
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JOÃO GUILHERME FACCIN

Automated Management of
Remedial Behaviour

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Ingrid Oliveira de Nunes

Porto Alegre
August 2020

CIP — CATALOGING-IN-PUBLICATION

Faccin, João Guilherme

Automated Management of
Remedial Behaviour / João Guilherme Faccin. – Porto Alegre:
PPGC da UFRGS, 2020.

134 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2020. Advisor: Ingrid Oliveira de Nunes.

1. Remediation. 2. Multiagent systems. 3. Self-adaptation.
4. Resilience. I. Oliveira de Nunes, Ingrid. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Profa. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“If I have seen farther than others,

it is because I stood on the shoulders of giants.”

— SIR ISAAC NEWTON

ACKNOWLEDGEMENTS

There are many people that must be acknowledge for this work. First, I would like

to thank my supervisor, Prof. Ingrid Nunes, for her guidance through the development

of this thesis. Having you as a reference certainly made me a better researcher. Thanks

to the members of the examining committee, Prof. Genaina Rodrigues, Prof. Marcelo

Pimenta, and Prof. Valter Camargo for their valuable comments. I would also like to

thank my friends and colleagues from the Federal University of Rio Grande do Sul, for

their support and friendship. A special thank you to Nicole, Frederico, Vanius, Jhonny

and Fernando.

During this doctorate I had the privilege to spend some time at the Software Re-

search and Technology lab from Concordia University, Montreal. I would like to thank

Prof. Wahab Hamou-Lhadj and my colleagues from the lab for having me there. To my

friends at Willowdale, thanks for making me feel like home. I will never forget the time I

spent there with you.

My sincere gratitude to my family and friends, who always believed in me and

supported me in my choices. Thanks to my parents, Cláudia and João, for all the love,

and for teaching me to always pursue my dreams. Hope I made you proud. To my brother

and sister, Carlos and Ana, thanks for always being with me when I needed. By following

my dreams I try to show you that we are capable of anything. To Nalim, my girlfriend,

thanks for the comprehension and affection, and for being the lighthouse that guided me

when I sailed rough seas. I love you to the Moon and back. To my aunt, Luciana, thanks

for your kindness. You are the one who made this possible.

To those whose name I did not mention, but helped me developing this work in

any way, thank you all. Finally, I must acknowledge that this research would not have

been possible without the financial assistance of CNPq and CAPES and the infrastructure

provided by the Federal University of Rio Grande do Sul.

ABSTRACT

Many software systems are nowadays built as sets of autonomous components, named

agents, that interact with each other and are situated in an environment. Because these

multiagent systems (MAS) perform a range of complex and critical tasks, they are ex-

pected to resist and recover from challenging situations that may compromise their opera-

tion and the quality of their services. D2R2 + DR is an existing strategy to provide software

systems with this resilient behaviour. It specifies the execution of a set of operations, such

as the detection of problems, their remediation, the diagnosis of their causes, and the re-

covery of the system to a normal operating state. Due to its abstract nature, instantiations

of this strategy cannot be reused accross different application domains. Even though there

are approaches that provide concrete solutions for some of these operations, they present

limitations such as a lack of autonomy and adaptability. In this thesis, we propose a

framework that aims at promoting resilience to MAS by providing them with the ability

to autonomously manage the remediation, diagnosis and recovery operations in the face of

adverse events. This framework detaches the resilient behaviour from domain-dependent

code, thus promoting software reuse across different applications, and comprises three

main techniques. The first automates the management of remedial actions as well as the

diagnosis and solution of problem causes. The second is focused on the diagnosis of prob-

lem causes in MAS scenarios. It specifies an interaction protocol and roles that describe

how agents can coordinate their actions and share information in order to keep operating

with the expected quality. Finally, the third formalises an approach that allows agents to

revoke the effects of executed actions without the need for an explicit declaration of which

these actions are and how they should be reverted. These techniques are implemented as

an extension of a platform for agent development, which serves as basis for conducting

empirical studies with the aim of assessing different aspects of the proposed framework.

The results show that our reusable framework and its underlying techniques are able to

provide agents and multiagent systems with the abilities required to carry out the reme-

diate, diagnose and recover operations specified by the D2R2 + DR strategy in different

domains. The autonomy and adaptability provided by our proposal are also demonstrated.

Keywords: Remediation. multiagent systems. self-adaptation. resilience.

Gerenciamento Automatizado de Comportamento Remediativo

RESUMO

Atualmente, diversos sistemas de software são construídos como conjuntos de agentes

que interagem entre si e estão situados em um ambiente. Por realizarem uma gama de

tarefas críticas e complexas, é esperado que estes sistemas sejam capazes de resistir e

se recuperar de situações que possam comprometer sua operação e a qualidade dos seus

serviços. D2R2 + DR é uma estratégia existente para fornecer esse comportamento reme-

diativo à sistemas de software. Ela especifica a execução de operações como a detecção

de problemas, sua remediação, o diagnóstico de suas causas, e a recuperação do sistema a

um estado normal de operação. Dada a sua natureza abstrata, instanciações desta estraté-

gia não podem ser reutilizadas em diferentes domínios de aplicação. Mesmo que existam

abordagens que forneçam soluções concretas para algumas dessas operações, elas apre-

sentam limitações como falta de autonomia e adaptabilidade. Nesta tese, propomos um

framework que visa fornecer resiliência a sistemas multiagentes por meio do gerencia-

mento automatizado das operações de remediação, diagnóstico e recuperação em face de

eventos adversos. Esse framework dissocia o comportamento resiliente do código depen-

dente de domínio, promovendo assim o reuso de software entre aplicações distintas, e

compreende três técnicas. A primeira automatiza o gerenciamento de ações remediativas

e o diagnóstico e solução das causas de problemas. A segunda especifica um protocolo de

interação e papéis que descrevem como agentes podem coordenar suas ações e compar-

tilhar informações para diagnosticar causas de problemas. Por fim, a terceira formaliza

uma abordagem que permite que agentes desfaçam os efeitos de ações executadas sem a

necessidade de uma declaração explícita de quais são essas ações e como elas devem ser

revertidas. Essas técnicas são implementadas como uma extensão de uma plataforma de

desenvolvimento de agentes, a qual serve como base para a condução de estudos empíri-

cos com o objetivo de avaliar diferentes aspectos do framework proposto. Os resultados

mostram que o framework reutilizável e as técnicas subjacentes são capazes de fornecer

a agentes e sistemas multiagentes as habilidades necessárias para realizar as operações

especificadas pela estratégia D2R2 + DR em diferentes domínios. A autonomia e adapta-

bilidade fornecidas pela nossa proposta também são demonstradas.

Palavras-chave: Remediação, sistemas multiagentes, autoadaptação, resiliência.

LIST OF ABBREVIATIONS AND ACRONYMS

ACID Atomicity, Consistency, Isolation, Durability

BDI Belief-Desire-Intention

CO Carbon Monoxide

DDoS Distributed Denial of Service

FHC Failure-Handling Component

LOC Lines of Code

MAS Multiagent System

QoS Quality of Service

StAC Structured Activity Compensation

LIST OF FIGURES

Figure 1.1 Proposed Framework and Underlying Techniques.24

Figure 2.1 The D2R2 + DR Strategy..27
Figure 2.2 The BDI architecture. ..30

Figure 4.1 Cause-effect Knowledge Model. ...46
Figure 4.2 The Extended BDI Architecture. ...48
Figure 4.3 Option Generation Activity Diagram. ...54
Figure 4.4 Multiagent scenario to combat DDoS attacks. ..58
Figure 4.5 DDoS Cause-Effect Model. ...59

Figure 5.1 A MAS in which components interact with each other by consuming
and providing services. ...65

Figure 5.2 An overview of system behaviour implementing our proposed solution.67
Figure 5.3 An interaction protocol between components of a system.69
Figure 5.4 The estimated probability distribution obtained. ...78
Figure 5.5 A service-oriented system comprising 37 autonomous agents and an

external client c. ..79
Figure 5.6 Simulation results (time and costs by episode). ..81

Figure 6.1 Overview of the Reversion Framework. ..89
Figure 6.2 Multiagent system architecture..104
Figure 6.3 Level of CO over Time. ...106

LIST OF TABLES

Table 3.1 Comparison of Related Work. ...39

Table 4.1 Required Resource of Agent A’s Plans. ..49
Table 4.2 Status Set Descriptions..52
Table 4.3 Description of Auxiliary Functions...55
Table 4.4 Cause-Effect Problem End States..56
Table 4.5 Evaluation Results. ..60

Table 5.1 Description of Auxiliary Functions...73
Table 5.2 Average Execution Time and Accumulated Cost..83

Table 6.1 Device Controlling Agents and their Plans. ..104
Table 6.2 Manager Agent State Evolution..105
Table 6.3 Manager Agent: Remediation Goals and Plans..106

CONTENTS

1 INTRODUCTION...19
1.1 Problem Statement and Limitations of Existing Work21
1.2 Proposed Solution and Contributions Overview..22
1.3 Outline..25
2 BACKGROUND..27
2.1 The D2R2 + DR Strategy...27
2.2 The Beflief-Desire-Intention Architecture ..29
2.3 Final Remarks ...30
3 RELATED WORK ...33
3.1 Management of Remedial Actions...33
3.2 Root Cause Diagnosis ...35
3.3 Reverting Actions..36
3.4 Final Remarks ...38
4 MANAGEMENT OF REMEDIAL ACTIONS ..41
4.1 Problem and Running Example ..41
4.2 Software Agent Architecture ...42
4.2.1 Constrained Goals..43
4.2.2 Plan Required Resources ...44
4.2.3 Cause-effect Modelling..45
4.2.4 Extended BDI Agent and Architecture ..47
4.3 Customised Reasoning Cycle ...47
4.3.1 Plan Selection...49
4.3.2 Goal Generation ...51
4.4 Evaluation..54
4.4.1 BDI4JADE Implementation...55
4.4.2 Scenario and Procedure..56
4.4.3 Results and Analysis ..57
4.5 Final Remarks ...60
5 ROOT CAUSE DIAGNOSIS ...63
5.1 Problem and Definitions ...63
5.2 Cooperative Diagnosis and Solution of Problem Causes.....................................65
5.2.1 Overview..65
5.2.2 Interaction Protocol..67
5.2.3 Agent Behaviour ..70
5.2.3.1 Client Agent ..70
5.2.3.2 Provider Agent ..71
5.2.3.3 Cooperating Agent Behaviour ..75
5.3 Evaluation..78
5.3.1 Procedure ...79
5.3.2 Results and Discussion ..80
5.4 Final Remarks ...84
6 ACTION REVERSION..87
6.1 Motivation Scenario..87
6.2 A Formal Framework for Reverting BDI Agent Actions....................................89
6.2.1 Framework Overview...89
6.2.2 Model Formalisation..90
6.3 Framework Activities and Operations..94
6.3.1 Goal Setup..94

6.3.2 Monitoring ...96
6.3.3 Reversion Execution ..98
6.3.3.1 Reversion (De)activation...98
6.3.3.2 Effect Filtering ..100
6.3.3.3 Effect Compensation...101
6.4 Evaluation..102
6.4.1 BDI4JADE Implementation...103
6.4.2 Case Study Description..103
6.4.3 Results and Discussion ..105
6.5 Final Remarks ...107
7 CONCLUSION ...109
7.1 Contributions...110
7.2 Future Work ..112
REFERENCES...115
APPENDIX A — FRAMEWORK USAGE...121
APPENDIX B — RESUMO ESTENDIDO ...125

19

1 INTRODUCTION

A wide range of modern software systems are nowadays built as multiagent sys-

tems (MAS) (JENNINGS, 2001). They are composed of distributed autonomous compo-

nents that are situated in an environment. These components, also called agents, interact

and collaborate with each other in order to carry out a wide range of tasks. Examples

of such tasks are the management of power plants (HERNANDEZ et al., 2013), au-

tonomous vehicles (HUANG; NITSCHKE, 2020), unmanned aerial vehicles (INSAUR-

RALDE, 2014), and healthcare systems (IQBAL et al., 2016). The complexity and criti-

cality of the tasks performed by these multiagent systems push the need for systems able

to operate satisfying the required quality levels for as long as possible, resisting and re-

covering from abnormal situations (DOBSON et al., 2019; SANCTIS; BUCCHIARONE;

MARCONI, 2020). Therefore, it is crucial to adopt techniques to make them resilient.

Resilience can be broadly understood as the system’s ability to return to a normal

operating condition after the occurrence of disrupting events (STRIGINI, 2012; HOS-

SEINI; BARKER; RAMIREZ-MARQUEZ, 2016). It combines ideas from many disci-

plines, such as fault tolerance (AVIZIENIS et al., 2004) and survivability (FISHER et

al., 1997). For instance, a fault tolerant system, which is a system able to tolerate the

existence of failures in a way they do not incur in errors that interfere in its operation,

is typically provided with redundancy techniques (CREVELING, 1956; LYONS; VAN-

DERKULK, 1962). This system can thus resist to a failure in a component by replacing it

with a similar one, which is able to carry out the same task. However, there are situations

in which this strategy only is not enough. In case of a failure caused by a malicious attack,

no matter how many times a component is replaced, the failure will still occur. In these

situations, the system may benefit from the diversity of alternative solutions proposed by

survivability techniques (ELLISON et al., 2002). In this way, resilience can be achieved

at different levels and in different manners.

An existing strategy of resilience, named D2R2 + DR, specifies a set of opera-

tions to be executed by systems in order to become resilient (STERBENZ et al., 2010;

STERBENZ et al., 2013). Among these operations, there are the detection, remedia-

tion, diagnosis, and recovery from a given problem. Detecting problems consists of the

identification of an unexpected behaviour or degradation in the system performance. Re-

mediating them, in turn, corresponds to the minimisation of their impact in the services

provided by the system. Diagnosing a problem implies uncovering its root cause, which

20

allows corrective measures to be taken, thus preventing further failures and keeping the

system operational. Finally, recovering refers to the system’s capability of returning to a

normal operation as soon as problems are solved.

Even though it provides design guidance, the D2R2 + DR strategy is still a con-

ceptual model and its instantiation remains largely application specific (SCHAEFFER-

FILHO et al., 2012; CARVALHO et al., 2018). It means that systems or their components

that implement this strategy do it specifically focused on the domain or application to

which they are designed. As a result, the practice of code reuse is compromised and new

implementations must be made from scratch. There is thus a gap between the specification

of this strategy of resilience and its realisation.

This gap is reduced by existing solutions able to carry out individual operations

that a system must perform (UNRUH et al., 2005; WANG et al., 2018). However,

these solutions bring limitations such as the lack of autonomy and adaptability. For in-

stance, there are many approaches able to detect anomalous behaviour in software sys-

tems (CHANDOLA; BANERJEE; KUMAR, 2009). However, these approaches are not

sufficient to diagnose the root cause of these abnormalities. This task is typically car-

ried out by experts through the manual inspection of execution-related information ob-

tained from different sources, such as tracing and profiling tools (ZHOU et al., 2018).

It also occurs with the management of remedial actions, which are typically hard-coded

and manually coordinated (HAN; LEI, 2012; NUNES; SCHARDONG; SCHAEFFER-

FILHO, 2017). Performing these tasks is usually impractical for large-scale and dynamic

systems, because of the amount of data to be analysed or the complexity of the man-

aged system. Consequently, the performance of systems in face of situations that require

an immediate response is compromised. Furthermore, this dependency on experts and

developers goes against the increasing need for autonomic systems, which are expected

to be able to overcome and adapt to challenging situations without the need for human

intervention (BARESI; NITTO; GHEZZI, 2006).

Given this context, in this thesis we investigate ways of providing MAS with the

abilities required to autonomously manage the remediation of problems, the diagnosis of

their causes, and the recovery of the system to a normal state of operation. In next section,

we detail the problem we are looking at in this thesis, as well as the limitations of existing

work. In Section 1.2, we introduce the proposed solution and give an overview of the

contributions of this work. Finally, Section 1.3 presents the structure of the remainder of

the thesis.

21

1.1 Problem Statement and Limitations of Existing Work

As previously introduced, there are two main issues related to the adoption of

the D2R2 + DR strategy of resilience by MAS. The first refers to the gap between its

specification and implementation. The second, corresponds to the lack of autonomy and

adaptability that comes with the adoption of solutions able to carry out the operations

required by this strategy. Based on these problems, the research question considered in

this thesis is stated as follows.

Research Question. How to provide multiagent systems with the ability of remedi-

ating, diagnosing and recovering from abnormal situations in a domain-neutral and

reusable way?

Limitations of existing work related to this research question are as follows.

Lack of software reuse. Despite having a definition that allows its adoption in many do-

mains, the D2R2 + DR strategy does not provide guidance on its practical implemen-

tation (STERBENZ et al., 2010). Many systems able to remediate, diagnose and

recover from problems are designed and implemented to handle specific domains

and applications (NOLAN et al., 2016; NUNES; SCHARDONG; SCHAEFFER-

FILHO, 2017). This specificity makes these implementations not reusable. The

lack of reusable resources that support the development of this resilient strategy

requires it to be implemented from scratch, which becomes a limitation. It not

only demands higher effort, but also makes implemented solutions more suscep-

tible to bugs when compared to their development using reusable assets such as

frameworks, libraries and code snippets (RAVICHANDRAN; ROTHENBERGER,

2003; MOHAGHEGHI; CONRADI, 2007). The development of reusable assets

that encapsulate some of the operations specified by the D2R2 + DR strategy would

reduce both the effort required by new systems to adopt it as well as the probability

of bugs in recently implemented solutions. In addition, it would promote software

reuse across different domains and applications.

Limited adaptability. Many systems that implement the D2R2 + DR strategy have their

behaviour implemented in a rigid way (CARVALHO et al., 2018). It means that

the sequence of actions executed by these systems to remediate, diagnose and re-

cover from problems is hard coded and specified in advance by developers. It be-

22

comes a limitation when we consider the dynamic characteristics of many scenarios

in which resilient systems are deployed (ABREU et al., 2017; JANUáRIO; CAR-

DOSO; GIL, 2019). In these scenarios, the system behaviour must be frequently

adapted to changes sometimes unpredicted at design time. An example of adapta-

tion comprises selecting the best action to remediate a problem according to existing

preferences (FACCIN; NUNES, 2015). The inability to perform adaptations at run-

time may compromise the operation of the system in face of challenging situations.

An alternative to deal with this limitation is providing systems with self-adaptive

capabilities (DOBSON et al., 2006) that allow them to independently manage their

actions at runtime.

Limited autonomy. In many existing solutions, tasks such as the coordination of re-

medial actions (CARVALHO et al., 2018) and the diagnosis of problem causes

(ZHANG; LIN; HSU, 2007) end up being carried out by humans. This goes against

the increasing need for autonomy in software systems (BARESI; NITTO; GHEZZI,

2006). Manually coordinating the system behaviour requires developers to modify

particular portions of code in order to insert or remove sequences of actions, or

even specify their reversion in a recovery context. The diagnosis of causes, in turn,

requires the manual inspection of data by experts (ZHOU et al., 2018). These tasks

are impractical in complex, large-scale systems. They become time consuming and

error prone due to the complexity and amount of data to be considered, which can

prevent systems to be adapted in a timely fashion. The inadequate coordination of

actions may affect not only a particular functionality, but the entire system as well.

An alternative to handling this limitation is providing solutions able to reduce the

need for human configuration, management and intervention, thus increasing the

autonomy of systems that adopt them.

1.2 Proposed Solution and Contributions Overview

Software reuse assumes the existence of assets that can be reused on the cre-

ation of new assets or the modification of existing ones (FRAKES; KANG, 2005; MO-

HAGHEGHI; CONRADI, 2007). Frameworks are a common example of such reusable

assets. They implement and make available functionalities that are shared by applications

across different domains. Systems that implement the D2R2 + DR strategy share a specific

23

behaviour, which is performed after the detection of abnormal events or conditions. First,

they act in order to remediate the detected issue, which implies the selection of the best

action to be executed. In the meantime or after remediating these issues, the diagnosis of

what caused their occurrence takes place, followed by their resolution. After the defini-

tive solution of problems and their causes, a recovery step is performed. In this stage, the

effects of remedial actions able to be undone are reverted. This shared sequence of steps

gives an insight of what can be encapsulated into a reusable asset like a framework.

Because D2R2 + DR relies on the existence of components able to adapt to changes

in their environment (DOBSON et al., 2019), its adoption by software agents becomes

particularly convenient. An approach suited for the development of agents is the Belief-

Desire-Intention (BDI) (RAO; GEORGEFF, 1995) architecture. This architecture struc-

tures agents in terms of three key components: (i) beliefs, which represent the current

state of the agent and its environment; (ii) desires, also called goals, which correspond to

states the agent wants to reach; and (iii) intentions, which are goals an agent is committed

to achieve and for which it has plans capable of achieving them. These components are

integrated into a reasoning cycle and manipulated by several functions that have, among

other roles, the responsibility of selecting which actions the agent will perform. However,

these functions are abstract in the BDI architecture and can be customised in specific ap-

plications to provide a desired behaviour. By taking advantage of this characteristic, it is

possible to provide a solution in which the coordination of remedial actions as well as the

diagnosis and resolution of problem causes, and the recovery of the system are completely

undertaken by the BDI reasoning cycle.

In this thesis, we thus investigate the following research hypothesis.

Research Hypothesis. A domain-independent framework that extends the BDI ar-

chitecture is an effective solution to realise the remediation, diagnosis and recovery

steps specified by the D2R2 + DR strategy, promoting software reuse across different

application domains while providing autonomous and adaptive capabilities to agents

and multiagent systems implemented with it.

We thus propose a domain-independent framework that extends the BDI architec-

ture and provides the backbone for the implementation of software agents and multiagent

systems able to carry out the D2R2 + DR strategy of resilience. This framework specifi-

cally focuses on the remediation, diagnosis, and recovery operations.

The proposed framework implements a set of techniques developed with the aim

24

Figure 1.1: Proposed Framework and Underlying Techniques.

Structural Components

Behavioural Components

Cause-Effect
Knowledge

Model
Preferences

Plan Metadata

Constrained
Goal

Goal Setup Action
Monitoring

Action
Reversion

Management
Algorithms

Goal Metadata

Interaction
Protocol

Interaction Trace

Diagnosis
Algorithms

Client
Agent

Cooperating
Agent

Cooperating
Agent

Provider
Agent

Abnormal
Agent

Automated Management
of Remedial Actions
Cooperative Diagnosis
of Problem Causes
Action Reversion
Technique

of supporting agents on the automated coordination of their actions, whether they are for

remediating problems, diagnosing their root causes, or recovering to a normal operation.

Figure 1.1 presents an overview of our proposal. It depicts the structural and behavioural

components that comprise each technique. The main contributions of this thesis are de-

scribed as follows.

i) A technique for the automated management of remedial actions, which is re-

sponsible for coordinating agent behaviour with the aim of effectively handling

challenging events. This technique is composed of a structural metamodel and con-

trol algorithms responsible for determining how problems are remediated, and the

diagnosis and solution of their causes are carried out. It also specifies a model

for representing cause-effect relationships, which is used in the diagnosis process.

These structural and behavioural components, which are part of each agent, are

depicted as dark grey rectangles in Figure 1.1.

ii) A technique for the cooperative diagnosis of problem causes in MAS that allows

the creation and update of cause-effect relationship models at runtime. This tech-

25

nique comprises an interaction protocol and algorithms that specify the behaviour

of agents while playing different roles. Structural and behavioural components are

depicted in Figure 1.1 as white rectangles, while agents playing the specified roles

are depicted as white circles.

iii) The formal specification of a technique for reverting actions, which allows agents

to undo the effects of remedial actions after the complete solution of the problems

for which they were executed. This functionality is particularly suited for scenar-

ios in which valuable resources are allocated for remediating a problem but must

be released as soon as possible in order to allow the execution of further actions.

Figure 1.1 depicts components comprising this technique as light grey rectangles.

These techniques are implemented as part of an agent development platform named

BDI4JADE (NUNES; LUCENA; LUCK, 2011), which implements the BDI architecture.

They are evaluated in separate studies whose results show that the proposed framework

is effective for developing agents and multiagent systems able to remediate, diagnose and

recover from challenging situations. There is evidence of its reusability across several ap-

plications in different domains. Finally, the adaptive and autonomous behaviour presented

by developed multiagent systems demonstrate the ability of the framework on providing

such capabilities.

1.3 Outline

The remainder of this thesis is organised as follows. Chapter 2 presents theoret-

ical background that serves as the foundations needed for this thesis. Related work that

addresses the management of remedial actions, the diagnosis of problem causes, and the

reversion of actions as well as their limitations are discussed in Chapter 3. Chapter 4

introduces the technique for automated management of remedial actions, detailing the

structural metamodel and control algorithms that comprise it, as well as the cause-effect

relationship model. The cooperative technique for diagnosing the root cause of problems

and the technique for reverting actions are presented in Chapters 5 and 6, respectively.

Finally, Chapter 7 concludes this thesis and outlines directions for future work.

26

27

2 BACKGROUND

Before introducing our development framework and its underlying techniques, in

this chapter we detail the resilience strategy that specifies the remedial behaviour that is

the focus of this thesis. We also provide an overview of the Belief-Desire-Intention (BDI)

architecture, which is used as a basis for our framework. The strategy, named D2R2 + DR,

is presented in Section 2.1, while the BDI architecture is presented in Section 2.2.

2.1 The D2R2 + DR Strategy

The D2R2 + DR strategy is a conceptual model initially designed to promote a

resilient behaviour in the context of networked systems (STERBENZ et al., 2010). Nev-

ertheless, its abstract ideas can be applied to software systems in general. This strategy

proposes the integration of a structural core and two active phases. The first phase occurs

in real time and is responsible for defending, detecting, remediating an recovering the

system from disruptive events. The second one, in turn, occurs on background and aims

at diagnosing the cause of detected issues and refining the system behaviour in order to

prevent further problems. Figure 2.1 depicts the D2R2 + DR strategy.

Figure 2.1: The D2R2 + DR Strategy (STERBENZ et al., 2010).

Defend

De
fen
d Detect

Re
me
dia
teRecover

Diagnose

Refine

The core of this strategy comprises passive defences implemented in order to re-

duce the likelihood of faults. These defences are usually associated with structural mea-

sures such as the use of redundant components (CREVELING, 1956; LYONS; VAN-

28

DERKULK, 1962).

The first active phase, the D2R2 part, comprises the defend, detect, remediate, and

recover operations. Defending has the same purpose and is directly related to the strat-

egy’s defence core. The difference is that, while the latter provides passive defences, the

former is in charge of the active ones. These active defences consist of self-protection

mechanisms designed to anticipate and prevent the occurrence of issues. An example is

the filtering of known attack signatures in a network (MENG, 2018). In cases in which

existing defence mechanisms are unable to prevent faults to take place, the system must

be able to recognise their occurrence in a timely fashion. The detect operation holds

that responsibility. The adoption of one of the many existing anomaly detection tech-

niques (CHANDOLA; BANERJEE; KUMAR, 2009) is an example of how this operation

can be carried out. The remediate operation is performed to mitigate the effects of de-

tected issues. Its goal is to keep the system operating at an acceptable level as long as

the adverse conditions persist. Limiting the traffic of an overused link in order to keep

it working is an example of how to accomplish this task (SCHAEFFER-FILHO et al.,

2012). Usually, remedial actions result in a graceful degradation of system operation or

in an increase in its cost. However, if no further action is taken the system can remain in a

degraded state or consuming valuable resources even after the adverse condition is under

control. That is the reason for the existence of the recover operation, which is responsible

for revoking the negative effects of remedial actions in order to return the system to its

normal state of operation. These four steps interact in a cycle, which is triggered by the

detection of an issue and can be executed simultaneously in different parts of the system.

