
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

BERNARDO SULZBACH

The single-source capacitated multi-source
Weber problem with fixed opening costs

and distance limits

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Marcus Ritt

Porto Alegre
2019

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Sérgio Luis Cechin
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

The single-source capacitated multi-source Weber problem with fixed costs and distance

limits (SSC-MSWP-FC-DL) is an NP-hard problem. The aim is to open facilities to sat-

isfy the demand of a set of customers. This involves determining the number of facilities

to open, where to open them, and to which (single) facility each customer is allocated.

This allocation has to take into consideration the maximum capacity of the facilities and

the distance limit of their service. In contrast to discrete facility location problems, there

are no candidate positions for the facilities: they can be opened at any position in the

Euclidean plane. The objective is to minimize the total cost, that is, the sum of the Eu-

clidean distance between each customer and its assigned facility multiplied by the cus-

tomer demand and the cost of opening the facilities. A continuous location-allocation

method which does not violate the constraints is proposed and tested on 75 instances

from the literature and 25 instances derived from base instances from the literature. The

proposed method produces competitive results to those published on our problem with-

out the single-source capacity constraint and finds solutions on average 37% better than a

commercial solver in 0.03% of the time the solver was given.

Keywords: Continuous location-allocation. Weber problem. Multiple sources. Capacity

limits. Distance limits.

O problema de Weber de múltiplas fontes com limite de capacidade de fonte única

com custos fixos de abertura e limites de distância

RESUMO

O problema de Weber de múltiplas fontes com limite de capacidade de fonte única com

custos fixos e limites de distância é um problema NP-difícil. O objetivo é abrir instalações

para satisfazer a demanda de um conjunto de clientes. Isso envolve determinar o número

de instalações a serem abertas, onde abri-las e para qual (única) instalação cada cliente

será alocado. Essa alocação precisa levar em conta a capacidade máxima das instalações

e o limite de distância do serviço. Diferentemente dos problemas discretos de localização

de instalações, não existem posições candidatas às instalações: elas podem ser abertas em

qualquer posição do plano Euclidiano. O objetivo é minimizar o custo total, isto é, a soma

da distância Euclidiana entre cada cliente e a instalação a que ele está alocado multiplicada

pela demanda do cliente e o custo de se abrir as instalações. Um método de localização-

alocação contínua de que não viola as restrições é proposto e testado em 75 instâncias da

literatura e 25 instâncias obtidas a partir de instâncias existentes na literatura. O método

proposto produz resultados competitivos aos publicados sobre o nosso problema sem a

restrição de capacidade de fonte única e encontra soluções em média 37% melhores do

que as encontradas por um solver comercial em 0,03% do tempo dado para o solver.

Palavras-chave: Localização-alocação contínua. Problema de Weber. Múltiplas fontes.

Limites de capacidade. Limites de distância.

LIST OF FIGURES

Figure 1.1 Solutions for the WP (left) and the MSWP with m = 4 (right) for n =
50 clients. Clients are orange, sources are blue. ...10

Figure 2.1 The y2 = x21 + x22, y ≥ 0 cone. ..18

Figure 3.1 An illustration of the proposed algorithm for selecting candidates. In
the left, the random subset of candidates the algorithm started with. In the
right, the candidates left at the end of the algorithm...30

Figure 4.1 The customer radius (the lighter disk) and the five radii used to create
instances from the 50-customer base instance. ...37

LIST OF TABLES

Table 1.1 The works surveyed on the MSWP and its variants.11

Table 4.1 The instances used to test the proposed method. ..36
Table 4.2 The results for the instances with n = 50 destinations using CPLEX and

the proposed algorithm. ..39
Table 4.3 Comparison between the proposed method and the results from Gok-

bayrak and Kocaman (2017) for the n = 287 set..40
Table 4.4 Comparison between the proposed method and the results from Gok-

bayrak and Kocaman (2017) for the n = 654 set..41
Table 4.5 Comparison between the proposed method and the results from Gok-

bayrak and Kocaman (2017) for the n = 1060 set..42
Table 4.6 The results of the proposed method when using optimal allocation on the

instances with n = 50 customers. ...44
Table 4.7 The results of the proposed method when using optimal allocation on the

instances with n = 287 customers. ...45
Table 4.8 The results of the proposed method when using optimal allocation on the

instances with n = 654 customers. ...46
Table 4.9 The results of the proposed method when using optimal allocation on the

instances with n = 1060 customers. ...47

LIST OF ABBREVIATIONS AND ACRONYMS

SSC Single-Source Capacitated

WP Weber Problem

MSWP Multi-Source Weber Problem

FC Fixed Cost

DL Distance Limit

FLP Facility Location Problem

GAP Generalized Assignment Problem

SOCP Second-Order Cone Program

MISOCP Mixed-Integer Second-Order Cone Program

CONTENTS

1 INTRODUCTION...9
1.1 Notation..10
1.2 Main variants of the MSWP ..11
1.3 Outline of the thesis ..11
2 LITERATURE REVIEW...12
2.1 Cooper’s seminal work ...12
2.1.1 The exact location method ...13
2.1.2 The destination subset algorithm ...14
2.1.3 The random destination algorithm...15
2.1.4 The successive approximations algorithm ...15
2.1.5 The alternate location and allocation algorithm...15
2.2 Weiszfeld’s method ...15
2.2.1 Modified Weiszfeld’s method ..16
2.2.2 Second-order cone programming...17
2.2.2.1 Application to the single source Weber problem with distance limits................18
2.3 The multi-source Weber problem with fixed opening cost (GF)18
2.4 The capacitated multi-source Weber problem (Gm|c) ..20
2.5 The single-source capacitated multi-source Weber problem (Gm|1c)21
2.6 The multi-source Weber problem with fixed opening cost and distance lim-

its (GF |d)..22
2.7 The single-source capacitated multi-source Weber problem with fixed open-

ing cost and distance limits (GF |1c, d) ..22
2.7.1 MISOCP formulation...22
3 A LOCATION-ALLOCATION METHOD FOR THE SINGLE-SOURCE

CAPACITATED MULTI-SOURCE WEBER PROBLEM WITH FIXED
OPENING COST AND DISTANCE LIMITS..25

3.1 Finding candidates ..26
3.1.1 Planar set cover problem (PSCP)...26
3.1.2 Best solution so far...27
3.2 Selecting candidates ..27
3.2.1 Finding the starting solution size ...27
3.2.2 The modified SUBDROP...28
3.2.3 Alternatives to the proposed SELECTCANDIDATES method.................................31
3.3 Location algorithm..31
3.4 Allocation algorithm ...31
3.5 Argument for feasibility ...33
4 EXPERIMENTAL RESULTS ...34
4.1 Instances...34
4.2 Experimental methodology ..35
4.3 Platform ...38
4.4 Solver results ...38
4.5 Results on the GF |d ..38
4.6 The effect of optimal allocation ...43
5 CONCLUSIONS ...48
REFERENCES...49

9

1 INTRODUCTION

In the Weber problem (WP), the goal is to locate a source on a plane given a

set of n customer positions and demands. The objective is to minimize the sum of the

transportation costs (the Euclidean distance to a customer multiplied by the demand of

this customer). According to Beck and Sabach (2015), the Weber problem has also been

called the Fermat-Weber problem, the Fermat-Torricelli problem, and the Steiner prob-

lem. However, the Weber problem is the most frequently used name for the problem

nowadays. The multi-source Weber problem (MSWP) is a natural extension of the single-

source Weber problem whose objective is to locatem new facilities instead of a single one.

Its objective is to minimize the overall transportation cost that is given by the weighted

sum of the distances between each destination and its assigned source. Examples of the

WP and the MSWP can be seen in Figure 1.1.

Classically, the only constraint is that each customer must have all of its demand

satisfied by the sources. To the best of our knowledge, tackling the MSWP with several

additional constraints at once has not yet been done in the literature. Motivated by the

necessities of real-world systems, three additional constraints seem to be the most rele-

vant: the single-source capacity limit (SSC), the fixed opening cost (FC) and the coverage

distance limit (DL).

The capacity constraint is frequently present when dealing with utility distribu-

tion. For instance, a water pump has a flow rate limit and cellphone service networks

have a capacity limit. The single-source capacity constraint (which implies that each cus-

tomer may be serviced by only one source) is justified by the fact that often consuming

a resource from multiple sources may require higher adhesion fees for customers or be

infeasible due to the nature of the resource.

The fixed opening cost is considered a valuable property as the decision of how

many sources to open is not an obvious one, even more so when capacity and distance

limits are introduced. Therefore, this decision is better delegated to the solver.

The coverage distance limit of the facilities arises from applications where the

quality of the service decays with the travelled distance. For instance, it can be asso-

ciated with the voltage drop in energy systems due to the resistance of the cables (KO-

CAMAN; HUH; MODI, 2012) or the pressure loss in water systems due to the friction in

the pipes (DOUGLAS; MATTHEWS, 1996 apud KOCAMAN; HUH; MODI, 2012). Both of

these limitations are linearly increasing with distance, but other relations are possible (e.g.

10

Figure 1.1: Solutions for the WP (left) and the MSWP with m = 4 (right) for n = 50
clients. Clients are orange, sources are blue.

2 4 6 8 10
0

2

4

6

8

10

2 4 6 8 10
0

2

4

6

8

10

electromagnetic signal strength usually follows an 1/p2 law).

1.1 Notation

In this thesis, we consider several variants of Weber problems, which have long,

sometimes inconsistent names and abbreviations in the literature. To simplify and ease

comprehensions we propose a new, unified notation for Weber problems. First, the prob-

lem type may be either site-selection (S) or site-generation (G), depending on whether or

not a set of candidate positions is provided.

A problem may either specify m, how many sources have to be opened, or a fixed

opening cost F and leave the decision to the algorithm. Therefore, the classic multi-

source Weber problem is denoted by Gm and the single-source Weber problem is just a

special case of Gm with m = 1.

Second, a problem may have a capacity restriction, denoted by c. If this restriction

also requires destinations to satisfy all of their demand from a single source, it is a single-

source capacity restriction, denoted by 1c. This makes the single-sourced capacitated

MSWP (SSC-MSWP in the literature) Gm|1c.

Lastly, a distance limit is indicated by d when present. For instance, the single-

source capacitated multi-source Weber problem with fixed opening cost and distance

limit, that would be written as SSC-MSWP-FC-DL, becomes just GF |1c, d in our no-

tation. In the literature, distance metrics other than the Euclidean distance have been

11

considered. However, due to the clear prevalence of the Euclidean distance in the litera-

ture and in this work, the notation is not extended to specify a distance metric.

1.2 Main variants of the MSWP

Table 1.1 presents the main problems related to the MSWP already addressed in

the literature and one source for each problem.

Table 1.1: The works surveyed on the MSWP and its variants.
Variant Notation Author Method

MSWP Gm Cooper (1964) Location-allocation

MSWP-FC GF Brimberg, Mladenovic, and Salhi (2004) Estimate optimal m and solve

Gm

C-MSWP-FC GF |c Luis, Salhi, and Nagy (2015) A guided constructive heuristic

based on restricted regions and a

GRASP

SSC-MSWP Gm|1c Öncan (2013) Alternate location-allocation and

very large scale neighborhood

search

MSWP-FC-DL GF |d Gokbayrak and Kocaman (2017) Planar set cover followed by

location-allocation

This work proposes a new variant, the SSC-MSWP-FC-DL or GF |1c, d, in our

notation.

