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“The Road to Wisdom? Well, it’s plain

And simple to express:

Err

and err

and err again,

but less

and less

and less.”

— PIET HEIN, THE ROAD TO WISDOM



ABSTRACT

One crucial preprocessing step in many machine learning algorithms is feature selection

since many predictions tasks are defined without knowledge of which attributes lying on

data are relevant to the given task. The burden of evaluating all possible features subsets

is computationally intractable and many heuristics for choosing sub-optimal attributes

sets have been proposed and evaluated over the last decades. With the advance of data

storage and collection technology, databases posing novel predictions tasks are filled with

spurious attributes, which enforces the urge for general and computationally inexpensive

feature selection algorithms. Elimination of redundant attributes is capable of improving

machine learning models predictive capability, while the discovery of relevant features

has an important scientific value on domains in which knowledge about the relationship

of collected data attributes is null or insufficient. This study proposes N3O-D, a novel

feature selection algorithm based on neuroevolution and mutual information which au-

tomatically selects categorical attributes as it learns to solve a given learning task. The

proposed method classification and selection capability are experimentally evaluated on

the genotype-phenotype prediction of eye and skin color. Experimental results showed

that the method has the potential of improving classification performance obtained from

state-of-art feature selection frameworks, achieving it on some of the evaluated data sets.

Keywords: Neuroevolution, feature selection, metaheuristics, genetic algorithm, neural

networks, machine learning, mutual information, information theory.



Um Seletor de Atributos Categóricos baseado em Neuroevolução aplicado ao

problema de Predição de Fenótipo a partir de Genótipo

RESUMO

Uma etapa crucial do pré-processamento de muitos algoritmos de aprendizado de má-

quina é a seleção de atributos, visto que muitas tarefas preditivas são definidas sem um

conhecimento prévio de quais atributos presentes nos dados são de fatos relevantes para

o problema. A tarefa de avaliar todos os possíveis subconjuntos de atributos é computaci-

onalmente intratável e heurísticas que propõe conjuntos de atributos sub-ótimos tem sido

propostas e avaliadas nas últimas décadas. Com o avanço tecnólogico da coleta e armaze-

namento de dados em larga escala, bancos de dados apresentam tarefas preditivas inéditas

contendo atributos supérfluos, reforçando a carência de algoritmos de seleção de atributos

genéricos e computacionalmente baratos. A eliminação de atributos redundantes é capaz

de melhorar a capacidade preditiva de algoritmos de aprendizado de máquina, enquanto a

descoberta de atributos relevantes tem um valor científico importante para domínios onde

o conhecimento sobre a relação dos dados coletados é nula ou insuficiente. Esta mono-

grafia propõe N3O-D, um seletor de atributos baseado em neuro-evolução e informação

mútua que automaticamente seleciona atributos categóricos enquanto aprende a resolver

uma tarefa de aprendizado. O método proposto é avaliado experimentalmente na predição

dos fenótipos cor de olho e cor de pele a partir de dados genotípicos. Resultados experi-

mentais demonstraram que o método é capaz de superar a capacidade preditiva obtida a

partir de métodos de seleção de atributos no estado da arte, atingindo o objetivo em alguns

dos conjuntos de dados analisados.

Palavras-chave: neuroevolução, seleção de atributos, metaheurísticas, algoritmo gené-

tico, redes neurais, aprendizado de máquina, informação mútua, teoria da informação.
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1 INTRODUCTION

Most predictive models assume that all of the specified attributes are useful to the

predictive task, although synthesized and real-world problems might present inputs that

are either not correlated to the learning objective (irrelevant) or very similar to other in-

puts (redundant). Including irrelevant features increases model induction and prediction

computational cost and might harm the model’s inference capability (LAZAR et al., 2012;

AGGARWAL et al., 2014; MIAO; NIU, 2016; CILIA et al., 2019). On most posed tasks,

the relevant attributes are unknown and feature selection has the potential of discover-

ing knowledge of gathered data. Genomic selection results, for instance, indicate which

parts of the genome influence phenotype characterization (YOUNG; BENONISDOTTIR;

PRZEWORSKI, 2019) and disease treatment response (GRISCI; FELTES; DORN, 2018;

LU; CHEN; YAN, 2017). On real-world tasks, collecting, maintaining and providing in-

put data presents an economic cost to be minimized, as well as more strict performance

requirements.

An example of a prediction problem in the biology field is genotype-phenotype

mapping (YOUNG; BENONISDOTTIR; PRZEWORSKI, 2019), in which specific char-

acteristics of a given individual are to be predicted from its genetic encoding. Since

genomes yield a lot of data, which is mostly uninformative given a particular phenotype,

feature selection (also referred to as genomic selection, given the nature of input data) is

a natural application to this kind of problem. Data collection techniques, such as those

employed to obtain single nucleotide polymorphisms (SNPs) and short tandem repeats

(STRs), already focus on more informative parts of the genome; nevertheless, more ag-

gressive filtering on previously collected data is required by most tasks in the biological

world. A more detailed discussion of the genotype-phenotype mapping problem is pre-

sented in Chapter 3.

While much effort has been put on the aim of automatically finding optimal feature

sets of machine learning data sets, current results are still unsatisfactory, especially for do-

mains where knowledge about data is shallow (ANG et al., 2016; FELTES et al., 2019).

Additional challenges include inherent noise in data distribution and strict assumptions

made by feature selection algorithms (LAZAR et al., 2012; AGGARWAL et al., 2014). In

biological areas, the discovery of relevant attributes may provide new insights on already

established biological knowledge and can inspire more efficient data collection and stor-

age techniques. Feature selective algorithms based on neuroevolution recently presented
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promising results on reinforcement learning and classification tasks (WHITESON et al.,

2005; TAN et al., 2009; SOHANGIR; RAHIMI; GUPTA, 2013; SOHANGIR; RAHIMI;

GUPTA, 2014; GRISCI; FELTES; DORN, 2018). In particular, Grisci, Feltes and Dorn

(2018) showed that the statistical relationship between attributes is an informative guide

to evolution’s stochasticity. This work was evaluated on microarray (gene expression)

data sets labeled with different cancer conditions. The method could successfully select

around 200 informative genes (roughly half of them already discussed in previous re-

search) over multiple runs on distinct databases with a large number of features (typically

tens of thousands of features and hundreds of samples). Each experiment constructed

neural networks populations in which the best performing individual utilized 10 genes on

average.

The present study introduces a feature selection algorithm based on neuroevolu-

tion that uses mutual information (COVER; THOMAS, 2006; BUNNEY et al., 2017;

VERGARA; ESTÉVEZ, 2015) to guide inclusions of categorical attributes into neural

networks that are evolved to optimize prediction accuracy concerning a classification task.

The proposed method is evaluated on the genotype-phenotype prediction task of inferring

eye and skin color of an individual given its SNPs gene markers.

This work’s objective is to assess the proposed method’s genomic selection ca-

pability, as well as its ability to solve the genotype-phenotype prediction problem on its

own. To assess the proposed method’s inference capability, its classification performance

is compared to the baseline accuracy. The method’s selection quality is investigated by be-

ing compared to a univariate feature selection algorithm, as well as the selection retrieved

by its algorithmic basis which is also powered by neuroevolution.

The present study is organized in the following manner: Chapter 2 reviews the

theoretical foundations of the study; Chapter 3 explains the genotype-phenotype predic-

tion problem. The proposed method is presented on Chapter 4. Chapter 5 describes how

gene selection quality is assessed, presents the dataset used on experiments and discusses

results. Chapter 6 relates the research objectives with the obtained results, outlining the

work’s contributions.
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2 THEORETICAL BASIS

The following chapter presents computational methods and theoretical definitions

that are essential to the present work.

2.1 Genetic algorithms

Genetic algorithms (GAs) are optimization methods inspired by the biological pro-

cess of evolution. They are essential to this work because the employed neuroevolution

methods are supported by a GA.

A broader review of the core operators and parameters of GAs and its extensions

is given by Beyer and Schwefel (2002). The more crucial to this work are detailed next. A

genetic algorithm evolves a population of individuals throughout generations. Individuals

represent solutions to the optimization problem and are encoded such as they can be

combined to yield offspring individuals, through an operation referred to as crossover.

Individuals might evolve in a stochastic manner through an operation called mutation.

Mutations are applied randomly each generation; their change on individuals’ encoding

is also random, and is scaled by the hyper-parameter mutation power. The capability of

a given individual to solve the task in hand is assessed by a pre-defined fitness function.

The population evolves as individuals are mutated and offspring replace less fit parents.

Optimization occurs by applying selective pressure on most fit individuals. A com-

mon and efficient example is elitism, which copies the most fit individuals of a generation

to the next one unchanged. Although the fitness of an individual is an informative guide

to optimization, it often leads to sub-optimal solutions. The employment of randomness

in diverse operations is the strategy adopted by GAs to avoid local minimums.

Next, it is presented a pseudo-code that describes the implementation of a sim-

ple GA. On the simply described evolution, |P | and G are the chosen population size

and number of generations, respectively, Pi represents the population at the i-th genera-

tion, g denotes the current evolution generation, Mi represents the mating pairs computed

for generation i, Oi is the set of individuals generated by the application of crossover

on computed mating pairs. For readability, essential operations are abstracted as func-

tions. marriage summarizes the computation of mating pairs (which might consider

speciation), mating and mutation respectively abstract the application of the crossover

and mutation operators on computed mating pairs and offspring individuals. selection
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abstracts how individuals are passed onto the next generation, a process that usually in-

volves fitness assessment and elitism; the disjoint set union is used for denoting which

individuals are selected as the new population might be composed of offspring only. A

more general procedure is presented in Beyer and Schwefel (2002).

Algorithm 1: General structure of a genetic algorithm.
Data: |P |, G

Result: PG
P0 ← {new_individual()} . |P0| = |P | ;

g ← 0 ;

while g < G do

Mg ← marriage(Pg) ;

Og ← mating(Mg) ;

O′g ← mutation(Og) ;

Pg+1 ← selection(Pg ]O′g) . |Pg+1| = |P | ;

g ← g + 1 ;

end

2.2 Neural networks

Neural networks (NNs) are universal function approximators that map vectors of

Ri to Ro, where i and o are the numbers of network input and output values, respectively

(HORNIK, 1991; QU; WANG, 2019). NNs utilize neurons as an atomic processing unit.

Neurons are connected through directed connections that individually weight the contri-

bution of input signals to compute a single activation output. Weighted input values are

aggregated and passed to an activation function. Equation 2.1 defines such process in a

general way, where φ and ψ are respectively the aggregation and activation functions, I

is the set of input nodes, and W : I → R and V : I → R are functions that map input

nodes to real-values numbers, respectively representing connection weights and input ac-

tivation values. Equation 2.2 describes the same operation for the case where average and

identity are respectively chosen as aggregation and activation functions, wi = W (xi) and

ai = V (xi).

φ(ψ(I,W )) (2.1)
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∑
xi∈I xiwi

|I|
(2.2)

Networks applied to learning tasks mainly differ in their architecture, which spec-

ifies how neurons are connected. A short explanation of common employed NN architec-

tures is presented next.

2.2.1 Architectures

Feed-forward neural networks: Also referred to as multi-layered perceptron, feed-forward

neural networks have their neurons organized in ordered layers. Neurons from a given

layer l are connected to (typically all) neurons from layers l+1 and l−1, except for input

and output layers which are respectively connected to their successor and predecessor

layer (RUCK et al., 1990).

