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“Those who can imagine anything,

can create the impossible.”

— ALAN TURING



ACKNOWLEDGMENTS

First of all, I would like to thank my girlfriend, Andrieli, for all the support, com-

mitment, and love. I would like to thank my family: my father, Leonir, my grandmother,

and my siblings, Raquel and Juliano. Thanks for all their support and dedication, provid-

ing me help when necessary.

I would like to thank my advisor, Prof. Dr. Lisandro Zambenedetti Granville,

for all orientations, teachings, and experiences that he shared with me. I will always be

grateful for his guidance.

I would like to express my gratitude for all the INF colleagues who always en-

couraged me to improve. Special thanks to Arthur, Luciano, and Ricardo from Lab. 210,

which always help me in papers and in the dissertation.



ABSTRACT

Intent-Based Networking (IBN) is showing significant improvements in network manage-

ment, especially by reducing the complexity by using intent-level languages. However,

IBN is not yet integrated and widely deployed in most of the large-scale networks. Net-

work operators may still encounter several issues deploying new intents, such as reasoning

about complex configurations to understand previously deployed rules before writing an

intent to update the network state. Large-scale networks may include several devices dis-

tributed in multiple hierarchical levels of its topology; each of these devices is configured

using low-level, vendor-specific languages. Thus, inferring intents from these low-level

configuration files can be an arduous and time-consuming task. Current solutions that

derive high-level representations from bottom-up configuration analysis can not repre-

sent configurations in an intent-level. Moreover, they fail by not aggregating essential

details to enhance the representation. In this work, we present a bottom-up process to ex-

tract intents from network configurations. To validate our approach, we develop a system

called SCRIBE (SeCuRity Intent-Based Extractor), which decompiles security configura-

tions from different network devices and translates them to an intent-level language called

Nile. To demonstrate the feasibility of SCRIBE, we outline two case studies and evaluate

our approach with dumps of real-world firewall configurations containing rules from var-

ious servers and institutions. Results show that our solution can represent configurations

in intent-level and also maintain a high accuracy representing aspects of low-level config-

urations.

Keywords: Computer Networks. Network Management. Intent-Based Networking. In-

tents. Programming Languages.



Uma abordagem bottom-up para extração de intenções de rede

RESUMO

O paradigma Intent-Based Networking (IBN) está mostrando melhorias significativas no

gerenciamento de redes, especialmente na redução da complexidade de utilização das lin-

guagens de rede em nível de intenções (intents). No entanto, o paradigma IBN ainda

não está totalmente integrado e amplamente implantando na maioria das redes de larga

escala. Os operadores de rede ainda podem encontrar vários problemas ao implantar no-

vos intents, tal como entender configurações complexas antes de escrever um novo intent

para atualizar o estado da rede. Redes de larga escala podem incluir diversos dispositi-

vos distribuídos em múltiplos níveis da hierarquia da topologia da rede; cada um desses

dispositivos sendo configurado através de linguagens proprietárias e de baixo nível. Con-

sequentemente, inferir intents de rede a partir dessas configurações de baixo nível pode

ser uma tarefa árdua e consumir muito tempo. As soluções atuais que derivam representa-

ções de alto nível a partir de configurações feitas em baixo nível ainda não estão em nível

de intent. Além disso, elas falham por não agregar detalhes para melhorar sua representa-

ção. Neste trabalho, nós apresentamos um processo bottom-up para extrair intents a partir

das configurações de rede. Para validar nossa abordagem, nós desenvolvemos um sistema

chamado SCRIBE (SeCuRity Intent-Based Extractor), que decompila as configurações

de segurança de diferentes dispositivos e as traduz para uma linguagem em nível de intent

chamada Nile. Para demonstrar a viabilidade do SCRIBE, nós utilizamos dois estudos de

caso e avaliamos nossa abordagem com configurações de firewalls reais contendo regras

de diversos servidores e instituições. Os resultados mostram que nossa solução pode re-

presentar configurações em nível de intent e ainda representar os aspectos de configuração

de baixo nível mantendo uma boa de acurácia.

Palavras-chave: Redes de Computadores, Gerência de Redes, Redes Baseadas em Inten-

ções, Intenções, Linguagens de Programação.
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1 INTRODUCTION

In Intent-Based Networking (IBN), an intent is a high-level abstract declaration

written by network operators to specify the desired network behavior (BEHRINGER et

al., 2015). IBN, thus, helps operators configure the network by hiding unnecessary low-

level details of the underlying network, inside an intent-aware network management sys-

tem. In a recent effort, the employment of specification languages that are closer to natural

languages has been exploited in the definition and deployment of network intents. Nile

(JACOBS et al., 2018) and Jinjing (TIAN et al., 2019) are examples of such languages.

Employing such solutions into the network can improve network management and also

enable new features to be deployed easily. However, current efforts to support IBN focus

on top-down approaches, meaning that network configurations are firstly specified as in-

tents and then refined to low-level configuration directives — i.e., the network is assumed

to support intents already. Network operators may still encounter several issues deploy-

ing new intents, such as reasoning about complex configurations to understand previously

deployed rules before writing an intent to update the network state.

1.1 Problem and Motivation

Network operators may encounter networks with missing documentation of pre-

viously possibly manually deployed intents, becoming hard to understand the network

behavior. In such cases, especially in large-scale networks, operators must read many

configuration files to understand the network intended behavior. Large-scale networks

may include various devices distributed in multiple hierarchical levels of their topology,

each of these devices configured using low-level, vendor-specific languages. Thus, cur-

rent top-down approaches to specify intents are not straightforward to be implemented.

Take, for instance, the configuration of firewall: an operator must manually check several

low-level firewall rules to extract a simple intent, such as "block p2p traffic".

In a traditional network infrastructure, tasks of implementation, configuration, and

troubleshooting require a technically skilled network operator provisioning and manag-

ing large multivendor networks (BENZEKKI; FERGOUGUI; ELALAOUI, 2016). Novel

technologies arise as alternatives to provide network flexibility, reducing the complex-

ity of network management, such as Software-Defined Networking (SDN) (FEAMSTER;

REXFORD; ZEGURA, 2014). SDN provides a separation between the control plane
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(which decides how to handle the traffic) from the data plane (which forwards traffic ac-

cording to decisions that the control plane makes). In this way, operators may program

the control plane and manage several devices in a centralized manner. However, accord-

ing to Arezoumand et al. (2017), during years of continuous development and operation

of the SAVI Testbed experiments, authors realize that the capabilities of programmable

networks are not achievable for end-users, unless higher-level abstractions are provided.

The authors are also convinced that intents can fill this gap by providing a simple yet

expressive high-level abstraction over the network controller. The intent abstraction hides

the unnecessary details of the underlying infrastructure from users and allows them to

customize network configuration using human-readable intents.

There is a lack of solutions for interpreting low-level configuration directives and

expressing them using intents. Some efforts, such as Batfish (FOGEL et al., 2015) and

ARC (GEMBER-JACOBSON et al., 2016) read low-level configurations of traditional

networks and generate abstract models of data and control planes. However, these solu-

tions focus on the analysis and verification techniques, aiming to check properties of rout-

ing protocols, and do not provide a way to express the generated model in higher-level

representations. In the network security context, many work efforts interpret the behavior

of firewalls in the network by converting rules to high-level representations, such as ta-

bles (BODEI et al., 2018a), symbolic models (DIEKMANN et al., 2016), generic firewall

languages (TONGAONKAR; INAMDAR; SEKAR, 2007), and graphs (MARTÍNEZ et

al., 2012). These representations help operators understand firewall rules by capturing

low-level configuration details in a bottom-up approach and displaying firewall rules in a

vendor-independent form. However, these solutions show rules as allowing and blocking

statements for IP addresses and transport ports, requiring operators to know the function-

ing of firewalls, protocols, and ports to understand the generated representation. Thus,

we can observe a lack of solutions to help operators understand already deployed network

rules in an intent-level. An intent-level representation can help operators by reducing

the necessary effort to consolidate network rules and reason about previously deployed

intents.

1.2 Main Goals and Contributions

Given the lack of solutions to express the behavior of already deployed network

configurations in the form of intents, we propose a bottom-up method to represent net-
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work configurations in intent-level. Our approach extracts intents from low-level net-

work configuration files and translates them into Nile language. We developed a pro-

totype tool called SCRIBE (SeCuRity Intent-Based Extractor) to prove the concept of

our method. SCRIBE interacts with third-party tools that parse vendor-specific config-

urations and combines the output of these solutions with complementary information to

display network rules in an intent-level language. Our system receives exported configu-

ration files from various systems as input. SCRIBE then processes ACL and NAT rules

and refines them by grouping related characteristics (e.g., IP source and destination pairs,

network services). Finally, we enrich intents with complementary information to trans-

late to corresponding Nile intents to present to operators. However, the existing language

constructs does not support NAT forwarding behavior. To express these constructions, we

also extended the Nile grammar to support NAT actions.

We demonstrate the feasibility of our approach using case studies and an evalua-

tion of the translation accuracy. The case studies represent realistic scenarios of a typical

infrastructure of a small company and a high-speed campus network using science DMZ.

With such case studies, we demonstrate that our solution is able to describe the network

behavior using intents, closely resembling natural language, and represent accurately ex-

isting network configurations. We also evaluated SCRIBE with real datasets provided

by (DIEKMANN et al., 2016), containing firewall rules from various servers and institu-

tions. Our results show that SCRIBE is capable of expressing network configurations in

an intent-level with high accuracy, capturing the majority of the low-level details present

in the input configuration files.

1.3 Document Outline

The remainder of this dissertation thesis is structured as follows. In Chapter 2, we

provide a background and review related work. In Chapter 3, we specify an end-to-end

methodology to extract intents from network configurations. In Chapter 4, we provide

details of the implementation of SCRIBE. In Chapter 5, we describe two case studies

based on realistic scenarios and conduct an evaluation of our system using real-world

configurations, as well as a discussion of our findings. Finally, in Chapter 6, we conclude

this dissertation with discussions and future work.
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2 BACKGROUND AND RELATED WORK

In this chapter, we present concepts laying the ground to the results of this dis-

sertation. First, in Section 2.1, we provide a brief explanation of firewalls and Access

Control Lists (ACL) concepts, as well as the complexity involved in managing these de-

vices. Next, in Section 2.2, we explain the Network Address Translation (NAT) method

and its use. We further present concepts and efforts for network configuration synthesis in

Section 2.3, which give support to this work. In Section 2.4, we provide a background on

intents and describe recent efforts to standardize this concept. Finally, in Section 2.5, we

provide a discussion briefly listing the recent efforts that derive high-level representations

from low-level configurations.

2.1 Firewalls and ACL

Firewalls are the main elements to ensure access control in networks (HACHANA;

CUPPENS-BOULAHIA; CUPPENS, 2015). Firewalls use a set of rules that determines

which packets can reach the different subnetworks and hosts, and how packets are modi-

fied or translated (BODEI et al., 2018b). Firewalls can be configured in various ways to

guarantee network security, usually including several filtering rules. Filtering rules define

the characteristics that a packet must hold to match a rule and the action that should be

performed for matching packets. In the filtering context, firewalls operate by comparing

the network traffic with this set of filtering rules. Therefore, firewalls compare incoming

and outgoing packets with these rules sequentially until it reaches a final action like AL-

LOW or DENY, which will permit the packet to pass or discard it, respectively. Initially, a

firewall is configured with a default action of ALLOW or DENY, meaning that if a packet

matches none of the rules in the set, the default rule will be applied.

We illustrate an example of firewall ALLOW and DENY actions in Figure 2.1.

In this figure, there are two firewall rules: one indicating an ALLOW action for packets

with source prefix 143.54.0.0/16 and destination port 80 (HTTP), and another indicating

a DENY action to all addresses and all ports. We use the wildcard ‘*’ to denote that

a field matches any possible value. In this context, the firewall will go through rules

sequentially and accept the first incoming packet, indicated in Figure 2.1 by the Action

ALLOW, which will match rule #1. Next, in an Action DENY, the firewall will discard

the second packet, which does not match the source prefix in the first rule, then, going to
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Figure 2.1: Firewall ALLOW and DENY actions

packet is dropped
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the firewall

Action ALLOW

Action DENY

Firewall Rules
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...
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Source: Author

match the next rule (#2), which will discard the packet.

Besides firewall, ACL (Access Control List) rules can be implemented directly in

network devices, such as routers, to packet filtering. ACL is a collection of "permit" and

"deny" conditions and the packets are permitted (or denied) based on their source and

destination IP addresses, ports, and protocol (TIAN et al., 2019). Packets that come into a

network device that contains ACL rules are compared to the set of rules sequentially until

it has a match. If there are no matches, a packet is denied or permitted according to the

default rule.

The configuration of a firewall is typically composed of numerous rules, and gen-

erally it is hard for an operator to figure out the overall behavior of a firewall with too

many rules (BODEI et al., 2018b). On enterprise networks, the complexity of manage-

ment in firewalls increases because it can count with multiple firewalls deployed in the

same network (AL-SHAER; HAMED, 2004). A study (WOOL, 2010) concludes that

corporate firewalls are poorly configured, and the complexity of a ruleset is positively

correlated with the number of detected configuration errors. Also, because of constant

changes in firewall rules, many of them can be redundant or conflicting, preventing them

from being actually triggered (ABEDIN et al., 2010), making appear various types of

anomalies, such as shadowing and redundancy (AL-SHAER; HAMED, 2004). Network
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administrators often appeal to policy refactoring to solve these issues and obtain a mini-

mal and clean set of configurations (BODEI et al., 2018b).

Several approaches have been made to facilitate the management of firewall rules.

In the verification context, efforts have been made to analyze the set of already deployed

firewall rules to find inconsistencies and also guarantee a minimal set of firewall rules,

eliminating the redundancy between them (JAYARAMAN et al., 2014). From a different

perspective, other efforts are focusing on displaying the firewall rules in higher-level and

vendor-independent representations, such as graphs or tables.

In previous efforts (TONGAONKAR; INAMDAR; SEKAR, 2007) (MARTÍNEZ

et al., 2012), the authors proposed a solution to capture low-level firewall rules and

represent them in a platform-independent representation. In (TONGAONKAR; INAM-

DAR; SEKAR, 2007), the authors obtain firewall rules and express them in a platform-

independent language. In another work (MARTÍNEZ et al., 2012), authors proposed

a solution to read vendor-specific firewall rules and represent them as a directed graph

abstraction, where nodes correspond to network devices. Directional edges represent a

statement to allow or block traffic on a specific port. These solutions can help operators

understand firewall rules by displaying the rules in a platform-independent representa-

tion. However, the rules are not displayed in higher-level representations, requiring users

to understand firewalls, protocols, and other low-level details of the network. Also, in

these solutions, there is no support for distributed firewall configurations.