1.3 Outline of the thesis

Section 2 presents an overview of the literature on the multi-source Weber prob-

lem, its variants, and the main strategies developed to solve it. Section 3 outlines the

proposed method for addressing the GF |1c, d. Section 4 presents the results obtained

with the proposed method. Lastly, Section 5 presents the conclusions and opportunities

for future research.

12

2 LITERATURE REVIEW

Location problems can be categorized according to the location space, which can

be continuous, based on a network or discrete, and according to their context, that is, their

objectives, constraints or type of facilities involved. Some branches being intensively

investigated nowadays are multi-criteria facility location, multi-period facility location,

facility location under uncertainty, location-routing, and competitive facility location (LA-

PORTE; NICKEL; GAMA, 2015, p. 8–9).

The main difference between location and layout problems is that the facilities in

location problems are small relative to the space in which they are placed; but in layout

problems, the facilities to be located are large relative to the space in which they are

positioned (FARAHANI; HEKMATFAR, 2009).

Some authors use “continuous location-allocation” to refer to the multi-source

Weber problem. However, because “continuous location-allocation” is similar to the name

of a greedy algorithm and is also the name of a broader class of problems, according to

Öncan (2013), the more specific name “multi-source Weber problem” has been chosen.

Problems with predetermined candidate locations may be called site-selecting lo-

cation problems, while problems in which the facilities can be located at any point in a

continuous space are known as site-generating location problems. Following this con-

vention, we are interested in a site-generating problem, which has also been called a

greenfield problem by Gokbayrak and Kocaman (2017) because it involves undeveloped

sites that have no existing infrastructure and the facilities can be located at any point in a

continuous space.

The following subsections present classical algorithms still used to tackle these

problems and an overview of the literature on the MSWP with additional constraints.

2.1 Cooper’s seminal work

Cooper (1964) describes heuristic methods for Gm. Let I = [n] be set of des-

tinations and J = [m] a set of sources. If the sources have no capacity limit, then no

destination has to be supplied by more than one source: the optimal solution consists of

assigning each destination to the closest source.

13

Therefore, the total cost φ of supplying n destinations with m sources is given by

φ =
∑
j∈J

∑
i∈I

αijψ(i, j)

where

ψ(i, j) = wi ‖pi − xj‖2

is the distance function, pi ∈ R2 is the position of the i-th destination, xj ∈ R2 is the

position of the j-th source, αij ∈ {0, 1} is a binary decision variable which indicates that

destination i is serviced from the source j and wi ∈ R is the weight of destination i. Our

intention is to minimize the cost.

Since no client is serviced by more than one facility,
∑

j∈J αij = 1, ∀i ∈ I .

2.1.1 The exact location method

Cooper (1964) presents an optimal solution for the problem of locating a set of

sources given a set of destinations and their assignment to these sources. By definition,

this algorithm can be used to locate a single source given the positions of the destinations

assigned to it. Running this algorithm once for each source ensures all sources have

optimal location for a given allocation. The special case with m = 1 of the formulation

presented above will be used to describe this algorithm. Additionally, because there is

only one source and all destinations are assigned to it, αij is always 1 and will be omitted.

The following equations are necessary first-order conditions for x = (x1,x2)
T to

minimize φ(x),

∂φ

∂x1

=
∑
i∈I

wi(pi1 − x1)

‖pi − x‖2
= 0,

∂φ

∂x2

=
∑
i∈I

wi(pi2 − x2)

‖pi − x‖2
= 0.

Rearranging these equations provides an iterative method. Starting with x as spec-

ified in (2.1) and (2.2), and updating it iteratively according to (2.3) and (2.4), converges

to the optimal position. In the following equations, Di
k is the value of ‖pi − x‖2 at the

14

k-th iteration.

x0
1 =

∑
i∈I

wipi1/n (2.1)

x0
2 =

∑
i∈I

wipi2/n (2.2)

xk+1
1 =

∑
i∈I wipi1/D

k
i∑

i∈I wi/Dk
i

(2.3)

xk+1
2 =

∑
i∈I wipi2/D

k
i∑

i∈I wi/Dk
i

(2.4)

This iterative method that finds x ∈ R2 in order to minimize the weighted trans-

portation cost from a set of n destination positions will be called the exact location

method. Therefore, as long as all possible assignments, i.e. values of αij , are tested,

the optimal solution for the Gm can be found. For n destinations and m sources this

requires running this iterative method
{

n
m

}
times, where

{
n
m

}
is the Stirling number of the

second kind, that is, the number of ways a set of n labelled objects can be partitioned into

m nonempty unlabelled subsets.

Cooper observed that this method always converges in practice. Beck and Sabach

(2015) proved its convergence, as long as the anchors (destinations) were avoided. Ac-

cording to Beck and Sabach (2015, p. 9), Cooper’s exact location method is a rediscovery

of the method proposed in Weiszfeld (1937). However, Weiszfeld’s original method only

allowed constant weights.

Cooper then proposes four heuristics: the destination subset algorithm, the ran-

dom destination algorithm, the successive approximations algorithm, and the alternate

location and allocation algorithm, which are explained in the following subsections.

2.1.2 The destination subset algorithm

This algorithm considers all possible subsets of m destinations as sites at which to

locate the sources. After selecting and assigning the sources, the exact location method

might be used. According to Cooper (1964), because of the lack of a sharp minimum this

method is likely to give very good answers. However, due to the combinatorial nature of

this heuristic, it is still very expensive.

15

2.1.3 The random destination algorithm

This method simply places sources at random destination points. As the author

notes, this method can only be as good as the destination subset algorithm. One of the

stopping criteria used by the author was finding a solution within a specified number of

standard deviations from the mean of the solutions already found, which assumes that the

objective function follows a normal distribution.

2.1.4 The successive approximations algorithm

This method uses the destination subset algorithm to place two sources. Then, it

adds each remaining source at the destination site where it will improve the objective the

most after reassigning the destinations to their cheapest source. The algorithm stops when

no source addition decreases the objective function.

2.1.5 The alternate location and allocation algorithm

This algorithm divides the destination set into m subsets of approximately the

same size. For each of these subsets the optimal single source location is determined using

the exact location method. Then each destination is reassigned to the cheapest source

with respect to cost. If the previous step changed the allocation of any destination, the

algorithm goes back to using the exact location method to locate the sources. Otherwise,

it stops.

Cooper notes that this algorithm is noticeably different from the other three. The

main idea behind it, decomposing a location and allocation problem into an allocation-

only phase and a location-only phase, is still used today (GOKBAYRAK; KOCAMAN,

2017).

2.2 Weiszfeld’s method

Weiszfeld (1937) provided a sequence of steps that was supposed to converge

to the optimal solution for the Weber problem. Weiszfeld did not tackle the weighted

problem, instead he assumed all weights are equal to 1 (BECK; SABACH, 2015, p. 4). In

16

2009, the original paper from Weiszfeld was translated with annotations by Frank Plastria

in Weiszfeld and Plastria (2009).

The classic Weiszfeld’s algorithm relies on a gradient search which requires that

the sources never coincide with the anchors (destinations). When the set of anchors is

not collinear, the objective function f is strictly convex and thus the optimal solution is

unique (BECK; SABACH, 2015). The algorithm works by letting x0 ∈ Rd \A, whereA is

the set of anchor points, then by letting xk+1 = T (xk) until ‖xk+1 − xk‖ ≤ ε, with

T (x) =
1∑

i∈[m]

wi

‖x−ai‖

∑
i∈[m]

wiai

‖x− ai‖
.

The original algorithm is not well defined. Even if the initial vector x does not

coincide with an anchor point, the sequence generated may coincide with an anchor point

eventually, which will cause divisions by zero. These situations are described in the

literature as “getting stuck”, and starting points which lead to it are called “bad” starting

points (BECK; SABACH, 2015, p. 13).

2.2.1 Modified Weiszfeld’s method

In Beck and Sabach (2015, p. 17), a modified Weiszfeld’s method that treats reach-

ing anchor points in a “surgical” manner is proposed. This method uses the same formula

as Weiszfeld’s method when the current point is not an anchor point. However, when the

current point coincides with an anchor point, the method will either do nothing (if this

anchor point is optimal) or result in another point, with a smaller function value.

The anchor point aj is optimal if and only if ‖Rj‖ ≤ wj , with

Rj =
m∑

i=1,i 6=j

wi
aj − ai

‖ai − aj‖
.

With this, the modified Weiszfeld’s method can be stated as follows:

xk+1 = T̃ (xk) =

T (xk), xk /∈ A,

aj, xk = aj and ‖Rj‖ ≤ wj,

S(aj), xk = aj and ‖Rj‖ > wj.

This leaves us with the requirement of having an operator S(aj) that produces a

17

new point when the current point is a non-optimal anchor point.

According to Beck and Sabach (2015, p. 18), all of the papers that deal with the

modified Weiszfeld’s method choose the operator as S(aj) = aj + tjdj , where tj is a

stepsize and

dj = − Rj

‖Rj‖
.

One possible step size is the one proposed in (RAUTENBACH et al., 2004 apud

BECK; SABACH, 2015):

tj = min

(
min{‖aj − ai‖ : i 6= j, 1 ≤ i ≤ m}

2
,
‖Rj‖ − wj

4L(aj)

)
with

L(x) =

∑m

i=1
wi

‖x−ai‖ , x /∈ A,∑m
i=1,i 6=j

wi

‖aj−ai‖ , x ∈ A.

This step size proposed by Rautenbach is the one we used in our implementation

of the Weiszfeld’s method. The reason for choosing it over the alternatives mentioned in

Beck and Sabach (2015) is that it is the smallest proposed stepsize. As Weiszfeld’s method

converges quite quickly, it seems reasonable to use the most conservative stepsize.

As Beck and Sabach (2015, p. 21) point out, the Weber problem can also be solved

by more sophisticated methods than Weiszfeld’s method, such as Newton methods com-

bined with an active set approach. The problem can also be recast as a second-order cone

programming and solved via interior point methods.

2.2.2 Second-order cone programming

According to Boyd and Vandenberghe (2004, p. 156), a second-order cone pro-

gram (SOCP) is a problem closely related to quadratic programming. It has the following

form:

minimize fTx

subject to ‖Aix+ bi‖2 ≤ c
T
i x+ di, i = 1, ..., n,

Fx = g,

where x ∈ Rn is the optimization variable,Ai ∈ Rni×n, and F ∈ Rp×n.

18

Figure 2.1: The y2 = x21 + x22, y ≥ 0 cone.

x1

x2

y

The name arises from the second-order cone constraints, which require an affine

function to lie in a second-order cone in Rk+1. The cone y2 = x21 +x22, y ≥ 0 is illustrated

in Figure 2.1. In a SOCP, the solution can be required to lie in the convex region bound

by a second-order cone, thus y2 ≥ x21 + x22, y ≥ 0 is a valid constraint in a SOCP.

