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GEOMETALLURGICAL MODELLING TO HELP IN PREDICTING ZINC 
METALLURGICAL RECOVERY

ABSTRACT

A metal recovery at a mineral processing plant is affected by rock properties and process 
variables, including ore grain size liberation, head grades feeding the process, hardness among others. 
Additionally, metal recovery has not necessarily a linear relationship with those variables, which
makes its prediction more complex. Geometallurgical tests results affect deeply the mining chain and 
economics and its correct modelling and prediction is of paramount importance to any mine operation.
This study uses a multiple regression model to predict metallurgical recovery from geological 
variables, which is basically a statistical method that stablishes the relationship between a dependent 
variable Y, also known as response, and two or more independent variables X(X1,X2,…,Xn), called 
explanatories, with the constraint that there is a correlation between these and that. The methodology is 
illustrated through a case study in a major zinc deposit. The explanatory variables used were zinc head 
grade feeding the processing plant and the main ore typologies from the deposit. The independent 
variables were estimated via ordinary and indicator kriging at every mined block. The regression 
model with its associated regression error provides the means to randomly draw a value for ore 
metallurgical recovery at each block. The results showed that the use of geological variables for 
metallurgical recovery prediction provides reliable estimates as the results reconcile well against 
production data.
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INTRODUCTION

A good performance of a mineral processing plant is close linked to a proper knowledge of 
geology, mining, processing and metallurgy. Studying these areas simultaneously, observing 
relationship between them, permits to understand and quantify the variability of the ore and, in the 
same way, predicts the response of different rock types during mineral processing. The link between
all areas involved in the ore production chain is called geometallurgy (Beniscelli, 2011).
Geometallurgy aims at controlling variables which interfere directly or indirectly in the process, such 
as concentration of gangue minerals, ore grade, work index, reagent consumption, grain size
distribution, ore liberation, hardness, grindability, humidity, concentrate quality, among others, in 
order to add economic value to the resource (Rossi e Deutsch, 2014; Deutsch, 2013; Beniscelli, 2011).
It also enables the identification of environmental impacts and their subsequent mitigation, ore 
recovery increase, contaminants and by-products detection and quantification, and product quality 
assurance. Geometallurgy assists the selection of the size of the selective mining unit, the direction of 
process routes, the ore comminution stages, in addition to quantifying and determining the products 
used for flotation, and in metallurgy.

Geometallurgical variables modeling is complex, as it involves nonlinear variables and, 
usually, large number of them. Often, what is available are indirect measures of metallurgical 
variables. To deal with nonlinearity problem, additive variables can be estimated first and by a transfer 
function, as a regression model for example, the non-additive variables are estimated. As for the 
multiple variables issue, they should either be grouped or even eliminated. In the first case, a
supersecondary variable is created. It gather secondary variables that have some similarity in a single 
variable. In the second case, it is eliminated variables with very low correlation with the response 
variable and whose sampling is too sparse, as well as variables with high correlation with another one,
as these are redundant and generate bias (Deutsch, 2013; Boisvert et al., 2013).
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In this work ordinary kriging of zinc grade and indicator kriging of one of the 
geometallurgical typologies were employed to predict metallurgical recovery through a regression 
model. Geometallurgical typology was used during the prediction because it was noticed that each 
typology has a different response in mineral processing, as is showed in the scatterplot of Figure 1 
between metallurgical recovery and the two main mined typologies: dolomitc breccia, BXD, and 
willemitic breccia, BXW. This figure shows also the scatterplot between zinc head grade feeding the 
process and metallurgical recovery.

Different from willemitic breccia and zinc grade, that have positive correlation with zinc 
recovery, dolomitic breccia has negative correlation with this variable. This occurs because this 
typology generates very thin material and hinders flotation process: it induces slime coating effect, 
which is the coating of the bigger particles by a fine layer of smaller ones.

