25 - Combination of basic unity cubes to form the desired geometry to simulated the 

continuum under the discrete distribution of nodes connected by links. 
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ë!Ô ⋯ 0⋮ ⋱ ⋮0 ⋯ !Ãì ∙ #_#¸_ ë)Ô(¸)⋮)Ã(¸)ì + ë$Ô ⋯ 0⋮ ⋱ ⋮0 ⋯ $Ãì ∙ ##¸ ë)Ô(¸)⋮)Ã(¸)ì = ∆ ë
Ô(¸)⋮
Ã(¸)ì , ∆¸ °  0.6�
ß4
  (2.73) 

 

Back to the damage considerations, which is the main focus of this work, an association 

between the damage release energy of the continuum and the LDEM model must be provided. 

The relation between both approaches must be equal, which means that the energy necessary to 

divide the representative volume in a specific direction completely must be the same using the 

continuum mechanics and the LDEM model. The continuum evaluation considers Griffith’s 

parameter � established by the relation Γ = � �Ã_. However, for the LDEM model, the energy 

equation must take into account the area of the bars as presented in the box “Areas” in Figure 

2.26. For the diagonal links, the areas are described by the diagonal length �Ä and for the normal 

links �Ã. 

A factor called $´ is defined to establish the equality between both the aforementioned 

energy entities (Γ =  ΓÖÒßÐ). The relation which defines $´ must be equal to 3/22 to guarantee 

such equality. Due to this weighting coefficient, an equivalent fracture area "q of each one of 

the elements of the cube is prescribed relating it with the length �Ã. As will be later presented, 

the fracture area will be used to predict the moment where the rupture will occur according to 

a certain degree of strain.    

Also, a constitutive law must be defined to establish the behavior between stress/force 

and strain at each bar (F – ') to introduce these solutions for an appropriate evaluation of the 

LDEM model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.26 – The box “Energy balance” defines the equality between the continuum and the 

LDEM model (Γ =  ΓÖÒßÐ). The set of equations inside box “Areas” defines the normal  "Ã and diagonal areas "Ä as a function of the side length �Ã.  

Energy balance: 

1 ) �Ã 

4 ) ô14ö  �Ã 

4 ) �Ä ΓÖÒßÐ = � ∙ �4 ∙ �Ô��úüýÔ 5 Ö&
+ 1⏟Ô 5 Ö& + �4 ∙ Ô√��_úûüûý� 5 Ö7

�  "Ã q    
Γ = � �Ã_ and   ΓÖÒßÐ =  Γ      
Leads to:  "Ã q = � �__� �Ã_     "Ä q = � �__� �Ã_    $´ =  �__   

Areas of: 
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The definition of the constitutive law for quasi-brittle materials was initially considered 

by Hillerborg et al., 1976. The crack propagates when the stress at the crack tip assumes a 

tensile strength fc according to Figure 2.27a. But, the stress must not fall to zero at once. Instead, 

it must decrease with increasing crack width 8 (same as parameter � in other sections). Before 

reaching the noncritical crack width, the defect, in reality, corresponds to a micro cracked zone 

with some remaining ligaments for stress transfer. The experiments conducted by Evans and 

Marathe, 1968 in concrete specimens have shown that a bilinear curve would be a reasonable 

prediction for quasi-brittle materials (Figure 2.27c). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 Therefore, it is possible to describe this bilinear behavior based on the critical strain '¿ 

and collapse strain '¬. The critical strain '¿ establishes the beginning of the damage process, 

while the collapse strain '¬ defines the complete loss of stiffness of the normal or diagonal bars. 

This law also specifies that the damage at each bar only occurs during traction, maintaining the 

undamaged stiffness during compression. During traction loading increments, a critical load 
p¬ 

defines a maximum value related to '¿ (Figure 2.28). In a strain-controlled process, when the 

strain surpasses '¿, there is a reduction in the maximum load permitted. The unloading process 

always follows the path of the last load case returning to the origin of the system F – '.  In other 

words, there is no residual or plastic strain after unloading.   

Any strain larger than '¿ will result in a reduction in stiffness and increments in the 

released energy. When the fracture strain is reached ('¬) the components no longer maintains 

any resistance and the damage is complete. At this moment, equality between the area below 

Figure 2.27 – (a) Crack opening considerations used by Hillerborg et al., 1976. (b) There is a 

decreasing force necessary to open the crack as the energy release rate can be lower as the 

crack increases. Concrete experiment showing the force x strain relation as the damage builds 

up. The dotted line is the bilinear simplification. [Evans and Marathe, 1968] 

(a)  (b) 
 
ð  

' 



 

49 

 
 

the curve and the energy released must be set according to the critical area of the links (" Ã q�� "Ä q), as previously shown in Figure 2.26. Equation 2.74 derives the area below the 

curve where the term ¹ can assume the normal (	) or diagonal (#) bar. Figure 2.28b shows 

graphically this expression.  

 

³ `(') #' = �p ∙  " bq � b
þ,

4    (2.74) 

 

  The quasi-brittle system, in this proposition, disregards the residual strain during 

unloading, but with a little adjustment, the definition of other constitutive laws can be made 

according to different material properties. Other constitutive laws, such as a trilinear approach, 

can be found in Kosteski, 2012. For compression load, the constitutive law considers the 

maintenance of the initial stiffness due to the characteristic of the quasi-brittle materials to 

withstand many times the ultimate traction when in compression. The theoretical formulation 

of this constitutive law is described more precisely in Rocha et al., 1991, Dalguer et al., 2003 

and Iturrioz et al., 2009. 

 The critical fracture energy GI is defined by the inelastic zone described in Figure 2.28. 

The factor r¬ is introduced to account for the ratio between '¬ and '¿ leading to a factor that 

controls the softening process. The relations and formulation are here recovered from chapter 

2, as the terms �p , �p, crack size �,  �p and the nondimensional factor dependent on geometry �. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.28 - (a) Energy released during damage and Elastic energy recovered after unloading 

in the path OAB [Iturrioz et al., 2009].  (b) The final energy released after rupture. [Dalguer 

et al. 2003] 

(a) (b) 
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Equation 2.75 and 2.76 leads to a relation between '¿ and �p. The term ~qq is called a 

failure factor and is associated with the crack size. Maintaining the �p and E constants, which 

means the area below the curve in Figure 2.28 must be kept unchanged, the increasing failure 

factor ~qq will increase '¿. This means a tendency to the fragile behavior as the maximum force 

¿̀ increases. Conversely, as ~qq tends to zero, a ductile behavior starts to be more distinct. It is 

also important to realize that the defect is an intrinsic feature and is associated with the material 

properties through the �p variations. 

  

�p = �p_�(1 − �_) = (��p√�)_�(1 − �_) = (� ∙ � ∙ '¿√�)_�(1 − �_)   (2.75) 

 

'¿ = 1�√� í �p�(1 − �_) =  ~qqí �p�(1 − �_)  (2.76) 

 

The equivalent fracture area  "Ã 4¬ Ä q and the real area "Ã 4¬ Ä can also be related using 

the energy relation from Equation 2.74. This leads to a definition of the factor r¬ by the material 

and geometric properties. Inverting Equation 2.77, a relationship for a critical length also can 

be found. 

 

r¬ = '¬'¿ =  2 ∙ "Ã 4¬ Ä q �Ã 4¬ Ä ∙  "Ã 4¬ Äúûûûûüûûûûýào4Íoð¬3
∙ �p� ∙ '¿_úüýÍ´ðo¬©´Ë

  (2.77) 

 

The stability is assumed when the condition r¬ ≥ 1. Using Equation 2.77, the Poisson’s 

ratio of 0.25 and the relations from Figure 2.26, it is possible to derive a critical area in which 

the damage is complete [Riera and Rocha, 1991].: 

 "Ã 4¬ Ä q ≅ 0.34 ∙ "Ã 4¬ Ä  (2.78) 

 

All the Equations outlined a material or geometric properties dependency. The only 

constants which are purely material properties are �p and E. The others are dependent on the 

dimension of the cubic cell or also dependent of the material.  



 

51 

 
 

One of the main advantages of the LDEM is the possibility to introduced variability at 

any parameter, which means properties fluctuations spatially. At any given point of the structure 

under analysis, a different response will be provided depending on the random function and 

settings used. This type of procedure tries to mimic the real structures and their intrinsic 

heterogeneity. The simplest and ingenious form is choosing the parameter �p due to its relation 

with the Linear Elastic Fracture Mechanics and the direct association with �p. The random 

distribution of �p will yield an uneven resistance throughout the volume.  Rocha, 1989 

introduced the simplest form of variation. The probability function of �p is a two-parameter 

Weibull function. � and ; are scale and form parameters in Equation 2.79, respectively.  The 

parameter & is the probability density varying between 0 and 1, which can determine the 

variation of the fracture energy. 

 

`(�p) = 1 − exp =À− �p� >Á? , �p = � ±−ln(1 − &)²­@  (2.79) 

 

From these probability function, a definition of an average value �p��� and its standard 

deviation �Ap can be made. Additionally, another probability function called Gama function Γàq 

which is not presented in this work [see Rocha, 1989] must be added in order to obtain the 

coefficient of variation of the critical release energy $%(�p). Parameter (, similarly to 

parameter &, is a random value that defines the deviation from the average by defining two 

other constants: 

�p = ( ∙ �p��� =  � ∙ ±−ln(1 − &)²­@� ∙ Γàq(1 + Ô>) ∙ �p���  (2.80) 

 

$%(�p) = �Ap�p��� =  ±Γàq �1 + _>�− Γàq_ �1 + Ô>�²Ô/_
Γàq(1 + Ô>)   (2.81) 

 

It is straightforward to notice this random process observing Figure 2.29. The variation 

of �p are based on �p���  and parameter ( . The effects are shown in Figure 2.29b where &p¬ and  '¿ will be affected by the random distribution of �p. The impact of the parameter ( in $%(�p) 

is also presented in Figure 2.29c as an example of the relation between both entities.  
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2.7 Last Developments – State of the Art 

 

2.7.1 Damage/Fracture Studies 

 

In this chapter, a few of the latest developments in terms of damage/fracture studies are 

depicted. The reader interested will find here many possible paths available nowadays to 

evaluate any given structure. The concepts described in Chapter 2.1 (Fracture Mechanics), 

Chapter 2.2 (continuum damage mechanics - CDM), Chapter 2.3 (Micromechanics) and 

Chapter 2.6 (discrete element models – DEM) are the set of essential knowledge for the 

development of consistent theories capable of reproducing the behavior of real structures. Due 

to the vast field of application, this overview will focus mainly on the latest studies in 

fragile/quasi-fragile materials. 

 The application of Finite Element Analysis (FEA) is one of the most spread numerical 

tools to study structural resistance when dealing with continuum mechanics. Nowadays, the use 

of this technique in fragile materials typically considers concepts of CDM and plasticity 

theories to obtain consistent results between numerical and experimental results. Countless 

works have been developed in the last decades contributing to the analysis of concretes, fragile 

and other quasi-fragile materials.  

Many of these works base their results on the behavior of concrete specimens studied 

by Kupter et al., 1969 through biaxial and inelastic deformation experiments. Numerical 

proposals as the one reviewed by Papanikolau and Kappos, 2007 adds a constitutive model for 

Figure 2.29 – (a) Weibull distribution considering an average value �p [Kosteski, 2012].        

(b) The effects of the coefficient of variation $%(�p) on the &p¬ and '¿ adding an aleatory 

variability of properties at each bar [Iturrioz et al., 2013]. (c) An example of the relation of the 

chosen ( and $%(�p). [Kosteski, 2012] 

(a) (c) (b) 
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concrete in a triaxial compression state. They were capable of describing the material behavior 

with a non-associated flow rule, but they disregarded the cumulative material properties 

degradation, i.e., damage parameters are not addressed.  Richard et al., 2010, among others, 

coupled the damage and loss of stiffness and assumed a single scalar entity to represent the 

plastic behavior. The numerical results fit approximately when compared to cyclic loading 

experiments. However, irreversible deformation and the volume expansion in compression 

were not accounted for in those works. Lately, a general and compatible form to deal with 

damage and plasticity have been developed to meet more diverse experimental outcomes. The 

works of Wu et al., 2005, Sarikaya et al., 2019 and Richard et al., 2013 can be cited as good 

numerical plastic-damage models mimicking the concrete behavior in different geometries 

considering cyclic and monotonic loading conditions. 

Another interesting numerical proposal, which formulates an anisotropic continuum 

damage model, is developed by Brunig and Michalski, 2017. It introduces the damage law and 

plastification process as separate entities to evaluate the process until the moment before the 

fracture. The experimental results are reported in Brunig and Michalski, 2019, where specimens 

of concrete under compression are analyzed. The numerical prediction is based on equivalent 

damage strains and stress triaxiliaties to evaluate the onset of failure. Figure 2.30 shows the 

stress/strain state at the onset of fracture for a cubic specimen under compression.  Obviously, 

the crack growth and fracture cannot be simulated, considering only this approach. These 

features can only be achieved with the addition of numerical techniques and fracture criteria, 

which limits the application of a pure FEA-based procedure.  

 

 

 

 

 

 

 

 

 

 

We can naturally observe that the description of discontinuities in finite elements is not 

suitable to represent entities such as cracks. FEA models are based on a piecewise differentiable 

polynomial, generally causing the collapse of the function at the fracture’s tip. An extended 

Figure 2.30 - (a) Mid-section stresses triaxiality and (b) isometric damage strain 

representation at the onset of failure. (c) the cracked block corresponds to regions of max. and 

min. of stress/strain values. Compression simulation. [Brunig and Michalski, 2019] 

(a) (b) (c) 
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version of the finite element method (X-FEM) was proposed by Belytzscho and Black, 1999, 

to deal with such a problem. The proposal intended to create a technique to evaluate the 

fractured region without the need of mesh refinement or the need for a mesh that conforms with 

the discontinuities. Typically four different types of elements are necessary for the X-FEM 

scheme: the standard FEA elements (white), the fully split elements (blue), the crack tip 

elements (red) and the blended element (green) - Figure 2.31a. The formulation addressing the 

displacement field has different forms according to the element type, but the basic proposal 

adds the so-called enrichment functions to the standard finite element approximation and deals 

with the discontinuity applying the Heaviside jump functions. This methodology allows the 

cracks to propagate autonomously regardless of the mesh topology. However, the numerical 

integration of the cut elements persists along the crack and at the singularity. Some interesting 

solutions to mitigate these problems were presented by Ventura, 2006.  

 The X-FEM method also couple with other methods such as the Level Set Method (LSM 

- see Osger and Sethian, 1988). The combination X-FEM/LSM was first analyzed for the crack 

growth in two dimensions by Solarska et al., 2001. Additionally, a specific type of Level Set 

Method, called Fast Marching Method (FMM), was proposed to deal with three-dimensional 

problems. The reader interested can find profuse works in this context in Chopp et al., 2003, 

Sukumar et al., 2003 and 2008. Many other references applying X-FEM analysis can be found 

in Yazid et al. 2009.  

 Specifically dealing with quasi-fragile materials, it can be pointed out the works of 

Bobinski and Tejchman, 2013 and 2016. They analyzed the crack propagation in concrete, 

applying plastic and isotropic damage model to compare simulation and experimental 

bidimensional cases. In the case of 3D applications, the models must be much more complex 

to deal with different problems that arise from the numerical solution. Therefore, generally in 

these cases, a non-local damage solution must be addressed (see Voyiadjis et al., 2008). 

