
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

PEDRO HENRIQUE EXENBERGER BECKER

Selectively supporting ISA-extensions to
enhance heterogeneous MPSoC designs

under power and area constraints

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Antonio Carlos Schneider
Beck

Porto Alegre
November 2019



CIP — CATALOGING-IN-PUBLICATION

Becker, Pedro Henrique Exenberger

Selectively supporting ISA-extensions to enhance heteroge-
neous MPSoC designs under power and area constraints / Pedro
Henrique Exenberger Becker. – Porto Alegre: PPGC da UFRGS,
2019.

90 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2019. Advisor: Antonio Carlos Schneider Beck.

1. MPSoC Design. 2. Partial-ISA. 3. Heterogeneous Systems.
I. Beck, Antonio Carlos Schneider. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Profa. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“Sonhos não envelhecem.”

— MILTON NASCIMENTO



AGRADECIMENTOS

Gostaria de agradecer a todos que me contribuiram durante o período de mestrado.

Em especial, agradeço aos meus pais Raquel e Denis, por seu apoio incondicional, con-

selhos, e incentivo. Também agradeço à Marina por garantir minha alegria mesmo nos

piores dias, pelo suporte, e pelo companheirismo.

Aos colegas de pesquisa também deixo meu agradecimento. Primeiramente ao

professor e orientador Antonio, que foi incansável em me ensinar e guiar desde os primeiros

dias de pesquisa, ainda na inciciação científica, há mais de quatro anos. Também agradeço

a todos os colegas com os quais dividi o laboratório 213 neste período. Particularmente,

agradeço ao colega Jeckson pelas revisões e opiniões sobre o presente trabalho.

Por fim, agradeço também ao instituto de informática da UFRGS, corpo docente,

secretaria, e todos os demais funcionários que dão seu melhor todos os dias para tornar

o INF um local de excelência. Notavelmente, agradeço aos professores que tive na pós-

graduação, meu orientador Antonio e professor Luigi, pelas aulas, discussões e ideias.



ABSTRACT

Heterogeneous MPSoCs are crucial to meeting energy efficiency and performance, given

their combination of general-purpose cores and accelerators. However, their design yields

several restrictions regarding the total power (e.g., for battery-powered devices) and area

(e.g., for tiny wearable devices) of the final project. This makes it very challenging for

the designers to improve next-generation MPSoCs while respecting such constraints. To-

wards overcoming this challenge, this work presents a novel technique for MPSoCs de-

sign, increasing their specialization and task-parallelism while respecting the former area

and power budget. By removing the microarchitectural support of costly ISA extensions

(e.g., FP, SIMD, crypto) from a few cores (transforming them into Partial-ISA Cores), we

simplify their datapaths, creating slack in the system’s area and power budget. Thereby,

we make room to add extra in-order cores and hardware accelerators. Given that, applica-

tions execute at lower power consumption during their ISA-extension-free phases, since

partial cores have much simpler datapaths compared to their full-ISA counterparts. When

extension support is necessary, otherwise, applications are migrated to full-ISA cores,

maintaining binary compatibility. On top of it, the additional cores and accelerators in-

crease task-level parallelism and make the MPSoC more suitable for application-specific

scenarios. We evaluate the effectiveness of our approach by composing different MPSoCs

in distinct execution scenarios, using the FP instructions and RISC-V ISA processors as

a case study. To coordinate the execution of workloads in this novel design, we also pro-

pose two scheduling policies, performance- and energy-oriented. For the former policy,

we achieve 2.81x speedup for a neural network road sign detection, 2.58x speedup for a

video-streaming app, 1.76x speedup for an edge-computing load, and 1.2x speedup for

a task-parallel scenario, consuming 68%, 91%, 56%, and 33% less energy, respectively.

For the energy-oriented policy, partial-ISA reduces geomean energy consumption by 61%

over a highly efficient baseline, also with increased performance. Overall, we demonstrate

that partial-ISA adoption leads to better designs regarding the EDP metric for almost ev-

ery scenario we investigate.

Keywords: MPSoC Design. Partial-ISA. Heterogeneous Systems.



Suportando extensões de ISA seletivamente para melhorar MPSoCs hetorogêneos

sob limitações de potência e área

RESUMO

MPSoCs heterogêneos são fundamentais para garantir eficiência energética e desempe-

nho, dada a sua combinação de núcleos de propósito geral e aceleradores. Entretanto,

estes dispositivos carregam diversas restrições quanto à sua potência total (e.g., para pou-

par bateria) e área (e.g., para caber em dispositivos pequenos) no projeto final. Por este

motivo, melhorar a próxima geração de MPSoCs enquanto respeitam-se as restrições de

projeto é um grande desafio. Neste trabalho, propomos uma nova técnica para compor

MPSoCs, aumentando sua vazão de tarefas e especialização, observando as limitações de

área e potência do projeto. Para tanto, removemos o suporte micro arquitetural de ex-

tensões de ISA (e.g., Ponto-Flutuante) de alguns núcleos (transformando-os em núcleos

parciais), tornando-os mais simples e criando saldo em área e potência. Portanto, criamos

espaço para adicionar núcleos pequenos e também aceleradores. Assim, as aplicações

podem executar com potência reduzida quando extensões de ISA não são necessarias, já

que os núcleos parciais são menos complexos. Quando é necessário executar extensões

de ISA, as tarefas são migradas para núcleos não-parciais, mantendo a compatibilidade

binária. Além disso, a existência de mais núcleos e de aceleradores dedicados aumenta a

vazão de tarefas e torna o MPSoC mais adequado para cenários específicos. Validamos a

proposta compondo vários MPSoCs com núcleos parciais executando diferentes cenários,

e considerando instruções de ponto-flutuante da ISA RISC-V como estudo de caso. Para

gerenciar o sistema, propomos políticas de escalonamento orientada a performance e ori-

entada a energia, para que coordenem a execução de aplicações no MPSoC. Na a primeira

política, aumentamos a performance em 2.81x no uso de redes neurais para a detecção de

sinalização de trânsito, 2.58x para decodificação de vídeo, 1.76x para um conjunto de

aplicações edge, e 1.2x para um cenário multi-tarefa, reduzindo o consumo de energia

em 68%, 91%, 56%, and 33%, respectivamente. Para a política orientada a energia, o

suporte parcial de ISA reduz o consumo de energia em 61% sobre um sistema original já

altamente eficiente, além de aumentar o seu desempenho. Não obstante, demonstramos

que o suporte parcial de ISA resulta em melhores projetos de MPSoC na métrica de EDP.

Palavras-chave: Projeto de MPSoCs. ISA parcial. Sistemas Heterogeneos.



LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence.

ASIC Application Specific Integrated Circuit.

ASIP Application-Specific Instruction Set Processor.

CAD Computer-Aided Design.

CMP Chip Multi-Processor.

CNN Convolutional Neural Network.

DCT Discrete Cosine Transform.

DMA Direct Memory Access.

DSE Design Space Exploration.

DSP Digital Signal Processing.

DVFS Dynamic Voltage and Frequency Scaling.

EDP Energy-Delay Product.

FP Floating-Point.

FPU Floating-Point Unit.

FSM Finite State Machine.

GPP General Purpose Processor.

GPU Graphics Processing Unit.

HLS High-Level Synthesis.

ILP Instruction-Level Parallelism.

IO Input/Output.

IoT Internet of Things.



IP Intellectual Property.

IPC Instructions per Second.

ISA Instruction-Set Architecture.

MAC Multiply-Accumulate.

MPSoC Multiprocessor Systems on Chip.

OoO Out-of-Order.

OS Operating System.

ROB Re-order Buffer.

SIMD Single Instruction, Multiple Data.

VLE Variable Length Encoder.



LIST OF FIGURES

Figure 1.1 The impact of the die area on the production yield. ......................................15
Figure 1.2 Transistors per chip of Intel microprocessors vs. Moore’s Law....................16
Figure 1.3 Transistors per chip and power per mm2. ......................................................17
Figure 1.4 Available Intel Intrinsics operations. .............................................................18

Figure 2.1 A Xilinx Zynq MPSoC + reconfigurable logic..............................................23
Figure 2.2 The growing number of instructions in different Instruction-Set Archi-

tectures (ISAs). .......................................................................................................26
Figure 2.3 Previous work study on ARM NEON instructions impact for different

SPEC2006 benchmarks and the proposed approach to overcome performance
loss. .........................................................................................................................28

Figure 3.1 The system’s composition possibilities due to partial-ISA adoption. a)
The traditional arrangement. b) Partially trimming the ISA of Out-of-Order
(OoO) processors allow adding more computing nodes (in-order processors
and accelerators). ...................................................................................................31

Figure 3.2 A typical OoO processor datapath. In green, the parts of the datapath
that can be trimmed or simplified when removing the floating-point support
from the processor...................................................................................................32

Figure 3.3 Workloads leverage partial-ISA enabled heterogeneity to dynamically
execute on a favorable host. ...................................................................................32

Figure 3.4 On-the-fly management of workloads dependency on full-cores..................34
Figure 3.5 An example of the scheduling flow in a system with two cores (differing

by partial-ISA adoption) and one accelerator. ........................................................38

Figure 4.1 The simulation tool-chain used in this work..................................................41
Figure 4.2 Representation of the execution traces of a workload in both a big and

a little core, generated with the gem5 simulator. The current host core of the
workload determines which of the traces will be consumed for a given slice
of the execution.......................................................................................................44

Figure 4.3 A high-level view of the partial-ISA Multiprocessor Systems on Chip
(MPSoC) simulator. On the top, the set of inputs necessary for execution.
Above, the different modules of the simulator and their interaction with each
other and with the inputs.........................................................................................46

Figure 5.1 A representation on how we extensively combine hardware configura-
tions, software scenarios, and scheduling policies throughout the experiments.....54

Figure 5.2 Execution of the Smartphone App scenario in the performance-oriented
policy.......................................................................................................................60

Figure 5.3 Execution of the Smartphone App scenario in the energy-oriented policy....62
Figure 5.4 Execution of the Multitask scenario in the performance-oriented policy. ....63
Figure 5.5 Execution of the Edge Computing scenario in the performance-oriented

policy.......................................................................................................................65
Figure 5.6 Execution of the Edge Computing scenario in the energy-oriented policy. ..66
Figure 5.7 Execution of the Video Streaming scenario in the performance-oriented

policy.......................................................................................................................67
Figure 5.8 Execution of the Video Streaming scenario in the energy-oriented policy. ...68
Figure 5.9 Execution of the Road Sign Detection scenario in the performance-

oriented policy. .......................................................................................................69



Figure 5.10 Execution of the Road Sign Detection scenario in the energy-oriented
policy.......................................................................................................................70

Figure 5.11 Execution of the Road Sign Detection scenario in the performance-
oriented policy. .......................................................................................................71

Figure 5.12 Execution of the FP-Driven scenario in the performance-oriented policy. 73
Figure 5.13 All hw-configurations executing under a performance-oriented policy. .....75
Figure 5.14 All hw-configurations executing under an energy-oriented policy..............75
Figure 5.15 EDP-ISO curves for performance and energy oriented policies. ................81



LIST OF TABLES

Table 1.1 The impact of Floating-Point (FP) support on an OoO processor ..................18
Table 1.2 Distribution of FP committed instructions (in %) for different application

scenarios. Binaries are RISC-V based, the ISA used in our case study....................19

Table 2.1 Possible arrangements of General Purpose Processors (GPPs) in a MP-
SoC regarding the ISA and the microarchitecture. ...................................................22

Table 4.1 Modeling parameters for the big (OoO) and little (in-order) cores.................50

Table 5.1 The applications scenarios evaluated in this work. .........................................55
Table 5.2 The area and power of the computing nodes considered in our work.

Including Level 1 instruction and data caches. .........................................................57
Table 5.3 The configurations evaluated in this work.......................................................58
Table 5.4 The area and power of evaluated configurations. ............................................58



CONTENTS

1 INTRODUCTION.......................................................................................................13
1.1 Constraints of processors’ design ..........................................................................14
1.2 Challenges for improved MPSoCs.........................................................................15
1.2.1 Challenges from technology scaling......................................................................16
1.2.2 Challenges from ISA support.................................................................................17
1.3 Work proposal .........................................................................................................19
2 BACKGROUND AND RELATED WORK..............................................................21
2.1 Heterogeneous MPSoC Designs.............................................................................21
2.1.1 Background ............................................................................................................21
2.1.2 Related Work .........................................................................................................22
2.2 ISA-Extensions ........................................................................................................24
2.2.1 Background ............................................................................................................24
2.2.2 Related Work .........................................................................................................25
2.3 Work novelty ...........................................................................................................28
3 PROPOSED PARTIAL-ISA HETEROGENEOUS MPSOCS ...............................30
3.1 Architecture of the partial-ISA..............................................................................30
3.2 Task mapping and execution flow..........................................................................32
3.3 Design effort and challenges ..................................................................................39
4 SIMULATION TOOL-CHAIN..................................................................................40
4.1 Acquiring area and power data .............................................................................40
4.2 Profiling and tracing workloads execution phases...............................................41
4.3 Modeling the System Manager for a multi-task simulation.................................45
4.4 Results Methodology...............................................................................................48
4.4.1 Partial-ISA Cores ...................................................................................................48
4.4.2 Application-Specific Hardware..............................................................................49
5 RESULTS.....................................................................................................................53
5.1 Scenarios and Configurations ................................................................................53
5.1.1 Scenarios ................................................................................................................54
5.1.2 Configurations........................................................................................................56
5.2 Scheduling analysis .................................................................................................59
5.2.1 Task Parallel Hw-Configuration.............................................................................59
5.2.2 AES Accelerated Hw-Configuration......................................................................64
5.2.3 Video Accelerated Hw-configuration ....................................................................66
5.2.4 CNN Accelerated Hw-Configuration.....................................................................68
5.2.5 Accelerator Rich Hw-Configuration ......................................................................70
5.3 Performance and energy analysis ..........................................................................74
5.3.1 Task Parallel Hw-Configuration.............................................................................76
5.3.2 AES Accelerated Hw-Configuration......................................................................76
5.3.3 CNN Accelerated Hw-Configuration.....................................................................77
5.3.4 Video Accelerated Hw-Configuration....................................................................78
5.3.5 Accelerator Rich Hw-Configuration ......................................................................78
5.4 Energy-Delay Product analysis..............................................................................80
6 CONCLUSIONS AND FUTURE WORK................................................................82
6.1 Conclusions..............................................................................................................82
6.2 Work Limitations ....................................................................................................83
6.3 Future Work ............................................................................................................84
6.4 Publications .............................................................................................................85
REFERENCES...............................................................................................................86



13

1 INTRODUCTION

Computer systems’ usage has dramatically changed in the past decade. They are

now spread around the world, executing apps in the smartphones of billions of people, in

their smartwatches monitoring activities, and handling countless requests and incoming

data in many data-centers and on-the-edge nodes. Actually, not only computing platforms

have ramified into many, but also what is to be computed. Nowadays, systems need

to cope with the simultaneous execution of a variety of workloads, such as Artificial

Intelligence (AI) solutions, video streaming, image processing, health monitoring, and

encrypted messages exchange. These are frequent applications in the trendy interaction

between embedded and cloud systems such as mobile, edge, and servers.

To manage these varied requirements, Heterogeneous Multiprocessor Systems on

Chip (MPSoCs) are a handful solution. They combine performance-driven and energy-

efficient General Purpose Processors (GPPs) cores to cooperatively work with dedicated

hardware accelerators, also known as Application Specific Integrated Circuits (ASICs).

With the GPP cores, MPSoCs can equate performance, area, power, and energy con-

straints of general-purpose workloads while accelerators can handle specific time-costly

jobs such as cryptography, graphics, and AI (SAMSUNG, 2018; APPLE, 2018). Not

surprisingly, it is mandatory that next-generation Heterogeneous MPSoCs be even more

powerful and efficient, enhancing the execution of current and future computing necessi-

ties.

However, delivering such ameliorated designs is not an easy task. Performance im-

provements, as we detail further, must come while respecting power and area constraints,

so we have, for example, small devices that do not overheat. Power consumption, in turn,

needs to be reduced, considering its impact on performance. In fact, these design opti-

mization trade-offs are often inter-dependent and require smart insights from designers,

so they deliver the final solution in a spot nearer to the optimal. To aggravate, old-fashion

solutions such as increasing the frequency and reducing the transistor feature size are be-

coming unsustainable, as we detail next, and designers may not count on them in the near

future. As a consequence, there is a need for novel approaches in systems design so that

we can deliver improved MPSoCs to cope with multitasking and specialized workloads.

In this work, we propose a solution for this struggle, observing the burden in area

and power of homogeneous Instruction-Set Architecture (ISA) support, .i.e. when all

GPPs support all instructions defined by the ISA. Notably, we investigate how the support



14

of complex ISA-extensions has a significant impact on area and power. We then demon-

strate how we can ignore the ISA support of ISA-extensions in some cores to alleviate

the pressure on power and area constraints, and increase the design space for improved

MPSoCs. In the next sections, we go deeper into this discussion for a more precise un-

derstanding of the proposal and importance of the present dissertation.

1.1 Constraints of processors’ design

The ubiquity of computer systems brings a variety of restrictions for processors

design. The power budget of a processor, for example, depends on multiple factors. First,

power impacts directly on energy consumption, which is a major concern for battery-

powered platforms such as smartphones and wearables, where batteries shall last as long

as possible. At the same time, reducing power (and energy) is critical to reducing the

costs of keeping data-centers on.

Notwithstanding, power also impacts directly on the chip temperature. Again, this

is problematic for mobile because of usability, and also for servers because of the cooling

expenditures. Facebook, for example, has placed data-centers near to the arctic circle,

in Sweden, because of cheap electricity and low temperatures (KARAGIANNOPOU-

LOS, 2018). It is also noticeable how temperature triggered the dark silicon discussion

for many-core architectures (ESMAEILZADEH et al., 2011; SHAFIQUE et al., 2014),

where power consumption and associated heat makes the usage of all cores all the time

prohibitive.

The area of the chip also restricts processors’ design. Similarly to power con-

straints, reasons are manifold. First, the physical size is a problem, especially for smart-

phones and wearables, where the device has volume constraints itself. Another reason

comes from production costs. The processor’s size impacts directly on the number of

produced chips per wafer. At the same time, there are intrinsic failures per cm2 of the

silicon wafer. The randomly placed faults introduced by the manufacturing process will

affect some of the processors in the die, which will not work properly after deploy. How-

ever, if processors in the wafer are small, the number of affected chips will also be small

compared to the total number of successfully produced chips (die yield). Figure 1.1 illus-

trates this discussion. Rabaey et al. (RABAEY; CHANDRAKASAN; NIKOLIC, 2002)

concluded that die costs are proportional to the fourth power of the area, based on typical

parameters at that time. In a more recent work, authors claim good die yield combined



15

Figure 1.1: The impact of the die area on the production yield.

Source: (RABAEY; CHANDRAKASAN; NIKOLIC, 2002)

with die per wafer makes die cost proportional to the square of the area in practice (LI et

al., 2013). In either case, the power function relation between area and die cost empha-

sizes the importance of respecting area constraints.

By last, we highlight requirements for performance, which frequently holds the

most noteworthy expectations from a computer system. Users want their smartphones to

be responsive, for example, watching a real-time video, Internet of Things (IoT) actuators

and sensors need short-latency response from on-the-edge nodes, while companies want

their websites with the highest service throughput. However, performance is generally

conflicting with area and power constraints. Modern heterogeneous MPSoCs may add

up multiple cores and specialized hardware to cope with the performance requirements,

which mounts area and power demands.