              

Figure 1 - Scatterplot of (a) zinc recovery versus BXW percentage, (b) zinc recovery versus BXD 
percentage and (c) zinc recovery versus zinc grade

The deposit being studied corresponds to the larger willemitic zinc deposit in the world, 
located at the northwest of Minas Gerais State, in Brazil. Mineralization is embedded in dolomitic 
rocks, in a hydraulic northeast-southwest breccia, and occurs in thin inclined to subvertical lenses. Zinc 
is present also in sphalerite (ZnS), hemimorphite (Zn4Si3O(OH)2), smithsonite (ZnCO3) and 
hydrozincite (Zn5(CO3)2(OH)6), but occurs at lower proportion in these minerals.

METHODS

Ordinary Kriging
Kriging is a generic term applied to several estimation methods that aim to minimize the 

estimation error variance (Sinclair e Blackwell, 2002). Through a variogram, optimal weights for 
nearby samples are established, thus avoiding bias and ensuring that the average error is zero. 
Therefore, kriging is known as the best linear unbiased estimator, BLUE (Isaaks & Srivastava, 1989). 

(a
(b)

(c)
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Ordinary kriging is characterized for considering local fluctuations in average, limiting the 
stationarity to a local neighborhood. The estimate of a Z*(uo) value is performed through a linear 
combination of near samples, as is shown in equation (1):

  𝑍𝑍𝑍𝑍∗(𝑢𝑢𝑢𝑢) = ∑ λ𝛼𝛼𝛼𝛼𝑍𝑍𝑍𝑍(𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼
𝑛𝑛𝑛𝑛(𝑢𝑢𝑢𝑢)
𝛼𝛼𝛼𝛼=1 ) with ∑ λ𝛼𝛼𝛼𝛼 = 1𝑛𝑛𝑛𝑛(𝑢𝑢𝑢𝑢)

𝛼𝛼𝛼𝛼=1                          (1) 

where Z*(u) is the point to be estimated, λα  are the weights associate to samples and Z(uα) are samples 
values at each point α. To minimize the error variance 𝜎𝜎𝜎𝜎𝜀𝜀𝜀𝜀2(𝑢𝑢𝑢𝑢) under the unbiasedness constraint that the 
mathematical expectation of the error is zero, the weights are obtained from the following ordinary 
kriging system:

�
∑ λ𝛽𝛽𝛽𝛽
𝑛𝑛𝑛𝑛(𝑢𝑢𝑢𝑢)
𝛽𝛽𝛽𝛽=1 𝛾𝛾𝛾𝛾�𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼,𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽� − 𝜇𝜇𝜇𝜇(𝑢𝑢𝑢𝑢) = 𝛾𝛾𝛾𝛾(𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼−𝑢𝑢𝑢𝑢)           𝛼𝛼𝛼𝛼 = 1, … , 𝑛𝑛𝑛𝑛

∑ λ𝛽𝛽𝛽𝛽(𝑢𝑢𝑢𝑢)𝑛𝑛𝑛𝑛(𝑢𝑢𝑢𝑢)
𝛽𝛽𝛽𝛽=1 = 1                                                                        

                       (2)

where γ(uα,uβ) is the semivariogram between two points uα, and uβ, γ(ui,u) is the semivariogram 
between one point ui and the point to be estimated u, and µ is Lagrange multiplier required for 
minimizing the error variance (Goovaerts, 1997; Yamamoto & Landim, 2013). It is calculated N+1 
partial derivative with respect to λα and µ, they are equated to zero and they lead to N+1 equations 
with N+1 unknown values whose solution results in N weights λα under the unbiasedness constraint 
∑λ𝛼𝛼𝛼𝛼 = 1, thus minimizing the error variance (Soares, 2006). The minimized error variance becomes:

              𝜎𝜎𝜎𝜎𝜀𝜀𝜀𝜀2 = 𝐶𝐶𝐶𝐶(0) − 2∑ λ𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 𝐶𝐶𝐶𝐶(𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼 − 𝑢𝑢𝑢𝑢) + ∑ ∑ λ𝛼𝛼𝛼𝛼λ𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼 𝐶𝐶𝐶𝐶�𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼−𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽�                           (3)

where C(0) is the covariance a priori of Z(u).