Javanmardi et al., 2019 combines 3D modeling, anisotropic damage plasticity, non-associative 

flow rule and a new directional crack propagation criterion with different material degradation 

components. In this study, the crack tip only grows element by element, i.e., the crack cannot 

be placed inside the element. A critical damage level (>0.5) is set to determine the moment 

where the crack initiates. An example comparing the adjusted numerical solution with 

experimental ones in given in Figure 2.31b. A shear double-notched test applied in a concrete 

model with a 10kN load obtaining similar patterns for the crack propagation. Other load values 

also demonstrate good agreement between numerical and experimental results.   
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 It is essential to point out that the X-FEM methodology always has to add many theories 

and, intrinsically, complicate the analysis of the problem. The literature shows a vast quantity 

of models with a different combination of models trying to mimic the crack initiation and 

growth direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Other approaches, as the discrete models commented in Section 2.6, can be more 

suitable to address the transition damage-fracture. Besides the Lattice model (LDEM) explicitly 

described in Section 2.6.1, and applied in the present work, other formulations are widely 

studied nowadays.  

 An interesting method, develop by Silling, 1999, has shown a form to provide a link 

between the molecular dynamics and the continuum mechanics. The so-called peridynamic 

theory replaces equations of the continuum medium, which are spatial displacement derivatives, 

by an integral form. The formulation is capable of predicting the damage initiation and also the 

propagation. The peridynamic model (PD) is a nonlocal method, where a specific material point 

X is bonded with other points around it. A parameter called horizon (�) prescribes the range at 

which the forces of the node X affects. Normally the horizon circle f� is set at 3�¿Ä, where �¿Ä is the distance between two consecutive nodes around the X point. Figure 2.32a shows the 

description of these parameters. Each link follows relations between force and strain. Therefore, 

a limit stretch defines a ruptured bond at which the force between two given points reaches zero 

and it generates the necessity to redistribute the force to the other links.  The simulation is 

conducted in the time domain with small increments in time-step to observe the loss of stiffness 

of individual connections and the rearrangements of the force field. A way of establishing the 

Figure 2.31 – (a) Types of elements in a standard X-FEM model. White: normal FEA element. 

Blue: Fully split element. Red: crack tip element. Green: Blended element. (b) Damaged 

elements during a non-local/X-FEM model at the end of the simulation [Javanmardi et al. 

2019]. (c) experimental results from similar conditions for 10kN shear load.   

(a) (b) (c) 
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damage parameter is to define the ratio of bonds loss inside the horizon by the total initial 

undamaged bonds. The critical stretch is typically computed based on the critical energy release 

rate �p, material properties and horizon size [see Madenci et al., 2014] 

In the study conducted by Anbarlooie et al., 2019, the microstructure of a dual-phase 

material (DP), composed of martensite and ferrite, is simulated during a quasi-static loading. 

The simulations try to mimic the real plane strain conditions of experimental procedures and it 

is based on real SEM images (scanning electron microscopy), as shown in Figure 2.32b. 

Therefore, the Control Volume is a heterogeneous medium in the meso-scale.  The study 

considers two separate scenarios. The first analyzes the effect of the number of material points, 

i.e., the degree of discretization of the domain. Secondly, a study on the impact of the chosen 

material property at the interface between martensite and ferrite is carried out. Despite different 

outcomes, in all simulation, the damage necessarily initiates at the boundaries and it always 

propagates at the soft material (ferrite) as observed experimentally (Figure 2.32c). The 

microcracks created in different points will eventually coalesce recreating patterns of fracture, 

which are also found in real materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 Another author, Mehrmashhadi et al., 2019 applied the peridynamic technique to 

evaluate the transverse fracture behavior of fiber-reinforced composites (FRCs) using an 

intermediately-homogenized (IH) and a fully-homogenized (FH) formulation according to a 

non-uniform mesh, where the nodes can represent different sizes of areas, similar to finite 

element meshing process, where the centroid of the element is defined with the representative 

node. Therefore, complex geometry can be better represented.  The two approaches (FH and 

IH) have different characterizations for the microstructural description. The FH model 

(a) (b) (c) 

Figure 2.32 - (a) The definition of horizon for the point X in a certain domain. 

(b)Discretization of the dual-phase structure. (c) An example of the damage level in the 

simulated domain [Anbarlooie et al., 2019]. 
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describes all the bonds applying the Halpin-Tsai technique, where an averaging procedure is 

taken using the properties of the fiber and matrix (resin). On the other side, the IH approach 

considers three different types of bonds linking matrix-matrix, fiber-fiber and fiber-matrix 

nodes. In this case, the fiber-matrix links are also defined by an averaging procedure. The bonds 

for a particular node X assume a stochastic distribution according to the volume fraction of each 

type of bond. Three-point bending tests (mouth opening displacement – CMOD) were 

conducted to compare these numerical solutions with experimental ones considering a specific 

E-glass composite. Figure 2.33 presents the results. In both scenarios, there is a convergence 

with the horizon size decrement and the results are quite similar to experimental ones, also 

providing similar crack paths, especially using the IH peridynamic (IH-PD) criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 It can be pointed out similar studies conducted to compare experimental and numerical 

concrete structures. The works of Gerstle et al., 2007 and Yaghoobi and Chorzepa, 2017 are 

examples of how the peridynamic model can provide satisfactory results considering quasi-

brittle materials.  

 Another form to apply a DEM model is viewing it as an aggregate of bonded spherical 

elements.  Packs of spheres are connected to each other through springs and dampers equation, 

which try to mimic the continuum. Typically, the constant and physical relations have to be 

adjusted according to experimental observations.  

 Examples of such types of DEM models are applied continuously in concrete analysis 

under compression or flexural tensile strength test.  

Figure 2.33 – (a) FH case. Experimental (black) and different horizon sizes for the numerical 

analysis. (b) The same plot for the IH scheme. Three-point bending test evaluating the 

"mouth" opening (CMOD). [Mehrmashhadi et al, 2019] 

(a) (b) 
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 Usually, concrete is formed by mortar (matrix), aggregates (inclusion) and an interfacial 

transition zone (ITZ) that couples the two regions. The ITZ zones typically are the weakest 

regions due to the presence of porosities and, owing to this fact, they have a primordial 

contribution for the crack initiation and growth. Nitka and Tejchman, 2020, studied the effect 

of the ITZ zone using a DEM model in a meso-scale. This type of discrete model considers 

Newton and Coulomb Laws to address translational and rotational motions between the 

spherical bodies and an explicit time-stepping integration is used to describe the increasing 

damage/fracture. In this context, depending on the framework and material involved, different 

laws and properties need to be adjusted to represent real observations better. Figure 2.34 shows 

a three-point bending test for a concrete beam with a meso-scale description. The numerical 

simulation considers the same structure as the experimental one, varying only the ITZ thickness, 

grain roughness and porosity.  Results for 20% porosity at the ITZ zone are shown, where the 

crack path between the experimental and numerical simulation is considerably similar. 

Additionally, it was observed that the Force x CMOD graph has very similar behavior.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another interesting study conducted by Wang et al., 2020 applies real CT scan images 

of real concrete aggregates and new displacement-softening law. The influence of the ITZ bond, 

the aggregate’s material properties and the contact law are analyzed for specimens under 

compression tests obtaining interesting relations between the structure constituents.  

Experimental crack path Numerical crack path 

Figure 2.34 – Three-point bending test. Numerical and experimental results. The numerical 

considers 20% porosity in the ITZ zone. Crack paths are illustrating the similarities between 

experimental and numerical results. [Nitka and Tejchman, 2020] 
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 Additional to the application in concrete samples, this type of DEM modeling is also 

ideal for addressing brittle cracks in rocks and minerals. Klichowicz et al. 2018, researched 

mineral fractures at the grain level while multi-step cracking processes occurred. The author 

highlights the dependence of the results on many parameters that are difficult to measure, such 

as the grain bonding strength. These parameters can be adjusted based on observational results, 

but they are limited by the case under investigation and, therefore, the proposed model does not 

necessarily will be accurate in other contexts.  

 Experimental analysis with an in-depth look at the microscale during damage/fracture 

is needed to support pieces of evidence from numerical ones. Tao et al.,2020 develops an 

example of such studies., where the effect of the uniaxial and triaxial compressive tests in mafic 

rocks, observing in-depth the pre-existent microstructural microcracks (intra-granular, inter-

granular and multi-granular) and the ones forming during loading After the tests, fragments of 

the rocks are analyzed applying an image treatment technique based on scanning electron 

microscope. The process was able to distinguish and the contribution of pre-existing micro-

constituents (heterogeneities, crystal lattice boundaries and microcracks). The grain boundaries 

are the weakest regions where the fracture has a preferential path and, depending on the existing 

microstructures, the crack propagation will have preferential growth in shear or traction mode 

(Figure 2.35a and b, respectively). A combination of both modes can be evaluated through scan 

and image processing observing initiation, propagation, coalescence and rupture of the 

microstructures. The study managed to define a scalar damage parameter relating these two 

modes and define the evolution of this entity during the growth of the crack. This type of 

research is essential to be used as a reference frame during numerical solutions.  

 

Figure 2.35 - Crack growth of the microstructure. (a) Traction mode. (b) Shear mode. A 

combination between the modes is possible. The combination of both is possible. [Tao et al., 

2020] 
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2.7.2 RVE-Based Studies 

 

Lately, the implementation of the so-called multi-scale computational modeling has 

been developed to deal with structures undergoing the nonlinear processes. The aim is to 

describe the material at several scales, which relates to a macro/microscale or macro/mesoscale 

problem. Therefore, the internal micro/meso material morphology is replaced by stress/strain 

constitutive variables at the macroscale. The RVE description arises from this concept and the 

homogenization has a procedure associated with it. The Hill proposal, discussed and 

implemented in this work, is the most notorious and conventional form to deal with this multi-

scale problem. However, this approach loses consistency typically when the material fails, 

creating what is called a non-smooth feature embedded at the medium. According to Oliver et 

al. 2015, the RVE existence can also be questioned in this situation.  Many alternatives have 

been developed in the past decades, posing options for the macro/micro scales analysis. The 

variational formulation has been widely regarded as a promising approach to this debate. It 

accounts for a non-smooth behavior at the lower-scale capturing, for example, the crack onset 

and propagation through a discontinuous micro-displacement field (see Blanco et al., 2014). 

The entire theory is based on a “physically meaningful” association between macro and micro-

scale. Usually, the association between the scales considers high-order continua at macro 

length, while at the microdomain, a first-order approach is defined. However, besides the solid 

theoretical grounds of Hill, any attempt to display a well-posed approach to the multi-scale 

analysis faces uncertainties due to unclear assumptions. The link between the scales is not 

straightforward and they are also attached to the physical process under investigation. 

Blanco et al., 2014, presented an alternative for the multiscale problem through the so-

called Method of Multiscale Virtual Power (MMVP). The method keeps the RVE assumption 

of different scale-order among body, RVE and microscale. One of the main characteristics of 

the proposed technique is the “kinematical admissibility,” which states that the magnitudes of 

the displacement variables are preserved in the scale transition.  

 The work of Carazo et al., 2014, is an example of a multiscale approach to evaluate 

effective macro properties based on digital imaging processing of spherical cast iron 

micrographs. Applying an averaging technique developed by Giusti et al., 2009, they assessed 

the impact of the RVE geometry, the graphite fraction, the nodularity and the aspect ratio on 

the Young’s modulus and Poisson’s ratio. This approach allowed the author to demonstrate that 

the geometry of the RVE has little impact on the micromechanical properties. Existing 
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analytical solutions were compared with the numerical and the viability of such averaging 

techniques was observed.  

 

2.7.3 Other Methods 

 

The underlying assumptions of the parallel bundle system are depicted in Section 2.4 

(Krajcinovic e Silva, 1982) with Equation 2.56, 2.57 and 2.58, introducing the mathematical 

concepts of this technique. The proposal is based on the Global Sharing Rule (GSR), which 

means the forces of broken links are shared among the remaining ones. The probability function 

related to damage in these unidimensional equations can be seen as a microscale disorder that 

yields a macroscale degradation. The presented formulations are elastic solutions, which means 

that the global F x d curves are always oriented to the origin of the plot. Rinaldi, 2011 adds to 

this scenario, components of plasticity to obtain different behavior for more complicated 

assumptions. A plastic regime with its own dispersion (&¿) adds to the elastic one (&q). 

However, as shown in Figure 2.36a, the plastic contribution of the probability function for 

quasi-fragile materials is dislocated and, therefore, never reached. This interpretation leads to 

the simplification of the problem avoiding cumbersome issues. 

Rinaldi, 2011 shows that the normal evolution from a unidimensional to a 2D/3D model 

creates a lattice representation that usually applies Delaunay triangularization from a Voronoi 

approximation of a polycrystalline microstructure. Figure 2.36b shows the process where a 

Voronoi grain, described as a polygon, is represented by a node (A). The center of each grain 

is linked to adjacent ones, establishing resistance relationships. The rupture will only be 

characterized at the borders of the representative Voronoi grain, which solely allows accounting 

smaller defects through the insertion of random lattice properties.  It is important to observe 

that in this situation, the length of each element has an impact on resistance besides the 

mechanical properties’ variation.  

 The reader interested in an in-depth look into bundle methods can find profuse material 

in Hansen et al., 2015.  They deepen the study of the variational problem, evaluate the impact 

of the statistical features and describe methods for predicting failures using classical and 

advanced bundle models.   

  

 

 



 

62 

 
 

 

 

 Another interesting methodology is the so-called “electrical failure analogy of fracture.” 

The electrical phenomenon possesses entities such as voltage, fuse, current, among others, 

where the variables represent a scalar field, contrary to the mechanical description where the 

field has a tensorial form. This concept naturally simplifies de material description and avoids 

many issues regarding tensorial handling. The disorder in the electrical simulation can be 

modeled as insulators in a conducting material. The embedded nonconducting material 

modifies the field lines, mimicking the distortion caused by a defect, which is similar to the 

stress concentration scenario in the mechanical scheme. The current around the 

crack/nonconducting material will be altered by a certain amount, which is governed by a factor r related to the geometry of the defect.  For example, an L x H elliptical form will describe a 

factor r equals to L/H. This value will affect the local current, which is compared to a critical 

threshold where the failure starts to evolve. The works of Biswas, 2015 and Chakrabarti and 

Benguigui, 1997 have a profuse description of how this analogy can be made adding stochastic 

models to mimic the natural variation of the micro components.  

 

 

 

 

 

Figure 2.36 – (a) The quasi-brittle materials’ failure probability function considering the 

plastic (&¿) and elastic (&q) regime. (b) The Delaunay triangularization using the Voronoi 

grain. Links with different sizes connect the center of different grains (B-G) with grain A. 

[Rinaldi, 2011] 

(a) (b) 
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3 DEVELOPMENT 

 

The next Chapters will discuss the methodology and the results of the work into two main 

parts. The first, called 1st Scenario, will address the comparison between the analytical and 

numerical responses, while the 2nd Scenario will analyze a cyclic process with no analytical 

approximation. The following chart links the different sections of the work, guiding the reader 

for a proper understanding. A paper version (Appendix F) is addressed at the end of this work 

with the main conclusions and observations. The detailed information is presented in Chapters 

3.3 (1st Scenario) and in Chapter 3.4 (2nd Scenario).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1st Scenario 
analytical 

comparison 
(Section 3.3.1) 
(Section 3.3.2)                     
(Section 3.3.3)

2nd Scenario 
cyclic damage 
(Section 3.4.1)

Nonproportional
(Section 3.4.3)

Proportional 
(Section 3.4.2)

Domain Subdivision 
(Section 3.4.5)         
(Section 3.4.6)

Transfomation 
DEM -> FEA 
(Section 3.1)

Boundary 
Conditions 

(Section 3.2)

1st Scenario  
analytical 

comparison 
(Section 3.3)

2nd Scenario 
cyclic damage 
(Section 3.4)

2nd Scenario 
Domain Subdivision 

(Section 3.4.4)

Appendix A 
preprocessing code 

(example)

Appendix B 
Solution code 

(example)

Appendix C 
Postproc. code 

(example)

      Methodology 

      Results 

      Appendices 

Figure 3.1 – The hierarchy showing the connections between the methodology, results and 

appendices sections. Appendix F presents the paper summarizing the main information. 