Second-order conic programs are more general than quadratically-constrained quadratic

programs (QCQP) (BOYD; VANDENBERGHE, 2004).

2.2.2.1 Application to the single source Weber problem with distance limits.

The following second-order cone programming formulation, based on Todd (2004),

is used to solve the Weber problem with a distance limit d. When a distance limit is not

required, Weiszfeld’s method can be used.

minimize wTη

subject to ‖x− pi‖2 ≤ ηi, i = 1, ..., n,

ηi ≤ d, i = 1, ..., n.

In this model, w ∈ Rn
>0 are the weights, auxiliary variables η ∈ Rn are the

distances, x ∈ R2 are the decision variables related to the position of the single source,

p ∈ (R2)n are the positions of the destinations, and d ∈ R>0 is the distance limit.

2.3 The multi-source Weber problem with fixed opening cost (GF)

The MSWP with fixed opening cost is the continuous analogue of the simple plant

location problem (SPLP), in which there is a finite set of potential sites on a network,

each with an opening cost (BRIMBERG; SALHI, 2005). The literature on this problem is

19

very scarce, according to Luis, Salhi, and Nagy (2015), which could only find two papers

about it.

Because the objective function T (X,W) is highly non-convex, the problem falls

in the realm of global optimization problems (BRIMBERG; MLADENOVIC; SALHI, 2004;

BRIMBERG; SALHI, 2005).

Brimberg, Mladenovic, and Salhi (2004) state that solving multiple instances each

with a fixed number of facilities is usually too slow to be used as a solution for the fixed-

charge case, as this procedure replaces a difficult problem by O(n) problems of similar

difficulty.

In this article there is a proof that the optimal number of facilities opened in the

continuous problem might not be equal to the optimal number of facilities opened in the

discrete analogue problem. The authors also demonstrate a property which implies that,

for very large problems, the optimal number of facilities in the continuous problem is the

same as the optimal number of facilities in its discrete analogue.

Their algorithm has three phases. It starts by finding a good approximation of

number of sources m, denoted by m̂, by using a heuristic to solve the SPLP (in which

plants have a fixed opening cost) over the set of destination points. In phase two, Cooper’s

location-allocation heuristic is used starting from the result of phase one. Phase three

then deals with a mechanism that searches for the optimal number of plants m∗. The

assumption of this phase is that m∗ must be close to m̂, and thus can be obtained by a

local search starting from m̂.

For the discrete initial solutions, the authors use both a perturbation heuristic de-

veloped by Salhi (1997) for the simple plant location problem and a variable neighbour-

hood search heuristic (VNS-4) from Brimberg, Hansen, et al. (2000) to solve the m-

median problem over a range of fixed values of m. However, the refining algorithm only

slightly improves the discrete solutions. The best-known values are between 0.02% and

1.53% better than the best of the two initial discrete solutions. The mean improvement is

0.45% with a standard deviation of 0.37%.

Brimberg and Salhi (2005) justify that the opening cost of a facility may vary

because of the varying cost of land, region-specific government incentives, and different

costs to supply products, services and labor to the facility. They assumed that all facilities

must be located in one of several non-overlapping zones, where each zone is a closed

convex polygon.

The main focus of Brimberg and Salhi (2005) is to solve the single facility case,

20

which leaves the design and comparison of new heuristics to solve the cases with an

unspecified number of open facilities to other studies. The inputs from Brimberg, Hansen,

et al. (2000) were used for their experiments.

2.4 The capacitated multi-source Weber problem (Gm|c)

In this problem, each customer has a demand which has to be fully satisfied and

each facility has a maximum capacity. However, a customer may be served by several fa-

cilities. Zainuddin and Salhi (2007) propose a perturbation-based heuristic for this prob-

lem.

Adding capacities without a single-source allocation constraint turns the alloca-

tion problem into the transportation problem, which can be solved optimally in polyno-

mial time. This is the transportation problem, which can be cast as a linear program

(HITCHCOCK, 1941).

In Luis, Salhi, and Nagy (2015), three different fixed-charge functions are used: a

constant function, which makes the opening cost of all facilities be the same irrespective

of their location and size; a zone-based function, similar to what was used in Brimberg

and Salhi (2005); and second-order Voronoi polygons, which provide a continuous cost

function.

In the latter approach, the plane is tessellated into Voronoi regions using the cus-

tomers as seed points. The solution algorithm does not need to construct the Voronoi

regions, as it only has to calculate the fixed cost for a finite number of candidates loca-

tions during the search. Even though zoning is similar to some real-world scenarios, very

small changes in the location of a facility can lead to a large change in establishment cost,

which might not be realistic.

The algorithm used in Luis, Salhi, and Nagy (2015) is based on a region rejection

heuristic from Luis, Salhi, and Nagy (2009). A customer site is randomly selected to

become a facility location. Then, an area around this location is declared to be restricted.

This prevents facilities from being located too close to each other. This step is repeated

until the required number of facilities are located. After having tested different shapes

and sizes for the restricted regions, the authors decided to only use circles. After get-

ting m facility locations from this procedure, Cooper’s alternating transportation-location

method is used. This method takes a set of m open facilities as input and then solves the

transportation problem to find the allocation of customers to these facilities. Then, for

21

each facility, its new location is found using the Weiszfeld’s method.

Similarly to Brimberg, Mladenovic, and Salhi (2004), Luis, Salhi, and Nagy (2015)

do not consider solving for all values of m a valid strategy. Instead, they use a facility ad-

dition heuristic. In this addition heuristic, they use only an approximation to the savings

in transportation costs when considering adding a new point, instead of using Cooper’s

method to compute the actual savings. The authors mention that only stopping after two

consecutive increments of m worsen the objective function did help avoid local minima.

The authors claim a lack of correlation between the quality of the initial solution with the

minimum required number of facilities and the final solution.

The GRASP algorithm proposed in their paper retains the addition heuristic and

the avoidance concept used in the region-rejection algorithm. The main differences are

the use of a GRASP to find the initial solution instead of a constructive heuristic and the

use of a weighted pseudorandom selection when adding a new facility to the solution.

For their experiments, the authors used the four datasets from Brimberg, Hansen,

et al. (2000), with the addition of fixed costs and capacity. Every facility is set to have

the same capacity irrespective of location. The authors found that GRASP gives better or

equal solutions for all the instances when compared to region-rejection results.

Lastly, Luis, Salhi, and Nagy (2015) mention other forms of fixed costs worth-

while of research. They suggest using a fixed opening cost function that contains terms

inversely proportional to the facility distance to the customers, as it is usually cheaper to

locate facilities further away for inhabited areas.

2.5 The single-source capacitated multi-source Weber problem (Gm|1c)

In this problem, each customer has a demand which has to be fully satisfied and

each facility has a maximum capacity. Differently from Gm|c defined above, in the

Gm|1c each customer can only be supplied by a single source.

Gong et al. (1997) proposes an iterative method including location and allocation

phases known as Hybrid Evolutionary Method (HEM) to solve the problem. Manzour-

al-Ajdad, Torabi, and Eshghi (2012) propose a two phase algorithm that, at phase I, aims

to determine proper locations for facilities and, during phase II, pursues an assignment

of customers to these facilities. The paper also points out that the number of studies

regarding the problem is scarce in spite of the practical relevance of the problem. Lastly,

Öncan (2013) considers both the Euclidean and rectilinear distance cases of the Gm|1c

22

and proposes an alternate location and allocation heuristic to solve it.

2.6 The multi-source Weber problem with fixed opening cost and distance limits

(GF |d)

The MSWP can be extended by limiting the distance between sources and desti-

nations. To the best of our knowledge Gokbayrak and Kocaman (2017) is the only work

which tackles this variant.

Gokbayrak and Kocaman (2017) attempt to solve the Gm|d by using a modified

Weiszfeld’s method which guarantees that the location phase does not violate the distance

limit. They also solve a planar set cover problem using the circle intersection points from

circles centered at the destinations in order to find more points for their initial candidate

set.

2.7 The single-source capacitated multi-source Weber problem with fixed opening

cost and distance limits (GF |1c, d)

To the best of our knowledge, GF |1c, d has not been analyzed in the literature.

It is the main focus of this thesis and can be understood as a refinement of the GF |d as

proposed in Gokbayrak and Kocaman (2017) that also takes the capacity limits of real-

world sources into consideration.

2.7.1 MISOCP formulation

Problem GF |1c, d can be formulated as the following mixed-integer SOCP (MIS-

OCP) program:

23

minimize wTτ +
∑
j∈J

yjF

subject to ‖xj − pi‖2 ≤ ηij, ∀i ∈ I,∀j ∈ J,

ηij ≤ τi +M(1− zij), ∀i ∈ I,∀j ∈ J,

τi ≤ d, ∀i ∈ I, (2.5)

xj1 ≤ x(j+1)1, ∀j ∈ J \ {m}, (2.6)∑
i∈I

wizij ≤ c, ∀j ∈ J, (2.7)

∑
j∈J

zij = 1, ∀i ∈ I, (2.8)

yj ≥ zij, ∀i ∈ I,∀j ∈ J,

yj ≥ yj+1, ∀j ∈ J \ {m}. (2.9)

In this model, w ∈ Rn
>0 are the weights, F ∈ R>0 is the fixed-cost associated

with opening a new facility, η ∈ Rn×m are the distances from the destinations to the

sources, and τ ∈ Rn are the distances from the destinations to their assigned sources.

Constant M ∈ R could be set, for instance, to the diagonal of the bounding box of the set

of destinations or any other value sufficiently large to relax the distance limit constraint

when there is no assignment. The decision variables related to the positions of the sources

are represented by x ∈ (R2)n and the positions of the destinations are represented by

p ∈ (R2)n. In the binary decision matrix z ∈ {0, 1}n×m, 1 indicates that the i-th source

is assigned to the j-th destination and 0 indicates the opposite. The distance limit is given

by the constant d ∈ R>0 and the capacity limit is given by the constant c ∈ R>0.

Constraint (2.5) enforces the distance limit, constraint (2.6) breaks symmetry by

requiring the facilities to be ordered by non-increasing x, constraint (2.7) ensures the

capacity of the facilities is not exceeded, constraint (2.8) guarantees the demand of each

customer is met and constraint (2.9) breaks symmetry by requiring that if p facilities are

opened, the first p elements J have to be used.

Even though having different per-facility capacities and distance limits is common

in site-selecting problems, this does not make much sense in site-generating problems

when all facilities have the same opening cost and can be placed anywhere, which is why

in the formulation two constants c and d are used.

This formulation only allows up to n sources to be opened. However, no solution

24

with more than n sources is useful as each of the n destinations can only be assigned to a

single source.

Notably, this formulation can be modified by removing constraints. For instance,

by setting d to a value larger than the diagonal of the bounding box of the destinations,

the distance limit is dropped. Similarly, by setting c to the sum ofw, the capacity limit is

waived.