Convolutional neural networks (CNNs): CNNs differ from conventional neural networks

as they receive input values containing structure that is exploited by the network’s aggre-

gation function. Typical choices for aggregation on CNNs are convolutions that utilize

spatial relations on input. Convolutional neural networks have been successfully applied

in Computer Vision on tasks such as object detection, face recognition, and depth estima-

tion (DRUZHKOV; KUSTIKOVA, 2016).

Recurrent neural networks (RNNs): Recurrent neural networks aim at processing sequen-

tial data. This is achieved by creating recurrent connections within the network’s topol-

ogy. The activation values for a given input sequence element xi are stored in memory

gates, which in turn are passed as input to the network along with the next input, xi+1.

Therefore the network output for a sequence element depends on the sub-sequence that

precedes it, although one element is processed at a time. RNNs have been applied with

success to acoustic modeling and natural language processing (MULDER; BETHARD;

MOENS, 2015).

2.2.2 Optimization

Besides a network architecture and neuron aggregation and activation functions,

there are other hyper-parameters, such as the number of neurons and layers. Neural net-

work topologies are commonly designed by humans, while connection weights are opti-
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mized by error propagation algorithms, such as backpropagation and RMSProp (RUMEL-

HART; HINTON; WILLIAM, 1986; TIELEMAN; HINTON, 2012). On neuroevolution

(introduced next in Section 2.3), evolutionary strategies are employed to optimize such

hyper-parameters, and some attempt to evolve topology connections and weights simul-

taneously (STANLEY; MIIKKULAINEN, 2002; WHITESON et al., 2005). Neural net-

works are commonly applied to classification tasks (ZHANG, 2000), and their application

is also extended to reinforcement learning tasks.

2.3 Neuroevolution

Neuroevolution is an area of evolutionary computation that employs evolution-

ary algorithms to discover and optimize neural networks (NNs) concerning a predictive

task. Methods found in the literature differ on how neural networks are genetically en-

coded and which operators are used to improve already found solutions (STANLEY;

CLUNE; LEHMAN, 2019; FLOREANO; DüRR; MATTIUSSI, 2008; DUFOURQ; BAS-

SET, 2017; XIE; YUILLE, 2017). Genetic algorithms are defined and implemented in a

very abstract manner (LUKE, 2013; BEYER; SCHWEFEL, 2002); neuroevolution natu-

rally inherits this flexibility.

Neuroevolution is capable of relaxing restrictions common to usual neural net-

work optimization methods. In principle, neuroevolution algorithms do not require NNs

activation and loss functions to be differentiable, in contrast to backpropagation based

optimization methods (RUMELHART; HINTON; WILLIAM, 1986) (TIELEMAN; HIN-

TON, 2012). It is also possible to evolve network topologies (better detailed when dis-

cussing NEAT in Section 2.3.1) which is a harder problem as it increases the size of the

search space. A main drawback of neuroevolution when compared to usual neural net-

work optimization methods is the necessity of iterating over all training data for a single

individual’s fitness update, although recent work suggests this burden may be diminished

(MORSE; STANLEY, 2016).

2.3.1 Neuroevolution of augmenting topologies

As discussed above, neuroevolution is a family of methods that applies concepts

of evolutionary computation to optimize neural networks. Neuroevolution of augmenting
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topologies (NEAT) (STANLEY; MIIKKULAINEN, 2002) is a neuroevolution method

that is capable of evolving network weights and topologies. NEAT defines mutation and

crossover operators on top of a genetic algorithm framework.

An advantage of automatically evolving topologies is that humans do not need

to know in advance which NN architecture is best suited for a given task. For instance,

empirical evidence showed that NEAT can discover recurrent neural network architec-

tures from a simple feed-forward topology at tasks where recurrence was known to be a

desirable property (WHITESON et al., 2005; TAN et al., 2009).

NEAT has been validated on abstract problems such as the computation of the

non-linearly separable logical function XOR and the reinforcement learning task of dou-

ble pole balancing (STANLEY; MIIKKULAINEN, 2002). Its feature selective varia-

tions have been successfully applied to supervised (GRISCI; FELTES; DORN, 2018;

SOHANGIR; RAHIMI; GUPTA, 2013; SOHANGIR; RAHIMI; GUPTA, 2014) and re-

inforcement learning tasks (WHITESON et al., 2005). The rest of this section details

NEAT most important extensions to a regular genetic algorithm, as well as specifies its

mutations and crossover operators.

Genetic encoding: A NEAT individual is directly represented by a list of nodes and a

list of edges that represent their topology, which denotes the individual’s phenotype, in

the context of evolutionary algorithms. In computational terms, genomes are directed

acyclic graph representations. Given an individual I , its genome g may be partitioned

into gnodes ∪ gedges. Such partition is important because node genes possess different

attributes than in comparison to connection genes. While node genes are encoded only

by its type (input, hidden or output) and by its bias weight, an edge gene is encoded by

the two nodes it connects, its connection weight, and whether it is enabled. A disabled

connection gene is ignored on the individual’s phenotypical representation.

Topological innovation via speciation: Although evolution strategies yield a vast toolbox

for extending the simplest genetic algorithms (see Beyer and Schwefel (2002) for a wider

review) NEAT relies mainly on speciation. As a given topology evolves, it needs muta-

tion steps to fine-tune new weights. During this process, it is unfair that a unique, new

promising individual must compete with more straightforward but already tuned individ-

uals. Such a problem is approached with speciation and fitness sharing, where individuals

from different species do not compete for offspring, and individuals from the same species

influence each other’s fitness. To group individuals in species, the competing conventions

problem and an individuals’ difference function must be addressed.
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Figure 2.1: Depiction of a NEAT individual’s genome and phenotype.

Historical innovation markers: An issue common to neuroevolution algorithms that evolve

topologies is the competing conventions problem. Individuals with apparently distinct

genomes might produce the same output. The simplest case, when an individual’s genome

is a permutation of the other, is depicted in Figure 2.2. Although the depicted networks

compute the same function, a naive representation might be unable to reveal their simi-

larities in reasonable computation time. Such distinction is important because individuals

must be distinguished by their behavior, not by their genome.

NEAT handles the competing conventions problem by attributing a global inno-

vation number to newly added genome elements (topology nodes or connections). These

innovation markers induce a natural order for individuals’ genes, allowing the construc-
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Figure 2.2: Depiction of competing conventions. Circles with loose incoming edges rep-
resent input nodes. Circles with loose outgoing edges represent output nodes. Numbers
represent bias and connections weights.

tion of a difference function able to distinguish between matching, exceeding, and disjoint

genes. This way, mutated individuals will surely present an encoding similar to their prior,

and offspring receives an encoding similar to their parents. Innovation markers induce the

concepts of matching, exceeding, and disjoint genes, as well as supports the definition of

a difference function between two arbitrary individuals, which is detailed next.

Individuals difference: Given genes yield historical markers, two different genomes are

easily comparable. Given a genome g1, its genes might be partitioned into g1 = gM1 (g2)∪

gE1 (g2) ∪ gD1 (g2) given another individual’s genome. Matching genes gM1 (g2) represents

genes in g1 which historical marker is found in g2. Exceeding genes gE1 (g2) represent

genes in g1 that are more recent than all of those in g2, while disjoint genes gD1 (g2) are

genes in g2 whose historical marker is not present in g1, but are newer than at least one

gene in g1. This genome partition is explicitly used by the crossover operator and the

difference function. The genome difference of two individuals I1, I2 respectively with

genomes g1, g2 is defined by the following equation, where E,D represents the set of
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exceeding and disjoint genes of g1 with respect to g2, respectively.

d(g1, g2) =
c1|E|+ c2|D|
max{|g1|, |g2|}

+ c3Ŵ (2.3)

D(I1, I2) = d(gnodes1 , gnodes2 ) + d(gedges1 , gedges2 ) (2.4)

The coefficients c1, c2, c3 balance the importance of evolved topologies and weights.

In a scenario where c1 = c2, the difference function is symmetric. Larger values of c3 en-

able a more refined distinction between individuals that learned to approximate different

functions with similar topologies.

Mutation Change Weight: There is a chance that a given node’s bias or connection’s

weight is perturbed during optimization. Such alteration follows the normal distribution

and is scaled by the mutation power employed on evolution. This operator is the responsi-

ble for fine-tuning topological innovations, given that other mutations only update weight

values in case new elements are added to the topology.

Mutation Add Connection: A new connection might be created between two unconnected

nodes. When the aim is to evolve a feed-forward network (which is the interest of this

study), the addition of connections that create cycles within the topology is prohibitive.

Figure 2.3: Depiction of mutation Add Connection. Two unconnected nodes become
connected by the addition of an edge in the topology. On the left, yellow-colored ellipsis
represents nodes that become connected by the dashed arrow on the right.

Mutation Add Node: An existing connection within the topology might be disabled in
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order to make room for a novel hidden node, connected to the nodes that composed the

target edge. The connection incoming to the new node receives a weight of 1, while the

outgoing edge receives the same weight as the disabled one.

Figure 2.4: Depiction of mutation Add Node. An existing connection is split by the
inclusion of a hidden node in the topology. On the left, the yellow-colored arrow repre-
sents the split edge. On the right, the green-colored node represents the node added by the
mutation, the dashed arrow indicates that the split connection is disabled, and the yellow-
cored arrow denotes that the new gene receives the same weight as the split connection.

Crossover: Given two individuals I1, I2, where fitness(I1) > fitness(I2) the crossover

operator specifies how their offspring are created. Matching genes are inherited randomly,

while disjoint and exceeding genes concerning I1 are inherited. The new individual in-

herits genes from both its parents, in the case fitness(I1) = fitness(I2). NEAT also

specifies that an inherited disabled connection gene might become active in case it is en-

abled in one of the parents, which turns the crossover operator into a stochastic process.

Figure 2.5 depicts a crossover scenario and a possible outcome.

Fitness Sharing: Competition is avoided by allocating a fraction of the offspring popula-

tion to each of the computed species, proportional to the fitness contribution held by the

species. Individuals fitness are transformed by Equation 2.5 to compensate for the lack of

diversity caused by large species, where fi and f ′i respectively represent the original and

adjusted fitness of individual i and S(i) is the set of individuals which were attributed the

same species as i. The number of offspring individuals generated by a particular species
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is proportional to the sum of the adjusted fitness of its individuals.

f ′i =
fi
|S(i)|

(2.5)

2.3.2 Feature selective neuroevolution of augmenting topologies

NEAT assumes all of the available input is relevant to the given task once every

input node is present on new individuals, and its operators do not support the exclusion

of nodes or edges. Although evolution can nullify the weights of input nodes, such a

phenomenon is not explicitly guided by the employed optimization and therefore con-

sumes unnecessary compute resources. Feature selective neuroevolution of augmenting

topologies (FS-NEAT) modifies how novel individuals are created by including only one

of the possible input nodes. To evolve networks capable of combining information from

multiple inputs, a new mutation, Add Input, is added to the genetic algorithm that powers

evolution.

With the modifications above, FS-NEAT automatically performs feature selection

as it searches for networks with excellent prediction performance concerning the given

task. Intuitively, included irrelevant or spurious features will not yield any performance

gain. Consequently, individuals mutated this way are not likely to survive in the next

generations.