Appendix E 
Additional results 
(Ey/Eo and G/Go)

Appendix D 
Tensor 

decomposition 
(polarization)

Appendix F 

Paper (Summarized version)
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The implemented procedure will use as input the extracted data from the damaged LDEM 

structure to obtain, through a Finite Element Analysis (FEA), the mechanical properties of a 

particular domain. The study will focus on two main scenarios. At first, the theoretical results 

are known, and in the second, a more complicated situation is taken, where an initial attempt to 

analyze the effects of proportional and nonproportional cycling in quasi-brittle material 

applying the LDEM model is made. Figure 3.2 describes the basic idea of this work, where an 

LDEM structure already damaged during a Fortran code simulation (input) is transferred into a 

finite element software for analysis. In this FEA environment, the extraction of material 

properties using a homogenization procedure is developed. Section 3.1 defines the domain and 

explains how this transformation is carried out.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, it is essential to emphasize that the application of the forthcoming structure 

of analysis and the designed codes can be expanded with little modifications to any given 

LDEM problem. The process will consist of recreating a homogeneous continuum using the 

lattice structure. The damage computed during the LDEM analysis is stored at a given moment. 

Afterward, the elements’ stiffness is imported into the FEA environment where the 

homogenization procedure can be made. The FEA studies employed the software ANSYS ® 

V.18.2 and, subsequently, the data treatment was performed using MATLAB ® 2016.  

 

 

Figure 3.2 -  The two scenarios consists on transferring the information of a given moment 

from the LDEM model (Fortran code) into a Finite Element model (Ansys). This is done to 

extract the constitutive relationships.  

The DEM model (Fortran) under 

increasing damage over time 

The DEM model (Fortran) with 

known distribution of damage 
Finite Element Model  

(Analysis and Output) 

Input (Scenarios) 
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3.1 The Structure/Material Characterization and DEM/FEA Transformation 

 

The overall structure under analysis consists of 79 x 79 x 1 cubic cells. Each cell is defined 

with the length size �Ã equal to 0.0075., configuring a plate with 0.351._. Due to the 

boundary condition, only a plane strain state (PSN) will be considered and the z-axis thickness 

will not interfere on the analysis despite it be physically modeled with one �Ã. The procedure 

considers no out-of-plane displacement and, therefore, no strain at the Z-axis.  A plane stress 

state (PSS), if required, could be implemented, modifying the boundary conditions. The 

material properties assume the linear elastic behavior defined by a Young’s modulus with 

3.5E+10 MPa and a Poisson’s ratio of 0.25 as previously explained in section 2.6. Concrete has 

material properties close to these ones. Figure 3.3a shows the isometric representation where 

the arrangement of the cubic cells can be seen at the corner of the structure. Figure 3.3b presents 

the same plate at the x-y plane for a lattice structure with the thickness of one cube. The unitary 

cell is depicted in Figure 2.23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The structure inside the FEA model is composed of two overlapping pin-joints structures. 

One is only activated during traction and the other is only activated during compression. The 

idea behind this concept is to allow different constitutive laws in compression and in traction 

(Figure 3.4). 

 

Figure 3.3 - (a) 3D representation of the lattice structure under analysis. (b)  2D representation 

in the x-y plane for the same body. A closer view is shown at the corner characterizing the 

periodic cubic elements composed by 79 x �Ã by 79 x �Ã by 1 x �Ã cubic cells. 

(a) (b) 
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In the context of Ansys 18.2, the element that fulfills these requirements is LINK180, 

where the links can support tension-only (sectype = 1) or compression-only (sectype = -1). This 

option turns the numerical solution into a non-linear iterative process. There are two reasons to 

make this type of structure characterization: 

 

1) Association with quasi-fragile material’s properties: The material resistance in 

compression is much higher than in traction. This characteristic does not allow the material to 

reach its peak resistance in compression and no reduction in stiffness is observed. Therefore, 

the original material’s stiffness is kept as an undamaged structure. On the other hand, when the 

material is in traction, the bilinear constitutive law is applied and the loss of stiffness must be 

accounted. This configuration is called a “closed crack” form and it is depicted in Figure 3.5a. 

 

2) Comparison with the analytical solutions: The presented outputs of Self-Consistent 

and Dilute methods consider the same constitutive relations in compression and in traction. 

Therefore, in order to compare numerical and analytical solutions, the so-called “open crack” 

form described in Figure 3.5b must be applied when comparing those analytical responses with 

the extracted numerical ones. 

.  

 

 

 

 

Traction-Only Compression-Only Full Model 

+ →    

Figure 3.4 – The compression-only and the traction-only structure overlap each other to define 

a complete truss structure in any condition. The constitutive relations in traction and 

compression can be different using this technique.  
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3.2 Definition of the Boundary Conditions and Properties Extraction 

 

As previously explained in section 2.3.2, the homogenization process must consider three 

different boundary conditions to define the constitutive tensors when a plane state is established. 

For convenience, the model presented uses a constant strain condition at the boundaries to 

perform the analysis. Therefore, the strain tensor is constant ('µ =< ' >) as a displacement 

profile is defined at the boundaries ∂Ω4 according to the position )©. The indices I-III in 

Equation 3.1 indicates the necessity to apply three boundary conditions in order to define the 

stiffness or compliance tensor explicitly for a plane state case. The assumptions of 

micromechanics depicted in Section 2.3 are taken here. 

 �|B
ç = 'µ©ª ∙ )ª  → '(«�«««)©ª ∙ )ª   (3.1) 

 

The three load cases are the constant axial deformation in the x-axis, the constant axial 

deformation in the y-axis and the constant shear deformation considering the xy-plane. The 

nodes used to define these conditions are the central ones to emulate the same conditions 

outlined during the DEM model. The load application is quasi-static and under very low strain 

to produce just small displacement to avoid any second-order regime. Figure 3.6 presents the 

three conditions imposed on the body. The force reaction at the boundaries is extracted and 

Constant 
(undamaged) 

It varies according 
to damage  

It varies according 
to damage 

It varies according 
to damage  

“Closed crack” form “Open crack” form 

Figure 3.5 – (a) The “closed crack” form considers an undamaged structure under compression. 

In traction, the stiffness is affected by the damage process. This form mimics the quasi-fragile 

materials behavior (b) The “open crack” form considers the loss of stiffness in compression 

and in traction. This form can be compared to analytical solutions.  

(a) (b) 
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averaged in order to obtain the mean stress. The relation between the strain and stress allows us 

to defined the constitutive tensors according to the damage inside the volume. No individual 

value inside the volume will be considered, but its implication at the border will promote 

information about the inner medium. As the structure presents a certain degree of damage, the 

forces at the boundaries will decrease, meaning that the stiffness will also reduce.  

Batista, 2007 presented studies using the forces at each element of the DEM model to 

define a von mises stress state under constant boundary conditions. He compared it with a FEA 

model to evaluate mainly the scale effects on the results. It was also demonstrated that there are 

fluctuations at the border due to the lack of adjacent cells and, as we will see, this will also be 

an issue in this work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The analytical solution will define the reference value and used as a comparison for the 

loss of stiffness of the structure as the damage grows. The stiffness and compliance tensors in 

a matrix form are presented in Equation 3.2 and 3.3. 

Figure 3.6 - (a) Axial displacement at the border in �3 to generate a constant strain field '3. (b) 

shear displacement in x and y direction to establish a constant strain field '�3. (c) Axial 

displacement at the border in �� to generate a constant strain field '�. 
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�© = $©ª'ª ∴ ë����33��3ì = �(1 + �) ∙ (1 − 2�)D
1 − � � 0� 1 − � 00 0 1 − 2�2 E . ë '��'332'�3ì  (3.2) 

 

'© = 0©ª�ª ∴ ë '��'332'�3ì = 1 + �� ë1 − � −� 0−� 1 − � 00 0 2ì . ë����33��3ì  (3.3) 

 

 Applying the materials’ properties described in Section 3.1, we will obtain the 

undamaged properties of the medium as presented in Expressions 3.4 and 3.5. Also, two terms 

are defined as the directional elastic and shear moduli at the plane strain state in Equation 3.6.  

The inverse of the diagonal elements of the compliance matrix clarifies what will be called as 

in-plane Elastic Modulus for a plane strain state at both x and y-axis (�4) and the in-plane shear 

modulus �4. All the results will consider as reference these analytical values to describe how 

the properties will evolve according to damage. This approach is more attractive when 

compared to a pure tensorial form, allowing the visualization of familiar entities to the reader.    

 

0´+ = ë0ÔÔ 0Ô_ 00_Ô 0__ 00 0 0��ì = ë2.6785 −0.893 0−0.893 2.6785 00 0 7.143ì 10�ÔÔ 
(3.4) 

 

$´+ = ë$ÔÔ $Ô_ 0$_Ô $__ 00 0 $��ì = ë42 14 014 42 00 0 14ì 10�G (3.5) 

 

ë1/0ÔÔ − −− 1/0__ −− − 1/0��ì = ë�4 − −− �4 −− − �4ì = ë37.333 − −− 37.333 −− − 14ì 10G 
 

(3.6) 

 

Based on these analytical values, the DEM structure imported inside the finite element 

software can be used to analyze the evolution of such properties as the damage increases.  

 

3.3 1st Scenario: Methodology for the Analytical Comparison 

 

One form of confirming the validity of the described discrete model is to compare it to a 

known analytical and well-established solution. This study will be called as the 1st Scenario 
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hereon. At the LDEM model previously described, a set of randomly oriented cracks with 

different sizes, orientation and quantity are used to compute progressive degenerating macro 

properties. Faults with 4 x �Ã, 7 x �Ã and 11 x �Ã, are spread randomly over the control volume 

(C.Vol) defined by the plate domain of 79 x �Ã of side. A Fortran code is applied to generate 

voids, similar to cracks, where the stiffness at defined regions are reduced to near zero. Five 

random distributions, maintaining the number of faults, are created to evaluate the statistical 

properties. 

Additionally, the total number of faults is also increased to verify the effect of the crack 

density parameter 
 over the material properties allowing a comparison with the Self-Consistent 

analytical solution (see Section 2.3.7). Figure 3.7 shows examples for each crack size type with 

a detailed view around the faults. This scenario does not restrict overlapping among the defects.  

The following discrete structures are created and the number underlined are the ones 

presented in Figure 3.7: 

- 4 x �Ã case with 0, 10, 20, 30, 40, 50, 60, 70, 80, 100, 120, 140, 180, 220 cracks (up to 
 H 0.15) 

- 7 x �Ã case with 0, 5, 15, 25, 35, 45, 55, 65, 75, 85 cracks (up to 
 H 0.17)  

- 11 x �Ã case with 0, 5, 8, 10, 13, 15, 18, 20, 23 cracks (up to 
 H 0.12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Figure 3.7 - (a) Examples with a random distribution of cracks with 4 x �Ã (example with 120 

faults) (b) with 7 x �Ã  (example with 35 faults) and (c) 11 x �Ã (example with 13 faults) over a 

control volume (C.Vol.) with 79 x �Ã of side. 
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3.3.1 Results of the Analytical Comparison  

 

Among the analytical solution presented in Section 2.3.6 and Section 2.3.7 for embedded 

faults in a medium, the best approximation for interacting cracks is the Self-Consistent model. 

The theory does not define the terms of “proximity,” but it is the best form to account for some 

analytical approach for the ongoing study. It also simplifies the comparison because the model 

does not distinguish macrostress from macrostrain. Only the condition of plane strain (PSN) or 

plane stress (PSS) shown in Table 2.1 must be accounted for. The solutions are only valid for 

the “open” cracks scheme as the “closed” form is a non-linear solution due to the different 

behavior in compression and in traction (see Figure 3.5). Nemat-Nasser and Hori, 1999 

demonstrate clearly that for the “closed” form, the stress state and the angular position at each 

individual fault will define a condition of compression or traction on the crack. Therefore, 

depending on how the load is applied, the void will be “open” or “closed,” and this will lead to 

a different relation between strain and stress. This fact means that different constitutive 

relationships will be defined depending on the load configuration. Due to these conditions, the 

study of an “open” crack configuration is more accessible and it is described firstly and 

compared directly with the theoretical prediction.  

As previously mentioned, the in-plane Young’s (�4) and shear (�4) moduli of an 

undamaged continuum medium at plane strain state are computed as the reference value for the 

ongoing study. The LDEM structures with known crack density parameter 
 are incorporated 

in the FEA model with domain containing 79 x �Ã by 79 x �Ã cells.  

The three cases, with the sizes of the cracks equal to 4 x �Ã, 7 x �Ã and 11 x �Ã, are 

investigated individually. It is essential to observe that the implementation of large cracks 

means that, for the same parameter value 
, fewer faults are embedded in the medium. This 

means that for the same control volume (C.Vol.), the 11 x �Ã case will have a higher sensibility 

to additional faults. On the other hand, an additional defect with 4 x �Ã will have little impact 

on the overall behavior of a structure as the number of cracks is more abundant for the same 
. 

Figure 3.8a describes the ��/�4 (○) and �3/�4 (□) variation for five different damaged 

structures according to increasing values of the crack density parameter 
. In this case, the faults 

are all equal to 4 x �Ã presenting an increasing coefficient of variation as the 
 grows.  The $%ß� reaches almost 4% when 
 = 0.14. It is clear to see that the Self-Consistent (blue line) 

agrees very closely with the extracted data at small values of 
. As the crack density increases, 

the two approaches start to diverge as the variation also increases.  
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Additionally, ��/�4 (○) and �3/�4 (□) data clearly shows a symmetric relation over a 

mean value, i.e., when, for example, the value of �3/�4 changes more significantly, the 

perpendicular term (��/�4) will always face minor decrements. This was also observed valid 

when ��/�4 varies more, establishing a low variance in �3/�4. This effect is caused by the 

random distribution of cracks imposed on the structure, which will have a preferential alignment 

in a particular direction. A simple example can be given when a few cracks are embedded 

randomly in the medium. For example, if three cracks are incorporated at the domain, they will 

align in a preferential direction. This alignment will affect the properties in one axis more than 

the other. Therefore, the random distribution of faults does not mean isotropic damage and the 

direct comparison with the Self-consistent method cannot be done appropriately. By increasing 

the number of random defects, there is a tendency to isotropic behavior naturally.  In order to 

compare the numerical solutions with the analytical ones, an isotropic crack distribution must 

be provided. This is done averaging �3/�4 and ��/�4 as presented in Figure 3.8b. The 

coefficient of variance becomes lower (<2.5%) compared to individual X-axis and Y-axis 

values. This effect will be much more evident for 7 x �Ã and 11 x �Ã cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 3.8 - (a) Extracted data from DEM/FEA model compared to analytical solution for the 

y-axis (�3 − □) and x-axis (�� − ○). Each one is composed of 5 different simulations. (b) 

The mean value of �3 and �� are computed as �Ío´Ã. Both plots show the coefficient of 

variation according to the crack density parameter 
. Open cracks with 4 x �Ã (overlapping 

allowed). 
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Figure 3.9a describes the evolution of the same parameters for the 7 x �Ã case for five 

different damaged structures.  The dispersion augments with 
, reaching $%ß� values of almost 

8% when 
 = 0.17. The effect of averaging presented in Figure 3.9b stands out compared to 4 

x �Ã case. The CV does not surpass 2% at any circumstances, which gives a sense of 

improvement in the data dispersion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lastly, the 11 x �Ã case is presented in Figure 3.10a, b. In general, the fluctuation and 

dispersion are distinctly greater even for small parameters 
. As the size of the faults approaches 

the C.Vol. size, more significant variation at the border is notable. Cracks with 11 unities 

certainly do not agree with the RVE assumption of d (dimension of the fault) << D (dimension 

of the body). Additionally, changes in individual faults’ orientation will produce extensive 

modifications at �� and �3 due to the necessary to add fewer cracks for the same parameter 
. 
These two distinct factors are responsible for more significant fluctuation in the results. 