2.2 Network Address Translation (NAT)

Network Address Translation (NAT) is specified by RFC 3022 (SRISURESH;

EGEVANG, 2001). Initially designed to solve the scarcity of IPv4 addresses, the concept

following NAT is for the ISP (Internet Service Provider) to assign each home or business

a single or very few IP addresses for Internet traffic. With NAT, computers on a network

(internal to a company) started to use ranges of IP addresses that have been declared as

private. In an internal network, multiple devices connect using private IP addresses, with-

out using public IP addresses. Private addresses are designed to be used internally and

are inaccessible outside of the network. The range of private addresses is defined by RFC

5735 (COTTON; MOSKOWITZ; VEGODA, 2010) and is shown in Table 2.1.

NAT allows hosts in a private network to transparently access the external network

and enable access to selective local hosts from the outside (SRISURESH; EGEVANG,
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2001). For this, NAT offers methods to map IP addresses from one group of private

addresses to public addresses that are visible on the Internet. The NAT box is the device

responsible for the mapping between private addresses and public addresses. In a typical

network, the NAT box is physically coupled with a router or a firewall. When there is

a request for an external address, the NAT box generates a new source port number and

creates a new entry with it on the NAT translation table (KUROSE; ROSS, 2012). Table

entries include NAT source and destination addresses and ports. The NAT method can

select a source port that is not currently in the NAT translation table, and then it adds a

new entry.

Table 2.1: Range of private IP addresses
Range Prefix
10.0.0.0 - 10.255.255.255 10/8 prefix
172.16.0.0 - 172.31.255.255 172.16/12 prefix
192.168.0.0 - 192.168.255.255 192.168/16 prefix

Source: Adapted from (REKHTER et al., 1996)

An example of a NAT operation is shown in Figure 2.2. This figure shows an

outgoing request from an internal host with IP address 10.0.0.1 to an address external to

the network, using the NAT method. In this request, the outgoing packet passes through

a NAT box before leaving the customer network. The packet has, initially, the source IP

address 10.0.0.1. The NAT box maps the internal IP source address 10.0.0.1 for a public

IP address 198.60.42.12, and the internal port 5544 to an externally visible port 3344. The

NAT box generates a new entry containing NAT internal address, the public IP address,

internal port, and the externally visible port. Next, the NAT box puts this new entry in

the NAT translation table, and, in this example, it rewrites the source address to the IP

address 198.60.42.12 and port to 3344 before the packet leaves the customer LAN.

Figure 2.2: NAT Example

Customer Router

Internet

ISP Router

IP = 198.60.42.12
Port = 3344

Packet after

translation

IP = 10.0.0.1
Port = 5544

NAT box

Packet before

translation

Customer network

Source: Adapted from (TANENBAUM; WETHERALL, 2011)

The NAT method also improves the network’s security because an external ad-
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dress cannot directly access an internal address of the network. For this, NAT actions

are used together with firewall filtering in firewall implementations such as iptables

(REDHAT, 2005b). Adopting a firewall along with a NAT, it is possible to maintain a

public server externally not accessible with an internal network address (private) for se-

curity reasons. The use of NAT allows redirecting to this server only allowed traffic, such

as HTTP and HTTPS, for instance. As an example, we can configure a NAT box to redi-

rect all incoming traffic on ports 80 and 443 (for HTTP and HTTPS traffic, respectively)

to a private-addressed server, and in this way, automatically discard all other unallowed

incoming traffic.

2.3 Network configuration synthesis

Configuration is an essential part of network management. It defines how devices

run protocols, communicate with each other, and integrate within the network (NARAIN;

TALPADE; LEVIN, 2010). Maintaining a network with various devices running pro-

tocols and communicating with an adequate level of trustworthiness and security is a

challenging task. For an operator, it is complicated to reason about policies that affect the

network globally because of the network configuration is generally made at a device-level.

Hence, it may occur gaps between the operators’ desired policy and the configuration that

was deployed in the network. In today’s networks, the gap between end-to-end require-

ments and configurations is manually bridged (BECKETT et al., 2016). In this way, the

network is more susceptible to configuration errors, which leads to adverse effects on

security, stability, and increases the maintenance and deployment costs.

Previous efforts (QUOITIN; UHLIG, 2005) (NELSON et al., 2010) focus on de-

veloping approaches to detect network configuration errors by inspecting network con-

figuration files directly. In such works, the authors proposed approaches to find errors

statically and proactively before a new configuration is applied to the network. However,

real network configurations are complex and include many interacting aspects (BENSON;

AKELLA; MALTZ, 2009). Because of the complexity, these approaches are limited to

developing customized models for specific aspects or verifying the correctness of specific

properties, such as reachability (FOGEL et al., 2015).

Recent efforts, however, can more precisely generate a logical model that repro-

duces the characteristics and interacting aspects from the given input configurations (FO-

GEL et al., 2015). These efforts can efficiently reproduce the low-level aspects of config-
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urations in higher-level platform-independent representations, such as abstract topologies

(BECKETT et al., 2017), abstract model of control and data planes (FOGEL et al., 2015)

or a tabular representation (BODEI et al., 2018a). As an instance, Batfish (FOGEL et al.,

2015) can reproduce the data and plane models. This solution, first, takes as input config-

uration files and generates the control plane model. After, Batfish (FOGEL et al., 2015)

generates the data plane, which takes as input the control plane model generated in the

previous step and the environment, which consists of the up/down status of each link in

the network and a set of route announcements (for BGP synthesis). We show the process

of generation of control and data planes on Batfish (FOGEL et al., 2015) in Figure 2.3.

Figure 2.3: Bafish generation of control and data planes

Configuration Topology

Control plane 
generator

Control plane
model

Control plane
model

Environment

Data plane
generator

Data plane 
model

Source: Adapted from (FOGEL et al., 2015)

The need for abstract models arises from the fact that debugging raw configura-

tions would require different frameworks for each configuration, which becomes unfea-

sible and cost expensive. With the model generated by Batfish (FOGEL et al., 2015),

operators can find errors and guarantee the correctness of planned or current network

configurations of traditional routers (e.g., Cisco IOS, Juniper JunOS). The system allows

the analysis of forwarding decisions and error checking, for instance, the absence of black

holes or loops by simulating the data and control plane behavior.

In firewall and NAT contexts, there are efforts to derive high-level and platform-

independent models. Previous work efforts (TONGAONKAR; INAMDAR; SEKAR,

2007) (MARTÍNEZ et al., 2012) provide a high-level representation of the filtering be-

havior in firewalls. More recently, FWS (BODEI et al., 2018a) provides a formal charac-

terization of firewall and NAT configuration. The process of FWS uses first-order logic

predicates that determine which packets will be accepted by the firewall and supports the

NAT redirect behavior. The final result is a tabular representation of firewall and NAT

rules in the form of flattened rules – i.e., an unordered representation of firewall rules.
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2.4 Intents

Intents are high-level abstract declarations that dictate how the network is expected

to behave (SCHEID et al., 2017). In an Intent-Based Networking (IBN), operators should

be able to specify the desired network behavior using high-level policies, without worry-

ing about how it would be achieved (JACOBS et al., 2018). As an example, an operator

can express a simple intent, such as "block p2p traffic", without knowing the network con-

text, as well as languages in which this action can be performed. Intents can assist both

novice and experienced operators to deploy network-wide configurations, not requiring to

think in a device-level configuration. There are research efforts concentrated on creating

intent-level languages, aiming to include intents in network configurations.

The international community is working to standardize definitions and concepts

of intents. RFC 7575 (BEHRINGER et al., 2015) sets definitions and design goals for

autonomic networks, and intents are included. In this document, intents are defined as

"An abstract, high-level policy used to operate the network". RFC 7575 (BEHRINGER

et al., 2015) also sets as a design goal that intents are defined at a level of abstraction that is

much higher than typical configuration parameters. According to RFC 7575, intents must

not convey low-level commands or concepts, since those are on a different abstraction

level. A more precise definition of intent and Intent-Based Networking (IBN) is in a

recent draft (CLEMM et al., 2019), which specifies intents as operational goals that a

network should meet in a declarative way. In this manner, intents do not describe the

steps to achieve these goals.

Recent efforts were made to define an architecture for Intent-Based Networking

(IBN), also named Intent-Driven Network (IDN). However, proposed architectures differ

from one research group to another (PANG et al., 2020). In terms of execution order, most

of IBN solutions follows the intent representation, convert, verification, and deployment,

as shown in Figure 2.4. Operators interact with applications using intents, or natural

language, and the network must understand the inputted intent and represent it into a

specific expression, using intent primitives. Intent primitives, therefore, are converted

into advanced policies for network execution. In the next step, following the intent flow,

verification methods can be used to guarantee the policy’s reliability. Finally, the last step

involves the deployment of the generated policy into the network.

Recently, several research efforts are focusing on creating intent-level languages.

These languages allow operators to express intents at a very high-level of abstraction;
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some are closer to the natural language. In this way, the operator can take away low-level

details that increase the complexity of the deployment of network intents. These intent-

level languages are top-down efforts, meaning that the operator expresses the intent at

a high-level. Based on operators’ desired intent, the solution applies a refinement pro-

cess to generate low-level configurations for the network devices and then deploys these

configurations.

Figure 2.4: Intent Flow
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Policy
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Source: Adapted from (PANG et al., 2020)

In a recent effort (JACOBS et al., 2018), authors provide a solution to allow op-

erators to express intents in natural language. Authors also propose Nile, a high-level,

comprehensive intent definition language, closely resembling the English language. The

Nile language reduces the need for operators to learn a new policy language for each

different type of network. Operators can interact with the system through a chatbot inter-

face, and a neural network learning model is used to extract the user’s intent, in a process

called refinement. In the process of intent refinement, the system introduces a feedback

mechanism that displays the user intent in the Nile language, and the operator can check

whether the intent expresses their desired behavior.

Jinjing (TIAN et al., 2019) allows operators to declare update intents (e.g., ACL

migration) in a declarative language called LAI, and automatically synthesizes ACL up-

date plans that meet their intents. Jinjing modeled the ACL configuration formally and

designed an intent primitive to ensure the accuracy of the system operation. However, the
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system is limited to the ACL update plans and designed for WANs. The solution cannot

be applied to other networks.

In a recent effort (BIRKNER et al., 2018), the authors propose a bottom-up so-

lution to summarize the forwarding behavior in natural language, called Net2Text. This

solution provides interaction through a "chatbot", where users can query for a specific for-

warding behavior and the system replies with the forwarding state for the specified query.

While this work does an excellent job in summarizing the network-wide forwarding state,

producing succinct reports in natural language, it is limited to forwarding behavior, not

supporting ACL and NAT, for instance.

2.5 Discussion

There is a lack of solutions for representing already deployed configurations as

intents. Bottom-up solutions like Batfish (FOGEL et al., 2015) and FWS (BODEI et

al., 2018a) parses low-level configuration directives and represent them in a vendor-

independent model. Despite using models, these solutions do not aim to express con-

figurations in an intent-level representation. Batfish, however, aims to use the model to

analyze network properties (e.g., reachability) by finding inconsistencies in the deployed

configurations.

For the firewall and NAT context, the solution FWS (BODEI et al., 2018a) parses

firewall configurations from different systems and synthesizes them in a tabular form.

To this end, authors provide a language to interact with FWS where the user can load

vendor-specific rules from different firewalls and queries for specific IP addresses, ports,

and networks, similar to SQL in databases. The tabular representation helps operators

understand firewall rules by centralizing all configurations in a single place. However,

the tabular representation requires users’ knowledge of firewall tables and NAT. Also, for

distributed firewall configurations, this solution loads each device configuration separated

in a different table, each representing the firewall rules of a single device. Due to the

use of various tables, operators can have difficulties reasoning about previously deployed

intents in a network-wide context.

In the context of bottom-up approaches, there is scarse research that expresses

the behavior of the network using intent-level languages. The Net2Text (BIRKNER et

al., 2018), for instance, provides summaries of the forwarding behavior. However, it is

designed to support only forwarding behavior. Anime (KHERADMAND, 2020), on the
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other hand, infer high-level intents from the provided configuration. Anime is a frame-

work to infer high-level intents by mining the commonalities among the forwarding be-

havior in the network. Although Anime can infer intents, its behavior is non-deterministic,

and the context is limited to forwarding behavior. Other bottom-up approaches mentioned

before are not able to represent configurations in a level of intents.

On the other hand, intents’ research efforts are focused on creating intent-level

languages, such as Nile (JACOBS et al., 2018) and Jinjing (TIAN et al., 2019). Using

these solutions, operators then dictate the behavior of the network through intents. How-

ever, these solutions do not provide a mechanism capable of translating already deployed

low-level configurations into an intent-level language. Our work arises from this lack

of solutions to display existing configurations in an intent-level representation. We take

advantage of previous solutions that parse low-level configurations and create an interme-

diate representation, such as FWS. FWS (BODEI et al., 2018a), for instance, is a solution

that parses low-level configuration directives and represents them in a vendor-independent

tabular model. We use the output of the synthesis solutions (e.g., FWS) as a base to cre-

ate an above layer between these solutions and the user. At the final of this process, the

configurations will be displayed in an intent-level language.
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3 SOLUTION OVERVIEW

In this chapter, we describe a bottom-up solution to parse network configurations

and represent them into an intent-level language. The process of extracting intents from

low-level configuration directives is detailed in Section 3.1. In Section 3.2, we describe

the specialization process for firewall and NAT. Finally, in Section 3.3, we detail the

modifications needed to extend the Nile language to represent NAT forward actions.

3.1 Process

The process of intent extraction is divided into four steps, as depicted in Figure 3.1.

The process expects configuration files exported from network devices (e.g., firewalls,

NAT, routers) as input. Having these configuration files, in step 1 , they are stored in a

centralized database and, posteriorly, synthesized. During step 2 , entities that represent

parts of the configuration are exported and gathered to generate a platform-independent

abstract representation, called meta-intent. In step 3 , meta-intents are enriched with

complementary information provided by various sources. The final result of this step is

an enriched representation of the network configurations called aggregated meta-intents.