1.2 Challenges for improved MPSoCs

The constraints from processors’ design we presented above summarize the ex-

pectations for next-generation systems: smaller, more efficient, and more performing.

While these requirements are each day more restrictive, the manners to achieve such im-

provements are also challenging. Following, we discuss two challenges for continually

delivering improved complex systems such as MPSoCs: the weakening of technology

scaling effectiveness, and the impact of the rising complexity of ISA support. Both chal-

lenges support our approach of simplifying the microarchitecture of the processors with

partial-ISA, motivating our proposal defined in the next section.



16

Figure 1.2: Transistors per chip of Intel microprocessors vs. Moore’s Law.

Source: (HENNESSY; PATTERSON, 2019)

1.2.1 Challenges from technology scaling

Continually adding new resources and features to improve heterogeneous MP-

SoCs, a frequent option for improving systems performance, is becoming unfeasible.

Figure 1.2 depicts how the transistor density of Intel microprocessors is disconnecting

from Moore’s Law predictions. Indeed, some works already claim evidence that Moore’s

law is coming to an end (WALDROP, 2016; THEIS; Philip Wong, 2017; HENNESSY;

PATTERSON, 2019). Advancing to the next technology node is not only difficult, but

also very expensive, and need very high-profit expectations to justify the investments

(WESTE; HARRIS, 2013). Because transistors size is no longer shrinking at the same

pace as before, new techniques are required to deliver more computation density for MP-

SoCs (i.e., more processors and accelerators) within the same chip die.

The problem is reinforced by the breakdown of Dennard Scaling (HENNESSY;

PATTERSON, 2019). By Dennard scaling, power per mm2 would be constant as technol-

ogy scales. This perception has changed since transistors’ technology got below 65nm,

as reported in Figure 1.3. For those technology nodes, voltage levels do not scale with

feature size (because of threshold voltage), and the static power increases exponentially

(because of leakage current), reducing the share of dynamic power in the total power

budget, which holds back frequency boost. Therefore, scaling down voltage even further

(to reduce power) as also scaling up frequency (to increase performance) is a threatened

option. Otherwise, what became necessary is the wise usage of the available transistors.



17

Figure 1.3: Transistors per chip and power per mm2.

Source: (HENNESSY; PATTERSON, 2019)

1.2.2 Challenges from ISA support

At the same time, we observe that heterogeneous multi-processors with homoge-

neous ISAs may suffer from the increased number of ISA extensions (e.g., Intel Intrinsics,

ARM NEON) such as Floating-Point (FP), Single Instruction, Multiple Data (SIMD), and

cryptography that emerged to deal with trendy applications niches. For example, Figure

1.4 depicts the number of different Intel Intrinsics operations, which is a software li-

brary that facilitates the use of ISA-extension in Intel processors by software developers.

Programmers can leverage this set of Intel ISA-extensions to exploit, e.g., SIMD compu-

tation, among many other purposes. As one can see, a processor that supports all of these

extensions must be compatible with more than 6,000 operations (in addition to the regular

ones).

Although intrinsics instructions will be transformed into a combination of a re-

duced number of micro-ops, the datapath for supporting such a high amount of specialized

operations is still considerable. Remarkably, homogeneous ISA multi-core systems have

to replicate full ISA support to keep scheduling transparency (so the Operating System

(OS) can assign any workload to any available core), raising the systems’ area and power

requisites.

To illustrate the impact of ISA-extensions, we synthesized a complex Out-of-

Order (OoO) processor1 and present its area and power data in Table 1.1. Particularly,

we detail the impact of supporting FP instructions, which we will exploit in this work.

As one can see, FP support demands expressive 37% of the processors’ area, while con-

suming more than half of its total power. On the other hand, these instructions may not



18

Figure 1.4: Available Intel Intrinsics operations.

MMX SSE SS2 SSE3 SSSE SSE4.1 SSE4.2 AVX AVX2 FMA AVX-512 KNC SVML
0

1000

2000

3000

4000

5000

6000

Added instrinsics support Accumulated instrinsics support

Source: The author, with data from (Intel Corporation, 2018).

be leveraged depending on the workload. Table 1.2 presents three applications to moti-

vate our statement. For instance, FP support is unnecessary for graph traversal and barely

leveraged for image processing. Thus, we may be wasting area budget implementing

expensive Floating-Point Units (FPUs) which could be exchanged for an increased num-

ber of computing nodes in the system. Notwithstanding, real-life processors like ARM’s

A15 (used in big.LITTLE configurations (GREENHALGH, 2011)) apply clock gating

to save power consumption of such costly FPUs (ARM Limited, 2012). However, al-

though it avoids dynamic power consumption, it does not prevent static (leakage) power,

an increasingly important issue with smaller transistor sizes (HENNESSY; PATTERSON,

2017). In this case, we are also wasting power budget.

1A 4-issue Berkeley Out-of-Order Machine (ASANOVIC et al., 2015) based on 15nm technology
(MARTINS et al., 2015; SHAFAEI et al., 2014), including L1 caches (instruction and data). More de-
tails in Chapter 5.

Table 1.1: The impact of FP support on an OoO processor1

Processor Area (mm2) Power (W)

Out-of-order processor 0.34257 0.767

Out-of-order floating-point datapath 0.12453 0.409

% Floating-point support impact ∼37% ∼53%



19

Table 1.2: Distribution of FP committed instructions (in %) for different application sce-
narios. Binaries are RISC-V based, the ISA used in our case study.

Scenarios FP Usage (%)

Image processing 2.5%
Graph 0%
Linear Algebra 15%

1.3 Work proposal

Based on the aforementioned observations, we introduce our main idea. We claim

that supporting specific ISA-extensions in some (instead of all) processors in a heteroge-

neous MPSoC can be a suitable alternative to design performance-, area-, and power-wise

systems. For such, we propose to remove the support for a given ISA-extension, allowing

us to trim-out its related datapath. In this manner, some cores in the system may ignore

a subset of the ISA, implementing a partial-ISA. Thus, cores’ size is diminished, making

room for extra hardware modules. We leverage this increased design space to add either

simple processors or application-specific hardware, creating suitable systems for task-

parallelism or specialized tasks, two important demands of nowadays systems. Therefore,

the present work responds to the constrained scenario for increasing MPSoCs capabilities

by reallocating former area and power budgets into additional computing nodes.

Naturally, some of the cores in the multi-processor system should still support all

of the instructions (full-ISA), so we keep the system’s compatibility with full-ISA depen-

dent binaries. To coordinate the execution of workloads in a partial-ISA system we also

propose two mapping strategies: performance-oriented and energy-oriented. These strate-

gies serve as a scheduling policy to guide the task assignment of different workloads in

the partial-ISA system.

As case study, we remove the support for FP instructions in some cores in the

MPSoC, thereby removing their FPUs. As we demonstrate in our Results chapter, we

leverage the created slack in area and power budget to compose different MPSoC config-

urations, which we use to experiment under different scenarios. We also asses the impact

of both mapping strategies mentioned above. In our experimentation, we add extra in-

order cores for task parallel scenarios, and ASIC for latency-critical applications, such as

video decoding and neural network inference.

With this approach, we demonstrate that MPSoC enhanced through partial-ISA

adoption can provide significant performance gains. The use of accelerators reach up to



20

3.19× speedup over the baseline for a latency-critical scenario, while the in-order cores

achieves 1.2× speedup for the task parallel scenarios. Energy gains are even more ag-

gressive. In some scenarios, the partial-ISA MPSoC consumes only 1
10

of the baseline’s

energy. In the overall, we show that partial-ISA MPSoCs consistently lead to better

Energy-Delay Product (EDP) in the evaluated configurations when compared to tradi-

tional MPSoC designs.

The remaining of this dissertation is organized as follows. Fundamental back-

ground concepts and related work are presented in Chapter 2. After, in Chapter 3, we

present the architecture of MPSoCs aided with partial-ISA. We proceed the simulation

environment we developed for this work in Chapter 4. Subsequently, in Chapter 5, we ex-

plain the methodology for our experimentation, explore and discuss the achieved results.

Finally, Chapter 6 summarizes the conclusions of the work and states future work.



21

2 BACKGROUND AND RELATED WORK

In this chapter, we discuss background concepts, detailing subjects that will be

frequently mentioned along with the present work. We also examine previous work on

such topics. We start defining heterogeneous MPSoCs and analyzing previous propos-

als for delivering better designs of such systems. After, we narrow our discussion to

ISA-extensions and the exploitation of partial-ISA (the focus of this work) as an enabler

for enhanced MPSoCs configurations. Finally, we compare our proposal with previous

works.

2.1 Heterogeneous MPSoC Designs

2.1.1 Background

MPSoCs combine processors and dedicated hardware accelerators into a single

chip, being versatile to handle a wide range of applications. Not surprisingly, they were

first proposed to achieve effective computation, delivering performance and power effi-

ciency under strict requirements constraints (WOLF; JERRAYA; MARTIN, 2008).

Besides the heterogeneity from GPP and accelerators, MPSoC can also present

heterogeneity within its general-purpose cores. Table 2.1 presents four possible MPSoC

arrangements regarding the ISA and microarchitecture of its GPPs. When there are cores

with different microarchitectures in the MPSoC, it is called a heterogeneous MPSoC. Take

for example the heterogeneous MPSoC platform in Figure 2.1. The Processing System

part of the figure depicts the heterogeneous MPSoC aside with a Programmable Logic

(not important in our case) shipped with the Xilinx Zynq board. The MPSoC has four

ARM A53 and two ARM Cortex R5, and several other hardware modules such as memory

controllers, security, and a graphics processing unit. Because A53 and R5 cores have

different microarchitectures, the Figures depicts a heterogeneous MPSoC. Even further,

the cores have ISA heterogeneity since the A53 cores support the ARM’s A64 ISA, which

the R5 cores do not support.

Because these modules can be used to host different kinds of applications, MP-

SoCs can be employed in several circumstances. They are exceptionally well suited for

energy-efficient scenarios, because of their specific modules, and when applications are

highly heterogeneous. For example, MPSoCs are suitable for smartphones with their nu-



22

Table 2.1: Possible arrangements of GPPs in a MPSoC regarding the ISA and the mi-
croarchitecture.

ISA Microarchitecture

Homogeneous The supported ISA is the same
among all cores in the system

The implemented microarchitec-
ture is the same among all cores
in the system

Heterogeneous The supported ISA varies among
cores in the system

The implemented microarchitec-
ture varies amog cores in the sys-
tem

merous peripherals requiring responsiveness, while also having a high load of applications

to execute in their GPPs.

2.1.2 Related Work

Given that MPSoCs are highly adopted in modern systems, a variety of previous

research focused on amortizing area and power impacts in MPSoCs design to increase

their capabilities under constrained scenarios. Since defining which and how many pro-

cessors and accelerators to put in the system has a significant impact on the aforemen-

tioned aspects of these systems, many works focus on providing tools for fast and valu-

able Design Space Exploration (DSE) of MPSoC platforms. In these works, the goal is to

search for an improved combination of computing nodes in MPSoCs to optimize a set of

metrics.

In (ANGIOLINI et al., 2006), authors combine an Application-Specific Instruc-

tion Set Processors (ASIPs) Computer-Aided Design (CAD) tool-chain with a virtual

platform that enables designers to sweep axes of the configuration space. Through this,

it is possible to explore processing elements, memory hierarchy, and chip interconnect

fabrics to be adopted in the target heterogeneous MPSoC. The platform is extensible, and

allows additional Intellectual Property (IP) cores to be submitted for evaluation. In the

results, they present data from a cycle-accurate simulation of cores competing for shared

resources across different points in the exploration space (allowed by their tool).

In (Van Stralen; PIMENTEL, 2010), authors introduce the use of different work-

load scenarios while exploring the MPSoC’s design space, for a more adjusted final con-

figuration. For this, authors use a co-evolutionary genetic algorithm to dynamically ex-

plore the design space of possible MPSoC arrangements at the same time it searches for

representative workload scenarios. They use this approach to select the best heteroge-



23

Figure 2.1: A Xilinx Zynq MPSoC + reconfigurable logic.

Source: (XILINX, 2019)

neous MPSoC configuration with up to eight elements, among MIPS processors, ARM

processors and dedicated Discrete Cosine Transform (DCT) and Variable Length Encoder

(VLE) hardware blocks. With this methodology, they demonstrate superior configurations

regarding execution time and cost.

Another DSE framework that models both processors and hardware accelerators

combined in MPSoCs is detailed in (ROSVALL; SANDER, 2014) and extended in (ROS-

VALL; SANDER, 2017). It is based on user-defined constraints, the set of applications,

and execution schedule for evaluating the design and shows that adopting accelerators in

the MPSoC can lead to configurations nearer to the optimal. Singh et al. (SINGH et al.,

2013) present an extensive survey of works for mapping methodologies for multi/many-

core systems, which also aim to optimize either performance, power consumption, tem-

perature distribution, or other axes of the system. However, although these works on DSE

are important to place the system as near to the optimal configuration as possible, they

do not improve the possible optimal itself. Notwithstanding, while our solution can be

adopted by these DSE tools, it allows them to search in a larger design space, possibly

with a superior optimal configuration.



24

2.2 ISA-Extensions

2.2.1 Background

The ISA of a processor defines the set of instructions that one can leverage to in-

terface with the host processor. The ISA specifies how instructions are assembled, their

operation codes, among other definitions for the processor to fetch instructions and oper-

ate its bitstream. For example, there are industrial ISAs, such as the x86 (Intel), AMD64

(AMD), and A64 (ARM), as well as research and free-licensed ISAs such as the RISC-V

(ASANOVIĆ; PATTERSON, 2014).

However, although these ISAs have a base version, they are continually evolving to

increase the semantics for programmers (and compilers) to express computational tasks,

as also to expose novel capabilities from the processors’ microarchitecture. Take Intel as

an example; every x86 processor in production is still capable of executing binary code

compiled to execute in an Intel 8086 processor from the ’80s (with a few limitations such

as prohibiting self-modifying code when the OS set the processor to run in protected mode

(Intel Corporation, 2016)). At the same time, Intel have adopted a variety of extensions

over the former ISA to cope with novel requirements.

For example, the MMX instructions (PAVER; KHAN; ALDRICH, 2004) were re-

leased by Intel as ISA-extensions to improve the execution of multimedia applications.

When fetching such instructions, x86-MMX compatible processors execute SIMD oper-

ations in chunks of 2, 4 or 8 elements at a time (hence targeting multimedia applications

such as gaming, where vector operations are often necessary). Subsequently, many other

ISA-extensions were released over the base x86 ISA, such as SSE and AVX. Programmers

can leverage these instructions through Intel Intrinsics (Intel Corporation, 2018), which

is an interface library in the C language for using a variety of Intel extensions. Similar

characteristics occur with other ISAs. ARM, for example, has a base ISA (integer-only),

and extensions for FP and SIMD (called NEON), and Digital Signal Processing (DSP)

operations, for example.

It is essential to highlight that ISA-extensions are called extensions because they

are not part of the base ISA. Hence, it is possible to have ISA compatible processors,

even though they do not support some of the extensions. The RISC-V ISA, for exam-

ple, contains a base ISA (integer-only, as ARM’s ISA), and several extensions that may

or may not be supported by a RISC-V processor. For example, it has extensions for



25

atomic instructions (for parallel processing), FP instructions, compact instructions (for

reduced memory footprint, similar to ARM’s thumb), among others. Supporting such

ISA-extensions increases the available functionalities for programs execution, but also

increases the hardware costs (in area and power) given the need for a datapath that can

execute such instructions.

2.2.2 Related Work

As we discussed in the previous subsection, the ISA plays a vital role in interfac-

ing the applications with the processor’s capabilities, which in turn increases each day

given the varied set o applications processors must handle. For this reason, we highlight

important works that evaluate the impact of the ISA on the microarchitecture of proces-

sors. After, we narrow our discussion to the exploitation of partial-ISA, the focus of this

work, as an enabler for enhanced MPSoCs configurations.

The work by Venkat and Tullsen (VENKAT; TULLSEN, 2014) exploits the ad-

vantages of different ISAs to build an ISA-rich system, which combines cores with the

x86-64, ARM thumb, and Alpha ISAs to exploit their different semantic characteristics.

They analyze how the different ISAs behave on different aspects such as code density,

dynamic instruction count, register pressure, and SIMD and FP support. They claim that

having heterogeneous ISA support is beneficial for binding applications along with their

execution phases.

The same authors extend their studies in a recent work (VENKAT et al., 2019),

proposing a single super-set ISA from which one can derive different subset ISAs. With

this proposal, they exploit the different aspects from different ISAs (the same x86, ARM

thumb, and Alpha ISAs). The difference in this work is that they consider an extended

x86 ISA, which re-implements ARM thumb and Alpha capabilities altogether into a new

ISA. They claim this approach overcome their previous work difficulties such as hav-

ing multiple proprietary ISAs jointly in a chip, and binary translation to execute in each

possible ISA. With this setup, authors perform a large DSE, varying both ISAs capa-

bilities and microarchitectural parameters to find the best 4-core heterogeneous ISA Chip

Multi-Processor (CMP). In their results, they show that having heterogeneous design with

heterogeneous ISA surpasses in 17% heterogeneous designs with a single-ISA on aver-

age.

Blem et al. (BLEM et al., 2013) and (BLEM et al., 2015) discuss how the RISC



26

Figure 2.2: The growing number of instructions in different ISAs.

Source: (LOPES et al., 2015)

and CISC models affect modern architectures. Authors perform extensive experimenta-

tion of applications running in different ISAs and microarchitectures in either simulated

and real-life environments. By the combination of (VENKAT; TULLSEN, 2014) and

(BLEM et al., 2015), authors conclude that choosing between RISC and CISC models

is irrelevant to the power and performance of a modern system, and what affects these

metrics is the presence or absence of specialized ISA-extensions (such as vector, FP, and

crypto instructions). Therefore, Venkat et al. and Blem et al. conclusions are somewhat

contradictory. The former defend different ISAs have different impacts, while the later

support ISA-extensions are more decisive, regardless the base ISA.

In (LOPES et al., 2015), an extensive analysis of ISA aging and the cost of the

decoder for keeping old operations in the architecture set is performed. They analyze

how new instructions are frequently added (see 2.2) regardless of the ISA, and claim

that new instructions have a higher impact on the decoder because they need extra fields

to differentiate them from old ones. The authors propose a technique to remove and

recycle instructions that are not used by compilers anymore. Removed instructions that

are eventually fetched for execution must be emulated for backward compatibility. By

removing the old instructions and re-encoding instructions using their technique, it is

possible to reduce the critical path, area, and power consumption of the decoder. On the

software side, it can reduce code size, and instruction cache misses.

As we discussed so far, there are plenty of works showing that a diverse and re-

newed ISA is a viable path for enhancing next-generation processors. From now on,

we narrow the discussion to works covering ISA-extensions. Especially, to balance in-

struction extensions among cores, overlapping-ISAs extensions processors have been pro-

posed. These are processors in which the cores individually implement different exten-

sions, but all share a base ISA. Following, we detail these works.

Li et al. (LI et al., 2010) discuss the challenges of implementing the OS support for



27

such overlapping ISAs, implementing a technique called fault-and-migrate in the Linux

kernel 2.6.24. In this technique, when a core fetches an unsupported instruction, the

application migrates to a core that supports it. They emulate the existence of asymmetric

hardware (i.e., cores with different functionalities, by disabling ISA extension support on

real-life Intel processors) to test their proposed fair scheduling algorithm, which extends

the time-sharing round-robin model for asymmetric processors. They demonstrate how

a real-life OS can be modified to support heterogeneous-ISA with minimal overheads

caused by forced migrations when unsupported instructions are fetched.