However, the averaging process showed in Figure 3.10b clearly enforces Young’s modulus to 

a well-behaved curve with a coefficient of variance lower than 3.5%.  

Figure 3.9 - (a) Extracted data from DEM/FEA model compared to analytical solution for the 

y-axis (�3 − □) and x-axis (�� − ○). Each one is composed of 5 different simulations. (b) 

The mean value of �3 and �� are computed as �Ío´Ã. Both plots show the coefficient of 

variation according to the crack density parameter 
. Open cracks with 7 x �Ã. (overlapping 

allowed). 

(a) (b) 
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The Self-Consistent results (blue line) do not take into account the crack size explicitly; 

therefore, the three cases show the same curve, which decreases at a higher rate compared to 

the extracted results from the DEM/FEA model (black lines).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same study was mode considering the “closed” cracks scheme to evaluate the 

differences related to the “open” crack configuration. However, a positive strain-controlled 

system will always open the faults. Thus, �3 and �� must be the same as presented in Figure 

3.10, Figure 3.9 and Figure 3.8. Adjusting the properties of each link in compression to behave 

as an undamaged connection and following the same numerical simulation procedure has 

generated the same output as expected. It is important to emphasize that the similarity just 

occurred due to the outward strain. If a constant, but negative strain, were imposed on the 

domain, the extracted values would be equal to an undamaged body. The 

constitutive/compliance tensor in a “closed” crack form is indeed a load-dependent entity. 

On the other hand, the results for shear strain will not be the same for the “open” and 

“closed” crack scenarios. Figure 3.11a, b and c present the shear modulus � variation according 

to the crack density for an “open,” “closed” and Self-Consistent models. The “open” and SC 

data are similar and particularly suitable for small crack size (4 x �Ã). The coefficient of 

variation increases as the crack size grows as it has happened for the Young’s modulus study. 

(a) (b) 

Figure 3.10 - (a) Extracted data from DEM/FEA model compared to analytical solution for 

the y-axis (�3 − □) and x-axis (�� − ○). Each one is composed of 5 different simulations. 

(b) The mean value of �3 and �� are computed as �Ío´Ã. Both plots show the coefficient of 

variation according to the crack density parameter 
. Open cracks with 11 x �Ã (overlapping 

allowed). 
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But, the “closed” crack simulations presented a different and interesting output. The 

reduction of the shear modulus G, in this case, is about half of the theoretical value of the “open” 

crack scheme. Apparently, this observation is easy to comprehend if one considers a random 

distribution of defects. Statistically, for an isotropic distribution, half of the overall voids will 

be aligned at an angle that will induce a compression state on the bars, closing the defect and 

activating a non-damaged constitutive law. The other half will be in traction mode, which 

enables a negligible stiffness state at the bars allowing them to open. It is quite interesting to 

note that this phenomenon was capture naturally without imposing any condition to the 

structure or to the LDEM model. Observing the coefficient of variance of each case, it is also 

remarkable that the lower fluctuation in the closed form. A factor that possibly helps to 

minimize the variation is related to lower distortion imposed by a smaller quantity of active 

cracks and their interacting fields, which will also decrease the perturbation on the boundary 

surfaces.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 A Brief Study for Nonoverlapping Faults 

 

All the described results have in common a random distribution of cracks generated by a 

code, where the faults are allowed to overlap each other.  The Fortran code permits, to a small 

extent, to establish voids without superposition up to a crack density of 0.04. The 11 x �Ã case 

is studied at three crack density values to evaluate whether the solutions show any difference 

from the overlapping one. Figure 3.12a introduces all the data and Figure 3.12b presents the 

same averaging process previously described for “overlapping” and “no overlapping” 

Figure 3.11 – (a) Shear modulus �/�4 variation for 4 x �Ã, (b) 7 x �Ã and (c) 11 x �Ã cases. The 

dispersion also increases with crack size. The reduction in the values for “closed” scheme are 

about half of the values for an “open” scenario. 

(a) (b) (c) 
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circumstances. The averaging process narrows the dispersions and the standard deviation is not 

larger than 0.01 for both cases. Their averaged curves are consistently close up until the 

limitation of  
 = 0.04. Unfortunately, it is not possible to establish the behavior for larger 

values with the applied crack generator code, but one can observe that the overlapping does not 

induce the dispersion of the results significantly. The other issues previously commented as the 

strain/stress field interaction and the perturbations on the boundaries are probably the primary 

sources of variance.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Self-Consistent x Averaged Data 

 

An additional plot summarizing the deviation from the analytical Self-consistent model 

for “open” cracks is presented in Figure 3.13. The dispersion and the diverging process of the 

three scenarios are shown for the scale 0 < 
 < 0.2. In these plots, it is clear to observe that 

the averaged ��¯/�Ío´Ã has a difference below 4% for 
 < 0.1, diverging progressively as the 

crack density increases.  

The self-consistent results start to reduce at a higher rate, while the extracted data reduces 

at a slower rate leading to divergence at the plots. However, it is a considerably good agreement 

taking into consideration the completely different approaches that both procedures are based 

on. On the other hand, the  ��¯/� relation presented in Figure 3.13b has an “arc” form due to 

an explicit linear behavior of the extracted data (see Figure 3.11), while the Self-Consistent 

Figure 3.12 - (a) Original data for cracks with 11 x �Ã with overlapping allowed and no 

overlapping allowed. (b) The same study, but with the mean value �Ío´Ã. The maximum 

density parameter 
 permitted by the crack generator code is 0.04. 

(a) (b) 
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model decreases exponentially. However, considering an averaged value, the differences do not 

surpass 5% at 
 = 0.1, which is also an interesting result considering all the possible sources 

of error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The displayed results confirm that the application of the LDEM/FEA methodology agrees 

closely with theoretical predictions. A step forward is to apply the method to any other LDEM 

study to observe if the application of such procedure provides additional insights about the 

structure under analysis. The chosen one is related to a cyclic loading model covered as the 2nd 

Scenario. 

 

3.4 2nd Scenario: Cyclic Loading Case 

 

This Chapter holds the description of Section 3.1 and 3.2. The specific methodology 

(Section 3.4.1) and the results (Section 3.4.2 and 3.4.3) for a case where the response is not 

known are discussed. Section 3.4.4 presents a method that considers the subdivision of the 

structure into smaller parts for an undamaged domain. The results are treated in Section 3.4.5. 

The specific case where the cyclic loading is applied is described in Section 3.4.6.  

Figure 3.13 - Relation  ��¯/�Ío´Ã and ��¯/� for “open” crack scheme at the three scenarios 

under analysis (4 x �Ã, 7 x �Ã, 11 x �Ã). As the crack density parameter increases the 

dispersion of the results augments.  
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3.4.1 Methodology for the Complete Domain with Cyclic Loading 

 

After the application of the homogenization process in a known domain, a case where the 

process causes damage and the output is not controlled is studied.  The chosen case is 

characterized by oscillating loads applied in an LDEM model due to sinusoidal force variation 

[Soares, 2019]. This process is time-dependent, which means that the FEA analysis needs to be 

placed at specific time-steps of the total lifespan of the structure (Figure 3.14). The LDEM 

structure suffers the loss of stiffness in the time domain. At specific frames of the simulations, 

the data of the structure is stored with the stiffness of each bar after some cycles. This is done 

inside the Fortran environment from an initial undamaged condition up until moments before 

percolation.  

 

 

 

 

 

 

 

 

 

 

 

Soares, 2019 developed two primary schemes for the analysis of multiaxial cycling using 

DEM models. The first is a proportional loading process where shear stresses 1�3 and normal 

stresses �� are applied in-phase. The second one is a 90º out-of-phase nonproportional loading. 

In both cases studied, the amplitude of the normal and shear stresses is the same differing 

only by the out-of-phase scheme used at the nonproportional loading. Figure 3.15 presents an 

example of how the shear and normal stresses behave in these conditions. The stress amplitudes 

of the proportional case are described by a magnitude of 206 MPa and set with a stress ratio of 

zero (~ = 0). Soares, 2019 developed the two scenarios for the analysis of multiaxial cyclic 

loadings using DEM models with the constant lifespan defined at 100 cycles, which lead to 

amplitudes and mean values 13% larger for the nonproportional simulation. The coefficient of 

variation $%(�p) was defined with 70% at which the energy release rate �p��� was established at 

¸Ã  

¸_  ¸µ  ¸Ã  

… 

¸Ô  

Figure 3.14 – Concept of analysis in the time domain. The damage/stiffness of individual 

links are stored in defined moment of an LDEM analysis (Fortran). Then, the FEA model 

(Ansys) studies the loss of stiffness at these given moments. 
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16000 w/. in Soares’ work (see Figure 2.29).  The concepts of these entities were discussed 

in Section 2.6. 

 

The load will affect the elements initially with lower maximum resistance, reducing the 

stiffness and inducing a damage energy release that can be traced back to specific locations. 

Therefore, the damaged links will not sustain a significant part of the load anymore that will 

increase the stresses at surrounding components, leading them to mechanical properties 

reduction as well. The periodic forces will naturally cause a chain reaction that eventually will 

cause the percolation. Figure 3.16 presents the results from Soares, 2019, where a scale of 

energy released during the process of damaging is shown at specific time-steps. In this case, the 

domain is defined by only 70 x �Ã by 70 x �Ã, i.e., the Control Volume (C.Vol.) disregards 

some external elements due to conditions imposed at the borders. Some moments during the 

entire life of the structure were stored in order to evaluate the modification at the material 

properties. Instead of using the number of cycles, a relative parameter considering the total 

number of numerical iterations up until percolation is defined as a percentage of the lifespan of 

the structure. The total number of numerical iterations reached 490000 (100% lifespan): 

 

-0% lifespan (number of numerical iterations 100 – no damage) 

-3.5% lifespan (number of numerical iterations 17000) 

-5.2% lifespan (number of numerical iterations 25340) 

-7% lifespan (number of numerical iterations 34000) 

-8.5% lifespan (number of numerical iterations 41500) 

-10.5% lifespan (number of numerical iterations 51000) 

-40% lifespan (number of numerical iterations 200000) … 

Figure 3.15 -The proportional and nonproportional �� and 1�3 sinusoidal stress application at 

the domain’s borders applied for the cyclic cases using DEM.  Stress ratio R = 0. 
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Figure 3.16 shows three moments as the cycling process occurs. The proportional case is 

characterized by a quicker process where most of the damage happens before the 3.5% lifespan. 

As can be seen at a 40% lifespan, the characterization does not change a lot. It was noted that 

at just 99% of the cycling, a percolation process occurs at the top left side of the structure.  

On the other hand, the nonproportional case has a slower energy release process, as 

observed in Figure 3.16b. Additionally, the formation of clusters is more severe and spread over 

the body. An interesting aspect of this type of material representation is the way that the damage 

is evenly distributed throughout the body, similarly to the studies presented in Section 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2 Results of the complete domain with cyclic loading 

 

The energetic consideration are not discussed here, but the properties’ modifications 

caused by a combination of axial �� and shear 1�3 stresses applied at the boundaries of the 70 

x �Ã by 70 x �Ã plate, causing increasing damage over time. The decrement in stiffness will 

produce more significant strain on the bars if a constant strain is applied at the boundaries.  

Nonproportional case - damage released energy ±J² 

0% lifespan 3.5% lifespan 40% lifespan 

Proportional case - damage released energy ±J² 

3.5% lifespan 40% lifespan 0% lifespan 

((b) 

((a) 

Figure 3.16 - (a) Proportional load case where the damage released energy is presented at 0%, 

3.5% and 40% of the lifespan. (b) The same for the nonproportional load. 100% lifespan 

means percolation. [Soares, 2019] 
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Figure 3.17 is an example of individual links’ deformation at the 3.5% of their lifespan under 

proportional loading. The representation indicates just three strain scales (white, black and grey 

colors) to be able to distinguish damaged and undamaged links for an induced macrostrain '�� 

(a), '33 (b) and '�3 (c). It is possible to visualize at Figure 3.17a, b and c the maximum strain 

indicated by (MX), which represents the same position as the maximum damage released 

energy (see Figure 3.16a).  

 Figure 3.17a shows an example in a given time during the cyclic loading. The elements 

aligned with the X-axis are the ones in which the stiffness is more degenerated. While the 

diagonal elements (�Ä), which are represented in Figure 3.17c, are activated by the shear 

process and less damaged compared to the X-axis element �Ã. On the other side, the Y-axis 

links do not weaken by a significant amount (Figure 3.17b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is possible, as a first approach, to evaluate the stiffness tensor’s components according 

to cumulative effects. As expected, the results displayed the loss of stiffness due to the 

increasing damage. At an initial state, the components $ÔÔ and $__, related to the in-plane �� 

and �3, respectively, presented an error compared to the analytical solution lower than 0.4%. 

Some fluctuation can happen here, possibly due to the combination of the nonlinear solution 

and corner fluctuations already mentioned previously. The $�� term, also known as the shear 

modulus �, returned the same value as predicted by the continuum mechanics formulation (0% 

error).  However, as the links lose rigidity, their properties decrease very fast for the cyclic case 

Figure 3.17 – The three plots show a scale of deformation for a damaged domain when 

applying constant (a) '��  (b) '33 and (c) '�3. The black lines represent the increased strains 

at damaged elements at each direction. It is clearly the preferential disturbance in X-axis. The 

case is for a 3.5% lifespan under proportional loading.  

(a) (b) (c) 
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studied. Figure 3.18 shows that the body is primarily under the damaging process between time-

steps 0 (undamaged) until time-step 0.035 (3,5% of the total lifespan) changing slightly after 

this point. The simulations run just until time-step 0.105 due to the small variation of the overall 

properties after that point. Soares, 2019 also concluded that the released energy follows a 

similar path showing that the formation of new clusters does not occur after the initial cycles. 

The local damage progresses only at the finals interactions, where a percolation process occurs 

abruptly. The smaller variation due to damage happens to $__ term, while the largest changes 

are due to the x-axis loading as can be seen in $ÔÔcurve, dropping up to 88% of its original 

value for the plane strain state condition. The shear modulus G also presents significant 

reduction owing to the damage at the diagonal elements caused by the shear stresses 1�3. 

Nevertheless, it must be observed that these results consider the same approach as a “closed” 

crack system, i.e., the links keep their undamaged properties in compression.   

Another interesting aspect shown in Figure 3.18 are the terms $Ô_ and $_Ô. Due to the 

symmetric condition of the tensor, they should be equal, but as the damage grows, their values 

diverge by a small difference of 1% when using the homogenization procedure for the lattice 

structure. Table 5.1 presents the stiffness matrices, where it can be seen that the difference 

between the symmetrical terms is minimal. 

 

All the results consider a structure with the “closed” crack approach. Therefore, the tensor 

in load-dependent, as discussed previously. If the loads were applied in compression per 

Figure 3.18 - The changes in constitutive terms due to increasing damage up until 10% of the 

lifespan. The values are compared with the analytical solution of an undamaged isotropic 

structure. Proportional loading in plane strain state (PSN). “Closed” crack approach.  
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example, the values would differ from the one presented here. In these circumstances, the 

positive (outward) strain enforces the fractures to open, which defines the worst condition for 

the media to withstand.  

 

Table 3.1 – Plane strain stiffness tensor for each time-step under analysis. Proportional 

loading.  

Second-order Stiffness Tensor during the damaging process (Pa) Lifespan  

ë41.920 13.986 013.986 41.871 00 0 14.000ì 10G 
0% 

ë37.292 12.882 012.997 40.786 00 0 12.936ì 10G 
3.5% 

ë37.140 12.853 012.970 40.757 00 0 12.911ì 10G 
5.2% 

ë37.140 12.853 012.970 40.756 00 0 12.911ì 10G 
7% 

ë37.086 12.843 012.961 40.746 00 0 12.902ì 10G 
8.5% 

ë36.269 12.370 012.402 40.430 00 0 12.654ì 10G 
10% 

 

 As can be seen, the damaged evolution changes the isotropic behavior of the structure 

into an orthotropic-like material.  