Kriging is widely used in mining, agricultural science, environment, hydrogeology, among 
others, for it weights samples according to its location and clustering, which makes it the best and most 
accurate estimator of spatial variables .

Indicator kriging 

Indicator kriging is usually employed to estimate non-linear variables and when the aim is to 
estimate the distribution rather than a value at some location. It offers flexibility when dealing with 
extreme values and with different continuity patterns, as it defines areas with greater or lesser 
probability of occurring a specific event. Indicator kriging can be applied to both continuous and 
categorical variables. 

Indicators data of a random variable I(u;zk) generate a conditional probability function that is 
updated locally, from which is obtained a conditional cumulative distribution function, ccdf, at each 
unsampled location. This function depicts thus the possible values of an estimated point, being 
determined as 

𝐹𝐹𝐹𝐹(𝑢𝑢𝑢𝑢, 𝑧𝑧𝑧𝑧𝑘𝑘𝑘𝑘�(𝑛𝑛𝑛𝑛)� = Prob[𝑍𝑍𝑍𝑍(𝑢𝑢𝑢𝑢) ≤ 𝑧𝑧𝑧𝑧𝑘𝑘𝑘𝑘|(𝑛𝑛𝑛𝑛)] = 1
𝑛𝑛𝑛𝑛

  ∑ 𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢𝛼𝛼𝛼𝛼; 𝑧𝑧𝑧𝑧𝑘𝑘𝑘𝑘)𝑛𝑛𝑛𝑛
𝛼𝛼𝛼𝛼=1       𝑘𝑘𝑘𝑘 = 1, … , 𝐾𝐾𝐾𝐾                        (4)

where F(u,zk) is the proportion of z samples at u below cutoff zk, underlain in n neighboring samples 
(Rossi & Deutsch, 2014; Yamamoto & Landim, 2013). 

The indicator of a regionalized variable I(u;zk) has two possible values: zero, to values over a 
specific cutoff, or one, to values below this cutoff, according to equation (5): 
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                                                 (5)

Indicator kriging of a random variable gives the ccdf estimation at a given cuttof zk. Data of a 
continuous attribute z are discretized into k classes, and is calculated to each class the proportion of z-
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data that does not exceed a given cutoff zk. The ccdf built from the kriging of k classes represents a 
model of probability of uncertainty over the unsampled values z(u) (Deutsch & Journel, 1998).

GEOLOGY

The zinc deposit object of this case study is located in Vazante municipality and is part of the 
Brasilia Belt. This belt is an orogen formed by nappes and thrusts east vergent. It extends over 
thousand kilometers along the western border of São Francisco craton and shows north-south direction. 
Vazante group is a unit of Brasilia Belt. This group was first defined by Dardenne (1979) and has a 
pelitic-carbonate marine sequence, being Paleoprotezoic/Neoproterozoic.

This zinc deposit is classified as Vazante Deposit type for some authors (Monteiro, 2002; 
Hitzman et al, 2003) because it is hypogenic and non-sulphide, having thus a peculiar mineralization. 
Hot metalliferous fluids with low sulfur in a temperature around 250 oC and meteoric fluids along the 
Vazante Fault Zone generated the willemite mineralization (Lemos, 2011). 

The rocks of the deposit belong to Serra do Garrote and to Serra do Poço Verde Formations –
this last being the host of the mineralization. Serra do Garrote Formation has a thick package of 
carbonaceous slates with thin quartzite intercalated and Serra do Poço Verde, which is at the top, has 
mainly dolomites, besides slates and metasiltstone. The mineralization occurs in a breccia associated to 
the Vazante fault zone. There are three breccia types: willemitic breccia (BXW), which is the main 
mineralized rock type, dolomitic breccia (BXD) and hematitic breccia (BXH). 

PROCEDURE

Prediction of zinc metallurgical recovery involved ordinary kriging of zinc grade and 
indicator kriging of dolomitic breccia. Regression model was established after factor analysis and 
hypotheses test based on F statistics.