The second phase comprises the diagnose and refine operations. They are usu-

ally performed offline and strongly rely on human intervention. The diagnose operation

aims at identifying what led to the occurrence of a problem. It involves root cause anal-

ysis (WILSON, 1993) and allows corrective measures to be taken in order to handle the

source of problems. Typically, this task is performed by experts through the manual in-

spection of data obtained from monitoring tools (ZHOU et al., 2018). Finally, the refine

operation has the goal of enhancing this resilient behaviour based on past experience. This

refinement can involve, for instance, the implementation of new defence mechanisms able

to deal with diagnosed faults.

The framework presented in this thesis proposes techniques to automate the re-

mediation, recover and diagnose operations. They are implemented as extensions of the

reasoning cycle specified by the BDI architecture, which is presented in next section.

29

2.2 The Beflief-Desire-Intention Architecture

The Belief-Desire-Intention (BDI) architecture (RAO; GEORGEFF, 1995) is per-

haps one of the most widely used approaches for developing autonomous agents. It is

particularly suited when a flexible and robust behaviour is required. This architecture has

its foundations on the concepts of practical reasoning (BRATMAN, 1987) and intentional

systems (DENNETT, 1987), and comprises the base for several languages and platforms,

such as Jason (BORDINI; HüBNER; WOOLDRIDGE, 2007) and BDI4JADE (NUNES;

LUCENA; LUCK, 2011). Agents built based on the BDI architecture are structured in

terms of three mental attitudes that name the approach. Beliefs are the informative com-

ponents of the system. They represent the view agents have about their own state and the

state of the environment they are inserted. It is not referred to as attribute, which is the

term used to capture state in object orientation, because beliefs are assumed to possibly

be inaccurate due to, e.g., noise in environment perceptions. Desires, or goals, specify

the states of the world the agent wants to reach, while intentions arise from the agent

commitment to achieve these goals. Desires intended to be achieved are carried out by

the execution of predefined sets of actions, the so-called plans.

The flexible behaviour that characterises this architecture is achieved when beliefs,

desires and intentions are integrated with four abstract functions into a reasoning cycle,

which is depicted in Figure 2.2. The belief revision function is responsible for updating

agent beliefs. It is triggered by the perception of internal or external events, such as mes-

sages received from other agents, measurements made by sensors and changes caused by

agent actions. The option generation function, in turn, is responsible for updating the

set of agent goals. This updating task comprises not only generating new goals but also

dropping those that were achieved, are no longer desired or may become unachievable

according to current beliefs. The filter function is in charge of generating new intentions

through the filtering of existing goals. This task is associated with the deliberation pro-

cess, i.e. the process of deciding what goal to achieve next. Finally, the action selection

function is responsible for selecting the plan that will be executed in order to carry out a

given intention. This function identifies a set of relevant plans able to handle the selected

intention and chooses one according to a given selection strategy, which is thus executed.

This process is related to the so-called means-end reasoning, i.e. the process of deciding

how a goal will be reached.

To exemplify these concepts, consider the following situation. A person has the

30

Figure 2.2: The Belief-Desire-Intention (BDI) architecture (WOOLDRIDGE, 1999).

Beliefs

Intentions

Desires

Belief
Revision
Function

Option
Generation
Function

Filter
Function

Action
Output

Action
Selection
Function

Sensor
Input

Plans

intention to commute to work. For this purpose, she can walk, ride a bike, or take a bus.

These are her plans. Before leaving home, her belief about the weather is updated when

she notices that it is raining. Given the current context, she thus decides that taking a bus

is the best option to carry out her intention. That is the plan she executes to successfully

reach her final destination. All the reasoning process leading to that result is abstracted

by the functions comprising the BDI reasoning cycle.

Although able to provide a flexible and intelligent behaviour by default, these

functions can be customised in order to provide desired characteristics. This customi-

sation may include the use of sophisticated techniques, such as the selection of plans

according to agent preferences (PADGHAM; SINGH, 2013; VISSER et al., 2016), for

example. The framework proposed in this thesis implements techniques that extend some

of these functions. Specifically, an action selection function that is able to choose reme-

dial plans when needed, and an option generation function capable of identifying causal

relationships, generating goals related to the solution of problem causes, and generating

goals in order to revert actions.

2.3 Final Remarks

To provide systems with resilience, the D2R2 + DR strategy specifies a cycle that

comprises, among other operations, the remediation of problems, the diagnosis of their

31

causes, and the system recovery to a normal operating state. Performing these opera-

tions requires components to be able to adjust their behaviour to different conditions. An

approach that supports the development of agents with this adaptive characteristic is the

BDI architecture. It specifies agents in terms of three major concepts that are integrated

with four functions into a reasoning cycle. Because these functions are abstract, they can

be customised in order to implement operations such as those specified by D2R2 + DR

strategy. The next chapter presents existing approaches that implement these operations

in different contexts.

32

33

3 RELATED WORK

A substantial amount of effort has been directed towards the development of ap-

proaches focused on the remediation of problems, the diagnosis of their root causes, and

the reversion of actions. However, these operations are rarely integrated into a single co-

hesive solution. In this chapter, we present related work categorised according to their

main goals. Section 3.1 presents work focused on the remediation of adverse events. Sec-

tion 3.2 introduces work related to root cause identification. Finally, Section 3.3 discusses

approaches focused on the reversion of executed actions.

3.1 Management of Remedial Actions

Many approaches focused on resilience implement solutions whose goal is to re-

mediate the effects of problematic events. A common challenge addressed in the context

of network systems are distributed denial of service (DDoS) attacks. In this type of at-

tack, a massive amount of requests is sent to a target component in order to overload it.

This compromised state makes components unable to provide their services as expected

if operating under normal conditions. The approach of Schaeffer-Filho et al. (2012) al-

lows systems to minimise the impact of this kind of threat through the adoption of event-

condition-action policies. In that solution, many activities to incrementally handle DDoS

attacks are manually coordinated. From the conditions monitored by the network infras-

tructure, components such as rate limiters, flow exporters and classifiers are able to raise

events that trigger the execution of operations to eventually limit the traffic of specific at-

tack flows. The proposal of Carvalho et al. (2018) follows the same policy-based strategy.

It describes the use of three different policies that are specified in advance. These policies

describe the events that trigger a set of actions to be taken by the system as well as the

context in which they can be executed. Nunes, Schardong and Schaeffer-Filho (2017)

extend these approaches with an agent-based solution designed to reduce the need for a

pre-specified arrangement of components and their interactions. In that solution, named

BDI2DoS, components are associated with BDI agents able to act proactively in order

to deal with DDoS attacks. While the two former solutions require component interac-

tions to be anticipated and explicitly declared, the latter provides a resilient behaviour

that emerges from agent cooperation. Nevertheless, because its implementation is still

focused on a single application domain, reusing BDI2DoS becomes unfeasible.

34

The work of Januário, Cardoso and Gil (2019) also builds up on the concept of

software agents. It proposes an architecture for cyber-physical systems in which agents

with different functionalities are associated with each component of the system. These

agents are responsible for ensuring system operation in case of communication failure,

device malfunctioning or even used-induced errors. This task is carried out through the

adoption of policies that must be specified according to the domain in which systems are

deployed. The coordination of remedial actions thus arises from the interaction of agents

that follow these policies. Similarly, the proposal of Abreu et al. (2017) presents a ded-

icated component responsible for coordinating remedial mechanisms spread throughout

systems in the context of the Internet of Things. That component relies on specific mod-

ules for monitoring, protecting and recovering the system. These modules can be seen as

achievers of the operations specified by the D2R2 + DR strategy. Because both solutions

present an increased level of abstraction, they still require a manual specification of how

policies will be carried out (JANUáRIO; CARDOSO; GIL, 2019) or how remedial actions

will be coordinated by the designed coordinating component (ABREU et al., 2017).

Examples of more practical solutions are available in many different scenarios.

Raiciu et al. (2011), for instance, demonstrate how the Multipath Transmission Protocol

(FORD et al., 2013) can be used to coordinate the response of a network to link congestion

and failures. This communication protocol enables the existence of alternative communi-

cation flows in the same connection between nodes in a network. When a communication

flow is affected by external interference, such a disruption can be remediated by transfer-

ring the network traffic to a fully operational flow. The proposal of Nolan et al. (2016),

in turn, aims at mitigating communication failures between sensors and their controllers,

which may result on information loss. This solution is triggered by a simple if-then rule,

which is embedded in sensors and states that if data could not be sent, it is cached. Once

the communication problem is solved, cached data is sent to the corresponding controller,

thus allowing the retrieval of missing information.

This diversity of approaches illustrates the many ways the coordination of reme-

dial actions can be achieved. Nevertheless, existing solutions able to perform this task are

either abstract, in a way that do not provide practical implementations, or specific to the

challenge being addressed, which results in limited reusability. Even though approaches

that rely on domain-specific rules can be reused across different applications in order to

solve similar problems, their implementations do not share this fate. Most of these imple-

mentations also requires interactions among system components to be manually specified,

35

thus increasing the need for human intervention.

3.2 Root Cause Diagnosis

The concept of Bayesian networks (PEARL, 2014) is frequently used as a starting

point for the development of several approaches that focus on the identification of event

causes. In these networks, variables of interest are represented as nodes while causal re-

lationships are depicted as edges. To create such a network, the accountability framework

proposed by Zhang, Lin and Hsu (2007) maps services and their dependencies to nodes

and edges, respectively. A probabilistic analysis is thus performed on the generated struc-

ture with the aim of identifying the origin of service level agreement violations. Carrying

out this process, however, depends on knowing the topology of service relationships in

advance, which hinders the adoption of this solution for dynamic systems.

The CloudRanger framework (WANG et al., 2018) has a similar workflow. At

runtime, it creates a network representing the impact services have on others, and uses

it as the foundation to compute the correlation between linked services regarding a com-

mon cause. Traversing this network according to computed correlations allows one to

rank the candidate root causes of a given abnormality. Parida, Marwala and Chakraverty

(2018), in turn, proposed a domain-independent solution in which the concept of causal

influence factor is introduced as a parameter to be used to identify not only the under-

lying causal structure of systems but also the directions of existing causal relationships.

Despite allowing, the discovery of root causes in dynamic environments with higher ac-

curacy, these proposals do not handle scenarios in which the data are decentralised. A

solution that explores the cooperation between autonomous agents is proposed to handle

this issue (MAES; MEGANCK; MANDERICK, 2007). It assumes that agents do not

have a global view of the system, and thus are not able to observe the entire set of do-

main variables. This solution proposes a mechanism that allows agents to negotiate the

disclosure of useful information, which is later used to create individual causal models

and guide adaptation strategies. Even though it targets distributed domains, the feasibility

of this approach is not evaluated in scenarios comprising more than two agents.

Despite not being designed for identifying the root cause of problems, the dy-

namic, adaptive modelling of the behaviour of cloud-based systems, as proposed by Chen

and Bahsoon (2017), comprises an interesting alternative to achieve such a goal. Their

focus is on predicting the value of Quality of Service (QoS) features based on environ-

36

mental conditions and other relevant variables. By correct modeling the impact of these

variables on QoS features, it becomes possible to identify the cause of quality require-

ment violations even before their occurrence. The work of Mendonça, Ali and Rodrigues

(2014) follows a similar path. It proposes an approach for modelling and analysing con-

textual failures and their implications. The evaluation of this model at runtime allows the

system to identify possible contextual effects and act in order to adapt to them.

Many techniques for root cause diagnosis are designed to handle distributed envi-

ronments in a centralised manner. Even though they are capable of carrying out this task

in controlled scenarios, these techniques are not suited for environments such as those in

which multiagent systems are deployed because agents have only a partial view of the

system. Alternative solutions that require causal models to be provided in advance by

experts also present limitations. Changes in the environment need to be either anticipated

by experts or manually introduced in existing models. It hinders system’s adaptability and

can present scalability issues when adopted in large scale scenarios.

3.3 Reverting Actions

Mechanisms that focus on the reversion of actions had been carried out mainly in

the context of ACID transactions (GRAY; REUTER, 1992). A transaction is said to be

ACID if the actions it comprises can only be successfully achieved or not achieved at all

(atomic), and their execution leads to a correct transformation of the state of the system

(consistent). Additionally, the execution of an ACID transaction cannot be influenced by

the execution of others (isolated) and, once it is successfully completed, its results must

survive to system failures (durable). In systems that adopt this concept of ACID trans-

actions, reversion is usually performed in failure-handling situations, in which rollback

mechanisms are used to restore the system to a state identical to that in which the system

was before the execution of the actions being reverted.

Although applicable in fully controlled environments, this rollback process be-

comes impracticable in real world situations due to the dynamism and non-determinism

to which actions are subjected. Korth, Levy and Silberschatz (1990) aimed at addressing

this issue by formalising the concept of compensating transactions, which are those per-

formed with the objective of reverting the effects of transactions that may or may not be

completed. The main difference between the typical rollback process and the use of com-

pensating transactions is that the latter does not necessarily restore the system to the same

37

state it had before. Instead, it focuses on leading the system to a state that is semantically

similar to its previous state and that becomes acceptable in the given context.

This same notion of compensation was used by Butler and Ferreira (2000) in the

development of a textual business process modelling language called StAC (Structured

Activity Compensation). In StAC, a system is specified as a set of equations that describe

the execution order of the system actions. Within these equations, actions can be re-

lated to their compensating counterparts, whose need for execution is explicitly specified

through the use of particular symbols. Chessell et al. (2002) extended this language with

the concepts of selective and alternative compensation, in which subsets of available com-

pensating actions can be selected for execution according to the context. In both versions

of StAC, contrary to what occurs with ACID transactions, the need for compensating

actions is not based on system failures, but explicitly determined by the system.

Similarly, in the work of Unruh, Bailey and Ramamohanarao (2004), the manage-

ment of compensating actions is assigned to a particular system component, called FHC

(failure-handling component). Compensating elements are thus associated with system

goals instead of actions. In case of failure, the FHC is responsible for determining which

and when these elements will be triggered. How they will be carried out, however, is de-

cided by the system. A distributed version of this approach was presented in a subsequent

work (UNRUH et al., 2005).

The main issue of most of these approaches concerns the lack of adaptation re-

garding the specification of what must be achieved when actions are reverted. Using

StAC (BUTLER; FERREIRA, 2000; CHESSELL et al., 2002), it is not possible to ex-

plicitly determine which state a system must exhibit after compensating an action. If this

state varies according to the context, one must specify different compensating actions to

address all its possible instances. Moreover, these actions would have to be specified in

a way that the most convenient would be performed according to the current context. In

the work of Unruh, Bailey and Ramamohanarao (2004), in turn, how the system must

look like is predefined and does not change at runtime. The problem is that, due to

their dynamic nature, agent-based systems may adjust their needs regarding what must

be achieved in order to accommodate changes in their environment. This characteristic

demands from these systems the ability to dynamically determine the desired outcomes of

compensating actions before they are selected and executed, which cannot be done when

these outcomes are predefined at design time.

There are reverting mechanisms particularly developed to handle failures in sys-

38

tems structured with BDI agents, which are considered in our work. The Jason plat-

form, for example, allows the specification of “clean up” plans (HÜBNER; BORDINI;

WOOLDRIDGE, 2006), which are executed when the plans to which they are related

fail to reach their goals. Developers are thus able to specify how the changes performed

by failed plans must be reverted, and even whether goals must be reattempted or not. A

similar approach concerning plan-aborting situations was proposed by Thangarajah et al.

(2007). Their work specifies the semantics of a plan-aborting mechanism in which plans

can be associated with aborting actions, which are thus able to revert the effects of plan

executions when they are interrupted.

Techniques focused on the BDI architecture present a lack of adaptation similar

to those approaches discussed previously. However, instead of limitations regarding the

specification of what may be accomplished when reverting actions, their issues are asso-

ciated with how this task is performed. In these approaches, a course of action is specified

at design time and individually related to the plan whose effects it must revert. One of the

main features of BDI agents, however, is their ability to select the most suitable plan to

be executed in a given context. By constraining a compensating plan to a single course of

action, alternative (and potentially better) reverting solutions may never be tried.

3.4 Final Remarks

Operations such as the remediation of problems, the diagnosis of their root causes,

and the recovery of the system to a normal operating state, which are specified by the

D2R2 + DR strategy, are individually carried out by many existing approaches. Neverthe-

less, these approaches present limitations that prevent their (re)use by multiagent systems

and narrow the autonomous and adaptive capabilities of systems that adopt them. Imple-

mentations of solutions that coordinate remedial actions, for instance, are specific to the

challenge being addressed. The identification of the root cause of problems in distributed

domains, in turn, is performed mainly in a centralised manner. The only exception being

a work that presents a formal approach to handle distributed scenarios, but whose differ-

ences to our proposed solution become explicit in the remainder of this thesis. Finally,

besides being conceptual in their majority, solutions for reverting actions require the ac-

tions to be reverted and how it must be done to be manually coordinated in advance, thus

reducing the ability of systems to dynamically adapt to different situations.

39

Table 3.1: Comparison of Related Work.

Work Specificity Abstraction Control Organisation Behaviour

R
em

ed
ia

tio
n

Schaeffer-Filho et al. (2012) Application-specific Concrete Decentralised Distributed Manually-coordinated
Carvalho et al. (2018) Application-specific Concrete Decentralised Distributed Manually coordinated
Nunes, Schardong and Schaeffer-Filho (2017) Application-specific Concrete Decentralised Distributed Autonomous
Januário, Cardoso and Gil (2019) Application-specific Conceptual Decentralised Distributed Autonomous
Abreu et al. (2017) Application-specific Conceptual Centralised Distributed Autonomous
Raiciu et al. (2011) Application-specific Concrete Decentralised Distributed Autonomous
Nolan et al. (2016) Application-specific Concrete Decentralised Distributed Manually coordinated

D
ia

gn
os

is Zhang, Lin and Hsu (2007) Domain-neutral Concrete Centralised Distributed Autonomous
Wang et al. (2018) Domain-neutral Concrete Centralised Distributed Autonomous
Parida, Marwala and Chakraverty (2018) Domain-neutral Concrete Centralised NA NA
Maes, Meganck and Manderick (2007) Domain-neutral Concrete Decentralised Distributed Autonomous

R
ec

ov
er

y

Korth, Levy and Silberschatz (1990) Domain-neutral Conceptual Centralised NA NA
Butler and Ferreira (2000) Domain-neutral Conceptual Centralised NA NA
Chessell et al. (2002) Domain-neutral Conceptual Centralised NA NA
Unruh, Bailey and Ramamohanarao (2004) Domain-neutral Conceptual Centralised Monolithic Manually coordinated
Unruh et al. (2005) Domain-neutral Conceptual Centralised Distributed Manually coordinated
Hübner, Bordini and Wooldridge (2006) Domain-neutral Concrete Decentralised Distributed Manually coordinated
Thangarajah et al. (2007) Domain-neutral Conceptual Decentralised Distributed Manually coordinated

40

Table 3.1 summarises the core characteristics of existing work associated with

the remediation, diagnosis and recovery operations. Next chapters present alternatives to

perform these operations reducing the limitations imposed by existing solutions.

41

4 MANAGEMENT OF REMEDIAL ACTIONS

In this chapter, we introduce a technique that extends the BDI architecture in order

to allow agents to autonomously select the appropriate set of actions (plans) to remediate

problems (i.e. achieve a goal) and handle their causes. This extension automates the

coordination of agent plans, thus promoting reuse across domain-dependent solutions

and allowing agents to flexibly decide the best action according to their context, goals and

preferences. The extended BDI architecture includes a set of components to capture the

domain knowledge required to support agents on making such decisions. This knowledge

is used in a customised reasoning mechanism, which selects remedial plans, when needed,

and generates goals to search and deal with problem causes.

4.1 Problem and Running Example

Before detailing the elements that comprise our technique, we introduce an illus-

trative example to provide a better understanding of the scenario we address. It is used

throughout this chapter as a running example. Despite its simplicity and perhaps not ad-

equacy of an agent-based solution to this problem, it allows us to clearly illustrate the

class of problems we are targeting and concepts of our approach without having to detail

additional domain background. Consider the problem of dealing with a ceiling leak. Alice

is a person who notices a ceiling leak in the room of her house. To deal with it, she has

three options (or plans): (i) cover the leak with duct tape; (ii) use a towel to absorb the

liquid coming from the ceiling; or (iii) put a bucket underneath the drip.

The three available plans can achieve the goal of dealing with the ceiling leak.

However, each of them has particular characteristics concerning how this goal is achieved.

Each plan requires a different amount of time to be performed. Covering the leak with

duct tape, for example, requires much more time than putting a towel under the drip.

Plans are also related to different execution costs. If Alice chooses to use the towel to

achieve the goal, she will have to afford the cost of such towel (assuming that it would be

thrown away after being used). If she chooses to use the bucket instead, the cost she has

to afford will be lower, given that a bucket can be reused. Therefore, plan executions are

directly associated with the consumption of resources. Further, considering that the floor

can become wet if the leak is not addressed as soon as possible, Alice has constraints

over the execution time of her plans. In this context, using duct tape to cover the leak

42

may not be a feasible solution. Moreover, every time Alice wants to deal with a ceiling

leak, she may have different preferences on how to spend resources. For instance, if she

wants to address it quickly, the time taken to execute a plan becomes more valuable than

its cost.

Although performing one of the available plans achieves the given goal, Alice’s

problem is not completely solved. The leak is an effect of several possible causes, e.g. a

broken pipe or a cracked roof tile, which must be addressed in order to stop the leak per-

manently. Moreover, there may be plans that deal with both cause and effect. However,

they possibly cannot be executed in such a way that constraints are met. Therefore, as-

suming that an agent A is in charge of resolving this whole problem, two key issues must

be addressed: (i) how can agent A select the most adequate plan, possibly a remedial

one, to achieve its goal based on its constraints and current preferences?; and (ii) how

can agent A diagnose and address the causes of the problem associated with this goal to

permanently solve it?

In the traditional BDI architecture, agent goals are explicitly specified, and plans

to reach these goals are provided at design time. However, there is no specified strategy

to choose among available plans. Moreover, depending on how the problem is modelled,

plans that deal with the effect of the problem may not achieve its causes. Therefore, once a

plan achieves the goal associated with the effect, its root causes may remain unaddressed.

Finally, the BDI architecture does not include means of diagnosing the causes of problems

being tackled.

4.2 Software Agent Architecture

The example presented in Section 4.1 introduces many key concepts, such as re-

sources and preferences. Some of them, such as goals and plans, can be associated with

existing components of the BDI architecture. Others, however, are domain-independent

concepts that can be incorporated to this architecture to provide agents with the ability of

dealing with adverse situations. In these situations, goals correspond to remediating the

effects of problems before diagnosing and dealing with their causes, and must be achieved

considering a set of constraints. In this section, we first formalise these concepts and then

integrate them as an extension to the traditional BDI architecture.

43

4.2.1 Constrained Goals

Goals express a state of affairs that an agent wants to bring about. However, in

order to achieve a goal, the execution of actions consumes resources, such as processing

time and allocated memory. In some scenarios, achieving this state of affairs is useless

for an agent if the amount of consumed resources is not limited to a specified amount.

Moreover, in other scenarios, if there are different means of achieving a goal, there may

be restrictions on how resources should be spent, e.g. consuming the least as possible of

a particular resource. Therefore, we define a particular type of goal, namely constrained

goal, that incorporates these two notions, which are operation constraints and objective

functions, respectively. These concepts are formalised as follows.

Definition 1 (Resource) A resource ri ∈ R is any consumable supply of asset, whose

consumption can be measured by an agent. Each resource ri is associated with a value

vc(ri) ∈ R, which is a consumed amount of ri.

Example 1 There are two resources in our running example: time taken to prevent liquids

to accumulate in the floor (time) and the money spent to do so (cost). The resource

vc(time) is the number of seconds passed since the goal of dealing with the ceiling leak

was set as a goal, while vc(cost) is the amount of money spent while performing a set of

actions to achieve this goal.

Definition 2 (Operation Constraint) An operation constraint c is a constraint over the

desired consumption of resources. It is expressed with the following grammar.

c ::= (c ∧ c) | (c ∨ c) | (¬c) | e

e ::= (r op v)

op ::=> | ≥ |< | ≤ |= | 6=

where r is a resource and v is a value v ∈ R. Moreover, an operation constraint is over a

single resource r.

Example 2 Assuming that Alice does not want to spend more than $5 to solve her prob-

lem, an operation constraint is cost < $5.

Definition 3 (Objective Function) O : R 9 {min,max} is a partial function that speci-

fies whether the consumption of a resource r must be minimised or maximised.

44

Example 3 Alice has no specific constraint regarding the amount of time taken to deal

with the ceiling leak, but she wants to do so as soon as possible, in order to prevent

permanent damage in her floor. Therefore, the resource time is associated with min to

indicate that the minimum amount of time should be spent to accomplish this.

The definitions presented above are then used to define a constrained goal, which

is a goal complemented by constraints over resources and specifications regarding how

they should be spent. We assume that a goal is specified as proposed in the AgentSpeak

language (RAO, 1996), in which there are achievement (!g) and test (?g) goals. The

former indicates that an agent wants g to be a true belief, while the latter to test whether

the formula g is a true belief.

Definition 4 (Constrained Goal) A constrained goal gc is a tuple 〈g,C,O〉, where g is

an achievement goal or a test goal; C is a conjunctive set of operation constraints that

states restrictions over resources to be consumed to achieve g; andO is an objective func-

tion that states whether the consumption of resources should be minimised or maximised

when achieving g.

Example 4 Alice wants no ceiling drip in her roof. Consequently, she wants to believe

that ¬ceiling_drip is true. Therefore, in order to deal with the ceiling leak, and consider-

ing the operation constraints and objective function defined above, she has the following

goal: ceiling_leak = 〈!¬ceiling_drip, {cost < 5}, {〈time,min〉}〉. This means that this

goal must be achieved spending less than $5, as soon as possible.

In Example 4, C has a single operation constraint. However, given that constrained

goals have a conjunctive set of constraints, if there were other constraints, all of them must

be satisfied to achieve this goal.

4.2.2 Plan Required Resources

The introduced definitions allow the specification of how goals must be achieved.

However, given that plans are those that consume resources while trying to achieve goals,

there must be means of specifying how such resources are consumed. This is formalised

next.

Definition 5 (Plan Required Resource) A plan required resourceRreqp : R→ R, which

gives, for a resource r, the amount v ∈ R that a plan p spends while executing.

45

Example 5 Consider the different alternatives, presented in Section 4.1, to achieve the

goal ceiling_leak. Using a duct tape has a small cost, but takes 600s to be accomplished,

thus RreqDT (cost) = 0.5 and RreqDT (time) = 600, while using a towel costs $6, but takes

120s to be accomplished, thusRreqTP(cost) = 6.0 andRreqTP(time) = 120.

Definition 6 (Plan) A plan p is a tuple 〈Pre,G,Rreqp ,Body〉 where Pre is a set of context

conditions in the form of logical predicates that specify the context in which p must be

executed, i.e. they must hold true before the execution of p thus being its preconditions;

G is the set of goals that can be achieved by p; Rreqp is the plan required resources to

execute p; and Body is a set of actions that comprise the plan body.

Example 6 Using a towel is considered a way to deal with a ceiling leak, and thus is

a plan to achieve the goal ceiling_leak. Such plan is specified as detailed below, where

a1, ..., an are actions to be executed.

towel_plan = 〈{has_towel}, {!¬ceiling_drip},

{cost 7→ 6, time 7→ 120}, {a1, ..., an}〉

4.2.3 Cause-effect Modelling

The proposed technique deals with scenarios in which problems are resolved.