 

3.4.3 Results with Nonproportional Loading Case 

 

 The same procedure was applied for the nonproportional loading conducted by Soares, 

2019, in his studies using DEM. In Figure 3.16b, the damage released energy follows a slower 

increment as the cyclic process occurs compared to the proportional case. To observe how the 

two schemes differ from each other, the plot in Figure 3.19 describes the evolution of the 

Young’s moduli and shear moduli. The time range was expanded up until 40.8% due to the 

increasing changes in the properties for the nonproportional case. After this point, the 

modification is not relevant. As observed in Figure 3.16, the nonproportional loading has a 
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more substantial impact on damaging the elements than the proportional one. This fact will lead 

to higher modifications to the properties, as presented below.  

At the mark of 0.4, the difference is around 4.5% between the �� cases.  �3 and G are 

also more influenced by the nonproportional scenario, but by a small amount. It is important to 

emphasize that this analysis cannot be directly compared to Figure 3.8 or Figure 3.11, for 

example. Those graphs are only for isotropic damages where the faults are randomly oriented 

over the body in what is called “isotropic damage.” The different terms in the X and Y-axis 

demonstrate a preferential damage direction forming an orthotropic constitutive tensor and a 

correspondent damage influence tensor D for the control volume (C.Vol.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In Section 2.5, an introduction about the polarization process of constitutive tensors was 

displayed. The interested reader can visualize the results of the application of the MSAT ® code 

in Appendix D using the extracted tensors.  

 

3.4.4 Methodology for the Domain Subdivision with Cyclic Loading 

 

An additional study related to the 2nd Scenario was performed considering the subdivision 

of the structure into smaller parts. The analysis is focused on regions with fewer cubic cells to 

Figure 3.19 – In-plane (a) X-axis Young’s moduli, (b) Y-axis Young’s moduli and (c) shear 

moduli variation according to the relative number of cycles. Plane strain state. Comparison 

between the prop. and nonproportional cyclic loading. The lifespan was expanded up to 40%.  

(a) (b) (c) 
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magnify the damage localization and the changes in the properties that this causes. The report 

considered the following situations: 

 

-35 x �Ã by 35 x �Ã: The overall domain is broken into 4 equal surfaces. 

-14 x �Ã by 14 x �Ã: The overall domain is broken into 25 equal surfaces. 

-5 x �Ã by 5 x �Ã: The overall domain is broken into 196 equal surfaces. 

 

Each one of the volumes is loaded with the three previous prescribed displacement 

defined by a homogenous strain at the surface as implemented for the whole body. Therefore, 

for example, for the control volumes (C.Vols.) with 35 x �Ã by 35 x �Ã, 12 simulations will be 

necessary, while for the control volumes (C.Vols.) of 5 x �Ã by 5 x �Ã case, it will be 

implemented 588 simulations. Each C.Vol. will have its own stiffness and compliance tensor. 

 The area outside the volume under consideration (grey color) is neglected by reducing 

the stiffness of those elements to nearly zero. Figure 3.20a exemplifies the 14 x �Ã by 14 x �Ã 

case containing 25 C.Vol., while Figure 3.20b shows the 35 x �Ã by 35 x �Ã case defining the 

subdivision of the body in 4 C.Vols. It is also added the reaction forces for a prescribed 

displacement yielding a constant strain '3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C.Vol. Nº1 

C.Vol. Nº2 

C.Vol. Nº3 

C.Vol. Nº4 

C.Vol. Nº6 
C.Vol. Nº1 

C.Vol. Nº5 

C.Vol. Nº2 ... 

C.Vol. Nº25 

... 

Figure 3.20 - (a) A system with 14 x �Ã by 14 x �Ã (25 C.Vol.). It is presented how the 

discretization of the total domain is performed to evaluate the properties at each volume. (b) A 

system with 35 x �Ã by 35 x �Ã (4 C.Vol.) is displayed with the force reactions at the nodes 

with prescribed displacement. Additional to (a) and (b), the domain is divided also with 5 x �Ã 

by 5 x �Ã (196 C.Vol.) for the cyclic loading study. 

(a) (b) 
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3.4.5 Results for Undamaged Subdomains 

 

Reducing the size of the Control Volume (C.Vol.) using a DEM model has consequences. 

The applied boundary conditions use the central node to enforce the prescribed displacement. 

As the C.Vol. becomes smaller, the force fluctuations at the borders have an increasing impact 

on the overall results. The quantity of unitary cells decreases, meaning that the forces at the 

corners will have broader relevance on the averaging process. Figure 3.21a shows the case for 

a domain with 70 x �Ã by 70 x �Ã where can be clearly seen the mentioned fluctuation at each 

one of the four corners. Owing to these characteristics, an analysis was conducted simulation 

the effect of the C.Vol. size at the component �� 4¬ 3 in an undamaged structure. The evaluation 

considered twenty-one domains ranging from 2 x �Ã by 2 x �Ã up to 70 x �Ã by 70 x �Ã. The 

results are presented in Figure 3.21b.  A domain with 2 x �Ã by 2 x �Ã will differ 5.5% from 

the analytical solution. However, as the C.Vol. increases, the divergence goes below 1% 

approaching sizes of 25 x �Ã by 25 x �Ã. On the other hand, the analysis of the $�� term, 

equivalent to the shear modulus G, has displayed no fluctuation at the border, leading to outputs 

equal to the analytical solution.  

These results demonstrate that the domain size, defined by the number of unitary cells 

with side length �Ã, establishes some inherent characteristics to the output regardless of the 

damage configuration. Keeping this source of error in mind, it is still possible to conduct tests 

reducing the C.Vol. and evaluating the impact on decreasing regions’ properties. 

The red arrows in Figure 3.21b indicate the Control Volumes with 5 x �Ã by 5 x �Ã, 14 x �Ã by 14 x �Ã, 35 x �Ã by 35 x �Ã and 70 x �Ã by 70 x �Ã. These are the domain sizes that will 

be analyzed in the next Section.  
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3.4.6 Results for the Subdomain Study with Cyclic Loading 

 

The total domain is subdivided into 4, 25 and 196 equal square parts that will be evaluated 

individually. An example for the division into four parts composed of 35 x �Ã by 35 x �Ã is 

displayed in Figure 3.22. The figures present an isometric visualization for the ��/�4 and �3/�4 and G/GT in plane strain state at three different time-steps during the proportional 

cycling (0%, 8.5% and 99% lifespan). The X and Y-axis describe the global position, while the 

Z-axis represents the variation on the local properties. The proportional case was extended up 

until moments before the percolation (99% lifespan) to observe if the subdivision of the domain 

would supply more information about cluster localization and possible regions of propagation.  

 The loss of stiffness ceases to be a global proposition and begins to describe the local 

variations characterizing regions where the damage is causing a more substantial impact. This 

is clearer observing position (0.5, 0.5) for ��/�4. At that subdivision/position, the damage 

increases more than the others and; on the other hand, the terms �3/�4 and G/�4 did not present 

considerable modification even close to the final cycles.  
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Figure 3.21 – (a) The forces fluctuations at the corner are presented. As the C.Vol. decreases 

in size, these perturbations affect more the constitutive terms. (b) Relative �� 4¬ 3 compared 

to the analytical solution for an undamaged structure according to the increasing number of 

C.Vols. cubic cells. Application of controlled displacements at the central node is used as 

load method.  

(a) (b) 
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A clever form to demonstrate the localization process and the loss of homogeneity is 

displayed in Figure 3.23. The energy release at (a) is shown along with ��/�4 defined by 

different subdivisions:  

(b) 1 subdivision - 70 x �Ã by 70 x �Ã 

(c) 4 subdivisions - 35 x �Ã by 35 x �Ã 

(d) 25 subdivisions - 14 x �Ã by 14 x �Ã  

(e) 196 subdivisions – 5 x �Ã by 5 x �Ã 

The time-step exemplified is at 3.5% of the lifespan indicated with a red circle in Figure 

3.19. 

 As the discretization of the medium increases, the mechanical properties, especially in 

the X-axis, change accordingly with the region of faults cluster formation. At the sectors 

(0.1,0.1) and (0.25, 0.3) clearly ��/�4 suffers the maximum reductions, reaching values of 0.74.  

Figure 3.22 – Example of total domain subdivision. The variation at three time-steps for the 

properties using four subdivision. The proportional case at 0%, 8.5% and 99% of the 

lifespan.  
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Appendix E shows the same plots for �3/�4 and �/�4 where it can be seen that the maximum 

reduction reaches values of 0.88 and 0.85, respectively. Therefore, the largest damage is 

obviously oriented according to the X-axis sinusoidal forces, while the shear load causes much 

less damage in the Y-axis and in the diagonal links. Despite Figure 3.23 displaying the case for 

a lifespan of 3.5%, very similar plots would have been presented if the time-steps were at 5.2%, 

7%, 8.5%, 10.5%, 40% or 71%. Only tiny local modifications in stiffness are observed at 

specific locations as the cycling grows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another form to visualize the properties dispersion throughout the plate without 

considering the local variation is displayed in Figure 3.24, where the distribution of the results 

is presented. It is interesting to observe the averaged values for the relative �� and �3. Their 

curves are dislocated by a constant factor from the undamaged cases (blue line). This becomes 

Local released energy [J] (DEM analysis) 

!L/!M (4 C.Vols.)  

NO/NP (1 C.Vol.) 

!L/!M (25 C.Vols.)  !L/!M (196 C.Vols)  

Figure 3.23 - (a) The released energy showing clusters of crack formation. (b) Plate’s 

discretization in 1 C.Vol. (70 x �Ã by 70 x �Ã), (c) in 4 C.Vols. (35 x �Ã by 35 x �Ã), (d) in 

25 C.Vols. (14 x �Ã by 14 x �Ã) and in 196 C.Vols. (5 x �Ã by 5 x �Ã). Case at 3.5% lifespan 

observing ��/�4 for the proportional cyclic loading. 

(a) (b) 

(c) (d) (e) 



 

90 

 
 

clearer for G, where the undamaged curve (red line) is not affected by the domain size as 

occurred for �4. Therefore, the error associated with the method influences by a constant factor 

the damaged subdomains according to the size of the C.Vol.. The max. – min. difference is 

presented at the bottom, showing the increasing dispersion as the quantity of subdomains 

augments. These graphs are an additional tool to define a suitable RVE demonstrating the 

convergence of properties as the size of the domain reaches 70 x �Ã by 70 x �Ã.  

As commented previously, the additional steps 5.2%, 7%, 8.5%, 10.5% or 40% present 

similar behavior, with the average value shifting downward by a small percentage from the one 

shown in the figure.   

A further investigation close to the percolation, review an interesting fact about the region 

where the damage grows uncontrolled. Additional to changes to the relative ��, more 

substantial reductions on the relative �3 and G start to appear in the northwest region of the 

plate. The other locations where �� reduces does not present significant changes in �3 and G 

and the process of percolation is avoided in all of those regions. It seems, from the averaged 

Figure 3.24 - ��/�4, �3/�4 and �/�4 variation decreasing the control volume (C.Vol.) size. 

The difference between max. and min. at each plot shows how the subdivision of the 

damaged body into smaller domains causes the dispersion of the properties caused by clusters 

of cracks. Case at 3.5% lifespan. 
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properties’ point-of-view, that percolation is associated with the DEM model when the diagonal 

and longitudinal stiffness in X and Y-axis drop to a certain point where the resistance reaches 

a critical value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region of percolation 

Figure 3.25 – Properties evolution up to 99% of the lifespan with the domain subdivided into 

196 parts ( 5 x �Ã by 5 x �Ã). The identification of the region where percolation starts is 

presented with the indication that ��, �3 and G are only evolving in that region. 
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All the presented data are considering that the homogenization procedure is valid under 

the formation of clusters and uneven distribution of cracks. This is certainly not the case when 

the decreasing size of the Control Volume (C.Vol.) approaches the dimension of the damaged 

regions, where fluctuation in stiffness mimics the crack behavior. When applying this 

technique, we are exchanging an approximation of the Representative Volume (RVE) for a 

localization procedure. The relative E or G, at some point in the subdivision process, ceases to 

be a valid value due to the broken homogenization hypotheses, but an additional technique to 

validate a consistent RVE in a damaged lattice structure is demonstrated. 

 

3.5 Transfer from DEM to a FEA Model 

  

Examples of conversion from DEM into the FEA model are displayed in Appendices A, 

B and C for a strain-controlled scenario: 

Appendix A: Preprocessing – Example introducing the nodes and stiffness relation at each 

element. It defines the 3D structure and resulting damage at individual components for the 1st 

Scenario with the size of the cracks equal to 4 x �Ã. Modifications to this code must be provided 

to adapt to the 2nd Scenario scheme. This code is written for multiply structures analysis at once.  

Appendix B:  Solution – Generates the solution for the subdivision process implemented 

in the 2nd Scenario. Parameters are set to define the size of the Control Volume (C.Vol.) and 

properties extraction. 

Appendix C: Postprocessing – Forces at each face are stored and a file containing them 

is created. Later, these data will be used in Matlab ® codes to determine damage and other 

features. 

The strain-controlled simulations were all set with a small constant strain of 1E-06 to 

avoid any problem regarding large deformation 
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4 CONCLUSIONS  

 

The main objective of the work was to explore the connection between the discrete 

element results in a damaged media and the continuum mechanics parameters. Two applications 

were tested. The first, domains with a known isotropic distribution of defects were simulated 

and compared to analytical solutions. The second, a cyclically loaded structure was analyzed to 

observe the loss of stiffness as the damaging process grows. The following main conclusion 

could be extracted from these Scenarios: 

 

-The application of such method in a structure with known crack density parameter, 

established a good agreement with the Self-Consistent method up to crack densities close to 

0.1, despite the entirely different approaches to the problem. It was an interesting result as both 

methods have no relation to each other. Additionally, the numerical study of random 

distribution of cracks allowed the interaction of the strain/stress fields, while the analytical 

approach takes the assumption of considerable distancing among the faults.   

 

-The analysis of several different random distributions with varying sizes of crack 

provided insights about the fluctuation that specific parameters have on the results. The length 

of the faults, when augmented, produced significant variations of the forces at the domain’s 

borders, diverging the output from homogenization requirements. Contrarily, as the size of the 

crack decreases, the forces have little fluctuations and the dispersion tends to decrease. This is 

an observation that agrees with assumptions from micromechanics. 

 

-For the same crack density parameter, small defects lead to an isotropic damage tensor 

when randomly spread. This happened because a large quantity of faults tends to align them 

equally in the X-axis and Y-axis. This fact induced similar damage in both axes. On the other 

side, large cracks embedded fewer cracks and, therefore, they aligned presumably in one 

preferential axis. That is also a reason for the higher coefficient of variance (CV) related to 

larger cracks compared to small ones.    

 

-The scripts that transform the LDEM model into an FEA model permitted to evaluate 

the constitutive relationships naturally when studying “open” and “closed” forms without 

enforcing any additional or complicated method/theory. The evaluation of the term �/�4 
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displayed the divergences in both schemes. The �/�4 reduction value for the “open” crack 

schemes was twice the “closed” one due to the different constitutive laws during compression. 

On the other side, the terms �/�4, in both schemes, provided the same output for a controlled 

strain oriented outwards. This form of damage evaluation is highly dependent on the load 

applied since the relation between strain and stress can switch abruptly when the direction of 

the load changes. The Analyst must observe that the constitutive relations are load-dependent 

for the “closed” scheme.     

 

-The model itself showed associated errors when employing the described methodology. 

This fact generated inconsistent results between FEA and analytical evaluations as the size of 

the Control Volume got smaller. The error is associated with the loading method at the border, 

which used the central node to apply the prescribed displacements. Additionally, the 

fluctuations at the corners contributed to this behavior. For example, Control Volumes with 5 

x �Ã by 5 x �Ã displayed a deviation of around 5% for an undamaged domain. As the damage 

reduces the material properties by a range of 5% to 30%, these associated errors must be 

accounted to interpret the results.    