Finally, in step 4 , the aggregated meta-intents are translated into our extended version

of the Nile language, described in Section 3.3.

Figure 3.1: Process of intent extraction
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In the first step of the process (Figure 3.1, step 1 ), low-level configuration direc-

tives are collected from various configuration files, which can be distributed in multiple

levels of the network hierarchy. In this step, the solution expects as input configura-

tions exported from various devices. After, all exported configuration files are gathered

along with the network topology and aliases. Each configuration file consists of various
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rules and parameters. For instance, a rule may be composed of source and destination

IP addresses, network ports, forwarding rules, and stateful elements. Given that network

devices can be distributed in multiple levels of the hierarchy, the acquisition of rules is

performed envisioning the future exportation, maintaining all configurations centralized

in the same database.

The synthesis step is performed by a Synthesizer and an Exporter, as shown in

Figure 3.2. The Synthesizer is responsible for collecting and gathering configuration

files and synthesize configurations into an intermediate representation. The synthesis

must be low-level and detailed in order to create a trustworthy representation that can

reproduce all aspects of configuration and their interactions. We leverage information

from multiple sources in the network and exploit existing literature solutions to extract

such information in a structured format. As the focus of this work is not to construct a

parser for each vendor-specific language, we use third-party synthesizers as a part of the

solution. However, since there is no globally accepted single solution, our solution must

be able to parse multiple input sources.

Figure 3.2: Configuration synthesis
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The last step of synthesis involves collecting and putting the configurations gener-

ated by the synthesizers in a centralized database. This process is made by the Exporter

component that receives configurations that are the output of the Synthesizer and export

them in a centralized configuration database.

Consolidation

With the representation in an intermediate format, the process starts to raise the

network model’s abstraction level. The purpose of the consolidation step is to (i) extract

from the intermediate representation higher-level entities that represent parts of the con-

figuration, (ii) grouping these entities by similar characteristics, and (iii) generating the

meta-intent representation. Figure 3.3 indicates the pipeline of this step of the process.

The Entity Extraction is responsible for loading configurations from the database and gen-

erating network entities. The purpose of the Grouping step is to compact the set of rules.
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Finally, the meta-intent Exporter generates the output in meta-intent format.

Figure 3.3: Consolidation step
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The consolidation step begins with entity extraction. A configuration is defined as

a composition of entities, and it is divided into three parts. Each part of the configuration

is represented by a different type of entity, which can be marked as Target, Traffic, or

Action. Formally, we define an entity as E = {Target ,Traffic,Action}, where:

• Target : represents the target object of a determined rule. A Target can be spe-

cialized to represent network target objects in various scenarios. A target can be

composed of a set of devices in a traditional network where the rule will be applied.

For instance, in a firewall context, a rule for blocking traffic contains the source and

destination of the traffic that will be parameters belonging to a Target. The source

and destination prefixes can be modelled by Target :=< src.prefix , dst .prefix >.

• Traffic: represents the type of traffic in the network. The type of traffic can differ-

entiate between network services. For instance, service types can be distinguished

by TCP and UDP protocol and the port used by each service. For example, in fire-

wall and NAT contexts, the source and destination ports and the protocol (TCP or

UDP) compose the Traffic entity for filtering traffic, which will discern the traffic

type in the network.

• Action: represents an operation to be executed for a pair < Target ,Traffic >.

Operations consist of a behavior belonging to a network function, such as a for-

ward behavior in a NAT box or a block rule in a firewall. Each action contains the

needed parameters to run the desired operation. Then P = (p1, p2, ..., pn) is the set

of parameters of an Action. As an example, a NAT forward operation can be rep-

resented by Action = {forward} and include the parameters p1 = DNATIP and

p2 = DNATPort, indicating the destination NAT IP and port for a specified traffic.

Finally, to group the entities that produce the same intent, an additional process-

ing phase, called grouping, is performed. In this phase, the solution searches through
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the extracted configurations and match pairs of entities by common characteristics us-

ing grouping functions. We define grouping as a function of entities g : E × E 7→ E.

The grouping is performed as one-level grouping and not consider the type of the entities

involved in this process.

The grouping process is defined by set operations. Formally, each rule is repre-

sented by a set S of entities containing network properties, each of them represented by

pi. Given a set S, we extract a property pi as a varying parameter vi and a subset G

containing the length(S) − 1 remaining properties. For a given set S = {p1, p2, ..., pn},
where n is the set size, we attribute to each vi a property of set S, as instance v1 = p1,

v2 = p2, ..., and vn = pn. For each vi, a superset V is created, containing the property

vi and the subset G = {S \ vi}. In this way, V1 = {v1, S \ v1}, V2 = {v2, S \ v2}, ...,
Vn = {vn, S \ vn}.

The grouping process consists of going through all the generated sets of V , group-

ing entities V with similar G subsets, and gathering them by evidencing the varying pa-

rameter vi. The sets G for each V set are compared and grouped if they are equal. Take

Vi and Vj as an instance. If the subset Gi ∈ Vi = Gj ∈ Vj , they are grouped in a new set

I and include in the set the varying parameter, so the final grouped set is I = {Gi, vi, vj}.
The last step of the consolidation process is to generate the meta-intents. Meta-

intents is composed of pairs of information, such as origin, destination, services, and the

default action for a given rule in a well-structured format. Meta-intents are a more high-

level representation of our process, much closer to an intent, and they are represented

in JSON format. After grouping the sets, the Meta-intent Extractor will traverse the

sets and map the values of Vi sets to an intermediate representation called Meta-intent.

The meta-intent is a JSON representation that maps all values from sets in the form

{"Entity.Property" : "value"}. For each pi ∈ Ei, where pi is a property

and Ei an entity, the meta-intent extractor will map to an entry {"Ei.pi":"value"}.

Aggregation

In the previous step, meta-intents were generated as an intermediate structured

representation. However, meta-intents contains a bit of low-level information, such as IP

addresses. In the third step of the process, all meta-intents generated in the consolidation

step are gathered and enriched with complementary information from various sources.

This step aims to display the information at a user-friendly level.
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The solution collects hostnames and topology data as a piece of additional infor-

mation from the network to enrich the meta-intents, featuring an option to input “friendly"

names for hosts that aim to facilitate the recognizing of network devices. With all the com-

plementary information gathered, the IP addresses are replaced with the provided names.

After that, a query to the Service Name and Transport Protocol Port Number Registry1

assist in inferring the service or protocol names according to the provided ports. This

service lists the standard port for services.

This step of process aggregates the meta-intent representation with complemen-

tary information obtained from various sources, enriching the rules with additional in-

formation. The aggregation process is shown in Figure 3.4. The solution queries for

complementary information to each meta-intent entry, representing a network property.

For instance, if a network property represents an IP address, the aggregation process tries

to discover the host with this IP address. The final result of this step is a meta-intent

enriched with complementary information.

Figure 3.4: Aggregation process
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In this step, the complementary information databases are queried for each piece

of low-level information of the meta-intents. Such information is mapped to a piece of

corresponding low-level information in the meta-intents and posteriorly replaces the low-

level information with complementary information. If this process fails due to missing

information, a bit of low-level unprocessed data may be present in the output intents.

1<https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.
xhtml>

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
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Intent translation

After enriching meta-intents with complementary information, the next step is to

process them to translate the resulting intents to the Nile language. The Nile language,

which is the target language for this step, is in an intent-level language, closely resembling

the natural language. Thus, it turns easy for operators to understand the most common

operations currently supported by networks.

The Nile grammar has several symbols to represent network rules, and most of

the enriched intents can be directly translated to Nile symbols. Initially, the Target entity

is mapped to Nile 〈from_to〉 symbol. The Nile 〈from_to〉 expect two endpoints as pa-

rameters. The arguments on Target entity are mapped to generate two Nile 〈endpoints〉,
representing source and destination.

The second phase of Nile translation process involves the mapping of traffic enti-

ties to Nile 〈matches〉 symbol. Nile has support for service, traffic, protocol, and group

traffic types. In this work, the Nile language was extended to allow it to represent ad-

dresses utilized to express the entity traffic in different levels of abstraction. In the last

phase of the translation process, the representation of Action entities are accomplished

using Nile 〈rules〉. The grammar symbol 〈rules〉 permits the representation of actions,

such as allow and block, and 〈middleboxes〉 allowing the representation of several net-

work functionalities supported by different types of middleboxes. In this work, we also

extend the Nile language to support an operation forward, allowing the representation of

NAT forwarding actions, as described in Section 4.

3.2 Specializations

Specializations allow applying the solution to specific contexts. In this section, we

describe the specializations for Firewall and NAT.

Firewall

This specialization specifies how the solution can be applied to the firewall con-

text. The firewall specialization contains functions that receive input configurations in a

tabular form. For the firewall specialization, is expected as input a tabular representation
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of firewall rules containing the fields source and destination for Target entity, port and

protocol (TCP or UDP) for Traffic entity and an Action, which contains a function to

allow or deny a packet. Given a tuple (Target.source, Target.destination, Traffic.protocol,

Traffic.port) the firewall will allow or deny a packet based on the Target and Traffic fields.

The synthesis solutions output these fields in the tabular format. As this work’s fo-

cus is not to generate a firewall model for each different vendor, a third-party solution was

used to generate the tabular representation. To the firewall specialization, FWS (BODEI

et al., 2018a) is chosen as the base solution, satisfying our intermediate representation

requirements. FWS synthesizes vendor-specific firewall rules to a tabular representation.

The firewall specialization follows our process’s four steps to transform tabular inter-

mediate representation into the intent-defined Nile language. After that, in this firewall

specialization, the process proceeds with the Consolidation step, described in Section 3.1.

To the next step, the aggregation, the rules are divided into three categories: inter-

nal, incoming traffic, and outgoing traffic, as shown in Table 3.1. The traffic is considered

internal when the source and destination addresses are inside the network prefix; for in-

stance, source and destination addresses are included in a prefix 10.0.0.0/8. Traffic is

classified as incoming when the source address is not part of the internal network, and the

destination address is part of the internal network. Lastly, outgoing traffic refers to the

situations where the source address is in the internal network, and the destination address

is not. This classification does not consider packets created inside the network with a

(possible) external source address.

Table 3.1: Traffic classification by source and destination
Source Destination Classification
external internal incoming traffic
internal external outgoing traffic
internal internal internal traffic

Source: Author

The first step of specialization for a firewall is to name the origin and destination of

the target. In this step, IP addresses and prefixes are changed to a hostname or other name

provided by the user. These targets denote where the traffic is input, output, or internal.

The wildcard "*" denotes any address, which in firewall means a rule that matches all

addresses. When this wildcard appears, it is assumed that the traffic is from the Internet,

if it is incoming traffic or to the Internet, if it is outgoing traffic.

Initially, to define the source and destination addresses as friendly names, the pro-

cess verifies if the source or destination is marked as any (wildcard ‘*’) and change it to
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"Internet", denoting external traffic in a friendly way. If not, the IP addresses are renamed

according to the friendly names, if they are available. The function rename attributes

friendly names to an IP address or a prefix. The rename function receives as a parameter

an IP address or prefix and searches in the database for aliases to the address. For exam-

ple, if a firewall rule has the source address any (‘*’) and destination 192.168.0.2, which

is internally known as "Web Server", the algorithm will change the origin wildcard "*" to

"Internet" and the address 192.168.0.2 to "Web Server".

NAT

This specialization specifies how the solution can be applied to the NAT context.

The NAT specialization contains functions that receive input configurations in a tabu-

lar form. For the NAT specialization, is expected as input a tabular representation of

NAT rules containing the fields source and destination for Target entity, port and protocol

(TCP or UDP) for Traffic entity and an Action, which contains a function to forward a

packet, and a parameter of sourceNAT or destinationNAT. Given a tuple (Target.source,

Target.destination, Traffic.protocol, Traffic.port) the NAT will forward a packet based on

these characteristics, considering the parameter sourceNAT or destinationNAT.

The synthesis step generates a tabular representation for NAT. As this work’s focus

is not to generate a NAT model for each vendor, a third-party solution was used to gen-

erate the tabular representation. To the NAT specialization, FWS (BODEI et al., 2018a)

is chosen as the base solution to generate the tabular representation. With the tabular rep-

resentation, the first step is to classify the traffic. The NAT traffic classification follows a

traffic classification algorithm, similar to the Firewall, provided in Table 3.1. However, in

NAT, for incoming traffic, the final destination is inaccessible directly to the origin. Then,

the traffic destination is the NAT box. In the NAT box, the destination will be changed

to the correct destination, an internal address. The algorithm that defines the origin and

destination for incoming traffic is presented in Algorithm 3.1. After that, we proceed with

the Consolidation step, described in Section 3.1.
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Algorithm 3.1: Define targets for NAT incoming traffic

1 if target.srcIP = ‘*’ then

2 target.src← "Internet";

3 else

4 target.src← rename(target.srcIp);

5 end

6 target.dst← NATBox;

7 target.NATdst← rename(target.NATdstIp);

Source: Author

For outgoing traffic, first, the source address is processed. Initially, the NAT source

address (target.NATsrc) is renamed to a familiar name. After, the target source (target.src)

is set to the NAT Box address. Finally, the destination IP address is verified to set a

friendly name. The algorithm that defines the origin and destination for NAT outgoing

traffic is presented in Algorithm 3.2.
Algorithm 3.2: Define targets for outgoing NAT traffic

1 target.NATsrc← rename(target.NATsrcIp);

2 target.src← NATBox;

3 if target.dstIp = ‘*’ then

4 target.dst← "Internet";

5 else

6 target.dst← rename(target.dstIp);

7 end

Source: Author

3.3 Extending Nile

Nile was chosen as the default language to represent the extracted intents. The Nile

language arises as a need for an abstraction layer between natural language intentions and

lower-level languages (JACOBS et al., 2018). Nile is an intermediate representation that

closely resembles the natural language. The Nile language also can act as an abstrac-

tion layer for other policy mechanisms, reducing the need for operators to learn multiple

policy languages for each different type of network (JACOBS et al., 2018). The Nile

language has a high expressiveness and can faithfully represent the operator’s intention.
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For instance, an intent such as "Allow incoming traffic from the Internet to Web Server for

SSH protocol" can be expressed in Nile in a simple syntax, as shown in Listing 3.1.