Such problems involve an initial issue (effect) to be addressed, which has a cause—

composed of a set of cause factors—which must also be tackled. Our goal is to address

both effect and its cause but, to do so, domain knowledge regarding the cause-effect rela-

tionship must be provided. This section specifies how such knowledge is modelled. We

assume that it is given as part of an agent belief base.

Definition 7 (Cause-effect Relationship) A cause-effect relationship ceR(e) of an effect

e is a tuple 〈M,O,Ac〉, where M is a set of mandatory cause factors; O is a set of optional

cause factors; and Ac is a set of tuples 〈A,min,max〉, in which A is a set of alternative

cause factors, and min,max ∈ N, such that min ≤| A |≤ max, are the allowed cardinality

of cause factors of A.

A cause-effect relationship thus associates a problem with possible factors that

comprise its cause. There are cases in which a factor is necessarily part of the cause, and

in this case it is a mandatory cause factor. Moreover, there may be additional factors that,

depending on the situation, may be part of the cause (optional or alternative).

46

Example 7 The ceiling_drip fact has a set of alternative causes, as possible cause factors:

cracked_roof_tile or broken_pipe, with 1 and 2 as minimum and maximum values, respec-

tively, because both cause factors may be part of the cause. The cause-effect relationship

is as shown below.

ceR(ceiling_drip) = 〈�,�,

{〈{broken_pipe, cracked_roof _tile}, 1, 2〉}〉

This cause-effect relationship can be graphically visualised in a directed graph,

referred to as cause-effect knowledge model, in which nodes are logical predicates that

can be an effect or a cause factor. Edges link an effect with a cause factor, and we use

a particular notation to distinguish those mandatory, optional or alternative, detailed in

Figure 4.1. In this figure, an effect e has several cause factors, m, o, o′, a, a′. Mandatory

and optional cause factors are represented by edges with filled and unfilled rounded line

ends, respectively. Alternative cause factors, in turn, are represented by edges with open

arrowheads near its targets, with a line connecting cause factors within the same set. This

notation is inspired by feature models (CZARNECKI; EISENECKER, 2000; KANG et

al., 1990) that, although have a completely different purpose, also represent this notion of

mandatory, optional and alternative concepts.

Figure 4.1: Cause-effect Knowledge Model.

em

o o' a'

a

m'

[1...1]

e'

Fact

Mandatory cause
Optional cause

Alternative cause

Both cause factors and effects are logical predicates, therefore, an effect f may be

associated with a cause factor f ′, which in turn may be associated with a cause factor f ′′.

This can be seen in Figure 4.1, where o′ is simultaneously a cause factor of e and an effect

of m′. Cause factors can also be associated with more than one effect. This situation is

47

also depicted in Figure 4.1, where a′ is both a cause factor of e and e′. We assume there

are no cycles.

Cause-effect relationships (and the cause-effect knowledge model) only indicate

possible factors that comprise the cause of a problem. How, based on this knowledge, the

actual cause is diagnosed at runtime and how this information is used are described when

we detail our customised reasoning cycle.

4.2.4 Extended BDI Agent and Architecture

Before introducing our reasoning cycle, we describe our extended BDI agent, de-

fined as follows. There is one single extension, which is a preference function that gives

the importance of a resource for an agent.

Definition 8 (Extended BDI Agent) An extended BDI agent is a tuple 〈B,G,P,P〉, where

B is a set of beliefs, G is a set of (possibly constrained) goals, P is a set of plans, and P

is a preference function.

Definition 9 (Preference Function) P : R 9 [0, 1] is a partial function that maps re-

sources ri to a value indicating the agent preferences over resources. A preference is a

value ripref ∈ [0, 1] that indicates the importance of a resource r, with 0 and 1 being the

lowest and highest preference, respectively. Moreover,
∑

ri∈domP P(ri) = 1.

Example 8 In our example, agent A has a belief corresponding to the cause-effect rela-

tionship, detailed in Example 7. It has three plans, namely duct_tape_plan, towel_plan,

and bucket_plan, each of them being able to achieve the goal ceiling_leak. The preference

function P gives A’s preferences over the use of resources cost and time, which are 0.3

and 0.7, respectively, thus {cost 7→ 0.3, time 7→ 0.7}.

This description of extended BDI agents allows us to derive the extended BDI

architecture, shown in Figure 4.2. It details the different components that comprise an

extended BDI agent. Modules comprising the reasoning cycle are detailed next.

4.3 Customised Reasoning Cycle

In the previous section, we focused on detailing the agent structure. We now focus

on detailing its behaviour at runtime, by customising steps of the BDI reasoning cycle.

48

Figure 4.2: The Extended BDI Architecture.

Beliefs

Intentions

Desires

Belief
Revision
Function

Action
Output

Sensor
Input

Plans

Preference
Function

Cause-Effect
Knowledge

Model

Context
Conditions
Context

Conditions
Context
Condition

Context
Conditions
Context

Conditions
Plan

Required
Resource

Context
Conditions
Context

ConditionsAction

Context
Conditions
Context

Conditions
Operation
Constraint

Objective
Function

Action
Selection
Function

Filter
Function

Option
Generation
Function

Resources

This cycle can be generally described as an iterative sequence of steps performed by the

belief revision, option generation, filter and plan selection functions.

To provide agents with the required behaviour to deal with problems and their

causes, functions of this reasoning cycle must be customised. First, in order to choose

among plans, including remedial ones, our plan selection function chooses for execution

the plan that satisfies goal constraints and, at the same time, contributes most for the sat-

isfaction of agent preferences over resource consumption. Second, our option generation

function is able to identify, evaluate and generate goals for a cause and its factors. Note

that the first function is focused on constrained goals, while the second takes into ac-

count causal relationships. In this way, we may have constrained goals with no associated

cause-effect relationship, or traditional goals with cause-effect relationships. However,

their combination is required for addressing our target situations.

49

4.3.1 Plan Selection

With a set of intentions, which are goals to be achieved, an agent must choose

suitable plans to be executed. A single plan is chosen for each intention in an iteration of

the reasoning cycle. Our plan selection function performs two key steps. The first selects

a set of candidate plans and then, from these, the second step chooses the one that best

satisfies preferences over resource consumption.

Definition 10 (Candidate Plan) A plan p is candidate plan of a goal g, candidate(p, g),

if it (i) has all its context conditions satisfied by the current context, i.e. for all pre ∈ Pre,

pre must be an agent true belief; (ii) can achieve g, i.e. g ∈ G; and (iii) satisfies all its

operation constraints C, i.e. for all c ∈ C,Rreqp satisfies c, if g is a constrained goal.

Example 9 Table 4.1 details the plan required resources of the three plans of our running

example, for each considered resource. No plan has context conditions, they all achieve

the goal ceiling_leak, and Alice has an operation constraint cost < $5. Therefore, the set

of candidate plans of this goal is {duct_tape_plan, bucket_plan}.

Table 4.1: Required Resource of Agent A’s Plans.

duct_tape_plan towel_plan bucket_plan

time 600 120 150
cost $0.5 $6.0 $0.0

Plan preconditions and operation constraints are both used to discard plans that are

not candidates to achieve a given goal. However, it is important to highlight that they are

semantically different. The former is used to indicate the requirements needed for a plan

to be executed, while the latter specifies the conditions in which a goal must be achieved.

After the selection of candidate plans, a utility value associated with resource con-

sumption is assigned for the remaining plans. We assume that the amount of resource

consumed by a plan has a linear relationship with the promoted utility value, which is in

the range [0, 1]. Therefore, for each resource over which an agent has preferences, i.e. for

each r ∈ domP , we normalise the range of plan required resources, considering plans

that can achieve the given goal, to the range of utility values. This normalisation takes

into account the goal objective function. If the resource is associated with min, the lowest

and highest required resource are associated with 1 and 0 utility values, respectively and,

the opposite, if it is associated with max. If the objective function is undefined for a given

50

resource, the utility value of that resource is 0 for all plans. In order to obtain plan utility,

a weighted sum is calculated considering the agent preference function as weights. This

is shown in the following equation, which gives the utility values of a plan p.

U(p) =
∑

r∈domP

P(r)× T(Rreqp(r)) (4.1)

where T is the function that normalises the plan required resource. Finally, our plan

selector PSel chooses for execution the plan that has the highest utility value, as follows.

PSel(gc,P) = argmax
p∈Candidates(P,gc)

U(p) (4.2)

where gc is a constrained goal, Candidates(P, gc) gives the candidate plans of gc, i.e.

p ∈ P, such that candidate(p, gc).

Example 10 Considering the plans and their required resources to achieve ceiling_leak,

described in Table 4.1, the range of possible values is [120, 600] for time. Therefore, after

normalisation and considering the need for minimising time consumption, duct_tape_plan

has a required resource value equals to 0.0, i.e. the lowest desirable time possible, while

bucket_plan has a required resource value equals to 0.9. Remember that the time re-

quired by bucket_plan is 150s, which is very close to the best time possible (120s from

towel_plan). Given that the objective function is undefined for the resource cost, it is not

taken into account. With respect to U , the two candidate plans have the following utilities,

considering preferences over resources: U(duct_tape_plan) = 0.3×0.0+0.7×0.0 = 0.0,

and U(bucket_plan) = 0.3 × 0.0 + 0.7 × 0.9 = 0.6. The selected plan is thus the

bucket_plan plan.

Our plan selection function thus selects a plan that best satisfies a constrained goal.

This selection process is similar to existing plan selection approaches satisfying other

criteria (FACCIN; NUNES, 2015). In our proposal, our plan selection function is used

in combination with the goal generation function to provide a remedial behaviour. The

selected plan may be a plan that can simply reach the achievement or test goal associated

with this goal, or may also address associated causes, if this goal is associated with a

cause-effect relationship. The former would be a remedial plan, which can be selected

considering preferences and required resources. However, if it is selected, the cause must

still be addressed, and this is done with our goal generation function, as detailed next.

51

4.3.2 Goal Generation

The option generation function is responsible for managing agent goals. In our

technique, this function also manages the tracking of goals associated with effects that

have a cause. By performing this task, it is able to generate goals associated with cause

factors and to conclude (based on them) whether a problem has been fully resolved. To

keep track of the effect, cause and cause factors, we use a structure internal to the rea-

soning cycle, which is defined as follows. For simplicity in the explanation, we assume

that effect and cause factors are logical propositions (a fact) instead of logical predicates.

However, the approach can be generalised for covering the latter.

Definition 11 (Cause-effect Problem) A cause-effect problem ceP(e) of an effect e is a

tuple 〈ge,CFS, ceES〉, where ge is an achievement goal in the form !¬e; CFS is a set of

cause-factor status 〈fact, si, su, ?g, !¬g〉, where fact is a possible cause factor of e ac-

cording to the cause-effect relationship ceR(e), si ∈ {true, false, nil} is the initial state,

su ∈ {true, false} is an updated state, ?g is a generated test goal, and !¬g is a generated

achievement goal; and ceES is the problem end state.

The key idea is that, when an achievement goal that focuses on dealing with the

effect of a problem is added, a cause-effect problem is created to keep track of it. Based

on the cause-effect relationship, all possible cause factors have their status monitored.

si stores whether a cause factor holds, at the first time that this information is known.

For example, when adding the ceiling_leak goal, Alice may already know that there is a

broken pipe. In this case, si becomes true, without searching whether broken_pipe holds.

su stores whether the state of the cause factor changed since its initial state is known.

This is important because, if a non-remedial plan that also had as postcondition ¬fact was

performed to achieve ge, it is possible to infer that the cause factor fact was already dealt

with. If this was not the case, goals to investigate (?fact) and address (!¬fact) the cause

factor must be generated, and these are stored in ?g, !¬g, respectively. Whenever the

state of fact changes, su is updated. Therefore, if other effects with a shared cause factor

already addressed it, no goal is generated to do it again.

The idea described above is shown in our option generation function presented

in Algorithm 1. Before detailing our algorithm, we introduce the definition of sets of

elements that are used throughout this section. They are defined in Table 4.2, which also

specifies the possible states available for goals and cause-effect problems. Moreover, the

52

Table 4.2: Status Set Descriptions.

Set Set Description Set Elements Element Description

GS
The set of all possible
statuses of a goal

achieved The goal has been achieved

unachievable The goal cannot be achieved

noLongerDesired The goal is no longer desired

nil
The agent is trying to achieve
the goal

CEES

The set of all possible end
states of a cause-effect
problem

unsuccessful
Neither the effect or its cause
are solved

causePartiallyResolved
The effect is not solved and
its cause is partially ad-
dressed

causeResolved
The effect is not solved and
its cause is completely ad-
dressed

mitigated
The effect is solved and its
cause is not addressed

partiallyResolved
The effect is solved and its
cause is partially addressed

fullyResolved
The effect is solved and
its cause is completely ad-
dressed

algorithm uses a set of auxiliary functions that are described in Table 4.3. In order to

facilitate its understanding, we present in Figure 4.3 an overview of this algorithm in

a UML activity diagram, focusing solely on what happens with achievement goals that

focus on dealing with the effect of a problem. In each execution of the BDI reasoning

cycle, this algorithm is executed. First, when a goal that is an effect according to a cause-

effect relationship is added, a cause-effect problem is created associated with it (Activity

1, lines 2–5 of Algorithm 1). Then, for this new added cause-effect problem and all

existing others, the cause factor status are updated (Activity 2, lines 7–16 of Algorithm 1).

Next, the status of the goal associated with the effect is evaluated (Activity 3, line 17 of

Algorithm 1). If this goal did not reach a finished state—see the finished(gS) function,

in Table 4.3—no goals are generated. Otherwise, the cause is evaluated (Activity 4, lines

18 and 28 of Algorithm 1). If the cause is unknown, test goals associated with cause

factors for those with an unknown initial state are generated, if needed (Activity 5, lines

32–34 of Algorithm 1). If the cause is known, there are two possibilities. The first is

that achievement goals associated with cause factors have not been generated or have

53

not finished yet and, in this case, they are created if needed (Activity 6, lines 23–26 of

Algorithm 1). The second is that they all reached a finished state. In this case, the cause-

effect problem reached an end state, and this state is updated according to the possibilities

described in Table 4.4 (Activity 7, lines 19–21 of Algorithm 1). Finally, if after searching

for the cause, it was not possible to diagnose it, the end state is updated accordingly

(Activity 7, lines 28–29 of Algorithm 1).

Algorithm 1: GenerateGoals(G,B)
Input: G: set of agent goals, B: set of agent beliefs
Output: G: updated set of agent goals

1 foreach !¬g ∈ G do
2 if ∃ ceR(g) ∧ @ceP(g) then
3 ceP(g)← 〈!¬g,�, nil〉;
4 foreach ci ∈ causeFactors(ceR(g)) do
5 ceP(g)[CFS]← ceP(g)[CFS] ∪ 〈ci, nil, nil, nil, nil〉
6 if ∃ ceP(g) then
7 foreach cf ∈ ceP(g)[CFS] do
8 if cf [si] = nil then
9 if cf [fact] ∈ B then

10 cf [si] = true;
11 else if ¬cf [fact] ∈ B then
12 cf [si] = false;
13 cf [su] = false;
14 else
15 if (cf [si] = true ∧ ¬cf [fact] ∈ B) ∨ (cf [si] = false ∧ cf [fact] ∈ B)

then
16 cf [su] = true;
17 if finished(goalStatus(!¬g)) then
18 if knownCause(ceP(g), ceR(g)) then
19 if causeFinished(ceP(g)) then
20 ceP(g)[ceES]← endState(ceP(g));
21 ceP(g)← nil;
22 else
23 foreach cf ∈ ceP(g)[CFS] do
24 if cf [su] = false ∧ cf [!¬g] = nil then
25 cf [!¬g]←!¬cf [fact];
26 G← G ∪ {cf [!¬g]};
27 else if causeNotFound(ceP(g)) then
28 ceP(g)[ceES]← endState(ceP(g));
29 ceP(g)← nil;
30 else
31 foreach cf ∈ ceP(g)[CFS] do
32 if cf [si] = nil ∧ cf [?g] = nil then
33 cf [?g]←?cf [fact];
34 G← G ∪ {cf [?g]};
35 return G;

54

Figure 4.3: Option Generation Activity Diagram.

1. Build cause-effect
status

[no cause-effect status]

[otherwise]

2. Update status of
cause factors3. Evaluate effect goal

[effect goal unfinished]

[effect goal finished]

4. Evaluate cause

[unknown cause]

[cause not found]

[known cause]

[cause factor goals finished]

[cause factor goals unfinished] 6. Generate cause factor
achievement goals

7. Update cause-effect
problem end state

5. Generate cause factor
test goals

Example 11 We assume, in our running example, that the constrained goal ceiling_leak

is achieved by the bucket_plan plan, selected with our plan selection function. Such

constrained goal has as goal !¬ceiling_drip, which has an associated cause-effect rela-

tionship ceR(ceiling_drip). Due to this, a cause-effect problem ceP(ceiling_drip) is cre-

ated. After ceiling_leak is achieved, two test goals are generated: ?broken_pipe and

?cracked_roof _tile. Assuming that both goals were achieved, and only broken_pipe is

true, an achievement goal !¬broken_pipe is generated. If this goal is achieved, the end

state of our cause-effect problem is Fully Resolved.

4.4 Evaluation

Given that we presented both our extended architecture and customised reasoning

cycle, we now focus on the evaluation of the proposed technique. We first briefly de-

scribe how we implemented it as an extension of an existing BDI agent platform, namely

BDI4JADE (NUNES; LUCENA; LUCK, 2011). Then, we describe the procedure of our

55

Table 4.3: Description of Auxiliary Functions.
Predicate Logic Expression Description

finished(gS) finished(gS) =

{
true, if gS ∈ GS \ {nil}
false, otherwise

It is true when a goal
g has reached a finished
status, that is, it is true,
if gS 6= nil, or false, oth-
erwise.

knownCause(ceP(g), ceR(g))

(∀ cf ∈ ceP(g)[CFS], cf [si] 6= nil)∧
(∀ f ∈ ceR(g)[M]∃ cf ∈ ceP(g)[CFS] | cf [fact] = f ,

cf [si] = true)∧
(∀ ac ∈ ceR(g)[Ac], ac[min] ≤
| {cf : cf ∈ ceP(g)[CFS]∧

cf [fact] ∈ ac[A]∧
cf [si] = true} |

≤ ac[max])

It is true when the cause
of an effect was iden-
tified. It means that
the initial state of all
cause factors are known,
mandatory cause factors
are true, and those al-
ternative satisfy the car-
dinality of an alternative
set.

causeNotFound(ceP(g))
∃ cf ∈ ceP(g)[CFS], cf [si] = nil∧

finished(goalStatus(cf [?g])

It is true when it was
not possible to iden-
tify the cause of an ef-
fect. It means that there
are cause factors with
an unknown initial state,
even after associated test
goals reached a finished
status.

causeFinished(ceP(g)) ∀ cf ∈ ceP(g)[CFS] : cf [su] = true

It is true when the up-
date state of all cause
factors that are actually
part of the cause is true.

(a)

Function Mathematical Expression Description

causeFactors(ceR(g))

{f : f ∈ ceR(g)[M]∨
f ∈ ceR(g)[O]∨
f ∈ ac[A], ac ∈ ceR(g)[Ac]}

Gives the set of all possible cause factors, in-
cluding those that are mandatory, optional and
alternatives within the alternative sets.

goalStatus(g) goalStatus(g) : G→ GS Gives the current status of a goal g.

endState(ceP(g)) endState(ceP(g)) = CEP → CEES
Gives the end state of a cause-effect problem.
Possible states are detailed in Table 4.4.

(b)

evaluation, followed by obtained results.

4.4.1 BDI4JADE Implementation

We implemented the proposed approach using BDI4JADE, a Java-based platform

for the development of BDI agents (NUNES; LUCENA; LUCK, 2011). This platform

was selected because it provides means of an easy extension of the functions comprising

the BDI reasoning cycle.

With respect to constrained goals, we added a new type of goal to the platform,

with the class ConstrainedGoal implementing the Goal interface of BDI4JADE.

56

Table 4.4: Cause-Effect Problem End States.

End State Logic Expression Description

Effect Goal Cause / Cause Factors

Unsuccessful

(goalStatus(g) ∈ GS \ {achieved, nil})∧
((causeNotFound(ceP(g))∨

(∀ cf ∈ ceP(g)[CFS], cf [Su] = false))

Unachievable
or No longer
desired

Cause not found or none of the
cause factors were achieved.

Cause Partially Resolved

(goalStatus(g) ∈ GS \ {achieved, nil})∧
(¬causeNotFound(ceP(g))∧

(∃ cf ∈ ceP(g)[CFS], cf [Su] = false)∧
(∃ cf ∈ ceP(g)[CFS], cf [Su] = true)

Cause identified and some of the
cause factors were achieved.

Cause Resolved

(goalStatus(g) ∈ GS \ {achieved, nil})∧
(¬causeNotFound(ceP(g))∧

(∀ cf ∈ ceP(g)[CFS], cf [Su] = true)

Cause identified and all of the cause
factors were achieved.

Mitigated

(goalStatus(g) = achieved)∧
((causeNotFound(ceP(g))∨

(∀ cf ∈ ceP(g)[CFS], cf [Su] = false))

Cause not found or none of the
cause factors were achieved.

Partially Resolved

(goalStatus(g) = achieved)∧
(¬causeNotFound(ceP(g))∧

(∃ cf ∈ ceP(g)[CFS], cf [Su] = false)∧
(∃ cf ∈ ceP(g)[CFS], cf [Su] = true)

Resolved
Cause identified and some of the
cause factors were achieved.

Fully Resolved

(goalStatus(g) = achieved)∧
(¬causeNotFound(ceP(g))∧

(∀ cf ∈ ceP(g)[CFS], cf [Su] = true)

Cause identified and all of the cause
factors were achieved.

In addition, the classes ResourcePreferences and PlanRequiredResources

were implemented to represent preferences over resources and required resources of plans,

respectively. The former is added as an agent belief, while the latter as plan metadata

(available in the platform). These and other associated classes are used in a customised

plan selection strategy (an extension point of the platform). We also created the classes

needed to model the cause-effect knowledge model, which is also added as an agent be-

lief. Such classes are used in an implemented option generation function, another platform

extension point.

All these described components are added as part of a capability. BDI4JADE uses

this concept to modularise agents. To implement a BDI agent that adopts the proposed

technique, this capability must be instantiated and the knowledge regarding preferences

over resources, plan required resources and cause-effect relationships must be provided.

4.4.2 Scenario and Procedure

The proposed technique aims at allowing agents to independently choose appro-

priate plans to remediate problems and solve their causes. In order to evaluate it, we

57

selected an existing solution for combating distributed denial-of-service (DDoS) attacks.

This solution is based on the D2R2 + DR strategy (STERBENZ et al., 2010) and manually

implements the remedial behaviour we aim to automate.

This solution begins by initially observing an abnormal network traffic in a net-

work link through a link monitor. This is a problem that should be addressed. Before

investigating the cause of the abnormal traffic, it is essential to mitigate its effects, other-

wise servers may become unavailable. Therefore, the link is limited to reduce the amount

of traffic. The first step towards the cause diagnosis is to identify the victim of the at-

tack. For this, an anomaly detection component makes a statistical analysis of the traffic.

Now, that part of the cause was identified, the traffic destined to the attack victims is re-

duced. The second step towards the cause identification is to identify the malicious flows

of the attack, i.e. not only the victim should be known, but also the source of the attack.

When this is done, malicious flows can have their traffic limited, and this completes the

resolution of the problem.

The described solution has a police-based (SCHAEFFER-FILHO et al., 2012) and

a multiagent (NUNES; SCHARDONG; SCHAEFFER-FILHO, 2017) implementation.

To evaluate our proposal, we implemented that solution using our described BDI4JADE

extension. This allows us to: (i) demonstrate that agents can autonomously and flexibly

deal with challenging scenarios by remediating and handling the cause of problems; (ii)

assess the impact of the proposed domain-independent technique in the performance; and

(iii) measure the reduction of development effort.

4.4.3 Results and Analysis

Our implemented solution to combat DDoS attacks used the previous multiagent

implementation as a baseline (NUNES; SCHARDONG; SCHAEFFER-FILHO, 2017).

This was performed in order to have similar plans, so that variance in our measurements

would not be due to plan body implementations or other details not related to the auto-

mated coordination of agent actions. Such a solution comprises five agents interacting

with each other, each of them with distinct capabilities. They are represented in Fig-

ure 4.4. We next describe how it was implemented.

Initially, the causal relationships between elements of the scenario were identified

and instantiated in a cause-effect knowledge model, which is represented in Figure 4.5

together with plans to reach test and achievement goals. This model was later added to

58

Figure 4.4: Multiagent scenario to combat DDoS attacks.

IP Controller Flow
Controller

Rate LimiterLink
Controller

Flow
Exporter

Agent

Dependency

the Link Controller agent. The different stages of the solution described above

are modelled as two cause-effect relationships. A detected abnormal traffic in a link

(overUsage(link)) can be due to an anomalous usage, meaning that exists at least one

server receiving abnormal incoming traffic (anomalous(IP)). This in turn can be due

to a malicious attack, which means that there exists at least one flow that is a threat

(threat(flow)). This model together with the plans work in the following way. First,

when the traffic in a link is above a threshold, a ¬overUsage(link) goal is added. Then,

a cause-effect problem is created and the LimitLink plan is executed to achieve the

goal. Next, because of the cause-effect problem, a test goal is generated to verify the

cause, and the AnaliseLinkStatistics plan executes, resulting in a set of, if any,

servers receiving anomalous traffic. This leads to the creation of achievement goals to

limit the server traffic (LimitIP)—as stated before, here we made a simplification that

causes are facts, but the approach can be generalised to many cause factor instances, as

the approach is implemented. Finally, for each anomalous(ip), its cause is diagnosed by

the ClassifyFlow plan, and flows that are threats are resolved by the LimitFlows

plan.

This implemented behaviour follows the solution as proposed, in which a remedial

plan is always performed. We now show a benefit of our approach that provides agents

with flexible behaviour by simply informing preferences over resources. Assume that,

in order to achieve the ¬overUsage(link) goal, there are two additional plans: (i) one

that takes the time to analyse the traffic, find target servers, and only limits the traffic to

these servers (FindLimitIP); and (ii) another to do nothing, assuming that the abnor-

mal traffic was temporary (DoNothing). Then, we specify resources required by the

plans. The first is time taken to execute (time), the second is associated with how much

network bandwidth will become unavailable (Network Availability), and the last is asso-

59

Figure 4.5: DDoS Cause-Effect Model.

[!]

[?]

threat(flow)

[!]

[?]
anomalous(IP)

[!]

[!]

[!]

overUsage(link)Time = 5
Network Availability = 0.6
Vulnerability = 0.5

LimitLink

Time = 30
Network Availability = 0.8
Vulnerability = 0.5

FindLimitIP

Time = 0
Network Availability = 1.0
Vulnerability = 1.0

DoNothing

AnaliseLinkStatistics

LimitIP

ClassifyFlows

LimitFlows

Fact
Plan

Can achieve
test goal

[!] Can achieve
achievement goal

[?]

ciated with how much the network will become vulnerable (Vulnerability). Depending

on preferences, and possibly constraints, specified for the ¬overUsage(link) goal, which

is then a constrained goal, different remedial plans can be selected. Moreover, note that

the approach is robust enough for not searching for known causes. If the FindLimitIP

plan is selected and executed, as result of its execution, which includes the analysis of the

link statistics, anomalous(IP) would already be known. Therefore, in this case, the cause

becomes known while remediating the problem, being immediately addressed after that.