25

3 A LOCATION-ALLOCATION METHOD FOR THE SINGLE-SOURCE CAPAC-

ITATED MULTI-SOURCE WEBER PROBLEM WITH FIXED OPENING COST

AND DISTANCE LIMITS

In this chapter, a new location-allocation algorithm is proposed in order to find

feasible solutions for the GF |1c, d. The main idea is to obtain a set of candidate positions

C of elements from R2, select a few of these candidate positions to open facilities on and

assign the customers to these facilities. A location-allocation phase for refinement in the

continuous space is then used to improve the solution.

To simplify the presentation of the algorithms, a problem instance will be defined

as a tuple of the form I = (p,w, c, F, d) in which the locations of the destinations are in

set p, the functionw : p→ R maps destinations to their demands, the capacity of a source

is c, the fixed opening cost is F and the distance limit is d. A solution consists of two

elements: a set of positions for the sources x and an assignment function a : p→ x. The

inverse of a is defined as a−1 : x → P(p), where P(p) is the power set of p. These can

be implemented through an array, which would make evaluating a O(1) and evaluating

a−1 O(|p|).

A function φ(I,x, a) that computes the cost of a solution (x, a) for an instance I

will also be used. This function can be implemented in O(|p|).

A helper procedure ISFEASIBLE that evaluates whether or not a solution (x, a) for

an instance I is feasible will also be used. It can also be implemented in O(|p| + |x|) =

O(|p|) by testing the distance limit for each destination while accumulating the demand

of each source in an array of length O(|x|).

Another procedure GREEDILYALLOCATE that returns an allocation a when given

an instance and a set of destination positions x and can be implemented in O(|p||x|) is

also required. It assigns each destination to its closest source.

In our algorithm, shown in Algorithm 1, FINDCANDIDATES generates a set of

candidates C for source locations in R2. SELECTCANDIDATES selects a subset of C de-

noted by x and assigns each destination to exactly one value from x through the assign-

ment function a. RELOCATE is called to adjust the location of the sources. ALLOCATE

is called to adjust the assignment of the destinations. Once the allocation step does not

change the allocation of the destinations to the sources, the algorithm stops. These steps

are detailed in the following sections.

This algorithm is repeated until a certain number of iterations without improve-

26

Algorithm 1 The proposed solution method
Input a problem instance I = (p,w, c, F, d), a limit of iterations without improve-

ment α
Output the locations of the sources x and an assignment function a

1: procedure SOLVE(I)
2: x∗ ← undefined
3: a∗ ← undefined
4: i← 0
5: while i < α do
6: C ← FINDCANDIDATES(I,x∗)
7: (x, a)← SELECTCANDIDATES(I, C)
8: x← RELOCATE(I,x, a)
9: while ALLOCATE(I,x, a) 6= a do

10: a← ALLOCATE(I,x, a)
11: x← RELOCATE(I,x, a)
12: if x = undefined or φ(I,x, a) < φ(I,x∗, a∗) then
13: x∗ ← x
14: a∗ ← a
15: i← 0
16: else
17: i← i+ 1

18: return (x∗, a∗)

ment α is reached. It was empirically determined that 10 was a suitable value of α and,

unless otherwise mentioned, all experiments use this value. Other values of α tested when

running our implementation on the instances described in Section 4.1 are 100 and 1000.

The computational time increases linearly with α and the improvements in the objective

function are fairly small.

3.1 Finding candidates

The FINDCANDIDATES procedure computes the union of three sets: the set of

destinations p, the solution of a planar set cover problem and the position of the sources

in the best solution found x∗.

3.1.1 Planar set cover problem (PSCP)

Borrowing an idea from Gokbayrak and Kocaman (2017) for the initialization

phase, a planar set cover problem is solved. The candidates are the destinations them-

27

selves and the intersection points of the circles of radius d centered at the destinations.

Since two circles have at most two intersection points, this generates at most n+2
(
n
2

)
= n2

candidates. In practice this number can be much smaller if the distance limit d is small.

3.1.2 Best solution so far

The position of the sources in the best solution so far are added to the candidate

set C. In practice, this does not cause a significant increase in solution time and improves

the quality of the next solutions.

3.2 Selecting candidates

The initialization step is based on the SUBDROP heuristic proposed in Salhi and

Atkinson (1995). SUBDROP utilizes randomly selected subsets of the candidate facility

set and drops facilities from the subset in a greedy order until the number of desired

facilities is achieved.

3.2.1 Finding the starting solution size

The original SUBDROP heuristic had guidelines for the estimation of the size of

the starting solutions based on p (the desired number of facilities). Because in our problem

the number of facilities to be opened is a decision variable, those guidelines could not be

used. Instead, Algorithm 2 is proposed to find a starting solution size. It performs a

stochastic binary search to find the smallest starting size that produces a feasible solution

with probability p ≥ 0.75 after greedy assignment.

The initial solution size should be less than |C| in order to allow for a large number

of possible starting solutions and, consequently, a better exploration of the solution space.

However, if the initial solution size gets too small, it might be impossible to find a random

subset for which greedy assignment produces a feasible solution.

The helper procedure FINDSUCCESSRATE(I, C, t, k) evaluates the number of suc-

cessful trials in t trials. In this procedure, a trial is a random selection of k candidate

sources greedily assigned to their destinations. A trial is successful if, after the greedy

assignment, the solution does not violate any of the problem constraints. The number of

28

Algorithm 2 Find SUBDROP starting solution size
Input the problem instance I and the locations of the candidates C
Output the starting solution size for SUBDROP

1: procedure FINDSTARTINGSIZE(I, C)
2: L← 1
3: R← |C|
4: while (L+ 1 < R) do
5: x← b(L+R)/2c
6: if FINDSUCCESSRATE(I, C, 20, x) ≥ 15 then
7: R← x
8: else
9: L← x

10: return L

trials t = 20 was empirically determined as a good trade-off between speed and accuracy.

Other values tested include 5, 10, 50 and 100.

3.2.2 The modified SUBDROP

The proposed implementation of SELECTCANDIDATES is a modified version of

SUBDROP as presented in Algorithm 3. First, it determines the starting solution size by

calling FINDSTARTINGSIZE. Then it will perform at least k iterations of the following

steps.

1. Select a random subset of the set of candidates of the size determined by the proce-

dure FINDSTARTINGSIZE.

2. Remove sources from this set until the objective function can no longer be improved

without violating the constraints.

3. Update the best solution so far if the newly found one is better.

If the initial random subset is not a feasible solution after greedily assigning the desti-

nations to their closest sources, the iteration is discarded and does not count towards k.

In two decisions (whether to change to a better source removal and whether to stop re-

moving sources), there is a probability of 75% of making the greedy choice. Introducing

these probabilistic locally sub-optimal choices improved the performance of the modified

SUBDROP and the variety of the source selections it produces.

A brief complexity analysis of Algorithm 3 shows it is O(km3|p|). The simplest

example of this complexity is line 15, which can be trivially implemented inO(m|p|) and

29

Algorithm 3 The SUBDROP procedure for candidate selection
Input the problem instance I , the locations of the candidates C, and the number of

iterations k
Output a set of source locations x and an assignment a

1: procedure SUBDROP(I, C, k)
2: m← FINDSTARTINGSIZE(I, C)
3: x∗ ← undefined
4: a∗ ← undefined
5: i← 0
6: while x∗ = undefined or i < k do
7: x← a random subset of C of size m
8: a← GREEDILYALLOCATE(I,x)
9: if not ISFEASIBLE(I,x, a) then

10: continue
11: while |x| > 1 do
12: s← undefined
13: for x ∈ x do
14: xx ← x \ {x}
15: ax ← GREEDILYALLOCATE(I,xx)
16: if ISFEASIBLE(I,xx, ax) then
17: if s = undefined then
18: s← x
19: else
20: xs ← x \ {s}
21: as ← GREEDILYALLOCATE(I,xs)
22: if φ(I,xx, ax) < φ(I,xs, as) then, with probability 0.75
23: s← x
24: if s = undefined then . There are no sources that can be removed.
25: break
26: else if φ(I,x, a) < φ(I,xs, as) then, with probability 0.75
27: break
28: x← x \ {s}
29: a← GREEDILYALLOCATE(I,x)
30: if x∗ = undefined or φ(I,x, a) < φ(I,x∗, a∗) then
31: x∗ ← x
32: a∗ ← a
33: i← i+ 1

34: return x∗, a∗

30

Figure 3.1: An illustration of the proposed algorithm for selecting candidates. In the left,
the random subset of candidates the algorithm started with. In the right, the candidates
left at the end of the algorithm.

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

appears nested in three loops ofO(k), O(m) andO(m) iterations, respectively. As k is an

input constant which always set to 10 after empirically determining this value as a reason-

able trade-off, it will be discarded from the analysis, leaving us with O(m3|p|). Further-

more, |p| is simply the number of customers n and, as this is a single-source assignment

problem, m ≤ n, which simplifies the expression to O(n4), which was prohibitively slow

in practice for n as large as 1060.

Therefore, a data structure which can exploit the properties of this problem is

required to make Algorithm 3 useful. The data structure we used consists of building a

list of sources for each destination and sorting these lists by transportation cost in non-

decreasing order. This can be done in O(n2 log n), which is the complexity of ordering n

lists of O(n) elements with an O(n log n) sorting algorithm.

With this structure, it is possible to implement Algorithm 3 in O(n2 log n). This

happens because determining the feasibility and the objective function of the solution

after removing a single source can be calculated for all sources in O(n) time (by looking

at the first two elements of each list). Updating this structure requires removing the first

elements of at most n lists, which can also be done in amortized O(n) time. Because

the loop in which this query and update are inserted is bound to O(n) iterations, the

actual procedure of dropping sources takes O(n(n + n)) = O(n2) time and the overall

complexity is given by the complexity of building our acceleration structure.

Figure 3.1 gives an example of an execution of Algorithm 3.

31

3.2.3 Alternatives to the proposed SELECTCANDIDATES method

An alternative to the proposed heuristic is to solve the single-source capacitated

facility location problem with distance limits (SSC-FLP-DL or SF |1c, d). This is a MILP

which is fairly expensive to solve.

The SF |d is used in Gokbayrak and Kocaman (2017) for candidate selection.

Solving it using CPLEX is fairly fast. Because the same is not true for the SF |1c, d, there

is a need for a heuristic alternative (such as Algorithm 3) that can filter the candidate set

C in practical time when single-source capacity constraints are introduced.

3.3 Location algorithm

RELOCATE is called to solve the distance-limited Weber problem (Gm|d with

m = 1) that arises from trying to minimize the transportation cost from a single source

to the destinations that are currently assigned to it. It only changes the position of the

sources. This is done by solving the program described in Section 2.2.2.1 once for each

source. These programs can usually be solved in less than a second.

3.4 Allocation algorithm

ALLOCATE is called to solve the SF |1c, d that arises from trying to minimize the

overall transportation cost by redistributing the destinations between the sources. It only

changes the assignment of the destinations.

It is solved using the greedy algorithm presented as Algorithm 4 that works by

enumerating a set C of all changes that can improve the objective function and applying

the changes that do not violate the problem constraints in a greedy order.

An alternative to this greedy strategy is to cast this allocation problem as a gener-

alized assignment problem (GAP) and use a commercial solver to solve it to optimality.

This will always result in an allocation at least as good as the one produced by Algorithm

4. However, the solution after the location-allocation loop stops is not guaranteed to be as

good as the solution when using Algorithm 4 to implement ALLOCATE.