Listing 3.1: Example of allow intent in Nile

d e f i n e i n t e n t f i r e w a l l I n t e n t :

from e n d p o i n t ( ' I n t e r n e t ' )

t o e n d p o i n t ( 'Web S e r v e r ' )

a l l o w p r o t o c o l ( ' SSH ' )

Source: Author

The Nile language offers constructs that are capable of representing various net-

work components and actions. Its grammar constructs give the Nile language representa-

tion capabilities. The entire grammar of the Nile language, with all constructs, in EBNF

notation, is shown in Listing 3.2.

The Nile language can express user intentions in an intent-level representation

that is close to natural language and satisfies our readability and abstraction requirements.

However, Nile natively does not support NAT behavior. The Nile grammar was extended

with NAT constructs to allow the representation of NAT behavior, introducing NAT capa-

bilities to the Nile language.

The Nile extension begins with the inclusion of the forward keyword, which

adds support for fully functional NAT forward behavior in the Nile language. The NAT

forward behavior requires information of the source address or hostname, source port,

and destination port. It is defined by a redirect from incoming traffic in a specific port to a

specified address in a specific destination port – the protocol can be inferred from source

and destination ports. For instance, incoming traffic in SSH protocol can be abstracted

to "traffic on port 22". The representation of NAT port preservation is facilitated in the

syntax by allowing to omit the destination port. In this case, the destination port is the

same as the source port.

The forward keyword was added to the Nile language to represent a forward

NAT action. A Nile forward action requires a 〈target〉 symbol. Nevertheless, the actual

Nile 〈target〉 symbol allows the representation only of groups, services, endpoints, and

traffic. It can not represent a pair of IP address and port as a target for operation. To

overcome the limitation of 〈target〉, a new symbol 〈address〉 was created to express a pair

of IP addresses or hosts and a port. The syntax of the address symbol is displayed in

Listing 3.3.
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Listing 3.2: Nile Grammar

< i n t e n t > : : = ` d e f i n e i n t e n t ' < term > ` : ' < o p e r a t i o n s >

< o p e r a t i o n s > : : = <pa th > < o p e r a t i o n > { ' ' < o p e r a t i o n > }

<path > : : = [ < from_to > | < t a r g e t s >]

<from_to > : : = ` from ' < e n d p o i n t > ` to ' < e n d p o i n t >

< o p e r a t i o n > : : = ( < midd leboxes >

| <qos >

| < r u l e s >)+ [ < i n t e r v a l >]

< midd leboxes > : : = [ add | remove ] <middlebox > { ( ` , '

| ` , \ n ' ) <middlebox > }

<middlebox > : : = ` middlebox ( ' < term > ' ) '

<qos > : : = [ s e t | u n s e t ] < m e t r i c s >

< m e t r i c s > : : = < m e t r i c > { ( ` , '

| ` , \ n ' ) < m e t r i c >}

< m e t r i c > : : = [ bandwid th | q u o t a ] ( ' [ ` max ' | ` min ' ] ` , ' < term > `) '

< r u l e s > : : = [ a l l o w | b l o c k ] <matches > [ < matches >]

< t a r g e t s > : : = ` f o r ' < t a r g e t > { ( ` , ' | ` , \ n ' ) < t a r g e t > }

< t a r g e t > : : = [ <group > | < s e r v i c e > | < e n d p o i n t > | < t r a f f i c > ]

<matches > : : = [ < s e r v i c e >

| < t r a f f i c >

| < p r o t o c o l >]

< e n d p o i n t > : : = ` e n d p o i n t ( ' < term > `) '

<group > : : = ` group ( ' < term > `) '

< s e r v i c e > : : = ` s e r v i c e ( ' < term > `) '

< t r a f f i c > : : = ` t r a f f i c ( ' < term > `) '

< p r o t o c o l > : : = ` p r o t o c o l ( ' < term > `) '

< d a t e _ t i m e > : : = ` d a t e t i m e ( ' < term > `) '

| ` d a t e ( ' < term > `) '

| ` hour ( ' < term > `) '

< term > : : = [ a−z0−9]+

Source: Adapted from (JACOBS et al., 2018)

With the forward keyword, plus address symbol, NAT actions can be represented

in the Nile language. The 〈address〉 symbol is composed of a 〈addrterm〉 and 〈port〉
terms, as indicated in Listing 3.3. The 〈addrterm〉 symbol represents a target source or

destination, which is a host or IP address. The symbol 〈host〉 can be composed only of

valid characters for a hostname, and the symbol 〈ip〉 represents grammatically valid IP

addresses.
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Listing 3.3: Directives for NAT forwarding behavior in Nile Grammar

< forward > : : = ` fo rward ' < a d d r e s s >

< a d d r e s s > : : = ` a d d r e s s ( ' < addr t e rm > ` ) '

| ` a d d r e s s ( ' < addr t e rm > ` , ' < p o r t > ` ) '

< addr t e rm > : : = <ip >

| < hos t >

<middlebox > : : = ` middlebox ( ' < term > `) '

< ip > : : = ( [ 0 − 9 ] \ { 1 , 3 \ } . ) \ { 3 \ } [ 0 −9 ] \ { 1 , 3 \ }

< hos t > : : = [ a−zA−Z ] \ { 1 \ } [ a−zA−Z0−9\−\_ ]*
< p o r t > : : = [ 0 −9 ] \ { 1 , 5 \ }

Source: Author

The syntax of a forward action also requires two endpoints, representing the source

and destination hostnames or IP addresses, and a service or a protocol (TCP or UDP) and

port. For a traditional NAT forward operation for incoming traffic, the source will be

an external address. The destination will represent the NAT box, which will forward the

traffic for a given address and port, expressed by symbol 〈address〉.
Let us suppose a scenario containing a "NAT Device" at the edge of the network,

managing all input traffic. Internally, there is also an "SSH Server" with IP address

10.0.0.5, listening for SSH traffic on port 2222. In this scenario, the NAT Device will

receive input connections on port 22 for SSH traffic and redirect all this traffic to SSH

Server. Using the extended version of the Nile language, we can represent this situation,

as shown in Listing 3.4.

Listing 3.4: NAT Forward in Nile

d e f i n e i n t e n t f o r w a r d I n t e n t :

from e n d p o i n t ( ' i n t e r n e t ' )

t o e n d p o i n t ( 'NAT Device ' )

f o r p r o t o c o l ( ' SSH ' )

f o r w a r d a d d r e s s ( ' SSH S e r v e r ' , 2222)

Source: Author

This example shows how the Nile forward command can be used together with

〈address〉 symbol. In this example, a NAT action was represented from incoming traffic.

The incoming SSH traffic with the destination "NAT Device" will be redirected to the

internal server named "SSH Server" on port 2222.
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4 IMPLEMENTATION

We validate the methodology’s feasibility by developing a prototype solution called

SCRIBE (SeCuRity Intent-Based Extractor). SCRIBE implements specializations of the

process, focusing on Firewall and NAT configurations. The system leverages different in-

put sources to process low-level firewall configurations and to query for all configurations

available on firewall filtering and NAT tables. SCRIBE has about 400 lines of Python

code. The entire source code of SCRIBE is available at Github1. In this chapter, we dis-

cuss the implementation of SCRIBE in detail and the modifications made in third-party

tools to make them interact with SCRIBE.

4.1 System architecture and use

The architecture of SCRIBE is composed of modules that follow the process steps

described in Section 3.1. The synthesis step’s implementation involves the creation of

additional modules that interact with the synthesizer, which is used as a base solution

to parse network configurations. The Query Generator module brings commands for the

synthesizer. These commands include load-low-level configuration rules into a synthe-

sizer, make the synthesizer incorporate the rules, and query results on generated tables.

The synthesizer must be able to read low-level configurations and generate the

intermediate representation containing the fields for source and destination IP addresses,

ports, and protocols. For this prototype implementation, FWS (BODEI et al., 2018a)

was chosen to be the synthesizer because it is capable of reading low-level firewall and

NAT configurations from the iptables, IPFW, PF, and Cisco IOS, and represents these

configurations into a tabular intermediate representation.

In order to make SCRIBE interact with FWS, the Query Generator was adapted to

produce FWS commands. Also, a module called FWS-Export was developed to intercept

the FWS’s output and export it to a CSV format. The general architecture of SCRIBE,

including the interaction with FWS, is shown in Figure 4.1. The FWS-Export implemen-

tation is detailed in Section 4.2.

The architecture of SCRIBE is composed of modules that follow the process steps

described in Section 3.1. The general architecture of SCRIBE is shown in Figure 4.1. The

synthesis step’s implementation involves the creation of additional modules that interact

1<https://github.com/ComputerNetworks-UFRGS/SCRIBE>

https://github.com/ComputerNetworks-UFRGS/SCRIBE
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with the synthesizer, which is used as a base solution to parse network configurations. The

Query Generator module brings commands for the synthesizer. These commands include

load-low-level configuration rules into a synthesizer, make the synthesizer incorporate the

rules, and query results on generated tables.

Figure 4.1: SCRIBE system architecture

FWS

Aggregation

FWS commands 
(load, synthesis)

FWS-Export

ConsolidationTranslation

Synthesis 

Tabular representation
of firewall/NAT rules

Query generator

>_

Source: Author

For the consolidation step, network devices are represented by classes. The ag-

gregation process consists of enriching the modeled objects with additional information,

and the translation process consists of functions that translate meta-intents to the Nile

language. System modeling is described in Section 4.3.

User configurations drive the usage of SCRIBE. The user interaction with SCRIBE

is shown in Figure 4.2. In the first step, indicated in Figure 4.2 by 1 , the user (or

possibly an external system) provides configuration parameters in JSON format indicating

the network prefix, IP, type, and the name of the configuration file that contains the low-

level firewall and NAT rules. The Prefix parameter indicates to which network prefix

the firewall or NAT box device belongs in the user-provided topology. The IP parameter

indicates the IP address of the firewall or NAT box device. In parameter Type, the user

indicates the vendor of the firewall or NAT software or device. FWS dictates the support

for low-level configurations, which supports iptables, IPFW, PF (Packet Filter), and

Cisco (Cisco IOS ACL). The last parameter is Filename, indicating the file containing the

rules.

In step 2 , the system retrieves configurations informed by the user and process

input according to the process described in Section 3.1, and returns the configurations for

the user in the Nile language.
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Figure 4.2: User interaction with SCRIBE

User indicates config  
parameters

1

User receives config 
in an intent-level

2

SCRIBE

{
    Prefix: '10.0.0.0/8',
    IP: '10.0.0.5',
    Type: iptables
    Filename: ipt.rules
}

define intent allowIntent:
 from endpoint ('internet')
 to endpoint ('Web Server')
 allow protocol ('HTTP')

Source: Author

4.2 FWS

FWS (BODEI et al., 2018a) is used as a base solution to extract vendor-specific

firewall and NAT configurations. FWS provides firewall characterization, determining

which packets are accepted by the firewall applying the source configuration and rep-

resents the firewall and NAT rules in a tabular format. The output of FWS is a set of

flattened rules, suggesting that the rules are not ordered as in traditional firewall con-

figuration, aiding to simplify the representation. FWS uses the flattened representation

designed in SecGuru (JAYARAMAN et al., 2014). For example, in a typical set of fire-

wall rules to allow all traffic, except for a determined IP address, a rule to block the traffic

for the fictitious IP address 192.168.0.15 can be defined, and next, a rule to allow incom-

ing traffic for all hosts. Using the flattened rules this firewall policy is represented by

∗ \ {192.168.0.15}, indicating an allow policy for all address, except 192.168.0.15.

FWS provides a language to interact with them. SCRIBE Query generator module

brings commands in the FWS’s language to load configurations and synthesize them.

SCRIBE use load_policy command to read low-level configurations from a file,

which is provided in the SCRIBE configuration. This command has the signature as

load_policy(〈type〉, 〈rules〉, 〈interfaces〉), where 〈type〉 represents the firewall

type of configurations (actually supporting Cisco IOS, iptables, IPFW and PF), 〈rules〉 is

the filename of exported configurations and 〈interfaces〉 is the interface description file.

The iptables software is commonly used in GNU/Linux distributions. An input ex-

ample of iptables rules is shown in Listing 4.1.

The input rules for iptables in Listing 4.1 represents a scenario where three

main policies governs the firewall. The first (i) is to allow arbitrary traffic between internal

hosts. Second, (ii) operators want to ensure that incoming HTTP and HTTPS traffic are
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allowed to Web Server, and SSH incoming traffic is allowed in the SSH Server. Finally,

(iii) all outgoing traffic to HTTP and HTTPS must be allowed.

### F i l t e r i n g r u l e s ###

* f i l t e r

# D e f a u l t p o l i c y DROP i n f i l t e r i n g c h a i n s

: INPUT DROP [ 0 : 0 ]

:FORWARD DROP [ 0 : 0 ]

:OUTPUT ACCEPT [ 0 : 0 ]

# 1 : Allow a r b i t r a r y t r a f f i c be tween i n t e r n a l h o s t s

−A FORWARD −s 1 7 2 . 1 6 . 1 . 0 / 2 4 −d 1 7 2 . 1 6 . 1 . 0 / 2 4 − j ACCEPT

# 2 : Allow SSH / HTTPS incoming t r a f f i c t o t h e c o r r e s p o n d i n g

h o s t s

−A FORWARD −p t c p −d 1 7 2 . 1 6 . 1 . 1 5 −−d p o r t 80 − j ACCEPT

−A FORWARD −p t c p −d 1 7 2 . 1 6 . 1 . 1 5 −−d p o r t 443 − j ACCEPT

−A FORWARD −p t c p −d 1 7 2 . 1 6 . 1 . 1 6 −−d p o r t 22 − j ACCEPT

# 3 : Allow HTTP / HTTPS o u t g o i n g t r a f f i c

−A FORWARD −s 1 7 2 . 1 6 . 1 . 0 / 2 4 −p t c p −−d p o r t 80 − j ACCEPT

−A FORWARD −s 1 7 2 . 1 6 . 1 . 0 / 2 4 −p t c p −−d p o r t 443 − j ACCEPT

COMMIT

Listing 4.1: Iptables input

SCRIBE executes the load command on FWS and passes the result to a variable

using the FWS’s language. After, SCRIBE runs the command synthesis that synthe-

sizes configurations to a tabular format. The command synthesis expects as parameter

the variable with the rules loaded in the previous step. SCRIBE runs synthesis com-

mand two times: first to synthesize firewall filtering rules and another to synthesize NAT

forward rules. FWS then generates two tables for each configuration file, one for filtering

and another for NAT forward rules. An example of an output table for filtering rules is

shown in Table 4.1. The tables only display rules for accepted connections.