Finally, we compare our approach with our baseline from two perspectives: per-

formance and development effort (estimated by lines of code). The baseline implementa-

tion is a project that has 3,260 lines of code (LOC). We limited ourselves to reengineer

only the behaviour associated with the reasoning automated by our approach. The por-

tion of code that implemented this reasoning (with goal generation, plans, etc.) has 733

LOC. Our application implementation, using our BDI4JADE extension, consists of 553

LOC. Consequently, our approach was able to reduce 24.5% of the development effort

in terms of LOC. Note that such behaviour that was automated is typically complex, thus

hard to implement and maintain. We also assessed if, by providing a domain-independent

solution, agent performance would decay. For this purpose, we used synthetic data to

simulate a DDoS attack scenario to be dealt with and compared the executing time of

both implementations. As shown in Table 4.5, which summarises obtained results, the

executing time of the simulation of both implementations is similar—our approach took

only 19 ms more to execute. It is important to highlight that the use of real data would

not impact the outcome of this experiment, given that it is directly associated with the

behaviour implemented within plan bodies, which is the same in both system versions.

60

Moreover, because of the deterministic behaviour of both implementations—there is only

one possible execution path—the presented results correspond to a single execution of

each of them. We in fact run the simulation multiple times, always obtaining the same

results.

Table 4.5: Evaluation Results.

Executing Time (s) Development Effort (LOC)

Baseline 82.086 733
Our approach 82.105 553

In summary, our approach is able to reduce the amount of code to be developed (in

terms of LOC) by approximately 25%, by providing a reusable solution that automates

the coordination of actions in order to remediate problems and handle their causes. More-

over, this domain-independent solution does not reduce system performance, despite its

generality. Although LOC is not a synonym of development effort, because code varies

in complexity, we emphasise that the code that is now automated by our approach is not

a trivial part of the implementation, due to the many conditions that should be considered

in the design and implementation of a remedial behaviour. Therefore, by automating the

reasoning about remedial actions, we potentially reduce the development effort, thus re-

ducing time-to-market and development costs. We do not expect a reduction of 25% of the

effort in any software project, given that the proportion between the reasoning about reme-

diation actions and other concerns to be implemented varies. However, some reduction in

effort is always expected. By suppressing the need for this reasoning to be manually im-

plemented in agents and multiagent systems, we also potentially improve maintainability

because this concern is typically implemented interleaved with the code that implements

the standard behaviour of plans. Therefore, our approach provides a better separation of

concerns.

4.5 Final Remarks

This chapter presented a technique that allows agents to handle challenging situa-

tions by autonomously coordinating the remediation of problems and the handling of their

causes. This technique is composed of structural and behavioural parts. The former con-

sists of an architecture, which extends traditional BDI agents by introducing the notions

of constrained goals, plan required resources and cause-effect relationships. The latter

61

provides the specification of two abstract functions of the BDI reasoning cycle, which are

the plan selection and goal generation functions. In order to evaluate the proposed tech-

nique, we considered an existing solution for combating DDoS attacks that remediates

their effects before addressing their causes. By using our approach, we demonstrated that

our extended BDI agent can autonomously select appropriate plans to deal with the attack

and generate goals to diagnose and resolve its cause. Moreover, we compared the per-

formance of our technique with the existing implementation of this solution, and results

indicate that our approach reduces development effort and does not reduce performance

due to the automated reasoning made at runtime. The proposed technique thus provides

a ready-to-use solution in which agents are provided with a sophisticated and flexible

remedial behaviour, promoting software reuse in software agents.

Despite the automated coordination of actions provided by our approach, the cause-

effect knowledge model that guides the root cause diagnosis must still be manually pro-

vided. This task is not trivial and, therefore, would benefit from further automation. The

next chapter introduces a technique that provides such causal information at runtime by

taking advantage of particular aspects of multiagent systems.

62

63

5 ROOT CAUSE DIAGNOSIS

The technique for coordinating the remedial behaviour, which is presented in

Chapter 4, allows agents to remediate problems and diagnose their causes in an au-

tonomous way. However, that technique assumes that the causal knowledge required to

guide the diagnose operation is provided in advance by experts. In this chapter, we intro-

duce a solution that allows agents to build this knowledge at runtime. This solution takes

advantage of specific characteristics of multiagent systems (MAS) and, when integrated

to our technique for managing agent actions, reduces the need for human involvement

while providing MAS with the ability to adapt and keep operating with the expected qual-

ity. Our decentralized solution consists of two main elements: (i) an interaction protocol

that specifies agent roles and how they interact; and (ii) a set of algorithms that define

how these agents behave in order to diagnose the problem causes to be repaired.

5.1 Problem and Definitions

As introduced in Chapter 1, a MAS is a collection of autonomous components

(agents) that are situated in an environment and are able to interact and collaborate by

consuming and providing sets of services (JENNINGS, 2001). We assume that, to exe-

cute their tasks with the expected quality, the agents require the services they consume to

satisfy a set of predefined quality requirements, which are expressed in terms of measur-

able features and their range of acceptable values. An example of a quality requirement

expressed in natural language is: “no service may have response time greater than 10

ms.” When a quality requirement is not satisfied, there is a violation that is considered

an abnormality or, alternatively, a problem. Concepts associated with services and their

quality are defined as follows.

Definition 12 (Service) A service s ∈ S is an action that can be performed by an agent.

Definition 13 (Quality Feature) A quality feature q ∈ Q is a measurable property asso-

ciated with a service.

Definition 14 (Quality Requirement) Quality requirement R : Q 9 K is a function

that maps a quality feature q ∈ Q to a constraint K, which denotes the requirements to

which a s must satisfy with respect to each q for which R is defined. K is expressed with

64

the following grammar.

K ::= (K ∧ K) | (K ∨ K) | (¬K) | e

e ::= (q op v)

op ::=> | ≥ |< | ≤ |= | 6=

where q is the mapped quality feature and v is a value v ∈ R.

Agents interact through the exchange of messages. Our proposal considers two

types of messages. Request messages are sent by agents in order to ask for services

or particular information. Inform messages, in turn, are sent in order to either reply to

requests or provide information that was not previously required. Messages with no re-

cipient specified are broadcast to every component within a system.

Definition 15 (Message) A message is a tuple 〈idm, idc, cs, cr, type, s, cont〉, where idm is

the identifier of the message; idc is the identifier of the conversation of which the message

is part; cs is the message sender; cr is the message receiver; type ∈ {inform, request} is

the type of the message; s is the service that may be associated with the message, if any;

and cont is the message content, which can be of any type.

Agents use services provided by other agents to make their own services available.

As a result, when there is an abnormality, there are three possible points of failure. An

abnormality cause can be located at the agent itself (i.e. an internal cause), at its service

providers, or at their communication channel (both being external causes). As an exam-

ple, consider the system depicted in Figure 5.1a in which agents (represented as circles)

interact by requesting and delivering services (dependencies between agents are repre-

sented as traced arrows from clients to their providers). To provide service a, component

pa depends on services b and c, consumed from pb and pc, respectively. In order to deliver

their own services, pb and pc, in turn, rely on services from other agents. In this context,

an abnormality presented by pa may not be necessarily caused by that component. In-

stead, its dependency on services from pb and pc indicates that these providers, or even

those from which they consume services, could also be associated with the problem.

To identify the cause of an abnormality and be able to remediate and solve it, the

system is required not only to recognise the existence of these component interactions,

but also to evaluate which of them originated the abnormal behaviour. In a simple sys-

tem, such as the one described above, it is possible to maintain a cause-effect knowledge

65

Figure 5.1: A MAS in which components interact with each other by consuming and
providing services. (a) Agent pa relies on services b and c from agents pb and pc, which,
in turn, consume services from other agents. (b) Agent pa replaces service provider pb

with pb
′.

pa

pcpb

Legend
Component
Dependency

(a)

pa

pcpb'

(b)

model (see Chapter 4) that contains this causal information. For instance, if pa replaces

service provider pb with pb
′ (Figure 5.1b), this new provider becomes a potential cause

of further abnormalities presented by pa. Consequently, this new dependency must be

included in the existing causal model while the previous one must be removed from it as

it is no longer a possible cause of abnormality. When we consider dynamic, large scale

systems, however, maintaining such cause-effect knowledge model in a centralised way

is impracticable, either because of the amount of dependencies to be managed, or their

dynamic evolution. Our goal is thus to autonomously diagnose the root cause of abnor-

malities and use this information to remediate and solve them in order to comply with

predefined quality requirements.

5.2 Cooperative Diagnosis and Solution of Problem Causes

To achieve this goal, we propose a technique that, when integrated with the auto-

mated management of agent actions introduced in Chapter 4, allows agents to collaborate

in order to diagnose and further remediate and solve the root cause of detected abnormal-

ities. Next, we present an overview of our solution.

5.2.1 Overview

Our proposed technique includes an interaction protocol and the specification of

algorithms for agents to be able to play the protocol roles to diagnose the cause of abnor-

66

malities. We overview our interaction protocol with an example presented in Figure 5.2,

which illustrates a scenario where there is an abnormality caused by a service provider

(an external cause). In this scenario, an agent c consumes a service a, which must comply

with a given quality requirement R(q). This service is provided by an agent pa, which

consumes services b and c from agents pb and pc, to deliver it. If there is a degradation

of the quality level of the service provided by pb, it is likely that this is propagated to

the services provided by other agents that rely on pb’s services. Therefore, agents pa, n

and n′ are affected. In particular, as a consequence, pa also delivers degraded services

(Figure 5.2a).

Assume that c detects that the service it consumes from pa violates R(q). This

causes c to send a message to pa to notify the occurrence of such an abnormality (Fig-

ure 5.2b). Receiving this notification raises on pa the need for normalising its operation.

The core of our idea is that, to fulfill this need, the notified component carries out a step-

wise cause identification. It first verifies whether the abnormality has an internal cause. If

there is no evidence of internal issues, a second verification step is performed to identify

which external source is the cause of the problem. By identifying the source of the abnor-

mality, pa is able to remediate and, if possible, definitely solve it, thus preventing further

quality requirement violations. In our example, pa has no evidence that the abnormality

comes from internal sources and, therefore, self-healing mechanisms are unable to repair

it. Instead, the issue is identified as coming from the consumption of service b. In this

case, pa remedies it by replacing the existing provider pb with pb
′ and informing c that

its operation was normalised (Figure 5.2c), while proceeding to the second step of the

verification activity.

Next, pa takes into account the perception of cooperating agents to determine the

external cause of abnormality. To carry it out, pa broadcasts a message requesting agents

that also consumed service b from pb to inform, based on their history, the likelyhood of

receiving an anomalous reply from that provider. In our example, this request is replied by

n and n′ (Figure 5.2d). After evaluating the obtained replies, pa can identify the problem

cause and handle it accordingly. If it does not detect any abnormality coming from the

suspicious agent, the communication link between them is treated as the cause, and it can

act to repair it. However, if there is evidence that pb caused the abnormality, pa sends

a message notifying that agent of the issue (Figure 5.2e). Receiving this notification

triggers on pb the same need for normalising its operation. Once it occurs, pa is informed

(Figure 5.2f) and becomes able to start using service b from its previous provider again,

67

thus restoring the system to its initial state (Figure 5.2g). We detail the protocol that

specifies how these agent interactions occur in the next section.

Figure 5.2: An overview of system behaviour implementing our proposed solution. (a)
Agent pb presents an abnormal behaviour that affects agents that depend on it. (b) Agent c
perceives a violation on a quality requirement and notifies agent pa. (c) Agent pa replaces
provider pb with pb

′ and informs c that its operation is normalised. (d) pa broadcasts a
request of information, which is replied by n and n′. (e) pa notifies pb of its perceived
abnormal behaviour. (f) pb informs pa that its operation is normalised. (g) pa replaces pb

′

with pb and the system returns to its former state.

pa

c

pcpb

n n'

Legend
Component
Dependency
Message

(a)

pa

c

pcpb

n n'

(b)

pa

c

pcpbpb'

n n'

(c)

pa

c

pcpbpb'

n n'

(d)

pa

c

pcpbpb'

n n'

(e)

pa

c

pcpbpb'

n n'

(f)

pa

c

pcpb

n n'

(g)

5.2.2 Interaction Protocol

Our protocol allows agents to exchange messages in order to collaboratively di-

agnose the cause of a service abnormality, assuming that agents use services provided by

68

other agents. Figure 5.3 depicts the interaction among agents. The request of a service

is done by client agents, when they send a request-service message, which spec-

ifies the service being requested. This request can be sent to many provider agents and

a negotiation may take place to choose a provider. However, this can be done with ex-

isting protocols, such as the FIPA Contract Net Protocol (AGENTS, 2002). Our protocol

thus focuses on the agent that actually provided the service. When the service has been

completed, the provider replies the client request with an inform-service message

containing the output of the corresponding service. During this exchange of messages,

clients collect information that may be used later to identify abnormalities within the sys-

tem (createTrace() and updateTrace()).

When the client detects a requirement violation on a consumed service, an inform-

abnormality message is sent to the corresponding provider, notifying it of the qual-

ity feature and conversation in which the abnormal behaviour occurred. The provider

replies this notification with an inform-normality message after it has taken cor-

rective measures to address the abnormality. When this reply is sent depends on the

result of the activity performed to verify whether the abnormality has an internal origin

or not (internalVerification()). If it was caused by an internal problem, the

inform-normality message is sent right after the execution of self-healing actions

(selfHealing()). Otherwise, the message is sent after external causes are mitigated

(mitigate()). This mitigation process occurs during the second step of the verifica-

tion activity (externalVerification()), where the provider consults cooperating

agents with the aim of determining which possible external cause originated the abnor-

mality. The consultation is made through a request-probability message broad-

cast with the identification of a suspicious agent, the service under investigation, and the

quality feature being considered. Recipients can reply with a refusal or an inform-

probability message, until every agent replies or a deadline expires. The inform-

probability message contains the likelihood of getting an anomalous reply from the

suspicious agent when requesting the given service (computeProbability()).

From received replies, the provider computes a score that allows it to identify

the external cause of abnormality. If the score falls below a given threshold, the com-

munication link is considered the cause and is handled accordingly (repairLink()).

Otherwise, if the score is above the threshold, the provider plays the role of a client,

instantiating the protocol in a new context.

69

Figure 5.3: An interaction protocol between components of a system. Clients request services with request-service messages, which are
replied by providers with corresponding inform-service messages. Clients notify abnormal components of quality requirement violations
with inform-abnormality messages, which are replied with inform-normality messages after abnormalities are handled. Providers are
able to issue request-probability messages to cooperating components, which may reply with inform-probability messages.

alt

alt

Client

request-service

inform-service

inform-abnormality

inform-normality

request-probability

inform-normality inform-probability

Provider Cooperating
Component

Abnormal
Component

inform-abnormality
inform-normality

[Internal problem]

[External problem]

[Below threshold]

[Above threshold]

computeProbability()

internalVerification()

selfHealing()

externalVerification()

mitigate()

repairLink()

createTrace()

updateTrace()

70

5.2.3 Agent Behaviour

According to our protocol, an agent can act as (i) a client, by requesting services

and collecting information; (ii) a provider, by delivering services and carrying out the

process of diagnosing, remediating and solving abnormalities; and (iii) a cooperating

agent, by supporting providers when required. Next, we detail these three roles.

5.2.3.1 Client Agent

An agent plays the role of a client when it requests services from providers. During

this interaction, it collects data that can also be used later when playing other roles. These

data, which include information related to the performance of its providers regarding

quality requirements, are collected and stored in structures named interaction traces.

Definition 16 (Interaction Trace) An interaction trace t is a tuple 〈m,Mq, time〉, where

m is the traced message;Mq : Q9 R is a partial mapping of quality features and their

measured values; and time is the time at which the trace was recorded.

Definition 17 (Agent) An agent a is a tuple 〈S,Q,R, T 〉, where S is the set of services

it is able to provide; Q is the set of quality features it can measure; R corresponds to its

quality requirements from the services it consumes; and T is the set of interaction traces

collected by this component.

An agent can only measure the quality of a service by using it. Therefore, only

request-service and their corresponding inform-service messages are con-

sidered for tracing. After dispatching a service request, the client creates a new interaction

trace through the createTrace() operation, and adds it to its set of traces. A recently

created trace contains only the message with which it is associated. As an example, let

agent pa from Figure 5.2 be defined as

pa = 〈{a}, {response_time},

R(response_time) = (response_time ≤ 15),�〉.

Let m0 = 〈#1,#1, pa, pb, request, b, null〉, be the message sent by pa at instant 5 request-

ing service b from pb. The interaction trace t0 = 〈m0, null, null〉 is thus created and added

71

to pa’s set of traces, resulting in

pa = 〈{a}, {response_time},

R(response_time) = (response_time ≤ 15), {t0}〉.

We assume every agent has the mechanisms required to measure the performance of

providers regarding its quality requirements. Therefore, after receiving a reply to a ser-

vice request, the client updates the previously created trace with the measured provider’s

performance as well as the time at which the reply was received and, consequently, the

service was provided. It is done through the updateTrace() operation. In our ex-

ample, pa has a single quality requirement that states that consumed services must be

delivered (response_time) within 15 units of time. After receiving the reply from pb at

instant 12, pa updates its trace t0 to t0 = 〈m0,Mq(response_time) = 7, 12〉, indicating

that its request was fulfilled in 7 units of time. Constantly tracing their interactions allows

clients to build a dataset that represents the performance of their providers over time.

Clients also notify service providers of quality requirement violations. These no-

tifications can be either the result of a self-awareness mechanism or a reaction to a noti-

fication received by the client when playing the role of provider. While the former is not

the focus of this work, the latter is detailed next, as we describe the behaviour of provider

agents.

5.2.3.2 Provider Agent

An agent acting as a provider has the main goal of delivering services to clients

with the expected quality. It is done by replying to service requests with the corresponding

service output. However, when this goal is not achieved and the provider is notified that

a delivered service was provided with an abnormality, a new goal is generated in order to

normalise its operation.

In order to achieve this goal, the provider puts into action a strategy to diagnose,

remediate and solve the cause of the abnormality. As mentioned in Section 5.2.2, the

first step of this strategy comprises the internalVerification() activity, which

is responsible for checking if the abnormality was introduced by the provider itself. The

problem is considered to have an internal cause if, to deliver its service, the provider did

not consume any service supplied with a largely different performance than what was

usually recorded on its set of interaction traces. Algorithm 2 describes how this activity

72

is carried out. Auxiliary functions are presented in Table 5.1.

Algorithm 2: internalVerification(T, q, idc)

Input: The set T of interaction traces, the violated quality requirement feature q, the
identifier idc of the conversation in which the violation was perceived.

Output: A message informing that the agent operation is normalised.

1 Ia ← �;
2 T ′ ← getTraces(T, idc);
3 foreach t ∈ T ′ do
4 s← t[m][s];
5 p← t[m][cr];
6 time← t[time];
7 LMq ← getMeasurements(T, s, p, q, time);
8 if isAnomalous(LMq) then
9 idm ← t[m][idm];

10 Ia ← Ia ∪ 〈s, p, idm〉;
11 if Ia = � then /* Internal cause */
12 selfHealing();
13 broadcast inform-normality();
14 else /* External cause */
15 foreach 〈s, p, idm〉 ∈ Ia do
16 mitigate(s);
17 broadcast inform-normality();
18 score← externalVerification(s, p, q);
19 if score ≤ threshold then /* Link issue */
20 repairLink();
21 else /* Provider issue */
22 send inform-abnormality(q, idm);
23 receive inform-normality();
24 undo();

Initially, the traces recorded during the abnormal conversation idc are retrieved by

the getTraces(T, idc) function (line 2). Service s and its provider p are identified for

each trace, and the list of all measurements of quality feature q that were taken when

consuming s from p until the time the abnormal conversation occurred is retrieved (lines

4–7)—see getMeasurements(T, s, p, q, time) function in Table 5.1.

A statistical analysis of the resulting list of measurements is performed in or-

der to check whether p’s performance on the abnormal conversation idc can be classi-

fied as anomalous when compared to historical data. This analysis, executed within the

isAnomalous(LMq) function (line 8), applies a method called Tukey’s fences (TUKEY,

1977) to compute the lower and upper boundaries—the fences—that determine the range

of normal values from a sample. Any value laying outside these boundaries is considered

an outlier and, consequently, an anomaly. To compute these fences, this method takes as

input a list of values arranged in an ascending order and identifies its lower (Q1) and upper

73

Table 5.1: Description of Auxiliary Functions
Function Mathematical Expression Description

getTraces(T, idc)

{t : t ∈ T∧
m = t[m]∧

idc = m[idc]}

Gives the set of traces
recorded during con-
versation with identifi-
cation idc.

getMeasurements(T, s, p, q, time)

{Mq(q) : t ∈ T∧
m = t[m]∧
p = m[cr]∧
s = m[s]∧

Mq = t[Mq]∧
time ≥ t[time]}

Gives the list of mea-
surements of quality
feature q obtained
from service s deliv-
ered by provider p
before time time.

getTimes(T, s, p, time)

{t[time] : t ∈ T∧
m = t[m]∧
p = m[cr]∧
s = m[s]∧

time ≥ t[time]}

Gives the list of times
at which service s was
delivered by provider
p before time time.

(Q3) quartiles. Q1 corresponds to the median of the range of values below the median of

the entire sample, while Q3 stands for the median of the range of values above the median

of the entire sample. Equations 5.1 and 5.2 are then applied to calculate the lower (bl) and

upper (bu) boundaries, respectively.

bl = Q1 − 1.5 ∗ (Q3 − Q1) (5.1)

bu = Q3 + 1.5 ∗ (Q3 − Q1) (5.2)

The isAnomalous(LMq) function thus returns a boolean value that indicates if

the last measurement from LMq is lower than bl or greater than bu when the Tukey’s fences

method takes Ls
Mq

as input, being Ls
Mq

the result of sorting LMq in ascending order. As an

example, let a list of quality feature measurements LMq be LMq = (8, 7, 11, 8, 8, 9, 47).

In this list, Q1 is equal to 8, and Q3 is equal to 10. Therefore, according to Equations 5.1

and 5.2, bl = 5 and bu = 13. As a result, isAnomalous(LMq) would return true, as 47

is greater than the obtained upper boundary.

The interaction comprising the service s, its provider p, and the message identi-

fier idm of each trace whose measurement is classified as anomalous is added to a set of

anomalous interactions (lines 8–10). If by the end of this first verification step no anoma-

lous interaction is identified, the abnormality cause is considered to be internal. The ab-

stract self-healing() operation is thus performed to repair the issue, normalising the

agent behaviour, which is broadcast to the system (lines 11–13). Otherwise, if any inter-

74

action is classified as anomalous, the cause is considered external to the provider. In this

case, for each anomalous interaction, an abstract mitigate(s) operation is carried out.

This activity is expected to remediate the external issue, thus normalising the agent be-

haviour and similarly broadcasting this to the system (lines 14–17). self-healing()

and mitigate(s) are abstract operations because they have the implementation that is

suitable to satisfy the needs of the target domain.

Having the external cause mitigated, the second verification step takes place to

identify which of the external sources, namely, the abnormal provider p or the commu-

nication link, is the current cause of the issue. This verification is carried out by the

externalVerification(s, p, q) operation, whose outcome is a score for the per-

formance of p when providing service s with respect to quality feature q (line 18). If the

obtained score is less than or equal to a predefined threshold (in this thesis, we use the

value of 0.5, or 50%), the communication link is considered the source of abnormality,

and is thus repaired by the abstract repairLink() operation (lines 19–20). If the score

is greater than the threshold, the provider p is considered the problem cause. This conclu-

sion follows the rationale that an unusual behaviour from a suspicious provider may be

perceived not only by the agent handling the abnormality, but also by cooperating agents

that consumed the same service. The provider handling the issue acts as a client, notify-

ing p of its abnormal performance regarding quality feature q when replying to message

idm, and waiting that agent to inform when its operation gets normalised (lines 21–23).

Finally, when the problem cause is solved, the abstract undo() operation is performed to

revoke any reversible measure taken to remediate the problem cause (line 24), as specified

by the D2R2 + DR strategy.

Algorithm 3 describes how the external verification is performed. First, a message

is broadcast to the system requesting to cooperating agents the probability of provider p to

present an abnormal behaviour when delivering service s with respect to quality feature q

(line 2). Replies are received until a stop condition is met, which can be either a deadline

or a predefined number of replies. For each received reply, its sender cs and the informed

probability prob are added to a set Inf containing received information (lines 3–7).

Agents may differ from each other regarding several characteristics. Consequently,

more importance is given to information from more similar agents. This is taken into

account to combine received probabilities into a final score. The similarity index I :

C × C → [0, 1] is thus a function that maps a pair of agents p, q ∈ C to a value indicating

the similarity between p and q. 0 and 1 are the lower and highest similarities, respectively.

75

Algorithm 3: externalVerification(s, p, q)
Input: The abnormal service s, the suspicious provider p, the violated quality

requirement feature q.
Output: A score score for the performance of p be abnormal regarding quality

feature q when delivering service s.

1 Inf ← �;
2 broadcast request-probability(s, p, q);
3 while ¬condition do /* Deadline or # of replies */
4 m← receive inform-probability();
5 cs ← m[cs];
6 prob← m[cont];
7 Inf ← Inf ∪ 〈cs, prob〉;
8 probw ← 0.0;
9 idxs ← 0.0;

10 foreach 〈cs, prob〉 ∈ Inf do
11 probw ← probw + (prob× I(this, cs));
12 idxs ← idxs + I(this, cs);
13 score← probw/idxs;
14 return score;

In this work, this index is inversely proportional to the distance, measured in hops, be-

tween two agents. We assume that every agent has access to this information. The score

of a suspicious provider p is computed as the average of probabilities given by cooper-

ating agents weighted by their similarity indexes (lines 8–13), and returned at the end of

this activity (line 14).

5.2.3.3 Cooperating Agent Behaviour

A cooperating agent aims to provide required information to agents handling an

abnormal behaviour. This is achieved by the computation of the probability of a suspi-

cious agent to provide an anomalous measurement of a given quality feature when de-

livering a particular service (computeProbability()). Algorithm 4 describes how

this activity is performed.

First (lines 1–2), the lists of (i) all measurements of a quality feature q taken when

consuming service s from p, and (ii) the corresponding times in which these measurements

were recorded, are retrieved by the functions getMeasurements(T, s, p, q, time) and

getTimes(T, s, p, time)—see Table 5.1. If, at any time, this agent consumed s from p,

the probability computation is carried on with the identification of the probability density

function f that describes the recorded quality feature measurements. In our approach,

given that f is unknown and available measurements constitute a sample from it, f is

76

Algorithm 4: computeProbability(s, p, q)
Input: The service s, the provider p, the quality requirement feature q.
Output: A probability prob of p to provide an anomalous measurement of q when

delivering service s.

1 LMq ← getMeasurements(T, s, p, q, now);
2 Ltime ← getTimes(T, s, p, now);
3 if LMq 6= � then
4 f ← getFunction(LMq ,Ltime);
5 prob← integrate(f ,LMq);
6 send inform-probability(prob);

estimated through the use of a kernel density estimator.

A kernel density estimator (KDE) (PARZEN, 1962) is a non-parametric statisti-

cal method able to approximate f using a mixture of kernels K, each of them centred at

the points xi of an available dataset—in our case, the list LMq of quality feature mea-

surements. Typically used kernels include Gaussian and Epanechnikov, although any

symmetric probability density function can be adopted. A bandwidth h is used to ac-

knowledge the existence of an unknown density of points in the neighbourhood of each

point xi, while weights wi are used to consider that a point xi may have higher surrounding

densities than other points. The resulting probability density function f̂h can thus be used

to estimate the probability of any point x. A KDE is thus defined as

f̂h(x) =
n∑

i=1

wiKh(x− xi), (5.3)

where Kh(x) = K(x/h)/h for kernel K and bandwidth h, and
∑n

i=1 wi = 1. Recently

collected measurements may have higher informative power than those earlier collected.