First, metallurgical tests were performed at a pilot plant, in order to verify lithotypes behavior 
in the mineral processing route. The tests consisted of grinding, classification via wet sieving, grade 
analysis, froth flotation and mineralogical characterization via MLA (mineral liberation analyzer). A 
total of 207 boreholes were tested comprising 104 geometallurgical samples. 

Besides ore grade, lithotypes samples were also used for building the geometallurgical model. 
For this, it was utilized 5,297 boreholes with 337,000 samples. The deposit lithotypes were grouped 
into six typologies, according to their behavior at processing plant: 

• Typology I: willemitic breccia;
• Typology II: dolomitic breccia;
• Typology III: hematitic breccia;
• Typology IV: dolomite;
• Typology V: clay material (weathered rocks, fractures filling) and marl;
• Typology VI: slate, phyllite, shale and metabasic rock.

Multiple linear regression

To define the regression model, it was built a correlation matrix between geometallurgical
typologies percentage in a stope and metallurgical recovery. Then, a regression was adjusted with the 
prior defined explanatories variables and, after this, an analysis of variance was conducted to test the 
significance of the regression. Another test was run to examine the importance of each regression 
coefficient and, thus, a final regression model was established. The regression model was obtained 
using the software sabor.exe from the GSLib library (Deutsch and Journel, 1998; Zagayevskiy and 
Deustch, 2011). Sabor.exe does sensitivity analyses based on linear regression and quantifies the 
influence of each variable in the response model.
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Zinc grade ordinary kriging

It was built a zinc grade model using ordinary kriging. The distances in search ellipsoid were 
the same found in analysis of spatial continuity. Variograma showed maximum continuity along 
azimuth 55 o.

Dolomitic breccia indicator kriging 

To estimate dolomitic breccia ocurrence, the lithotype information was transformed into 
indicators according equation 6, where BXD presence is coded as 1 and its absence, as 0:

( ) ( )


 =

=
otherwise

susif
sui l

l 0
1

; α
α

                                                      (6)

being i(uα:sl) the indicator of category sl at location uα.

Analysis of spatial continuity showed maximum continuity along azimuth 50o. After indicator 
kriging estimate, data were post processed for correction of order relation deviations. Both dolomitc 
breccia indicator kriging and zinc grade ordinary kriging were estimated at a 12x12x3 m blocks.

RESULTS AND DISCUSSION

Linear regression

The correlation matrix (Figure 2) showed that the geometallurgical typologies that are 
correlated to the metallurgical recovery are dolomitc breccia and willemitic breccia. Knowing this, a 
prior regression was done with these typologies, and next it was processed an analysis of variance 
(ANOVA) to test the significance of the regression (Table 1). In ANOVA, total variance of a response 
variable is partioned in variance between the group average and the variance of the experimental error, 
i.e., variance within the group. The test checked the null hypothesis H0 that all regression coefficients
are zero (β1= β2=...= βk=0, k>1) against the alternative hypothesis H1 that at least one coefficient is 
nonzero. As the calculated F (16.28) is greater than the tabulated F (2.09), and the p-value is less than 
the stablished significance level α (0.05), the null hypothesis was rejected and the proposed model was 
accepted. 

Figure 2 - Correlation matrix between geometallurgical typologies percentage, zinc grade and 
metallurgical recovery
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Table 1– Analysis of variance to test significance of the regression (ANOVA table)
Sum of 
squares

Degrees of 
freedom

Mean of 
squares F-value p-value Accept in 

α=0.05

Regression 1774.272 7 253.467 16.277 0 yes
Residual (Error) 1762.242 97 18.167
Total 3536.515 104

Since the model was considered plausible, each regression coefficient were assessed to 
determine their individual influence in the model. In this test, the null hypothesis H0 is that the 
regression coefficient is zero against the alternative hypothesis H1 that the regression coefficient is not 
zero, with a significance level α of 0.05. The test results can be seen in Table 2, showing that the 
model can be more effective with the removal of willemitic breccia, BXW, and keeping dolomitic 
breccia, BXD, and zinc head grade. 