 

-Despite the error associated with the size of the domain, the method was applied to 

analyze the study of Soares, 2019 (2nd Scenario). A proportional and nonproportional cycling 

process was analyzed at specific time-steps.  It allowed us to investigate the impact of the faults 

on each direction, obtaining new stiffness or compliance tensors when a constant strain was 

applied outward. The “closed” crack form is selected due to the quasi-fragile material properties 

in compression. The results demonstrated that after initial damage, the overall properties do not 

change significantly on a global scale. Nevertheless, the nonproportional case has clearly 

caused a more significant impact on structural properties. The X-axis lost more of its stiffness 

and, due to this characteristic, the initial isotropic became an orthotropic medium, which is a 

result consistent with the energy approach detailed by Soares.  

 

-The subdivision of the total domain into smaller subdomains lead to a localization 

procedure, i.e., individual subregions of the global structure were assigned with different 

constitutive relations. The analysis was made only for the proportional case at 3.5% of the total 

lifespan. The relative terms �/�4 and �/�4 were used to evaluate the discrepancies between 

the subdomains. It was demonstrated that as the area of the subregions reduced, the gaps in the 

material properties' values increased.   Naturally, the RVE assumption weakens in this case and 
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an inverse relationship between the localization of the clusters and the definition of a consistent 

RVE is presented. For example, the subdivision of the structure into four subdomains (35 x �Ã 

by 35 x �Ã) showed a maximum variation for ��/�4 of about 3% and an intrinsic error of the 

method of less than 1%. If an error of 4% is acceptable, it is conceivable to define each of these 

four subdomains as RVEs. The plot in Figure 3.24 showed that the maximum properties 

variation over the total domain decreases steadily as the domain increases from 5 x �Ã by 5 x �Ã (196 subregions) up to 35 x �Ã by 35 x �Ã (4 subregions). Expanding the converging curve 

for the three properties, it is natural to conclude that the 70 x �Ã by 70 x �Ã (1 subregion) case 

is likely to represent a consistent RVE for the domain under analysis. This type of study with 

multiple subdomains describes a methodology to establish an RVE for any LDEM model of 

interest.  

 

-Despite the application in a varying load scenario, the ultimate goal of this technique is 

to be suitable to any LDEM structure at almost any damage process, e.g., fatigue, impact or 

load-varying cases. Some are directly applicable, while for other schemes, small changes at the 

codes would be required for practical implementation.   

 

4.1 Suggestions for Future Works  

 

All the observations above and flaws allow us to indicate some possible works to enhance 

or modify the present work: 

 

-The codes presented in the Appendices can be changed to enable a study where the 

domain size is increased from a particular point. The idea is to define a specific point of the 

damaged body and to alter the size of the C.Vol. around it. The work in this dissertation 

presented a mapping process of the domain into smaller subdomains; therefore, this new idea 

would be an additional form to describe an RVE and a much quicker form to implemented due 

to the necessity to simulated fewer cases. The evaluation of the properties should also converge 

as the size of the C.Vol. reaches an even distribution of crack.  

 

-The reasons for the corner fluctuation were not studied in-depth. Studies considering the 

size of the domain, variance, size of the cubic unity and application of the boundary conditions 

could be performed to understand what is really happening in those regions.  
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- The forces were applied directly using the central nodes of the cubic cells. This 

configuration promotes a simple form to program the load, but it also yielded fluctuations at 

the corners, as already discussed. It would be interesting to try to reproduce the load conditions 

applying the load in different nodes positioned at the borders and search the best configuration 

to obtain an even distribution of forces. This way, a more consistent description of the 

constitutive tensor can be achieved.  

 

- The codes implemented are only for a Plane Strain State. Modifications could be made 

to observe how the responses would perform for a Plane Stress State. Additionally, studies in 

Macrostress could be carried out for the same reasons. 

 

- Changes to the code could also be made to extract extra dimension properties, i.e., to 

evaluate the constitutive tensor for a 3D solid. 

 

- Despite the application for a DEM model, nothing restricts the implementation of the 

homogenization technique for a pure finite element model. It is possible to apply the code to 

extract the properties for inhomogeneous medium and afterward implement an equivalent 

material to simplify any given simulation. 
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APPENDIX A – Scripts for Ansys: Prep7 
 

The script below was developed using Ansys® APDL for the implementation of the 3D 

lattice structure simulating the DEM structure. The script can only be used for Ansys® version 

superior to v.17 due to the change in Link180 APDL commands. It is introduced in Appendix 

A only the preparation commands (\PREP7) to define the nodes coordinates, the elastic 

properties and section areas of each element (stiffness characterization). The example is for a 

routine for a random distribution of crack produced by the FORTRAN code.   

       

!ARQUIVO NO TEMPO =  0.00E+000    
/PREP7          
/TITLE, TEMPO =  0.00E+000      
ET,1,link180          
Em = 35000000000.00         
MP,EX,1,Em  
      
           
! Coordinates for each node of the structure up until N = 19041.     
N, 1 , 0 , 0   , 0  
N, 2 , 0.0075 , 0   , 0  
N, 3 , 0.015 , 0   , 0  
N, 4 , 0.022500001 , 0   , 0 
N, 5 , 0.029999999 , 0   , 0 
….     
! Only represented 5 nodes with x, y and z coordinates. The overall number of nodes go up to 19041 nodes. 
! Each element is defined below according to the description: 
 
! The name of the file with the stiffness information is “Z_XXYY” with the first column for non-damaged bar 
(column 1) and a second column with damaged bars (column 2).   
! This example is for Z = 1 (the first structure of five that will be evaluated – 1st Scenario case). YY = 03 (the 
size of the crack is 03+1 -> 4). XX= 1:13 (there is 13 cases changing the density crack parameter).  
 
Z = '1'   ! Number of the random distribution of cracks (file) 
YY = '03'  ! Size of the crack (file) 
*DO, XX,1,1,13   ! Number of crack file      
Z_XXYY  = '%Z%_%XX%%YY%'        
AA = '%Z%_%XX%%YY%POSX'        
BB = '%Z%_%XX%%YY%Y'        
CC = '%Z%_%XX%%YY%XY'  
    
N_D = 93933 ! Column for non-damaged bar (column 1)     
D = 93934 ! Column for damaged bar (column 2)   
nelem = 93932          
to_skip=0  
          
! An additional file attached called “connect” must contain the connectivity. 
 
/INQUIRE,numlines1,LINES,Z_XXYY,txt       
/INQUIRE,numlines2,LINES,connect,txt      
to_read1 = numlines1-1        
to_read2 = numlines2-1     
*DIM,M_dano,TABLE,to_read1,2   
*DIM,connecti,TABLE,to_read2,2   
*TREAD,M_dano,Z_XXYY,txt,,to_skip      
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*TREAD,connecti,connect,txt,,to_skip    
 
! Below the iteration to create a damaged and undamaged structure with 93932 elements each. The total amount 
of link 180 elements will be of 187864, containing two bars at each position. One for compression and another 
for traction. 
! SECTYPE: Defines the type of element. In this case, Link180, which is a line/bar element, is applied. Just 
traction and compression accepted. 
! SECDATA: Defines the cross-section of each link element. It varies according to damage and position on the 
structure.  
! SECCONTROL: defines if the element responds to loading only under traction (1) or compression (-1). All the 
elements are duplicated.  
! E: defines the connectivity. It represents the nodes at which the element begins (i-coordinates) and ends (j-
coordinates). 
  
*DO,i,1,nelem          
SECTYPE,i,LINK       
SECDATA,M_dano(i,D)         
SECCONTROL,, 1         
SECNUM,i         
E,connecti(i,N_D),connecti(i,D), !EL i    
*ENDDO          
          
*DO,j,1,nelem          
SECTYPE,j+nelem,LINK       
SECDATA,M_dano(j,N_D)       
SECCONTROL,, -1         
SECNUM,j+nelem         
E,connecti(j,N_D),connecti(j,D), !EL i    
*ENDDO          
 
! The file below is called to generate the load necessary to capture the properties. Appendix B (\Solu) 
/input, Z_RXXYYPOS,txt 
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APPENDIX B – Scripts for Ansys: Solu 
 

Appendix B introduces the solution (\Solu) for the preprocessing system assembled in 

appendix A (\Prep7). The following code corresponds to the prescribed displacement at the 

C.Vol. boundaries on the x-axis. The same procedure must be done for the load at the y-axis 

and xy-plane (shear). These two last scripts will not be presented here, but can be easily derived 

from the given script. The domain described is formed by 1 x 1 group (70 x 70 cells). To create, 

per example, four domains, it would be necessary to change to “cel=35” and “FS=2”. This 

would imply in 2 x 2 groups (35 x 35 cells). 

 
/SOLU            
ANTYPE, STATIC        
NLGEOM, ON       
def=1E-6 ! Prescribed constant strain (not change)     
L=0.0075 ! Size in meters of each cell (not change)       
cel=70  ! Number of unit cells for each iteration      
FS=1  ! Number of interactions at each axis       
IL=1  ! Initial loop position        
K=0.00175 ! Offset for ekill procedure        
G=(L)/2            
OS=4  ! Offset of cell x and y directions       
           
*DO,q,IL*cel,FS*cel,cel        
*DO,j,IL*cel,FS*cel,cel          
           
 YInf1=L*(j-cel)+(2*OS+1)*L/2        
 Ysup1=L*(j)+(2*OS+1)*L/2        
 Xsup1=L*(q)+(2*OS+1)*L/2        
 Xinf1=L*(q-cel)+(2*OS+1)*L/2        
            
 LSCLEAR, ALL          
 EKILL, ALL          
 EALIVE, ALL          
 DOFSEL, S, U          
 DDELE, ALL   
         
! Select nodes with prescribed displacement  
        
NSEL, S, LOC, Z, 0         
D, ALL, UZ, 0.00E+00        
NSEL, ALL,          
NSEL, S, LOC, Z, L        
D, ALL, UZ, 0.00E+00        
NSEL, ALL,           
NSEL, S, LOC, Z, L/2 ,       
NSEL, R, LOC, Y, Yinf1-K , Ysup1+K      
NSEL, R, LOC, X, Xsup1-L/2 , Xsup1+L/2     
D, ALL, UX, (Def*(Xsup1)-0.29625E-6)      
  
D, ALL, UY, 0        
NSEL, ALL,          
NSEL, S, LOC, Z, L/2 ,       
NSEL, R, LOC, Y, Yinf1-K , Ysup1+K     
NSEL, R, LOC, X, Xinf1-L/2 , Xinf1+L/2     
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D, ALL, UX,        (Def*(Xinf1)-0.29625E-6)       
D, ALL, UY, 0         
NSEL, ALL,           
             
NSEL, S, LOC, Z, L/2 ,      
NSEL, R, LOC, X, Xinf1-K , Xsup1+K      
NSEL, R, LOC, Y, Ysup1-L/2 , Ysup1+L/2     
D, ALL, UY, 0        
NSEL, ALL,           
       
NSEL, S, LOC, Z, L/2 ,       
NSEL, R, LOC, X, Xinf1-K , Xsup1+K      
NSEL, R, LOC, Y, Yinf1-L/2 , Yinf1+L/2    
D, ALL, UY, 0          
NSEL, ALL,           
       
! Kill the elements by the side of each region       
            
  ESEL, S, CENT, X, Xsup1+K , 0.6   
  ESEL, A, CENT, X, 0 , Xinf1-K    
  ESEL, A, CENT, Y, Ysup1+K , 0.6   
  ESEL, A, CENT, Y, 0 , Yinf1-K    
  CM, AMEM, ELEM        
  EKILL, AMEM         
  ESEL, ALL         
           
  SOLVE          
         
 SAVE           
         
! An additional load with zero is proposed to cancel de displacement from previous loading. “It is a trick”.
  
 
LSCLEAR, ALL           
 EKILL, ALL          
 EALIVE, ALL          
 DOFSEL, S, U          
 DDELE, ALL          
         
! Select nodes with prescribed displacement        
            
NSEL, S, LOC, Z, 0         
D, ALL, UZ, 0.00E+00        
NSEL, ALL,           
NSEL, S, LOC, Z, L        
D, ALL, UZ, 0.00E+00        
NSEL, ALL,           
NSEL, S, LOC, Z, L/2 ,      
NSEL, R, LOC, Y, Yinf1-K , Ysup1+K     
NSEL, R, LOC, X, Xsup1-L/2 , Xsup1+L/2     
D, ALL, UX,       0        
D, ALL, UY, 0         
NSEL, ALL,           
       
NSEL, S, LOC, Z, L/2 ,       
NSEL, R, LOC, Y, Yinf1-K , Ysup1+K      
NSEL, R, LOC, X, Xinf1-L/2 , Xinf1+L/2    
D, ALL, UX,       0         
D, ALL, UY, 0         
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NSEL, ALL,           
       
            
NSEL, S, LOC, Z, L/2 ,       
NSEL, R, LOC, X, Xinf1-K , Xsup1+K     
NSEL, R, LOC, Y, Ysup1-L/2 , Ysup1+L/2     
D, ALL, UX, 0          
D, ALL, UY, 0         
NSEL, ALL,           
       
NSEL, S, LOC, Z, L/2 ,       
NSEL, R, LOC, X, Xinf1-K , Xsup1+K      
NSEL, R, LOC, Y, Yinf1-L/2 , Yinf1+L/2     
D, ALL, UX, 0          
D, ALL, UY, 0         
NSEL, ALL,           
     
! Kill the elements by the side of each region       
            
ESEL, S, CENT, X, Xsup1+K , 0.6    
ESEL, A, CENT, X, 0 , Xinf1-K     
ESEL, A, CENT, Y, Ysup1+K , 0.6    
ESEL, A, CENT, Y, 0 , Yinf1-K     
CM, AMEM, ELEM      
EKILL, AMEM          
ESEL, ALL           
        
  SOLVE          
         
 SAVE           
         
*ENDDO            
*ENDDO   
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APPENDIX C – Scripts for Ansys: Post1 
 

Appendix C is related to the post-processing script (\Post1) used to collect the data 

generated during the Appendix A/B script. Below, the shear forces are collected and stored in 

a file “XY_1_1” (example). The case is for a domain of 1x1 (70 x 70 cells). 

 

! Example for the Post-processed script to collect data from the shear solution (XY). The same procedure can be 
made for “ForcaX” and “ForcaY” with little changes. 
      