Therefore, the weight wi assigned to each measurement xi ∈ LMq is proportional to the

recency of that measurement. This is calculated according to Equation 5.4.

wi = Ltimei ×
1∑|Ltime|

j=1 Ltimej

(5.4)

The obtained function f̂h results from the execution of the getFunction(LMq ,Ltime)

operation (line 4).

Finally, the integrate(f ,LMq) operation is executed to determine the proba-

bility prob of obtaining an anomalous measurement from p (line 5). In this operation, the

Tukey’s fences method (Section 5.2.3.2) is applied to the list LMq of measurements with

the aim of identifying the lower (bl) and upper (bu) boundaries that delimit the range of

77

normal values. One minus f integrated using these boundaries (Equation 5.5) gives the

estimated distribution. It is the probability prob of a random value from that distribution

to fall in a range below bl or above bu, thus becoming an anomalous value. At the end,

this obtained probability is informed to the agent that requested it (line 6).

prob = 1−
∫ bu

bl

f (5.5)

To exemplify this process, let n be a cooperating agent that receives a request to

provide the probability of pb behaving abnormally when delivering service b with respect

to response_time. Let

LMq(response_time) = (8, 10, 9, 9, 11, 12, 10, 9, 12, 20, 43)

be the list of quality feature measurements and

Ltime = (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55)

the list of times at which these measurements were registered. The estimated probability

distribution f obtained by n after performing the getFunction(LMq(response_time),Ltime)

operation is depicted in Figure 5.4. In our example, the lower and upper boundaries of

LMq(response_time) are equal to 4.5 and 16.5, respectively. It means that, while any value that

falls within these boundaries are considered normal (blue shaded in Figure 5.4), values

that fall in any region outside them comprise an anomaly (red shaded area). After carrying

out the integrate(f ,LMq(response_time)) operation, n verifies that the probability prob of

obtaining an anomalous measurement when requesting service b from pb with respect to

response_time is approximately 0.49 or 49%.

The interaction protocol and the algorithms that specify the behaviour of agents

playing each described role were implemented as an extension of the BDI4JADE (NUNES;

LUCENA; LUCK, 2011) platform. Activities comprising the cooperative behaviour are

encapsulated in plans added to a CooperativeCapability, which extends the one

implementing the action management technique introduced in Chapter 4. In order to adopt

our cooperative technique, BDI agents are thus only required to instantiate this capability.

78

Figure 5.4: The estimated probability distribution obtained after executing
getFunction(LMq(response_time),Ltime). Values laying outside the lower and upper
boundaries are considered anomalous.

Lo
w

er
 b

ou
nd

ar
y

U
pp

er
 b

ou
nd

ar
y

0.000

0.025

0.050

0.075

0.100

0 10 20 30 40 50
Value

D
en

si
ty

5.3 Evaluation

Having detailed our protocol and the behaviour of each role, we now evaluate our

proposal with an empirical evaluation. In this evaluation we examine the performance

of a MAS that adopts our cooperative approach as a supporting technique for carrying

out the remediation, diagnosis and recovery operations specified by the D2R2 + DR strat-

egy. This MAS is evaluated with respect to its ability to dynamically diagnose the root

cause of problems in different locations and coming from different sources. We compare

the obtained results with the performance of the same system when applying two other

problem-solving strategies. In the first one, which we named passive strategy, agents ig-

nore any notification of abnormality sent to them. In the second one, named remedial

strategy, these agents are able to mitigate abnormalities but do not have the mechanisms

to diagnose and solve their causes. As discussed in Chapter 3, even though there are many

existing solutions focused on the diagnosis and resolution of problems causes in multia-

gent systems, they all differ from our approach in some key aspects. First, most of them

do not address both facets of the problem, focusing either only on the diagnosing or on

the problem solving aspect. Solutions capable of identifying problem causes differ from

ours mainly regarding the size and complexity of the scenarios they are able to handle,

being inefficient when dealing with scenarios comprising more than a fixed (and consid-

erably low) number of agents. Solutions focused on problem solving, in turn, usually rely

on centralised information in order to deal with challenging situations. Considering these

characteristics, a direct comparison with existing solutions is not meaningfull. Next, we

79

present the procedure adopted in our evaluation, followed by its results and discussion.

5.3.1 Procedure

Many MAS are open, so agents can join or leave the system at runtime, leading to

dynamic scenarios. Consequently, there are no static agent topologies used as a standard

for simulations. It is thus a common practice to elaborate synthetic topologies and work-

loads to simulate realistic scenarios in order to evaluate the proposed approaches (DÖT-

TERL et al., 2017). To evaluate our technique, we implemented the scenario depicted in

Figure 5.5. It represents a service-oriented system comprising 37 autonomous agents able

to interact with each other by consuming and delivering services, and one external agent

acting as a top-level client. Services of different providers have varying costs, which

means that the same service may be more or less expensive when requested from differ-

ent sources. With the exception of unnamed agents, which use services from any provider

despite of their costs, every other agent has a secondary goal of minimising the cost as-

sociated with consuming services. Dependencies represented on Figure 5.5 indicate the

initial providers used by each agent.

Figure 5.5: A service-oriented system comprising 37 autonomous agents and an external
client c. F1, F2 and F3 are failures introduced to the system to affect different agents and
communication links.

c

pa

pcpb pb'

pd pe

pj

pf

pl pmpj'

pr ps

pgpd'

pi

pc'

pe'

pk

pt

ph

pq

pg'

po pppn

px

pn'

pu pv px'

Legend
Component
Dependency

F1

F2

F3

As introduced, our technique includes abstract activities that are specific to con-

crete implementations. In this experiment, the selfHealing() and repairLink()

activities are simulated. In real world scenarios, these operations are expected to com-

prise, e.g., the implementation of one of the many existing self-healing, self-configuration

or repairing strategies (GHOSH et al., 2007). The implemented mitigate(s) opera-

tion, in turn, replaces the current (abnormal) provider of the given service s with a different

80

(and presumably more costly) one. An alternative implementation of this operation may

be, for instance, a prediction of the output of a given service based on the current context.

Finally, the stop condition for providers to wait for replies from cooperating agents in the

externalVerification(s, p, q) operation is set to a 5 seconds deadline.

Agent c has a quality requirementMq(response_time) = (response_time ≤ 250),

which specifies that the services it consumes must be provided in no longer than 250 ms.

In our experiment, services have an initial delivery time of 10 ms. This time increases

by 250 ms for each failure affecting the service provision, which can occur either on the

service provider or in the communication link between it and its client.

Our experiment thus consists of measuring the cost and response time observed by

c when consuming service a from pa. We ran a simulation with 120 episodes, each of them

comprising the following sequence of steps: (i) c requests service a from pa; (ii) unnamed

agents request different services within the system; and (iii) the cost and response time

measured by c are recorded. Three failures, F1, F2, and F3, are injected on the simulation

at the 30th, 60th and 90th episode, respectively, with the aim of causing abnormalities on

service provision. In F1, agent pj is targeted, increasing its response time and becoming

unable to provide its service as usual. F2 affects the link between agents pn and px, thus

slowing their communication down. Finally, F3 disturbs both the functioning of agent pd

and its link with pb. These points of failure are depicted in Figure 5.5.

5.3.2 Results and Discussion

We executed our simulation 10 times for each adopted problem-solving strategy.

The results are discussed focusing on the system behaviour observed during the execution

of our experiment. These results are presented in Figure 5.6, where blue and red lines

represent the average response time and average cost observed by agent c in each episode,

respectively, and shaded areas represent their corresponding standard deviation.

Figure 5.6a presents the results obtained by adopting the passive strategy. It is pos-

sible to notice that, even with slightly higher values caused by the initialisation procedure

at the beginning of the simulation, the response time measured by c maintains an average

of ≈85 ms until the occurrence of the first failure. It is important to highlight that, as in

our implementation agents have a single execution thread—meaning that service requests

are queued in order to be fulfilled—the response time perceived by a client may vary ac-

cording to the amount of requests being processed by its provider. This explains why the

81

measurement recorded by c when consuming a from pa is usually greater than the 40 ms

that would be expected if there were no other agents consuming that and other related

services.

Figure 5.6: Simulation results (time and costs by episode).

0

500

1000

1500

0.0

2.5

5.0

7.5

10.0

0 25 50 75 100 125
Episode

T
im

e
(m

s)

C
ost (un)

Time Cost

(a) Passive strategy

0

500

1000

1500

0.0

2.5

5.0

7.5

10.0

0 25 50 75 100 125
Episode

T
im

e
(m

s)

C
ost (un)

Time Cost

(b) Remedial strategy

0

500

1000

1500

0.0

2.5

5.0

7.5

10.0

0 25 50 75 100 125
Episode

T
im

e
(m

s)
C

ost (un)

Time Cost

(c) Cooperative strategy

After the introduction of F1, the response time increases and stays above the qual-

ity requirement threshold at an average of 308.5 ms. It increases again after the occurrence

of F2 and remains stable from that moment, even with the occurrence of the third failure,

which ends up being subsumed by the former two. Such an outcome takes place because,

when provider pa adopts the passive strategy, it simply ignores notifications of abnormal-

ity received from c. As a consequence, in order to deliver a, that agent keeps consuming

services from providers affected by the introduced failures. The observed cost also re-

flects such a behaviour, standing steady for the entire simulation due to the fact that initial

providers are not replaced with others.

The scenario changes completely when we consider results from simulations in

which the remedial strategy is adopted. They are shown in Figure 5.6b. After the occur-

rence of F1, pa’s response time increases and surpasses the quality threshold, peaking at

an average of 311 ms, but quickly decreasing and stabilising at an average of ≈85 ms. It

happens because, by following the remedial strategy, agents are able to mitigate abnor-

82

malities coming from external sources by changing their service providers. Consequently,

after receiving a notification of abnormality from c, pa replaces pb with pb
′, an agent that

does not make use—neither directly or indirectly—of the abnormal service provided by

pj in order to deliver b. It is also because of this provider replacement that the cost in-

creases. The introduction of F2 results on the same behaviour pattern, with response time

increasing above the quality threshold, peaking at 740.6 ms, and decreasing after provider

pc is replaced with pc
′, which also results in a higher associated cost. It is interesting to

notice that the occurrence of F3 does not affect the performance of pa perceived by c. It

is explained by that fact that pa is no longer a client of pb and, as a consequence, degraded

services provided by that agent are not consumed.

Considering that the goals of agent c are to consume service a while satisfying its

quality requirements and minimising the associated cost, our cooperative strategy presents

an optimal trade-off towards the achievement of both objectives. The outcomes with

this strategy are shown in Figure 5.6c. After F1, it is possible to observe the increasing

response time, which peaks at 305 ms and decreases after that, following the same pattern

presented when adopting the remedial strategy. In contrast to this strategy, the measured

cost returns to its initial level after an increase due to the adopted mitigation. Such a

behaviour is explained by the propagating nature of our approach as well as the existence

of the undo() operation inherited from the D2R2 + DR strategy.

When the first failure affects pj and its degraded performance spreads to its clients,

pa is notified of an abnormality. It thus carries out the cause verification operation and

identifies the external nature of the issue, which is remediated with the replacement of pb

with pb
′. Because of this change, the response time perceived by c returns to an accept-

able level, but at the expense of an increased cost. After consulting the cooperating—

unnamed—agents, and identifying the external source of the issue, pa notifies pb of the

detected abnormality. That agent thus carries out the same process, identifying the ex-

ternal origin of the problem, mitigating it and notifying the suspicious provider of its

abnormality. After mitigating the problem cause, pb informs pa that its operation was

normalised, which allows pa to revert the remediation action taken and go back to con-

suming service b from pb, thus reducing its cost. Meanwhile, pe and pj performs the same

identification process after being notified of their abnormalities by pb and pe, respectively.

When pj identifies that its degraded performance was caused by an internal failure, the

selfHealing() operation is executed, normalising the agent behaviour and allowing

the system to return to its initial setup.

83

The same process is executed by the system when failures F1 and F2 are intro-

duced. In Figure 5.6c, it is possible to notice some peaks after the occurrence of each

of these failures. It happens because, in some executions, cooperating components are

unable to immediately classify some suspicious agents as abnormal ones, which results

on the incorrect problem cause being addressed. For instance, consider that, after the

occurrence of F2, agent pc mitigated an external cause by replacing pg with pg
′ and, by

consulting its cooperating agents, it (mistakenly) decided that pg did not present any ab-

normality. In this case, pc would repair its communication link with pg, acknowledge the

problem as solved, and go back to consume services from that agent. As a consequence,

the abnormality would reappear and be notified once again.

Nevertheless, this situation demonstrates that the execution of some additional

episodes is sufficient to allow cooperating agents to correctly recognise the existence of

abnormalities on suspicious components and to provide conditions for the system to find

the correct root cause of its problems. Therefore, even with the introduction of three

failures from different sources at different levels, at the end of our simulation the system

is able to correctly identify and solve failure causes, with agent c satisfying its quality

requirements at a reduced cost.

Finally, as shown in Table 5.2, simulations in which the system adopts our co-

operative strategy took, on average, 616.5 seconds to be executed, which represents a

reduction of 10.57% and 0.32% when compared to the adoption of passive (689.4 s) and

remedial (618.5 s) strategies, respectively. The accumulated cost presented by our ap-

proach, in turn, was 3.81% higher (498.3 unities of cost) when compared to the passive

strategy (480.0 unities of cost), and 46.59% lower in comparison to the remedial strategy

(933.0 unities of cost).

Table 5.2: Average Execution Time and Accumulated Cost

Strategy Execution Time (s) Accumulated Cost (un)

Passive 689.4 480.0
Remedial 618.5 933.0
Cooperative 616.5 498.3

These results show that our approach is able to combine the benefits from both,

passive and remedial strategies, into a single solution. However, to achieve this outcome

there are some prerequisites that must be considered. First, as already mentioned, it is

required that cooperating agents have consumed services from a suspicious agent after the

occurrence of an abnormality in order to be able to correctly identify it. Otherwise, they

84

could provide information that does not represent the current behaviour of that provider

and, consequently, the agent handling the abnormality would not be able to correctly

diagnose the source of the issue. Strategies to overcome this limitation may include, for

instance, enforcing cooperating agents to issue a service request in order to update their

sets of interaction traces, or limit agents able to cooperate to those whose last requirements

to a suspicious provider occurred within a given time interval. The applicability of these

strategies and their impact on our solution are subject to further investigation.

Our approach also relies on the quality of the remedial actions taken by the agent

during the process of mitigating external causes. In our evaluation, we replace service

providers to normalise system operation while the root cause of the problem is diag-

nosed and solved. If, for instance, the temporary provider also exhibits an abnormal

behaviour, the entire identification activity would be triggered for the abnormality pre-

sented by that agent, thus delaying the restoration of a normal operation. Therefore,

whatever are the remediation actions implemented in a given domain, it is essential to—at

least temporarily—ensure their effectiveness in satisfying existing quality feature require-

ments. How to guarantee such a characteristic is another open research subject.

5.4 Final Remarks

This chapter presented a technique that, when integrated to our solution for coor-

dinating the remedial behaviour, allows autonomous agents to cooperate with each other

in order to diagnose the root causes of behaviour abnormalities, and remediate and solve

them with the aim of normalising system operation. This cooperative technique comprises

a protocol that provides guidance on how agents should interact as well as the specifica-

tion of how agents are expected to behave when playing the role of clients, providers

and cooperating agents. We remove the need for human involvement by taking advan-

tage of information collected by individual agents at runtime and using it as the source of

knowledge to diagnose the root causes of abnormal behaviour. The centralised informa-

tion and processing is also relieved when we acknowledge that pieces of information may

be spread throughout the system, and thus promote the cooperation among agents. The

proposed technique was evaluated with an empirical experiment in which we simulated a

distributed environment comprising autonomous agents. Results indicate that our solution

is able to diagnose and handle a variety of failures at different levels, keeping the system

operating with desired quality and reduced costs.

85

Nevertheless, abstract operations specified in our solution are still candidates for

the development of more flexible and adaptive implementations. In particular, the undo()

operation, which abstracts the recover operation from the D2R2 + DR strategy. This oper-

ation requires an explicit description of which remedial actions must be reverted and how

it must be done. The next chapter addresses this limitation.

86

87

6 ACTION REVERSION

Remediation actions are performed to tackle the (negative) effects of an under-

lying problem when certain constraints limit the resolution of its causes. These actions

prevent the occurrence of further problem effects before causes are addressed to perma-

nently solve the problem. After these causes are permanently solved, changes made by

remediation actions often must be reverted. That is, there is a need for cleaning up (or

reverting) the effects of performed remediation actions.

In this chapter, we introduce a technique to provide agents with the ability of

autonomously reverting actions. Although our focus is to revert remediation actions, our

approach is general enough to be used in any recoverable circumstance, such as failure

handling and task aborting situations. Our formal framework involves the specification of

three main steps, integrated to the BDI reasoning cycle, to revert actions: (i) monitoring

and recording changes made by plans; (ii) recognising the circumstances in which these

actions should be reverted; and (iii) executing the reverting process.

6.1 Motivation Scenario

To illustrate the problem we address, we present an example scenario in which

there is a need for reverting actions. The example is in the context of smart homes, part

of a system in which there are mechanisms to promote safety to residents. Consider the

scenario of dealing with a carbon monoxide leaking. Carbon monoxide (CO) is an odour-

less, colourless and tasteless gas produced by the incomplete burn of carbon-based fuels,

such as natural gas and coal. Due to its undetectable nature, CO became the second most

common cause of deaths by non-medical poisoning in the United States, having caused a

total of 6136 deaths by unintentional poisoning between 1999 and 2012 (SIRCAR et al.,

2015). Most of these deaths occurred at home and were usually related to malfunctioning

in heating systems, water heaters, cooking equipment, and other fuel burning appliances.

Therefore, the use of devices able to alert about the presence of high concentrations of

CO, the so-called CO detectors, became common in most homes, as well as in industrial

and commercial facilities.

Assume that a house is equipped with one of these CO detectors as well as with

a series of other intelligent devices, such as different sensors (e.g., of temperature or

presence) and actuators (e.g., lights, alarms and valve controllers). These devices are able

88

to coordinate their actions in order to perform a wide range of tasks.

The expected behaviour in our smart home is that when the CO detector identifies a

high amount of gas in the house, a set of actions are taken. First, an alarm goes off aiming

to notify the residents about the problem, lights are turned on and doors are unlocked

in order to allow the evacuation of the place. Moreover, windows are opened and the

ventilation system is turned on to reduce the concentration of CO. These are remediation

actions that need to be taken immediately. Next, the cause of the high amount of gas must

be determined. By an automated diagnosing process, a malfunctioning in the water heater

is identified. Then, a valve controller is activated and interrupts the flow of natural gas to

such device and schedules a repair with a maintenance company, thus permanently solving

the leaking cause. Once the concentration of CO is reduced, remediation actions to deal

with the problem are undone. For instance, the alarm is silenced, lights and the ventilation

system are turned off, and the windows and doors can be closed and locked, respectively.

The valve responsible for providing gas to the water heater, however, remains closed.

This example allows us to make key observations. First, performing tasks may

affect the system and its environment in many different ways. In our example, several

environment variables are modified to achieve the goal of reducing the concentration of

CO. How to keep track of the effects related to the execution of such tasks becomes a

challenge to software systems, in particular if we consider that their environment may

be shared with other systems, thus being affected by actions from different sources. In

addition, it is possible to notice that not every task effect must be reverted. As an ex-

ample, consider our scenario in which one of the effects obtained by opening windows

and turning on the ventilation system is to have the concentration of CO reduced. When

the reverting process is triggered, the desired outcome is, among others, to have windows

closed and the ventilation system turned off, but not to have an increased concentration of

CO. Therefore, in order to allow software systems to carry out this process, not only the

ability to monitor the effects of performed tasks is required, but also the identification of

which of those effects must be undone. Finally, the need for reverting actions only arises

when particular context conditions are met. Our example shows, for instance, that lights

and the ventilation system are turned off only when the CO concentration is below a given

threshold and the flow of natural gas to the water heater is interrupted. It is thus necessary

for systems featuring reverting actions to provide a means for these triggering conditions

to be specified.

89

6.2 A Formal Framework for Reverting BDI Agent Actions

The observations made above are related to issues that must be addressed by our

approach to autonomously revert actions. Next, we overview our proposed framework,

then formalise its key concepts and describe its steps in next sections.

6.2.1 Framework Overview

To make BDI agents able to autonomously manage the reversion process of ac-

tions, we extend the BDI architecture with additional supporting data and add new opera-

tions to be incorporated within the BDI reasoning cycle. The operations of our reversion

process and how they are integrated to the BDI architecture are presented in Figure 6.1. It

shows the BDI components as well as the steps of the reasoning cycle, and highlights the

metadata and operations that comprise our framework.

Figure 6.1: Overview of the Reversion Framework.

Beliefs

Intentions

Desires

Belief
Revision
Function

Action
Output

Sensor
Input

Plans

Goal
Metadata

Action
Selection
Function

Filter
Function

Option
Generation

Function

Reversion Execution

Reversion (De)Activation

Effect Filtering

Effect Compensation

Monitoring

Belief Base Update

Plan Executed

Goal Setup

Add Subgoal

Add Reversible Goal

The supporting data added to agents consists of metadata associated with goals to

(i) represent the conditions in which actions taken to achieve these goals must be reverted,

90

(ii) record executed actions, and also (iii) keep contextual information to evaluate whether

triggering conditions of the reversion process are met.

The operations comprising our reversion process are grouped into three activities,

namely goal setup, monitoring, and reversion execution. The goal setup activity consists

of the creation and initialisation of the metadata needed to perform the reversion process,

which is done when goals are added to the agent. The monitoring activity consists of

the observation of agent behaviour and recording of (i) changes in the (external or inter-

nal) environment, and (ii) executed plans to verify whether reversion conditions are met.

Recorded data is stored as metadata associated with individual goals. This step takes plan

in parallel to the execution of plans to achieve goals.

Finally, the reversion execution has three main tasks, reversion (de)activation, ef-

fect filtering and effect compensation, which occur as part of the option generation func-

tion. In the reversion (de)activation, each goal metadata is evaluated to verify whether the

goal becomes ineligible to be reverted or the system reached a condition that triggers the

goal reversion. If the former occurs, the goal metadata is discarded and can no longer be

reverted. If the latter is the case, the recorded changes in the environment (i.e. effects) are

filtered to select those to be reverted. As explained in our example, not all effects must

or can be reverted. Last, to compensate the effects that must be reverted, corresponding

goals are generated. These goals are then handled by the BDI reasoning cycle as any other

goal, to which plans will be selected and executed in order to achieve them.

6.2.2 Model Formalisation

The existing BDI architecture does not encompass all of the structures required to

provide agents with the ability to manage the proposed action reversion process, such as

goal metadata. Therefore, we next specify extensions proposed to this architecture with

the structures needed to manage this process. Our specification is formalised using the

Z language (SPIVEY, 1988). We also formalise key concepts from the BDI architecture

needed for our customisation. A complete formalisation of the BDI architecture can be

seen elsewhere (D’INVERNO; LUCK, 2004).

Information about the environment and the internal state of an agent is represented

by logical predicates, which can be true or false. Let PREDICATE be the set of all possible

predicates, and BOOLEAN be the set of boolean values True and False. The knowledge

of an agent is then represented by a set of predicates, which are part of the belief base of

91

the agent. Each predicate is evaluated as true or false according to the belief function in

the BeliefBase schema, as shown below.

[PREDICATE]

BOOLEAN ::= True | False

BeliefBase

knowledge : �PREDICATE

belief : PREDICATE� BOOLEAN

knowledge = dom belief

Goals to be achieved by an agent are associated with a predicate, and can be of two types.

They can be an Achievement goal, meaning that the agent desires the predicate to be part

of its knowledge and to believe that it is True, or a Query goal, meaning that the agent

desires the predicate to be part of its knowledge. The set TYPE comprises all possible

goal types. Goals are associated with an end state, which represents the result of making

it an intention and trying to achieve it. Let ENDSTATE be the set of all possible end states

of a goal. A goal is said to be Achieved when a plan successfully reached the desired state

of world. The end state Failed indicates that the execution of the last executed plan failed

while trying to achieve the goal, while NoLongerDesired is assigned to goals that are no

longer desired by the agent. Finally, goals that are still being attempted to be achieved

have their end state set as Nil.1

TYPE ::= Achievement | Query

ENDSTATE ::= Achieved | Failed | NoLongerDesired | Nil

Goal

predicate : PREDICATE

type : TYPE

endState : ENDSTATE

When the filter function of an agent selects a goal to which the agent will commit to

1Here, we make an abuse of notation by using Nil as a wildcard that specifies a null value, which is used
later as a member of sets of different types.

92

achieve, the goal becomes an intention. Then, by the plan selection function, a plan is

selected to be executed to achieve that goal/intention. To do so, the plan is instantiated,

considering the current context, as a plan instance. We omit the formalisation of the

concepts of Plan and PlanInstance (as they play less important roles in our solution), and

simplify the specification of Intention as shown below, which is referred later.

Intention

goal : Goal

planInstance : PlanInstance

planInstance = Nil ∨ goal = planInstance.goal

In order to be able to revert actions associated with the achievement of goals, metadata

is stored and maintained. GoalMetadata is the concept that is the core of the reversion

process, being related to a specific goal. Moreover, when a goal becomes an intention, its

corresponding metadata also refers to that intention.

Here, we briefly introduce the elements of GoalMetadata, in the order that they

appear in the schema. Semantic implications of its variables are discussed in next sec-

tion, when we define the operations of the rollback process. A reversion trigger and an

indication of rollback in the case of a plan failure establish the conditions in which re-

version will be activated. Goals can be reverted after they are achieved, therefore their

metadata is kept stored even after their achievement. However, we limit this information

to be stored for a specified amount of time. There are two options to do so, by specifying

either a maximum number of plans or a maximum amount of time that can be executed

or elapsed, respectively, between the moment the goal was achieved and the moment of

the reversion. Therefore, these are discarding conditions of the goal metadata. In order to

control whether these conditions are met, the time in which the goal was achieved and a

counter that registers the number of plans that have been executed since that are stored.

Finally, changes in the agent belief base are stored as a trace, which indicates what should

be reverted during the reversion process. For changed predicates, we keep a sequence

of pairs of boolean and natural values. Predicates in the domain of this function denote

belief predicates whose evaluation value was modified during the achievement of a given

goal. The pairs of boolean and natural values represent, respectively, the new evaluation

value of the associated predicate and the time at which that change occurred.

93

GoalMetadata

goal : Goal

intention : Intention

reversionTrigger : PREDICATE

rollback : BOOLEAN

maxExecutedPlans :

maxTime :

achievedTime :

planCounter :

beliefChangeTrace : PREDICATE� seq(BOOLEAN ×
1)

intention = Nil ∨ goal = intention.goal

From these previous definitions, we are now able to complete the specification of our

customised BDI model by introducing the concept of Agent. An Agent has a beliefBase,

which captures the agent knowledge, and a set of current goals with their associated

goalMetadata. Moreover, in order to adequately revert subgoals of a parent goal, goal

parents are kept in the parentGoal function. Goals that the agent is committed to achieve

are kept as intentions. These intentions have instances of plans maintained by the agent

in its planLibrary.