Reddy et al. (REDDY et al., 2011) claims that in heterogeneous CMPs (like in

ARM’s big.LITTLE (GREENHALGH, 2011)), the big and the LITTLE cores may have

unbalanced support on ISA-extensions implementation, raising software compatibility is-

sues. The work somewhat complements the work by Li et al. (LI et al., 2010), studying

how to define what is to be handled by the software (which burdens the programmer) and

what is to be handled by the OS in such overlapping-ISA systems. Also, they present de-

sign techniques in the OS for bridging software to this possible functionally-asymmetric

cores and discuss the pros and cons of each method.

Lee et al. (LEE et al., 2017) observed the hardware power impact from support-

ing ISA-extensions and proposed a microarchitectural approach to overcome this burden.

In Figure 2.3-a, authors present different SPEC2006 benchmarks, the percent of ARM

NEON instructions every thousand instructions, and the performance loss (normalized ex-

ecution time) if removing NEON support. Although sometimes the performance impact

is minimal, resulting in energy savings, other situations may present orders of slowdown,

especially if NEON instructions are highly used. Similar investigation is done with other

ISA-extensions such as load and store multiple instructions, predicated instructions, and

DSP-like instructions.

To take advantage of energy efficiency and avoid the performance overhead from

removing ISA-extensions support, authors propose to add a reduced ISA core altogether

with the former full ISA core. This proposal appears in Figure 2.3-b. In this way, they use

the reduced ISA core whenever possible, and migrate to the full ISA core when an exten-

sion instruction is fetched. Through this approach, they reduce performance loss while

reducing power consumption considerably. The experiments are conducted with single-

task execution on two ARM A15 (one full ISA, one reduced ISA), hence homogeneous

microarchitectures. Although they increase the total area of the design, they power-gate

the unused processor to have power savings. Since ARM processors (such as A15 ((ARM



28

Limited, 2012)) and A75 (ARM Limited, 2016)) allow power-gating in the grain of cores,

authors cannot turn off the FPU or SIMD datapath separately.

Figure 2.3: Previous work study on ARM NEON instructions impact for different
SPEC2006 benchmarks and the proposed approach to overcome performance loss.

(a) NEON Impact (b) Proposed solution

Source: (LEE et al., 2017)

2.3 Work novelty

As we discussed above, different works focused on improving MPSoC designs,

and also exploit ISA tuning for enhanced systems w.r.t. related work. In summary, the

present work has the following contributions: We,

• adopt partial-ISA to save area and power (static and dynamic) on MPSoC designs,

different from (LI et al., 2010; REDDY et al., 2011), where they focus on the soft-

ware/OS support. We also differ from (LEE et al., 2017), which considers partial-

ISA in the microarchitecture but causes increased area. Moreover, partial-ISA in an

MPSoC context is not studied by any of those works;

• use the area an power budget to design richer MPSoC configurations, with more

in-order cores and also application-specific accelerators, respecting former base-

line constraints. Differing from (LEE et al., 2017) where neither in-order cores or

accelerators are adopted, nor former constraints are respected. Hereby, while previ-

ous work generally leverages partial-ISA to reduce power/energy consumption, our

methodology is able to improve performance also;

• consider partial-ISA in simultaneous multi-task scenarios and heterogeneous com-



29

puting nodes, differently from the single-task in (LEE et al., 2017) migrating among

two A15 cores (one reduced and one full ISA); instead our proposal introduces the

partial-ISA concept into a complex arrangement, with heterogeneous architectures;

• detail two mapping strategies to benefit from the novel design, coping with hetero-

geneity in both microarchitecture and ISA at the same time, also not covered by

previous work;



30

3 PROPOSED PARTIAL-ISA HETEROGENEOUS MPSOCS

In this chapter, we describe the proposed partial-ISA heterogeneous MPSoCs. We

highlight the necessary steps to add more computing nodes, as extra in-order cores or

hardware accelerators, and the manners to leverage them for reduced power consumption

and improved performance under baseline constraints. We discuss the methodologies for

design changes (such as trimming the ISA extensions support), and for mapping work-

loads (such as task migration mechanisms and the proposed scheduling policies).

3.1 Architecture of the partial-ISA

Figure 3.1 presents the main concept proposed by this work. It illustrates a sce-

nario where a chip die of length (L) and width (W) constraints the project design. From

this, the traditional approach is to accommodate several processors that support the whole

instruction set (full-ISA) to utilize the entire area and power budget available, which ap-

pears in Figure 3.1-a. We propose to reduce the number of cores that support the en-

tire ISA (a given ISA extension is taken off from some of them), adopting what we call

partial-ISA cores. We depict this in Figure 3.1-b. Employing partial-ISA in some cores

permits the designer to adopt more and possibly different computing nodes to the system,

increasing its heterogeneity.

In this work, we exclude the FP instructions from the RISC-V architecture as a

use case, which is a high source of logic overhead (ASANOVIC et al., 2015), as we

appointed in Table 1.1 (Chapter 1). This simplifies the processor by manifold reasons: the

entire FP pipeline is removed from the execution unit of the processor; the decoder stage

and the issue queue are trimmed by removing support for these instructions; the register

renaming table is simplified, and the FP register file is also removed. We highlight these

simplifications in OoO processors in Figure 3.2, adapting the original figure from the work

by Smith and Sohi (SMITH; SOHI, 1995). Other secondary hardware components are

also indirectly influenced, such as the routing logic, write-back, and forwarding structures.

Nonetheless, in-order cores can also implement Partial-ISA. However, the overall

savings in area and power are modest compared to OoO cores. Generally, OoO cores

have much more aggressive implementations for ISA-extensions, since they need to be

conforming with former complex logic, while also delivering high-performance. For in-

stance, supporting FP in a big (OoO) core occupies 7× the area of supporting FP in a



31

Figure 3.1: The system’s composition possibilities due to partial-ISA adoption. a) The
traditional arrangement. b) Partially trimming the ISA of OoO processors allow adding
more computing nodes (in-order processors and accelerators).

W

L

a)

b)

Full ISA 

OoO core

Full ISA 

in-order core

Removed 

datapath due 

to ISA trim

Hardware 

accelerator

Partial ISA 

OoO core

W

L

Source: The author.

little (in-order) core, as we discuss in our results (chapter 5). Given that, big cores with

partial-ISA creates sufficient design space to improve the system with extra full-ISA little

cores or accelerators, while partial-ISA little cores enable the addition of small ASICs

only.

Hence, our proposed partial-ISA MPSoC may present ISA heterogeneity (by par-

tially or fully implementing ISA extensions), microarchitectural heterogeneity (in-order

or OoO cores), and coupled application-specific accelerators. Importantly, there must

always be one or more full-ISA cores in the system, so the MPSoC is capable of exe-

cuting every instruction from the ISA (by migrating tasks to the full-ISA cores whenever

necessary, as we detail further).

This new partial-ISA MPSoC methodology offers several benefits. First of all, it

enlarges the design space, so the designer can explore diversified modules to compose the

final chip, without exceeding area and power budget. Since partial-ISA cores decrease

area and power consumption, the system can leverage an increased number of computing

components for task-parallelism and specialization. Additionally, partial-ISA cores can

execute extension-free phases from applications with diminished power consumption. In

this environment, applications can be assigned to a partial or a full-ISA (depending on

the need for ISA extensions or not), in either big cores for performance or little cores (in-

order) for energy efficiency, and hardware accelerator when there is one to that specific

task, as illustrated in Figure 3.3. Thereby, the system’s heterogeneity increases, extending



32

Figure 3.2: A typical OoO processor datapath. In green, the parts of the datapath that can
be trimmed or simplified when removing the floating-point support from the processor.

Source: Adapted from (SMITH; SOHI, 1995) by the author.

the binding possibilities among applications and host cores. We can take advantage of

this arrangement to either improve energy-efficiency (e.g., using partial cores to execute

integer applications with the same performance full-cores would) as also performance

(e.g., leveraging accelerators or extra cores).

3.2 Task mapping and execution flow

Since partial-ISA MPSoC compositions enable novel task mapping possibilities,

an adequate mechanism to coordinate task assignment also becomes necessary. Partic-

ularly, we use task migration to exploit available computing nodes. Migration is used

to guarantee full-ISA support for applications during FP operation phases, and to attempt

Figure 3.3: Workloads leverage partial-ISA enabled heterogeneity to dynamically execute
on a favorable host.

Partial-

ISA OoO Full-ISA

InOrder

Accelerator

1

2

3

Source: The author.



33

accelerator usage during accelerated phases of applications (to leverage faster and energy-

efficient execution, if an accelerator is available). Such task mapping solutions, we recall,

are generally within the system’s OS scheduler. For our purposes, however, we let the

OS specificity aside, and define a more high-level mechanism, which we call a System

Manager. As we present in the next chapter, having this definition allows us to investi-

gate the tasks distribution in a partial-ISA system - building a simulated System Manager

- without the burden of modifying an actual OS.

The System Manager coordinates the execution flow of workloads among the com-

puting nodes of the system, through a Scheduler and auxiliary mechanisms. The Sched-

uler holds a queue of workloads and the list of computing nodes available in the system.

It is aware of which cores are OoO and which are in-order; their supported ISA (full or

partial); and the set of available hardware accelerators.

The Scheduler takes place periodically and verifies whether there are workloads

to dispatch and preempt. The System Manager preempts workloads from GPPs after

executing for around 160K cycles1, in a round-robin fashion, avoiding starvation and

allowing other workloads to execute on the core. The preempted workloads are pushed

into the end of the queue. When a partial-ISA core fetches an ISA-extension instruction

(which it does not support) it throws a trap (like the X86_TRAP_UD for the x86 ISA in

Linux), telling the System Manager the workload needs a full-ISA core, marking it as

full-ISA dependent. When the Scheduler further selects this workload to dispatch to a

core, it is transparently migrated to a full-ISA core. Accelerators, as we explain further,

execute their tasks without interruptions.

In the beginning, all cores are idle, so the Scheduler picks workloads from the

queue, assigning them to one of the available GPP cores. We define two possible policies

for mapping workloads to cores: the performance-oriented policy and the energy-oriented

policy. The scheduling policy defines how the Scheduler assigns a task when more than

one computing node is available, as formally presented in Algorithm 1 and Algorithm 2,

and also explained below.

In the performance policy, the Scheduler prioritizes using OoO cores instead of the

in-order cores. In the energy policy, otherwise, in-order cores are preferred rather than

OoO ones. Regardless of the policy, partial-ISA cores are always preferred over their

full-ISA counterparts. This is justified since partial-ISA cores are more energy-efficient

and often as performing as full-ISA cores. For example, integer phases of applications

1A period that introduces minimal impact on performance as suggested by previous studies (CON-
STANTINOU et al., 2005).



34

execute in the same way in a partial or a full-ISA core. Because the Scheduler does

not know when an instruction extension (like a FP operation) will be fetched, it prefers

partial-ISA cores until a full core is necessary. Moreover, we relief the use of full-cores,

so they are more likely to be available when FP instructions need to be executed. Once an

instruction extension is fetched, possibly causing a task migration (as we detail soon), the

System Manager marks the application as full-ISA dependent. In this way the Scheduler

avoids misplacing the workload, and maps it to full cores until the ISA-extension is not

used for a minimum period2. Figure 3.4 illustrates this full-ISA dependency mechanism.

Accelerators never start the execution of an application. We notice that application

kernels are generally preceded by data preparation, like loading data from disk to main

memory and other system calls tasks which ASICs may not implement. However, appli-

cations that have accelerated target regions (which are marked by special function calls or

code annotations) trigger a migration if an appropriate accelerator is available.

If the program reaches an accelerated target region, the application is preempted

and marked to execute in the accelerator (similarly to the full-ISA dependency), holding

also which accelerator type it requires. If there is a dedicated ASIC for that task available,

the Scheduler will then prioritize its usage since the execution will be faster and more

efficient. Even though the workload is pushed to the end of the queue, in our model, the

Scheduler traverses the whole queue looking for candidate workloads as long as there are

idle nodes in the system, so the accelerated task can be quickly allocated if the accelerator

is idle. The accelerator dependency is removed after executing the target region, or as soon

as the System Manager asserts that there is no accelerator available. As previously stated,

accelerators execute the whole target region without preemption. Their execution depends

2When an application does not execute an ISA-extension instruction for more than 10K committed
instructions, the System Manager removes its full-ISA dependency mark, so the application can be allocated
in any core. Whenever an ISA-extension instruction is fetched, the mark is set back.

Figure 3.4: On-the-fly management of workloads dependency on full-cores.

Any core
Full core

dependent

10K instr. without 

ISA-extension

Source: The author.



35

on data feed through specific memory regions (e.g., Direct Memory Access (DMA) (Cota

et al., 2015)), and they are not crafted to create a context from their internal architectures

to seemly migrate to a GPP in the middle of their computation.

Algorithm 1: Choosing the target core with a performance policy scheduling
Data: workload
Result: target core for the workload
if workload.region.canExecuteInAccelerator then

idleAccelerators = getIdleAccelerators(workload.region.acceleratorType);
if idleAccelerators is Not Empty then

targetCore = idleAccelerators.head();
return targetCore;

end
end
if workload.canExecuteInAnyCore then

idlePartialBigCores = getIdlePartialBigCores();
if idlePartialBigCores is Not Empty then

targetCore = idlePartialBigCores.head();
return targetCore;

end
end
idleFullBigCores = getIdleFullBigCores();
if idleFullBigCores is Not Empty then

targetCore = idleFullBigCores.head();
return targetCore;

end
if workload.canExecuteInAnyCore then

idlePartialLittleCores = getIdlePartialLittleCores();
if idlePartialLittleCores is Not Empty then

targetCore = idlePartialLittleCores.head();
return targetCore;

end
end
idleFullLittleCores = getIdleFullLittleCores();
if idleFullLittleCores is Not Empty then

targetCore = idleFullLittleCores.head();
return targetCore;

end
return Empty;

Finally, Figure 3.5 exemplifies the scheduling flow with a simple scenario with

three workloads. A system composed of one accelerator and two cores, which diverge

by their ISA support for FP instructions. For simplicity, we consider generic cores and

do not distinguish them by OoO or in-order. The figure presents ten snapshots of the

workloads execution, enumerated in temporally ordered. In the figure, three different



36

Algorithm 2: Choosing the target core with an energy policy scheduling
Data: workload
Result: target core for the workload
if workload.region.canExecuteInAccelerator then

idleAccelerators = getIdleAccelerators(workload.region.acceleratorType);
if idleAccelerators is Not Empty then

targetCore = idleAccelerators.head();
return targetCore;

end
end
if workload.canExecuteInAnyCore then

idlePartialLittleCores = getIdlePartialLittleCores();
if idlePartialLittleCores is Not Empty then

targetCore = idlePartialLittleCores.head();
return targetCore;

end
end
idleFullLittleCores = getIdleFullLittleCores();
if idleFullLittleCores is Not Empty then

targetCore = idleFullLittleCores.head();
return targetCore;

end
if workload.canExecuteInAnyCore then

idlePartialBigCores = getIdlePartialBigCores();
if idlePartialBigCores is Not Empty then

targetCore = idlePartialBigCores.head();
return targetCore;

end
end
idleFullBigCores = getIdleFullBigCores();
if idleFullBigCores is Not Empty then

targetCore = idleFullBigCores.head();
return targetCore;

end
return Empty;



37

symbols represent the three workloads.

In the beginning (1), all workloads are in the Workloads queue. In the next moment

(2), both GPP cores start the workloads execution. Note that the workload in the head of

the Workloads queue was assigned to the partial-core, since these cores are prioritized

regardless of the policy. Recall since we do not distinguish the core’s type, we consider

them to be of the same kind (either in-order or OoO).

At the end of the second snapshot, the workload in the partial-core fetches a FP

instruction. This causes it to be marked as Full-ISA dependent (pink color as in the legend)

and to be pushed to the end of the queue (3). Since the partial-core is free, it can receive the

subsequent task (the circle, in snapshot 4). At the same time, we depict a time preemption

in the full-core (which occurs after 160K cycles of execution). This forces the workload

to be pushed to the end of the queue (5).

Since the full-core is now available, the Full-ISA dependent workload, now head

of the queue, can be assigned to it (6). Meanwhile, the application in the partial-core (the

circle) finds a mark for an accelerated region (6). The workload is assigned as Accelerator

dependent, and pushed to the end of the queue (7). In snapshot (7), the Full-ISA dependent

workload notifies the Scheduler that it can be assigned to any core again, removing the

Full-ISA dependency mark, after executing for 10K cycles without any FP instruction.

Subsequently, the head of the queue (four dot star in snapshot 7) is pushed to the

available partial-core (8). At the same time (8), the Scheduler assigns the Accelerator

dependent workload to the propitious accelerator (the accelerator type is also suppressed

for simplicity). Also, the workload in the partial-core finishes its execution, while the

Accelerator dependent reaches the end of the accelerated region, being pushed to the

queue (9). The Scheduler reassigns it to a core (10). This flow continues from this point

on until the all workloads finish their execution.



38

Figure 3.5: An example of the scheduling flow in a system with two cores (differing by
partial-ISA adoption) and one accelerator.

Full 

core
Acc

Partial 

core
Workloads queue

Full 

core
Acc

Partial 

core
Workloads queue

Full 

core
Acc

Partial 

core
Workloads queue

FP!

Time 

Preempt!

Full 

core
Acc

Partial 

core
Workloads queue

Acc!

Full 

core
Acc

Partial 

core
Workloads queue

Full 

core
Acc

Partial 

core
Workloads queue

Full 

core
Acc

Partial 

core
Workloads queue

Full 

core
Acc

Partial 

core
Workloads queue

Any 

Core!

End 

Acc!

Full 

core
Acc

Partial 

core
Workloads queue

Finish!

Full 

core
Acc

Partial 

core
Workloads queue

Full-ISA dependent Accelerator dependent

1

2

3

4

5

6

7

8

9

10

Source: The author.



39

3.3 Design effort and challenges

Partial-ISA intrinsically delivers sub-set microarchitectures, and thus increases the

design effort (compared to a homogeneous system). However, in this work, we exemplify

how to remove ISA extensions from a processor’s datapath as also to adjust other microar-

chitectural structures (e.g., cache size, issue-width) using core generators. Particularly, we

synthesize real-life RISC-V processors with BOOM (OoO) (ASANOVIC et al., 2015) and

Rocket (in-order) (ASANOVIC et al., 2016) core generators to analyze power and area.

These parametric tool-chains process high-level hardware description languages (namely

Chisel, similar to Scala), translating the description to Verilog, a standard and lower-level

hardware description language (compared to Chisel). This favors the designer to adjust

the processor accordingly to its needs. For example, Listing 3.1 depicts how we define

a class of processors without a FPU in the Chisel language, used by the aforementioned

tools. Hence, we can use these core generators to create cores without FP support, having

partial-ISA cores.

Furthermore, design efforts are natural in the design flow of a chip. Indeed, the

industry offers microarchitecture customization; for instance, some ARM processors can

be delivered with or without a NEON unit (although never within a partial-ISA context

as in our proposal, where the ISA is heterogeneous). Also, Sun’s UltraSPARC T1 had a

single loosely coupled FPU shared among cores (the high latency for the loosely coupled

accesses proven too costly later, however).

1 class WithoutBoomFPU extends Config((site, here, up) => {

2 case BoomTilesKey => up(BoomTilesKey, site) map { r => r.copy(core =

r.core.copy(

3 usingFPU = false))

4 }

5 })

Listing 3.1: Defining a class of RISC-V BOOM cores without Floating-Point support.