Mutation Add Input There is a stochastic event in which an arbitrary input node, not

present in an individual genome, becomes connected to a hidden or output node present

in the given individual’s topology. The new connection properties are the same as in the

Add Connection Mutation. Such a mutation is necessary due to FS-NEAT minimalist start.

Topologies containing input nodes that do not contribute to the given task are not likely

to survive, therefore only individuals with relevant inputs persist throughout evolution.

2.3.3 Three new operators

Grisci, Feltes and Dorn (2018) proposed three core modifications to FS-NEAT in

an algorithm named after the introduced alterations, N3O. Proposed modifications were

motivated by the large number of features in data that were approached by the method.

The same work demonstrated that the proposed alterations improve the exploration of
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the search space. The method relies on statistics extracted from numerical training data

in order to better guide the evolutionary process. The requirement of continuous data

posed by employed statistics motivated the proposal of a novel feature selection method

based on neuroevolution, able to provide similar guidance on categorical data, which is

presented in Chapter 4. Since N3O is a core basis for the method proposed in this study,

its extensions on FS-NEAT are detailed in the next sections.

Input Relevance Assessment: One main improvement of N3O over FS-NEAT is that it

incorporates information about input features into evolution. In Grisci, Feltes and Dorn

(2018), this is done by the employment of the Kruskal-Wallis one-way analysis of vari-

ance (KW) (KRUSKAL; WALLIS, 1952). KW tests whether ranked samples from mul-

tiple groups G belong to the same statistical distribution. The test is defined by Equation

2.6, where G denotes the sample groups to be tested, N represents the total number of

samples, rx denotes the rank attributed to a given sample x, while r̄g and r̄ are defined by

Equations 2.7 and 2.8, respectively. The test outputs p-values representing the probability

of groups in G belonging to equal distributions. Being non-parametric is one important

characteristic of KW, as it does not assume that input samples belong to a given dis-

tribution. A drawback of the test is that it is designed for real-values numbers, being

inapplicable to categorical data.

H(G) = (N − 1)

∑
g∈G |g|(r̄g − r̄)2∑

g∈G
∑

x∈g(rx − r̄)2
(2.6)

r̄g =

∑
x∈g x

|g|
(2.7)

r̄ =
N + 1

2
(2.8)

Statistical Filtering: Input features that present a non-negligible probability of belonging

to the same distribution as the target class are excluded from training data before opti-

mization begins. This processing step prior to training was motivated by the large number

of features of data in which the method was evaluated. Such filtering might be interpreted

as a filter feature selection algorithm, as described in Section 2.9.

Mutation Guided Add Input: p-values output from KW are normalized into probabili-

ties by the transformation −log10(.) and scaled by the softmax function (Equation 2.13),

which results in a probability distribution over input features. Such distribution is used to

sample disconnected input nodes when choosing a feature to be included in the topology
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by the Add Input mutation.

Mutation Swap Input: Another mutation proposed in N3O is the Swap Input, which at-

taches neighbors of an input node present in an individual’s topology to a disconnected

input. Such a step is a random and unbiased manner of exploring a part of the search space

that is not guided by the Kruskal-Wallis one-way analysis of variance, and is depicted in

Figure 2.7.

Crossover Modification: Originally on NEAT crossover, resulting offspring do not inherit

excess genes concerning the least fit parent. Grisci, Feltes and Dorn (2018) proposes that

the least fit parent’s input nodes that are connected to nodes present in the fittest parent’s

topology have a chance to be inherited during the crossover. This alteration is motivated

by the intuition that combining feature selection from multiple promising networks yields

a better selection. The restriction that only inputs that fit the usually inherited genome is

principled, as it minimizes the topological extension of the most fit parent.

2.4 k-nearest neighbors

The k-nearest neighbors algorithm (KNN) is a computational method that outputs,

given a query sample xi ∈ X , a set of samples Y representing the k points in X most

similar to xi, where xi /∈ Y . The method is parametrized by the integer k, a set of

data points X , and a similarity function f : X2 → R which compares samples from X .

Due to the flexibility of the similarity function’s definition, the method can handle both

numerical and categorical data points. KNN is commonly applied to classification tasks

(NOI; KAPPAS, 2017; HAN; KARYPIS; KUMAR, 2001), where an unlabeled sample

is queried and its labeled nearest neighbors are considered to infer the queried sample’s

class. The algorithm is also employed on data imputation, in which a sample containing

missing or invalid values is queried, and the values of its neighbors are used to estimate

attributes that are not valid (BATISTA; MONARD, 2003).

2.5 Support vector machine

Support vector machine (SVM) is a supervised machine learning algorithm that is

suited for both classification and regression tasks (CORTES; VAPNIK, 1992). It follows

the assumption that training data is well separable by hyper-planes residing on the features
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space. The method supports the application of non-linear transformations (kernels) to

training data to represent original features in a more separable space. SVM naturally

handles binary classification and only approaches multi-class classification tasks given

algorithmic extensions, such as training an ensemble where each classifier separates a

particular class from the others.

Among state-of-the-art classifiers, SVM is computationally inexpensive (in par-

ticular when compared to deep neural networks) and presents low generalization error to

a broad variety of data sets. Nevertheless, its parametrization is very sensitive, including

kernel choice. SVM is essential to this study as it is the classifier that assesses feature

selections quality on experimental evaluation.

2.6 Mutual information

Mutual information (MI) is a measure of dependency between categorical vari-

ables, defined within information theory (SHANNON, 1948; STEUER et al., 2002; GRAY,

1990). MI (Equation 2.9) is defined in terms of the marginal and conditional probabilities

concerning the variables analyzed.

Given two discrete variables X, Y able to respectively assume values in VX , VY ,

the mutual information between X and Y is defined as:

I(X, Y ) =
∑
x∈VX

∑
y∈VY

p(x, y)log
p(x, y)

p(x)p(y)
(2.9)

When X, Y are not correlated, I(X, Y ) = 0. Higher values of I(X, Y ) indicate a

stronger correlation between input variables.

Mutual information has been utilized on feature selection methods as a strategy

for handling categorical inputs (VERGARA; ESTÉVEZ, 2015; BUNNEY et al., 2017).

It has also been successfully applied to discretized noisy continuous data (DING; PENG,

2003). The present study adopts MI for assessing input features relevance concerning the

target class, as well as measuring input attributes redundancy with respect to each other.

Such a strategy is presented in the next section.
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2.7 Minimum redundancy - maximum relevance

Minimum redundancy - maximum relevance (mRMR) (DING; PENG, 2003) is

a sequential forward feature selection algorithm that ranks and greedily selects a pre-

defined number of attributes employing criteria based on Mutual Information (presented

in Section 2.6).

Let S be features already selected by the algorithm and let h denote the target

attribute. The redundancy and relevance assessment of the selection set S is respectively

defined by the following equations.

W (S) =
1

|S|2
∑
i,j∈S

I(i, j) (2.10)

V (S) =
1

|S|
∑
i∈S

I(h, i) (2.11)

One way of composing redundancy and relevance measurements in a single cri-

terion (to be maximized) is the quotient composition, defined by Equation 5.3. (DING;

PENG, 2003) presented evidence where such composition outperforms others, such as the

difference, in a cancer biomarker selection dataset.

V (s)

W (s)
(2.12)

The search for all selection sets S is computationally intractable, as it is an NP-

Complete problem, so a sequential forward feature selection method is proposed on top

of the aforementioned criterion. Starting from an empty set of selected features S and

the set of all features Ω, mRMR employs a greedy strategy to select remaining features

ΩS = Ω − S. The attribute that maximizes the chosen criteria composition is added to

S. The selection terminates when the pre-defined number of features to be chosen have

already been inserted to S.

Since attributes redundancy assessments are defined as a function of S it has to be

updated every time a new feature is selected. Whole selection is computed in O(|S|N)

steps, N being the number of samples used to infer the relationship between attributes.
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2.8 Softmax

The softmax function is a mathematical transformation that normalizes a vector

of real-values numbers into a probability distribution, and is defined by Equation 2.13,

beingX = X1, ..., Xn the vector to be transformed andX ′ its normalized output. Such an

operation is important, for instance, to transform a vector of ordered scores into a vector

of the same size containing non-negative elements and whose |L1|-norm is 1. Therefore

resulting elements can be interpreted as probabilities and the whole vector as a probability

distribution.

Xi =
eXi∑
i∈[n] e

Xi
(2.13)

2.9 Feature selection

Feature selection (FS) is part of dimension reduction, one of the data preprocessing

tasks which are essential to machine learning models construction. While some models,

such as Decision Trees, measure feature relevance and use it as induction criteria, most

machine learning models assume all features are relevant to the given task. In both cases,

the model’s induction computational cost increases significantly with the number of fea-

tures. Spurious or irrelevant attributes might also harm the model’s prediction ability,

as there is evidence that the same learning algorithm achieves better performance by in-

ducting on a subset of the same data where some of the original features are discarded

(UTANS; MODDY; REHFUSS, 1995; DASH; LIU, 1997; CILIA et al., 2019, 2019).

Lazar et al. (2012) divides feature selection algorithms into four categories: filter,

wrapper, embedded, and ensemble. Ang et al. (2016) describes a fifth category: hybrid.

Filter selection methods use statistical measures to analyze features relevancy w.r.t target

data. These algorithms do not depend on any classifier to perform the selection, therefore

they represent the category that induces less bias. Filter methods are also computationally

less expensive than other feature selection methods, and some do not rely on labeled

data as they focus on redundancy criteria. An example of a filter method is univariate

feature selection (UFS) (AGGARWAL et al., 2014), in which attributes are ranked given

a criterion and the best are retrieved. Features are ranked in a univariate manner, as in the

correlation of each input feature concerning the target class is measured independently.
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The employed criterion and the number of features to be retrieved are parameters to this

algorithm. Univariate feature selection is relevant to this study as its selection quality is

compared to the proposed method.

Wrapper methods perform a heuristic search on the space of subsets of the original fea-

ture set using a predefined evaluator to measure the quality of candidate subsets. The

evaluation of any point in search space requires the induction and validation of a machine

learning model, which is computationally expensive. Wrappers selection output suffers

from any bias induced by the base evaluator, which diminishes the interpretation of se-

lected features as the relevant features to the task. The only restrictions for the quality

assessment of proposed search points are the ones presented by the base evaluator, en-

abling the whole FS algorithm to be applied to unsupervised and reinforcement learning

tasks. An example of a wrapper feature selection algorithm is the utilization of Recursive

Feature Elimination (RFE) and Support Vector Machines (SVMRFE) (GUYON et al.,

2002), in which SVM is the classifier employed to assess the quality of inputs subsets.

Embedded methods perform feature selection by construction while approaching the pre-

diction task. A classical example is Decision Trees as it computes attributes’ relevance

and redundancy, and might ignore some of the features initially present on training data.

Another embedded feature selection algorithm is FS-NEAT (WHITESON et al., 2005)

which is discussed in detail in Section 2.3.2 as it is a basis for the method proposed in

this study. SVMRFE is classified as an embedded approach as well, since it utilizes RFE,

which is a filter method, to propose selections to SVM in a wrapper-based approach.

Ensemble algorithms handle the sensitivity of most existing methods to noise present in

data. An FS algorithm is applied to sampled subsets of original data, and results are

aggregated into a more reliable selection output.

Hybrid feature selection composes methods of at least two of the aforementioned cat-

egories. They present strong potential since they combine already established methods

strengths in order to diminish their weaknesses.