Agent

beliefBase : BeliefBase

goals : �Goal

goalMetadata : Goal� GoalMetadata

parentGoal : Goal� Goal

intentions : � Intention

planLibrary : �Plan

dom goalMetadata ⊆ goals

dom parentGoal ⊆ goals

ran parentGoal ⊆ goals

∀ i : Intention | i ∈ intentions • i.goal ∈ goals

94

6.3 Framework Activities and Operations

Based on the introduced formal definitions of our framework, we next detail the

operations associated with each of its three activities.

6.3.1 Goal Setup

The motivational state of a BDI agent is kept as a set of goals. Goals can be added

to the agent by simply including them in the set of agent goals. When a goal that can

be reverted is added to the agent, additional data is needed. Therefore, a new operation

AddReversibleGoal is specified for the agent. This operation receives as parameters the

reversion (trigger and rollback) and discarding (maximum executed plans or time) con-

ditions associated with the goal. As result of this operation a goal and its metadata are

added to the agent.

AddReversibleGoal

∆Agent

predicate? : PREDICATE

type? : TYPE

reversionTrigger? : PREDICATE

rollback? : BOOLEAN

maxExecutedPlans? :

maxTime? :

∀ goal : Goal | goal ∈ goals • goal.predicate 6= predicate? ∨

(goal.predicate = predicate? ∧ goal.type 6= type?)

(let goal == (µ g : Goal | g.predicate = predicate? ∧ g.type = type? ∧

g.endState = Nil) • goals′ = goals ∪ {goal} ∧

(let metadata == (µm : GoalMetadata | m.goal = goal ∧

m.intention = Nil ∧ m.reversionTrigger = reversionTrigger? ∧

m.rollback = rollBack? ∧

m.maxExecutedPlans = maxExecutedPlans? ∧

m.maxTime = maxTime? ∧ m.achievedTime = Nil ∧

m.planCounter = 0 ∧ m.beliefChangeTrace = �) •

goalMetadata′ = goalMetadata ∪ ({goal} × {metadata})))

95

Reversible goals are thus goals that have associated metadata. Given that these metadata

include the intention associated with a goal, it must be updated when the goal becomes an

intention. The schema below shows this update, specifying the changes that occur when

a goal is made an agent intention.

MakeIntention

∆Agent

goal? : Goal

goal? ∈ goals

goal? ∈ dom goalMetadata

(let intention == (µ i : Intention | i.goal = goal? ∧

i.planInstance = Nil) • intentions′ = intentions ∪ {intention} ∧

(let metadata == goalMetadata(goal?) •

metadata.intention = intention ∧

goalMetadata′ = goalMetadata ∪ ({goal?} × {metadata})))

When a reversible goal is achieved, its corresponding metadata is updated with the aim

of registering the time in which this change of state occurred. Such update is shown by

the AddAchievedTime schema.

AddAchievedTime

∆Agent

goal? : Goal

time? :

goal? ∈ goals

goal? ∈ dom goalMetadata

goal?.endState = Achieved

goalMetadata(goal?).achievedTime = Nil

(let metadata == goalMetadata(goal?) • metadata.achievedTime = time? ∧

goalMetadata′ = goalMetadata ∪ ({goal?} × {metadata}))

96

6.3.2 Monitoring

In order to revert goals, goal metadata must capture what should be reverted. This

information comes from the results of actions performed by plans, which cause changes

in the environment (which are perceived by the agent) or in its internal state. Therefore,

reversion information is derived from changes that occur in the agent belief base while

executing the instance of a plan. We do not consider all belief changes that simply occur

while a plan is executing, for example as a consequence of receiving an external event, but

belief changes that occur due to actions part of the plan being monitored. Consequently,

belief changes that rely on predefined updating rules based on existing agent beliefs are

not registered by the monitoring activity. The UpdateBeliefBase operation, shown as fol-

lows, registers changes in the belief value of a predicate from the belief base by recording

this change in the beliefChangeTrace.

Given that belief changes may be originated from plans achieving either reversible

or non-reversible goals, such as subgoals, we must consider different situations to guar-

antee the correct identification of the metadata to store such information. The function

selectParentGoal, used in the UpdateBeliefBase operation, supports this by providing,

given a goal and a parent goal mapping, the top level reversible goal considering the trees

of goals and their sub-goals. Top level goals are those with which the collected data must

be associated.

selectParentGoal : Goal× (Goal� Goal)" Goal

During the execution of an instance of a plan, subgoals to be achieved can be added

to the agent. In this case, if the plan instance is executing to achieve a reversible goal,

belief changes that occur as a consequence of the achievement of the subgoal are also

recorded in the metadata of the parent goal. The relationship between goals are stored

within the agent in the parentGoal function, which is updated when a subgoal is added,

as shown in the AddSubgoal operation. Finally, when plans are successfully executed,

counters associated with goal metadata must be updated because they are used as criteria

to discard metadata. The IncreasePlanCounter operation is executed in response to an

event that occurs when a plan execution is completed. It increases the counters associated

with plan executions of all metadata of already achieved goals.

97

UpdateBeliefBase

∆Agent

g? : Goal

p? : Predicate

value? : BOOLEAN

time? :

(p? ∈ beliefBase.knowledge⇒ beliefBase′.beliefs(p) = value?) ∧

(p? /∈ beliefBase.knowledge⇒ beliefBase′ = beliefBase ∪ ({p?} × {value?}))

(let goal == selectParentGoal (g?, parentGoal) •

(let m == goalMetadata (goal) •

(p? ∈ dom m.beliefChangeTrace⇒

(let newTrace == m.beliefChangeTrace(p?) � 〈(value?, time?)〉 •

m.beliefChangeTrace = m.beliefChangeTrace∪

({predicate?} × {newTrace}) ∧

goalMetadata′ = goalMetadata ∪ ({m.goal} × {m}))) ∧

(p? /∈ dom m.beliefChangeTrace⇒

(let newTrace == 〈(value?, time?)〉 •

m.beliefChangeTrace = m.beliefChangeTrace∪

({predicate?} × {newTrace}) ∧

goalMetadata′ = goalMetadata ∪ ({m.goal} × {m})))))

AddSubgoal

∆Agent

predicate? : PREDICATE

type? : TYPE

parent? : Goal

parent? ∈ goals

∀ goal : Goal | goal ∈ goals • goal.predicate 6= predicate? ∨

(goal.predicate = predicate? ∧ goal.type 6= type?)

(let goal == (µ g : Goal | g.predicate = predicate? ∧

g.type = type? ∧ g.endState = Nil) • goals′ = goals ∪ {goal} ∧

parentGoal′ = parentGoal ∪ ({goal} × {parent?})

98

IncreasePlanCounter

∆Agent

planInstance? : PlanInstance

∀ g : Goal | g ∈ goals ∧ g.endState = Achieved •

(let metadata == goalMetadata(g) •

metadata.planCounter = succ metadata.planCounter ∧

goalMetadata′ = goalmetadata ∪ ({g} × {metadata}))

6.3.3 Reversion Execution

The previously described activities provide the infrastructure needed for the rever-

sion process to take place. Goals are created with metadata, which have the information

needed to revert actions updated by the monitoring activity. Now, we describe how this

information is used to revert goals or discard goal metadata, when the reversion is not

possible anymore.

6.3.3.1 Reversion (De)activation

As said, goal metadata are kept for a limited amount of time. This prevents goals

that occurred at a distant point in time to be reverted, because the current agent state may

be too different for making the reversion reasonable. Moreover, we assume that agents

have limited memory size, thus creating this need for preventing metadata to be stored

and never discarded. There are two alternatives to constrain the amount of time goal

metadata are kept stored. The first is the number of plan executions because each plan

execution can potentially lead to changes in the belief base. The second criterion is the

time elapsed since the goal was achieved. At least one of them must be specified and,

if both are informed, the first one to be satisfied leads the goal metadata to be discard.

Although there may be uncertainty regarding the specification of an adequate discarding

condition, it is unrealistic to expect that metadata would be kept for an unlimited time.

We define next the evaluation of whether the reversion process of a goal must be

deactivated. This is done by considering the discarding conditions of the goal metadata

and the counter maintained by the monitoring activity. The reversion must be deactivated,

99

i.e. isReversionDeactivated is true, when either the maximum number of plan executions

is reached or the maximum time elapsed.

isReversionDeactivated : (GoalMetadata×
)" BOOLEAN

∀m : GoalMetadata; time :
 •

(isReversionDeactivated (m, time) = True⇒

(m.planCounter > m.maxExecutedPlans ∨

(time− m.achievedTime) > m.maxTime)) ∧

(isReversionDeactivated (m, time) = False⇒

(m.planCounter ≤ m.maxExecutedPlans ∧

(time− m.achievedTime) ≤ m.maxTime))

When a goal reversion must be deactivated, the goal metadata must be expired, that is,

removed from the agent. This removal is done by the ExpireGoalMetadata operation,

which is shown below.

ExpireGoalMetadata

∆Agent

goal? : Goal

time? :

goal? ∈ goals

goal? ∈ dom goalMetadata

isReversionDeactivated(goalMetadata goal?, time?) = True⇒

goalMetadata′ = {goal?}� goalMetadata

Finally, we specify when the reversion is activated. There are two possibilities for this.

First, if a plan failed during its execution to achieve the goal (indicated by goal.endState =

Failed) and the rollback variable in the goal metadata is true, a reversion process must

occur to revert the (partial) set of changes that were performed when attempting to achieve

this goal. Second, if a goal was already achieved, the reversion should occur when the

reversion trigger in the goal metadata holds considering the current context. This is given

by the isReversionActivated function detailed as follows.

100

isReversionActivated : (GoalMetadata× BeliefBase)" BOOLEAN

∀m : GoalMetadata; bb : BeliefBase •

(isReversionActivated (m, bb) = True⇒

(m.reversionTrigger ∈ bb.knowledge ∧

bb.belief (m.reversionTrigger) = True) ∨

(m.rollback = True ∧ m.goal.endState = Failed)) ∧

(isReversionActivated (m, bb) = False⇒

(m.reversionTrigger /∈ bb.knowledge ∨

(m.reversionTrigger ∈ bb.knowledge ∧

bb.belief (m.reversionTrigger) = false)) ∧

(m.rollback = False ∨

(m.rollback = True ∧ m.goal.endState 6= Failed)))

6.3.3.2 Effect Filtering

Before reverting actions associated with a goal, we must select the changes that

must be actually reverted. As explained in Section 6.1, some of the belief changes must

not be undone. This is particularly important in the context of remedial actions, in which

the effects of these actions must be persisted. Although in this thesis we focus on such

context, our proposal (and consequently its implementation) is still open for customisa-

tion, allowing the specification of different parameters for effect filtering.

Therefore, the effect filtering makes the selection of the changes that must be re-

verted through the filterBeliefChanges shown below. Two types of changes are discarded.

First, only actual changes in beliefs are considered. Multiple changes in a belief are ir-

relevant, because what is important is if the value of the belief before the plan execution

is different from that after the execution. Second, we assume that what should be re-

verted are the additional actions made to achieve a goal and not the achieved goal itself,

which would be the case of achieving the negation of the original goal. Therefore, we

also discard changes in the belief associated with the achieved goal.

101

filterBeliefChanges : GoalMetadata× BeliefBase"�PREDICATE

∀m : GoalMetadata; bb : BeliefBase •

filterBeliefChanges (m, bb) = (µ rev : �PREDICATE |

(∀ p : PREDICATE | p ∈ rev •

(∃ pred : PREDICATE | pred ∈ bb.knowledge • pred = p) ∧

(bb.beliefs(m.goal.predicate) = True⇒ p 6= m.goal.predicate) ∧

(bb.beliefs(m.goal.predicate) = False⇒ p 6= ¬m.goal.predicate) ∧

p ∈ dom m.beliefChangeTrace ∧

bb.beliefs(p) = first(last(m.beliefChangeTrace(p))) ∧

first(last(m.beliefChangeTrace(p))) =

first(head(m.beliefChangeTrace(p))))

6.3.3.3 Effect Compensation

Now we know which belief changes must be reverted. Hence, to complete the

reversion process, these changes—i.e. the effects of the achievement of a goal or partial

changes made while executing a plan that failed—must be compensated. In order to do so,

we rely on the BDI reasoning cycle to achieve a set of generated goals. Reversion goals

correspond to the negation of the belief values associated with predicates changed while

achieving a goal. This is done by the reversionGoals function below. These reversion

goals are achievement goals.

reversionGoals : �PREDICATE"�Goal

∀ preds : �PREDICATE •

reversionGoals (preds) = (µ goals : �Goal |

(∀ pred : PREDICATE | pred ∈ preds •

(∃ goal : Goal | goal ∈ goals •

goal.predicate = ¬pred) ∧

goal.type = Achievement ∧

goal.endState = Nil))

Last, the GenerateReversionGoals operation thus adds goals to the agent to revert belief

changes. Goals are created only for belief changes that must be reverted. Therefore, the

reversionGoals function receives as parameter only belief changes that are not discarded

102

after the belief change trace is filtered. We assume that goals to revert a goal are not

reversible goals, in order to avoid a do-undo-redo cycle. Consequently, no metadata is

associated with these goals. We highlight that a limitation of our approach is that it is

dependent on how the agent knowledge is represented. For example, the action of sending

a message to make an invitation can lead to different beliefs, e.g. invited and msgSent. An

agent can have a plan to undo the former, but not the latter. Therefore, if invited is not

modelled while developing the agent, it is not possible to revert this action.

GenerateReversionGoals

∆Agent

m? : GoalMetadata

m? ∈ ran goalMetadata

isReversionActivated (m?, beliefBase) = True

(let preds == filterBeliefChanges (m?, beliefBase) •

goals′ = goals ∪ reversionGoals (preds) ∧

m?.beliefChangeTrace = � ∧

goalMetadata′ = goalMetadata ∪ ({m?.goal} × {m?}))

After adding goals to the agent, the trace of belief changes is cleared. This is done because

the reversion process may occur to revert actions made by a plan that failed. Therefore,

when a new plan is instantiated to achieve the goal, which remains as a goal (unless it

is no longer desired), new belief changes are recorded, which can also be reverted. This

completes the description of our framework.

6.4 Evaluation

Having described our formal framework, we now validate it with a case study. We

first provide details of how we implemented our approach followed by a description of

how we modelled our case study, which is based on the scenario described in Section 6.1.

Finally, we present and discuss obtained results.

103

6.4.1 BDI4JADE Implementation

As in previous chapters, our framework was implemented using the BDI4JADE

platform (NUNES; LUCENA; LUCK, 2011). In our implementation, we overloaded the

addGoal() method of the BDIAgent class in order to allow the addition of reversible

goals. Such method not only adds goals to the set of agent goals, but also creates the corre-

sponding goal metadata. The goal metadata concept is captured by the GoalAchieve-

mentMetadata class. In order to not modify the core of BDI4JADE, we implemented

the reasoning regarding reverting actions in a capability named RevertingCapabil-

ity. Several other existing classes were extended to support the different operations

specified in our solution, such as the BeliefEvent and BeliefSet classes, which

are used for tracking changes performed by plans when achieving reversible goals. The

monitoring process occurs by placing observers (provided by BDI4JADE) in the reason-

ing cycle to record information. The remaining parts are implemented in a customised

option generation function.

As the focus of our proposal is to use the mechanism of reverting actions together

with the automated management of remedial actions, which presented in previous chap-

ters, we extended its implementation. However, they were kept modularised. Our pre-

vious implementation provided agents with the knowledge regarding the relationship be-

tween causes and effects of problems, which allow them to diagnose and solve problem

causes while diagnosing their effects. This information is used to model the triggering

conditions to revert goals.

6.4.2 Case Study Description

Our motivating scenario presented in Section 6.1 involves several devices that are

managed by autonomous agents. These agents coordinate their actions in order to address

a leaking of CO on the water heater of a house, thus preventing injuries that could be

caused to residents by the exposure to high concentrations of CO. We implemented this

scenario using the implementation described above.

In our case study, each device is managed by an individual agent that is able to

control its range of capabilities. In addition to these agents, there is the Manager agent,

which is responsible for broader decisions and for coordinating the interaction among

agents associated with devices. It is the agent responsible for managing remedial actions

104

and their reversion. The Manager agent is responsible for, e.g., requesting the Lights

Controller agent to turn on the lights of a room when agents associated with light and

presence sensors inform the Manager agent that it is dark and an individual entered the

room. Each device controlling agent is provided with plans that allow them to respond

to requests from the Manager agent. Agents responsible for controlling sensors, such

as the CO Detector Controller agent, are able to perform additional tasks, such

as monitoring their sensors and notifying the Manager agent when abnormal situations

occur. Figure 6.2 depicts the set of agents from our study as well as their dependencies.

Table 6.1 presents their corresponding plans.

Figure 6.2: Multiagent system architecture.

Lights
Controller

Valve
Controller

Ventilation
Controller

Window
Controller

CO Detector
Controller

Locker
Controller

Alarm
ControllerManager

Agent

Dependency

Table 6.1: Device Controlling Agents and their Plans.

Agent Plans

CO Detector Controller MonitorCOLevel
Alarm Controller TakeOffAlarm; SilenceAlarm
Lights Controller TurnLightsOn; TurnLightsOff
Locker Controller UnlockDoor; LockDoor
Window Controller OpenWindows; CloseWindows
Ventilation Controller TurnFansOn, TurnFansOff
Valve Controller OpenValve; CloseValve

The Manager agent has a plan library to address problems in the house as well

as request other agents to accomplish certain actions. A possible problem is to have an

increased concentration of CO and, if it happens, the agent generates a goal to reduce the

CO level. Therefore, the Manager agent has a belief abnormal(CO) that must always

be false. If abnormal(CO) becomes true, it may be an effect of several causes, being a

105

leak on the water heater (leak(waterHeater)) one of them. This cause-effect relationship

is provided in advance to the Manager agent.

Our case study thus consists of the implementation of all involved agents located

in a simulated environment. We then observe the Manager agent behaviour when the

concentration of CO in the house increases due to a leak in the water heater. To determine

how the CO concentration changes according to the context, we use a simplified model

of how this gas accumulates and dissipates in the presence of environmental conditions,

such as open windows.

6.4.3 Results and Discussion

The results obtained by running our simulation is now described with a focus on

the behaviour that was observed from Manager agent. Initially, the concentration of

CO was at an acceptable level, below a given threshold. The Manager agent had a set

of beliefs, corresponding to this CO level, as shown in the column and point Start of

Table 6.2 and Figure 6.3, respectively. At some point, the water heater started to leak and

the concentration of CO increased, as shown in Figure 6.3.

Table 6.2: Manager Agent State Evolution.

Belief State
Start I1 I2 I3 I4 I5 End

abnormal(CO) F T T F F F F
takeOff (alarm) F F T T T T F
on(lights) F F T T T T F
locked(doors) T T F F F F T
open(windows) F F T T T T F
on(fans) F F T T T T F
open(valve) T T T T T F F
leak(waterHeater) - - - - T F F

When the amount of CO surpassed the tolerated concentration, the CO Detec-

tor Controller agent detected it and notified the Manager agent. By receiving this

notification, the abnormal(CO) belief became true, as shown in column I1, which corre-

sponds to the first intermediate state of the agent. This triggered the generation of a goal

to achieve ¬abnormal(CO), which had a reverting trigger condition leak(waterHeater)

and a discarding condition of 60 minutes. Because no problem cause was known, pre-

conditions to permanently solve the cause of high CO level did not hold, so the Evacu-

106

Figure 6.3: Level of CO over Time.

Start

I1

I2

I3
I4 and I5

End
0

50

100

150

0 25 50 75
Time (s)

C
on

ce
nt

ra
tio

n
(p

pm
)

CO Level

ateAndVentilate plan—a remedial plan—was selected to achieve the existing goal.

This plan involves dispatching a series of subgoals that are handled by the corresponding

requesting plans, as shown in Table 6.3. All actions were recorded as goal metadata. The

new state of Manager agent is then I2. Because of the remedial actions, the concentra-

tion of CO decreased slowly. When the amount of gas returned to an acceptable level,

the CO Detector Controller agent detected it and notified the Manager agent

(point I3). The Manager agent updated its belief base (state I3) leading to the successful

execution of the remedial plan.

Table 6.3: Manager Agent: Remediation Goals and Plans.

Goals Plans

¬abnormal(CO) EvacuateAndVentilate
takeOff (alarm) RequestAlarmTakeOff
on(lights) RequestLightsOn
¬locked(doors) RequestUnlockDoors
open(windows) RequestOpenWindows
on(fans) RequestFansOn

The cause of the problem is diagnosed with according to the technique introduced

in Chapter 4, leading to the state I4, in which the belief 〈leak(waterHeater); True〉 was

added to the agent belief base, which caused a goal 〈leak(waterHeater); False〉 to be cre-

ated. Differently from the previous goal, this one does not have trigger and discarding

conditions. The RequestCloseValve plan was then executed, the goal was achieved

107

and the evaluation value of leak(waterHeater) was set to false (state I5). Figure 6.3 high-

lights this moment as well in point I5.

The existence of 〈leak(waterHeater); False〉 in the agent belief base satisfied the

trigger condition of the goal ¬abnormal(CO), which triggered the filtering and reversing

steps of our approach. The belief changes recorded in the goal metadata were thus filtered

and a reversion goal was generated to each of them. Requesting plans were used once

again, and after their execution, the end state of Manager agent was as shown in the last

column of Table 6.2.

From the execution of this simulation, it is possible to observe that the behaviour

presented by Manager agent corresponded to what was expected. The comparison of the

Start and End states presented in Table 6.2 shows that the agent was able to autonomously

return the system to a desired state even after addressing a challenging problem. Although

the amount of CO registered after the problem being solved was different, it remained at

an acceptable level, below the specified threshold.

6.5 Final Remarks

We presented in this chapter an approach to allow multiagent systems to au-

tonomously manage the process of recovering to a normal operating state. We proposed

a formal extension of the BDI architecture that includes the structures and operations

needed to manage this process. These operations were grouped into three main activities,

namely goal setup, monitoring and reversion execution. The last has three sub-activities

in which (i) an evaluation of the reversion triggering conditions is performed; (ii) recorded

changes that should not be reverted are discarded; and (iii) goals to revert changes are cre-

ated. Our formal approach was implemented as an extension of the BDI4JADE platform.

This extension was used to evaluate our proposal with a case study in which we simulated

a gas leaking scenario in a smart home. As result, a MAS performed remedial actions to

reduce the levels of gas in a timely fashion before diagnosing the cause of the problem.

These actions were them autonomously reverted due to our proposed solution that was

added to agents as a capability. This case study demonstrated the effectiveness of our

approach, which can be used in many reversible circumstances. We next conclude this

thesis, summarising its main contributions and pointing out directions for future work.

108

109

7 CONCLUSION

Many systems are nowadays built as multiagent systems. Due to the complex

tasks undertaken by these systems, they are expected to resist and recover from adverse

situations that may compromise their operation and the quality of their services. An

existing strategy to provide software systems with this resilient behaviour, named D2R2 +

DR (STERBENZ et al., 2010), specifies the execution of operations such as the detection

of problems, their remediation, the diagnosis of their causes, and the recovery of the

system to a normal operating state. Nevertheless, because of its abstract nature, systems

that instantiate this strategy do it for specific purposes. As a consequence, instantiations

of the D2R2 + DR strategy cannot be reused across different application domains. Even

though there are approaches that provide concrete solutions for some of these operations,

they present several limitations including a lack of autonomy and adaptability.

In this thesis, we presented a framework that aims at providing multiagent sys-

tems with remediation, diagnosis and recovery capabilities. We take advantage of the

operations specified by the D2R2 + DR strategy to allow these systems to mitigate the

effects of problematic events while diagnosing and solving their causes. This framework

detaches this remedial behaviour from domain-dependent code, thus promoting software

reuse across different applications. It extends the typical BDI architecture and comprises

three main techniques. The first automates the management of remedial actions as well

as the diagnosis and solution of problem causes. It includes a set of components to cap-

ture the domain knowledge that supports agents on carrying out these operations. The

second is focused on the diagnosis of problem causes in MAS scenarios. It specifies an

interaction protocol and roles that describe how agents can coordinate their actions and

share information in order to keep operating with the expected quality. Finally, the third

formalises an approach for reverting BDI agent actions. This technique allows agents to

revoke the effects of executed actions without the need for an explicit declaration of which

these actions are and how they should be reverted. This technique is focused on revert-

ing remedial actions performed as outcomes of a resilient behaviour. It can, however, be

adopted in any reversible circumstance.

All these techniques were implemented as an extension of a platform for devel-

oping BDI agents. This implementation served as basis for conducting empirical studies

with the aim of assessing different aspects of the proposed framework. Regarding our

research question, results showed evidence that our framework is able to provide agents

110

and multiagent systems with the abilities required to carry out the remediate, diagnose

and recover operations specified by the D2R2 + DR strategy. With respect to our hypoth-

esis, we conclude that our proposed solution can serve as the core implementation for

agents and MAS with remedial behaviour in different domains. Due to its modularised

architecture, domain-specific capabilities can be incorporated without hindering the un-

derlying behaviour. Finally, the autonomy and adaptability inherited from the BDI model

of agency were demonstrated in our experiments.

7.1 Contributions

Many contributions can be enumerated as a result of the work presented in this

thesis. Together, they frame our solution for the automated management of remedial

behaviour.

Technique for Automated Management of Remedial Actions. The technique described

in Chapter 4 is responsible for automating the coordination of actions performed by

agents during the execution of the remediate and diagnose operations. This tech-

nique comprises structural and behavioural parts (FACCIN; NUNES, 2017a; FAC-

CIN; NUNES, 2017b; FACCIN; NUNES, 2018b). The former introduces the con-

cepts of constrained goals, plan required resources and cause-effect relationships

to the BDI architecture. These concepts are manipulated by customised implemen-

tations of the plan selection and option generation functions, which are part of the

BDI reasoning cycle and are specified by the latter. Because this technique abstracts

the causal information used during the diagnosis process into a structure named

cause-effect knowledge model, domain-dependent information becomes decoupled

from the general remedial reasoning. As a result, our framework can be reused in

many domains, requiring only the specification of the corresponding cause-effect

knowledge model to operate. This model can be specified manually, at design time,

or dynamically, during system execution. It enables the development of domain-

specific strategies for autonomously collecting and maintaining causal information

at runtime.

Technique for Cooperative Diagnosis of Problem Causes. The technique introduced in

Chapter 5 provides agents with the ability to cooperate in order to collect the infor-

mation used to diagnose the root cause of problems (FACCIN; NUNES; HAMOU-

111

LHADJ, 2020) in a MAS. This technique comprises an interaction protocol and

algorithms that specify the behaviour of agents while playing the roles of service

providers, clients and cooperating components. The protocol describes the mes-

sage exchange that occurs among agents when consuming and providing services,

as well as how they collaborate when quality requirement violations are identified.

Provided algorithms describe how the information exchanged by agents is used to

identify if an abnormal behaviour has internal or external causes. Because of the

technique’s top-down approach, a degraded service can have its quality level re-

stored while the cause of the problem is dynamically identified and solved. By

adopting this technique, a MAS is thus able to resist and adapt to the occurrence of

failures at different layers of the system.

Technique for Reverting Actions. In Chapter 6, we formalised a technique that allows

agents to undo the effects of remedial actions after the complete solution of the

problems for which they were executed (FACCIN; NUNES, 2018a). This technique

introduces the concept of goal metadata and specifies the goal setup, monitoring and

reversion execution activities. These activities, which are executed within the BDI

reasoning cycle, enables the tracing of action effects as well as the triggering of

the reversion process when particular conditions are met. The ability provided by

this technique is particularly suited for scenarios in which valuable resources are

allocated for remediating a problem but must be released as soon as possible in

order to allow the execution of further actions. Nevertheless, the proposed solution

is general enough to be used in scenarios such as failure handling and task aborting

situations.