FWS, however, has a limitation that displays all the configurations only on the

screen, which turns in a challenge to reuse its output. To overcome this limitation, the

FWS source code was extended with a module called FWS-Export, which is publicly



40

Table 4.1: Example of FWS output
Source IP Source Port Destination IP Destination Port Protocol

* * 172.16.1.16 22 TCP

* * 172.16.1.15
443
80 TCP

172.16.0.0/24 * 172.16.0.0/24 * *

172.16.0.0/24 * *
443
80 TCP

Source: Author

available at Github2.

The FWS-Export module allows the exportation of FWS tabular representation to

CSV format. FWS-Export intercepts all filtering and forward rules generated by FWS and

exports them to CSV files. FWS-Export generates two CSV files per device, one for filter-

ing rules and another for NAT rules. For firewall rules, the CSV contains the fields srcIP

and dstIP, representing the source and destination addresses respectively, srcPort

and dstPort representing the source and destination ports, the field protocol indi-

cates if the protocol is TCP or UDP and the field state indicates if the state of connec-

tion is new or established. NAT tables contain all the fields present in the firewall output

and include the fields srcIP´ and dstIp´, representing the NAT source and destina-

tion, respectively. These files are posteriorly used as input to SCRIBE. The structure of

CSV files is shown in Figure 4.3.

Figure 4.3: CSV structure

srcIP srcPort dstIP dstPort protocol state

srcIP srcPort dstIP dstPort protocol statesrcIP' dstIp'

Firewall

NAT

Source: Author

4.3 System modeling

SCRIBE was modeled to be extensible and to be capable of representing several

network functions. This extensibility makes use of modules, each representing a different

network function. Initially, the SCRIBE system model uses Target, Traffic, and Action

entities explained in Section 3.1. These entities are composed of attributes relating to
2<https://github.com/ComputerNetworks-UFRGS/fws-export>

https://github.com/ComputerNetworks-UFRGS/fws-export
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the parts of the configuration. The model was specialized to represent firewall and NAT

through mapping from input files to SCRIBE entities.

With the structured input files, the initial approach is to map the fields from the

input files to the SCRIBE classes. In SCRIBE, the network was modeled using an Ob-

jected Oriented Programming (OOP) paradigm. For the model, an object is an instance

of a network component, such as an IP address. In the first moment, utility functions read

the input configuration and CSV files before generating entities.

Table 4.2: Mapping FWS Firewall functions to SCRIBE Entities
Information FWS Column SCRIBE Entity
Source IP srcIP Target.SrcIP
Destination IP dstIP Target.DstIP
Source Port srcPort Traffic.SrcPort
Destination Port dstPort Traffic.DstPort
Protocol protocol Traffic.Protocol

Source: Author

The firewall filtering behavior was implemented in class Filtering. The class Fil-

tering contains methods for generating and export entities based on the input CSV. The

function generate_entitity generates entities based on CSV fields. It maps source

and destination IP addresses and ports and the protocol fields received as input to entities.

The attributes will constitute the Target and Traffic entities. The mapping attributes are

displayed in Table 4.2.

The NAT behavior was implemented in class NAT. The class NAT contains meth-

ods for generating and exporting entities based on the input CSV, similar to the Filtering

class. The function generate_entitity generates entities based on CSV fields. It

maps source and destination IP addresses and ports and the protocol fields received as

input to entities. Additionally, it adds the parameter operation, indicating the NAT

operation to be executed, and the NAT forward address as a parameter for the action.

The attributes will constitute the Target and Traffic entities, and action and parameter will

constitute the Action entity. The mapping attributes for NAT are displayed in Table 4.3.

Filtering and NAT classes implement the method export_entities, which

returns the Network Entities in a JSON format. An entity must have the fields traffic,

action and opcionally src, dst and param. The function export_entities

returns the meta-intents that are composed of entities, each of them representing a part of

the configuration.

Meta-intents contains entities composed of information corresponding to the classes
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Table 4.3: Mapping NAT functions to SCRIBE Entities
Information FWS Column SCRIBE Entity
Source IP srcIP Target.SrcIP
Source NAT IP srcIP´ Target.NATSrcIP
Destination IP dstIP Target.DstIP
Destination NAT IP dstIP´ Target.NATDstIP
Source Port srcPort Traffic.SrcPort
Destination Port dstPort Traffic.DstPort
Protocol protocol Traffic.Protocol

Source: Author

Filtering and NAT. A Filtering meta-intent will contain Target, Traffic, and Action entities,

where the Action will represent a allow or block rule. For NAT, the entity Action will rep-

resent a forward operation and will contain a parameter, representing the address that

NAT will forward to (or from). Meta-intents are represented in JSON format. An example

of meta-intent for Filtering is shown in Listing 4.2. This example of meta-intent repre-

sents the first line of FWS output, a firewall policy representing an allow action from the

Internet to the SSH server (172.16.1.16).

{

" T a r g e t " : {

" s r c " : " * " ,

" d s t " : " 1 7 2 . 1 6 . 1 . 1 6 "

} ,

" T r a f f i c " : {

" s r c P o r t " : " * " ,

" d s t P o r t " : " 22 " ,

" p r o t o c o l " : " t c p "

} ,

" A c t i o n " : " a l l o w "

}

Listing 4.2: Meta-intent

Meta-intents represent a higher-level rule than the tabular representation and in-

clude the Action — i.e., the operation to be executed over the rule. The next phase is

the aggregation of complementary information. The first part of aggregation is service

discovery, which consists of getting the service name of an application protocol based in

an L4 protocol and port number. The standardized Service Name and Transport Protocol

Port Number Registry (SERVICE. . . , 2020) was used to query for services in a given port

and protocol.
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The aggregation process allows operators to provide complementary information.

SCRIBE supports as input a host description file, indicating the hostname and IP address

or prefix of a host. Users can set the alias_file parameter to indicate a host file. This

file’s structure must follow the order hostname (or name of a prefix) and the IP address or

prefix separated by space, as indicated in Listing 4.3.

i n t e r n a l 1 7 2 . 1 6 8 . 1 . 0 / 2 4

w e b _ s e r v e r 1 7 2 . 1 6 8 . 1 . 1 5

Listing 4.3: Example of host file

The meta-intent representation is, then, enriched with the complementary infor-

mation of the hosts’ files and the service names. After this step, low-level information,

such as port name and protocol, is removed to simplify the meta-intent. A result of an

enriched meta-intent is shown in Listing 4.4.

{

" T a r g e t " : {

" s r c " : " I n t e r n e t " ,

" d s t " : "SSH S e r v e r "

} ,

" T r a f f i c " : {

" s e r v i c e " : "SSH"

} ,

" A c t io n " : " a l l o w "

}

Listing 4.4: Aggregated meta-intent

The last step is the translation for an intent-level language. Nile is the default target

language for translation. The translation to Nile involves going through the meta-intents

and mapping meta-intent attributes to the Nile grammar symbols.

For a given meta-intent, the initial step is to map the entities Target.src and

Target.dst to Nile endpoints. After, the traffic is identified by type, which for firewall

and NAT may be a service or protocol. Then, SCRIBE maps the traffic from meta-intents

to Nile service or protocol, composing the 〈matches〉 symbol. Last, the system identifies

the action, which can be mapped to a Nile 〈operation〉 symbol. The system follows the

Nile grammar to translate correctly. An example of a Filtering translation is shown at

Listing 4.5. This resulting Nile code is a translation from the aggregated meta-intent from

Listing 4.4.
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d e f i n e i n t e n t i n t e n t 1 :

from e n d p o i n t ( ' I n t e r n e t ' )

t o e n d p o i n t ( ' SSH S e r v e r ' )

a l l o w s e r v i c e ( ' SSH ' )

Listing 4.5: Translation of a firewall ALLOW rule to Nile language
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5 EVALUATION AND DISCUSSION

In this chapter, we present case studies that demonstrate the solution’s applicability

in different network contexts. To prove the concept, we also evaluated the accuracy of

SCRIBE using real datasets containing firewall rules from various servers and institutions

(DIEKMANN et al., 2016). Results show that SCRIBE is capable of expressing network

configurations in an intent-level with high accuracy.

5.1 Case Studies

Assuming that a new operator initiates at a company and wants to understand the

network configuration, the operator intends to assert if the network behaves as expected.

For this, there is a need to understand the existing network configuration. The operator

could use SCRIBE to understand the network state and then insert a new rule as needed.

In this section, two case studies indicating the solution’s applicability are described using

real-world scenarios to extract intents from already deployed network configurations.

The deployment of new intents in a traditional network requires that operators

discover all network devices and their respective configurations. To do this task, operators

must have platform-specific expertise, besides network administrative tools knowledge.

In this situation, a network operator would need to discover all devices in the network and

their respective IP addresses, read the entire configuration from various network devices,

and provide some documentation to help understand the network behavior for the next

alteration.

Different scenarios were analyzed to prove the concept and the technical feasibility

of the proposed solution. The first scenario represents a small company containing a

single firewall device at the input of the network that manages ACL and translates NAT

addresses. This scenario also includes servers and a workstation, isolated by NAT. The

second scenario explores a Science DMZ campus network containing ACLs directly in a

DMZ router, due to the high-speed characteristic in this network, and a firewall to secure

the internal network and provide NAT isolation. Next, these case studies are discussed in

detail.
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Case Study #1 - Small company

This scenario represents a small company, with a unique firewall device managing

all incoming and outgoing traffic and also managing NAT rules. The studied network

contains a Web Server, an SSH Server, and a Firewall/NAT middlebox, which manages

the network input. Servers can not directly be accessed externally. For access to servers,

all input traffic in Firewall/NAT middlebox is redirected to the corresponding server ac-

cording to the traffic type. The firewall device has two interfaces and also translate NAT

addresses. For this scenario, the firewall was configured using iptables, which also man-

age NAT rules. The representation of this scenario is shown in Figure 5.1. The entire con-

figuration for this case is about 40 lines of iptables code and is available at GitHub1.

Figure 5.1: Corporate network with NAT

Internet SSH Server

Web Server

Firewall / NAT

172.16.1.5

10.0.1.15

10.0.1.16

10.0.1.5

Source: Author

In this context, the solution can help by parsing the iptables code and processing

all deployed network configurations and representing NAT and firewall rules in the Nile

language, assisting operators in understanding the network behavior into a language closer

to the natural language. At the beginning of the process, the solution queries FWS for all

configurations, resulting in a table indicating all allowed services in this network. After,

the solution processes the resulting table, extracts entities, and generates the model as

described in Section 3. Friendly hostnames can be aggregated together with the service

running in each port indicated by the firewall rule, enriching the model, providing more

high-level information. Finally, the system generates meta-intents with higher-level rules

and translate them to Nile. The generated Nile code is shown in Listing 5.1.

After extracting intents, the system can help the operator to comprehend network

behavior. It is simple to infer the primary security behavior of this scenario by observing

the extracted intents in Listing 5.1. From the first intent, it can be noted that (i) only

protocols HTTP, HTTPS, and SSH are allowed to enter on this network. The remaining
1<https://github.com/ComputerNetworks-UFRGS/SCRIBE/tree/master/case_studies/1_Small_

Company>

https://github.com/ComputerNetworks-UFRGS/SCRIBE/tree/master/case_studies/1_Small_Company
https://github.com/ComputerNetworks-UFRGS/SCRIBE/tree/master/case_studies/1_Small_Company


47

of the generated intents describe the NAT behavior of the network. The second produced

intent in Listing 5.1 indicates that (ii) all SSH traffic will be redirected to the SSH Server,

which is internally addressed by the IP address 10.0.1.15. The last two intents express that

(iii) all HTTP and HTTPS traffic will be redirected to the Web Server, which is internally

addressed by the IP address 10.0.1.16. The default behavior for this scenario is the default

block; thus (iv), all other connections will be denied.

d e f i n e i n t e n t f i r e w a l l I n t e n t :

from e n d p o i n t ( ' i n t e r n e t ' )

t o e n d p o i n t ( ' f i r e w a l l ' )

a l l o w p r o t o c o l ( ' SSH ' ) , p r o t o c o l ( ' HTTPS ' ) ,

p r o t o c o l ( 'HTTP ' )

d e f i n e i n t e n t n a t I n t e n t :

from e n d p o i n t ( ' i n t e r n e t ' )

t o e n d p o i n t ( ' f i r e w a l l ' )

f o r p r o t o c o l ( ' HTTPS ' )

f o r w a r d a d d r e s s ( 'Web S e r v e r ' )

Listing 5.1: Nile code for firewall Intents

Case Study #2 - Science DMZ

Figure 5.2: Science DMZ network
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Source: Author

In this case study, a university scenario with Science DMZ was explored. In this

network, there are high-speed DTNs (Data Transfer Nodes) in a DMZ (Demilitarized

Zone), a router with ACLs, and an internal firewall. Figure 5.2, shows the scenario. In this

network, the DTNs are connected directly to a router because of the high-speed transfers
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(DART et al., 2014). A DMZ can be used to isolate particular servers from the machines

within a network. It is important to separate the public servers from the internal network

so an attacker can not get to all the systems. A stateful firewall can degrade the network

performance and is not suitable to realize the transfer of huge amounts of scientific data

in high-speed connections. For this, the ACLs (Access-Control Lists) are inserted directly

in the router in a stateless manner, aiming to maximize the transfer speeds (DART et al.,

2014).

d e f i n e i n t e n t f i r e w a l l I n t e n t 1 :

from e n d p o i n t ( ' U n i v e r s i t y A ' )

t o e n d p o i n t ( 'DTN 1 ' )

a l l o w t r a f f i c ( ' a l l ' )

d e f i n e i n t e n t f i r e w a l l I n t e n t 2 :

from e n d p o i n t ( ' U n i v e r s i t y B ' )

t o e n d p o i n t ( 'DTN 2 ' )

a l l o w t r a f f i c ( ' a l l ' )

d e f i n e i n t e n t f i r e w a l l I n t e n t 3 :

from e n d p o i n t ( 'My Network ' )

t o e n d p o i n t ( 'My Network ' )

a l l o w t r a f f i c ( ' a l l ' )

d e f i n e i n t e n t n a t I n t e n t 1 :

from e n d p o i n t ( ' i n t e r n e t ' )

t o e n d p o i n t ( ' F i r e w a l l / NAT ' )

f o r p r o t o c o l ( 'HTTP ' )

f o r w a r d a d d r e s s ( 'Web S e r v e r ' )

d e f i n e i n t e n t n a t I n t e n t 2 :

from e n d p o i n t ( ' i n t e r n e t ' )

t o e n d p o i n t ( ' F i r e w a l l / NAT ' )

f o r p r o t o c o l ( ' HTTPS ' )

f o r w a r d a d d r e s s ( 'Web S e r v e r ' )

Listing 5.2: Nile code for firewall Intents

Several intents can be inferred after applying the bottom-up process to the config-

uration from this network. The ACL router begins with a default-blocked setting. It is

possible to add network IPs and prefixes in a “allowed list", indicating which server is al-

lowed to perform a high-speed connection with a specific DTN. NAT isolates the internal
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network, and the firewall device attends to translate external addresses to NAT addresses.