Filter methods are commonly used appended to hybrid frameworks (GRISCI;

FELTES; DORN, 2018; AGGARWAL et al., 2014) due to their low computational cost.

Their application is preferable on learning tasks that present a large number of features,

or on data domains where correlation present in data is straightforward. Wrapper meth-

ods are best applicable when the main objective is predictive accuracy and the search

space is reasonably small. Embedded feature selection algorithms are less common since

they perform (most times implicitly) multi-objective optimization which is harder to con-
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struct. They are not applicable when data violates the embedded selection assumptions.

Ensemble FS is employed when data present variance that is harmful to the chosen base

selector. All mentioned categories may handle unlabeled data, although filter and embed-

ded methods commonly rely on the assessment of features relevance concerning a target

class.

2.10 Cross-validation

A problem common to learning algorithms is over-fitting (LAWRENCE; GILES,

2000; BELKIN et al., 2019), characterized by the internalization of statistical patterns ly-

ing in training data that does not represent the natural data distribution. Such patterns are

usually introduced by data collection bias, for instance, when collected samples represent

a particular sub-population of data that is to be analyzed. This problem is detected by test-

ing induced learning models on test samples not present in training data, originated by a

different sampling procedure. Nevertheless, some predictive tasks (especially real-world

ones) are described by a single data set or collection methodology, which forces the algo-

rithm to learn on data subject to the same bias. A strategy for dealing with this problem is

k-fold cross-validation (CV), where available data is partitioned into k equally sized sets

called folds. Every fold is used to test the induced model’s predictive capability as the

same learning algorithm runs using the remaining k − 1 folds as training data. Finally,

k learning models are induced and tested on different partitions of the available data and

computed metrics are aggregated, usually by their mean and standard deviation. When

data is partitioned into folds that respect the original class distribution, the experiment is

called stratified cross-validation.

2.11 Confusion matrix

The confusion matrix is a square matrix that summarizes a given model’s predic-

tions by relating the ground-truth of annotated samples with its predicted class (SOKOLOVA;

JAPKOWICZ; SZPAKOWICZ, 2006). The diagonal represents successful predictions,

while non-diagonal elements account for samples in which the model failed to predict

the correct class. The sum of all matrix entries amount to the total number of predicted

samples. The confusion matrix is a common way of visualizing machine learning models
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classification performance, although it becomes cumbersome for multi-class classification

problems.

Table 2.1 depicts a confusion matrix for binary classification. In binary classifica-

tion tasks, in which one class is taken as positive and the other as negative, the 4 matrix

entries have a distinct meaning and serve as a basis for common machine learning met-

rics (FLACH, 2003; SOKOLOVA; JAPKOWICZ; SZPAKOWICZ, 2006). True positives

(TP) represent predictions in which samples were annotated as positive and the model

predicted the positive class; False positives (FP) are positive predictions on samples an-

notated as negative; False negatives (FN) are negative predictions on samples annotated

as positive; and True negatives (TN) represent negative predictions on negative samples.

Table 2.1: Example of confusion matrix. Columns indicate predicted classes and rows

indicate annotated classes. TP, FP, FN and TN are abbreviations for true positive, false

positive, false negative and true negative, respectively.

TPP

P

FN

N

FPN TN

Accuracy is a common classification metric derived from a given confusion ma-

trix. It does not distinguish errors between different classes and is defined by Equation

2.14. Precision and recall are metrics that focus on evaluating the model’s performance

concerning a particular class, and are respectively defined by Equations 2.15 and 2.16.

The recall is also mentioned as sensitivity and is widely employed on biological, medical

and image processing studies (SOKOLOVA; JAPKOWICZ; SZPAKOWICZ, 2006).

accuracy =
TP + TN

TP + FP + FN + TN
(2.14)

precision =
TP

TP + FP
(2.15)

recall =
TP

TP + FN
(2.16)
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2.12 Cross-entropy

The cross-entropy function (also referred to as log loss) measures the classifica-

tion error of a neural network prediction concerning a target class. Such a measure is

also applied to multi-class classification, by aggregating prediction errors for each class

through summation (BOER et al., 2005; ALPAYDIN; JORDAN, 1996). It is defined by

Equation 2.17, where C is a partition of the training set, each element c ∈ C contains

training samples belonging to class c, y is binary value denoting that training sample x is

in fact labeled concerning c, and p(x) represents the network prediction for a c-annotated

sample x.

CE(p, C) = − 1

|C|
∑
c∈C

∑
x,y∈c

ln(p(x))y + ln(1− p(x))(1− y) (2.17)

2.13 Chapter conclusion

This chapter presented the theoretical foundation researched while developing the

presented study, as well as computational methods employed on experiments. The next

chapter introduces the problem approached on the experimental evaluation, human phe-

notype prediction.
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Figure 2.5: Depiction of crossover operator. At the top, two individuals depicted by
their phenotype; at the bottom, one of the possible offspring generated by the crossover
operator. The leftmost topology is owned by the most fit parent. Dashed arrows repre-
sent disabled connections and numbers represent genes’ historical markers. Blue-colored
circles and edges represent matching genes in I1, while green-colored circles and edges
represent matching genes in I2. Yellow represents disjoint genes and red represents ex-
ceeding genes. In this example, matching genes with markers 1, 3 and 6 are inherited
from the least fit parent, while genes with markers 2, 4, 5, 7 and 8 are inherited from I1.
Gene 5 could be enabled because it is an active connection in I2, although its properties
are inherited from I1.
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Figure 2.6: Depiction of mutation Add Input. An input node, not present in an individ-
ual’s genome, gets connected to a hidden or output node.

Figure 2.7: Depiction of mutation Swap Input. An input node, present in an individual’s
topology, is replaced by a disconnected input node.
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3 THE HUMAN PHENOTYPE PREDICTION PROBLEM

An open problem in biology is the prediction of phenotypical characteristics given

genotypical data. Applications for such tasks include animal improvement (CALUS;

VEERKAMP, 2007) and control, forensics (JOBLING; GILL, 2004; OGDEN; LINACRE,

2015; WILLIAMS; WIENROTH, 2017; ARENAS et al., 2017) and study of disease

genetics (GRISCI; FELTES; DORN, 2018; DING; PENG, 2003; LAZAR et al., 2012;

LOPEZ-RINCON et al., 2018). Available data for such tasks typically contain few sam-

ples and, at early stages of preprocessing, many dimensions are reduced mostly through

statistical filters. Gene selection is an example of the employed dimension reduction

techniques and is a particular type of genomic selection, where each input dimension

corresponds to information derived from a whole gene.

Since interactions between genes themselves are too complex to be analyzed purely

by biological and statistical methodologies, machine learning has been applied to prob-

lems derived from biological data (GRISCI; FELTES; DORN, 2018; MATUKUMALLI

et al., 2006; LAZAR et al., 2012). It is important to notice that the genotype-phenotype

relationship is susceptible to significant variations on different populations (AVILA et

al., 2019; ZAORSKA; ZAWIERUCHA; NOWICKI, 2019; OGDEN; LINACRE, 2015),

therefore results obtained from statistical or machine learning methods may be tightly

coupled to the population represented in data.

While most of an individual’s genes are similar to others from the same species,

nuclear deoxyribonucleic acid (DNA) of autosomes presents reasonable difference for

approaching identification by sequencing genome data (CORTE-REAL; VIEIRA, 2015).

Single nucleotide polymorphisms (SNPs) are powerful biomarkers for capturing distinc-

tions between individuals. Recent work showed that SNPs are informative to kinship

determination (AVILA et al., 2019) and prediction of complex phenotypes, such as skin

and eye color (ZAORSKA; ZAWIERUCHA; NOWICKI, 2019; LIU et al., 2009; WHITE;

RABAGO-SMITH, 2011). The present work follows this evidence and applies the pro-

posed method to an SNPs dataset to construct an informative biomarkers panel. The

following section discusses how previous work related genotypical data analysis relates

to feature selection, a core theme in this study.
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Figure 3.1: Depiction of a single nucleotide polymorphism. While most of the genome
between individuals of the same species is similar, particular locations on the nucleotide
sequence present polymorphism. The letters in the image indicate nucleotides in the
genome and the arrows point to a position in which polymorphism occurred.

Picture from Academia.edu (2015)

3.1 Genomic selection

The term genomic selection is employed when referring to a selection of attributes

that correspond to information derived from biological genes (ANG et al., 2016). Figure

3.2 depicts how data obtained from different analysis techniques are useful when compar-

ing genomes with a different granularity of genetic distance.

It is important to highlight that there is much uncertainty in biological data and its

collection is a complex task, prone to error from diverse sources. Such errors might intro-

duce bias on available data, which in turn yield prediction bias when applying machine

learning algorithms to it. Therefore genomic selection results should be carefully vali-

dated by domain experts in order to reject erroneous results due to systemic and statistical
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bias possibly introduced during data collection and processing (FELTES et al., 2019).

Figure 3.2: Depiction of distinct data derived from genomic samples. When compar-
ing genomes, different reads on samples are suited for different magnitudes of genetic
distance.

Figure from Ogden and Linacre (2015)

One important application of gene selection is the construction of biomarkers pan-

els (AVILA et al., 2019; OGDEN; LINACRE, 2015; WILLIAMS; WIENROTH, 2017;

ARENAS et al., 2017). Once relevant markers to a given task are discovered, future data

collections might focus on the selected features only. The panel description not only im-

proves data analysis capability (as it is the case in general feature selection) but cheapens

the gathering and storage of new data. On animal improvement, for instance, data col-

lection equipment must be distributed to farms along a possibly wide-area. In this case,

spurious markers increase the cost of individual collection devices, dampening the process

of obtaining data on large scale.

The application of feature selection to SNPs data is also mentioned as genomic

selection, although the relation between single nucleotide polymorphisms and genes is not

straightforward. An SNP represents less information than a gene, but it does not always

reside inside coding regions of the genome. SNPs are often related to genes by physical

proximity only. Furthermore, single nucleotide polymorphisms spread throughout the
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entire genome and may not be related to any known gene.

3.2 Chapter conclusion

This chapter introduced the human phenotype prediction problem and related it to

feature selection, a core theme in this work. The following chapter presents the proposed

algorithm in detail, emphasizing its essential differences to the already established feature

selection methods discussed in Chapter 2.
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4 THE PROPOSED METHOD

N3O whole modifications to FS-NEAT rely on the Kruskal-Wallis one-way anal-

ysis of variance (Equation 2.6) which is inappropriate for categorical data. To overcome

this restriction, the statistical test employed in N3O to guide the addition of new inputs is

seen as a component that ranks features, similar to the scoring employed in filter feature

selection methods. The present study leans on this abstraction to propose a novel fea-

ture selection algorithm based on neuroevolution which is specialized in categorical data,

N3O-D.

In order to approach discrete input data, the criteria proposed in the mRMR method

(Equation 2.12) is chosen to rank features that are not selected within individuals’ topolo-

gies. Instead of greedily picking the feature with the higher score, remaining features

scores are normalized to probabilities using the Softmax function (Equation 2.13), and

then fed into the evolutionary algorithm mutation process through the mutation Guided

Add Input (presented in Section 2.3.3). Such criterion is appropriate for categorical data

since it interprets entries as distinct labels, as opposed to numerical quantities. It is ap-

propriate for feature selection since it measures the relevancy of a given feature concern-

ing the target class as well as the given feature redundancy concerning already selected

attributes. In contrast to N3O attribution of probabilities to features, N3O-D needs to

recompute probabilities every time a new feature is added to the individual topology (see

Equation 2.10). Like most machine learning algorithms, the proposed method does not

handle missing values naturally.