Nevertheless, partial-ISA requires specific support from the hardware. For in-

stance, if partial-ISA cores fetch an unsupported instruction, they need to generate a

trap for proper handling. Fortunately, modern processors already have a trap genera-

tion scheme used when unknown instructions are fetched. We leverage this mechanism to

notify the System Manager when partial-ISA cores do not support an extension. We also

consider a simple hardware-counter module to accumulate the timespan without executing

ISA-extensions, to inform the scheduling when the ISA-dependency can be removed.



40

4 SIMULATION TOOL-CHAIN

Since partial-ISA requires modifications in both the hardware and the task man-

agement (e.g., OS) and we do not have such a real-life system, we perform our analysis in

a simulated environment. In this chapter, we overview how the simulation environment is

set up and how we combine data from different tools to evaluate our proposal.

Figure 4.1 presents a high-level diagram of the simulation tool-chain we describe

in this chapter. In the following sections, we will refer to this diagram, explaining all

the necessary steps to simulate the execution of multiple applications on a partial-ISA

MPSoC. Namely, we detail how we acquire area and power data, how we collect work-

loads execution behavior, how we combine these data to build our partial-ISA MPSoC

simulator, and how we set up important configurations for experimentation.

4.1 Acquiring area and power data

Partial-ISA adoption aims to facilitate the composition of enhanced MPSoCs re-

specting a given power and area budget. Because we want to experiment with different

MPSoC configurations, containing a variety of computing nodes, it is necessary to know

how much power and area each of these nodes consumes. To accurately gather this in-

formation, we use the Genus Synthesis Solution from Cadence, a newer version of the

well-known RTL Compiler, from the same company. In this tool, we use a contemporary

15nm standard cell library (MARTINS et al., 2015) for the synthesis. With this setup, we

provide the hardware description we want Genus to synthesize (i.e., a digital system de-

scribed in Verilog or VHDL), together with constraints as the target clock frequency. This

appears at the bottom of Figure 4.1. The tool processes the description, transforming it

into a gate netlist, optimizing the design to meet the target frequency (values are detailed

next). When it finishes, the tool reports post-synthesis metrics on mean power and area

usage.

However, the methodology above depends on the existence (and availability) of a

hardware description for each node we want to synthesize. This is not a problem for the

GPP RISC-V cores, since we use open-source hardware generators to get their descrip-

tion, as we detailed in section 3.3. Sometimes, however, we had to consider data from

previously published works whose hardware description is not open-sourced, such as re-

cently proposed accelerators that present state-of-the-art solutions in trendy fields. This



41

Figure 4.1: The simulation tool-chain used in this work.
RISC-V
binary

Core 
parameters
(in-order/

OoO)

gem5

OoO
trace

Different 
Phases

App 1App 1

App 2App 2

App nApp n

RISC-V
core

generators

Freq.
Constraints

OoO hw

In-order hw

ASIC hw

ASIC

hw nhw n

hw 1hw 1

G
E
N
U
S

Hardware

Software

In-order
trace

gem5 Traces

Sytnthesis 
Data

System

Manager

Simulate
Hardware & 

Software

Source: The author.

is the case for a Convolutional Neural Network (CNN) accelerator we use in our experi-

mentation (chapter 5). Because a synthesis is not possible, we scale data reported by the

authors to the 15nm technology node (considered for every hardware in this work), for a

fair analysis. Conversions are based on the recent work from Stillmaker (STILLMAKER;

BAAS, 2017), which provides scaling data ranging from 180nm to 7nm technologies.

4.2 Profiling and tracing workloads execution phases

As we discussed in Chapter 3, the partial-ISA MPSoC execution flow depends

on a few hardware triggers for proper functioning. For example, the cores must notify

the Scheduler when there are workload dependencies for an ISA-extension datapath (as a

FPU), and also when an application reaches an accelerated region. Thereby, it is manda-

tory to have those triggers information to simulate task migrations in an accurate manner.

Also, because the MPSoC has heterogeneous cores, and workloads can execute on any

of them, our proposed simulator must address the different performance that applications

have in the different cores available. For example, a workload can execute quickly on an

OoO but slowly on an in-order core. Therefore, these previous observations suggest for

us to build our simulated environment using dynamic instrumentation.

To collect the behavior of the workloads under different host cores, we use the



42

gem5 cycle-accurate microarchitecture simulator (BINKERT et al., 2011). The gem5 is

capable of executing binary code from different ISAs, including the RISC-V used in this

work. It can be used as a tool for measuring stats of applications (like the execution time,

the number of committed instructions, the L1 cache miss-rate) in different organizations.

More importantly, its open-source code models cycle-accurate in-order and out-of-order

cores and allows internal modifications for detailed on-the-fly execution profiling.

For our purposes, we have modified the gem5 simulator so it traces the execution

of RISC-V applications while executing workloads on both OoO (big) and in-order (little)

cores. This appears on the superior part of Figure 4.1. As it appears in the Figure, the

traces created during gem5 profiling hold information regarding different phases of the

workload’s execution. Particularly, these phases will be consulted by our simulated Sys-

tem Manager, so it knows: (i) which portions of the program require extensions support

(to mark applications as ISA-extension dependent during simulation); (ii) which portions

of the program are accelerated regions (to mark applications as accelerator dependent dur-

ing simulation). For this, we modify the applications with regions of interest for accelera-

tors with annotation. When executing the applications, gem5 dynamically retrieves these

annotations to generate the traces accordingly; (iii) whenever the program had executed

for longer than 10K cycles without extension instructions (to remove the ISA-extension

dependency during simulation, recall Figure 3.4). With the aforementioned instrumenta-

tion, gem5 traces contain dynamic information of the hardware triggers we expect from

cores in our partial-ISA MPSoC proposal.

To understand how the profiling traces are internally created and how we leverage

their content information, Figure 4.2 depicts two traces for a given workload: one for its

execution in a big core (OoO), and another for its execution in a little core (in-order).

Each trace is composed of a set of blocks, representing the intervals of the application’s

execution. As the legend of the Figure describes, these blocks represent the intervals of

the application with integer-only instructions, with ISA-extensions instructions (FP in this

work), and also the accelerated regions. Importantly, the blocks hold the number of cycles

and instructions these execution intervals took to perform, depending on the host core.

To generate the traces, gem5 counts the number of committed instructions from the

beginning to the end of an execution interval, on both OoO and in-order simulations. The

blocks usually represent up to 10K instructions1, and are successively reported covering

1The size of the blocks must be small for fine-grain representation of the execution phases, but not too
small causing traces to be composed of many of them, turning the traces into big files (which also overheads
the traces parsing in our simulator, as we explain in section 4.3).



43

the whole execution of the application. Blocks can be shortened, however, when an ISA-

extension is fetched, which closes an integer block and immediately starts a FP block.

This is depicted at the end of the first block of both traces in Figure 4.2. When gem5

counts more than 10K non-extension instructions, it closes the FP block and starts an

integer block, emulating how a core would trigger the removal of the ISA-dependency

from an application in our Partial-ISA proposal.

The accelerated regions also lead to a special case for the block’s instruction count.

Because accelerators execute the whole accelerated region (recall the Partial-ISA schedul-

ing policies in section 3.2), gem5 does not limit the size of these blocks. This appears in

Figure 4.2, in the green blocks representing accelerated regions. However, since we may

not have an accelerator for the accelerated region, we keep tracing the execution of the

region in the gem5 cores inside the accelerated block, so we can also use this information

to simulate the execution of the accelerated region in a GPP, if necessary2. This is also de-

picted in the Figure, where the accelerated block wraps non-accelerated blocks (detailed

in the border of the accelerated blocks). In time, we recall gem5 gathers the execution

time of the accelerated block executing in general-purpose cores only. Our simulator con-

siders the nominal speedup of the hardware accelerator over the big core, to obtain the

execution time of the accelerated block on an ASIC, as we specify later in this chapter.

Importantly, we guarantee the blocks represent the same portion of a program

execution regardless of the host core, i.e., the number of total blocks and the instructions

they represent are the same in both OoO and in-order traces. This appears in Figure 4.2,

observing the block’s amount of instructions, depicted on the right side of the blocks in the

traces. Since both microarchitectures commit instructions in order, the Nth committed

instruction of a given application is the same for both cores. Since our modified gem5

counts instructions, its internal counters will be incremented symmetrically in both in-

order and OoO simulations, for a given workload. Hence, the Kth block in the big core

trace is equivalent to the Kth block in the little core trace. This is important because it

assures that, at the end of each block, the workload is at the same point of execution in

both traces. Thereby, our proposed simulator can read the big core trace up to a point, and

continue reading from that point ahead in the little core trace, which allows us to simulate

migrations coherently, as we detail further (section 4.3).

2We highlight that executing in accelerators and GPP requires different binaries. We consider this to be
available since both GPP and accelerators are already in use today, with plenty of tools for binary generation.
For instance, different binaries optimized for different architectures can even be within the same binary with
function-multi-versioning (PARK et al., 2019; JIMBOREAN; LOECHNER; CLAUSS, 2011).



44

Figure 4.2: Representation of the execution traces of a workload in both a big and a
little core, generated with the gem5 simulator. The current host core of the workload
determines which of the traces will be consumed for a given slice of the execution.

gem5 trace big core (OoO) gem5 trace little core (in-order)

8K 

instr 12K 

cycles

10K 

instr

15K 

cycles

10K 

instr

13K 

cycles

15K 

instr

30K 

cycles

7K 

cycles
8K 

instr

9K 

cycles

11K 

cycles

10K 

instr

10K 

instr

15K 

instr

14K 

cycles

C
y
cl

es

Integer Block Floating-Point Block Accelerated Block

In
st

ru
ct

io
n
s

C
y

cl
es

In
st

ru
ct

io
n
s

Source: The author.

What can (and generally will) vary is the amount of time it takes to execute a

block depending on the host core. For example, big cores can achieve higher Instruction-

Level Parallelism (ILP) exploitation to commit the instructions of a block faster than the

little core. We also illustrate this in Figure 4.2, presenting the cycles for executing the

blocks (varying with the core). This is used by our simulator to extract the performance

difference among the different cores.

Finally, with gem5, we have also assessed the required time to flush a cache and

refill it with new data, which we considered for the migration costs (e.g., when dispatching

workloads, as we explain in Section 4.3). We base this assumption based on a previous



45

work by Li et al. (LI et al., 2007), which claims cache overheads are dominant for task

migration.

4.3 Modeling the System Manager for a multi-task simulation

Although we execute every workload in gem5 to generate its execution traces, it

is also necessary to consider its execution in a multi-task environment, where multiple

workloads share the MPSoC resources. For that end, we developed an in-house simu-

lator to model a System Manager (as described in Chapter 3.2). Figure 4.1 presents a

comprehensive overview of the tools and simulation flow. Through the steps described in

Section 4.1, we provide hardware-related data from synthesis to the System Manager, so

it has information regarding the area and power of the computing nodes it is simulating.

At the same time, through the steps described in Section 4.2, we provide software-related

data from gem5 to the System Manager, so it has the executions traces of the applica-

tions to properly simulate the execution of the workloads under the available hardware.

Internally, the System Manager implements the Scheduler, the Cores, and all auxiliary

modules to perform accurate simulation, as we describe next. With this, we can verify the

impact of having partial-ISA cores, and the extra computing nodes (as in-order cores and

accelerators) in heterogeneous MPSoC designs.

Figure 4.3 presents an overview of the simulator components and inputs. As in the

Figure, the System Manager module wraps the Scheduler. The Scheduler, in turn, has a

list of workloads and the reference for available nodes in the system. Note that workloads

can be in the queue, or executing in a computing node. The mapping strategy to assign a

workload from the queue to an idle core is implemented accordingly with the scheduling

policy, detailed in Chapter 3.2.

The diagram illustrated in Figure 4.3 also presents (on the top) the necessary inputs

for accurate experimentation. They are used in the following manner:

• Scheduler Policy. The policy is defined at the initialization of the simulator. With

this input, it is possible to choose between the performance-oriented or the energy-

oriented mapping strategies. Also, the existence of this input allows the simulator

to extend the number of policies while keeping an easy interface. We implement the

scheduling policies inside our simulator, based on Algorithms 1 and 2. We detail

how the scheduler interacts with the remaining modules of our simulator further in



46

Figure 4.3: A high-level view of the partial-ISA MPSoC simulator. On the top, the set of
inputs necessary for execution. Above, the different modules of the simulator and their
interaction with each other and with the inputs.

SystemManager

Node (Core/Acc)

Workload

Scheduler

Node (Core/Acc)

Workload

WorkloadQueue

Workload Workload

gem5

Traces

Synthesis

Data

Scenarios

Description

Scheduler 

Policy

Nodes

Description

Source: The author.

this section.

• Scenarios Descriptions. This input contains the list of workloads we want to ex-

ecute in the simulator, allowing us to create multi-tasking execution environments.

The list of workloads is used to fill the WorkloadQueue when the simulator starts

the execution. This input is simply a json file which holds the workloads names,

and the reference for the trace files from gem5 (another input of the simulator as

we detail further, and as also depicted in Figure 4.1). With this approach, we can

quickly create different scenarios for experimentation.

• Computing Nodes Description. This input is a json file containing each computing

node in the system and its microarchitecture since it is important to inform the

simulator of the computing nodes available. Especially, the Scheduler may leverage

this information when applying its current policy. In the json file, each element can



47

be a GPP or an accelerator. If it is a GPP, it can be defined as an OoO or an in-order

core, as also the ISA-extensions it supports (or does not support, if partial-ISA).

If an accelerator, it contains the accelerator type, so the Scheduler knows which

accelerated regions can be assigned to the accelerator, and the accelerator speedup

compared to a big (OoO) core, used as a reference for its performance because

gem5 does not generate traces for the accelerators (this will be detailed further in

this chapter). Configuring the elements in the json file is all it takes for adjusting

the composition of the MPSoC computing nodes.

• Synthesis Data. We use the synthesis outcome to feed our simulator (as also ap-

pears in Figure 4.1) with area and power information. With this, the simulator can

compute the total area of the MPSoC, and also have the mean power of each com-

puting node at hand. We sum up the energy consumed by each computing node

along with the execution of the workloads using data from the System Manager,

which knows whether or not the cores are executing.

• gem5 Traces. As previously explained, gem5 traces are used as a trustful repre-

sentation of a workload executing in a core. In our environment, a workload can

execute in either big or little cores (OoO or in-order), or accelerators. Because of

this, for each workload we want to simulate, we need (and have) two gem5 traces.

One contains the execution trace for the workload under an OoO core, and the

other has the execution trace of the workload in an in-order core. Depending on the

workloads’ host core (decided on-the-fly by the Scheduler during our simulation),

the appropriate trace will be consulted to advance the workloads’ execution accord-

ingly. When the Scheduler assigns a workload to an accelerator, we use the big core

trace and the accelerator nominal speedup to simulate the execution.

The execution of workloads in our simulation proceeds after we have these inputs

at hand. With the Workloads Queue filled with workloads, the Scheduler assigns tasks for

the available computing nodes, accordingly with the chosen scheduling policy, following

the specifications in Chapter 3. For such, we carefully assure all the scheduler restrictions

defined in Section 3.2 are respected in our implementation (e.g., never start the execution

of a workload assigning it to an accelerator). When a simulated Core has been assigned

with a workload, it can execute it. For this, the host Core module verifies its type (big or

little). Based on that, the Core looks up in the corresponding trace (big core trace or little

core trace, depending on its type) and gathers a block, checking the execution interval of



48

it. This is used to append execution time in the total time of the workload’s execution, and

to add up the energy consumption for the block execution on that core. Also, it is used by

the Scheduler to know what cores are occupied or idle at a given time. At the end of the

block, the Scheduler verifies for how many cycles the workload has been executing on

the core. If it surpassed the threshold of 160K (see Chapter 3), the workload is preempted

from the core and pushed to the Workloads Queue module.

If the workload is not preempted, the simulated Core looks up for the next block.

If the next block is different from the previous block (e.g., it is marked as ISA-extension

dependent), the core check if it is capable of executing it. If it is, the same process as above

is repeated; if it is not capable of executing the block, the workload is preempted (removed

from the core and pushed to the Workloads Queue), to be later assigned to a capable host.

When the Scheduler assigns an accelerated block to execute in the appropriate hardware

accelerator, we use the nominal speedup of the accelerator compared to the big core to

get the number of cycles it takes to execute the accelerated block, as stated by Equation

4.1. The specific values of the ASIC speedups are discussed along with the methodology

for our results, presented in the upcoming section.

accelerator block execution time =
block execution time in big core

accelerator nominal speedup over big core
(4.1)

4.4 Results Methodology

Below, we describe how we have set up important knobs used in our simulations

to examine partial-ISA impacts in MPSoCs. These adjustments hold for all experiments,

which we introduce in the next chapter.

4.4.1 Partial-ISA Cores

To evaluate our proposed MPSoCs with partial-ISA processors, we have used

the Rocket (for in-order cores) (ASANOVIC et al., 2016) and BOOM (for OoO cores)

(ASANOVIC et al., 2015) RISC-V core generators. Both generators provide a tool-chain

for a parametric generation of synthesizable Verilog code for RISC-V based processors.



49

We have parametrized our cores to be alike ARM’s big.LITTLE cores (OoO as A15 and

in-order as A7) in these RISC-V tools, based on previously published data (GREEN-

HALGH, 2011; ENDO et al., 2015). For the partial-ISA cores, the FPU (as well as all the

related hardware) was removed, through the configuration files as we detailed in Listing

3.1 (Chapter 3). The detailed list of the configured parameters for each core can be found

in Table 4.1.

As detailed in section 4.1, we provide the core generator’s resultant Verilog to the

Cadence Genus synthesis tool with the Verilog using a 15nm cell library (MARTINS et al.,

2015). Additionally, for estimating the area and power of L1 caches, we use FinCACTI

(SHAFAEI et al., 2014) (under the same technology).

As previously explained (section 4.2), we have used the gem5 simulator (BINKERT

et al., 2011) for performance analysis, running RISC-V binaries to generate execution

traces. The cores in gem5 were modeled with the same parameters used on Rocket (for

little cores) and BOOM (for big cores) tool-chains (which appears in Table 4.1), and ap-

plications were compiled with riscv-gcc using the -O3 flag.

4.4.2 Application-Specific Hardware

Additionally to GPP cores, we also consider the use of hardware-accelerators

(ASIC) as an option for increased heterogeneity that can be leveraged in MPSoCs through

partial-ISA. However, neither core generators (to model area and power) nor gem5 (to

model performance) provides straightforward support for hardware-accelerators as it does

for GPP cores. For this reason, we have a different approach to model ASICs.

We consider three hardware-accelerators in this work - the reasons are discussed

in the Results Chapter: a decoder for the H.264/AVC digital video compression standard

(named Nova); an accelerator for convolutional neural networks (named Origami); and an

accelerator for the AES cryptography standard (named Avalon). Both the H264 decoder

(XU; CHOY, 2008) and the AES accelerator (RUSCHIVAL, 2017) were obtained at the

opencores.org website, an online repository for open-sourced hardware. Consequently,

we have access to the hardware description of both accelerators and could submit them

to the Cadence Genus to get their area and mean power (refer to Section 4.1). However,

the CNN accelerator that we consider in this work comes from the work in (CAVIGELLI

et al., 2015). The published results contain data on area, power, and performance, but

do not provide a hardware description. Because the work presents data in 65nm technol-



50

Table 4.1: Modeling parameters for the big (OoO) and little (in-order) cores.