The firewall rules deal with internal traffic, besides blocking suspected protocols, such as

UDP or TCP for some specific internal hosts.

From the intents listed in Listing 5.2, it can be inferred the base intents derivated

from this scenario. The first two intents (i) represent an allow policy from Universities A

and B for their corresponding authorized DTNs (Data Transfer Nodes). Also, these intents

hide the complexity involved to configure two separate devices to manage ACLs in a

high-speed DMZ and a conventional stateful firewall managing internal connections. The

third intent of Listing 5.2 (ii) describes the behavior of allowing all types of traffic in the

internal network. With the use of intuitive alias, supported by SCRIBE, as an example, the

alias “My Network" can be defined to refer to the prefix 10.0.0.0/8 (prefix of the internal

network). From intents natIntent1 and natIntent2, it can be observed (iii) a

NAT translation from all incoming traffic for HTTP and HTTPS protocols respectively,

indicating that these types of traffic will be forwarded to the Web Server, which is only

visible in the internal network.

5.2 Accuracy Evaluation

The evaluation of the bottom-up process requires a careful analysis of the intents,

i.e., there is a need to find an approach to identify whether the extracted intents represent

the same configuration as the low-level configuration. In this section, we define and

measure accuracy metrics collected from SCRIBE through several real-world network

configurations.

Two main aspects were evaluated to assert the feasibility of the bottom-up pro-

cess: (i) the trustworthiness of generated intents and (ii) SCRIBE’s support for the most

present functionalities in real-world firewall dumps. There is a need to check whether

the characteristics of the original configuration files are present in the extracted intents to

evaluate the trustworthiness of generated intents.

Datasets

Measurements were performed using real-world security rules from a public col-

laborative repository (DIEKMANN, 2015), which contains dumps of firewall rules from
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various servers and institutions. For security concerns, some public IP and MAC ad-

dresses have been anonymized. For this work, six datasets were selected . In Table 5.1,

the datasets are presented, including a short description, type (firewall software), and the

number of Lines of Code (LoC).

Table 5.1: Dataset name, type, description and Lines of Code (LoC)
Dataset Type Description LoC
Unikernel iptables A Unikernel Firewall for QubesOS 65
Home iptables A typical home user’s firewall 296
Kornwall iptables A script to set up a host-based firewall on a PC 92
NetArq iptables The Chair of Network Architectures and Services 5668
Memphis iptables Firewall of the memphis testbed 46
Veroneau iptables Security of the Veroneau’s site 270

Source: Author

Translation Accuracy

We develop an approach to evaluate the trustworthiness of extracted intents. For

this, static analysis was performed to validate whether each generated intent represents

the configuration accurately. The characteristics were analyzed from various real-world

firewall configuration files to perform this process. Each characteristic is a configuration

element of a rule. For instance, source address, port number, and action (e.g., allow) are

characteristics of a traditional allow rule. SCRIBE provides a script to extract all firewall

parameters of configurations. These extracted parameters were used to compare with

parameters extracted from generated intents to evaluate the accuracy.

SCRIBE was used to extract intents from several real-world firewall configuration

files and to evaluate accuracy. After, the system dumps the parameters of configurations

present in generated intents. The parameters dumped from low-level configurations are

then compared if they are also present in generated intents. Thus, the accuracy is cal-

culated by counting how many parameters of the configuration files are also present in

generated intents. Figure 5.3 presents the accuracy of the intents. The X-axis shows the

firewall dump (with a compact name). Y-axis represents the rate of correctly extracted

configuration parameters, i.e., the percentual of configuration parameters present in low-

level configurations, and present in generated intents.

Figure 5.3 shows that the accuracy of generated intents is above 80% for most of

the dumps, which represent that SCRIBE can extract intents from configuration files with
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Figure 5.3: Percentual of corrected extracted intents for each firewall dump
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high fidelity, missing very few configuration details. There is a variation in the accuracy

between datasets. This variation occurs due to limitations of the representation capabili-

ties, i.e., some datasets contain features yet not supported by SCRIBE. The worst case is

Veroneau (a dump of veroneau.net) and contains several directives of ICMP messages and

some directives of rate-limiting, both not supported in SCRIBE yet. However, even for

this dump, the solution can express most of the firewall configuration’s functionalities. It

can be observed that network configurations can be represented using high-level intents,

closely resembling the natural language and maintaining high fidelity to the original con-

figuration.

Functionality support

This evaluation aims to verify the level of functionality support of SCRIBE to

the most used configuration in real-world firewall configurations. This evaluation repre-

sents the trustworthiness of extracted intents concerning the original configurations. For

this, several configuration dumps were obtained from a public collaborative repository

proposed by (DIEKMANN et al., 2016). There are various files containing dumps of

iptables firewalls exported from various servers and institutions in this repository.

This evaluation consists of obtaining all iptables options exported from real-

world configurations files and checking which of them are supported by SCRIBE. Most of

iptables options can refer to command, parameter, match, target, and listing options
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(REDHAT, 2005a). Command options instruct iptables to perform specific actions,

such as append or delete a new rule. Parameter options are used to define a packet filtering

rule. Match options are used for specialized matching options such as protocols and ports,

and also can be extended through modules. Target options represent actions to take if a

packet is matched, such as ACCEPT or DROP actions. Listing options represent options

to list rules on the screen.

Functionalities are represented by iptables parameters, as well as matches and

target options. This evaluation is performed through a script that dumps all existing pa-

rameters, as well as matches and target options existing that represent functionalities in

the configuration files. In this evaluation, the number of functionalities existing in the

dataset was counted and compared with functionalities supported by SCRIBE. This eval-

uation demonstrates the most used functionalities in datasets and SCRIBE support for

them. The result of this evaluation is shown in Figure 5.4.

Figure 5.4: SCRIBE support for the most used functionalities in datasets
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Results show that SCRIBE supports the most used functionality parameters in real-

world firewall configurations. Due to this support, SCRIBE can represent the most used

firewall functionalities at an intent-level. Most of SCRIBE unsupported functionalities of

firewalls refers to logging, TCP flags, and ICMP messages. For the moment, SCRIBE

does not support rate-limiting functionalities either.
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6 CONCLUDING REMARKS

In this dissertation, we introduced a novel bottom-up approach to intent extrac-

tion, which synthesizes and represents existing network configurations in an intent-level

language. A solution was developed to validate the process’s feasibility, and two case

studies describing real-world scenarios were provided to apply the process. In the case

studies, it was evidenced that intents can be extracted from these scenarios, and it rep-

resents the network behavior in intent-level, close to the natural language. Additionally,

real-world firewall configurations were used to evaluate the accuracy of SCRIBE. Ex-

periments demonstrate that it is possible to extract intents from real configurations using

SCRIBE with high accuracy, preserving the majority of aspects of the original configura-

tions in the translation process.

6.1 Summary of Contributions and Results

Current network management relies on human in the control loop, where the hu-

man insight is fundamental for network maintenance (BIRKNER et al., 2018). However,

traditional networks are generally hard to maintain because of the gap between the high-

level specifications and low-level configuration directives. In a traditional network, it is

hard to infer high-level network-wide specifications from device-level configuration di-

rectives. Operators need to learn several low-level configuration languages to express

configurations for each different network device. Also, the solutions that use intent-level

languages have top-down approaches, i.e., networks must support intent-level configura-

tion already to use them.

This work emerged as a solution to fill the gap between the high-level specifica-

tions and device-level configurations using a bottom-up approach. The proposed solution

can fill this gap by facilitating the operators’ understanding of the actual network config-

urations by extracting intents from such low-level configuration directives, assisting both

novice and experienced operators in understanding existing configurations. Also, this

solution may help operators migrating from legacy networks to intent-based networks.

The implementation of the solution was made through a prototype tool called

SCRIBE. In the SCRIBE tool, the bottom-up process was implemented, focusing on fire-

wall and NAT. This implementation aims to (i) prove the concept of the solution and (ii)

serve as a tool for the experiments, allowing the demonstration of case studies and the



54

accuracy evaluation. This tool actually supports device-level directives representing con-

figurations of firewalls such as iptables, IPFW, Cisco IOS, etc. Moreover, the output of

SCRIBE is directly a Nile code reproducing these configurations into an intent-level. Af-

ter all the process of intent extraction, in some situations, operators can directly use the

output of SCRIBE as input for modern tools for Intent-Based Networking, particularly

the Nile language.

In this work, we demonstrated the applicability of the solution through two case

studies using two different scenarios: one representing an infrastructure of a small com-

pany with a single firewall and another depicting a high-speed campus network using

Science DMZ. In such cases, it was demonstrated the technical feasibility of the solution.

The output of the solution through the prototype tool SCRIBE depicts that traditional

configurations can be expressed in easy-to-understand Nile intents, closely resembling

the English language. Also, the total number of lines for such configurations were sub-

stantially reduced.

In the evaluation, we prove the solution’s concept by demonstrating (i) the trust-

worthiness of extracted intents and (ii) the SCRIBE support for the most present function-

alities in real-world firewall configurations. Results show that SCRIBE can accurately

express configurations in an intent-level language, supporting the most used functionality

parameters in real-world firewall configurations.

6.2 Limitations and Future Work

Although SCRIBE extracts intents with reasonable accuracy, it still faces some

limitations. In particular, it does not support firewall features of rate-limiting, logging,

and ICMP messages included in some datasets. The support for these features and the

inclusion of that in the network model may significantly increase SCRIBE accuracy. In

future work, such functionalities may be added to SCRIBE, increasing representation

capabilities and evaluation accuracy. The support for capabilities is given by (1) the syn-

thesizer and (2) the capacity of representation of the target language. The synthesizer

gives support for capabilities supported by network technologies. Thus, the accuracy is

directly related to the synthesizer and can be improved by adding a new synthesizer or

extending the current synthesizer (FWS). Furthermore, adding new constructs in the tar-

get language, Nile, will allow the representation of the extracted configurations in the

intent-level language.
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SCRIBE was developed as a prototype tool to prove the proposed solution’s con-

cept. Despite that SCRIBE is modular and can be extended, the SCRIBE functionalities

are focused on NAT and Firewall contexts. From a future perspective, SCRIBE may

be extended, adding support to other network functions such as routing algorithms (e.g.,

OSPF, BGP). These modifications would require SCRIBE support from other synthesiz-

ers, rather than to FWS, as well as changing the target language or extending the Nile

grammar to make it support these functionalities.

Currently, SCRIBE only supports the extraction of intents in a 1:1 mapping, i.e.,

an intent is extracted for each configuration/rule. Finally, as future work, the use of prob-

abilistic methods (FRANK et al., 2009) and data mining techniques (KHERADMAND,

2020) is suggested to represent higher-level intents. These techniques will allow the infer-

ence of complex intents from the low-level configurations, deriving an intent from many

low-level configurations; however, it will introduce non-deterministic behavior to the so-

lution.
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Intent-Based Networking (IBN) is showing significant improvements in network

management, especially by reducing the complexity through intent-level languages. How-

ever, IBN is not yet integrated and widely deployed in most networks. Network operators

may still encounter several issues deploying new intents, such as reasoning about com-

plex configurations to understand previously deployed rules before writing an intent to

update the network state. Many networks include several devices distributed along its

topology, each device configured using vendor-specific languages. Thus, inferring the

behavior of devices as high-level intents from these low-level configurations can be an

arduous and time-consuming task. Current solutions that derive high-level representa-

tions from bottom-up configuration analysis can not represent configurations in an intent-

level. In this work, we present a bottom-up approach to extract intents from network

configurations. To validate our approach, we develop a system called SCRIBE (SeCuRity

Intent-Based Extractor), which decompiles security configurations from different network

devices and translates them to an intent-level language called Nile. To demonstrate the

feasibility of SCRIBE, we outline two case studies and evaluate with dumps of real-world

firewall configurations containing rules from various servers and institutions.
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Abstract. Intent-Based Networking (IBN) is showing significant
improvements in network management, especially by reducing the com-
plexity through intent-level languages. However, IBN is not yet inte-
grated and widely deployed in most networks. Network operators may
still encounter several issues deploying new intents, such as reasoning
about complex configurations to understand previously deployed rules
before writing an intent to update the network state. Many networks
include several devices distributed along with its topology, each device
configured using vendor-specific languages. Thus, inferring the behav-
ior of devices as high-level intents from low-level configurations can
be an arduous and time-consuming task. Current solutions that derive
high-level representations from bottom-up configuration analysis can not
represent configurations in an intent-level. In this work, we present a
bottom-up approach to extract intents from network configurations. To
validate our approach, we develop a system called SCRIBE (SeCuRity
Intent-Based Extractor), which decompiles security configurations from
different network devices and translates them to an intent-level language
called Nile. To demonstrate the feasibility of SCRIBE, we outline a case
study and evaluate with dumps of real-world firewall configurations con-
taining rules from various servers and institutions.

Keywords: Intent-Based Networking · Network management ·
Programming languages

1 Introduction

In Intent-Based Networking (IBN), an intent is a high-level abstract declaration
written by network operators to specify the desired network behavior [1,2]. IBN
helps operators configure the network by hiding unnecessary low-level details of
the underlying network, inside an intent-aware network management system. In
a recent effort, researchers have exploited specification languages that are closer
to natural language to define and employ network intents. Nile [1] and Jinjing [3]
are examples of such languages. Employing such solutions into the network can

c© Springer Nature Switzerland AG 2020
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improve management and also facilitate the deployment of new features. How-
ever, current efforts to support IBN focus on top-down approaches, meaning that
network configurations are first specified as intents and then refined to low-level
configuration directives—i.e., the network is assumed to support intents already.
Network operators may still encounter several issues deploying new intents, such
as reasoning about complex configurations to understand previously deployed
rules before writing an intent to update the network state.