The following section presents a processing step that is extraneous to N3O’s pro-

posed modifications and is necessary due to the discrete nature of data only. The re-

maining sections detail a pipeline as an application example of the proposed method and

conclude the chapter.

4.1 Encoding

For neural network topologies to distinguish different input values in a discrete

manner rather than in a continuous one, categorical features should be strategically en-

coded into numerical values (POTDAR; TAHER; CHINMAY, 2017). Cedric (2018),

Potdar, Taher and Chinmay (2017) presented evidence where one-hot encoding showed

superior performance on comparative studies concerning other techniques and therefore
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was chosen to encode input features. Such transform artificially increases the number of

input variables and creates a relationship between input nodes. A mapping between the

original attribute and its induced input nodes is kept, so feature selective variations of

NEAT are capable of treating sets of input nodes as a whole attribute. Such mapping is

crucial to the gene selection task, once the objective is to select whole markers rather than

parts of its information. Figures 4.1 and 4.2 depict how some of N3O original mutations

change when one hot encoding is applied.

Figure 4.1: Depiction of mutation Add Input given one hot encoding of input nodes.
Inputs colored the same way belong to the same original input feature and therefore must
be selected as a group.

Figure 4.2: Depiction of mutation Swap Input given one hot encoding of input nodes.
Same color legend as in 4.1.

4.2 Pipeline example

Figure 4.3 depicts the pipeline employed on the experimental evaluation presented

in Chapter 5 as an application example for N3O-D.

Data source: Data is provided by particular institutions that hold the technical knowl-

edge required for collecting and storing genotypical data, as well as applying the first
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Figure 4.3: Diagram depicting how the proposed method is applied to the genotype-
phenotype problem.

preprocessing and filter stages.

Data imputation: Real-world data sets often contain missing or invalid values. The pro-

cess of handling such values is called imputation and is a necessity given incomplete data.

Neuroevolution: Imputed data is fed onto the evolutionary algorithm which simultane-

ously selects relevant inputs and classifies samples according to their annotated pheno-

type.

Results validation: Feature selection results yield candidates for an SNPs panel. The

relevancy of the selected biomarkers should be evaluated by the biology community. Ap-

propriate validation might indicate methodology flaws in the conducted experiments that

generated such a selection or inspire novel biological research. A simple validation of the

SNPs selected on experimental evaluation is detailed and presented in Chapter 5.

4.3 Chapter conclusion

This chapter presented the feature selection method proposed by this study, as well

as explained its necessity by highlighting weaknesses on the algorithms discussed in pre-

vious parts of the text. The following chapter is dedicated to the employed experimental

evaluation. It introduces provided data and details the treatments applied to it, announces

the evaluated algorithms while specifying their configurations, and finally presents and
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discusses obtained experimental results.
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5 EXPERIMENTS AND RESULTS

The prediction performance of N3O-D is experimentally compared on the human

phenotype prediction problem to its base algorithm, FS-NEAT, which is also powered by

neuroevolution, as well as a univariate feature selection that also assesses inputs relevance

via mutual information. The prediction performance of neuroevolution algorithms is as-

sessed through 10 evolution runs of 3-fold cross-validation. Feature selections of such

methods are retrieved by picking the inputs selected by the best performing individual in

each evolution, collected over the 30 executions. Retrieved features are ranked by the fre-

quency in which they are selected throughout the multiple runs. The quality measurement

of retrieved feature selections is better detailed in Section 5.2.

The following sections describe the data utilized in experiments, the feature se-

lection methods evaluated, how N3O-D hyper-parameters were configured, and presents

experimental results.

5.1 Data

INCT Forense 1 provided a data set with 439 samples of 67 single nucleotide

polymorphisms (SNPs) genetic markers labeled with both eye and skin color phenotypical

information, respectively showed in Figures 5.1 and 5.2. Table 5.1 depicts the data format.

The values distribution for both target characteristics is presented in Tables 5.2 and 5.3.

Table 5.1: Raw data examples
ID SNP1 SNP2 SNP3 phenotypeeye phenotypeskin

1 AA CT GA blue dark

2 AC CT .. green pale

3 .C CC AG hazel light

Columns that represent SNPs (features) are represented by two nucleotides, one for each DNA

strand at the particular genome position. Missing values might occur in the whole marker or par-

tially. The last columns represent phenotype occurrences and depict that their values are not nec-

essarily encoded for learning algorithms in a proper manner. Samples are identified by a specific

column (the first, in this example), although this information is ignored when training machine

learning models.

1<https://inctforense.wordpress.com/>

https://inctforense.wordpress.com/
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Figure 5.1: Picture of analyzed skin phenotypes.

Image provided by INCT Forense

Figure 5.2: Picture of analyzed eye phenotypes.

Image provided by INCT Forense

Table 5.2: Skin color class distribution
Classes Representation (%)

White 25.79

Pale 31.73

Beige 14.38

Light Brown 9.58

Medium Brown 12.32

Dark Brown 6.16
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Table 5.3: Eye color class distribution
Classes Representation (%)

Blue 23.91

Green 8.2

Hazel 6.6

Light Brown 9.33

Dark Brown 37.12

Black 14.80

The provided data was not readily applicable as input to machine learning algo-

rithms since it contained invalid entries. Class distributions are imbalanced, which is prej-

udicial for learning models. The next section outlines how these issues are approached

throughout data preprocessing.

5.1.1 Imputation

Samples of provided data contained corrupt measurements for some SNPs. Since

neither SVM nor NEAT handles invalid values, imputation had to be performed. The in-

ference of invalid attribute values was employed through KNN. Samples containing miss-

ing values are queried using Equation 5.1 and the values to be imputed are estimated as the

mode of retrieved neighbors. The described imputation technique is inspired by Batista

and Monard (2003). Although mode imputation induces bias on learning algorithms, it

was preferred over the exclusion of samples or features with invalid values since most

attributes contained at least a few samples with incomplete entries.

D(s1, s2) =

∑
a∈As1∩As2

Da(s1, s2)

|As1 ∩ As2|
(5.1)

Da(s1, s2) =

1, if sa1 = sa2

0, otherwise
(5.2)

D(s1, s2) represents the difference of two distinct samples s1 and s2, sak denotes

value of attribute a for the k-th sample, Ask is the set of attributes of sk that contains valid

values, and ∩ denotes set intersection.
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5.1.2 Data views

As Tables 5.2 and 5.3 showed, class distributions are imbalanced for both pheno-

typical characterizations, which encourages the specification of data views that aggregate

original classes to construct a more homogeneous annotation of samples. Class imbalance

is detrimental to classification algorithms as less representative classes do not contribute

much to the patterns extracted to guide the model’s induction, which results in models

with a bias towards the classes that are most represented in training data. Furthermore,

phenotype prediction use cases do not always require a distinction as refined as those pre-

sented originally. For instance, when identifying an individual with blue colored eyes,

distinguishing between the multiple brown shades is irrelevant, hence the Blue-vs-Non-

Blue view (presented in Table 5.5). Each data view represents a function that transforms

the provided dataset into one more adapted to different applications by aggregating par-

ticular classes into significant partitions. Such transformations are capable of diminishing

class imbalance as underrepresented classes may be merged into a more representative

one. The attributed views for skin and color characterizations are respectively specified

in Tables 5.4 and 5.5.

Table 5.4: Skin color data views

Partition

White, Pale, Beige, Light Brown, Medium Brown, Dark Brown

Light (White and Pale), Intermediate (Beige and Light Brown), Dark (Medium and Dark Brown)

Light (White, Pale and Beige), Dark (Light, Medium and Dark Brown)

Table 5.5: Eye color data views
Partition

Blue, Green, Hazel, Light Brown, Dark Brown, Black

Blue, Intermediate (Green, Hazel and Light Brown), Dark (Dark Brown and Black)

Blue, Non-Blue

Brown (Light Brown, Dark Brown and Black), Non-Brown

Light (Blue and Green), Non-Light
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5.2 Feature selection quality assessment

Since the main objective of the proposed method is to select inputs on training

data, a quality measurement of retrieved selections is established and detailed in the

present section. As a strategy for evaluating the contribution of the three operators pro-

posed in Grisci, Feltes and Dorn (2018) on the proposed adaptation to categorical data,

feature selections quality and classification performance of FS-NEAT are also assessed on

target data. As an alternative to neuroevolution, mutual information (Section 2.6) is uti-

lized in a univariate feature selection algorithm (explained in Section 2.9) to measure the

contribution of input attributes to the task in hand. This method is mentioned as UFS(MI)

in the following sections.

Given a rank of the available input dimensions, feature subsets are greedily formed

by selecting the top-k attributes. k ∈ [1, 10] was chosen as it is a typical use case specified

by the data provider. Obtained selections serve as input to a cross-validation training,

employing SVM as the classifier, whose aggregated accuracy indicates how excellent is

the analyzed feature selection. For each evaluation replication, the selection with maximal

accuracy is retrieved, preferring selections of minimal size in the case of ties. Since the

classification performance concerning all phenotype classes should be accounted for, the

terms in Equation 2.14 are adapted as follows: the numerator is replaced by the sum of

true positive predictions concerning each target class and the denominator is the number

of evaluated predictions.

On the univariate selection method, the ranking of attributes is an algorithmic by-

product, and retrieved features are already ranked. Since UFS(MI) ranking is not deter-

ministic, its selection capability is evaluated on 50 3-fold CV runs to mitigate its ranking

variance. On methods based on neuroevolution, the attributes rank is computed by mea-

suring the frequency in which available SNPs were selected throughout 30 executions,

which resulted from the 10 3-fold cross-validation runs employed to evaluate the algo-

rithms’ classification performance through evolution alone (discussed at the beginning of

this chapter). After the 30 executions, a single attribute rank is computed per neuroevolu-

tion algorithm, therefore a single CV is sufficient to measure the selection quality.
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5.3 Baseline accuracy

Prior to any classification, a baseline accuracy might be established. It is defined

by Equation 5.3 (where D denotes the whole training data set, C denotes target classes

occurring inD, andDc corresponds to samples inD annotated with class c) and translates

to the percentage of samples annotated with the most representative class in training data.

A classifier that matches the baseline accuracy is trivial to implement, as it constantly

outputs the class represented by most samples, and finding such a class requires a single

iteration on the data set. As in Grisci, Feltes and Dorn (2018), the baseline accuracy is

compared to the classification performances obtained through experimental evaluation.

A(D) = maxc∈C{
|Dc|
|D|
} (5.3)

5.4 Proposed method configuration

As an extension of FS-NEAT, the proposed method requires the specification

of multiple hyper-parameters that heavily influence the optimization performance. As

already discussed in Section 2.1, genetic algorithms provide a lot of room for micro-

optimizations without violating the algorithm specification. References that propose neu-

roevolution of augmenting topologies (STANLEY; MIIKKULAINEN, 2002; WHITE-

SON et al., 2005) present vague descriptions on how key components of the meta-heuristic

should be implemented, especially how individuals are partitioned into species. It is im-

portant to highlight that existing implementations of NEAT employ extensions that are

not prescribed by the original algorithm specification, and are beyond the scope of this

study. Nevertheless, it is important to note that such discrepancies harden the comparison

with previous results.