Development Framework. The techniques described in this thesis were implemented

as a framework (FACCIN; NUNES, 2018b; FACCIN; NUNES, 2018a; FACCIN;

NUNES; HAMOU-LHADJ, 2020) that extends BDI4JADE (NUNES; LUCENA;

LUCK, 2011), an existing Java-based platform that implements the BDI architec-

ture. Our techniques are encapsulated into capabilities. Because of that, the can

either be used for developing new agents or incorporated to existing ones, requiring

only to be instantiated in order to be used.

Empirical Evaluations. Three empirical studies were conducted to evaluate different as-

pects of the proposed framework (FACCIN; NUNES, 2018b; FACCIN; NUNES,

2018a; FACCIN; NUNES; HAMOU-LHADJ, 2020). Our first study was focused

112

on evaluating if our technique for the automated coordination of agent actions

would be effective on replicate the remedial behaviour of an existing strategy for

combating DDoS attacks, which was developed in a domain-specific way. Results

showed that our solution not only is effective for developing agents and multiagent

systems that implement the remediation, diagnosis and recovery steps specified by

the D2R2 + DR strategy, but does it without reducing system performance. The

second study focused on evaluating a service-based MAS that adopts our cooper-

ative technique for diagnosing problem causes regarding its ability to dynamically

identify and solve the root cause of problems. Results showed that our solution

provides MAS with the ability to adapt to disrupting events without the need for

human intervention. Finally, our third study was performed in a smart-home setup

and evaluated the ability of a MAS implementing our framework to autonomously

recover to a desired operating state after adverse conditions were remediated and

solved. By conducting these studies, we provide evidence of the reusability of the

developed framework across several applications in different domains.

7.2 Future Work

The contributions presented in this thesis advance research on the development of

resilient MAS systems. However, there still remains several open challenges in this con-

text that should be addressed in future work. These challenges are discussed as follows.

Management Technique Enhancement. Our technique for managing the remedial be-

haviour, presented in Chapter 4, leaves gaps that can be fulfilled to provide further

automation. For instance, satisfying all goal constraints may be unfeasible in many

scenarios. However achieving the goal may be more important than satisfying all

constraints. The development of solutions to deal with over-constrained scenarios

would increase the adaptability of systems, specially in situations that require ac-

tions to be taken quickly. Moreover, goals associated with cause factors may also be

constrained goals, and there must be ways to specify constraints and optimisation

function for them.

Domain-specific Techniques for Diagnosing Causes. The cause-effect knowledge model

introduced in Chapter 4 to capture domain-dependent causal information can be

provided either manually, at design time, or dynamically, at runtime. The tech-

113

nique presented in Chapter 5 relies on particular characteristics of MAS in order

to collect this information from the system execution and be able to diagnose the

root cause of service degradation. However, these characteristics may not apply to

applications that are not modelled as service-based systems. Our general frame-

work would thus benefit from the development of additional techniques that take

advantage of particularities of different domains to dynamically build cause-effect

knowledge models.

User Study. The evaluations conducted in Chapters 4–6 demonstrated that the frame-

work presented in this thesis has the potential to be reused in different application

domains. Nevertheless, a user study that assesses the benefits regarding its reuse

from the perspective of developers would provide valuable information with respect

to its strengths and weaknesses in order to be used in real-world software systems.

Incorporate Additional D2R2 + DR Operations. The framework proposed in this the-

sis automates the remediation, diagnosis and recovery operations specified by the

D2R2 + DR. As presented in Chapter 2, this strategy also describes additional oper-

ations, such as detection of problems and the refinement of system operation based

on past experiences. In this context, the development of techniques that allows these

operations to be incorporated into our framework becomes highly desirable.

Manual and Tutorials. The implementation of the framework presented in this thesis is

available as an extension of the BDI4JADE platform1. Manuals and tutorials that

document our framework and detail its use would certainly promote its adoption in

different projects, and thus become a valuable resource.

In summary, this thesis advances research on reducing the gap between the abstract

definition of a remedial behaviour and its implementation in agents and MAS. Much more

work is required in order to develop a general solution that provides software components

with resilience, but our work is one of the steps towards this direction.

1<https://www.inf.ufrgs.br/prosoft/resources/2020/tse-mas-self-adaptive-protocol>

https://www.inf.ufrgs.br/prosoft/resources/2020/tse-mas-self-adaptive-protocol

114

115

REFERENCES

ABREU, D. P. et al. A resilient internet of things architecture for smart cities. Annals of
Telecommunications, v. 72, n. 1, p. 19–30, Feb 2017.

AGENTS, F. for I. P. FIPA Contract Net Interaction Protocol Specification. [S.l.],
2002. Available from Internet: <http://www.fipa.org/specs/fipa00029/SC00029H.html>.
Accessed in: 2020-08-10.

AVIZIENIS, A. et al. Basic concepts and taxonomy of dependable and secure computing.
IEEE Transactions on Dependable and Secure Computing, IEEE, v. 1, n. 1, p. 11–33,
2004.

BARESI, L.; NITTO, E. D.; GHEZZI, C. Toward open-world software: Issues and
challenges. Computer, v. 39, n. 10, p. 36–43, 2006.

BORDINI, R. H.; HüBNER, J. F.; WOOLDRIDGE, M. Programming Multi-Agent
Systems in AgentSpeak Using Jason. [S.l.]: John Wiley & Sons, 2007.

BRATMAN, M. Intention, plans, and practical reason. Cambridge, MA: Harvard
University Press, 1987.

BUTLER, M.; FERREIRA, C. A process compensation language. In: . Integrated
Formal Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. p. 61–76. ISBN
978-3-540-40911-3.

CARVALHO, L. F. et al. An ecosystem for anomaly detection and mitigation in
software-defined networking. Expert Systems with Applications, v. 104, p. 121–133,
2018. Available from Internet: <https://doi.org/10.1016/j.eswa.2018.03.027>. Accessed
in: 2020-08-10.

CHANDOLA, V.; BANERJEE, A.; KUMAR, V. Anomaly detection: A survey. ACM
Computing Surveys, Association for Computing Machinery, New York, NY, USA, v. 41,
n. 3, jul. 2009. Available from Internet: <https://doi.org/10.1145/1541880.1541882>.
Accessed in: 2020-08-10.

CHEN, T.; BAHSOON, R. Self-adaptive and online QoS modeling for cloud-based
software services. IEEE Transactions on Software Engineering, v. 43, n. 5, p.
453–475, 2017. Available from Internet: <https://doi.org/10.1109/TSE.2016.2608826>.
Accessed in: 2020-08-10.

CHESSELL, M. et al. Extending the concept of transaction compensation. 2002.

CREVELING, C. J. Increasing the reliability of electronic equipment by the use of
redundant circuits. Proceedings of the IRE, v. 44, n. 4, p. 509–515, 1956.

CZARNECKI, K.; EISENECKER, U. Generative Programming: Methods, Tools,
and Applications. [S.l.]: Addison Wesley Longman, 2000.

DENNETT, D. The Intentional Stance. [S.l.]: MIT Press, 1987.

D’INVERNO, M.; LUCK, M. Understanding agent systems. [S.l.]: Springer Science
& Business Media, 2004. ISBN 9783540407003.

http://www.fipa.org/specs/fipa00029/SC00029H.html
https://doi.org/10.1016/j.eswa.2018.03.027
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/TSE.2016.2608826

116

DOBSON, S. et al. A survey of autonomic communications. ACM Transactions
on Autonomous and Adaptive Systems, Association for Computing Machinery,
New York, NY, USA, v. 1, n. 2, p. 223–259, 2006. Available from Internet:
<https://doi.org/10.1145/1186778.1186782>. Accessed in: 2020-08-10.

DOBSON, S. et al. Self-organization and resilience for networked systems: Design
principles and open research issues. Proceedings of the IEEE, v. 107, n. 4, p. 819–834,
2019. Available from Internet: <https://doi.org/10.1109/JPROC.2019.2894512>.
Accessed in: 2020-08-10.

DÖTTERL, J. et al. Towards dynamic rebalancing of bike sharing systems: An
event-driven agents approach. In: OLIVEIRA, E. et al. (Ed.). Proceedings... Cham:
Springer International Publishing, 2017. p. 309–320.

ELLISON, R. et al. Foundations for survivable systems engineering. The Journal of
Defense Software Engineering, p. 10–15, 2002.

FACCIN, J.; NUNES, I. BDI-agent plan selection based on prediction of plan
outcomes. In: INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND
INTELLIGENT AGENT TECHNOLOGY. Proceedings... 2015. v. 2, p. 166–173.
Available from Internet: <http://dx.doi.org/10.1109/WI-IAT.2015.58>. Accessed in:
2020-08-10.

FACCIN, J.; NUNES, I. Modelling and reasoning about remediation actions in BDI
agents. In: CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT
SYSTEMS. Proceedings... [S.l.], 2017. p. 1526–1528.

FACCIN, J.; NUNES, I. Raciocínio causal em agentes BDI: um modelo abstrato. In:
WORKSHOP-SCHOOL ON AGENTS, ENVIRONMENTS AND APPLICATIONS.
Proceedings... [S.l.], 2017. p. 211–216.

FACCIN, J.; NUNES, I. Cleaning up the mess: A formal framework for au-
tonomously reverting bdi agent actions. In: INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING FOR ADAPTIVE AND SELF-MANAGING
SYSTEMS. Proceedings... New York, NY, USA: Association for Computing
Machinery, 2018. p. 108–118. ISBN 9781450357159. Available from Internet:
<https://doi.org/10.1145/3194133.3194156>. Accessed in: 2020-08-10.

FACCIN, J.; NUNES, I. Remediating critical cause-effect situations with an extended
BDI architecture. Expert Systems with Applications, v. 95, p. 190–200, 2018.

FACCIN, J.; NUNES, I.; HAMOU-LHADJ, A. A problem-solving strategy for
self-adaptation in multiagent systems. IEEE Transactions on Software Engineering,
2020. Submitted.

FISHER, D. et al. Survivable Network Systems: An Emerging Discipline. Pittsburgh,
PA, 1997. Available from Internet: <http://resources.sei.cmu.edu/library/asset-view.cfm?
AssetID=12905>. Accessed in: 2020-08-10.

FORD, A. et al. TCP extensions for multipath operation with multiple addresses.
[S.l.], 2013. No. RFC 6824.

https://doi.org/10.1145/1186778.1186782
https://doi.org/10.1109/JPROC.2019.2894512
http://dx.doi.org/10.1109/WI-IAT.2015.58
https://doi.org/10.1145/3194133.3194156
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12905
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12905

117

FRAKES, W. B.; KANG, K. Software reuse research: status and future. IEEE
Transactions on Software Engineering, v. 31, n. 7, p. 529–536, 2005.

GHOSH, D. et al. Self-healing systems — survey and synthesis. Decision
Support Systems, v. 42, n. 4, p. 2164–2185, 2007. Available from Internet:
<https://doi.org/10.1016/j.dss.2006.06.011>. Accessed in: 2020-08-10.

GRAY, J.; REUTER, A. Transaction Processing: Concepts and Techniques. [S.l.]:
Elsevier Science, 1992. (The Morgan Kaufmann Series in Data Management Systems).
ISBN 9780080519555.

HAN, W.; LEI, C. A survey on policy languages in network and security management.
Computer Networks, Elsevier, v. 56, n. 1, p. 477–489, 2012.

HERNANDEZ, L. et al. A multi-agent system architecture for smart grid management
and forecasting of energy demand in virtual power plants. IEEE Communications
Magazine, v. 51, n. 1, p. 106–113, 2013.

HOSSEINI, S.; BARKER, K.; RAMIREZ-MARQUEZ, J. E. A review of definitions
and measures of system resilience. Reliability Engineering & System Safety, Elsevier,
v. 145, p. 47–61, 2016.

HUANG, A.; NITSCHKE, G. Automating coordinated autonomous vehicle control.
In: INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND
MULTIAGENT SYSTEMS. Proceedings... Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems, 2020. p. 1867–1868. ISBN
9781450375184.

HÜBNER, J. F.; BORDINI, R. H.; WOOLDRIDGE, M. Programming declarative goals
using plan patterns. In: . Declarative Agent Languages and Technologies IV:
4th International Workshop, DALT 2006, Hakodate, Japan, May 8, 2006, Selected,
Revised and Invited Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p.
123–140. ISBN 978-3-540-68961-4.

INSAURRALDE, C. C. Service-oriented agent architecture for unmanned air vehicles.
In: IEEE/AIAA DIGITAL AVIONICS SYSTEMS CONFERENCE. Proceedings...
[S.l.], 2014. p. 1–19.

IQBAL, S. et al. Application of intelligent agents in health-care. Artificial Intelligence
Review, Springer, v. 46, n. 1, p. 83–112, 2016.

JANUáRIO, F.; CARDOSO, A.; GIL, P. A distributed multi-agent framework for
resilience enhancement in cyber-physical systems. IEEE Access, v. 7, p. 31342–31357,
2019.

JENNINGS, N. R. An agent-based approach for building complex software systems.
Commun. ACM, Association for Computing Machinery, New York, NY, USA, v. 44, n. 4,
p. 35–41, abr. 2001. Available from Internet: <https://doi.org/10.1145/367211.367250>.
Accessed in: 2020-08-10.

KANG, K. et al. Feature-oriented domain analysis (FODA) feasibility study. [S.l.],
1990.

https://doi.org/10.1016/j.dss.2006.06.011
https://doi.org/10.1145/367211.367250

118

KORTH, H. F.; LEVY, E.; SILBERSCHATZ, A. A formal approach to recovery by
compensating transactions. In: INTERNATIONAL CONFERENCE ON VERY LARGE
DATA BASES. Proceedings... San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1990. p. 95–106. ISBN 1-55860-149-X.

LYONS, R. E.; VANDERKULK, W. The use of triple-modular redundancy to improve
computer reliability. IBM Journal of Research and Development, v. 6, n. 2, p.
200–209, 1962.

MAES, S.; MEGANCK, S.; MANDERICK, B. Inference in multi-agent causal models.
International Journal of Approximate Reasoning, v. 46, n. 2, p. 274–299, 2007.
Available from Internet: <https://doi.org/10.1016/j.ijar.2006.09.005>. Accessed in:
2020-08-10.

MENDONçA, D. F.; ALI, R.; RODRIGUES, G. N. Modelling and analysing contextual
failures for dependability requirements. In: INTERNATIONAL SYMPOSIUM
ON SOFTWARE ENGINEERING FOR ADAPTIVE AND SELF-MANAGING
SYSTEMS. Proceedings... New York, NY, USA: Association for Computing
Machinery, 2014. p. 55–64. ISBN 9781450328647. Available from Internet:
<https://doi.org/10.1145/2593929.2593947>. Accessed in: 2020-08-10.

MENG, W. Intrusion detection in the era of IoT: Building trust via traffic filtering and
sampling. Computer, v. 51, n. 7, p. 36–43, 2018.

MOHAGHEGHI, P.; CONRADI, R. Quality, productivity and economic benefits of
software reuse: A review of industrial studies. Empirical Software Engineering,
Kluwer Academic Publishers, Hingham, MA, USA, v. 12, n. 5, p. 471–516, Oct 2007.
Available from Internet: <http://dx.doi.org/10.1007/s10664-007-9040-x>. Accessed in:
2020-08-10.

NOLAN, K. E. et al. Techniques for resilient real-world IoT. In: INTERNATIONAL
WIRELESS COMMUNICATION AND MOBILE COMPUTING CONFERENCE.
Proceedings... [S.l.], 2016. p. 222–226.

NUNES, I.; LUCENA, C. J. P. D.; LUCK, M. BDI4JADE: a BDI layer on top of
JADE. In: INTERNATIONAL WORKSHOP ON PROGRAMMING MULTI-AGENT
SYSTEMS. Proceedings... [S.l.], 2011. p. 88–103.

NUNES, I.; SCHARDONG, F.; SCHAEFFER-FILHO, A. BDI2DoS: an application
using collaborating BDI agents to combat DDoS attacks. Journal of Network and
Computer Applications, 2017.

PADGHAM, L.; SINGH, D. Situational preferences for BDI plans. In: INTERNA-
TIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT
SYSTEMS. Proceedings... [S.l.]: International Foundation for Autonomous Agents and
Multiagent Systems, 2013. p. 1013–1020. ISBN 978-1-4503-1993-5.

PARIDA, P. K.; MARWALA, T.; CHAKRAVERTY, S. A multivariate additive noise
model for complete causal discovery. Neural Networks, v. 103, p. 44–54, 2018.
Available from Internet: <https://doi.org/10.1016/j.neunet.2018.03.013>. Accessed in:
2020-08-10.

https://doi.org/10.1016/j.ijar.2006.09.005
https://doi.org/10.1145/2593929.2593947
http://dx.doi.org/10.1007/s10664-007-9040-x
https://doi.org/10.1016/j.neunet.2018.03.013

119

PARZEN, E. On estimation of a probability density function and mode. Annals
of Mathematical Statistics, The Institute of Mathematical Statistics, v. 33, n. 3, p.
1065–1076, 1962. Available from Internet: <https://doi.org/10.1214/aoms/1177704472>.
Accessed in: 2020-08-10.

PEARL, J. Probabilistic reasoning in intelligent systems: networks of plausible
inference. [S.l.]: Elsevier, 2014.

RAICIU, C. et al. Improving datacenter performance and robustness with multipath TCP.
In: ACM SIGCOMM. Proceedings... New York, NY, USA: ACM, 2011. (SIGCOMM
’11), p. 266–277. ISBN 978-1-4503-0797-0.

RAO, A. S. AgentSpeak(L): BDI agents speak out in a logical computable
language. In: EUROPEAN WORKSHOP ON MODELLING AUTONOMOUS
AGENTS IN A MULTI-AGENT WORLD. Proceedings... Springer-Verlag New
York, Inc., 1996. p. 42–55. ISBN 3-540-60852-4. Available from Internet:
<http://dl.acm.org/citation.cfm?id=237945.237953>. Accessed in: 2020-08-10.

RAO, A. S.; GEORGEFF, M. P. BDI agents: From theory to practice. In:
INTERNATIONAL CONFERENCE ON MULTIAGENT SYSTEMS. Proceedings...
[S.l.], 1995. p. 312–319.

RAVICHANDRAN, T.; ROTHENBERGER, M. A. Software reuse strategies and
component markets. Communications of ACM, Association for Computing Machinery,
New York, NY, USA, v. 46, n. 8, p. 109–114, 2003. Available from Internet:
<https://doi.org/10.1145/859670.859678>. Accessed in: 2020-08-10.

SANCTIS, M. D.; BUCCHIARONE, A.; MARCONI, A. Dynamic adaptation
of service-based applications: a design for adaptation approach. Journal of
Internet Services and Applications, v. 11, n. 2, 2020. Available from Internet:
<https://doi.org/10.1186/s13174-020-00123-6>. Accessed in: 2020-08-10.

SCHAEFFER-FILHO, A. E. et al. A framework for the design and evaluation of
network resilience management. In: IEEE/IFIP NETWORK OPERATIONS AND
MANAGEMENT SYMPOSIUM. Proceedings... [S.l.]: IEEE, 2012. p. 401–408. ISBN
978-1-4673-0267-8.

SIRCAR, K. et al. Carbon monoxide poisoning deaths in the united states, 1999 to 2012.
The American Journal of Emergency Medicine, v. 33, n. 9, p. 1140–1145, 2015.

SPIVEY, J. M. Understanding Z: a specification language and its formal semantics.
[S.l.]: Cambridge University Press, 1988.

STERBENZ, J. P. et al. Evaluation of network resilience, survivability, and
disruption tolerance: analysis, topology generation, simulation, and experimentation.
Telecommunication Systems, Springer, v. 52, n. 2, p. 705–736, 2013.

STERBENZ, J. P. G. et al. Resilience and survivability in communication networks:
Strategies, principles, and survey of disciplines. Computer Networks, v. 54, n. 8, p.
1245–1265, 2010. Available from Internet: <https://doi.org/10.1016/j.comnet.2010.03.
005>. Accessed in: 2020-08-10.

https://doi.org/10.1214/aoms/1177704472
http://dl.acm.org/citation.cfm?id=237945.237953
https://doi.org/10.1145/859670.859678
https://doi.org/10.1186/s13174-020-00123-6
https://doi.org/10.1016/j.comnet.2010.03.005
https://doi.org/10.1016/j.comnet.2010.03.005

120

STRIGINI, L. Resilience: What is it, and how much do we want? IEEE Security
Privacy, v. 10, n. 3, p. 72–75, May 2012.

THANGARAJAH, J. et al. Aborting tasks in BDI agents. In: INTERNATIONAL JOINT
CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS.
Proceedings... New York, NY, USA: ACM, 2007. p. 8–15. ISBN 978-81-904262-7-5.

TUKEY, J. W. Exploratory Data Analysis. [S.l.]: Addison-Wesley, 1977.

UNRUH, A.; BAILEY, J.; RAMAMOHANARAO, K. A framework for goal-based
semantic compensation in agent systems. In: INTERNATIONAL WORKSHOP ON
SAFETY AND SECURITY IN MULTI-AGENT SYSTEMS. Proceedings... [S.l.],
2004.

UNRUH, A. et al. Semantic-compensation-based recovery in multi-agent systems. In:
MULTI-AGENT SECURITY AND SURVIVABILITY. Proceedings... [S.l.], 2005. p.
85–94.

VISSER, S. et al. Preference-based reasoning in BDI agent systems. Autonomous
agents and multi-agent systems, Springer, v. 30, n. 2, p. 291–330, 2016.

WANG, P. et al. Cloudranger: Root cause identification for cloud native systems.
In: IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND
GRID COMPUTING. Proceedings... 2018. p. 492–502. Available from Internet:
<https://doi.org/10.1109/CCGRID.2018.00076>. Accessed in: 2020-08-10.

WILSON, P. F. Root cause analysis: A tool for total quality management. [S.l.]: ASQ
Quality Press, 1993.

WOOLDRIDGE, M. Intelligent agents. In: WEISS, G. (Ed.). Multiagent Systems.
[S.l.]: The MIT Press, 1999. p. 27–77.

ZHANG, Y.; LIN, K.-J.; HSU, J. Y. J. Accountability monitoring and reasoning in service-
oriented architectures. Service Oriented Computing and Applications, v. 1, n. 1, p.
35–50, 2007. Available from Internet: <https://doi.org/10.1007/s11761-007-0001-4>.
Accessed in: 2020-08-10.

ZHOU, X. et al. Fault analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study. IEEE Transactions on Software Engineering,
v. 14, n. 8, p. 1–18, 2018.

https://doi.org/10.1109/CCGRID.2018.00076
https://doi.org/10.1007/s11761-007-0001-4

121

APPENDIX A — FRAMEWORK USAGE

The framework presented in this thesis is implemented as an extension of an ex-

isting Java-based platform for the development of BDI agents, named BDI4JADE1. The

source code of our framework is available in a git repository2 under a branch named

remediation-undo. To have access to it, clone the repository and switch to the

mentioned branch. This appendix describes how this extended platform can be used to

provide agents with the remedial behaviour that is the focus of this work. A typical way

to implement an agent in BDI4JADE is by creating an instance of the SingleCapa-

bilityAgent class or a class that extends it. Listing A.1 presents an example in which

an agent named myAgent is created.

Listing A.1: Agent instantiation.

1 public static void main(String[] args) {

2 BDIAgent myAgent = new SingleCapabilityAgent();

3 }

As introduced in Chapter 3, a BDI agent comprises three key components: be-

liefs, desires (or goals), and intentions. There are also the plans, which represent the set

of actions performed by the agent when trying to achieve a given goal. To implement

an agent, beliefs, goals and plans are explicitly declared as parts of capabilities, while

intentions remain as internal structures that are transparent to developers. Details on how

to implement these concepts can be found elsewhere (NUNES; LUCENA; LUCK, 2011).

To take advantage of the remedial behaviour introduced in Chapter 4, developers

are required to implement a capability that extends the RemediationCapability,

which is provided by our framework. Such an implementation is exemplified in List-

ing A.2, where the RemediationCapability class is extended by a new capability

class named MyCapability (line 1). Besides allowing the use of customised beliefs

and plans, the RemediationCapability class also provides the causeEffect-

KnowledgeModel belief, which can be accessed and updated in order to provide a

domain-specific cause-effect knowledge model. Listing A.2 presents its usage in lines 11–

13, where a CauseEffectRelationship cer containing an effect and its manda-

tory cause is instantiated and added to the existing causeEffectKnowledgeModel

belief.

1<https://www.inf.ufrgs.br/prosoft/bdi4jade/>
2<http://prosoft.inf.ufrgs.br/git/bdi4jade.git>

https://www.inf.ufrgs.br/prosoft/bdi4jade/
http://prosoft.inf.ufrgs.br/git/bdi4jade.git

122

Listing A.2: Agent instantiation.

1 public class MyCapability extends RemediationCapability {

2 @Belief

3 private String myBelief;

4 @Plan

5 private Plan myPlan;

6

7 public MyCapability(BDIAgent agent) {

8 super(agent);

9 this.myBelief = Boolean.TRUE;

10 this.myPlan = new MyPlan();

11 CauseEffectRelationship cer = new CauseEffectRelationship(new Fact(

↪→ new UnaryPredicate("effect"), true));

12 cer.addMandatoryCause(new Fact(new UnaryPredicate("cause"), true));

13 causeEffectKnowledgeModel.addCauseEffectRelationship(cer);

14 }

Constrained goals are created through the instantiation of the Constrained-

Goal class or a class that extends it. Methods addObjectiveFunction() and

addOperationConstraint() are respectively used to inform the objective func-

tion associated to resources that are related to a goal and to specify particular operation

constraints. Listing A.3 exemplifies how a constrained goal myGoal is created and an

objective function to minimise the use of a time resource as well as a constraint are

added to it (lines 5–7).

Listing A.3: Constrained goal instantiation.

1 public static void main(String[] args) {

2 TimeResource time = new TimeResource();

3 UnaryLogicalExpression constraint = new UnaryLogicalExpression();

4 ...

5 ConstrainedGoal myGoal = new ConstrainedGoal(null);

6 myGoal.addObjectiveFunction(time, ObjectiveFunction.MINIMISE);

7 myGoal.addOperationConstraint(constraint);

8 }

A plan required resource can be specified by instantiating the PlanRequire-

dResource class. It can be added to an existing plan using the putMetadata()

method. Listing A.4 shows the instantiation of a plan required resource named prr,

which states that 10 units of time are required by a given plan to be executed (lines 4–5).

This plan required resource is thus added to myPlan in line 8.

123

Listing A.4: Plan Required Resource instantiation.

1 public static void main(String[] args) {

2 TimeResource time = new TimeResource();

3 ...

4 PlanRequiredResource prr = new PlanRequiredResource();

5 prr.setRequiredResource(time, 10.0);

6 ...

7 MyPlan myPlan = new MyPlan();

8 myPlan.putMetadata(PlanRequiredResource.METADATA_NAME, prr);

9 }

Because the RemedationCapability extends the RevertingCapabil-

ity class, there is no need for an explicit declaration of reversible goals and their cor-

responding goal achievement metadata, as these operations are already handled by the

extended class. Goals are considered reversible when they play the role of effects in the

existing cause-effect knowledge model. Their addition to the agent automatically triggers

the instantiation of corresponding goal achievement metadata.