Parameter Big core (BOOM) Little core (Rocket-chip)

Frequency 2GHz 1.4GHz

L1 - I

Size 32kB 32kB

Associativity 2 2

MSHRs 2 2

TLB Entries 32 32

L1 - D

Size 32kB 32kB

Associativity 2 4

MSHRs 6 4

TLB Entries 32 32

BTB Entries 2048 128

Fetch Width 4 1

Decode Width 4 1

INT/FP Pipeline Depth 10/14 5/8

INT/FP Physical registers 90/256 32/32

FP Units 2 1

Issue Queue Size
Mem 20

ALU 20 –

FP 20

ROB Entries 64 –

ogy, we had to scale their results to the 15nm technology, which is used in all remaining

hardware of this work (either accelerators or cores). We perform the scaling based on

(STILLMAKER; BAAS, 2017), as aforementioned in Section 4.1.

Given that our simulator uses gem5 traces for performance evaluation, and traces

in gem5 are generated by core models, we cannot generate accelerated traces from the

accelerators in gem5. Thus, we define a mathematical method to stipulate the acceler-

ator’s performance, using the nominal speedup against the big core, as in Equation 4.1.

The execution time in the big core, used by the equation, is provided by gem5, but the

accelerator nominal speedup over the big core has not been yet defined. Following, we

detail how we calculate the nominal speedup for the aforementioned accelerators.

H264 Decoder. We use latency and frequency from the synthesized H264 decoder

to calculate the time to execute three frames of video in the QCIF video resolution, de-

fined by the H264 standard (RICHARDSON, 2010). Each of these frames contains 11 ×



51

9 mega blocks of video (each mega block contains 16 pixels × 16 pixels), summing up to

a total of 297 mega blocks. The datasheet of the H264 accelerator states that each mega

block takes 204 cycles to be decoded. By considering the synthesized frequency (200

MHz, reproducing orignal authors decision), a total of 0.3ms are necessary to decode the

three frames. When performing the decoding kernel (excluding file loading and initial-

ization) for three frames of a video in equivalent quality in the big core, gem5 reported

22.7ms execution time - a difference of about 75×.

AES Cryptography. To define the nominal speedup of the AES accelerator, we

perform a similar approach. We execute encryption and decryption of a 40kB message

in gem5, which results in 3.22ms for the big core. We consider the same message to be

encrypted or decrypted in the hardware-accelerator. Referring to Avalon’s documentation,

we check it takes 10 cycles to process each 128 bits and also runs at 200MHz (as original

authors defined). This leads to 0.125ms to encrypt or decrypt the same amount of data

(the Finite State Machine (FSM) for the encrypt and decrypt take the same amount of

steps accordingly to the accelerator manual). The performance gap, in this case, is around

25× between the ASIC and the software approach executing in our big core.

Convolution Neural Network. Because we do not have access to the hardware

description of the CNN accelerator, we must refer to the data provided by the authors in

the original paper where the accelerator is described (CAVIGELLI et al., 2015). Ideally,

the speedup of the accelerator over the big core is given by the equation:

Speedupcnn acc over big core =
timebig core

timecnn acc

(4.2)

Unfortunately, authors do not provide the execution time of the accelerator to com-

plete a task, so we cannot reproduce its execution in the big core to get a direct compar-

ison. What is given, however, is the throughput of the accelerator in terms of operations

per second (ops/s), where operations refer to Multiply-Accumulate (MAC) in the convolu-

tional layer of a neural network. To have a comparison metric, we run a CNN benchmark

in the big core (detailed in the scenarios, later) and obtain the throughput in terms of In-

structions per Second (IPC). Considering each instruction as an operation, and knowing

the cycle period (in seconds), we obtain the throughput of the core (in instr/s), derived

from its IPC. In this point we have the following:

Throughputbig core =
instrbig core

timebig core

(4.3)



52

Throughputcnn acc =
opscnn acc

timecnn acc

(4.4)

To proceed, we make a pessimistic simplification (considering the core better than

it is and therefor reducing the speedup gains of the accelerator). We consider most of the

instructions committed by the big core to be useful operations (MAC operations of the

convolutional kernel). Hence:

Throughputbig core =
instrbig core

timebig core

≈ opsbig core

timebig core

(4.5)

At this point, we observe that the number of MAC operations of a convolution is

determined by the neural network topology and by the input size, and does not depend on

the target architecture that calculates it. This leads to the following:

opsbig core = opscnn acc = ops (4.6)

Applying Equation 4.6 in Equations 4.5 and 4.4:

ops ≈ Throughputcnn acc × timecnn acc ≈ Throughputbig core × timebig core (4.7)

Which finally leads to:

Throughputcnn acc

Throughputbig core

≈ timebig core

timecnn acc

(4.8)

Therefore having the speedup relation required by Equation 4.2, expressed in

terms of throughput, which we have at hand. With data from the accelerator (203Gops/s

throughput) and the big core via gem5 (2.08Ginstr/s ≈ 2.08Gops/s throughput), we have

a 100× speedup relation.

Even though accelerators’ performance definition contains simplifications, we reach

plausible values of speedup, which could appear in real-life implementations. Accelera-

tors are designed for delivering orders of magnitude higher performance and lower energy

against GPP solutions since they are specifically tailored for a single end. Hence, we con-

sider that our approach is a plausible way of assessing the benefits in performance when

using hardware-accelerators. In time, we plan to simulate hardware accelerators executing

the kernels in our future work, improving the experimentation accuracy.



53

5 RESULTS

In this chapter, we present and discuss the results of our proposal. We start by

defining the execution-scenarios and hw-configurations, which are combined to evaluate

the behavior of partial-ISA MPSoCs under different circumstances. After, we begin the

analysis of the results evaluating the scheduling mechanism, presenting how workloads

are mapped through the execution of our scenarios. Next, we discuss the partial-ISA

impacts in performance and energy, using the observations from the scheduling analysis

and from the computing nodes adopted. We close the Chapter presenting data on EDP

of the partial-ISA configurations. As we conclude, our proposal consistently delivers

enhanced configurations regarding the EDP metric.

5.1 Scenarios and Configurations

To evaluate Partial-ISA adoption for enhanced heterogeneous MPSoC designs, we

investigate several possibilities. For instance, depending on the number of cores we turn

into Partial-ISA, different design spaces arise. Since we can compose different designs,

they may perform differently depending on the applications’ requirements. Sometimes it

is better to leverage partial-ISA to add more GPP in-order cores, increasing the MPSoC’s

task-parallelism. In other cases, adding an application-specific accelerator can be more

suitable. Naturally, removing the ISA-extension support from a few cores can also impact

negatively on the overall performance, if those extensions are frequent in the applications

being executed. For this reason, we must create different application pools, and verify

how different MPSoC designs perform on each of them.

Figure 5.1 depicts our methodology for this experimentation. We call each MPSoC

design a hw-configuration. Similarly, we have the executing-scenarios, which are a pool

of applications representing some real-life situation. As we depict in the figure, each hw-

configuration runs each executing-scenario, under both scheduling policies, such that we

have a broad investigation regarding Partial-ISA usage.

Following, we enumerate the chosen Scenarios and justify the applications we

select. Also, we present the Baseline MPSoC design and the Partial-ISA MPSoCs derived

from it, which respect the Baseline’s area and power budget.



54

Figure 5.1: A representation on how we extensively combine hardware configurations,
software scenarios, and scheduling policies throughout the experiments.

Hw-config  1Hw-config  1

Hw-config 2Hw-config 2

Hw-config nHw-config n

App 1App 1 App 2App 2

App 3App 3 App 4App 4

Scenario 1

App 1 App 2

App 3 App 4

Scenario 1

App 5App 5 App 6App 6

App 7App 7 App 8App 8

Scenario 2

App 5 App 6

App 7 App 8

Scenario 2

App 1App 1 App 2App 2

App 3App 3 App 4App 4

Scenario n

App 1 App 2

App 3 App 4

Scenario n

Performance-Oriented

Scheduling Policy

Energy-Oriented

Scheduling Policy

Source: The author.

5.1.1 Scenarios

We use a variety of applications from different benchmarks suites to evaluate our

partial-ISA MPSoC proposal. With the intent to mimic real-life situations, we group

workloads into different sets, which we call Executing-Scenarios, to perform under our

simulator. Table 5.1 presents six scenarios, their set of workloads, and the manner we

consider applications execute (at the same time as in a pipeline, or at the same time as

independent and simultaneous tasks).

Next, we explain the motivations for each scenario:

• Smartphone app. This scenario contains a set of daily use tasks, such as text-to-

speech, image processing, and string manipulation. This scenario aims to represent,

as the name states, the execution of apps in a smartphone. We consider tasks exe-

cute independently from each other, hence the simultaneous tasks execution mode.



55

Table 5.1: The applications scenarios evaluated in this work.

Scenario Tasks Execution Mode

Smartphone app
rsynth qsort jpeg-d susan-c susan-e susan-s
stringsearch Simultaneous Tasks

Multitask
Mix of more than 30 fp and int instances of
MiBench benchmarks Simultaneous Tasks

Edge computing
2dconv astar svm histogram ecg_health
dwt_compression dtw_pattern matching
aes_encrypt aes_decrypt

Simultaneous Tasks
&
Pipeline

Road sign detection aes crc32 cnn_inference Pipeline

Video streamming aes crc32 h264_video_dec Pipeline

FP-driven
correlation gemm 2mm 3mm cholesky
ludcmp gramschmidt jacobi-1d Simultaneous Tasks

Benchmarks are from the MiBench suite (GUTHAUS et al., 2001).

• Multitasking. This scenario contains more than 30 instances of MiBench bench-

marks, with either integer and FP applications. The goal of this scenario is to pres-

sure the host system regarding task parallelism. This can be the case in cloud-

servers, for example. With this scenario, we may demonstrate the benefits of in-

creasing the computing nodes of an MPSoC through partial-ISA.

• Edge computing. This scenario contains a variety of on-the-edge jobs (which pro-

cess data from embedded systems before forwarding to data-centers, for example).

It contains kernels for image processing, navigation, health monitoring, pattern

matching, and data compression. To simulate the inputs and outputs send-receive of

each kernel, we surround the kernels with encryption and decryption steps. While

decryption-processing-encryption can be considered to execute in a pipeline man-

ner, there can be several executions of similar decryption-processing-encryption

occurring simultaneously. We explore this scenario to analyze the impact of adding

in-order cores or AES hardware accelerators into partial-ISA MPSoCs. All bench-

marks come from the IoT-LOCUS suite (TAN et al., 2017).

• Road sign detection. This scenario contains a CNN inference kernel, which detects

and reads the data from road signs (as maximum speed). We consider the kernel to

execute in a pipeline with aes and crc32 - simulating data acquisition and checksum.

With this scenario, we expect to demonstrate the benefits of adding accelerators

to the chip after adopting partial-ISA. The CNN kernel comes from the work by



56

(PEEMEN; MESMAN; CORPORAAL, 2011), while aes and crc32 come from the

MiBench suite.

• Video Streaming. This scenario contains a h264 video decoding application, run-

ning aside with aes and crc32 benchmarks for data acquisition and checksum. Like-

wise, Road sign detection, this scenario can be enhanced through the adoption of

hardware accelerators, enabled by our partial-ISA proposal. The video applica-

tion comes from the work by (SUEHRING, 2010), while aes and crc32 come from

MiBench.

• FP-Driven. This scenario contains FP-only benchmarks to stress the host system

FPUs. Since our partial-ISA proposal removes FP support from some cores in the

MPSoC, we use this scenario to assess the impact of such an approach when FP us-

age rises. The benchmarks are mainly mathematical and come from the polybench

suite (POUCHET; YUKI, 2015).

5.1.2 Configurations

The adoption of partial-ISA cores in an MPSoC results in slack in area and power,

which the designer can exploit to adopt extra computing nodes to the system. Following,

we present data regarding the area and power savings for the considered GPPs, when we

trim FP support to transform them into partial-ISA GPPs. Additionally, we present the

data for hardware-accelerators. Using this data, we compose different hw-configurations

targeting the scenarios aforementioned in Table 5.1. We demonstrate that partial-ISA con-

figurations allow increased heterogeneity while respecting the area and power constraints

of the Baseline.

Table 5.2 presents area and mean power for every computing node we consider in

this work. As one can see, we present data for the GPP cores (see the configurations in

Table 4.1) with and without FP support (Full or Partial, in the table). Also, we present

data for three accelerators, already introduced in Section 4.4. The AES Avalon, the sim-

plest node evaluated, is application-specific hardware that implements AES encryption

and decryption; the Nova is a decoder for the h264 digital video standard; the Origami

hardware is an accelerator for the convolutional layers of CNNs. We have chosen acceler-

ators that are suitable for at least one of the executing-scenarios (Table 5.1). For example,

the Origami accelerator can be assigned to execute the convolutional layers of the Road



57

Table 5.2: The area and power of the computing nodes considered in our work. Including
Level 1 instruction and data caches.

Area (mm2) Mean Power (W)

Big core - Full 0.343 0.767

Big core - Partial 0.218 0.358

Little core - Full 0.111 0.086

Little core - Partial 0.093 0.032

Avalon AES Encrypt/Decrypt Accelerator 0.007 0.004

Nova H264 Decoder 0.071 0.029

Origami Convolutional Accelerator 0.355 0.124

sign detection scenario, the Nova can be employed in the Video Streaming scenario, and

the Avalon can handle aes kernels (which appear in more than one scenario).

We highlight a few observations from Table 5.2. First, trimming the ISA support

for FP instructions in the big cores has more impact than in little cores. The absolute area

saved with partial big cores is around 7× the absolute area saved with partial little cores.

Power savings follow a similar trend. This occurs because the FPU in wide OoO are more

complex (deeper pipeline and larger FP register file, for example), and also must cope

with the out-of-order execution, interacting with complex modules (e.g., the Re-order

Buffer (ROB)). Also, our big core contains two FPU (like in the ARM Cortex A15, which

we model). Second, removing the FP support from an OoO core create sufficient slack in

area and power to add an extra in-order core, or accelerators (except Origami). Third, it

is possible to add accelerators (Avalon AES) even when we trim the ISA for little cores.

To apply our partial-ISA methodology, we consider a Baseline hw-configuration

composed of a 4 big (OoO) core + 4 little (in-order) system. This Baseline is based on

ARM’s heterogeneous setup with the DynamIQ technology (ARM, 2017). DynamIQ ex-

tends the former big.LITTLE technology by increasing the number of cores, and relaxing

the ratio between big and little cores (in big.LITTLE, big and little cores always come in

pairs).

We use the data of each individual hardware (cores or accelerators), presented in

Table 5.2, to get the total area and power of the Baseline. We then consider the Base-

line’s area and power as the limit for any other MPSoC hw-configuration. Upon this,

we simplify some cores from the Baseline (turning them partial-ISA cores) and leverage

the savings in area and power to compose different hw-configurations, always under the

baseline constraints. Table 5.3 presents the different hw-configurations we built with this



58

Table 5.3: The configurations evaluated in this work.
Configuration Description Target scenario

Baseline
4 OoO
4 In-Order FP-Driven

Task Parallel
2 OoO
2 OoO (Partial-ISA)
6 In-Order

Multitasking
Smartphone App
Edge Computing

AES Accelerated

4 OoO
2 In-Order
2 In-Order (Partial-ISA)
4 AES Accelerator (Avalon)

Edge Computing
Video Streaming
Road Sign Detection

Video Accelerated

2 OoO
2 OoO (Partial-ISA)
5 In-Order
1 H264 Accelerator (Nova)

Video Streaming

CNN Accelerated

1 OoO
3 OoO (Partial-ISA)
4 In-Order
1 CNN Accelerator (Origami)

Road Sign Detection

Accelerator Rich

4 OoO (Partial-ISA)
4 In-Order
4 AES Accelerator (Avalon)
1 H264 Accelerator (Nova)
1 CNN Accelerator (Origami)

Edge Computing
Video Streaming
Road Sign Detection

Table 5.4: The area and power of evaluated configurations.
Configuration Total Area (mm2) Total Mean Power (W)
Baseline 1.81 3.41
Task Parallel 1.79 2.76
AES Accelerated 1.80 3.32
Video Accelerated 1.75 2.71
CNN Accelerated 1.79 2.31
Accelerator Rich 1.77 1.94

methodology, their computing nodes, and the scenarios they target to improve. At the

same time, Table 5.4 presents the total area and power of each of these hw-configurations,

and demonstrate that we never surpass the area and power budget from the former Base-

line.

The proposed hw-configurations intend to demonstrate how partial-ISA MPSoCs

can be composed to tackle different executing-scenarios. As said, in Table 5.3 we high-

light target scenarios of each hw-configuration, which depend on the set of computing

nodes that compose a hw-configuration (which appears in the Description column). For

example, the Task Parallel has an increased number of cores, which can be helpful when

the number of tasks rises (scenarios such as Multitasking, Smartphone App, and Edge



59

Computing). The AES Accelerated hw-configuration contains accelerators for cryptog-

raphy, which can be valuable when cryptography is required (scenarios such as Edge

Computing, Video Streaming, and Road Sign Detection). Likewise, Video Accelerated

and CNN Accelerated hw-configurations contain application-specific hardware that can

execute the respective kernels with lower energy and higher performance. The Accel-

erator Rich hw-configuration contains every evaluated accelerator, but can suffer under

FP-Driven because it removes the FPU from all OoO cores. The Baseline, in turn, has

full cores only and should not struggle with FP loads.

5.2 Scheduling analysis

After defining the executing-scenarios and the hw-configurations we now turn our

focus to the analysis of the proposed technique. We start observing how the Scheduler can

leverage the configurations in both performance-oriented (where big OoO cores are pre-

ferred) and energy-oriented (where little in-order cores are preferred). As we stated pre-

viously (see Figure 5.1), we execute every scenario under every hw-configuration, in both

scheduling policies, which sums up to a combination of 6scenarios×6configurations×

2 policies = 72 executions. To simplify the explanation, we elaborate the schedul-

ing analysis discussion over a selection of insightful situations to clarify the partial-ISA

functioning, benefits, and threats. The analysis presented here supports later discussion

on overall results for performance and energy. Following, we observe how each hw-

configuration behaves in at least one executing-scenario, comparing to the Baseline de-

sign.

5.2.1 Task Parallel Hw-Configuration

Figure 5.2 presents the performance-oriented task scheduling for the Smartphone

App scenario on two designs. It compares the execution under the Task Parallel hw-

configuration (a), and Baseline hw-configuration (b). The chart depicts the applications

(listed in the legend) scheduling in each host core in a timeline manner. The x-axis

presents the execution cycles, using the frequency of the big cores as the step (since it

has the higher frequency and hence finer grain) and normalizing the cycle duration of the

other nodes to the big core cycle, so we have a common step in the x-axis. At the same



60

time, the y-axis presents the computing nodes of the hw-configuration, accordingly with

their description in Table 5.3. For example, in Figure 5.2 the Task Parallel (a) has 10

cores, where cores 2 and 3 are partial. We highlight that this chart pattern holds for the

subsequent figures in this section.

Figure 5.2: Execution of the Smartphone App scenario in the performance-oriented pol-
icy.

(a) Task Parallel Hw-Configuration

0 5M 10M 15M

09 - little full

08 - little full

07 - little full

06 - little full

05 - little full

04 - little full

03 - big partial

02 - big partial

01 - big full

00 - big full jpeg-d

rsynth

qsort

susan-e

stringsearch

susan-c

Cycles

(b) Baseline Hw-Configuration

0 5M 10M 15M

07 - little full

06 - little full

05 - little full

04 - little full

03 - big full

02 - big full

01 - big full

00 - big full jpeg-d

rsynth

qsort

susan-e

stringsearch

susan-c

Cycles

Source: The author.