The following sections detail the hyper-parameters employed on experimental

evaluation, which were selected based on literature revision rather than empirically. The

feed-forward neural networks induced by individuals’ phenotypes, the function employed

to assess individuals’ fitness and the evolution hyper-parameters are also specified.
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5.4.1 Fitness function

An imbalanced version of the cross-entropy (presented in Section 2.12) is utilized

as fitness function and is presented in Equation 5.4, where symbols’ interpretation is the

same as in Equation 2.17. The term 1
|c| weights the error induced per sample inversely

proportional to its class representation within the training data. It was employed on Grisci,

Feltes and Dorn (2018) to diminish the error estimation bias on imbalanced data sets.

CE(p, C) = − 1

|C|
∑
c∈C

1

|c|
∑
x,y∈c

ln(p(x))y + ln(1− p(x))(1− y) (5.4)

CE(p, C) + λ
1

2n|E|
∑
θ∈Θ

θ2 (5.5)

The fitness of an individual whose induced phenotype computes p via weights Θ

concerning a training set partitioned by C is defined by Equation 5.5, where E represents

the set of edges within the individual’s topology and n denotes the total number of samples

in training data. The second term in the expression regularizes networks weights during

optimization, under the motivation that connections and biases with small magnitude bet-

ter generalize the patterns learned in training data. The employment of regularization

turns the optimization into a multi-objective problem, whose objectives are weighted by

the hyper-parameter λ. Since population individuals possibly yield a different number

of edges, the regularization term is scaled by 1
|E| to avoid penalizing large networks that

evolved useful structure.

In contrast to the experiment in Grisci, Feltes and Dorn (2018), this study’s neural

networks output a probability estimate for each possible occurrence of the target attribute,

rather than classifying one class at a time. Such a decision is made upon the soft mean-

ing attributed to label values. Furthermore, the goal of this study is to find a unique set

of biomarkers able to explain the distinction between phenotypes, rather than character-

izing a particular one. The explanation of specific phenotype occurrences is somehow

approached by data views (discussed in Section 5.1.2).
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5.4.2 Activation and aggregation functions

Neural networks neurons require the specification of activation and aggregations

functions in order to compute their output. In this experiment, N3O-D was configured

with activation functions that were highlighted in comparative studies (PAPAVASILEIOU;

JANSEN, 2018). The hyperbolic tangent and the Gaussian function (with 0 mean and

standard deviation of 1) are used by the network hidden and output nodes, respectively,

and are defined by Equations 5.6 and 5.7. As in Grisci, Feltes and Dorn (2018), the mean

was chosen as aggregation function to compensate for nodes with a different number of

incoming edges.

φ(x) = tanh(4.9
x

2
) (5.6)

φ(x) = e−
5x
2 (5.7)

5.4.3 Hyper-parameters

Neuroevolution algorithms based on NEAT requires the specification of several

hyper-parameters that guide the evolution. The configuration chosen for this experiment

is presented in table 5.6, where N denotes the normal distribution. It was based on the

previous successful results of Grisci, Feltes and Dorn (2018), except c3 and the population

size, whose values were obtained from Whiteson et al. (2005). The parametrization of

SVM was obtained via grid search optimization and is specified by Table 5.7.
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Table 5.6: Chosen hyper-parameters for the proposed method configuration
Parameter Value

Population size 100

Number of generations 100

Elitism proportion 10%

Inter-species mating rate 1%

Coefficient 1 (c1) 1.0

Coefficient 2 (c2) 1.0

Coefficient 3 (c3) 3.0

Chance mutation Add Node happens 3%

Chance mutation Add Connection happens 5%

Chance mutation Change Weight happens 4%

Chance mutation Add Input happens 5%

Chance mutation Swap Input happens 5%

Chance disabled gene becomes enabled on crossover 50%

Chance input from least fit parent is inherited 75%

Initial weights distribution N (0, 1)

Initial biases distribution N (0, 1)

Weight mutation power 0.03

Bias mutation power 0.03

Regularization coefficient 0.1



53

Table 5.7: Chosen hyper-parameters for SVM grid search optimization
Parameter Grid Coordinates

C 0.001, 0.01, 0.1, 1, 10

gamma 0.001, 0.01, 0.1, 1, scale, auto 2

kernel RBF

5.5 Results and discussion

The following tables present experimental results concerning input features ranks

retrieved by the evaluated methods, as detailed in Section 5.2. Tables 5.8 and 5.9 present

the size of selections retrieved by the 3 evaluated FS algorithms.

Table 5.8: Evaluated feature selections sizes on skin color data views

Data View UFS(MI) N3O-D FS-NEAT

White, Pale, Beige,

Light Brown, Medium Brown, Dark Brown
5.92 ± 1.84 10 ± 0 6.33 ± 2.86

Light, Intermediate, Dark 5.09 ± 2.47 6 ± 2.82 7.33 ± 3.77

Light, Dark 6.27 ± 1.97 8.66 ± 0.94 6.66 ± 2.62

Table 5.9: Evaluated feature selections sizes on eye color data views
Data View UFS(MI) N3O-D FS-NEAT

Blue, Green, Hazel,

Light Brown, Dark Brown, Black
7.35 ± 2.79 7.66 ± 3.29 6.66 ± 2.05

Blue, Intermediate, Dark 7.84 ± 1.83 6.66 ± 2.86 10 ± 0

Blue, Non-Blue 1.98 ± 2.74 6 ± 2.16 9 ± 1.41

Brown, Non-Brown 1.7 ± 1.98 2 ± 0 8 ± 0.81

Light, Non-Light 1 ± 0 4.33 ± 3.29 9 ± 1.41

Tables 5.10, 5.11, 5.12 and 5.13 make explicit the SNPs selected by the evaluated

feature selection methods, as well as their occurrence frequency throughout the multiple
2scale and auto infer gamma concerning input features, respectively attributing var(X) ∗M−1 and

M−1 (where var denotes variance, the statistical measure) (<https://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVC.html>).

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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execution runs. SNPs that were related to the target phenotypes on previous studies are

marked with ∗. For visualization purposes, SNPs selected with a frequency lower than 5%

are not presented.

Table 5.10: SNPs selected by UFS(MI) on skin color data

Data View Selection

White

Pale

Beige

Light Brown

Medium Brown

Dark Brown

rs1426654∗(93.60%), rs16891982∗(80.67%), rs1448484∗(64.00%),

rs11230664∗(63.87%), rs28777∗(39.87%), rs183671∗(32.20%),

rs1129038∗(28.80%), rs12913832∗(28.53%), rs6497271∗(18.93%),

rs16950987∗(16.53%), rs10777129∗(13.33%), rs2240203∗(11.00%),

rs7948623 (9.20%), rs8039195∗(7.13%), rs1375164∗(6.07%),

rs642742∗(5.73%), rs6119471∗(5.20%)

Light

Intermediate

Dark

rs1426654∗(97.47%), rs16891982∗(82.20%), rs11230664∗(70.93%),

rs1448484∗(58.53%), rs28777∗(38.33%), rs183671∗(30.27%),

rs1129038∗(28.07%), rs12913832∗(26.20%), rs6497271∗(22.87%),

rs16950987∗(15.40%), rs7948623(13.53%), rs1375164∗(11.40%),

rs2240203∗(8.87%), rs10777129∗(7.20%), rs8039195∗(5.60%),

rs6119471∗(5.53%), rs895829∗(5.13%)

Light

Dark

rs1426654∗(96.00%), rs11230664∗(84.53%), rs1448484∗(74.27%),

rs16891982∗(74.20%), rs28777∗(45.40%), rs183671∗(38.47%),

rs6497271∗(37.47%), rs10777129∗(30.93%), rs7948623(10.07%),

rs16950987∗(10.07%), rs8039195∗(8.33%), rs6119471∗(7.33%),

rs642742∗(7.13%), rs2240203∗(6.20%), rs1375164∗(5.13%)
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Table 5.11: SNPs selected by UFS(MI) on eye color data

Data View Selection

Blue

Green

Hazel

Light Brown

Dark Brown

Black

rs12913832∗(95.00%), rs1129038∗(95.00%), rs7494942∗(50.47%),

rs3935591∗(48.80%), rs916977∗(45.80%), rs1426654∗(37.87%),

rs7170852∗(31.80%), rs895829∗(25.20%), rs7170989∗(24.53%),

rs16891982∗(11.80%), rs1448484∗(10.07%), rs683∗(10.07%),

rs16950987∗(9.20%), rs4778138∗(9.13%), rs11636232∗(9.13%),

rs1375164∗(6.07%), rs2240203∗(5.80%)

Blue

Intermediate

Dark

rs1129038∗(95.13%), rs12913832∗(94.87%), rs3935591∗(55.80%),

rs7494942∗(50.40%), rs916977∗(45.33%), rs1426654∗(38.27%),

rs7170852∗(31.53%), rs7170989∗(24.67%), rs895829∗(23.13%),

rs683∗(14.27%), rs4778138∗(11.67%), rs11636232∗(11.20%),

rs4778241∗(8.53%), rs16891982∗(6.27%), rs16950987∗(5.47%),

rs1375164∗(5.27%), rs2240203∗(5.13%)

Blue

Non-Blue

rs1129038∗(95.00%), rs12913832∗(95.00%), rs3935591∗(61.47%),

rs7494942∗(51.87%), rs916977∗(44.53%), rs7170852∗(35.20%),

rs7170989∗(25.80%), rs4778241∗(24.60%), rs895829∗(23.60%),

rs683∗(17.27%), rs2238289∗(17.00%), rs1426654∗(13.40%),

rs4778138∗(8.53%), rs16950987∗(6.40%), rs1375164∗(5.20%)

Brown

Non-Brown

rs1129038∗(95.33%), rs12913832∗(94.67%), rs7494942∗(51.27%),

rs916977∗(46.67%), rs3935591∗(45.40%), rs7170852∗(28.73%),

rs11636232∗(26.87%), rs895829∗(26.20%), rs7170989∗(25.53%),

rs1426654∗(25.13%), rs4778138∗(21.47%), rs683∗(11.53%),

rs16891982∗(10.87%), rs1375164∗(7.87%), rs4778241∗(5.40%),

rs16950987∗(5.13%)

Light

Non-Light

rs1129038∗(95.80%), rs12913832∗(94.20%), rs3935591∗(57.13%),

rs7494942∗(52.00%), rs916977∗(46.40%), rs7170852∗(36.13%),

rs7170989∗(25.67%), rs895829∗(24.73%), rs11636232∗(23.27%),

rs4778241∗(20.13%), rs683∗(17.07%), rs4778138∗(16.33%),

rs1426654∗(12.73%), rs16950987∗(7.13%)
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Table 5.12: SNPs selected by N3O-D on skin color data
Data View Selection