32

Algorithm 4 Greedy reallocation algorithm
Input the problem instance I = (p,w, c, F, d), the locations of the sources x and an

assignment relation a
Output the new assignment a

1: procedure ALLOCATE(I,x, a)
2: C ← ∅
3: for p ∈ p, x ∈ x do
4: ∆← ‖a(p)− p‖2 − ‖x− p‖2
5: if ∆ > 0 then
6: C ← C ∪ {(∆, p, x)}
7: moved← {}
8: for (∆, p, x) ∈ C ordered by non-increasing ∆ do
9: if p 6∈ moved then

10: if w(p) +
∑

k∈a−1(x)w(k) ≤ c then
11: a(p)← x
12: moved← moved ∪ {p}
13: return a

GAP = minimize wTτ

subject to ‖xj − pi‖2 zij ≤ τi, ∀i ∈ I,∀j ∈ J, (3.1)

τi ≤ d, ∀i ∈ I, (3.2)∑
i∈I

wizij ≤ c, ∀j ∈ J, (3.3)

∑
j∈J

zij = 1, ∀i ∈ I. (3.4)

In this model, w ∈ Rn
>0 are the weights and τ ∈ Rn are the distances from the

destinations to their assigned sources. The positions of the sources are problem inputs

represented by x ∈ (R2)n and the positions of the destinations are represented by p ∈

(R2)n. In the binary decision matrix z ∈ {0, 1}n×m, 1 indicates that the i-th source is

assigned to the j-th destination and 0 indicates the opposite. The distance limit is given

by the constant d ∈ R>0 and the capacity limit is given by the constant c ∈ R>0.

Constraint (3.1) makes τi equal to the distance between customer i and its source,

constraint (3.2) ensures that the distance limit is not violated, constraint (3.3) ensures the

capacity of the facilities is not exceeded, constraint (3.4) guarantees the demand of each

customer is met.

The classic GAP formulation does not have distance constraints and it can be

used to solve this allocation problem by adding constraints of the form zij = 0 when

33

destination i is too far away from source j. However, the formulation presented here is

substantially faster on CPLEX than the classical formulation and several values from z

set to zero.

3.5 Argument for feasibility

Algorithm 1 is guaranteed to find a solution for the GF |1c, d if one exists as long

as p ⊆ C. All variations of the method proposed in this work include all elements of

p in C. Therefore, as long as SELECTCANDIDATES outputs a feasible solution, which

is always the case for our modified SUBDROP when p ⊆ C, feasibility is maintained

until the end. RELOCATE does not break feasibility as it does not violate the distance

limit when relocating and does not change the assignment function a. The proposed

ALLOCATE procedure does not break feasibility if the input state was feasible, as it will

never commit moves that leave the current solution in an infeasible state.

34

4 EXPERIMENTAL RESULTS

In this chapter, we introduce the instances used to test the proposed method, the

experimental methodology and our results.

4.1 Instances

A complete input for the GF |1c, d requires a set of points for the destinations, a

set of associated weights, a capacity limit c, a fixed opening cost F and a distance limit

d. As this is a new problem, the instances from the literature provide only some of these

values.

The base instances used from the literature include the 50-customer instance from

(EILON; WATSON-GANDY; CHRISTOFIDES, 1971 apud ÖNCAN, 2013), the 287-customer

instance from (BONGARTZ; CALAMAI; CONN, 1994 apud GOKBAYRAK; KOCAMAN,

2017), the 654-customer and the 1060-customer instances from (REINELT, 1991 apud

GOKBAYRAK; KOCAMAN, 2017). Among these, only the 287-customer instance has non-

unitary weights. Its weights are integral and range from 1 to 698.

In order to be able to compare the obtained results with published results, the

choice of c, F and d is based on what has already been used in the literature. In this work,

we extend the 75 instances used by Gokbayrak and Kocaman (2017) to have capacity

limits.

Gokbayrak and Kocaman (2017) do not use the 50-customer base instance. The

distance limit for this customer set was defined based on the concept of a customer area,

calculated as the area of the bounding box of the customers divided by the number of

customers. Then, by interpreting this area as the area of a circle, a customer radius rc

can be calculated. In the 50-customer set, this radius is roughly 0.728459. This value

is quite restrictive, as it corresponds to the radius for a single customer, and interesting

instances should allow including multiple customers per source. Therefore, when creating

instances, the radii rc
[
2 3 4 5 6

]
were used. In order to simplify presentation and

input, these values were rounded to 2 decimal places. A visualization of these radii around

the destination points is provided in Figure 4.1.

Given that Gokbayrak and Kocaman (2017) do not provide facility capacities, the

capacities used in other works were considered. Manzour-al-Ajdad, Torabi, and Eshghi

(2012) do not include fixed opening costs in the formulation and, because of this, set the

35

capacity to the average weight
∑
wi/m when m facilities are going to be opened. Öncan

(2013) uses the same capacities as Manzour-al-Ajdad, Torabi, and Eshghi (2012).

Because in our formulation the number of opened sources is a decision variable,

it is not possible to use the same capacities as these authors. It is important to note that

letting either the capacity limit or the distance limit be much stricter than the other is

undesired as this would make one of the proposed constraints irrelevant for testing the

method. Therefore, given that the literature has distance limits and a method for obtain-

ing distance limits when they are not available from the literature has been proposed,

the capacity limits will be derived after the derivation of the distance limits. This facili-

tates finding capacity limits which are not too strict or too relaxed when compared to the

distance limits.

By considering opening a source at a destination site i and assigning all destina-

tions reachable from this site to this hypothetical source, a maximum demand Di at this

site can be calculated. A solution with substantial coverage overlap is possibly the result

of the capacity constraint being much stricter than the distance limit constraint. Given this

observation, a fair capacity limit should not require substantial coverage overlap. In the

ideal case, when there is no overlap, the capacity for a site opened at the i-th destination

point has to be Di. However, some destination points might be subject to more demand

than others, which leads to the following observation: by letting the capacity limit be

equal to the average of the maximum demands at the candidate sites, some sites will have

sources with unused capacity and others will have sources with capacity overflow. There-

fore, setting the capacity constraint to c =
∑n

i=1Di/n should make it both a non-trivial

constraint and a constraint not much tighter than the distance limit.

Lastly, for the 50-customer set, the fixed opening costs also had to be deter-

mined. It was stipulated that the first case would have a fixed opening cost F1 from

the set {0.5, 1.0, 1.5, 2.0, 2.5} and all other cases would be have a fixed opening cost of

Fk = (ck/c1)(dk/d1)F1, which makes the cost of opening a facility directly proportional

to its capacity and coverage radius.

This creates the 100 instances shown in Table 4.1.

4.2 Experimental methodology

The proposed method has been implemented in C++ and compiled using GCC

9.2.1 with the -O3, -DNDEBUG and -std=gnu++2a flags. CPLEX 12.9 was used in

36

Table 4.1: The instances used to test the proposed method.
n c F d
50 4 0.50 1.46
50 8 1.43 2.19
50 11 2.85 2.91
50 17 5.25 3.64
50 22 8.37 4.37
50 4 1.00 1.46
50 8 2.86 2.19
50 11 5.71 2.91
50 17 10.49 3.64
50 22 16.74 4.37
50 4 1.50 1.46
50 8 4.29 2.19
50 11 8.56 2.91
50 17 15.74 3.64
50 22 25.11 4.37
50 4 2.00 1.46
50 8 5.72 2.19
50 11 11.42 2.91
50 17 20.98 3.64
50 22 33.49 4.37
50 4 2.50 1.46
50 8 7.15 2.19
50 11 14.27 2.91
50 17 26.23 3.64
50 22 41.86 4.37

287 1410 50.00 5.00
287 3886 50.00 10.00
287 5472 50.00 15.00
287 6090 50.00 20.00
287 6220 50.00 25.00
287 1410 100.00 5.00
287 3886 100.00 10.00
287 5472 100.00 15.00
287 6090 100.00 20.00
287 6220 100.00 25.00
287 1410 200.00 5.00
287 3886 200.00 10.00
287 5472 200.00 15.00
287 6090 200.00 20.00
287 6220 200.00 25.00
287 1410 500.00 5.00
287 3886 500.00 10.00
287 5472 500.00 15.00
287 6090 500.00 20.00
287 6220 500.00 25.00
287 1410 5000.00 5.00
287 3886 5000.00 10.00
287 5472 5000.00 15.00
287 6090 5000.00 20.00
287 6220 5000.00 25.00

n c F d
654 55 1000.00 200.00
654 79 1000.00 400.00
654 96 1000.00 600.00
654 116 1000.00 800.00
654 129 1000.00 1000.00
654 55 2000.00 200.00
654 79 2000.00 400.00
654 96 2000.00 600.00
654 116 2000.00 800.00
654 129 2000.00 1000.00
654 55 5000.00 200.00
654 79 5000.00 400.00
654 96 5000.00 600.00
654 116 5000.00 800.00
654 129 5000.00 1000.00
654 55 10000.00 200.00
654 79 10000.00 400.00
654 96 10000.00 600.00
654 116 10000.00 800.00
654 129 10000.00 1000.00
654 55 15000.00 200.00
654 79 15000.00 400.00
654 96 15000.00 600.00
654 116 15000.00 800.00
654 129 15000.00 1000.00

1060 4 1000.00 200.00
1060 9 1000.00 400.00
1060 15 1000.00 600.00
1060 23 1000.00 800.00
1060 33 1000.00 1000.00
1060 4 2000.00 200.00
1060 9 2000.00 400.00
1060 15 2000.00 600.00
1060 23 2000.00 800.00
1060 33 2000.00 1000.00
1060 4 5000.00 200.00
1060 9 5000.00 400.00
1060 15 5000.00 600.00
1060 23 5000.00 800.00
1060 33 5000.00 1000.00
1060 4 10000.00 200.00
1060 9 10000.00 400.00
1060 15 10000.00 600.00
1060 23 10000.00 800.00
1060 33 10000.00 1000.00
1060 4 15000.00 200.00
1060 9 15000.00 400.00
1060 15 15000.00 600.00
1060 23 15000.00 800.00
1060 33 15000.00 1000.00

37

Figure 4.1: The customer radius (the lighter disk) and the five radii used to create instances
from the 50-customer base instance.

0 2 4 6 8 10

0

2

4

6

8

10

deterministic mode via the Concert API for solving all mathematical programs.

All real values were represented using 64-bit IEC 559/IEEE 754 floating point

numbers. Floating point comparison was always performed using a relative difference

r. Therefore, two floating point values a and b were considered equal if, and only if,

boost::math::relative_difference(a, b) < r. In mathematical terms,

when there are no zeros, infinites, NaNs, and the values are of the same sign, two values

a and b are equal when |(a− b)/min{a, b}| < r.

For the solving algorithms, r = 10−5 was used. For validating the solutions gen-

erated by external solvers and the C++ implementation, r = 10−4 was used. The higher

tolerance for validation is required because the solutions CPLEX provides for SOCPs

often violate the stricter tolerance of 10−5.