Although the extra cores are not used in this scenario (because there are fewer

applications than cores), big partial-ISA cores are preferred over other GPP cores, as ex-

pected for the performance-oriented scheduling policy (recall Algorithm 1). With this, the

integer apps qsort and jpeg-d applications can execute with reduced power (partial-ISA



61

cores are simpler), while keeping the performance (still running under an OoO microar-

chitecture). For the remaining applications, they migrate to the cores accordingly to their

needs (e.g., FP support necessary for susan-c) and respecting the scheduling policy (pre-

ferring OoO over in-order cores).

In comparison, Figure 5.3 presents the same scenario and hw-configurations, but

in the energy-oriented scheduling policy. In this case, the execution flow in the Task

Parallel (Figure 5.3-a) and Baseline (Figure 5.3-b) is very similar, since we do not have

partial in-order cores in both hw-configurations. The difference, however, is that the

increased number of in-order cores in the Task Parallel hw-configuration avoids the use

of big cores. This saves energy while it does not introduce any overall latency penalty,

hence being as performing as the Baseline.



62

Figure 5.3: Execution of the Smartphone App scenario in the energy-oriented policy.
(a) Task Parallel Hw-Configuration

0 5M 10M 15M 20M 25M 30M

09 - little full

08 - little full

07 - little full

06 - little full

05 - little full

04 - little full

03 - big partial

02 - big partial

01 - big full

00 - big full jpeg-d

rsynth

qsort

susan-e

stringsearch

susan-c

Cycles

(b) Baseline Hw-Configuration

0 5M 10M 15M 20M 25M 30M

07 - little full

06 - little full

05 - little full

04 - little full

03 - big full

02 - big full

01 - big full

00 - big full jpeg-d

rsynth

qsort

susan-e

stringsearch

susan-c

Cycles

Source: The author.

We continue the analysis of the Task Parallel hw-configuration, but now present-

ing the scheduling flow for the Multitask executing-scenario. Figure 5.4 depicts the com-

parison of this design with the Baseline, in the performance-oriented scheduling policy.

This scenario contains more than 30 instances of MiBench applications (we execute three

instances of each of the benchmarks in the legend).



63

Figure 5.4: Execution of the Multitask scenario in the performance-oriented policy.
(a) Task Parallel Hw-Configuration

0 20M 40M 60M 80M 100M

09 - little full

08 - little full

07 - little full

06 - little full

05 - little full

04 - little full

03 - big partial

02 - big partial

01 - big full

00 - big full CRC32

dijkstra

blowfish-e

jpeg-d

qsort

susan-s

rsynth

gsm-d

sha

susan-e

gsm-e

stringsearch

susan-c

Cycles

(b) Baseline Hw-Configuration

0 20M 40M 60M 80M 100M

07 - little full

06 - little full

05 - little full

04 - little full

03 - big full

02 - big full

01 - big full

00 - big full CRC32

dijkstra

blowfish-e

jpeg-d

qsort

susan-s

rsynth

gsm-d

sha

susan-e

gsm-e

stringsearch

susan-c

Cycles

Source: The author.

Since the Task Parallel hw-configuration has two extra full-ISA little cores, this

design has higher throughput compared to the Baseline. Notably, this setup is achieved

while respecting the Baseline’s former area and power budget (Table 5.4). As one can see,

the set of applications finish their execution in about 80% of the Baseline’s cycle count.

Thus, improving performance. Additionally, since the Task Parallel hw-configuration

executes fewer applications in the full-ISA OoO cores, by taking advantage of the simpler

partial-ISA OoO cores and additional little cores, energy reductions will also appear.

Results for the energy-oriented scheduling policy are similar to the performance-

oriented scheduling policy in this case, and we suppress the corresponding chart for



64

brevity. This similarity occurs because, as detailed in Section 3.2, the Scheduler veri-

fies the available cores to decide which of them to assign a workload. However, in this

scenario, cores are occupied most of the time, and the Scheduler essentially assigns work-

loads to the first core that preempts a task and becomes available.

5.2.2 AES Accelerated Hw-Configuration

To analyze the task scheduling on the AES Accelerated hw-configuration, Figure

5.5 presents the Edge Computing executing-scenario performing under the performance-

oriented scheduling policy on both AES Accelerated (a) and Baseline (b) hw-configurations.

Notably, encryption and decryption kernels heavily occupy GPP cores in the Baseline hw-

configuration (Figure 5.5-b). This occurs because on-the-edge tasks have a high load of

encrypted communication since they are used to exchange (and prepare) data generated

by leaf nodes (e.g., sensors) to the cloud.

As defined in Table 5.3, the AES Accelerated hw-configuration has four AES

Avalon accelerators, which are possible since we transform two in-order cores from the

Baseline into partial-ISA cores to define this design while respecting former constraints.

These new nodes appears in Figure 5.5-a. Also, these accelerators are capable to decrypt

and encrypt in the AES standard in a much quicker (see Section 4.4) and power-efficiently

(see Table 5.2) way compared to GPP cores. Hereby, we can offload the cryptography

tasks to the accelerators, while exploiting the GPP cores to execute the remaining general-

purpose tasks.



65

Figure 5.5: Execution of the Edge Computing scenario in the performance-oriented pol-
icy.

(a) AES Accelerated Hw-Configuration

0 20M 40M 60M 80M

15 - encrypt acc
14 - encrypt acc
13 - encrypt acc
12 - encrypt acc
11 - decrypt acc
10 - decrypt acc
09 - decrypt acc
08 - decrypt acc
07 - little partial
06 - little partial

05 - little full
04 - little full

03 - big full
02 - big full
01 - big full
00 - big full 2dconv

aes_encrypt

aes_decrypt

dwt_compression

ecg_health

histogram

astar

svm

dtw_pattern_matching

Cycles

(b) Baseline Hw-Configuration

0 20M 40M 60M 80M

07 - little full

06 - little full

05 - little full

04 - little full

03 - big full

02 - big full

01 - big full

00 - big full 2dconv

aes_encrypt

aes_decrypt

dwt_compression

ecg_health

histogram

astar

svm

dtw_pattern_matching

Cycles

Source: The author.

This behavior also occurs in the energy-oriented scheduling policy, depicted in

figure 5.6. Because accelerators are preferred over GPP cores regardless of the scheduling

policy, they are used similarly. The mapping strategies only decide where the remaining

tasks should be executed when there is more than one core available (preferring little

cores).



66

Figure 5.6: Execution of the Edge Computing scenario in the energy-oriented policy.
(a) AES Accelerated Hw-Configuration

0 20M 40M 60M 80M

15 - encrypt acc
14 - encrypt acc
13 - encrypt acc
12 - encrypt acc
11 - decrypt acc
10 - decrypt acc
09 - decrypt acc
08 - decrypt acc
07 - little partial
06 - little partial

05 - little full
04 - little full

03 - big full
02 - big full
01 - big full
00 - big full 2dconv

aes_encrypt

aes_decrypt

dwt_compression

ecg_health

histogram

astar

svm

dtw_pattern_matching

Cycles

(b) Baseline Hw-Configuration

0 20M 40M 60M 80M

07 - little full

06 - little full

05 - little full

04 - little full

03 - big full

02 - big full

01 - big full

00 - big full 2dconv

aes_encrypt

aes_decrypt

dwt_compression

ecg_health

histogram

astar

svm

dtw_pattern_matching

Cycles

Source: The author.

5.2.3 Video Accelerated Hw-configuration

The Video Accelerated hw-configuration is compared with the Baseline in the

performance-oriented scheduling policy (Figure 5.7) and energy-oriented scheduling pol-

icy (Figure 5.8). In the Video Accelerated hw-configuration, we recall, there is a h264

ASIC. Under both scheduling policies, the migration to the video accelerator provides

considerable performance gains. The total time, however, is limited by the rijndael

benchmark (from MiBench), which performs AES decryption (in a GPP in this hw-



67

configuration, since it does not have the Avalon accelerator).

As depicted in the chart, there are parts of the h264 application that cannot execute

in the accelerator. This is mainly due to Input/Output (IO) management, such as data

preparation (loading the stream to the main memory, for example), and output the results

at the end of the execution. For the other applications, there is no overhead in migration

since they are integer only. This allows partial-ISA cores to be used with no performance

penalty.

Figure 5.7: Execution of the Video Streaming scenario in the performance-oriented policy.
(a) Video Accelerated Hw-Configuration

0 10M 20M 30M 40M 50M

09 - video acc

08 - little full

07 - little full

06 - little full

05 - little full

04 - little full

03 - big partial

02 - big partial

01 - big full

00 - big full CRC32

rijndael

h264

Cycles

(b) Baseline Hw-Configuration

0 10M 20M 30M 40M 50M

07 - little full

06 - little full

05 - little full

04 - little full

03 - big full

02 - big full

01 - big full

00 - big full CRC32

rijndael

h264

Cycles

Source: The author.



68

Figure 5.8: Execution of the Video Streaming scenario in the energy-oriented policy.
(a) Video Accelerated Hw-Configuration

0 20M 40M 60M 80M

09 - video acc

08 - little full

07 - little full

06 - little full

05 - little full

04 - little full

03 - big partial

02 - big partial

01 - big full

00 - big full CRC32

rijndael

h264

Cycles

(b) Baseline Hw-Configuration

0 20M 40M 60M 80M

07 - little full

06 - little full

05 - little full

04 - little full

03 - big full

02 - big full

01 - big full

00 - big full CRC32

rijndael

h264

Cycles

Source: The author.

5.2.4 CNN Accelerated Hw-Configuration

Figure 5.9 presents the Road Sign Detection executing-scenario executing in the

performance-oriented scheduling policy for both the CNN Accelerated hw-configuration

(which contains a CNN accelerator) and the Baseline. Similarly to the Video Acceler-

ated hw-configuration, the accelerator is leveraged to execute the accelerated phase of the

application - in this case a CNN inference for road sign detection.

During the neural network kernel initialization, where there is weights and inputs



69

reading, the workload runs in a GPP. However, since this initial portion of code does not

execute FP instructions, it can be executed in the partial cores, which are indeed explored

by the scheduler as the figure depicts.

Figure 5.9: Execution of the Road Sign Detection scenario in the performance-oriented
policy.

(a) CNN Accelerated Hw-Configuration

0 50M 100M 150M 200M 250M

08 - nn acc

07 - little full

06 - little full

05 - little full

04 - little full

03 - big partial

02 - big partial

01 - big partial

00 - big full CRC32

rijndael

cnn

Cycles

(b) Baseline Hw-Configuration

0 50M 100M 150M 200M 250M

07 - little full

06 - little full

05 - little full

04 - little full

03 - big full

02 - big full

01 - big full

00 - big full CRC32

rijndael

cnn

Cycles

Source: The author.

After the convolutional kernel, however, the application proceeds with fully con-

nected layers calculation (which cannot be accelerated with the convolutional accelerator,

since their topology is different). These fully connected layers are used to trigger the

decision upon a road sign detection and its value (e.g., there is a plate in the y,x posi-

tion depicting 80mp/h). Because these layers contain FP weights, full-ISA GPP cores are



70

necessary. A similar trend occurs in the energy-oriented performance (Figure 5.10), ex-

cept the scheduler prefers little cores, and there is no partial little core that the scheduler

can leverage (neither for the CNN initialization nor for the remaining workloads in the

executing-scenario).

Figure 5.10: Execution of the Road Sign Detection scenario in the energy-oriented policy.
(a) CNN Accelerated Hw-Configuration

0 100M 200M 300M 400M

08 - nn acc

07 - little full

06 - little full

05 - little full

04 - little full

03 - big partial

02 - big partial

01 - big partial

00 - big full CRC32

rijndael

cnn

Cycles

(b) Baseline Hw-Configuration

0 100M 200M 300M 400M

07 - little full

06 - little full

05 - little full

04 - little full

03 - big full

02 - big full

01 - big full

00 - big full CRC32

rijndael

cnn

Cycles

Source: The author.

5.2.5 Accelerator Rich Hw-Configuration

For the Accelerator Rich hw-configuration, we analyze two executing-scenarios

in the performance-oriented scheduling policy. First, we present the scheduling for the



71

Road Sign Detection scenario again, in Figure 5.11, but this time on the Accelerator Rich

hw-configuration, which contains more than one accelerator.

Figure 5.11: Execution of the Road Sign Detection scenario in the performance-oriented
policy.

(a) Accelerated Rich Hw-Configuration

0 50M 100M 150M 200M 250M

17 - encrypt acc
16 - decrypt acc
15 - encrypt acc
14 - decrypt acc
13 - encrypt acc
12 - decrypt acc
11 - encrypt acc
10 - decrypt acc

09 - nn acc
08 - video acc
07 - little full
06 - little full
05 - little full
04 - little full

03 - big partial
02 - big partial
01 - big partial
00 - big partial CRC32

rijndael

cnn

Cycles

(b) Baseline Hw-Configuration

0 50M 100M 150M 200M 250M

07 - little full

06 - little full

05 - little full

04 - little full

03 - big full

02 - big full

01 - big full

00 - big full CRC32

rijndael

cnn

Cycles

Source: The author.

In this situation, both kernels (cnn and rijndael) execute in their respective acceler-

ators (Origami-CNN and Anova-AES). In the Accelerated Rich hw-configuration (Figure

5.11-b) the rijndael execution is almost negligible, which reliefs energy consumption of

this hw-configuration by avoiding the use of GPP cores, which cannot be avoided in the

Baseline (Figure 5.11-b). At the same time, the CNN accelerator is used. The usage of

this ASIC combined leads to significant performance speedup, as also lower energy con-



72

sumption. In fact, performance gain is only limited because of the GPP parts of the cnn

application, which is necessary for some parts of the road sign detection workload as we

discussed in subsection 5.2.4. Thus, this hw-configuration shows how partial-ISA can be

used to increase heterogeneity in an MPSoC, with extra and different accelerators.

Although the Accelerated Rich hw-configuration will be suitable for different ac-

celerated scenarios, as we will see in the next section (5.3), it may struggle to cope with

high loads of FP applications. This is because we had to remove the FP of four OoO cores

to embrace the accelerators, and still respect the former Baseline’s area and power budget.

To illustrate this, Figure 5.12 depicts the Accelerator Rich hw-configuration exe-

cuting the FP-Driven scenario, in (a). This scenario was designed to stress the FPU of the

cores. Because all big cores are partial, they rarely can be used to execute the mathemati-

cal applications of the scenario. The Baseline hw-configuration (c), otherwise, can use all

of its eight full-ISA cores (particularly it uses the full-ISA OoO cores to execute the most

prolonged workloads faster), hence delivering better results.

For comparison, we also depict how the Video Accelerated hw-configuration ex-

ecutes the same scenario, to demonstrate how the selection of the number of partial-ISA

cores can be explored by the designer to adjust the generality of the design. The Video

Accelerated hw-configuration appears in Figure 5.12-b (with its two partial-ISA cores,

instead of four as the Accelerated Rich configuration). Although two big cores are turned

into partial, and the video accelerator cannot be used for the set of benchmarks, there is

an extra full-ISA little core in the Video Accelerated hw-configuration, which helps the

task mapping. Moreover, there still are two big cores with full-ISA support, amortizing

the performance gap between the Accelerated Rich hw-configuration and the Baseline for

the FP-Driven scenario.



73

Figure 5.12: Execution of the FP-Driven scenario in the performance-oriented policy.
(a) Accelerated Rich Hw-Configuration

0 10M 20M 30M 40M

17 - encrypt acc
16 - decrypt acc
15 - encrypt acc
14 - decrypt acc
13 - encrypt acc
12 - decrypt acc
11 - encrypt acc
10 - decrypt acc

09 - nn acc
08 - video acc
07 - little full
06 - little full
05 - little full
04 - little full

03 - big partial
02 - big partial
01 - big partial
00 - big partial 2mm

cholesky

3mm

gramschmidt

jacobi-1d

ludcmp

correlation

gemm

Cycles

(b) Video Accelerated Hw-Configuration

0 5M 10M 15M 20M

09 - video acc

08 - little full

07 - little full

06 - little full

05 - little full

04 - little full

03 - big partial

02 - big partial

01 - big full

00 - big full 2mm

cholesky

3mm

gramschmidt

jacobi-1d

ludcmp

correlation

gemm

Cycles

(c) Baseline Hw-Configuration

0 10M 20M 30M 40M

07 - little full

06 - little full

05 - little full

04 - little full

03 - big full

02 - big full

01 - big full

00 - big full 2mm

cholesky

3mm

gramschmidt

jacobi-1d

ludcmp

correlation

gemm

Cycles

Source: The author.



74

5.3 Performance and energy analysis

After analyzing a variety of executions and how workloads are mapped depending

on the hw-configuration, we now discuss results for performance and energy regarding

every hw-configuration under every scenario and scheduling policy. Figure 5.13 presents

performance (a) and energy (b) under the performance-oriented scheduling policy. Simi-

larly, Figure 5.14 depicts results for the energy-oriented scheduling policy.

The performance speedup is measured by comparing the time taken for all work-

loads to finish in the scenario. Take for example Figure 5.12 from the scheduling analysis

in the previous section. In (a), the ludcmp is the last one to finish, ending the execution

of the scenario after around 35M cycles (recall x-axis depicts the cycles w.r.t. the big

core cycle, regardless the computing node). In (b), however, the ludcmp is again the last

application to finish, but after around 25M cycles. This difference dictates performance

speedup.

Energy comparison is based on the cumulative usage of the available nodes dur-

ing a scenario execution, considering idle cores as power-gated. As we detail next, the

best results for our partial-ISA hw-configurations are when executing latency-critical

applications (in the hw-configurations with accelerators) and multi-tasking (in the hw-

configuration with more in-order cores), while getting closer to the baseline results when

FP demand grows (FP-driven scenario). We separate the analysis by hw-configurations,

discussing the executing-scenarios in each of them. In the figures, the hw-configurations

appear in the legend, having the same color throughout the charts.



75

Figure 5.13: All hw-configurations executing under a performance-oriented policy.
(a) Normalized performance speedup for each configuration and scenario. Higher is better.

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
20

x

1.
14

x

1.
00

x

1.
00

x

0.
97

x

1.
05

x

1.
00

x

1.
00

x

1.
76

x

1.
00

x

1.
00

x

1.
01

x

1.
10

x

1.
00

x

1.
00

x

0.
99

x

2.
81

x

1.
00

x

0.
77

x 1.
13

x

1.
00

x

1.
10

x

1.
09

x

1.
00

x

1.
52

x

0.
97

x

1.
10

x

1.
00

x

0.
99

x

1.
60

x 1.
93

x

2.
58

x

0.
66

x

1.
32

x

Smartphone App Multitask Edge Computing Road Sign Detection Video Streaming FP Driven Geomean
0.00

0.50

1.00

1.50

2.00

2.50

3.00

Baseline Task Parallel AES Accelerated CNN Accelerated Video Accelerated Accelerator Rich

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 S
pe

ed
up

 [
x]

(b) Normalized energy consumption for each configuration and scenario. Lower is better.

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

59
% 67

%

67
%

89
%

57
%

87
%

70
%

99
%

96
%

44
%

88
%

67
%

10
1%

79
%

55
% 64

%

66
%

32
%

47
%

63
%

53
%59

% 70
%

72
%

89
%

25
%

87
%

62
%

40
% 52

%

20
%

11
%

9%

17
%

20
%

Smartphone App Multitask Edge Computing Road Sign Detection Video Streaming FP Driven Geomean
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%

Baseline Task Parallel AES Accelerated CNN Accelerated Video Accelerated Accelerator Rich

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n 
[%

]

Source: The author.

Figure 5.14: All hw-configurations executing under an energy-oriented policy.
(a) Normalized performance speedup for each configuration and scenario. Higher is better.