Network operators may encounter networks with missing documentation of
previously deployed intents, becoming hard to understand the network behavior.
In such cases, especially in large-scale networks, operators must read many con-
figuration files to comprehend the network behavior. Large-scale networks may
include various devices distributed in multiple hierarchical levels of their topol-
ogy, each of these devices configured using low-level, vendor-specific languages.
Thus, existing top-down approaches to specify intents are not straightforward to
be implemented. Take, for instance, the configuration of a firewall: an operator
must manually check several low-level firewall rules to extract a simple intent,
such as “block p2p traffic”.

There is a lack of solutions for interpreting low-level configuration directives
and expressing them using intents. In the network security context, many work
efforts are made to interpret the behavior of firewalls in the network by convert-
ing rules to high-level representations, such as tables [4], symbolic models [5],
generic firewall languages [6], and graphs [7]. These representations help oper-
ators understand firewall rules by capturing low-level configuration details in a
bottom-up approach and displaying firewalls rules in a vendor-independent form.
However, these solutions display as output only allowing and blocking statements
for IP addresses and ports, requiring operators to know the functioning of fire-
walls, protocols, and ports to understand the generated representation. Thus,
we can observe a lack of strategies to bridge the existing gap between low-level
deployed network rules and high-level network intents. An intent-level represen-
tation can help operators by reducing the necessary effort to consolidate network
rules and reason about previously deployed intents.

Given the lack of strategies to express the behavior of already deployed net-
work configurations in the form of intents, we propose a bottom-up methodology
to represent network configurations in an intent-level language. We developed
a prototype tool called SCRIBE (SeCuRity Intent-Based Extractor) to validate
our method. SCRIBE interacts with tools that reverse engineer vendor-specific
configurations to an intermediate level and aggregates the complementary infor-
mation to provide a high-level representation. Finally, SCRIBE translates this
representation into an intent-defined language, called Nile. We demonstrate the
feasibility of our approach using a case study and an evaluation of the transla-
tion accuracy with real-world firewall dumps [5], containing firewall rules from
various servers and institutions. Our results show that SCRIBE is able to express
network configurations in an intent-level language with high accuracy, capturing
the vast majority of the low-level details present in the input configuration files.
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The remainder of this paper is structured as follows. In Sect. 2, we review
related work. In Sect. 3, we specify an end-to-end methodology to extract intents
from network configurations and we detail the implementation of SCRIBE. We
describe two case studies based on realistic scenarios in Sect. 4. In Sect. 5, we
conduct an evaluation of our system using real-world configurations, as well as
a discussion of our findings. Finally, in Sect. 6, we conclude this paper with
discussions and future work.

2 Related Work

In this section, we review related work. We consider as related work previous
efforts that read low-level network configurations and express configurations in
an intent-level language. Given the lack of strategies in this area, we review
intent languages that (i) allow deploying network configurations using high-
level directives; and previous efforts that (ii) read vendor-specific configurations
from a restricted context and use high-level representations to display these
configurations.

Jinjing [3] automatically generates ACL update plans based on operators’
high-level intent. Jinjing offers an intent language named LAI, with high-level
representation, which operators can use to express their in-network ACL plan
updates. Janus [8] support policies with QoS requirements, mobility, and tem-
poral dynamics. In a recent effort [1], authors provide a solution to allow users
to express intents in natural language, using Nile as an intermediate representa-
tion, closely resembling the English language. Their approach reduces the need
for operators to learn a new policy language for each different type of network.
However, all these languages are top-down approaches, meaning that network
configurations are firstly specified as intents and then refined to low-level con-
figuration directives.

In the security context, some efforts have been made to parse low-level fire-
wall rules and express them using high-level representations, such as graphs or
tables. In a previous work [7], authors propose a solution to read vendor-specific
firewall rules and represent them as a directed graph abstraction, where nodes
correspond to the network devices, and directional edges represent a statement
to allow or block traffic on a specific port. This graph abstraction helps users
understand firewall configurations by displaying the network topology, allow and
block statements in an easy-to-understand representation. However, this solution
only supports simple allow and block policies in specific ports and hosts, and
there is no support for distributed firewall configurations.

More recently, in [4], the authors propose FWS, a solution that reads firewall
configurations from different systems and synthesizes them in a tabular form.
To this end, authors provide a language to interact with FWS, where the user
can load vendor-specific rules from different firewalls and queries for specific
IPs, ports, networks, as well as compare them. The tabular representation helps
operators understand firewall rules by centralizing all configurations in a single
place. However, for distributed firewall configurations, this solution loads each
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device configuration separated in a different table, each representing the firewall
rules of a single device. Due to the use of various tables, operators can have
difficulty to reason about previously deployed intents in a network-wide context.

In Net2Text [9], authors propose a solution to summarize the forwarding
behavior in natural language. This solution provides interaction through a “chat-
bot”, where users can query for a specific forwarding behavior. While this work
does an excellent job in summarizing the network-wide forwarding state, pro-
ducing succinct reports in natural language, it is limited to forwarding behavior,
not supporting ACL and NAT, for instance.

3 Methodology Overview

In this section, we describe a bottom-up methodology to parse network config-
urations and represent them into an intent-level language, depicted in Fig. 1.
Our process expects as input configuration files exported from network devices
(e.g., firewalls, NAT, routers). Having these configuration files, in the step
1 , we gather them in a centralized database, synthesize these configurations
and express them using an intermediate representation. During the step 2 ,
we extract the network entities and generate a platform-independent abstract
model. In the step 3 , we enrich the model with complementary information pro-
vided by various sources. The final result of this step is the Aggregated Model,
an enhanced representation of the network configurations, which we call meta-
intents. Finally, in the last step 4 , we translate meta-intents into our extended
version of the Nile language, which is described in Sect. 3.4.

Intermediate
Representation

Abstract 
Model

Aggregated
Model

IntentConfiguration

Synthesis
1

Consolidation
2

Aggregation
3

Translation
4

Fig. 1. Process of intent extraction

3.1 Configuration Synthesis

In the first step of our process – indicated in Fig. 1 by step 1 – we collect
low-level directives from various configuration files, which can be distributed in
multiple levels of the network hierarchy, and synthesize them to an intermediate
representation. In this step, the input our approach is composed of configura-
tion files exported from various devices. After, we parse the configuration files
and synthesize the configuration directives. This process must be low-level and
accurate in order to create a trustworthy representation, which can reproduce all
aspects of configuration and their interactions. As we leverage information from
multiple different sources in the network, we exploit existing literature solutions
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to extract such info in a structured fashion. However, as the existing solutions are
not standardized, we have various representation types such as tables, graphs,
or symbolic models. Thus, our solution must be able to parse multiple input
sources. Aiming to parse these input sources, we design our synthesis methodol-
ogy as an extensible module that can use many solutions to characterize network
behavior. Our approach consists of gathering configuration files, generating input
commands for the base solutions, and exporting the output of these solutions to
process them in the next steps. How the base solutions are heterogeneous, we
may have several outputs in this step, one for each network device. In the next
step, described in Sect. 3.2, we detail how we gather these generated outputs and
generate an intermediate representation.

3.2 Consolidation

After we have the intermediate representation, we can start to raise the abstrac-
tion level of the network model. This step is the most important phase of the
process, once it develops a more manageable and structured view of the config-
uration. In this phase, we parse the intermediate representation and extract the
entities needed for our reverse-engineering process.

Definition 1. A network configuration is a composition of several entities. We
define an entity as E = {Target , Traffic, ActionsK}, where:

– Target : represents the target object of a determined rule. A Target can be spe-
cialized to represent network target objects in various scenarios. For example,
if we model a firewall, we can model firewall Target entities by using source
and destination prefixes (Target :=< src.prefix , dst .prefix >). A firewall pre-
fix may represent a single IP (e.g., src.ip := 10.0.0.1) or a network IP prefix
(e.g., src.prefix := 10.0.0.0/8).

– Traffic: represents the type of traffic in the network. For example, in firewall
and NAT actions the Traffic entity represents the set of source and destination
ports for filtering traffic, which will discern the traffic type in the network.

– Action: represents operations to be executed. An action will be applied to the
rules, for a pair < Target ,Traffic >. Each entity may have k actions, then
Actions = (action1, action2, ..., actionK). Each action contains parameters
necessary to run the desired operation. Then P = (p1, p2, ..., pn) is the set of
parameters of an Action i. As an example, we can represent a NAT forward
operation in a Action = {forward} and include the parameters p1 = DNATIP

and p2 = DNATPort, indicating the destination NAT IP and port for a specified
traffic.

Finally, to group the entities which produces the same intent, we perform an
additional processing phase. In this phase, we search through the extracted con-
figurations and match pairs of entities by common characteristics using grouping
functions.

Our grouping process consists of three applications of grouping functions
in Target, Traffic, and Action entities, respectively. We define grouping as a
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function of entities, g : E × E �→ E, where we first group entities by the Tar-
get. Targets with the same origin and destination must be part of the same
intent. Therefore we merge the entities that match these parameters. Formally,
∀i, j ∈ E, if target i ≡ targetj then we compute g(i, j). Second, the grouping is
performed by the entity Traffic, containing input and output ports. Formally,
∀i, j ∈ E, if traffici ≡ trafficj then we compute g(i, j). In the last stage, we
gather similar Action entities. If two actions have the same traffic type, we com-
plement the traffic type by adding a parameter, indicating a variation in a set
of similar characteristics of the Traffic. We consider as similar, a group of rules
containing the same characteristics in which there is only a characteristic that
differs them. This only different characteristic is considered the varying parame-
ter. The varying parameter will be the input of traffic and stored separated from
the entities, thereby reducing the total set of rules, aiming to create compact
intents. Formally, ∀i, j ∈ E, if traffici is similar to trafficj by the characteristic
c, then action.p := action.p ∪ c. All entities generated in this step will serve as
input for the aggregation, which is described next.

3.3 Aggregation

In the third step of our process, we join all related entities to generate meta-
intents. Meta-intents contains pairs of information, including the origin, des-
tination, services, and the default action. Meta-intents are a more high-level
representation of our process, much closer to an intent, and we represent them
in JSON format.

We use complementary information from various sources to enrich the gen-
erated meta-intents and display the information at a user-friendly level. The
purpose is to eliminate the redundant constructions and replace them with a
smaller and clearer set of rules R. To enrich the meta-intents, we collect host-
names and topology as a piece of additional information from the network. Also,
our solution provides an option to input “friendly” names for hosts, aiming to
facilitate the recognizing of network devices. With all the complementary infor-
mation gathered, we replace all IP addresses for the provided names. After, we
infer the service or protocol names from provided ports. For this, we query the
Service Name and Transport Protocol Port Number Registry [10], which lists
the standard port for services.

3.4 Extending Nile

We use Nile as default language to represent our intents. The Nile language can
express intents in an intent-level of abstraction, closely resembling the natural
language, and satisfies our requirements of readability and abstraction. However,
Nile natively does not contain symbols to support NAT behavior. In order to
express NAT behavior, we extend the Nile grammar to support NAT directives.
To do that, we include NAT constructs to Nile language. We add the forward

keyword to represent a forward NAT action.
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A Nile forward action requires a <target> symbol. Nevertheless, the actual
Nile <target> symbol only allows representing groups, services, endpoints, and
traffic. We can not represent a pair of IP address and port as a target for
operation. To overcome this limitation, we create a new symbol <address> to
express a pair of IP or host and a port. The syntax of the address symbol is
<address> :: =< IP/Host, [ Port ] >, expecting an IP or host as a required
parameter and a port as an optional parameter. If the port parameter is missing
on intent, the system will assume the NAT port as the same as the input or
output port.

de f i n e i n t en t forwardIntent :
from endpoint ( ' i n t e r n e t ' )
to endpoint ( 'NAT Device ' )
f o r p ro to co l ( 'SSH ' )
forward address ( ' 1 0 . 0 . 0 . 5 ' , 2222)

Listing 1. NAT Forward in Nile

In Listing 1, we provide an example using the Nile command forward and
the address symbol. In this example, we represent a NAT action from incoming
traffic. The incoming SSH traffic with the destination “NAT Device” will be
redirected to the internal address 10.0.0.5 on port 2222.

3.5 Intent Translation

After enriching the model with complementary information, we process the gen-
erated meta-intents to translate them into our extended version of Nile. Nile
grammar has several symbols to represent network rules, which can be directly
translated from our generated entities. Nile grammar expects two endpoints as
parameters, which can be hosts, middleboxes, and many other network devices.
We map our arguments on Target entity and generate two Nile endpoints. The
second phase of the translation process to Nile involves the mapping of Traffic
entities to Nile matches symbol. The Nile language supports service, traffic, pro-
tocol and group traffic types, and, we also extend Nile allow the representation
of addresses, which permit us to express our Traffic type in different levels of
abstraction. In the last phase of the Nile translation process, we express our
Action entities. The Nile grammar allows us to represent our actions using Nile
rules, which permits us to represent actions like allowing, blocking, and add mid-
dleboxes, permitting us to represent several network functionalities supported by
different types of middleboxes. We also extend the Nile language to support the
operation forward, allowing us to represent NAT forwarding actions, as described
in Sect. 3.4.
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3.6 Implementation

We validate the feasibility of our methodology by developing a prototype solution
called SCRIBE. The system leverages different input sources to process low-level
firewall configurations and queries for all configurations available on filtering and
NAT tables. SCRIBE has about 400 lines of Python code. In this section, we
discuss the implementation of SCRIBE in detail as well as our modifications to
third-party tools to make them interact with SCRIBE.

We divide the system into two different modules. In the first module (1),
SCRIBE generates commands to load all configuration files in FWS [4]. We
choose FWS due to the trustworthiness to generate the intermediate model.
Also, FWS supports the most common firewall solutions for Linux/Unix systems,
such as iptables, IPFW, packet filter (PF), and Cisco IOS ACL configurations.
FWS process low-level firewall configurations files and synthesizes the network
configuration using first-order logic predicates to characterize allowed policies
in firewall and NAT forwards. In the second module (2), SCRIBE queries for
all filtering and NAT rules in FWS. FWS then generates the result as a table,
displaying all allowed connections in the network. We process the rules table
generated by FWS and register them into our database. Then, we process these
rules and complement with additional data to consolidade in our intermediate
representation format, as explained in Sect. 3. Finally, we translate the meta-
intents to the Nile language.