The SplitMix pseudorandom number generator (PRNG) proposed in Steele Jr.,

Lea, and Flood (2014) is the only pseudorandom number generator used. It was always

initialized with 1. This decision was made because our algorithm has no need for unpre-

dictability and only needs a fast, cache-friendly PRNG with a fairly large period.

In the following tables, only the best value obtained and the relative differences to

it are presented in each row to facilitate comparison. Time is always presented in seconds

and is denoted by t. The relative difference was computed as (φ− φb)/φb where φ is the

value of the objective function and φb is the best value for that instance in the table. The

last row of the table presents the average relative difference and the average time for each

set of results.

38

4.3 Platform

The platform used for the experiments was an AMD FX-8320E @ 3.2 GHz with

32 GiB of DDR3 RAM. The operating system was OpenSUSE Tumbleweed (Linux

5.3.9). All experiments were conducted using a single thread.

4.4 Solver results

When CPLEX was used to solve a MISOCP, it was limited to 104 seconds and 24

GiB of memory for the search tree.

All instances with n = 50 were tested on CPLEX using the mathematical program

described in Section 2.7.1. CPLEX never found an optimal solution: it timed-out in 24 of

the 25 instances and ran out of memory in one instance after 7620 seconds. These results

are presented in Table 4.2.

The first and last instances of the groups with n ∈ {287, 654, 1060} were tested

and CPLEX did not find any solution within the 104 seconds time limit. The other in-

stances with these values of n were not tested, as it is unlikely that the instances between

the most distance-limited and the least distance-limited instances would perform any dif-

ferently.

4.5 Results on the GF |d

After removing the single-source capacity constraint, our problem becomes the

one analyzed in Gokbayrak and Kocaman (2017). As mentioned in Section 3.2.3, if there

are no capacities, the candidate selection step can be solved by a commercial solver in

practical time. This is preferred as it is guaranteed to be at least as good as the modified

SUBDROP, which does not have any optimality guarantees.

Because CPLEX was running in deterministic mode, the optimal solution to the fa-

cility location problem in SELECTCANDIDATES was always the same. Therefore, it made

sense to set α (the limit of iterations without improvement) to 1 in these experiments.

Gokbayrak and Kocaman (2017) use a dual 2.4 GHz Intel Xeon E5-2630 v3 CPU

server with 64GB RAM and CPLEX 12.7 in parallel mode using up to 32 threads.

Gokbayrak and Kocaman (2017) also tried using 4000 grid nodes and 4000 ran-

39

Table 4.2: The results for the instances with n = 50 destinations using CPLEX and the
proposed algorithm.

MISOCP Proposed algorithm

n c F d Best R. Diff. (%) t R. Diff. (%) t

50 4 0.50 1.46 22.93 165.2 10000.3 0.0 2.5
50 8 1.50 2.19 49.35 97.4 10000.3 0.0 4.0
50 11 2.74 2.91 68.38 52.2 10000.3 0.0 3.5
50 17 5.30 3.64 91.73 102.7 10000.3 0.0 1.5
50 22 8.23 4.37 110.48 58.9 10000.4 0.0 2.1
50 4 1.00 1.46 38.30 103.8 10000.3 0.0 2.0
50 8 3.00 2.19 71.06 41.9 10000.3 0.0 3.2
50 11 5.48 2.91 92.86 96.0 10000.3 0.0 1.2
50 17 10.60 3.64 124.57 49.9 10000.3 0.0 2.5
50 22 16.46 4.37 149.99 58.8 10000.3 0.0 2.0
50 4 1.50 1.46 49.14 91.8 10000.3 0.0 3.3
50 8 4.50 2.19 86.70 46.5 10000.3 0.0 2.3
50 11 8.22 2.91 110.29 47.6 10001.2 0.0 1.3
50 17 15.89 3.64 147.76 22.5 10000.3 0.0 1.9
50 22 24.69 4.37 180.49 29.2 10000.3 0.0 0.8
50 4 2.00 1.46 58.27 83.3 7620.4 0.0 3.2
50 8 6.00 2.19 100.31 47.6 10001.4 0.0 2.4
50 11 10.96 2.91 126.73 28.3 10000.9 0.0 1.5
50 17 21.19 3.64 168.96 21.3 10000.3 0.0 1.4
50 22 32.92 4.37 205.18 27.4 10000.2 0.0 0.8
50 4 2.50 1.46 66.57 56.8 10000.4 0.0 3.8
50 8 7.50 2.19 112.05 62.3 10000.4 0.0 3.4
50 11 13.70 2.91 143.17 29.2 10000.3 0.0 2.2
50 17 26.49 3.64 190.16 44.1 10000.3 0.0 1.3
50 22 41.16 4.37 229.90 9.0 10000.3 0.0 0.8

Averages 58.9 9905.2 0.0 2.2

40

Table 4.3: Comparison between the proposed method and the results from Gokbayrak and
Kocaman (2017) for the n = 287 set.

Gokbayrak (2017) Proposed algorithm

n F d Best R. Diff. (%) t R. Diff. (%) t

287 50 5 4021.66 0.3 1.0 0.0 4.9
287 50 10 3926.00 0.0 10.0 0.1 32.7
287 50 15 3885.64 0.1 16.0 0.0 31.9
287 50 20 3884.62 0.1 17.0 0.0 33.1
287 50 25 3881.05 0.1 18.0 0.0 45.4
287 100 5 6255.21 0.3 1.0 0.0 4.1
287 100 10 5857.00 0.0 8.0 0.1 30.8
287 100 15 5764.26 0.1 15.0 0.0 32.2
287 100 20 5764.26 0.1 20.0 0.0 33.5
287 100 25 5710.44 0.1 29.0 0.0 44.6
287 200 5 9608.36 0.2 1.0 0.0 5.9
287 200 10 8564.37 0.6 12.0 0.0 30.8
287 200 15 8347.59 0.1 21.0 0.0 36.3
287 200 20 8297.59 0.1 24.0 0.0 38.7
287 200 25 8149.60 0.1 23.0 0.0 45.1
287 500 5 15979.97 0.2 1.0 0.0 5.0
287 500 10 13105.14 0.9 24.0 0.0 33.0
287 500 15 12287.61 0.0 36.0 0.0 32.1
287 500 20 11999.59 0.2 30.0 0.0 33.2
287 500 25 11616.66 0.2 26.0 0.0 36.7
287 5000 5 82867.00 0.0 1.0 0.0 4.2
287 5000 10 47221.30 2.6 32.0 0.0 31.1
287 5000 15 35554.56 0.1 37.0 0.0 33.0
287 5000 20 27483.88 0.3 58.0 0.0 35.0
287 5000 25 26637.62 0.7 43.0 0.0 37.9

Averages 0.3 20.2 0.0 29.2

dom circle intersection points (CIPS) to augment the candidate set instead of the planar

set cover on the instances with n = 1060. Using 4000 grid nodes was, on average, 6.13%

worse and 269 times slower. Using 4000 random CIPS was, on average, 6.76% worse and

2123 times slower. Therefore, our tables contain their results using the planar set cover

for augmentation, as it is their best method overall and is the only one reasonably close to

ours in execution time.

The results of our method on the GF |d are shown in Tables 4.3, 4.4 and 4.5.

From these results, the proposed algorithm for the GF |d seems to be competitive with the

one proposed in Gokbayrak and Kocaman (2017) albeit slightly slower. This performance

disadvantage may be caused by the difference in computing power between the platforms.

41

Table 4.4: Comparison between the proposed method and the results from Gokbayrak and
Kocaman (2017) for the n = 654 set.

Gokbayrak (2017) Proposed algorithm

n F (k) d Best R. Diff. (%) t R. Diff. (%) t

654 1 200 78190.84 0.6 18.0 0.0 15.5
654 1 400 75166.89 0.2 9.0 0.0 25.6
654 1 600 74686.00 0.0 16.0 0.4 31.5
654 1 800 73853.48 0.2 21.0 0.0 40.6
654 1 1000 73853.48 0.2 18.0 0.0 57.5
654 2 200 120009.01 0.3 24.0 0.0 14.8
654 2 400 108167.00 0.0 11.0 0.1 24.7
654 2 600 103653.08 0.1 25.0 0.0 29.9
654 2 800 102525.75 0.1 17.0 0.0 39.2
654 2 1000 102136.67 0.1 18.0 0.0 57.0
654 5 200 237330.98 0.2 22.0 0.0 15.1
654 5 400 184653.00 0.0 26.0 0.7 23.6
654 5 600 168869.12 0.3 35.0 0.0 29.9
654 5 800 160411.70 0.6 43.0 0.0 38.0
654 5 1000 155150.78 0.2 20.0 0.0 55.5
654 10 200 417330.98 0.1 20.0 0.0 15.3
654 10 400 284128.00 0.0 27.0 0.5 24.7
654 10 600 248739.10 0.2 52.0 0.0 33.3
654 10 800 227474.96 1.0 50.0 0.0 50.9
654 10 1000 219388.19 0.2 28.0 0.0 51.9
654 15 200 597330.98 0.1 22.0 0.0 15.3
654 15 400 378753.00 0.0 62.0 0.3 24.4
654 15 600 323739.10 0.3 58.0 0.0 33.7
654 15 800 292987.57 0.9 82.0 0.0 41.5
654 15 1000 279219.47 0.2 24.0 0.0 51.4

Averages 0.2 29.9 0.1 33.6

42

Table 4.5: Comparison between the proposed method and the results from Gokbayrak and
Kocaman (2017) for the n = 1060 set.

Gokbayrak (2017) Proposed algorithm

n F (k) d Best R. Diff. (%) t R. Diff. (%) t

1060 1 200 431737.85 0.7 14.0 0.0 23.5
1060 1 400 370266.82 0.0 5.0 0.0 28.9
1060 1 600 363270.00 0.0 5.0 0.1 48.0
1060 1 800 362127.00 0.0 5.0 0.1 147.4
1060 1 1000 362120.00 0.0 14.0 0.1 80.9
1060 2 200 730737.85 0.7 4.0 0.0 23.5
1060 2 400 518610.88 0.8 6.0 0.0 29.0
1060 2 600 487723.00 0.0 6.0 0.2 48.4
1060 2 800 483083.00 0.0 6.0 0.1 147.1
1060 2 1000 483009.00 0.0 12.0 0.1 73.6
1060 5 200 1627737.85 0.7 4.0 0.0 23.5
1060 5 400 906131.50 0.0 3.0 0.0 28.5
1060 5 600 746502.00 0.0 7.0 0.5 48.5
1060 5 800 710816.61 0.2 12.0 0.0 148.7
1060 5 1000 705568.00 0.0 19.0 0.0 80.8
1060 10 200 3122550.56 0.7 4.0 0.0 34.4
1060 10 400 1541563.00 0.0 3.0 0.3 28.5
1060 10 600 1132433.78 0.2 7.0 0.0 47.6
1060 10 800 1001892.34 0.4 376.0 0.0 206.8
1060 10 1000 960718.00 0.0 208.0 0.3 104.5
1060 15 200 4617550.56 0.7 4.0 0.0 34.5
1060 15 400 2176563.00 0.0 4.0 0.4 28.5
1060 15 600 1497422.68 0.0 6.0 0.0 47.5
1060 15 800 1272103.36 0.2 47.0 0.0 294.5
1060 15 1000 1170355.61 0.0 370.0 0.0 955.6

Averages 0.2 46.0 0.1 110.5

43

4.6 The effect of optimal allocation

In this section, the effect of using an optimal allocation step during the location-

allocation loop on the solution quality is analyzed.