White

Pale

Beige

Light Brown

Medium Brown

Dark Brown

rs2835630∗(23.33%), rs2402130∗(20.00%), rs1724630∗(13.33%), rs2378249(13.33%),

rs1805005∗(13.33%), rs3768056∗(13.33%), rs10777129∗(10.00%), rs1042602∗(10.00%),

rs2733832∗(10.00%), rs6497271∗(10.00%), rs7170852∗(10.00%), rs1805009∗(10.00%),

rs1393350∗(10.00%), rs16891982∗(10.00%), rs12896399∗(10.00%), rs4778137∗(10.00%),

rs4778138∗(10.00%), rs183671∗(10.00%), rs1325127∗(10.00%), rs1800407∗(10.00%),

rs8039195∗(10.00%), rs11230664∗(10.00%), rs2424984∗(6.67%), rs1597196∗(6.67%),

rs1426654∗(6.67%), rs2594935∗(6.67%), rs6119471∗(6.67%), rs12913832∗(6.67%),

rs2070959∗(6.67%), rs10424065∗(6.67%), rs642742∗(6.67%), rs1800404∗(6.67%),

rs1805006∗(6.67%), rs1129038∗(6.67%), rs1900758∗(6.67%), rs1375164∗(6.67%),

rs9894429 (6.67%), rs10756819∗(6.67%), rs895828∗(6.67%), rs16950987∗(6.67%),

rs1110400∗(6.67%), rs7948623(6.67%)

Light

Intermediate

Dark

rs183671∗(16.67%), rs8039195∗(13.33%), rs885479∗(13.33%), rs1375164∗(13.33%),

rs12896399∗(13.33%), rs642742∗(13.33%), rs683∗(13.33%), rs2402130∗(13.33%),

rs7948623 (10.00%), rs3768056∗(10.00%), rs12913832∗(10.00%), rs3794606∗(10.00%),

rs3935591∗(10.00%), rs4932620∗(10.00%), rs11636232∗(10.00%), rs2835630∗(10.00%),

rs11230664∗(10.00%), rs4778241∗(10.00%), rs1448484∗(10.00%), rs6497271∗(10.00%),

rs13289∗(10.00%), rs9894429(6.67%), rs6119471∗(6.67%), rs2378249(6.67%),

rs1724630∗(6.67%), rs7170852∗(6.67%), rs1325127∗(6.67%), rs10424065∗(6.67%),

rs2240203∗(6.67%), rs1129038∗(6.67%), rs916977∗(6.67%), rs4959270∗(6.67%),

rs1805006∗(6.67%), rs1805009∗(6.67%), rs1426654∗(6.67%), rs1037208∗(6.67%),

rs4778137∗(6.67%), rs3212345∗(6.67%)

Light

Dark

rs1042602∗(23.33%), rs11636232∗(20.00%), rs10777129∗(16.67%), rs7170989∗(16.67%),

rs1800404∗(13.33%), rs12913832∗(13.33%), rs16891982∗(13.33%), rs2424984∗(13.33%),

rs1129038∗(13.33%), rs2238289∗(13.33%), rs1800407∗(10.00%), rs2378249(10.00%),

rs1375164∗(10.00%), rs2733832∗(10.00%), rs4778241∗(10.00%), rs6497271∗(10.00%),

rs183671∗(10.00%), rs1110400∗(10.00%), rs683∗(10.00%), rs6119471∗(10.00%),

rs12896399∗(6.67%), rs1325127∗(6.67%), rs1900758∗(6.67%), rs9894429(6.67%),

rs1393350∗(6.67%), rs1448484∗(6.67%), rs3935591∗(6.67%), rs2402130∗(6.67%),

rs8039195∗(6.67%), rs3794606∗(6.67%), rs13289∗(6.67%), rs4778138∗(6.67%),

rs1805005∗(6.67%), rs2240203∗(6.67%), rs895829∗(6.67%)



57

Table 5.13: SNPs selected by N3O-D on eye color data
Data View Selection

Blue

Green

Hazel

Light Brown

Dark Brown

Black

rs1448484∗(20.00%), rs7170852∗(20.00%), rs3794606∗(16.67%), rs13289∗(16.67%), rs2424984∗(16.67%), rs4778137∗(16.67%),

rs4778232∗(16.67%), rs1900758∗(13.33%), rs2036213∗(13.33%), rs11230664∗(10.00%), rs2594935∗(10.00%), rs183671∗(10.00%),

rs13289810 (10.00%), rs2402130∗(10.00%), rs11636232∗(10.00%), rs1800404∗(10.00%), rs1805006∗(10.00%), rs3212345∗(10.00%),

rs2733832∗(10.00%), rs1042602∗(10.00%), rs10756819∗(10.00%), rs1375164∗(10.00%), rs1724630∗(10.00%), rs642742∗(10.00%),

rs885479∗(10.00%), rs8039195∗(10.00%), rs4778138∗(10.00%), rs1800407∗(6.67%), rs1393350∗(6.67%), rs7494942∗(6.67%),

rs3768056∗(6.67%), rs7170989∗(6.67%), rs2070959∗(6.67%), rs4932620∗(6.67%), rs895829∗(6.67%), rs6119471∗(6.67%),

rs2378249 (6.67%), rs895828∗(6.67%), rs12896399∗(6.67%), rs1426654∗(6.67%), rs4959270∗(6.67%), rs1805005∗(6.67%),

rs916977∗(6.67%), rs1805009∗(6.67%), rs3935591∗(6.67%), rs1037208∗(6.67%), rs1129038∗(6.67%)

Blue

Intermediate

Dark

rs1129038∗(16.67%), rs12913832∗(13.33%), rs4778138∗(13.33%), rs7170852∗(10.00%), rs1800407∗(10.00%), rs3794606∗(10.00%),

rs1037208∗(10.00%), rs8039195∗(10.00%), rs7948623(10.00%), rs4778241∗(10.00%), rs1448484∗(10.00%), rs1597196∗(10.00%),

rs13289∗(10.00%), rs13289810(10.00%), rs1393350∗(10.00%), rs4932620∗(6.67%), rs9894429(6.67%), rs1800404∗(6.67%),

rs1805006∗(6.67%), rs1805005∗(6.67%), rs885479∗(6.67%), rs2070959∗(6.67%), rs16950987∗(6.67%), rs2733832∗(6.67%),

rs12203592∗(6.67%), rs4778137∗(6.67%), rs10756819∗(6.67%), rs11636232∗(6.67%), rs3212345∗(6.67%), rs10777129∗(6.67%)

Blue

Non-Blue

rs7494942∗(23.33%), rs3794606∗(16.67%), rs1129038∗(16.67%), rs3935591∗(13.33%), rs11230664∗(13.33%), rs8039195∗(13.33%),

rs13289∗(13.33%), rs10424065∗(13.33%), rs2424984∗(13.33%), rs16891982∗(13.33%), rs1037208∗(10.00%), rs2733832∗(10.00%),

rs1805006∗(10.00%), rs4959270∗(10.00%), rs6497271∗(10.00%), rs1325127∗(10.00%), rs4778232∗(10.00%), rs1800407∗(6.67%),

rs11636232∗(6.67%), rs3212345∗(6.67%), rs6119471∗(6.67%), rs1800404∗(6.67%), rs9894429(6.67%), rs2378249(6.67%),

rs1375164∗(6.67%), rs13289810(6.67%), rs1597196∗(6.67%), rs2835630∗(6.67%), rs4778137∗(6.67%), rs1393350∗(6.67%),

rs1900758∗(6.67%), rs4932620∗(6.67%), rs16950987∗(6.67%), rs7170852∗(6.67%), rs7948623(6.67%), rs1110400∗(6.67%),

rs2238289∗(6.67%)

Brown

Non-Brown

rs7494942∗(23.33%), rs1129038∗(20.00%), rs28777∗(16.67%), rs3768056∗(13.33%), rs2070959∗(10.00%), rs11230664∗(10.00%),

rs895829∗(10.00%), rs4778137∗(10.00%), rs1448484∗(10.00%), rs2402130∗(10.00%), rs13289∗(10.00%), rs1800404∗(10.00%),

rs2378249 (6.67%), rs4778241∗(6.67%), rs916977∗(6.67%), rs2835630∗(6.67%), rs2240203∗(6.67%), rs4778138∗(6.67%),

rs1805006∗(6.67%), rs1805009∗(6.67%), rs1037208∗(6.67%), rs6497271∗(6.67%), rs2424984∗(6.67%), rs6119471∗(6.67%),

rs1597196∗(6.67%), rs1375164∗(6.67%), rs885479∗(6.67%), rs3794606∗(6.67%), rs7170852∗(6.67%)

Light

Non-Light

rs7494942∗(16.67%), rs12913832∗(16.67%), rs1129038∗(16.67%), rs6497271∗(13.33%), rs13289∗(13.33%), rs16950987∗(13.33%),

rs1900758∗(10.00%), rs2733832∗(10.00%), rs885479∗(10.00%), rs1724630∗(10.00%), rs7170852∗(10.00%), rs11636232∗(10.00%),

rs2424984∗(10.00%), rs28777∗(6.67%), rs12896399∗(6.67%), rs4959270∗(6.67%), rs9894429(6.67%), rs3935591∗(6.67%),

rs1426654∗(6.67%), rs2238289∗(6.67%), rs2036213∗(6.67%), rs4778138∗(6.67%), rs10777129∗(6.67%), rs6510760(6.67%),

rs3794606∗(6.67%), rs3212345∗(6.67%), rs10424065∗(6.67%), rs2835630∗(6.67%)

Tables 5.14 and 5.15 present their respective measured qualities, in which bold

entries indicate which algorithm retrieved the best feature selection and italic entries mark

data views in which FS-NEAT outperformed N3O-D.

Table 5.14: Classification performance of selected features on skin color data views

Data View Baseline UFS(MI) N3O-D FS-NEAT

White, Pale, Beige,

Light Brown, Medium Brown, Dark Brown
31.73 44.96 ± 1.53 38.58 ± 0.83 42.46 ± 0.7

Light, Intermediate, Dark 57.52 79.07 ± 2.68 73.29 ± 1.36 69.63 ± 1.13

Light, Dark 71.9 93.98 ± 1.66 89.49 ± 0.87 89.26 ± 0.32
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Table 5.15: Classification performance of selected features on eye color data views

Data View Baseline UFS(MI) N3O-D FS-NEAT

Blue, Green, Hazel,

Light Brown, Dark Brown, Black
23.91 61.92 ± 2.84 56.25 ± 0.51 56.95 ± 0.83

Blue, Intermediate, Dark 51.92 81.20 ± 2.64 77.93 ± 3.47 78.14 ± 1.8

Blue, Non-Blue 76.09 93.49 ± 1.68 93.86 ± 1.41 78.81 ± 0.92

Brown, Non-Brown 61.29 89.19 ± 1.56 89.06 ± 1.46 83.11 ± 3.34

Light, Non-Light 67.89 94.76 ± 0.8 95.21 ± 0.94 84.01 ± 3.61

Tables 5.16 and 5.17 present the confusion matrixes yielded by the evaluation of

UFS(MI)’s feature selections, respectively for the original data views of skin and eye

color. Tables 5.18 and 5.19 present the same information for feature selections retrieved

by the proposed method. Entries represent the percentage of classifications concerning

the number of evaluated predictions, rather than the absolute number classifications. Only

predictions filtered to measure the classification performance of each algorithm were ac-

counted.