Regarding the interaction protocol and its underlying roles presented in Chap-

ter 5, our framework provides a class named CooperativeCapability, which can

serve as the basis for implementing this protocol. This capability already provides a

set of plans and beliefs that allow agents to perform the reasoning process required

for diagnosing the root cause of problems. Examples of plans include the Verify-

InternalOrExternalPlanBody and VerifySuspiciousComponentPlan-

Body classes, which implement the internal and external verification operations, respec-

tively. Nevertheless, this class can still be extended in order to handle different applica-

tions as its current implementation only gives support for the tracing of the time resource.

124

125

APPENDIX B — RESUMO ESTENDIDO

Gerenciamento Automatizado de Comportamento Remediativo

Muitos sistemas de software são atualmente construidos como sistemas multia-

gentes (MAS). Eles são compostos por componentes autônomos distribuídos, situados

em um ambiente. Tais componentes, também chamados de agentes, interagem e cola-

boram entre si para realizar uma série de tarefas como, por exemplo, o gerenciamento

de plantas de energia, veículos autônomos, veículos aéreos não tripulados e sistemas de

cuidados médicos. A complexidade e criticidade dessas tarefas exigem que esses sistemas

sejam capazes de operar satisfazendo os níveis de qualidade existentes pelo maior tempo

possível, resistindo e se recuperando de situações anormais. Assim, a adoção de técnicas

que os façam resilientes se torna essencial.

Resiliência pode ser entendida como a capacidade de um sistema em retornar a

uma condição normal de operação após a ocorrência de eventos disruptivos. Ela combina

ideias de diversas disciplinas, como tolerância à falhas e sobrevivência e, por isso, pode

ser obtida em diferentes níveis e de diferentes maneiras. Uma estratégia de resiliência

existente, chamada D2R2 + DR, especifica um conjunto de operações a serem executadas

por sistemas de modo a se tornarem resilientes. Entre essas operações estão a detecção,

a remediação, o diagnóstico e a recuperação de um dado problema. Detectar problemas

consiste em identificar comportamentos inesperados ou degradações no desempenho do

sistema. Remediá-los, por sua vez, corresponde à minimizar seu impacto nos serviços

fornecidos pelo sistema. Diagnosticar um problema implica em revelar sua causa raíz, o

que permite que medidas corretivas sejam tomadas e possíveis falhas sejam prevenidas,

mantendo o sistema operacional. Finalmente, recuperar diz respeito à capacidade de re-

tornar a um estado normal de operação assim que os problemas forem solucionados.

Apesar de fornecer diretrizes de projeto, a estratégia D2R2 + DR é um modelo

conceitual. Assim, sistemas ou componentes que a implementam o fazem com foco nos

domínios ou aplicações para os quais eles são projetados. Como resultado, o reuso de

código é comprometido e novas implementações devem ser feitas do zero. Diversas

soluções existentes foram desenvolvidas para auxiliar na implementação de operações

específicas. Entretanto, essas soluções trazem limitações como a falta de autonomia e

adaptabilidade, e são raramente integradas em uma única solução coesa. Existem, por ex-

emplo, muitas abordagens capazes de detectar um comportamento anômalo em sistemas

126

de software. Entretanto, essas abordagens não são suficientes para diagnosticar a causa

raíz dessas anormalidades. Essa tarefa é normalmente desempenhada por especialistas por

meio da inspeção manual de informações obtidas de diferentes fontes. Isso também ocorre

com o gerenciamento de ações remediativas, que normalmente é feito de maneira rígida e

manualmente coordenado. Realizar essas tarefas é um desafio em sistemas dinâmicos e de

larga escala dada a quantidade de dados a serem analisados e a complexidade do sistema

a ser gerenciado. Consequentemente, o desempenho de sistemas frente à situações que

requerem uma resposta imediata é comprometida. Além disso, essa dependência de espe-

cialistas e desenvolvedores vai contra a crescente necessidade de sistemas autônomos, os

quais devem ser capazes de superar e se adaptar à situações desafiadoras sem a necessi-

dade de intervenção humana.

Com base nestas limitações, a questão de pesquisa que guia esta tese é a seguinte.

Como fornecer a sistemas multiagentes, de forma neutra e reutilizável em relação ao

domínio, a habilidade de remediar, diagnosticar e se recuperar de situações anormais?

Para responder esta questão e construir nossa hipótese de pesquisa, nos baseamos

na arquitetura BDI. A arquitetura BDI é uma abordagem bastante utilizada no desenvolvi-

mento de agentes autônomos com características adaptativas. Essa arquitetura especifica

três componentes principais: as crenças, os desejos e as intenções. Eles representam, res-

pectivamente, a percepção que o agente tem do seu ambiente e de si mesmo, os estados

que o agente deseja alcançar, e os desejos com os quais este agente está comprometido.

Esses componentes são manipulados por uma série de funções abstratas em um ciclo de

raciocínio. Como essas funções são customizáveis, é possível fornecer uma solução na

qual a arquitetura BDI seja encarregada da coordenação de ações remediativas, assim

como do diagnóstico e solução de causas de problemas, e da recuperação do sistema.

Dessa forma, a hipótese de pesquisa investigada é a de que um framework independente

de domínio que estende a arquitetura BDI é uma solução efetiva para realizar as oper-

ações de remediação, diagnóstico e recuperação especificadas na estratégia D2R2 + DR,

promovendo reuso entre diferentes domínios de aplicação enquanto fornece a agentes e

sistemas multiagentes implementados a partir dele características autônomas e adaptati-

vas.

Assim, propomos um framework independente de domínio que implementa um

conjunto de técnicas desenvolvidas com o objetivo de auxiliar agentes na coordenação

automatizada de suas ações, seja para a remediação de problemas, diagnóstico de suas

causas raíz, ou recuperação a um estado normal de operação. A primeira técnica estende

127

a arquitetura BDI de modo a permitir que agentes selecionem de maneira autônoma o

conjunto apropriado de ações para remediar problemas e lidar com suas causas. Essa

técnica automatiza a coordenação de planos do agente, promovendo assim o seu reuso

em diferentes domínios e permitindo que agentes decidam de maneira flexível a melhor

ação a ser executada de acordo com seu contexto, objetivos e preferências. A arquitetura

BDI estendida, ilustrada na Figura 4.2, inclui um conjunto de componentes estruturais

que capturam o conhecimento de domínio necessário para dar suporte aos agentes na

tomada de tais decisões. Esse conhecimento é usado em um mecanismo customizado de

raciocínio, o qual seleciona planos remediativos, quando necessário, e gera objetivos para

diagnosticar e lidar com causas de problemas.

As extensões estruturais tem o objetivo de fornecer as informações necessárias

para a execução do comportamento remediativo e dar suporte às decisões que ele com-

preende. Alguns dos componentes estruturais, como preferências e objetivos restritos,

permitem uma maior flexibilidade sobre a escolha das ações que vão ser executadas pelo

agente, sejam elas remediativas ou não. Um papel particularmente importante é desem-

penhado pelo modelo de causa e efeito (Figura 4.1). Esse modelo, adaptado do modelo de

características das linhas de produto de software, é responsável por fornecer a informação

que relaciona diferentes eventos às suas possíveis causas. Nele, é possível especificar

eventos obrigatórios, opcionais ou alternativos que devem ocorrer para que um determi-

nado efeito aconteça.

Essas informações são utilizadas pelas funções customizadas de geração de opções

e de seleção de planos. A função de geração de opções é responsável por gerenciar os ob-

jetivos do agente. Na extensão desenvolvida, essa função implementa um algoritmo de

controle que gerencia o rastreamento dos objetivos associados a efeitos que tenham uma

causa especificada no modelo de causa e efeito. Quando um objetivo com essa caracterís-

tica é gerado, esse algoritmo verifica se as causas existentes no modelo de causa e efeito

coincidem com o contexto atual em que o agente está inserido. Caso essa informação

não esteja disponível, são criados objetivos para que ela seja adquirida. Dessa forma, a

função pode gerar objetivos associados à resolução das causas identificadas e verificar

quando um problema foi completamente resolvido. Para isso, foi criada uma estrutura

auxiliar, chamada cause-effect status, que mantém o registro dos problemas endereçados e

dos diferentes elementos que podem compor suas causas. A função de seleção de planos,

por sua vez, considera informações relacionadas à execução de planos, assim como as

restrições impostas pelos objetivos, para selecionar as ações que melhor satisfaçam as

128

preferências do agente.

Dado que o objetivo desta técnica é permitir que agentes coordenem de maneira

independente e automatizada as ações para remediar problemas e resolver suas causas,

ela foi avaliada em relação à sua efetividade na realização dessa tarefa. Foi desenvolvido

um sistema multiagentes que implementa o comportamento remediativo no combate à

ataques distribuídos de negação de serviços. Nesse cenário, quando um tráfego anormal

é identificado em um link de uma rede, ele deve ser prontamente remediado pra evitar

possíveis efeitos prejudiciais ao serviço fornecido. Para isso, o tráfego é limitado nesse

link e o sistema tenta identificar o alvo do ataque. Quando o alvo é identificado, o tráfego

destinado a ele é reduzido e o sistema então identifica a fonte do ataque. Quando ela é

identificada, seu tráfego é limitado e o problema é considerado completamente resolvido.

O sistema que implementa a abordagem proposta foi comparado à uma solução

existente que implementa o comportamento remediativo de forma manual. Como re-

sultado, foi possível verificar que o agente que fez uso da abordagem automatizada de

gerenciamento de ações remediativas foi capaz de remediar e resolver o problema de

forma efetiva, sem degradação significativa de performance quando comparado ao sis-

tema no qual essas ações são gerenciadas manualmente. Tal resultado de performance é

relevante pois, normalmente, implementações genéricas apresentam um desempenho pior

por não permitirem ajustes específicos com foco no domínio em que elas são implantadas.

Destaca-se ainda que a efetividade do comportamento remediativo foi obtida com uma re-

dução de quase 25% no esforço de desenvolvimento em termos de linhas de código, já

que a coordenação do comportamento do agente é todo encapsulado na abordagem desen-

volvida. Tal resultado é relevante visto que o código que implementa esse comportamento

é complexo, contendo diversos pontos de decisão que podem levar a diferentes caminhos

de execução.

A segunda técnica que compõe o framework proposto se aproveita de uma car-

acterística particular de sistemas multiagentes para diagnosticar a causa de problemas de

modo cooperativo e em tempo de execução. Nesse tipo de sistema, agentes interagem

fornecendo e consumindo serviços. Quando uma anormalidade em um serviço fornecido

por um agente é detectada, ela pode ter três origens possíveis: (i) no próprio agente que

fornece o serviço; (ii) em componentes que fornecem serviços àquele agente; ou (iii) no

canal de comunicação entre eles.

A técnica de diagnóstico cooperativo especifica um protocolo de interação entre

agentes e o comportamento que eles devem assumir quando desempenham diferentes

129

papéis dentro do sistema. Esse protocolo, apresentado na Figura 5.3, determina como os

agentes interagem entre si por meio da troca de mensagens de requisição e de informação.

O principal objetivo dessa troca de mensagens é o consumo e fornecimento de serviços.

Porém, quando um comportamento anormal é detectado em um agente, tais mensagens

também são utilizadas pra requisitar informações adicionais ou pra notificar problemas e

suas soluções.

De acordo com esse protocolo, um agente pode desempenhar os papéis de cliente,

fornecedor, e agente cooperativo. Como cliente, um agente consome serviços de agentes

fornecedores. Normalmente, tais serviços devem obedecer a determinados requisitos de

qualidade que, quando violados, dão origem a problemas que devem ser resolvidos. Um

agente cliente registra todas as suas interações com seus fornecedores em uma estrutura

chamada traço de interação. Quando uma requisição de serviço é feita, um traço é criado

contendo a identificação do fornecedor, o serviço requisitado e os requisitos de qualidade

do cliente. Quando essa requisição é respondida, o traço de interação é atualizado com in-

formações sobre como o serviço atendeu aos requisitos de qualidade, além do registro do

instante em que a requisição foi atendida. Além disso, clientes também são responsáveis

por notificarem seus fornecedores quando requisitos de qualidade são violados.

Como fornecedor, um agente atende à requisições de serviços de seus clientes e

também age quando notificado de que violou requisitos de qualidade. Quando recebe

uma notificação dessa natureza, o comportamento remediativo tem início e um processo

de verificação em duas etapas entra em ação. Esse processo realiza uma verificação in-

terna e uma verificação externa. A primeira tem o objetivo de diagnosticar se a violação

de requisitos teve origem no próprio agente ou não, ou seja, se é uma causa interna ou ex-

terna. Para isso, o agente verifica se, ao fornecer o serviço que apresentou uma anomalia,

consumiu serviços de terceiros. Em caso afirmativo, é feita uma análise estatística uti-

lizando o método de cercas de Tukey pra comparar as métricas de qualidade dos serviços

consumidos com dados históricos. Nesse método estatístico, tendo por base uma amostra

de dados, são calculados valores que determinam limites superiores e inferiores de nor-

malidade. Qualquer valor fora desse intervalo é considerado anormal.

Se nenhuma anormalidade for verificada ou se nenhum serviço de terceiros tiver

sido consumido para fornecer o serviço anormal, assume-se que o problema seja interno

ao fornecedor. Uma ação de reparação é então executada e o cliente é notificado de que

o serviço foi restabelecido. Caso contrário, uma ação remediativa é executada e o cliente

é notificado. Nesse caso a segunda etapa de verificação é realizada com o objetivo de di-

130

agnosticar se a causa da anormalidade tem origem no serviço de um terceiro ou no meio

de comunicação entre o agente fornecedor e seu provedor. Para isso, o agente solicita

que outros componentes do sistema que já tenham consumido o mesmo serviço forneçam

uma probabilidade de que aquele serviço apresente uma anomalia. As probabilidades in-

formadas são computadas em uma pontuação que é utilizada como parâmetro pra decidir

qual das causas externas deve ser corrigida.

Caso se verifique que o canal de comunicação entre agentes é a causa do problema,

uma ação capaz de reparar o mesmo é executada. Por outro lado, caso o serviço de um

terceiro seja considerado anormal, seu fornecedor é notificado dessa anormalidade e o

agente aguarda um informe de que o serviço retornou ao normal. Em ambos os casos,

as ações remediativas tomadas para mitigar o problema externo são revertidas após a

solução definitiva do problema. Esta técnica permite que o modelo de causa e efeito seja

construído dinamicamente e de forma transparente ao desenvolvedor.

Finalmente, o último papel que pode ser desempenhado por um agente é o de

agente cooperador. Quando desempenha esse papel, o agente é responsável por respon-

der às requisições de probabilidade enviadas por agentes que lidem com uma situação

problemática. Para isso, o agente cooperativo consulta seus traços de execução com o

intuito de verificar se já consumiu o serviço requisitado do agente suspeito. Em caso afir-

mativo, uma função de densidade é estimada a partir de um estimador de densidade de

kernel. Dado que dados coletados mais recentemente tendem a ter um poder informativo

maior, esse kernel atribui pesos maiores a traços mais recentes. O método de cercas de

Tukey é usado novamente para determinar o intervalo de valores normais. O agente então

calcula a probabilidade de um valor randômico da distribuição estimada cair fora deste

intervalo. Essa probabilidade é então retornada como resposta à requisição feita ao agente

cooperativo.

Dado que o objetivo desta técnica é permitir o diagnóstico de causas de problemas

em tempo de execução, foi realizada uma avaliação em relação à habilidade de um sistema

multiagente em diagnosticar a causa raíz de problemas em diferentes locais e vindos de

diferentes fontes. Foi implementada uma simulação compreendendo diversos agentes que

interagem pra consumir e fornecer serviços (Figura 5.5). Tais serviços possuem custos as-

sociados a eles e o requisito de que sejam fornecidos dentro de um intervalo determinado.

Três falhas foram inseridas no decorrer da simulação representando problemas em difer-

entes pontos: (i) em um componente; (ii) em um link de comunicação; e (iii) em ambos.

Os resultados foram comparados com duas outras estratégias de resolução de problemas.

131

Na primeira, chamada de passiva, os agentes ignoram qualquer notificação de anormal-

idade que lhes é enviada. Na segunda, chamada de remediativa, os agentes são capazes

de mitigar anormalidades mas não tem os mecanismos pra diagnosticar e resolver suas

causas.

A Figura 5.6 apresenta os resultados obtidos em relação ao custo e tempo perce-

bidos pelo agente pa. É possível perceber que, utilizando a estratégia passiva, nada acon-

tece no sistema quando a primeira falha ocorre e o requisito de qualidade tempo é violado.

Já na estratégia remediativa, assim que essa violação ocorre, ela é mitigada. Entretanto,

essa mitigação tem um impacto no custo do serviço fornecido. Quando se observam os re-

sultados da estratégia cooperativa, é possível notar que tanto o tempo quanto o custo para

o fornecimento de um serviço retornam a um patamar normal após a ocorrência de cada

uma das falhas. Isso acontece não apenas pela capacidade de se mitigar anomalias, mas

também de corrigir suas causas e retornar o sistema à uma configuração menos onerosa.

A terceira técnica desenvolvida tem o objetivo de automatizar o retorno do sistema

à sua operação normal. Ela também estende a arquitetura BDI em termos de compo-

nentes estruturais e funcionais. Os componentes estruturais integrados à arquitetura tem

a responsabilidade de registrar as ações executadas pelo agente e informar quando essas

ações podem ser revertidas. Já os elementos funcionais são responsáveis por monitorar

as ações executadas e realizar o processo de reversão. A notação Z foi utilizada a fim de

formalizar estas extensões.

O principal elemento estrutural adicionado à arquitetura foi chamado de goal

achievement metadata, e suas instâncias dizem respeito a objetivos individuais. Este

componente compreende três conjuntos de informação: (i) as condições de reversão,

que fornecem a informação sobre quando um processo de reversão pode ocorrer; (ii)

as condições de descarte, que informam quando o processo de reversão não está mais

disponível; e (iii) o traço de mudanças de crenças, que registra os efeitos das ações exe-

cutadas pelo agente pra atingir o objetivo ao qual estes metadados estão relacionados.

Além deste componente estrutural, três operações foram especificadas. A oper-

ação de configuração de desejos é a responsável por instanciar os metadados de objetivos

cujas ações executadas para alcançá-los podem ser revertidas. A operação de monitora-

mento, por sua vez, faz a atualização dos parâmetros utilizados para verificar a disponi-

bilidade ou não do processo de reversão, assim como do traço de mudanças de crenças.

Por fim, a operação de execução da reversão estende a função de geração de opções da

arquitetura BDI. É nesta operação que o processo de decisão sobre a realização ou não de

132

uma reversão acontece, as ações que devem ser revertidas são identificadas, e os objetivos

cuja satisfação resultam no retorno do sistema a um estado desejado são criados.

Dado que o objetivo dessa técnica é reverter ações, com foco especial em ações

remediativas, foi realizada uma avaliação empírica sobre a sua efetividade em reverter

ações em um cenário de Internet das Coisas onde um sistema multiagente é capaz de

gerenciar diversas tarefas dentro de uma casa. Os agentes que compõem esse sistema são

capazes de controlar dispositivos como alarmes, lâmpadas e detectores de gás, e devem

lidar com um vazamento de gás. É esperado que, quando um aumento no nível de gás seja

detectado dentro da casa, uma ação remediativa seja imediatamente coordenada para ligar

exaustores, abrir janelas e destrancar portas de modo a permitir a evacução da residência.

Quando a causa do problema for diagnosticada e resolvida, todas as ações, exceto aquelas

que corrigiram definitivamente o problema, devem ser revertidas.

A Figura 6.3 e Tabela 6.2 mostram o comportamento do sistema nessa simulação

com relação às ações do sistema e a concentração de gás observada dentro da casa.

Quando essa concentração passa de um limite aceitável no instante I1, as ações de re-

mediação são executadas. Elas tem efeito no instante I2 e permanecem ativas até que

a anormalidade seja corrigida no instante I3. Nos instantes I4 e I5 a causa do problema

é detectada e corrigida. Isso permite que as ações remediativas sejam revertidas, o que

acaba estabilizando a concentração de gás quando o processo de reversão é finalizado.

Essa simulação demonstrou a efetividade do sistema na reversão autônoma das ações re-

mediativas.

Sistemas multiagentes realizam tarefas complexas e potencialmente críticas e, por-

tanto, um comportamento resiliente é necessário para que tais sistemas possam operar de

acordo com as expectativas. Nesta tese, apresentamos um framework cujo objetivo é

prover sistemas multiagentes com capacidade de remediar, diagnosticar e se recuperar de

problemas. Nós nos aproveitamos das operações especificadas pela estratégia D2R2 + DR

para permitir que esses sistemas mitiguem os efeitos de eventos problemáticos enquanto

diagnosticam e resolvem suas causas. Esse framework disassocia esse comportamento

remediativo do código dependente de domínio, promovendo assim o reuso de software

entre aplicações distintas. Ele estende a arquitetura BDI típica e compreende três técnicas

principais. A primeira automatiza o gerenciamento de ações remediativas e o diagnóstico

e solução de causas de problemas. Ela inclui um conjunto de componentes que capturam

o conhecimento de domínio que dá suporte a agentes na realização dessas operações. A

segunda é focada no diagnóstico de causas de problemas em cenários multiagentes. Ela

133

especifica um protocolo de interação e papéis que descrevem como agentes podem coor-

denar suas ações e compartilhar informações para manterem-se operando com a qualidade

esperada. Finalmente, a terceira técnica formaliza uma abordagem para reverter ações de

agentes BDI. Essa técnica permite que agentes desfaçam os efeitos de ações executadas

sem a necessidade de uma declaração explícita de quais são essas ações e como elas de-

vem ser revertidas.

Todas essas técnicas foram implementadas como uma extensão de uma plataforma

para o desenvolvimento de agentes BDI. Essa implementação serviu como base para a

condução de estudos empíricos com o objetivo de avaliar diferentes aspectos do frame-

work proposto. Com relação à questão de pesquisa apresentada, os resultados mostraram

evidência de que nosso framework é capaz de prover agentes e sistemas multiagentes

com as habilidades necessárias para desempenhar as operações de remediação, diagnós-

tico e recuperação especificadas pela estratégia D2R2 + DR. No que diz respeito à nossa

hipótese, concluímos que a solução proposta pode servir como base para a implemen-

tação de agentes e sistemas multiagentes com comportamento remediativo em diferentes

domínios. Devido à sua arquitetura modularizada, habilidades específicas de domínio

podem ser incorporadas sem prejudicar o comportamento subjacente. Finalmente, a au-

tonomia e adaptabilidade herdadas do modelo BDI foram demonstrados em nossos ex-

perimentos.

Diversas contribuições podem então ser enumeradas como resultado do trabalho

apresentado nesta tese. Juntas, elas compõem nossa solução para o gerenciamento autom-

atizado de comportamento remediativo.

Técnica para o Gerenciamento Automatizado de Ações Remediativas. Essa técnica é

responsável por automatizar a coordenação de ações executadas por agentes durante

as operações de remediação e diagnóstico de problemas. Ela abstrai a informação

causal utilizada durante o processo de diagnóstico em uma estrutura chamada de

modelo de causa e efeito. Assim, a informação dependente de domínio é disasso-

ciada do raciocínio remediativo. Como resultado, o framework pode ser reutilizado

em diferentes domínios, necessitando apenas da especificação do modelo de causa

e efeito correspondente para operar. Esse modelo pode ser especificado manual-

mente, em tempo de projeto, ou dinamicamente, durante a execução do sistema.

Isso permite o desenvolvimento de estratégias específicas de domínio para coletar

e manter informações causais em tempo de execução.

Técnica para o Diagnóstico Cooperativo de Causas de Problemas. Fornece a agentes

134

a habilidade de cooperar para coletar informações usadas no diagnóstico da causa

raíz de problemas em sistemas multiagentes. Essa técnica compreende um pro-

tocolo de interação e algoritmos que especificam o comportamento de agentes ao

desempenharem os papéis de clientes, fornecedores de serviços e componentes co-

operativos. A adoção desta técnica permite que sistemas multiagentes resistam e se

adaptem à ocorrência de falhas em diferentes camadas do sistema.

Técnica para a Reversão de Ações. Esta técnica permite que agentes desfaçam os efeitos

de ações remediativas após a completa resolução dos problemas para os quais elas

foram executadas. A habilidade fornecida por esta técnica é particularmente ad-

equada para cenários nos quais recursos valiosos são alocados para a remediação

de um problema mas devem ser liberados tão logo seja possível para permitir a

execução de futuras ações.

Framework de Desenvolvimento. As técnicas descritas nesta tese foram implementadas

como um framework que estende uma plataforma existente, chamada BDI4JADE,

que implementa a arquitetura BDI. Nossas técnicas são encapsuladas em capaci-

dades e, devido a isso, podem ser usadas tanto para o desenvolvimento de novos

agentes quanto incorporados à agentes já existentes, necessitando apenas sua in-

stanciação para que sejam utilizados.

Avaliações Empíricas. Três estudos empíricos foram conduzidos para avaliar diferentes

aspectos do framework proposto. Realizando tais estudos, fornecemos evidência

da reusabilidade do framework proposto entre diferentes aplicações em diferentes

domínios.

Em resumo, essa tese avança a pesquisa na redução da lacuna entre a definição

conceitual de um comportamento remediativo e sua implementação em agentes e sis-

temas multiagentes. Mais trabalho é necessário para desenvolver uma solução geral para

prover componentes de software com resiliência, mas este trabalho é um dos passos nessa

direção.

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Problem Statement and Limitations of Existing Work
	1.2 Proposed Solution and Contributions Overview
	1.3 Outline

	2 Background
	2.1 The D2R2 + DR Strategy
	2.2 The Beflief-Desire-Intention Architecture
	2.3 Final Remarks

	3 Related Work
	3.1 Management of Remedial Actions
	3.2 Root Cause Diagnosis
	3.3 Reverting Actions
	3.4 Final Remarks

	4 Management of Remedial Actions
	4.1 Problem and Running Example
	4.2 Software Agent Architecture
	4.2.1 Constrained Goals
	4.2.2 Plan Required Resources
	4.2.3 Cause-effect Modelling
	4.2.4 Extended BDI Agent and Architecture

	4.3 Customised Reasoning Cycle
	4.3.1 Plan Selection
	4.3.2 Goal Generation

	4.4 Evaluation
	4.4.1 BDI4JADE Implementation
	4.4.2 Scenario and Procedure
	4.4.3 Results and Analysis

	4.5 Final Remarks

	5 Root Cause Diagnosis
	5.1 Problem and Definitions
	5.2 Cooperative Diagnosis and Solution of Problem Causes
	5.2.1 Overview
	5.2.2 Interaction Protocol
	5.2.3 Agent Behaviour
	5.2.3.1 Client Agent
	5.2.3.2 Provider Agent
	5.2.3.3 Cooperating Agent Behaviour

	5.3 Evaluation
	5.3.1 Procedure
	5.3.2 Results and Discussion

	5.4 Final Remarks

	6 Action Reversion
	6.1 Motivation Scenario
	6.2 A Formal Framework for Reverting BDI Agent Actions
	6.2.1 Framework Overview
	6.2.2 Model Formalisation

	6.3 Framework Activities and Operations
	6.3.1 Goal Setup
	6.3.2 Monitoring
	6.3.3 Reversion Execution
	6.3.3.1 Reversion (De)activation
	6.3.3.2 Effect Filtering
	6.3.3.3 Effect Compensation

	6.4 Evaluation
	6.4.1 BDI4JADE Implementation
	6.4.2 Case Study Description
	6.4.3 Results and Discussion

	6.5 Final Remarks

	7 Conclusion
	7.1 Contributions
	7.2 Future Work

	References
	Appendix A — Framework Usage
	Appendix B — Resumo Estendido