Based on the results shown in Tables 4.6 to 4.9, performing optimal allocation in

the location-allocation loop does not seem to improve solution quality noticeably when

compared to Algorithm 4. Additionally, finding the optimal solution through CPLEX

does not seem to be a practical alternative as it takes too long in some difficult instances.

This required CPLEX to be limited to 100 seconds for each GAP instance it had to solve

in these experiments.

The instances with n = 287 are the only ones with non-uniformw. These are also

the instances where using an optimal allocation step improves the results the most. This is

a possible indication that the proposed greedy allocation method described in Algorithm

4 could be improved to better handle varying demands.

44

Table 4.6: The results of the proposed method when using optimal allocation on the
instances with n = 50 customers.

Greedy allocation Optimal allocation

n c F d Best R. Diff. (%) t R. Diff. (%) t

50 4 0.50 1.46 23.45 0.0 0.4 0.0 0.5
50 8 1.50 2.19 49.35 0.0 0.6 0.0 0.9
50 11 2.74 2.91 68.38 0.0 0.6 0.0 0.9
50 17 5.30 3.64 91.73 0.0 0.3 0.0 0.5
50 22 8.23 4.37 110.48 0.0 0.4 0.0 1.0
50 4 1.00 1.46 38.30 0.0 0.6 0.0 0.8
50 8 3.00 2.19 71.06 0.0 0.5 0.0 0.7
50 11 5.48 2.91 92.86 0.0 0.2 0.0 0.3
50 17 10.60 3.64 124.57 0.0 0.5 0.0 0.8
50 22 16.46 4.37 149.99 0.0 0.4 0.0 1.1
50 4 1.50 1.46 49.49 0.0 0.5 0.0 0.7
50 8 4.50 2.19 86.70 0.0 0.4 0.0 0.5
50 11 8.22 2.91 110.29 0.0 0.3 0.0 0.3
50 17 15.89 3.64 147.75 0.0 0.4 0.0 0.6
50 22 24.69 4.37 180.49 0.0 0.2 0.0 0.5
50 4 2.00 1.46 58.62 0.0 0.4 0.0 0.5
50 8 6.00 2.19 100.31 0.0 0.4 0.0 0.5
50 11 10.96 2.91 126.73 0.0 0.3 0.0 0.3
50 17 21.19 3.64 168.96 0.0 0.3 0.0 0.5
50 22 32.92 4.37 205.18 0.0 0.2 0.0 0.4
50 4 2.50 1.46 66.81 0.0 0.6 0.0 0.7
50 8 7.50 2.19 112.05 0.0 0.5 0.0 0.6
50 11 13.70 2.91 143.17 0.0 0.4 0.0 0.5
50 17 26.49 3.64 190.16 0.0 0.3 0.0 0.5
50 22 41.16 4.37 229.90 0.0 0.2 0.0 0.4

Averages 0.0 0.4 0.0 0.6

45

Table 4.7: The results of the proposed method when using optimal allocation on the
instances with n = 287 customers.

Greedy allocation Optimal allocation

n c F d Best R. Diff. (%) t R. Diff. (%) t

287 1410 50 5 4236.13 0.5 8.3 0.0 31.0
287 3886 50 10 4352.40 7.5 32.6 0.0 98.4
287 5472 50 15 4515.47 0.3 28.5 0.0 42.7
287 6090 50 20 4771.46 6.4 25.1 0.0 81.7
287 6220 50 25 6012.07 5.2 25.9 0.0 955.9
287 1410 100 5 6559.38 1.1 7.7 0.0 22.2
287 3886 100 10 6236.68 0.0 33.2 1.4 42.6
287 5472 100 15 6174.16 1.8 28.3 0.0 51.4
287 6090 100 20 6400.29 0.8 27.1 0.0 95.0
287 6220 100 25 6945.40 6.7 28.3 0.0 2353.3
287 1410 200 5 10150.38 1.2 8.0 0.0 33.7
287 3886 200 10 8752.70 1.8 35.1 0.0 45.9
287 5472 200 15 8488.58 0.8 27.1 0.0 39.5
287 6090 200 20 8392.56 2.0 27.5 0.0 145.8
287 6220 200 25 8922.57 0.0 26.8 6.7 848.4
287 1410 500 5 18015.27 0.5 10.3 0.0 36.7
287 3886 500 10 13223.87 0.0 32.4 0.3 38.6
287 5472 500 15 12249.27 0.1 30.0 0.0 44.8
287 6090 500 20 12015.12 0.0 26.3 2.0 123.3
287 6220 500 25 11680.26 0.0 24.0 1.5 1265.6
287 1410 5000 5 121289.24 0.0 17.8 3.9 21.6
287 3886 5000 10 51233.32 5.5 32.1 0.0 39.0
287 5472 5000 15 37643.85 0.0 29.5 0.0 52.7
287 6090 5000 20 29296.90 0.0 23.9 0.0 49.4
287 6220 5000 25 26637.62 0.0 23.3 0.0 32.2

Averages 1.7 24.8 0.6 263.7

46

Table 4.8: The results of the proposed method when using optimal allocation on the
instances with n = 654 customers.

Greedy allocation Optimal allocation

n c F (k) d Best R. Diff. (%) t R. Diff. (%) t

654 55 1 200 79917.61 0.0 48.3 0.0 50.4
654 79 1 400 75561.46 0.0 64.6 0.6 63.0
654 96 1 600 74373.49 0.3 38.9 0.0 84.0
654 116 1 800 73858.75 0.0 45.3 0.0 64.5
654 129 1 1000 73859.44 0.0 61.2 0.1 67.1
654 55 2 200 126477.79 0.0 39.3 0.0 54.4
654 79 2 400 110090.49 0.4 46.5 0.0 115.8
654 96 2 600 103703.64 0.0 30.9 0.0 38.3
654 116 2 800 102524.62 0.0 33.1 0.0 42.3
654 129 2 1000 102367.65 0.0 44.2 0.0 53.7
654 55 5 200 253714.63 0.0 62.3 1.8 86.6
654 79 5 400 196207.75 0.0 51.4 0.0 63.3
654 96 5 600 171558.07 0.0 62.4 0.0 78.0
654 116 5 800 162373.67 0.2 47.1 0.0 56.3
654 129 5 1000 155150.66 0.0 53.6 0.0 55.4
654 55 10 200 468714.63 0.0 62.2 2.1 86.5
654 79 10 400 336160.35 0.0 59.2 0.0 74.5
654 96 10 600 266544.08 0.0 46.3 0.0 55.8
654 116 10 800 237396.10 0.0 31.7 0.0 34.6
654 129 10 1000 219388.19 0.0 42.2 0.0 44.6
654 55 15 200 683714.63 0.0 62.3 2.1 86.3
654 79 15 400 476160.35 0.0 59.3 0.0 74.6
654 96 15 600 361544.08 0.0 46.4 0.0 56.2
654 116 15 800 304604.42 0.0 33.9 0.0 36.8
654 129 15 1000 279219.47 0.0 42.4 0.0 44.0

Averages 0.0 48.6 0.3 62.7

47

Table 4.9: The results of the proposed method when using optimal allocation on the
instances with n = 1060 customers.

Greedy allocation Optimal allocation

n c F (k) d Best R. Diff. (%) t R. Diff. (%) t

1060 4 1 200 974005.65 0.5 106.6 0.0 421.5
1060 9 1 400 402263.84 0.0 221.1 0.0 384.2
1060 15 1 600 368020.64 0.0 114.8 0.0 191.3
1060 23 1 800 364269.50 0.0 261.5 0.0 362.3
1060 33 1 1000 364293.23 0.0 167.9 0.0 291.5
1060 4 2 200 1941005.65 0.5 106.1 0.0 420.3
1060 9 2 400 668263.84 0.0 221.5 0.0 387.1
1060 15 2 600 530185.86 0.0 172.0 0.0 270.4
1060 23 2 800 487745.51 0.1 276.0 0.0 418.6
1060 33 2 1000 486764.67 0.0 154.0 0.0 227.3
1060 4 5 200 4842005.65 0.5 106.5 0.0 421.8
1060 9 5 400 1466263.84 0.0 221.3 0.0 379.4
1060 15 5 600 1016185.86 0.0 170.9 0.0 270.0
1060 23 5 800 764633.30 0.0 261.1 0.0 316.8
1060 33 5 1000 714854.17 0.0 140.6 0.0 212.1
1060 4 10 200 9677005.65 0.5 106.4 0.0 419.7
1060 9 10 400 2796263.84 0.0 221.7 0.0 386.5
1060 15 10 600 1826185.86 0.0 171.5 0.0 270.4
1060 23 10 800 1209980.13 0.0 266.4 0.4 318.3
1060 33 10 1000 1039858.84 0.0 183.7 0.0 282.9
1060 4 15 200 14512005.65 0.5 106.5 0.0 421.0
1060 9 15 400 4126263.84 0.0 221.5 0.0 387.1
1060 15 15 600 2636185.86 0.0 171.0 0.0 270.9
1060 23 15 800 1659980.13 0.0 267.0 0.3 317.2
1060 33 15 1000 1364858.84 0.0 183.8 0.0 280.9

Averages 0.1 184.1 0.0 333.2

48

5 CONCLUSIONS

The GF |1c, d is an NP-hard problem that can be used for several real-world plan-

ning scenarios, such as positioning water towers, wireless network access points and elec-

trical substations. However, modern solvers cannot provide good solutions in practical

time. This creates a need for fast heuristics that provide feasible solutions for even very

large instances.

The proposed algorithm is built upon the classical idea of splitting the solution

of a location-allocation problem into a location-only phase and an allocation-only phase.

The two phases are shown to be nearly optimal on the analyzed instances and a GAP

formulation that makes both phases optimal is presented. This allows one to look at the

GF |1c, d as a problem of generating candidate positions for sources and a discrete facility

location problem whose solution will be adjusted in continuous space.

The performance of the algorithm is comparable to the state of the art of the GF |d

and is vastly superior than that of a commercial solver when given a MISOCP formulation.

While the solver was unable to find any solution after 104 seconds for instances with

n ≥ 287, the proposed method find feasible solutions for n as large as 1060 in less than

300 seconds.

For future work, a robust version of the problem could be proposed. The input

data might be based on sample estimates that are not representative of the ground truth.

In some cases, the position and demand of the destinations may vary over time. Because

of this, being able to find solutions which are resistant to small changes in the inputs is

useful.

49

REFERENCES

BECK, Amir; SABACH, Shoham. Weiszfeld’s Method: Old and New Results. Journal of

Optimization Theory and Applications, v. 164, p. 1–40, 2015. DOI: 10.1007/

s10957-014-0586-7.