Table 5.16: Confusion matrix for UFS(MI) skin color predictions

9.55White

White

14.68

Pale

0.62

Beige

0.56

Light

Brown

0.36

Medium

Brown

0

Dark

Brown

10.37Pale 18.68 1.72 0.74 0.2 0

1.21Beige 9.02 1.95 1.31 0.85 0.01

0.05
Light

Brown
2.62 0.9 2.79 3.01 0.19

0.21
Medium

Brown
0.73 0.26 2.68 7.29 1.14

0
Dark

Brown
0.1 0.03 0.36 3.89 1.85
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Table 5.17: Confusion matrix for UFS(MI) eye color predictions

22.49Blue

Blue

0.08

Green

0.05

Hazel

0.15

Light

Brown

1.13

Dark

Brown

0

Black

4.78Green 0.03 0.08 0.12 3.16 0

0.46Hazel 0.09 0.1 0.3 5.6 0

0.07
Light

Brown
0 0.8 0.34 8.75 0.06

0.01
Dark

Brown
0.09 0.2 0.52 33.51 2.76

0Black 0.01 0 0.05 11.22 3.51

Table 5.18: Confusion matrix for N3O-D skin color predictions

0.22White

White

25.57

Pale

0

Beige

0

Light

Brown

0

Medium

Brown

0

Dark

Brown

0Pale 31.05 0 0 0.68 0

0Beige 13.92 0 0 0.45 0

0.68
Light

Brown
6.16 0 0 2.73 0

0.68
Medium

Brown
4.33 0 0 7.3 0

0.22
Dark

Brown
0.91 0 0 5.02 0
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Table 5.19: Confusion matrix for N3O-D(MI) eye color predictions

22.09Blue

Blue

0

Green

0

Hazel

0

Light

Brown

1.82

Dark

Brown

0

Black

5.23Green 0 0 0 2.96 0

1.82Hazel 0 0 0 4.78 0

3.18
Light

Brown
0 0 0 6.15 0

5.46
Dark

Brown
0 0 0 28.7 2.96

0.22Black 0 0 0 9.11 5.46

Furthermore, Tables 5.20 and 5.21 describe the capability of N3O-D and FS-

NEAT to solve the given classification task on its own, while Tables 5.22 and 5.23 depict

the average input size of the best topology found in each neuroevolution run.

Table 5.20: Classification performance of champion topologies on skin color data
Data View Baseline N3O-D FS-NEAT

White, Pale, Beige,

Light Brown, Medium Brown, Dark Brown 31.73 18.08 ± 9.31 18.24 ± 8.7

Light, Intermediate, Dark 57.52 32.53 ± 16.91 14.02 ± 3.53

Light, Dark 71.9 46.69 ± 22.6 22.06 ± 3.86



61

Table 5.21: Classification performance of champion topologies on eye color data
Data View Baseline N3O-D FS-NEAT

Blue, Green, Hazel,

Light Brown, Dark Brown, Black 23.91 17.85 ± 10.6 18.12 ± 9.8

Blue, Intermediate, Dark 51.92 39.43 ± 13.91 32.79 ± 11.58

Blue, Non-Blue 76.09 52.29 ± 23.78 56.77 ± 23.03

Brown, Non-Brown 61.29 55.02 ± 18.06 51.73 ± 12.3

Light, Non-Light 67.89 48.06 ± 15.85 55.33 ± 19.56

Table 5.22: Input size of evolved topologies on skin color data
Data View N3O-D FS-NEAT

White, Pale, Beige,

Light Brown, Medium Brown, Dark Brown 4.4 ± 2.33 4.26 ± 2.51

Light, Intermediate, Dark 4.23 ± 2.1 3.53 ± 1.74

Light, Dark 4.23 ± 2.41 3.86 ± 2.56

Table 5.23: Input size of evolved topologies on eye color data views
Data View N3O-D FS-NEAT

Blue, Green, Hazel,

Light Brown, Dark Brown, Black 5.16 ± 2.81 5.16 ± 3.11

Blue, Intermediate, Dark 3.53 ± 2.3 3.93 ± 2.29

Blue, Non-Blue 4.03 ± 2.16 3.6 ± 2.53

Brown, Non-Brown 3.5 ± 1.97 2.96 ± 1.74

Light, Non-Light 3.53 ± 2.29 3.83 ± 2.46

To perform a functional analysis of retrieved selections, selected SNPs were queried

on the public databases SNPedia 3, the United States National Library of Medicine 4

(USNBI) and GeneCards 5. SNPs that were somehow associated with skin or color phe-

notypes (either because they reside nearby genes that are known for influencing the phe-

notypes or were previously related to skin or eye color pigmentation) are listed in Table
3<https://snpedia.com/>
4<https://www.ncbi.nlm.nih.gov/>
5<https://www.genecards.org/>

https://snpedia.com/
https://www.ncbi.nlm.nih.gov/
https://www.genecards.org/
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5.24. SNPs whose association with the analyzed phenotypes is unknown are reported

in Table 5.25. Reports present the genetic location of each selected SNP if it is located

nearby a known gene.

As Tables 5.20 and 5.21 showed, N3O-D and FS-NEAT evolved individuals did

not present classification performance superior to the baseline, as well as a high variance

on cross-validation results, which raises the suspicion that the optimization implicitly em-

ployed by evolution has not converged or is not properly configured. The comparison in

Tables 5.14 and 5.15 demonstrated that the proposed method’s selections, in general, did

not improve on UFS(MI), except for the two least balanced eye data views, Blue vs Non-

Blue and Light vs Non-Light. The proposed method retrieved inputs that consistently

outperformed those of its base algorithm: except for the original data view for skin color,

N3O-D only failed to improve on FS-NEAT by an accuracy difference within the mea-

sured standard deviation. In tables 5.16, 5.17, 5.18 and 5.19 it is observable that induced

classifiers often err predictions by outputting labels of over-represented classes (Blue and

Dark Brown for eye, and Pale for skin data). Such a trend is stronger on N3O-D’s predic-

tions.

As in Whiteson et al. (2005), FS-NEAT and N3O-D evolved topologies with an

increasing number of selected features as evolution progressed, but at a much slower and

inconsistent pace. In comparison to Grisci, Feltes and Dorn (2018), NE algorithms eval-

uated in this study evolved topologies with less connected inputs. It is important to high-

light that N3O was proposed and evaluated on gene expression data that was subject to an

intensive curation process (FELTES et al., 2019), while data applied to the experiments on

this study were treated with imputation only, as described in Section 5.1.1. Furthermore,

gene expression data is represented by real-valued numbers which can directly serve as

input to neural networks, in contrast to SNPs data which, in this study, was transformed

via one-hot encoding

5.6 Chapter conclusion

This chapter presented the experimental evaluation employed to assess N3O-D’s

feature selection capability and its ability to evolve networks that solve the phenotype

prediction problem. The proposed method was compared to FS-NEAT, its base algo-

rithm, as well as UFS(MI), a feature selection framework in the state of art. Although

topologies found through neuroevolution could not surpass the baseline accuracy, the pro-
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Table 5.24: Report of relevant selected SNPs. na entries correspond to SNPs whose
location was not related to a known gene. All listed SNPs were previously associated to
eye or skin color phenotypes.

SNP Gene

rs1037208 OCA2
rs10424065 MFSD12
rs1042602 TYR
rs10756819 BNC2
rs10777129 KIKTLG
rs1110400 MC1R
rs11230664 ASIP
rs1129038 HERC2
rs11636232 HERC2
rs12203592 IRF4
rs12896399 na
rs12913832 HERC2
rs1325127 OCA2
rs13289 SLC45A2
rs1375164 OCA2
rs1393350 TYR
rs1426654 SLC24A5
rs1448484 OCA2
rs1597196 OCA2
rs16891982 SLC45A2
rs16950987 HERC2
rs1724630 MYO5A
rs1800404 OCA2
rs1800407 HERC2
rs1805005 MC1R
rs1805006 MC1R
rs1805009 MC1R
rs183671 SLC45A2
rs1900758 OCA2
rs2036213 OCA2
rs2070959 OCA2
rs2238289 HERC2
rs2240203 HERC2
rs2402130 SLC24A4
rs2424984 OCA2
rs2594935 ASIP
rs2733832 TYRP1
rs2835630 TTC3
rs28777 SLC45A2
rs3212345 na
rs3768056 LYST
rs3794606 OCA2
rs3935591 HERC2
rs4778137 OCA2
rs4778138 OCA2
rs4778232 OCA2
rs4778241 OCA2
rs4932620 HERC2
rs4959270 na
rs6119471 UGT1A6-10
rs642742 na
rs6497271 HERC2
rs683 TYRP1
rs7170852 HERC2
rs7170989 OCA2
rs7494942 HERC2
rs8039195 DDB1
rs885479 MC1R
rs895828 OCA2
rs895829 HERC2
rs916977 HERC2
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Table 5.25: Report of novel selected SNPs. na entries correspond to SNPs whose loca-
tion was not related to a known gene. All listed SNPs are not associated to eye or skin
color phenotypes, given the employed functional enrichment.

SNP Gene

rs13289810 na
rs2378249 PIGU
rs6510760 na
rs7948623 TMEM138
rs9894429 NPLOC4

posed method’s retrieved selection yielded the best accuracy performance on some of the

employed data views. Also, N3O-D presented a consistent improvement on FS-NEAT,

matching previous results in which mutual information was pointed out as a useful guide

to feature selection. The following chapter concludes the study, relating obtained results

with the work’s objectives and pointing directions for future work.
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6 CONCLUSION

A novel feature selection method based on neuroevolution and adapted to cate-

gorical data was proposed and evaluated on the genotype-phenotype prediction problem,

posed by a data set with SNPs biomarkers labeled with eye and skin color. The proposed

method, named N3O-D, utilized mutual information to adapt a recent neuroevolution fea-

ture selection algorithm that was successfully applied to microarray data sets. N3O-D in-

ference and selective capability were compared to a state-of-art framework that also used

mutual information to guide feature selection. Given current experimental settings, the

proposed method presented poor classification performance on its own, being unable to

surpass baseline accuracy. Nevertheless, some of its selected attributes improved SVM’s

accuracy in comparison to univariate feature selection, in particular on imbalanced train-

ing sets labeled with eye color. The poor classification performance presented warrants

further investigation on N3O-D’s parameters configuration, especially on the data sets in

which NEAT, FS-NEAT and N3O showed promising results.

Evaluated algorithms based on neuroevolution were developed from scratch on the

Python 1 programming language, employing TensorFlow 2, scikit-learn 3 and NetworkX 4

as main dependencies. This venture was motivated by the lack of generalization provided

by existing neuroevolution libraries. For instance, NEAT-Python 5 does not provide an

implementation for FS-NEAT. Although the library is well documented and provides a

configuration file interface, obtaining such an implementation requires the modification

(rather than extension) of the source code, which is not a trivial task. The code developed

in this study is to be improved and generalized to provide free, well-written and extensible

computational tools for future neuroevolution research, through the release of an open-

source library focused on neuroevolutive algorithms.

Evolutionary algorithms internally produce statistics concerning evolution runs,

which provide useful insight on how the algorithm can be improved by tuning its param-

eters, besides better detailing the evolution process (GRISCI; FELTES; DORN, 2018).

Examples are the progress of population’s mean and incumbents’ fitness; species rise,

progress and extinction; graphical representations of evolved networks; frequency in

which inputs are selected throughout evolution. In this study, such statistics were not

1<https://python.org>
2<https://tensorflow.org>
3<https://scikit-learn.org/>
4<https://networkx.github.io/>
5<https://neat-python.readthedocs.io/>

https://python.org
https://tensorflow.org
https://scikit-learn.org/
https://networkx.github.io/
https://neat-python.readthedocs.io/
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collected but are considered fundamental for the interpretation and improvement of neu-

roevolution algorithms. Another line of future work is the employment of quantification

on continuous data as a noise reduction strategy (DING; PENG, 2003). Such a transfor-

mation turns a numerical data set into a discrete one, which motivates the application of

N3O-D as a feature selector.
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