/POST1           
*DIM, FORCAXY,,1,4      
*DO,q,IL*cel,FS*cel,cel        
*DO,j,IL*cel,FS*cel,cel          
           
 YInf1=L*(j-cel)+(2*OS+1)*L/2       
 Ysup1=L*(j)+(2*OS+1)*L/2        
 Xsup1=L*(q)+(2*OS+1)*L/2        
 Xinf1=L*(q-cel)+(2*OS+1)*L/2        
 t=((q/cel) - 1)*FS+j/cel         
 M=2*t-1          
  SET,M          
  NSEL, ALL,         
  NSEL, S, LOC, Z, L/2 ,     
  NSEL, R, LOC, Y, Yinf1-K , Ysup1+K   
  NSEL, R, LOC, X, Xsup1-L/2 , Xsup1+L/2 FSUM, FY 
*GET, FORCAXY(1,1), FSUM,0,ITEM,FY       
  
NSEL, ALL,           
NSEL, S, LOC, Z, L/2 ,       
NSEL, R, LOC, Y, Yinf1-K , Ysup1+K     
NSEL, R, LOC, X, Xinf1-L/2 , Xinf1+L/2  
FSUM, FY  
*GET, FORCAXY(1,2), FSUM,0, ITEM, FY       
   
NSEL, ALL,           
NSEL, S, LOC, Z, L/2 ,       
NSEL, R, LOC, X, Xinf1-K , Xsup1+K     
NSEL, R, LOC, Y, Ysup1-L/2 , Ysup1+L/2   
FSUM, FX 
            
*GET, FORCAXY(1,3),FSUM,0,ITEM,FX  
 NSEL, ALL,          
 NSEL, S, LOC, Z, L/2 ,      
 NSEL, R, LOC, X, Xinf1-K , Xsup1+K    
 NSEL, R, LOC, Y, Yinf1-L/2 , Yinf1+L/2  
 FSUM, FX          
 *GET,FORCAXY(1,4),FSUM,0,ITEM,FX       
 NSEL, ALL,          
     
  
 
*CFOPEN, XY1_1,'txt', , APPEND  
*VWRITE, FORCAXY(1,1), FORCAXY(1,2), FORCAXY(1,3), FORCAXY(1,4)   
(E15.6, E15.6, E15.6, E15.6)          
*cfclos            
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*ENDDO           
*ENDDO            
etable, epelxyi, lepel, 1         
etable, sxy, ls, 1        
etable, forcexy, smisc, 1        
etable, area, smisc,2 
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APPENDIX D – Constitutive Matrix Decomposition: anistropy analysis 
 

The application of the MSAT ® program described in Section 2.5 can be used to 

decompose the constitutive matrix in order to separate the isotropic and non-isotropic parts, as 

explained previously. However, we are going to assume that only in-plane can undergo changes 

in their isotropy conditions. Therefore, out-of-plane entries are prescribed as in an undamaged 

state. Decomposing the extracted tensors using Equation (2.70), a percentage for each type of 

tensor shown in Equation (2.69) can be obtained. Figure D.1 shows the results for 

nonproportional and proportional loading. The lifespan analysis was increased up to 70%, 

indicating the convergence of both curves. As expected, the isotropic state was established as 

95.5% for the proportional loading and 94% for the nonproportional loading. It agrees with the 

statement that the nonproportional damage causes more damage leading the material to a 

“more” orthotropic description. The solution also states that most of the domain does not have 

large drops in the isotropic configuration. The directional properties are small, which keeps the 

body mainly isotropic despite the substantial damage during cycling.  

 

 

 

 

 

Figure D.1 – Anisotropy for proportional and nonproportional loading. The differences 

contemplate the idea that the nonproportional case is more severe, inducing greater 

perturbation at the stiffness matrix. The lifespan was increased up to 70%. 
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APPENDIX E – Results for the Subdivision Analysis for Ey and G  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Local released energy ±J² (DEM analysis) (a) (b) 

(c) (d) (e) 

Figure E.1 - (a) The released energy showing clusters of crack formation. (b) Plate’s 

discretization in 1 C.Vol. (70 cubic LDEM modules of side), (c) in 4 C.Vols. (35 cubic LDEM 

modules of side), (d) in 25 C.Vols. (14 cubic LDEM modules of side) and in 196 C.Vols. (5 

cubic LDEM modules of side). Case at 3.5% lifespan observing �3/�4 for the proportional 

cyclic loading. 
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Local released energy ±J² (DEM analysis) (a) (b) 

(c) (d) (e) 

Figure E.2 - (a) The released energy showing clusters of crack formation. (b) Plate’s 

discretization in 1 C.Vol. (70 cubic LDEM modules of side), (c) in 4 C.Vols (35 cubic LDEM 

modules of side), (d) in 25 C.Vols (14 cubic LDEM modules of side) and in 196 C.Vols. (5 

cubic LDEM modules of side). Case at 3.5% lifespan observing �/�4 for the proportional 

cyclic loading. 
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APPENDIX F – Article submitted for Approval in a Scientific Journal

Continuum damage evaluation in quasi-fragile materials simulated 
using a lattice discrete element method
 

Abstract 

The simulation of the damage process is a challenge for researchers nowadays. In ductile materials, the continuum damage 
mechanics is based on the plasticity framework, but quasi-fragile materials have some characteristic phenomena such as 
localization and size effects, among others, that could not be taken into account with this approach. The discrete element 
method has demonstrated considerable success in simulating the damage process in this kind of material. One of the advantages of 
this approach consists of capturing the transition between continuum and faults in a natural way. As a first approach, cracks are 
introduced in a lattice structure and the variations of the mechanical properties are evaluated comparing it with the analytical 
responses based on continuum damage theory. The finite element method and micromechanics concepts are incorporated for 
that purpose. The changes in the number of cracks and their sizes are analyzed, evaluating the overall behavior of the structure. 
Additionally, the study of the subdivision of the domain shows the intrinsic error associated with small DEM structure in 
describing the continuum with the applied technique. As a final scenario, the study of a lattice under progressive damage is 
carried out to evaluate the increasing anisotropy and loss of stiffness during a cyclic process. 

 
Keywords 
Lattice discrete element method (LDEM), Finite element analysis (FEA), damage mechanics, micromechanics, 
homogenization process. 
 

Introduction 
 
The evolution of the damage process in quasi-fragile 
materials, like ground stones concrete, and other synthetic 
composite materials, is an open problem in solid mechanics. 
The discussion developed by Krajcinovic (1996) [1] dealing 
with the classical damage methodology is inspiring. He and 
other authors developed and presented the discrete element 
method as an alternative where the continuum mechanics 
assumptions are loosened up to a certain point and the 
random distribution of properties can be easily incorporated. 
The discrete element models based on mass particles that 
interact by field functions, such as the one developed by 
Silling (2007) [2], is one of the alternatives. Another branch 
of research involves defining the interaction between the 
elements applying links that establishes a regular or non-
regular structure. The latter method is hereon called Lattice 
Discrete Element Method (LDEM), where the solid is 
characterized by an interconnected web of uniaxial elements 
where the masses are located at the nodes.  
The stiffness of each of these uniaxial elements is correlated 
directly with the solid material properties. The line elements 
yield a force field among the nodes that hold them together. 
The fracture is characterized, in these cases, as the result of 
an extreme reduction of the forces among nodes. Different 
approaches than the one applied in this work using LDEM 
can be found in Krajcinovic and Vujosevic (1998) [3], Sagar 
and Prasad (2009) [4], Nagy et al. (2010) [5], Schalangen 
(1995) [6] and Rinaldi (2011) [7]. The proposed lattice model 
used as a base in this work was developed by Riera (1984) 
[8]. The extracted data from the LDEM structure at different 
circumstances will be treated applying continuum damage 
mechanics concepts at two sets of examples. At the first, the 
theoretical results are known, and in the second, a more 
complicated situation will be evaluated. 
 
 
 

The Lattice Discrete Element Method 
 
The LDEM is based on a cubic arrangement with uniaxial 
element assuming a truss-like structure; therefore, only with 
three degrees of freedom. The basic module is described with 
twenty bars and nine nodes conceived initially by Nayfeh and 
Hefzy (1978) [9]. The problems regarding dynamic issues 
assume the masses concentrated at the nodes where the central 
node has half of the total mass, while each one of the remaining 
eight nodes has one-sixteenth of the total mass of the 
representative cube. The lengths of longitudinal and diagonal 
elements are �Ã and �Ä = √3�Ã/2, respectively. The 
equations that relate the properties of the elements with the 
elastic constants of an isotropic medium are: 
 � = GQ��RQ    "Ã =  t&®(G�RS)_(G�Ô_S)     "Ä = _S ï&√�                 (1) 

 

The axial stiffness of the longitudinal and diagonal elements is 
defined as �"Ã/�Ã and �"Ä/�Ä, respectively, where � and � 
values denote the Poisson’s ratio and Young Modulus. In the 
case of Poisson’s ratio equal to 0.25, the represented cubic 
arrangement shown in Figure 1a has the same constitutive 
relations as an isotropic continuum, while for different values of �, the shear coefficients will progressively diverge. The 
dynamic system enforces at every node the motion equation: 

 M�(¸)T + $�(¸)V + 
(¸) + &(¸) =  0                   (2) 

 

in which ! represents the diagonalized mass matrix, � the 
generalized nodal displacements, $ the diagonal damping 
matrix, 
(¸) the internal forces operating on the lumped 
masses and &(¸) representing the external forces. The system 
is uncoupled and a central finite differences approach can be 
applied to integrate the motion equation over the time domain. 
The nodal coordinates are updated at each time-step, which 
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allows large displacements to be accounted for naturally. The 
simplest constitutive law applied for quasi-brittle materials 
was proposed by Hillerborg (1978) [10], considering a 
triangular element constitutive relationship (ECR) at each 
normal and diagonal element. It accounts for the irreversible 
effects of faults nucleation and propagation. Figure 1b shows 
the relation between force and strain where the area below 
the curve defines the energy density necessary to fracture the 
cross-section area of the element. Therefore, for any given 

point P at the curve, the grey area quantifies the dissipated 
energy density by the ongoing damage. At the moment the 
damage energy density reaches the total fracture energy, the 
link fails and loses the capacity to carry additional loadings. 
This behavior is assumed for components under traction and, 
due to the higher ability of quasi-fragile materials to endure 
much greater loads under compression, all elements are 
considered linear elastic in these circumstances independent of 
the load magnitude.

 

 

 

 

 

 

 

 

Figure 1. (a) The interconnected web and the single cubic arrangement defined by the LDEM scheme. (b) Constitutive 
law and energy released during damage and elastic energy recovered after unloading in the path OAB [Iturrioz et al., 
2013].   

 

Thus, failure in compression is induced by indirect tension. 
The element axial force F depends on the axial strain ε. An 
equivalent fracture area   "© q, where the subindex i indicates 
if the bar is normal (n) or diagonal (d), must satisfy the 
equivalence of the energy dissipated by the fracture of the 
continuum and its discrete representation. Iturrioz et al. (2013) 
[11] studies and explores the fracture of a cubic sample of side LP where this equivalence is detailed. As a consequence, the 
strains εe and εa (see Figure 1b) must be related to another 
material parameter, the characteristic length dK , employing 
the expressions: 
 

         εe = 
 ¡UY JVW                 εa = εedK  ôXYUXYö � _tY�                  (3) 

 
In principle, unstable fracture propagation requires that the 
characteristic length of the structure exceeds dK . The role of 
the characteristic length in the fracture process is discussed by 
Taylor (2007) [12]. It should be noted that εa depends on the 
material properties and also on the level of discretization. 
More details about the LDEM formulation employed in this 
paper may be found in previous contributions of other authors 
(Birck et al., 2016) [13]. 
The random distribution of material properties, which mimic 
the real materials, can take into account small perturbation on 
the mesh according to a normal distribution. Therefore, the 
performance prediction in compression improves, making the 
mean equal to zero and the coefficient of variation C.Vol. 
equal to 2.5%. Additional details introducing the geometric 
imperfection field can be found in Riera et al. (2014) [14]. 
Another form to mimic the random material nature consists of 
proposing the toughness GL as a random field with a 
probability function of two-parameter Weibull function, 
defined by the mean value and the coefficient of variation. 

Additionally, the spatial field distribution is given by the 
correlating lengths in the three space directions. More 
information about these topics could be found in Puglia et al. 
(2019) [15]. 
 

The faults in Continuum Mechanics 
 
The main objective of this work consists of linking the results 
obtained with LDEM and the classical micromechanics 
approaches. Gross and Seelig (2006) [16], among others, 
considers the multiphase case scenario introducing the so-
called Representative Volume Element (RVE). For linear 
elasticity cases, the relationship between averages for the 
stress and strain fields implies the definition of an effective 
stiffness property C* or compliance property S* which are not 
related to the material property, but a mean of computing the 
correlation between different averaged fields of the RVE: 

 < σ >XZ[\  = C∗ < ε >XZ[\     or  
  < ε >XZ[\  = S∗ < σ >XZ[\     where          
                                                                               

  <∙> = ÔX](∙)dv                                                                (4)  

 
Notice that the relation (4) also is called the Hill Principle, one 
of the fundamental concepts in the micromechanics 
framework (see Nemat-Nasser and Hori (1999) [17]). The 
phase ratio can be used as a weight parameter (�Ã = %Ã/%ÞÏß) 
where the subindex n represents the different phases of the 
mixture. If �Ð represent the matrix volume ratio of the matrix, 
and �p  represents the particular case where the dispersed 
phases are fissures or cavities, we apply the framework of 
micromechanics to represent the continuum damage theory, 
propose originally by Kachanov (1958) [18]. Microcracks 

Ln Ld 

(a) (b) 
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distribution embodies the damage in this scenario. This 
dispersed phase has no contribution to the total volume; 
therefore, one can define the overall strain as the matrix strain  < '©ª >Ð, �Ð equals to one and the fraction of the crack �p can 
be considered null. Applying the divergent theorem at the 
external area of the body �% and including the internal surface 
of the crack �Ωp, it is possible to derive: 
 < '©ª > = �Ð < '©ª >Ð+ Ô_Ï ∙ ] �©	ª + �ª	©  �"î^� =                      < '©ª >Ð   +  < '©ª >púûüûýp¬´pÊ oqqopð                                                   (5) 

Otherwise, inverting the relation: 
 < �©ª > = $©ªÊË Ð(< 'ÊË >Ð +  < 'ÊË >púûüûý)p¬´pÊ oqqopð        ��  
 < '©ª >= 0©ªÊË Ð < �©ª > + < 'ÊË >púûüûýp¬´pÊ oqqopð                             (6) 

 
In this case, the crack strain tensor 'p is related to the average 
strain field 'µ by a damage influence tensor defined as l. 
Conversely, the stress path will lead to an influence tensor f. 
Equation (7) defines the effective elasticity tensors depending 
on the application of macrostrain '4 or macrostress �4, 
respectively. The reduction of the matrix stiffness due to the 
presence of the damages inside the representative volume can 
be clearly observed: 
 0∗_ = 0Ð + f   ��  $∗þ = $Ð: (1 − l)     where    'p = f: �4 = f: $Ð: '4 = l: '4                                          (7) 
 
Several analytical solutions under different circumstances are 
available to compute the effect of cracks on the material 
properties. The Dilute approach takes the Eshelby solution 
directly, but it does not consider any interaction among the 
defects. Changes in the formulation allow the introduction of 
small interactions among the induced fields around the cracks, 
which permit higher fault densities. The Self Consistent (SC) 
method is one of them, where the changes in the in-plane 
overall shear (�) and Young Moduli (�) according to 
 in a 
plane strain state can be computed (Eq.8 - see Nemat-Nasser 
and Hori (1999) [17]). The term crack density parameter 
 is 
defined as the number of cracks wL per unit area multiplied by 
the crack size parameter �_, i.e., 
 =  wq ∙ �_, establishing 
that all cracks have the same size 2�. The solutions presented 
are for frictionless and permanently open faults. One 
observation about these methods is that for values larger than f >>0.15, neither Self-consistent nor Dilute methods are 
reliable approaches. 
 � (�¯)������� = �(1 − 
 π)(1 − 
 ��)�Ô            � (�¯)������� = �(1 − f π)(1 − 
 ��_)�Ô                                     (8) 
 
Methodology 
 
The damage evolution during the simulation process is 
translated into element stiffness degradation. The 
configuration of the LDEM model in several stages during the 
damage process is stored to explore the damage evolution in 
the LDEM model, using the continuum damage framework. 
This information is incorporated into an equivalent finite 
element model. The connecting elements are defined by 
tension/compression uniaxial components with three degrees 
of freedom at each one of the two end nodes. In the context of 

Ansys 18.2 (2018) [19], the element which fulfills these 
requirements is LINK180. As the structure presents different 
behavior under traction and compression due to its quasi-
fragile constitutive law, the component can be defined to 
support tension-only (sectype = 1) or compression-only 
(sectype = -1). This option turns the numerical solution into a 
non-linear iterative process. Therefore, the model is 
characterized in the FEA scheme applying two overlapping 
pin-joints structures, where at each represented line element, 
two links can be activated depending on the load condition on 
a specific configuration. This configuration is defined as a 
“closed crack” scenario. 
On the other hand, if the tractive constitutive law is also 
assumed for the compression regime, the study defines what 
is called “open cracks.” The codes to convert the LDEM 
model into an FEA model are presented in the appendices of 
Giordani (2019) [20]. The global domain is defined as 79 x 79 
x 1 cubic unities in plane strain state. Each cell is characterized 
by a length size ( �Ã ) equal to 0.0075 m. The material 
properties consider the linear elastic behavior with Young’s 
modulus equal to 35 GPa and Poisson’s ratio of 0.25. A plane 
strain state requires three load conditions to define the 
components of a representative constitutive tensor (Figure 2a, 
b, c). In this study only a controlled strain situation is imposed, 
i.e., the input characterizes a constant strain 'µ©ª  over the 
domain defining a known displacement �© at the boundaries )ª : 

 
 �|B
ç = 'µ©ª ∙ )ª  → '(«�«««)©ª ∙ )ª                      (9) 

 
 

The three load cases are the constant axial strain in the x-axis, 
the constant axial strain in the y-axis and the constant shear 
deformation in the xy-plane. The application of such 
displacements is set at the central nodes of each unity cube 
(Figure 2d). When the configuration presents a certain degree 
of damage, the forces at the boundaries will decrease, because 
the stiffness was reduced, producing modifications on the 
constitutive tensor. These changes can be computed in many 
forms. One of them is establishing the damage tensor l making 
it possible to extract mechanical properties such as modified ��, �3  and �, which are related directly to the diagonal terms 
of the new stiffness tensor. 
A particular situation for the “closed cracks” regime must be 
pointed out. The local stiffness in these circumstances is 
dependent on the load conditions, i.e., the constitutive tensor is 
load-dependent and it will assume other values depending on 
how the three loads are set. “Open cracks,” as the properties 
remain the same under compression or tension, the material 
properties will be independent of the load configuration.  
 