4 Case Study

Let us suppose that a new operator initiates at a company and wants to assert
if the network behaves as expected and makes some changes. For this, the oper-
ator needs to discover all devices of the network and understand their respective
configurations. In this situation, the network operator would need to (i) discover
all devices in the network and their respective IP addresses, (ii) read the entire
configuration from various network devices and (iii) provide some documenta-
tion to help understand the network behavior for the next alteration. To do these
tasks, the operator needs to have platform-specific expertise, besides knowledge
of network administrative tools.

Instead, the operator could rely on Scribe to understand the network state
and then insert a new rule as needed. In this section, we analyze a Science DMZ
case study indicating the applicability of our solution to extract intents from
already deployed network configurations and demonstrate the effectiveness and
technical feasibility of our proposed solution. For this purpose, we explore a
Science DMZ scenario. Next, we discuss this scenario in detail.

68



866 R. H. Ribeiro et al.

4.1 Scenario - Science DMZ

In this case study, we explore a university scenario with Science DMZ. In this
network, there are high-speed DTNs (Data Transfer Nodes) in a DMZ (Demilita-
rized Zone), a router with ACLs and an internal firewall. A DMZ can be used to
isolate particular servers from the machines within a network. Figure 2, shows the
scenario. In this network, the DTNs are connected directly to a router because
of the high-speed transfers [11]. A stateful firewall can degrade the network per-
formance and is not suitable to realize the transfer of huge amounts of scientific
data in high-speed connections. For this, the ACLs (Access-Control Lists) are
inserted directly in the router in a stateless manner, aiming to maximize the
transfer speeds [11].

LAN

10.0.0.5
10.0.1.10

Workstation 1

Web Server
10.0.1.8

172.16.1.5

Firewall / NATBorder RouterS. DMZ Router

Internet

DMZ

DTN 1
172.16.1.15

DTN 2

172.16.1.16

Fig. 2. Science DMZ network

We extract the network intents in a bottom-up approach. These intents hide
the complexity involved to configure two separate devices to manage ACLs in
a high-speed DMZ and a conventional stateful firewall managing internal con-
nections. The ACL router begins with a default-blocked configuration, and it is
possible to add network IP addresses and prefixes in a “whitelist”, indicating
what server is allowed to perform a high-speed connection with a specific DTN.
NAT isolates the internal network, and the firewall device attends to translate
external addresses to NAT addresses. The firewall rules deal with internal traf-
fic, besides blocking suspected protocols, such as UDP or TCP for some specific
internal hosts.

The output intents for this solution are shown in Listing 2. We observe a
significant reduction in the number of lines of code. The original iptables code,
available at our repository, has more than 40 lines of code, and the resulting Nile
intents have 22 lines. Also, we have reduced the complexity by rising the abstrac-
tion level. From these generated intents listed in Listing 2, we can easily infer
the base intents derived from this scenario. The two first intents (i) represents
an allow intent between University A and the authorized DTN, labeled “DTN
1”. The third intent of Listing 2 (ii) describes the behavior of allowing all types
of traffic in the internal network. With the use of intuitive alias supported by
SCRIBE, we can define in this example the alias “My Network”, referring to the
prefix 10.0.0.0/8 (prefix of the internal network). From intents natIntent1 and
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natIntent2, we can observe (iii) a NAT translation from all incoming traffic
for the HTTP and HTTPS protocols, indicating that these types of traffic will
be forwarded to the Web Server, which can only be accessed directly from the
internal network.

de f i n e i n t en t f i r ew a l l I n t e n t 1 :
from endpoint ( ' Unive r s i ty A ' )
to endpoint ( 'DTN 1 ' )
a l low t r a f f i c ( ' a l l ' )

d e f i n e i n t en t f i r ew a l l I n t e n t 2 :
from endpoint ( ' Unive r s i ty B ' )
to endpoint ( 'DTN 2 ' )
a l low t r a f f i c ( ' a l l ' )

d e f i n e i n t en t f i r ew a l l I n t e n t 3 :
from endpoint ( 'My Network ' )
to endpoint ( 'My Network ' )
a l low t r a f f i c ( ' a l l ' )

d e f i n e i n t en t nat Intent1 :
from endpoint ( ' i n t e r n e t ' )
to endpoint ( ' F i r ewa l l / NAT ' )
f o r p ro to co l ( 'HTTP ' )
forward address ( 'Web Server ' )

d e f i n e i n t en t nat Intent2 :
from endpoint ( ' i n t e r n e t ' )
to endpoint ( ' F i r ewa l l / NAT ' )
f o r p ro to co l ( 'HTTPS ' )
forward address ( 'Web Server ' )

Listing 2. Resulting Nile intents for the Science DMZ scenario

5 Evaluation

The evaluation of the bottom-up process requires a careful analysis of the intents,
i.e., we need to find ways to identify if the extracted intents represent the same
configuration as the low-level configuration. In this section, we define and mea-
sure accuracy metrics collected from SCRIBE through several real-world network
configurations.

To assert the feasibility of our bottom-up process, we evaluate two main
aspects: (i) the accuracy of generated intents and (ii) SCRIBE support for
the most present functionalities in real-world firewall dumps. To evaluate the
accuracy of generated intents, we compare if the characteristics of the original
configuration files are present in the extracted intents. We performed several
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measurements using real-world security rules from a public collaborative reposi-
tory [5], which contains dumps of firewall rules from various servers and institu-
tions. For security concerns, some public IP addresses and MAC addresses are
anonymized.

5.1 Translation Accuracy

We performed a static analysis to validate if each generated intent represents
the configuration accurately. Each characteristic is a configuration element of
a rule. For instance, source address, port number, and action (e.g., allow) are
characteristics of a traditional allow rule. We automatically to extract all fire-
wall parameters of configurations. We use these extracted parameters to com-
pare with parameters extracted from generated intents, in order to evaluate the
accuracy.

After, we dump the parameters of configurations present in generated intents.
We then compare if the parameters dumped of low-level configurations are also
present in generated intents. Thus, we calculate the accuracy by count how
many parameters of the configuration files are also present in generated intents.
Figure 3(a) presents the accuracy of the intents. The X-axis shows the fire-
wall dump (with a compact name), and Y-axis represents the rate of correctly
extracted configuration parameters, i.e., the percentual of configuration param-
eters which are present in low-level configurations and also present in generated
intents.

We can verify in Fig. 3(a) that the accuracy of generated intents is above 0.8
for most of the dumps, which represent that SCRIBE can extract intents from
configuration files with high fidelity, missing very few configuration details. The
worst case is Veroneau (a dump of veroneau.net) and contains several directives
of ICMP messages and some directives of rate-limiting, both not supported for
our solution yet. However, even for this dump, our solution can express most of
the functionalities available in the firewall configuration. We can observe that
we can represent high-level intents, closely resembling the natural language, and,
nevertheless, maintain a high fidelity to the original configuration.

5.2 Functionality Support

We extract several properties from firewalls to recognize supported functionali-
ties. For this, we extract all possible parameters from the firewall configuration
files and gather all these parameters for posterior analysis. We carefully analyze
the exported parameters to capture the meaning for the parameter, exploring
for which functionality it belongs.

With the grasp of the functionalities, we extract these functionality parame-
ters from several real-world configuration files. For this, we process all available
configuration files and count the functionality parameters for each. After, we con-
trast all used functionality parameters in real-world configurations with security
functionalities supported by SCRIBE. We display the functionalities results in
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Fig. 3. Evaluation of SCRIBE functionality support.

Fig. 3(b). We remove from the graphic all parameters with less than 30 uti-
lizations, due to the little utilization in the dataset. Observing Fig. 3(b), it is
possible to observe that SCRIBE supports the most used functionality parame-
ters in real-world firewall configurations, and, due to this support, SCRIBE can
represent the most used firewall functionalities at an intent-level.

Most of SCRIBE unsupported functionalities of firewalls refers to logging,
TCP flags, and ICMP messages. SCRIBE also does not support rate-limiting
functionalities yet. However, this functionality is rarely used directly in firewall
configurations, according to our evaluated sources, and will be an object of study
of future work.

6 Conclusion and Future Work

In this paper, we introduced a novel bottom-up approach to intent extraction,
which synthesizes and represents existing network configurations in an intent-
level. We developed a solution to validate the feasibility of our process, and we
provide two case studies representing real-world scenarios where we can apply the
process. Case studies evidence that we can extract intents from these scenarios,
and represent the network behavior in intent-level, closely resembling the natural
language. Additionally, we use real-world firewall configurations to evaluate the
accuracy of our implemented solution. We find that it is possible to extract
intents from real configurations using SCRIBE with high accuracy, preserving
the majority of aspects of the original configurations in the translation process.

Although SCRIBE can extract intents with high accuracy, it still faces some
limitations. In particular, we do not support firewall features of rate-limiting,
logging, and ICMP messages. We suggest, as future work, including these func-
tionalities into SCRIBE. For this, there is a need to add new features to FWS
and also add new constructs in the Nile language. We also see as a perspective
supporting routing algorithms, which also would require modifications into Nile
and support from other synthesizers, besides FWS.
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APPENDIX B — RESUMO

Intents são declarações abstratas em alto nível, escritas por operadores de rede

para especificar o comportamento esperado da rede (BEHRINGER et al., 2015). O uso

de intents ajuda os operadores a configurarem a rede usando linguagens de alto nível,

dispensando o árduo aprendizado de diversas linguagens de configuração em baixo nível

para cada equipamento. Em esforços recentes, o uso de linguagens de especificação de

alto nível que remetem à lingua inglesa foi investigado na definição e implantação de

intents de rede. Nile (JACOBS et al., 2018) and Jinjing (TIAN et al., 2019) são exemp-

los dessas linguagens. O emprego destas soluções na configuração de rede pode auxiliar

no gerenciamento e possibilitar que novas funcionalidades sejam implantadas com facili-

dade. No entanto, os esforços atuais que utilizam intents focam em abordagens top-down,

denotando que as configurações de rede devem ser primeiro especificadas como intents e

então refinadas para diretivas de configuração de baixo nível, i.e., assume-se que a rede já

tem suporte a intents. Os operadores de rede ainda podem encontrar vários problemas ao

implantar novos intents, tal como refletir sobre configurações complexas para entender as

regras já implantadas antes de escrever um novo intentpara atualizá-las.

Os operadores de rede podem se deparar com redes contendo pouca documentação

das políticas de rede já implantadas, tornando difícil entender o comportamento da rede.

Nesses caso, especialmente quando se trata de redes de larga escala, os operadores de-

vem ler vários arquivos de configuração contendo diretivas de baixo nível para entender o

comportamento esperado da rede. Redes de larga escala podem incluir vários dispositivos

distribuídos em múltiplos níveis de sua topologia, cada um deles configurados através

de linguagens especificas do fabricante. Desta forma, as abordagens top-down que usam

intents não são simples de serem implementadas. Considera-se como exemplo a con-

figuração de um firewall: um operador deve analisar manualmente vários arquivos que

contêm regras de firewall em linguagens de baixo nível para extrair um intent simples, tal

como “bloquear tráfego P2P (Peer-to-peer)”.

A abstração de intents oculta do operador os detalhes de baixo nível da infraestru-

tura subjacente da rede e permite que usuários e operadores configurem a rede usando in-

tents de fácil compreensão, remetendo à linguagem natural. Há uma escassez de soluções

que expressam o comportamento das configurações implantadas na rede em forma de

intents. Alguns esforços, tais como Batfish (FOGEL et al., 2015) e ARC (GEMBER-

JACOBSON et al., 2016) leem configurações de baixo nível de redes tradicionais e geram
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modelos abstratos dos planos de dados e de controle. No entanto, essas soluções focam

em técnicas de análise e verificação, objetivando verificar propriedades de protocolos de

roteamento. Dessa forma, não proveem uma forma de expressar os modelos gerados em

representações de mais alto-nível.

Dada a escassez de soluções para expressar o comportamento relativo às config-

urações já implantadas na rede, neste trabalho propõe-se um método bottom-up para ex-

pressar as configurações de rede existentes em nível de intent. A bordagem desenvolvida

neste trabalho extrai intents a partir de arquivos de configuração exportados de disposi-

tivos existentes na rede, realiza um processamento e no final expressa essas configurações

em linguagem Nile, uma linguagem de definição de intents que remete à língua inglesa.

Para provar o conceito, um protótipo chamado SCRIBE (SeCuRity Intent-Based Extrac-

tor) foi desenvolvido. O SCRIBE interage com ferramentas de terceiros que interpre-

tam as configurações de rede específicas para cada dispositivo, combina a saída dessas

soluções com informações complementares e, por fim, representa as regras atuais da rede

em nível de intent.

A ferramenta desenvolvida recebe como entrada os arquivos de configuração de

segurança que são importados de firewalls existentes. O SCRIBE então processa as re-

gras de firewall e NAT e refina-as através do agrupamento por características similares

(e.g., pares de origem e destino, serviços de rede), gerando entidades intermediárias de

configuração, chamadas de meta-intents. Por fim, os meta-intents são enriquecidos com

informações complementares da rede e então traduzidos para a linguagem Nile. Como a

linguagem Nile atualmente não tem suporte às diretivas de configuração de NAT, neste

trabalho foram adicionados novas construções gramaticais visando a representação do

comportamento de NAT em Nile.

Neste trabalho, a viabilidade da abordagem desenvolvida foi demonstrada através

de dois estudos de caso e uma avaliação da acurácia da tradução. Os estudos de caso

representam cenários realísticos de (1) uma infraestrutura típica de uma pequena com-

panhia e (2) uma rede acadêmica que faz uso do padrão de projeto Science DMZ. Com

estes estudos de caso, foi demonstrado que a solução desenvolvida pode descrever pre-

cisamente o comportamento da rede usando intents de alto nível, com a sintaxe próxima à

língua inglesa. Além disso, a ferramenta SCRIBE foi avaliada usando datasets realísticos

contendo regras de firewall de vários servidores e instituições. Os resultados mostram

que o SCRIBE expressa as configurações de rede em nível de intent com alta acurácia,

capturando a maioria dos detalhes de baixo nível presentes nos arquivos de configuração.
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