Table 2– Test for individual regression coefficients

Predictor Coefficient Std Coefficient F Accept at
α = 0.05

Zn grade 0.667 0.559 46.352 yes
BXW% -0.272 -0.010 0.008 no 
BXD% -6.377 -0.258 5.812 yes

After the regression coefficients were determined, linear regression was adjusted and an 
Extended Tornado Chart was plotted. This chart is a graphical plot that summarizes sensitivity analysis 
results. Sensitivity coefficients showed in the chart capture each predict variable influence in the 
response model while standardized sensitivity coefficients show the influence of uncertainty from each 
predict variable on model response uncertainty. The sensitivity coefficients correspond to the 
regression coefficients.

The chart reveals that adjusted R2 of model is 48.15%; which is a reasonable value; the
standardized error is 4.22; p-value is 0 and prediction power of the model, i.e., the percentage ratio of 
standard deviation of predicted and actual values, ,ˆ σσ=predic is 50.16%. More statistics can be 
viewed on Chart 1.

Chart 1- Extended Tornado Chart

Regression model was defined as
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Recovery = 86.68266 + 0.66548*(Zn_grade – 11.09231) – 6.21621*( BXD% – 0.5493876) (2)

Kriging

Both zinc grade ordinary kriging and BXD% indicator kriging honored the statistical 
summary of input data (Table 3). The decreased variance in the block model estimated is due to 
smoothing caused by kriging. 

Table 3 – Statistics of original declustered data, estimated zinc grades and BXD percentage
Variable Zn declustered Zn estimated BXD declustered BXD%

estimated
Number of samples 23,481 4,947,542 5.464.269 4.878.873
Minimum 0.05 0.59 0.00 0.00
Maximum 57.99 49.50 1.00 1.00
Mean 19.99 20.65 0.15 0.15
Variance 178.45 57.81 0.36 0.31

Recovery

Metallurgical recovery was calculated according to equation 2, using Zn grade estimated and 
BXD% estimated in each stope available. The recovery estimate histogram is shown in Figura 3. It 
shows a mean recovery of 86.78% for the stopes estimated.

Figure 3 - Histogram of zinc metallurgical recovery estimated

Metallurgical recovery calculated values were compared against laboratorial tests of recovery 
for validation. The mean calculated recovery usually presented similar values when compared to the 
mean recovery from laboratorial test (Figure 4). The result showed an average residual close to zero, as 
desirable (Table 4, Figure 5). It showed, either, that 50% of the data have a residual lower than 2.47%, 
and 75% of the data have a residual lower than 4.66%, with a mean percentage of 3.92% of residual. 
Therefore, it was obtained a small residual and the regression model is suitable for estimating the 
metallurgical recovery.
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Figure 4 - Scatterplot depicting the calculated recovery versus recovery from laboratorial tests

Table 4 – Statistcs of Residual
Minimum Maximum Mean Q1 Median Q3

Absolute residual -13.36 8.39 -0.60 -2.07 0.1 2.14
% Residual 0.05% 19.05% 3.92% 1.38% 2.47% 4.66%

Figure 5 – Histogram of residual between calculated and lab test recovery (absolute values and 
percentage, respectively)

CONCLUSIONS

Geometallugy studies are highly important for defining the ore to be processed, how it should 
be processed and what would be the expected recovery. The use of geological variables, including the
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metal feeding grade provided a more adequate model to predict ore metallurgical recovery instead of
considering only the metal grade, since the residual obtained showed a mean percentage of 4%, and 
75% of data have residual lower than 5%. Therefore, by considering the variables that significantly 
affect recovery, whether in a negative or positive way, led to a more accurate and precise prognosis 
model for metallurgical recovery. As a result, the model can help in mine planning, beneficiation and 
metallurgical processes, minimizing unexpected results during mineral processing.

The estimation via kriging corroborated the concept that it provides a good unbiased 
estimator, as the estimated model reconcile well with original data. The indicator kriging map derived 
of lithotype BXD was obtained faster and at less effort compared to manual modelling through vertical 
sections.
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