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
20

x

1.
14

x

1.
00

x

1.
00

x

0.
93

x

1.
04

x

1.
00

x

1.
00

x

1.
72

x

1.
00

x

1.
00

x

0.
95

x

1.
08

x

1.
00

x

1.
00

x

0.
99

x

2.
62

x

1.
00

x

0.
90

x

1.
15

x

1.
00

x

1.
10

x

1.
07

x

1.
00

x

2.
43

x

0.
99

x

1.
19

x

1.
02

x

0.
99

x

1.
69

x

2.
62

x

3.
19

x

0.
83

x

1.
51

x

Smartphone App Multitask Edge Computing Road Sign Detection Video Streaming FP Driven Geomean
0.00

0.50

1.00

1.50

2.00

2.50

3.00

Baseline Task Parallel AES Accelerated CNN Accelerated Video Accelerated Accelerator Rich

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 S
pe

ed
up

 [
x]

(b) Normalized energy consumption for each configuration and scenario. Lower is better.

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

79
%

66
%

63
%

10
0%

10
0%

61
%

76
%

68
%

96
%

40
%

81
%

29
%

12
6%

65
%

93
%

64
%

64
%

46
%

10
0%

72
%

71
%80

%

71
%

69
%

10
0%

43
%

78
%

71
%

85
%

52
%

21
%

39
%

19
%

47
%

39
%

Smartphone App Multitask Edge Computing Road Sign Detection Video Streaming FP Driven Geomean
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%

Baseline Task Parallel AES Accelerated CNN Accelerated Video Accelerated Accelerator Rich

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n 
[%

]

Source: The author.



76

5.3.1 Task Parallel Hw-Configuration

In this hw-configuration we remove the FP support of two OoO cores from the

baseline, to add two full-ISA in-order cores. With this, it is possible to increase perfor-

mance by up to 1.2 × in the Multitasking scenario and 1.14 × in the Edge Computing

scenario, both in the performance-oriented, and in the energy-oriented scheduling pol-

icy. Because of the high core occupation in these scenarios (see Figure 5.4 and 5.5 for

example), the impact of the scheduler is reduced. The scheduler cannot apply the pol-

icy decision of the preferred core (in-order or OoO) because it rarely finds more than

one core available. Instead, it dispatches queued workloads as soon as a core is ready.

This leads to similar performance results among policies. For the remaining scenarios,

the trimmed FPUs impacts minimally or none in the performance because the remaining

full-ISA cores are assigned by the scheduler to execute FP instructions. In the FP-driven

scenario, however, there is a small reduction in performance because the simpler in-order

cores frequently handle FP operations that OoO cores do in the baseline. In this case,

there is a 3% slowdown.

Nevertheless, the benefits of energy consumption are evident in every scenario.

This comes from the reduced peak-power of partial-ISA OoO cores and extra efficient

in-order cores, increasing overall throughput to anticipate power-gating of cores as appli-

cations finish. Remarkably, Multitasking reduces up to 43% of the energy consumption

in the performance-oriented scheduling policy (Video streaming), and 39% in the energy-

oriented scheduling policy (FP-driven), reducing by 29% and 21% in the geomean, re-

spectively. Since the Baseline executing in the energy-oriented scheduling policy (in-

order cores preferred) is more efficient than the Baseline executing in the performance-

oriented scheduling policy (OoO cores preferred), it is more challenging to improve en-

ergy consumption in the former.

5.3.2 AES Accelerated Hw-Configuration

In this hw-configuration we trim the FP support from two little cores, to adopt

four AES accelerators (encrypt + decrypt). For the performance, there are gains for the

Edge Computing scenario, improving the performance-oriented by 1.76×, and the energy-

oriented by 1.72× (see Figures 5.5 and 5.6). The performance loss from the reduced

number of full little cores only exists in the FP-Driven scenario in the energy-oriented



77

scheduling policy, where the FP usage is higher. For the performance-oriented scheduling

policy, there is a small performance gain, since FP applications are forced to execute

in the faster OoO cores (this increases energy, however, Figure 5.12a), since there are

fewer full little cores. For the remaining scenarios, the migrations to handle FP degrades

performance below the third decimal place.

The AES Accelerated hw-configuration reduces energy consumption mainly be-

cause of the accelerator adoption. The accelerated scenarios, Edge Computing, Road

Sign Detection, and Video Streaming have significant reduction (up to 71% in the Video

Streaming under the energy-oriented scheduling policy, Figure 5.13b). When the accel-

erator cannot be leveraged, the partial little cores also assure energy savings, but smaller.

For the FP-Driven scenario, the need for FP support mounts the usage of the costly OoO

cores, which increase the energy in the energy-oriented scheduling policy by 26%. In the

overall, the AES Accelerated reduces the geomean energy consumption by 21% and 35%

for the performance-oriented and energy-oriented scheduling policy, respectively.

5.3.3 CNN Accelerated Hw-Configuration

In this hw-configuration we add a convolutional CNN hardware accelerator, which

requires trimming the ISA of three OoO cores (so we respect the Baseline’s constraints,

recall Tables 5.3 and 5.4). However, the results in performance are very positive for the

target scenario. The accelerator improves performance for the (Road sign detection) sce-

nario by 2.81× and 2.62× for the performance and energy-oriented policies, respectively.

As we demonstrated in the scheduling analysis (Figures 5.9 and 5.10) even af-

ter the accelerator adoption the cnn benchmark remains as the longest-latency workload.

Hence, overall speedup depends on the share of the program where the accelerator applies,

which also depends on the GPP that executes the cnn benchmark when the accelerator

cannot be used (calculation outside the convolutional layers scope). This causes a slightly

different speedup depending on the scheduling policy. Moreover, because there are no ad-

ditional in-order cores in this hw-configuration, there is no improvement in performance

for other scenarios. In fact there is overhead in the FP-driven (23% slowdown).

However, the three partial-ISA cores gracefully reduce energy consumption. This

is clearly noted in the performance-oriented scheduling policy, where the full-big cores

are preferred by the scheduler. When FP instructions are not executed, the big partial cores

can execute the applications normally. As a result, it consumes about half the geomean



78

energy of the baseline in the performance-oriented scheduling policy. In the energy-

oriented scheduling policy, where the big cores usage is smaller, the gains of partial big

cores are also smaller, but still considerable. It reduces energy consumption by 29%

compared to the Baseline executing in this scheduling policy.

5.3.4 Video Accelerated Hw-Configuration

In this hw-configuration, we make room for an h264 video-decoder hardware and

one additional in-order core, respecting the area constraints of the Baseline. With the

accelerator, this hw-configuration speedups up 1.52× the Video Streaming scenario in

the performance-oriented scheduling policy, and 2.43× in the energy-oriented scheduling

policy. The speedup is limited by the simultaneously executed aes kernel, which becomes

the higher latency job after the accelerator is introduced (recall Figures 5.7 and 5.8).

Because the Baseline prioritizes in-order cores in the energy-oriented scheduling policy,

the adoption of accelerators, in this case, leads to higher speedup when comparing to the

performance-oriented scheduling policy (where OoO are preferred).

We also note the extra in-order core helps task distribution in the Multitask and

Edge Computing scenarios, improving the performance of these two scenarios by 10%

and 9% in the performance-oriented scheduling policy, and 10% and 7% in the energy-

oriented scheduling policy.

The Video accelerated hw-configuration reduces up to 75% the energy consump-

tion on the execution of Video streaming (performance-policy, Figure 5.13), mainly be-

cause of the accelerator. Energy reduction also occurs in the remaining scenarios be-

cause of the two partial-ISA cores. In the geomean, it reduces energy consumption in

both policies by 38% (performance-oriented) and 29% (energy-oriented). As with the

Task-parallel hw-configuration, reducing energy consumption is more challenging in the

energy-oriented scheduling policy because the Baseline is already very efficient, leverag-

ing its in-order cores.

5.3.5 Accelerator Rich Hw-Configuration

The Accelerator Rich hw-configuration removes the FP support from all big cores

existent in the Baseline, and adds accelerators from previous accelerated hw-configurations



79

altogether. For the Video Streaming scenario, for example, the video accelerator and the

AES accelerator combine to a 3.19× speedup in the energy-oriented scheduling policy

(where the in-order cores are preferred, and the Baseline is less performing) and 2.58×

speedup in the performance-oriented scenarios. In the other accelerated scenarios, the

behavior depends on the policy. For the performance-oriented scenarios, the lack of big

OoO cores causes the FP operations in non-accelerated snippets of code to be executed in

the in-order GPPs, achieving less speedup than the scenarios’ target configuration (e.g.,

the CNN Accelerated in the Road Sign Detection). In the energy-oriented scheduling

policy, the lack of OoO cores is not much impactful, since the in-order cores are already

preferred. There is a small reduction in the performance gains in the Edge computing

scenario (comparing to the AES Accelerated, from 1.72× to 1.69× speedup), because of

its higher number of workloads, which causes big cores to be required in this scenario.

The speedup in multiple scenarios makes the Accelerator Rich hw-configuration to

achieve the higher performance gains in the geomean (1.32× in the performance-oriented

scheduling policy and 1.51× in the energy-oriented scheduling policy). When the FP us-

age increases (FP-Driven scenario), the missing big full-ISA cores result in a slowdown

(34% in the performance-oriented scheduling policy, and 17% in the energy-oriented

scheduling policy). Hence, the designer should acknowledge the possible penalties of

adopting partial-ISA in aggressive hw-configurations, as the Accelerator Rich.

In terms of energy, this hw-configuration is very successful. It reduces energy con-

sumption in every scenario, regardless of the scheduling policy. For the general-purpose

scenarios (Smartphone App, Multitask, and FP-Driven) energy reduction comes from the

use of partial big cores instead of their full-ISA counterparts formerly used by the base-

line. For the accelerated scenarios (Edge Computing, Road Sign Detection, and Video

Streaming), the energy savings are even higher, since accelerators compute the accelerated

regions faster and with lower peak power then GPP. For example, in the Video Stream-

ing scenario in the performance-oriented policy, the Accelerator Rich hw-configuration

consumes only 9% of the Baseline consumption.

Since we apply partial-ISA in the big cores, preferred in the performance-oriented

scheduling policy, the normalized energy consumption has a more impacting reduction in

this scheduling policy. This is reflected in the geomean of all scenarios, where the Accel-

erator Rich hw-configuration consumes only 20% of the Baseline in the performance-

oriented scheduling policy, and 39% of the Baseline’s energy in the energy-oriented

scheduling policy.



80

5.4 Energy-Delay Product analysis

Finally, Figure 5.15 depicts an overview of the EDP of the hw-configurations in

each scenario, and for both scheduling policies. The metric combines performance and

energy for a higher-level view of partial-ISA impacts. In the figures, the EDP of the

Baseline is used as a constant to sweep along varying values of energy (y − axis) and

delay (x − axis), creating a frontier line. Being under this line means reduced (and

better) EDP compared to the Baseline.

From the figure, it is clear that adopting partial-ISA cores leads to improved de-

signs, in terms of EDP, compared to the Baseline in every scenario. Notwithstanding,

we highlight that not only the partial-ISA configuration targeting each scenario improves

over the Baseline, but all except one partial-ISA configuration consistently appear as a

better choice over the Baseline when considering the EDP metric, regardless the scenario.

Let us now look in more detail how the different scenarios and configurations

behave. For the Smartphone App scenario, additional in-order cores or accelerators are

not useful for performance gains, as we presented in Figures 5.12a and 5.13a. However,

removing FP support drives minimal performance overheads but great power savings,

thus gracefully reducing energy and placing all partial-ISA hw-configurations under the

Baseline EDP-ISO curve (in green, as explained above). Note that energy gains are higher

in the performance scheduling policy (as also the Baseline’s total energy), since partial-

ISA simplify OoO cores which are most used in this scheduling policy.

For the scenarios with speedup (Multitask, Edge Computing, Road Sign Detection,

and Video Streaming), both energy and performance improvements place the partial-ISA

designs nearer to the optimal EDP (in the origin of the axes). Also, we highlight the

hw-configurations were well designed for their target scenarios, achieving outstanding

improvements in EDP in comparison with the Baseline and also other partial-ISA hw-

configurations for the same set of applications.

Finally, the FP-Driven scenario proves to be the most challenging for our proposal.

The necessity for FP support regularly appears along with the execution of the workloads,

and pushes partial-ISA configurations to the right border of the charts (with higher execu-

tion times). What grants the EDP improvement, in this case, is the power reduction in the

partial cores, which also reduces energy. In the energy-oriented scheduling policy, how-

ever, the AES Accelerated hw-configuration (yellow circle) - the only hw-configuration

proposed with partial in-order cores - cannot compensate the execution time overhead



81

with such small power savings, and ends up as the single partial-ISA configuration with

EDP higher than the Baseline.

Figure 5.15: EDP-ISO curves for performance and energy oriented policies.
(a) Performance-policy

5 10
0

5

10

15

20 40 60
0

50

100

150

10 20 30 40
0

20
40
60
80

100
120

50 100 150
0

20
40
60
80

100
120

10 20 30
0

10

20

30

40

5 10
0

5

10

15

20

Baseline EDP-ISO curve Accelerator Rich AES Accelerated Baseline

CNN Accelerated Task Parallel Video Accelerated

Smartphone App Multitask Edge Computing Road Sign Detection Video Streaming FP Driven

Time [ms]

E
ne

rg
y 

[m
J]

(b) Energy-policy

5 10 15
0

0.5
1

1.5
2

2.5
3

20 40 60
0

50

100

150

10 20 30 40 50
0

20

40

60

80

100

50 100

150

200

250

0

5

10

15

20

10 20 30 40 50
0

2

4

6

5 10 15
0

2

4

6

8

Baseline EDP-ISO curve Accelerator Rich AES Accelerated Baseline

CNN Accelerated Task Parallel Video Accelerated

Smartphone App Multitask Edge Computing Road Sign Detection Video Streaming FP Driven

Time [ms]

E
ne

rg
y 

[m
J]

Source: The author.



82

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this work, we have presented a novel design methodology together with an

execution mechanism to reduce energy consumption and improve the performance of

MPSoC architectures in multiple situations. We propose to simplify a few cores in the

MPSoC, neglecting their support for costly ISA-extensions, which creates slack in power

and area. As a case study, we considered the FP instructions and the related datapath

in RISC-V ISA processors, observing the savings in area and power through hardware

description synthesis.

We exploit the extra budget in both power and area to add more computing nodes

into the system. We considered the adoption of either more in-order cores, to increase

the ability of the system to process multiple workloads concurrently, and the addition of

ASICs to increase the ability of the system to handle time-costly jobs such as video de-

coding, neural network inference, and cryptography. Additionally, to this design method-

ology, we detail a mechanism to coordinate the execution of workloads in such designs.

This mechanism details how to mark workloads dependency on full-ISA cores or accel-

erators, and two mapping strategies to execute the workloads, either for performance or

energy.

We have explained in detail how we combine research and industry tools to col-

lect data for partial-ISA experimentation. Moreover, we have discussed how our in-house

simulator computes such data to simulate the scheduling policies and associated task mi-

gration, the associated overheads, the gains in performance, and savings in energy. We

define a variety of scenarios and hardware configurations considering partial-ISA to have

a broad idea on the pros and cons of our proposal. We observed that adopting partial-ISA

leads to energy savings because of the removal of power-hungry FP datapath, especially

in OoO processors. At the same time, we note that our scheduling policies were capable

of taking advantage of the additional hardware, allowing task-parallelism and hardware

acceleration to bloom. Finally, we have discussed how both energy and performance

gains are generally combined in the proposed designs, reducing the EDP for almost every

scenario and configuration analyzed.



83

6.2 Work Limitations

Although we have presented several benefits in adopting partial-ISA for MPSoC’s

design, we now acknowledge some limitations of the present work. The discussion cer-

tainly does not present an exhaustive list of possible limitations, but it is made with our

best efforts, expecting to serve as a valuable appointment in the improvement spots that

can be tackled by future works on the area.

First, we acknowledge our hardware configuration compositions are based on the

area and power of the computing nodes individually (either full or partial cores, and ac-

celerators). However, it is likely that the power and area slack created from the partial

cores may not be entirely converted into the extra nodes. Notably, the interconnection

cost of having more nodes in the MPSoC is something to be studied under our proposal.

Also, the additional nodes may pressure on the L2 caches, since they are generally shared,

and may require their size to be enlarged to compensate. This is also an open question

in our work, and requires simulation at the system level, considering the whole memory

hierarchy, which our simulation lacks to evaluate.

It is also essential to have accurate data on the performance of the adopted ac-

celerators, so the gains in performance and energy also became more trustworthy. The

speedup relationship between executing a kernel in accelerators and GPPs depends on the

hardware descriptions and the software implementations counterparts (depending on the

quality of both implementations). We can reach a fair comparison submitting the soft-

ware kernel into High-Level Synthesis (HLS), deriving a hardware description precisely

for the software provided. Even though, there are a variety of algorithms and hardware

implementations that can be adopted for solving a given problem, which makes it difficult

for us to select a single case and define it as the most representative. A design exploration

of the different accelerators is also an option for covering more situations but requires

different hardware descriptions for the same problem at hand, which may be challenging

to have. Nevertheless, we want to execute tasks in the accelerators to collect their speedup

more precisely.

Notwithstanding, there are aspects of the scheduling and software level that can

also be tackled by future work. For example, although we adopt round-robin scheduling

in a time preemptive approach as in any modern OS, we do not study task priority and Dy-

namic Voltage and Frequency Scaling (DVFS). Adopting both mechanisms would place

our analysis even closer to real-life implementations. However, the number of possible



84

combinations for the executing scenarios under these circumstances would also make it

difficult to separate the impact from the scheduler and the partial-ISA adoption. Also,

the existence of heterogeneous ISA cores may bring issues for scheduling multi-thread

programs, where balanced execution can be threatened if FP is required, for example.

Since multi-thread execution contains synchronization points, partial-ISA cores can de-

lay the end of a task (e.g., if it has to migrate to another core to execute FP instructions),

impacting the synchronization. These issues exist in nowadays heterogeneous systems

(e.g., big.LITTLE), since big and little processors have unbalanced performance, but may

increase with partial-ISA.

Finally, we highlight adopting hardware accelerators brings on performance and

energy gains but also introduces issues with programmability. This discussion already ex-

ists today, since many of the application-specific hardware that has been proposed in past

years demands extra programming effort. We recall there are well-succeed application-

specific languages (such as the CUDA language for Graphics Processing Units (GPUs)).

However, the burden to program a non-conventional design must be taken into account

when designing MPSoC, such as in our proposal.

6.3 Future Work

Based on the conclusions and limitations mentioned above, we observe different

paths we can cover in future work. Particularly, we aim to investigate how the addition

of computing nodes into an MPSoC impacts its interconnections and the L2 cache. After,

we will modify our current simulation tools accordingly and also check if the proposed

hardware configurations will remain under the baseline constraints. Additionally, we aim

to implement the hardware accelerators in HLS tools, so we have a 1:1 software and hard-

ware algorithm, increasing the certainty of our experiments. Another enhancement we

look forward to implementing in our simulation flow is a priority queue for the work-

loads. With this, we can prioritize latency-critical workloads, for instance, resulting in

wiser scheduling policies.



85

6.4 Publications

Following, we present the publications achieved by the author during the disser-

tation period. The first two manuscripts are related with the present work, and had been

accepted for international conferences. The remaining publications refer to works that are

not related with this manuscript, but were also published during the authors’ MSc period.