Comparison with analytical solutions 

 
The validation of the proposed approach could be done, 
comparing an LDEM model with some known classic pattern 
with a well-established solution. Specifically, an LDEM model 
with randomly oriented cracks with different sizes, orientation 
and quantity are used to compute the homogenized properties 
of the proposed internal structure. Faults with 4 x �Ã, 7 x �Ã 
and 11 x �Ã, are spread randomly over the control volume 
(C.Vol.) defined by the plate domain of 79 x �Ã of side, 
considering plane strain condition.  Five random distributions 
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for each configuration tested are evaluated to characterize the 
statistical properties of the random response. Three simulation 
sets are considered: 
4 x �Ã case with up to 120 cracks (
 H 0.15) 
7 x �Ã case considering up to 85 cracks (
 H 0.17)  
11 x �Ã case, which reaches only 23 cracks (
 H 0.12). 
 
The Self-Consistent analytical solution is considered a 
reference for the homogenized properties computed for each 
level of 
. Figure 3 shows examples for each crack size 
configuration under analysis. As follows, three aspects of the 
simulations are discussed: 
 
(i) The relation between �� and �3: 

In the implemented procedure, three elastic constants are 
computed: the in-plane Young’ moduli �� and �3 in the two 
orthogonal directions and the in-plane transversal modulus ��3 . The studied cases presented matrices with different fault 

densities randomly distributed, as illustrated in Figure 3. For 
these configurations, transversal isotropy for the simulated 
domain is expected; therefore, �� and �3 must be equivalents. 
In Figure 4a the normalized values of �� and �3 respect to the 
Young modulus of the matrix, for different levels of 
, are 
displayed.  The analytical solution obtained using the Self-
consistent method is plotted with a blue line. The correlation 
between the blue line and the values obtained using the LDEM 
model are remarkably good up to 
 H 0.1. This result is 
expected because the analytical expression is valid for low 
values of 
. In Figure 4b the same results displayed in Figure 
4a are shown but considering the value �Ío´Ã  as an averaged 
term of  �� and �3. When comparing the two plots, it is 
possible to observe that the max. coefficient of variation of �� 
and �3 reaches 8% and for  �Ío´Ã it does not surpass 2%. The 
same tendency presented in Figure 4 occurs for the other 
simulation sets (4 x �Ã and 11 x �Ã).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 2. (a) Axial displacement at the border in bc to generate a constant strain field dc. (b) Shear displacement in x 
and y direction to establish a constant strain field dLc. (c) Axial displacement at the border in bL to generate a constant 
strain field dL. (d) Detail at the right top corner of case c showing the constrained central nodes.   
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Figure 3. (a) Examples with a random distribution of cracks with 4 x ef, (b) with 7 x ef and (c) 11 x ef over a control 
volume (C.Vol.) with 79 x ef of side.  
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. (a) NO/NP and Ng/NP variation according to crack density Ç. The coefficient of variance (C.Vol.) is also 
presented for each axis.  (b) Averaged relative Young’s modulus using X and Y-axis values showing lower variation. 7 x hi case. Faults overlapping each other is permitted.  
 
(ii) The influence of the fissure overlapping in the results:  
In the configuration illustrated in Figure 3, it is possible to 
observe that the cracks can overlap each other. In Figure 5a 
and b, the configuration comparison with and without 
overlapping are considered for faults set of 11 x �Ã. Note that 
to create a configuration without defects overlapping, a 

restriction in the fissure generation must be taken. The results 
for both types of arrangements for 
 in the interval between 
[0.025, 0.04] are displayed and the results obtained show the 
same tendency. 
 

 

 

(a) (b) 

(a) (b) (c) 
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Figure 5. (a) !L/!M and !c/!M data are showing the domain with cracks with “no overlapping” and with “overlapping” 
allowed for small fault densities Ç.  (b)The averaged relative Young’s modulus at each case presents low C.Vol. variation 
(<2%). 11 x ef case. 
 
 
(iii) Discussion about the result for the “Open crack” and 

“Close crack” situation: 

Controlled axial strains outward do not alter the results 
significantly when the cracks are “open” or “closed.” 
However, the application of a constant shear strain will affect 
each fault differently depending on the chosen situation. 
Nemat-Nasser and Hori (1999) [17] demonstrates that for 
“closed cracks,” the solution is non-linear and the effective 
properties are dependent on the stress configuration on the 
domain. Taking a region under shear stress, every single 
crack will be in a state of opening or closing that is highly 
dependent on the faults’ angle. The integration of the 
individual responses will define the stiffness or compliance 
tensor. In this study, the shear modulus was extracted 
considering both scenarios. The “open crack” scheme shows 
a good agreement with the Self-Consistent approach and a 
considerably low variation of the coefficient of variance 
(<3% for the 7 x �Ã case). However, the “closed cracks” 
study displayed approximately half of the value compared to 
the “open” one. Figure 6 plots the distributions and their 
respective coefficient of variation for both situations. 
Statistically, for a random distribution of cracks, half of all 
faults will be aligned at an angle that will induce a 
compression state when a shear process is assumed, which 
means an undamaged material property characterization 
(“closed” form). The other half will be in traction mode 
defining a 50% reduction of the ��3  relative to the “Open 
faults” scenario. The same was observed for the 4 x �Ã and 11 
x �Ã  cases where the coefficient of variation also 
progressively increases with the growing set of crack size. 
 
 
 
 
 
 
 

 
Figure 6.  Lc/ M for “open” and “closed” cracks schemes. 
The “open” scenario is close to the theoretical Self-
Consistent model, while the “closed” case has half the 
“open” case values. 7 x ef case. 
 
The dispersion of the simulation sets is presented in Figure 7 (4 
x �Ã, 7 x �Ã and 11 x �Ã) for different levels of crack density 
 
with the results normalized respect the Self-Consistent solution. 
Only the “open faults” approach with overlapping allowed is 
displayed. The solutions in all the cases present an error < 4% 
for crack densities lower than 
 = 0.1. Remember that the Self-
Consistent method is valid only for small values of 
. 
Therefore, the technique here proposed to compute the effective 
properties using the LDEM model is successful in representing 
the actual loss of stiffness caused by a known distribution of 
faults. 

(a) (b) 
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Figure 7. Relation  !jk/! and  jk/  for “open cracks” at the three scenarios under analysis (4 x ef, 7 x ef, 11 x ef). 
As the crack density 
 increases, the dispersion of the results also increases.
  

Application case: Nonproportional and proportional 
loading 
In the present section, the LDEM method and the proposed 
methodology are applied for a square domain at plane strain 
state under multiaxial oscillating loading. The evaluation 
analyzes how the damage evolves over time. Two sets are 
considered, one is at proportional and the other at 
nonproportional loading. A proportional load establishes that 

shear stresses 1�3 and normal stresses �� are in-phase, while 
the nonproportional case implies a 90º out-of-phase normal 
and shear stresses. The two load cases are defined with stress 
amplitudes that will generate the same number of cycles until 
the moment of rupture; therefore, the stress amplitude differs 
between the nonproportional and proportional scenarios, as 
depicted in Figure 8. More detailed about this example can be 
founded in Soares (2019) [21].

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The proportional and nonproportional sinusoidal stress lL and mLc set at the domain’s borders during the 
LDEM simulation.  Stress ratio R = 0 at plane strain state. 
 

During the damage evolution, the stiffness of each element 
can be stored at different time-steps and the effective 
properties variation over time can be analyzed. The relative 
parameters ��, �3 and G at each moment are computed using 
the same approach described in the previous section. 
The results are presented in Figure 9, where the effective 
properties evolution up to 40% of the total lifespan is 

displayed. It is possible to verify that the nonproportional 
loading produces more damage compared to the proportional 
one. Additionally, the Young modulus in the X-direction is 
the one that suffers a considerably higher level of damage. 
Therefore, the values of �� and �3 evolves differently during 
the damage growth, which will lead to an anisotropic 
description of the media during the process
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Figure 9. (a) X-axis relative Young’s modulus, (b) Y-axis relative Young’s modulus and (c) relative shear modulus 
variation with increasing damage over a cyclic process evaluated at nonproportional and proportional conditions up to 
40% of the total lifespan. Plane strain state. 
 
Effect of decreasing Control Volume 

The body under investigation is composed of 79 x 79 cubic 
cells where the loads are prescribed at the central nodes at the 
borders. The undamaged domain provides almost the same 
result as the continuum mechanical approach by an error of 
0.2%. In the following analysis, the outer region comprised of 
4 cubic cells is disregarded due to some consideration for the 
application of the forces (see Soares (2019) [21]). Then, the 
volume of interest will be described with 70 x 70 cubic cells. 
The problem here consists of investigating how the effective 
properties will be modified when the control volume (C.Vol.) 
decreases. In the present study, the model without damage is 

analyzed over different dimensions of the C.Vol.. The model 
is subdivided into domains with 2 x 2 up to 70 x 70 cubic cells 
to evaluate the undamaged variation of the in-plane elastic 
values �� 4¬ 3. The scheme presented in Figure 10a illustrates 
the division when the C.Vol. has 14 x 14 cubic cells. Figure 
10b shows that for small C.Vols., such as 2 x 2 cubic cells, the 
DEM proposition will return values equal to 94.5% of the 
classical mechanics, i.e., an error of 5.5%. The increasing 
C.Vol. size decreases the error exponentially, achieving 
values inferior to 1% for domains larger than 25 x 25 cubic 
cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. (a) Example of model subdivision into 25 subregions formed by 14 x 14 cubic cells (b). The effect on NO Pn g 
as the control volume (C.Vol.) decreases from 2 x 2 up to 70 x 70 cubic cells. Example 14 x 14 is presented at (a) and 

highlighted in red-dash at (b). 
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The analysis of the local variation allows us to evaluate how 
the local parameter will change according to the coordinate 
point. To demonstrate this effect, the time-step under 
proportional loading equal to 3.5% of the total lifespan, 
indicated with a red circle in Figure 9a, was chosen to analyze 
how the decreasing control volume (C.Vol.) will modify the 
material properties. The application of such technique 
provides support to define a consistent Representative 
Volume Element (RVE) depending on how the variation of 
properties will be displayed over the body. Figure 10a shows 
the dissipated energy extracted from the LDEM model 
developed by Soares (2019) [21]. It is possible to observe 
peaks where clusters of microcracks are forming, defining the 
potential sources of growing fissures. An example of how the 
relative �� is affect as the domain decreases from 70 x 70 to 5 
x 5 cubic cells is shown in Figure 11b, c, d, e. The largest 
subdivision presents a considerable variation in the damaged 
regions compared to undamaged areas. It is possible to extract 

the effective properties from these different control volumes 
(C.Vol.). The analysis can be presented by an average and 
their dispersion (Max. – Min.) as shown in Figure 12 for ��, �3 and ��3 . It is evident that the variation increments as the 
C.Vol. decreases, which also means that the equivalent 
property for the whole body (RVE) becomes more imprecise. 
On the other hand, when the subdivision is small, as, e.g., with 
four subdomains, the interval Max. – Min. is subtle. 
Therefore, it can be said that for the 70 x 70 cubic cells 
scenario (1 subdivision), the C.Vol. is a good approximation 
of the RVE. 
It is interesting to observe the averaged values for the relative �� and �3. A constant factor dislocates their curves from the 
undamaged cases (blue line). This fact becomes clearer for G 
where the undamaged curve is not affected by the domain size 
as occurred for ��  and �3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. (a) The released energy showing clusters of crack formation. Extracted from Soares [21]. (b) Plate’s 

discretization in 1 C.Vol. (70 cubic LDEM modules of side), (c) in 4 C.Vols. (35 cubic LDEM modules of side), (d) in 25 
C.Vols. of (14 cubic LDEM modules of side) and in 196 C.Vols. (5 cubic LDEM modules of side). Case at 3.5% lifespan 

observing NO/NP for the proportional cyclic load. 

NO/NP (4 VC)  

Local released energy [J] (DEM analysis) 

NO/NP (4 C.Vol.s)  

(a) (b) 

(c) (d) (e) ) 

NO/NP (1 C.Vol.) 

NO/NP (25 C.Vols.)  NO/NP (196 C.Vols.)  
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Figure 12.  NO/NP, Ng/NP and o/oP variation decreasing the control volume (C.Vol.) size. The difference between max. 
and min. at each plot shows how the subdivision of the damaged body into smaller domains causes the dispersion of the 
properties caused by clusters of cracks 

 

Conclusion 

The application of the homogenization procedure in an LDEM 
model is a capable tool of correlating the continuum 
mechanics and the discrete models. The comparison between 
analytical and the numerical solution for a random distribution 
of cracks presented excellent agreement considering the 
extracted properties. Additionally, the given variations were 
consistent with micromechanics concepts, where the size of 
the defects influences precisely the description of an RVE. 
Additionally, the study of “open” and “closed” faults was 
performed without enforcing any new theory, which supports 
the argument that the LDEM approach naturally mimics the 
continuum description.  
The example of proportional and nonproportional cycling 
loads considering 70 x 70 cubic cells showed that after the 
initial steps, the overall properties do not change significantly 
at the global scale as also predicted by Soares (2019) [21] 
which considered the released energy during damage 
evolution. Nevertheless, the nonproportional case has clearly 
caused a more significant impact on structural properties.  
An analysis considering the effect of the domain size has 
demonstrated that as the size of the C.Vol. gets smaller, 
inconsistencies between numerical and the analytical 
evaluations start to grow up to 5% for mechanical properties 
as �� and �3 . However, for domains larger than 25 x 25 cubic 
cells, the variation is lower than 1%, and useful predictions 
can be made. Despite the intrinsic error for small C.Vols., the 
break of the damaged body into several subdomains presented 
averaged mechanical properties equal at all cases disregarding 
the inherited variation of the undamaged media. The analysis 
of the dispersion of the values is also introduced to establish a 
way to converge the control volume towards a consistent RVE 
description. 

Despite the examples presented, the methodology is easily 
adaptable to be applied along with the LDEM approach, 
serving as a collaboration to extract more information of the 
media under investigation. 
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