BONGARTZ, Ingrid; CALAMAI, Paul H.; CONN, Andrew R. A projection method for

lp norm location-allocation problems. Mathematical Programming, v. 66, n. 1,

p. 283–312, Aug. 1994. ISSN 1436-4646. DOI: 10.1007/BF01581151.

BOYD, Stephen; VANDENBERGHE, Lieven. Convex Optimization. New York, NY, USA:

Cambridge University Press, 2004. ISBN 0521833787. Available from: <https:

//web.stanford.edu/~boyd/cvxbook>. Visited on: 4 Sept. 2019.

BRIMBERG, J.; MLADENOVIC, N.; SALHI, S. The multi-source Weber problem with con-

stant opening cost. Journal of the Operational Research Society, Taylor & Francis,

v. 55, n. 6, p. 640–646, 2004. DOI: 10.1057/palgrave.jors.2601754.

BRIMBERG, J.; SALHI, S. A Continuous Location-Allocation Problem with Zone-Dependent

Fixed Cost. Annals of Operations Research, v. 136, n. 1, p. 99–115, Apr. 2005.

ISSN 1572-9338. DOI: 10.1007/s10479-005-2041-5.

BRIMBERG, Jack; HANSEN, Pierre, et al. Improvements and Comparison of Heuristics

for Solving the Uncapacitated Multisource Weber Problem. Operations Research,

INFORMS, v. 48, n. 3, p. 444–460, 2000. DOI: 10.1287/opre.48.3.444.

12431.

COOPER, Leon. Heuristic Methods for Location-Allocation Problems. SIAM Review, So-

ciety for Industrial and Applied Mathematics, v. 6, n. 1, p. 37–53, 1964. ISSN

00361445. DOI: 10.1137/1006005.

DOUGLAS, J.; MATTHEWS, R. Fluid Mechanics, Vol. 1. [S.l.]: Longman, 1996.

EILON, Samuel; WATSON-GANDY, Carl Donald Tyndale; CHRISTOFIDES, Nicos. Distri-

bution management: mathematical modelling and practical analysis. [S.l.]: Lon-

don: Griffin, 1971. ISBN 0852641915. Available from: <http://lib.ugent.

be/catalog/rug01:000475431>.

FARAHANI, Reza Zanjirani; HEKMATFAR, Masoud. Facility Location: Concepts, Models,

Algorithms and Case Studies. [S.l.]: Springer Science & Business Media, 2009.

DOI: 10.1007/978-3-7908-2151-2.

https://doi.org/10.1007/s10957-014-0586-7
https://doi.org/10.1007/s10957-014-0586-7
https://doi.org/10.1007/BF01581151
https://web.stanford.edu/~boyd/cvxbook
https://web.stanford.edu/~boyd/cvxbook
https://doi.org/10.1057/palgrave.jors.2601754
https://doi.org/10.1007/s10479-005-2041-5
https://doi.org/10.1287/opre.48.3.444.12431
https://doi.org/10.1287/opre.48.3.444.12431
https://doi.org/10.1137/1006005
http://lib.ugent.be/catalog/rug01:000475431
http://lib.ugent.be/catalog/rug01:000475431
https://doi.org/10.1007/978-3-7908-2151-2

50

GOKBAYRAK, Kagan; KOCAMAN, Ayse Selin. A Distance-limited Continuous Location-

allocation Problem for Spatial Planning of Decentralized Systems. Comput. Oper.

Res., Elsevier Science Ltd., Oxford, UK, UK, v. 88, n. 100, p. 15–29, Dec. 2017.

ISSN 0305-0548. DOI: 10.1016/j.cor.2017.06.013.

GONG, Dijin et al. Hybrid evolutionary method for capacitated location-allocation prob-

lem. Computers & Industrial Engineering, v. 33, n. 3, p. 577–580, 1997. Selected

Papers from the Proceedings of 1996 ICC&IC. ISSN 0360-8352. DOI: 10.1016/

S0360-8352(97)00197-6.

HITCHCOCK, Frank L. The Distribution of a Product from Several Sources to Numerous

Localities. Journal of Mathematics and Physics, v. 20, n. 1-4, p. 224–230, 1941.

DOI: 10.1002/sapm1941201224. eprint: https://onlinelibrary.

wiley.com/doi/pdf/10.1002/sapm1941201224. Available from:

<https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1

941201224>.

KOCAMAN, Ayse Selin; HUH, Woonghee Tim; MODI, Vijay. Initial layout of power dis-

tribution systems for rural electrification: A heuristic algorithm for multilevel net-

work design. Applied Energy, v. 96, p. 302–315, 2012. Smart Grids. ISSN 0306-

2619. DOI: 10.1016/j.apenergy.2012.02.029.

LAPORTE, G.; NICKEL, S.; GAMA, F. S. da. Location Science. [S.l.]: Springer International

Publishing, 2015. ISBN 9783319131115. DOI: 10.1007/978-3-319-13111

-5.

LUIS, Martino; SALHI, Said; NAGY, Gábor. A Constructive Method and a Guided Hybrid

GRASP for the Capacitated Multi-Source Weber Problem in the Presence of Fixed

Cost. Journal of Algorithms & Computational Technology, v. 9, n. 2, p. 215–232,

2015. DOI: 10.1260/1748-3018.9.2.215.

. Region-rejection based heuristics for the capacitated multi-source Weber prob-

lem. Computers & Operations Research, Elsevier, v. 36, n. 6, p. 2007–2017, 2009.

DOI: 10.1016/j.cor.2008.06.012.

MANZOUR-AL-AJDAD, S.M.H.; TORABI, S.A.; ESHGHI, K. Single-Source Capacitated

Multi-Facility Weber Problem—An iterative two phase heuristic algorithm. Com-

puters & Operations Research, v. 39, n. 7, p. 1465–1476, 2012. ISSN 0305-0548.

DOI: 10.1016/j.cor.2011.08.018.

https://doi.org/10.1016/j.cor.2017.06.013
https://doi.org/10.1016/S0360-8352(97)00197-6
https://doi.org/10.1016/S0360-8352(97)00197-6
https://doi.org/10.1002/sapm1941201224
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sapm1941201224
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sapm1941201224
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1941201224
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1941201224
https://doi.org/10.1016/j.apenergy.2012.02.029
https://doi.org/10.1007/978-3-319-13111-5
https://doi.org/10.1007/978-3-319-13111-5
https://doi.org/10.1260/1748-3018.9.2.215
https://doi.org/10.1016/j.cor.2008.06.012
https://doi.org/10.1016/j.cor.2011.08.018

51

ÖNCAN, Temel. Heuristics for the single source capacitated multi-facility Weber problem.

Computers & Industrial Engineering, v. 64, n. 4, p. 959–971, 2013. ISSN 0360-

8352. DOI: 10.1016/j.cie.2013.01.005.

RAUTENBACH, Dieter et al. Weiszfeld’s algorithm revisited once again. v. 43. [S.l.], 2004.

REINELT, Gerhard. TSPLIB—A Traveling Salesman Problem Library. ORSA Journal on

Computing, v. 3, n. 4, p. 376–384, 1991. DOI: 10.1287/ijoc.3.4.376.

SALHI, S. A Perturbation Heuristic for a Class of Location Problems. The Journal of the

Operational Research Society, Palgrave Macmillan Journals, v. 48, n. 12, p. 1233–

1240, 1997. ISSN 01605682, 14769360. DOI: 10.2307/3010753.

SALHI, S.; ATKINSON, R.A. Subdrop: A modified drop heuristic for location problems.

Location Science, v. 3, n. 4, p. 267–273, 1995. ISSN 0966-8349. DOI: 10.1016/

0966-8349(96)00003-4.

STEELE JR., Guy L.; LEA, Doug; FLOOD, Christine H. Fast Splittable Pseudorandom

Number Generators. SIGPLAN Not., ACM, New York, NY, USA, v. 49, n. 10,

p. 453–472, Oct. 2014. ISSN 0362-1340. DOI: 10.1145/2714064.2660195.

TODD, Michael J. ICCOPT I Summer School: Conic Programming. School of Operations

Research and Industrial Engineering, Cornell University. 1 Aug. 2004. Available

from: <https://people.orie.cornell.edu/miketodd/iccopt.

pdf>. Visited on: 20 Aug. 2019.

WEISZFELD, E. Sur le point pour lequel la Somme des distances de n points donnés est

minimum. Tohoku Mathematical Journal, First Series, v. 43, p. 355–386, 1937.

WEISZFELD, E.; PLASTRIA, Frank. On the point for which the sum of the distances to n

given points is minimum. Annals of Operations Research, v. 167, n. 1, p. 7–41,

Mar. 2009. ISSN 1572-9338. DOI: 10.1007/s10479-008-0352-z.

ZAINUDDIN, Z.M.; SALHI, S. A perturbation-based heuristic for the capacitated multi-

source Weber problem. European Journal of Operational Research, v. 179, n. 3,

p. 1194–1207, 2007. ISSN 0377-2217. DOI: 10.1016/j.ejor.2005.09.

050.

https://doi.org/10.1016/j.cie.2013.01.005
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.2307/3010753
https://doi.org/10.1016/0966-8349(96)00003-4
https://doi.org/10.1016/0966-8349(96)00003-4
https://doi.org/10.1145/2714064.2660195
https://people.orie.cornell.edu/miketodd/iccopt.pdf
https://people.orie.cornell.edu/miketodd/iccopt.pdf
https://doi.org/10.1007/s10479-008-0352-z
https://doi.org/10.1016/j.ejor.2005.09.050
https://doi.org/10.1016/j.ejor.2005.09.050

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Notation
	1.2 Main variants of the MSWP
	1.3 Outline of the thesis

	2 Literature review
	2.1 Cooper's seminal work
	2.1.1 The exact location method
	2.1.2 The destination subset algorithm
	2.1.3 The random destination algorithm
	2.1.4 The successive approximations algorithm
	2.1.5 The alternate location and allocation algorithm

	2.2 Weiszfeld's method
	2.2.1 Modified Weiszfeld's method
	2.2.2 Second-order cone programming
	2.2.2.1 Application to the single source Weber problem with distance limits.

	2.3 The multi-source Weber problem with fixed opening cost (GF)
	2.4 The capacitated multi-source Weber problem (Gm|c)
	2.5 The single-source capacitated multi-source Weber problem (Gm|1c)
	2.6 The multi-source Weber problem with fixed opening cost and distance limits (GF|d)
	2.7 The single-source capacitated multi-source Weber problem with fixed opening cost and distance limits (GF|1c,d)
	2.7.1 MISOCP formulation

	3 A location-allocation method for the single-source capacitated multi-source Weber problem with fixed opening cost and distance limits
	3.1 Finding candidates
	3.1.1 Planar set cover problem (PSCP)
	3.1.2 Best solution so far

	3.2 Selecting candidates
	3.2.1 Finding the starting solution size
	3.2.2 The modified SUBDROP
	3.2.3 Alternatives to the proposed SelectCandidates method

	3.3 Location algorithm
	3.4 Allocation algorithm
	3.5 Argument for feasibility

	4 Experimental results
	4.1 Instances
	4.2 Experimental methodology
	4.3 Platform
	4.4 Solver results
	4.5 Results on the GF|d
	4.6 The effect of optimal allocation

	5 Conclusions
	References