• Increasing MPSoCs Design Space with partial-ISA Processors, IEEE Interna-

tional Conference on Electronics Circuits and Systems, ICECS, (BECKER;

SOUZA; BECK, 2019)

• Tuning the ISA for increased heterogeneous computation in MPSoCs, Design, Au-

tomation and Test in Europe Conference, DATE, (BECKER; SOUZA; BECK,

2020)

• BRAM-based function reuse for multi-core architectures in FPGAs, Microproces-

sors and Microsystems, (BECKER et al., 2018b)

• A Low-Cost BRAM-Based Function Reuse for Configurable Soft-Core Processors

in FPGAs, Applied Reconfigurable Computing. Architectures, Tools, and Ap-

plications, ARC (BECKER et al., 2018a)

• Machine Learning-Based Processor Adaptability Targeting Energy, Performance,

and Reliability, IEEE Computer Society Annual Symposium on VLSI, ISVLSI,

(SARTOR et al., 2019)

• Dynamic Trade-off among Fault Tolerance, Energy Consumption, and Performance

on a Multiple-Issue VLIW Processor, IEEE Transactions on Multi-Scale Com-

puting Systems, (SARTOR et al., 2018)

• A fast and accurate hybrid fault injection platform for transient and permanent

faults, Design Automation for Embedded Systems, DAES, (SARTOR; BECKER;

BECK, 2018)

• Simbah-FI: Simulation-Based Hybrid Fault Injector, Brazilian Symposium on Com-

puting System Engineering, SBESC, (SARTOR; BECKER; BECK, 2017)



86

REFERENCES

ANGIOLINI, F. et al. An integrated open framework for heterogeneous MPSoC design
space exploration. In: EUROPEAN DESIGN AND AUTOMATION ASSOCIATION.
Proceedings of the conference on design, automation and test in Europe:
proceedings. [S.l.], 2006.

APPLE. iPhone XS - A12 Bionic - Apple. 2018. Available from Internet:
<https://www.apple.com/iphone-xs/a12-bionic/>.

ARM. Technologies | DynamIQ – Arm Developer. 2017. Available from Internet:
<https://developer.arm.com/technologies/dynamiq>.

ARM Limited. Cortex-A15 MPCore Technical Reference Manual. [S.l.], 2012.
Available from Internet: <http://www.arm.comhttp://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0438e/index.html>.

ARM Limited. ARM R© Cortex R©-A75 Core Technical Reference Manual. [S.l.],
2016. Available from Internet: <http://www.arm.com/about/trademark-usage-guidelines.
php>.

ASANOVIC, K. et al. The berkeley out-of-order machine (boom): An industry-
competitive, synthesizable, parameterized risc-v processor. [S.l.], 2015.

ASANOVIC, K. et al. The rocket chip generator. EECS Department, UC, Berkeley,
Tech. Rep. UCB/EECS-2016-17, 2016.

ASANOVIĆ, K.; PATTERSON, D. A. Instruction Sets Should Be Free: The Case
For RISC-V. [S.l.], 2014. Available from Internet: <http://www.eecs.berkeley.edu/Pubs/
TechRpts/2014/EECS-2014-146.html>.

BECKER, P. H. E. et al. A Low-Cost BRAM-Based Function Reuse for Configurable
Soft-Core Processors in FPGAs. In: VOROS, N. et al. (Ed.). Applied Reconfigurable
Computing. Architectures, Tools, and Applications. Cham: Springer International
Publishing, 2018. p. 499–510. ISBN 978-3-319-78890-6.

BECKER, P. H. E. et al. BRAM-based function reuse for multi-core architectures in
FPGAs. Microprocessors and Microsystems, v. 63, p. 237–248, nov 2018. ISSN
01419331.

BECKER, P. H. E.; SOUZA, J. D.; BECK, A. C. S. Increasing MPSoCs Design Space
with partial-ISA Processors. In: IEEE International Conference on Electronics
Circuits and Systems, ICECS. [S.l.: s.n.], 2019.

BECKER, P. H. E.; SOUZA, J. D.; BECK, A. C. S. Tuning the ISA for increased
heterogeneous computation in MPSoCs. In: Design, Automation and Test in Europe
Conference, DATE. [S.l.: s.n.], 2020.

BINKERT, N. et al. The gem5 simulator. ACM SIGARCH Computer Architecture
News, ACM, 2011.

BLEM, E. et al. Power struggles: Revisiting the RISC vs. CISC debate on contemporary
ARM and x86 architectures. In: HPCA’13. [S.l.: s.n.], 2013. ISBN 978-1-4673-5587-2.

https://www.apple.com/iphone-xs/a12-bionic/
https://developer.arm.com/technologies/dynamiq
http://www.arm.com http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438e/index.html
http://www.arm.com http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438e/index.html
http://www.arm.com/about/trademark-usage-guidelines.php
http://www.arm.com/about/trademark-usage-guidelines.php
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html


87

BLEM, E. et al. ISA Wars: Understanding the Relevance of ISA being RISC or CISC
to Performance, Power, and Energy on Modern Architectures. ACM Transactions on
Computer Systems, 2015. ISSN 07342071.

CAVIGELLI, L. et al. Origami: A Convolutional Network Accelerator. In: Proceedings
of the 25th Edition on Great Lakes Symposium on VLSI. New York, NY, USA: ACM,
2015. (GLSVLSI ’15), p. 199–204. ISBN 978-1-4503-3474-7. Available from Internet:
<http://doi.acm.org/10.1145/2742060.2743766>.

CONSTANTINOU, T. et al. Performance implications of single thread migration on a
chip multi-core. SIGARCH Comput. Archit. News, ACM, New York, NY, USA, 2005.

Cota, E. G. et al. An analysis of accelerator coupling in heterogeneous architectures. In:
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.: s.n.],
2015. p. 1–6. ISSN 0738-100X.

ENDO, F. et al. Micro-architectural simulation of embedded core heterogeneity with
gem5 and McPAT. RAPIDO ’15, p. 1–6, 2015.

ESMAEILZADEH, H. et al. Dark silicon and the end of multicore scaling. In: 2011 38th
Annual International Symposium on Computer Architecture (ISCA). [S.l.: s.n.],
2011. p. 365–376. ISSN 1063-6897.

GREENHALGH, P. Big.little processing with arm cortex-a15 and cortex-a7. ARM
White Paper, v. 17, 2011.

GUTHAUS, M. R. et al. MiBench: A free, commercially representative embedded
benchmark suite. In: IEEE WWC-4’01. [S.l.]: IEEE, 2001. p. 3–14.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture: A Quantitative
Approach (The Morgan Kaufmann Series in Computer Architecture and Design).
6. ed. [S.l.]: Morgan Kaufmann, 2017. ISBN 0128119055.

HENNESSY, J. L.; PATTERSON, D. A. A New Golden Age for Computer Architecture.
Commun. ACM, ACM, New York, NY, USA, v. 62, n. 2, p. 48–60, 2019. ISSN
0001-0782. Available from Internet: <http://doi.acm.org/10.1145/3282307>.

Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s Manual
Volume 3 (3A, 3B, 3C & 3D): System Programming Guide. [S.l.], 2016. Available
from Internet: <http://www.intel.com/design/literature.htm.>

Intel Corporation. Intel Intrinsics Guide. 2018. Available from Internet: <https:
//software.intel.com/sites/landingpage/IntrinsicsGuide/{\#}expand=2815,2434,5658,
5022,4804,665,631,628,44https://software.intel.com/sites/landingpage/IntrinsicsGui>.

JIMBOREAN, A.; LOECHNER, V.; CLAUSS, P. Handling multi-versioning in
llvm: Code tracking and cloning. In: WIR 2011: Workshop on Intermediate
Representations, in conjunction with CGO 2011. [S.l.: s.n.], 2011.

KARAGIANNOPOULOS, L. ’Facebook effect’ turns Swedish steel
town into tech hot-spot - Reuters. 2018. Available from Inter-
net: <https://uk.reuters.com/article/us-sweden-facebook-datacentre/
facebook-effect-turns-swedish-steel-town-into-tech-hot-spot-idUKKBN1I827I>.

http://doi.acm.org/10.1145/2742060.2743766
http://doi.acm.org/10.1145/3282307
http://www.intel.com/design/literature.htm.
https://software.intel.com/sites/landingpage/IntrinsicsGuide/{\#}expand=2815,2434,5658,5022,4804,665,631,628,44 https://software.intel.com/sites/landingpage/IntrinsicsGui
https://software.intel.com/sites/landingpage/IntrinsicsGuide/{\#}expand=2815,2434,5658,5022,4804,665,631,628,44 https://software.intel.com/sites/landingpage/IntrinsicsGui
https://software.intel.com/sites/landingpage/IntrinsicsGuide/{\#}expand=2815,2434,5658,5022,4804,665,631,628,44 https://software.intel.com/sites/landingpage/IntrinsicsGui
https://uk.reuters.com/article/us-sweden-facebook-datacentre/facebook-effect-turns-swedish-steel-town-into-tech-hot-spot-idUKKBN1I827I
https://uk.reuters.com/article/us-sweden-facebook-datacentre/facebook-effect-turns-swedish-steel-town-into-tech-hot-spot-idUKKBN1I827I


88

LEE, W. et al. Exploring Heterogeneous-ISA Core Architectures for High-Performance
and Energy-Efficient Mobile SoCs. GLSVLSI’17, 2017.

LI, S. et al. The mcpat framework for multicore and manycore architectures:
Simultaneously modeling power, area, and timing. ACM Transactions on Architecture
and Code Optimization (TACO), ACM, v. 10, n. 1, p. 5, 2013.

LI, T. et al. Efficient operating system scheduling for performance-asymmetric multi-core
architectures. In: ACM/IEEE Conference on Supercomputing. [S.l.: s.n.], 2007.

LI, T. et al. Operating system support for overlapping-ISA heterogeneous multi-
core architectures. International Symposium on High-Performance Computer
Architecture, HPCA, 2010.

LOPES, B. et al. Shrink: Reducing the ISA Complexity Via Instruction Recycling.
International Symposium on Computer Architecture, ISCA, p. 311–322, 2015.

MARTINS, M. et al. Open Cell Library in 15Nm FreePDK Technology. In:
International Symposium on Physical Design. [S.l.]: ACM, 2015. p. 171–178. ISBN
978-1-4503-3399-3.

PARK, J. et al. Microarchitecture-Aware Code Generation for Deep Learning on
Single-ISA Heterogeneous Multi-Core Mobile Processors. IEEE Access, v. 7, p.
52371–52378, 2019.

PAVER, N. C.; KHAN, M. H.; ALDRICH, B. C. Accelerating mobile multimedia
using intel wireless MMXTM technology. In: Proceedings - IEEE Sixth International
Symposium on Multimedia Software Engineering, MSE 2004. [S.l.: s.n.], 2004. p.
491–498. ISBN 0769522173.

PEEMEN, M.; MESMAN, B.; CORPORAAL, H. Speed sign detection and recognition
by convolutional neural networks. In: Proceedings of the 8th international automotive
congress. [S.l.: s.n.], 2011. p. 162–170.

POUCHET, L. N.; YUKI, T. PolyBench/C 4.1. Retrieved May2015 from http://web.
cse. ohio-state. edu/˜ pouchet/software/polybench, 2015.

RABAEY, J. M.; CHANDRAKASAN, A. P.; NIKOLIC, B. Digital integrated circuits.
[S.l.]: Prentice hall Englewood Cliffs, 2002.

REDDY, D. et al. Bridging functional heterogeneity in multicore architectures. ACM
SIGOPS Operating Systems Review, p. 21, 2011.

RICHARDSON, I. E. The H.264 Advanced Video Compression Standard. 2nd. ed.
[S.l.]: Wiley Publishing, 2010. ISBN 0470516925, 9780470516928.

ROSVALL, K.; SANDER, I. A Constraint-based Design Space Exploration Framework
for Real-time Applications on MPSoCs. In: Proceedings of the Conference on Design,
Automation & Test in Europe. [S.l.]: European Design and Automation Association,
2014. (DATE ’14). ISBN 978-3-9815370-2-4.



89

ROSVALL, K.; SANDER, I. Flexible and Tradeoff-Aware Constraint-Based Design
Space Exploration for Streaming Applications on Heterogeneous Platforms. ACM
Transactions on Design Automation of Electronic Systems, ACM, New York, NY,
USA, v. 23, n. 2, nov 2017. ISSN 10844309.

RUSCHIVAL, T. Overview :: Avalon AES ECB-Core (128, 192, 256 Bit) ::
OpenCores. 2017. Available from Internet: <https://opencores.org/projects/avs{\_}>.

SAMSUNG. Exynos 9 Series 9820 Processor: Specs, Features | Samsung Exynos.
2018. Available from Internet: <https://www.samsung.com/semiconductor/minisite/
exynos/products/mobileprocessor/exynos-9-series-9820/>.

SARTOR, A. L.; BECKER, P. H. E.; BECK, A. C. S. Simbah-FI: Simulation-Based
Hybrid Fault Injector. In: Brazilian Symposium on Computing System Engineering,
SBESC. [S.l.: s.n.], 2017. v. 2017-Novem. ISBN 9781538635902. ISSN 23247894.

SARTOR, A. L.; BECKER, P. H. E.; BECK, A. C. S. A fast and accurate hybrid
fault injection platform for transient and permanent faults. Design Automation
for Embedded Systems, nov 2018. ISSN 1572-8080. Available from Internet:
<https://doi.org/10.1007/s10617-018-9217-0>.

SARTOR, A. L. et al. Dynamic Trade-off among Fault Tolerance, Energy Consumption,
and Performance on a Multiple-Issue VLIW Processor. IEEE Transactions on
Multi-Scale Computing Systems, v. 4, n. 3, p. 327–339, 2018. ISSN 2332-7766.

SARTOR, A. L. et al. Machine Learning-Based Processor Adaptability Targeting Energy,
Performance, and Reliability. In: IEEE Computer Society Annual Symposium on
VLSI, ISVLSI. [S.l.: s.n.], 2019. p. 158–163.

SHAFAEI, A. et al. FinCACTI: Architectural analysis and modeling of caches with
deeply-scaled FinFET devices. In: Proceedings of IEEE Computer Society Annual
Symposium on VLSI, ISVLSI. [S.l.: s.n.], 2014. ISBN 9781479937639. ISSN
21593477.

SHAFIQUE, M. et al. The EDA Challenges in the Dark Silicon Era: Temperature,
Reliability, and Variability Perspectives. In: Proceedings of the 51st Annual
Design Automation Conference. New York, NY, USA: ACM, 2014. (DAC
’14), p. 185:1—-185:6. ISBN 978-1-4503-2730-5. Available from Internet:
<http://doi.acm.org/10.1145/2593069.2593229>.

SINGH, A. K. et al. Mapping on multi/many-core systems: survey of current and
emerging trends. In: IEEE. 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC). [S.l.], 2013.

SMITH, J.; SOHI, G. The microarchitecture of superscalar processors. Proceedings of
the IEEE, v. 83, n. 12, p. 1609–1624, 1995. ISSN 00189219. Available from Internet:
<http://ieeexplore.ieee.org/document/476078/>.

STILLMAKER, A.; BAAS, B. Scaling equations for the accurate prediction
of CMOS device performance from 180nm to 7nm. Integration, the VLSI
Journal, v. 58, p. 74–81, 2017. ISSN 01679260. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/S0167926017300755>.

https://opencores.org/projects/avs{\_}
https://www.samsung.com/semiconductor/minisite/exynos/products/ mobileprocessor/exynos-9-series-9820/
https://www.samsung.com/semiconductor/minisite/exynos/products/ mobileprocessor/exynos-9-series-9820/
https://doi.org/10.1007/s10617-018-9217-0
http://doi.acm.org/10.1145/2593069.2593229
http://ieeexplore.ieee.org/document/476078/
http://www.sciencedirect.com/science/article/pii/S0167926017300755


90

SUEHRING, K. H. 264/AVC jm reference software download. 2010. Available from
Internet: <http://iphome.hhi.de/suehring/tml/download/>.

TAN, C. et al. Locus: Low-power customizable many-core architecture for wearables.
ACM Trans. Embed. Comput. Syst., ACM, New York, NY, USA, v. 17, n. 1, nov. 2017.

THEIS, T. N.; Philip Wong, H. S. The End of Moore’s Law: A New Beginning for
Information Technology. Computing in Science and Engineering, IEEE Computer
Society, v. 19, n. 2, p. 41–50, mar 2017. ISSN 15219615.

Van Stralen, P.; PIMENTEL, A. Scenario-based design space exploration of MPSoCs.
In: IEEE. Proceedings - IEEE International Conference on Computer Design: VLSI
in Computers and Processors. [S.l.], 2010. ISBN 9781424489350. ISSN 10636404.

VENKAT, A. et al. Composite-ISA Cores: Enabling Multi-ISA Heterogeneity Using
a Single ISA. In: 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). [S.l.: s.n.], 2019.

VENKAT, A.; TULLSEN, D. Harnessing ISA diversity: Design of a heterogeneous-ISA
chip multiprocessor. ISCA’14, p. 121–132, 2014. ISSN 10636897.

WALDROP, M. M. The chips are down for Moore’s law. Nature News, v. 530, n. 7589,
p. 144, 2016.

WESTE, N. E. H.; HARRIS, D. M. CMOS VLSI Design: A Circuits and Systems
Perspective. [S.l.]: Pearson Education India, 2013. 1689–1699 p. ISSN 1098-6596.
ISBN 9788578110796.

WOLF, W.; JERRAYA, A. A.; MARTIN, G. Multiprocessor system-on-chip (MPSoC)
technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, IEEE, v. 27, n. 10, p. 1701–1713, 2008.

XILINX. Zynq UltraScale+ MPSoC. 2019. Available from Internet: <https:
//www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html>.

XU, K.; CHOY, C.-S. A power-efficient and self-adaptive prediction engine for H.
264/AVC decoding. IEEE Transactions on very large scale integration (VLSI)
systems, IEEE, v. 16, n. 3, p. 302–313, 2008.

http://iphome.hhi.de/suehring/tml/download/
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

	Agradecimentos
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Constraints of processors' design
	1.2 Challenges for improved MPSoCs
	1.2.1 Challenges from technology scaling
	1.2.2 Challenges from ISA support

	1.3 Work proposal

	2 Background and Related Work
	2.1 Heterogeneous MPSoC Designs
	2.1.1 Background
	2.1.2 Related Work

	2.2 ISA-Extensions
	2.2.1 Background
	2.2.2 Related Work

	2.3 Work novelty

	3 Proposed Partial-ISA Heterogeneous MPSoCs
	3.1 Architecture of the partial-ISA
	3.2 Task mapping and execution flow
	3.3 Design effort and challenges

	4 Simulation tool-chain
	4.1 Acquiring area and power data
	4.2 Profiling and tracing workloads execution phases
	4.3 Modeling the System Manager for a multi-task simulation
	4.4 Results Methodology
	4.4.1 Partial-ISA Cores
	4.4.2 Application-Specific Hardware


	5 Results
	5.1 Scenarios and Configurations
	5.1.1 Scenarios
	5.1.2 Configurations

	5.2 Scheduling analysis
	5.2.1 Task Parallel Hw-Configuration
	5.2.2 AES Accelerated Hw-Configuration
	5.2.3 Video Accelerated Hw-configuration
	5.2.4 CNN Accelerated Hw-Configuration
	5.2.5 Accelerator Rich Hw-Configuration

	5.3 Performance and energy analysis
	5.3.1 Task Parallel Hw-Configuration
	5.3.2 AES Accelerated Hw-Configuration
	5.3.3 CNN Accelerated Hw-Configuration
	5.3.4 Video Accelerated Hw-Configuration
	5.3.5 Accelerator Rich Hw-Configuration

	5.4 Energy-Delay Product analysis

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Work Limitations
	6.3 Future Work
	6.4 Publications

	References

