
2471 © 2020 The Authors Water Science & Technology | 81.12 | 2020

Downloaded from http
by bibiph@ufrgs.br
on 29 August 2020
Hysteresis analysis to quantify and qualify the sediment

dynamics: state of the art
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ABSTRACT
This work is a review of the use of hysteresis to quantify sediment discharge dynamics. We reviewed

71 journal articles from the year 1953 to the present day focusing on two topics: the factors that

influence hysteresis; and hysteresis quantification. The main factors influencing hysteresis are: (a)

magnitude and sequence of events; (b) sediment particle size distribution; (c) basin size; and (d) land

use and sediment source. Hysteresis quantification can be done using several different methods that

can be grouped as: (a) hysteresis indexes; (b) statistical analysis; and (c) uncertainty analysis. Most

studies were conducted in Western Europe and the USA. The studies, in general, show how the

factors listed above influence the shape and patterns of hysteresis. However, the sediment dynamics

are complex, and the hysteresis patterns may be linked to many other factors, such as slope and

drainage systems. The quantification of hysteresis still appears, mainly with the hysteresis index and

statistical analysis. Therefore, there are still many other factors that influence hysteresis patterns, as

well as hysteresis rates and uncertainty analyses.
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INTRODUCTION
Erosion and sediment transport processes are key factors
controlling water quality in rivers. Moreover, qualifying
and quantifying the sediment sources may contribute to

the understanding of the processes of connectivity of
hillslopes to river channel (Minella & Merten ). Hyster-
esis analysis allows one to explore and evaluate the behavior

of sediment transport in relation to discharge in select
hydrologic events (Lloyd et al. b). The hysteresis
occurs because suspended sediment concentration (SSC)
for a given discharge during the rising limb of the hydro-
graph is normally different from the falling limb due to the
time lag between the discharge curve and the SSC curve
(Mukundan et al. ). Therefore, different discharge and

sediment transport processes may be identified using its
hysteresis patterns (Nadal-Romero et al. ).
The hysteresis is influenced by the available amount of
sediment (Gao & Josefson ). The magnitude and
sequence of events may influence the availability of

the sediment and consequently the shape of hysteresis
(Asselman ; Hudson ; Rovira & Batalla ;
Salant et al. ; Marttila & Kløve ). For example, if

the sedimentation process is dominant the hysteresis is
usually clockwise (Gao & Josefson ); bed and bank ero-
sion is characterized by a counterclockwise hysteresis

(Yeshaneh et al. ; Pietron et al. ), or an upstream sec-
tion contributes to a downstream section (Asselman ;
Salant et al. ; Smith & Dragovich ; Aich et al.
). The sequence of events can cause sediment exhaus-

tion. However, other factors, such as the magnitude of the
events and diameter of the particles, need to be analyzed.

The same sediment can be transported in different

ways depending on the discharge magnitude (Lenzi &
Marchi ; Salant et al. ; Landers & Sturm ).
The particle size of the sediment will influence the trans-

port mechanism (suspension, bearing, and skipping). In
addition, sediment transport depends on the velocity of
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the water. In the headwaters, generally, the slopes are

higher; in the middle course of the river, slopes decrease
and velocity usually decreases accordingly, which will
also lead to the deposition of this sediment, thus influen-

cing the pattern of the hysteresis (Kronvang et al. ;
Jansson ; Hudson ; Seeger et al. ; Salant
et al. ; Pietron et al. ). Hysteresis patterns may
also depend on the characteristics and size of the basin

(Smith & Dragovich ).
The source of sediment can also be evaluated by using

hysteresis analysis (Lefrançois et al. ; Duvert et al.
; Eaton et al. ; Minela et al. ; Hughes et al.
), such as analyzing more than one gauge station
(Asselman ; Jansson ; Hudson ; Aich et al.
) or fingerprinting sediment (Gonzales-Inca et al. )
in catchments with different land use. There have been pro-
posed several indexes to quantify the hysteresis patterns (e.g.
Langlois et al. ; Lawler et al. ; Smith & Dragovich

; Aich et al. ; Lloyd et al. a; Zuecco et al. ).
Linear regression (e.g. Zabaleta et al. ; Nadal-Romero
et al. ; Oeurng et al. ; Rodríguez-Blanco et al.
; Ram & Terry ) and multivariate statistical analysis
(e.g Seeger et al. ; Zabaleta et al. ; Nadal-Romero
et al. ; Oeurng et al. ; Mukundan et al. ) are

commonly used to analyze the main controls on hysteresis
patterns. There are still only a few studies that quantify hys-
teresis uncertainty (Krueger et al. ; Ziegler et al. ;
Lloyd et al. b).

In this review, we present the state of the art about the
hysteresis of discharge (Q) and SSC. We analyze the four
Figure 1 | Geographical distribution of the hysteresis studies in the world (list of studies pres

om https://iwaponline.com/wst/article-pdf/81/12/2471/732094/wst081122471.pdf
s.br
020
main factors that influence the hysteresis patterns: (I) the

magnitude and sequence of events; (II) sediment size; (III)
land use and sediment source; and (IV) basin size. We
also describe the three main techniques used to analyze

the hysteresis: (I) hysteresis indexes; (II) statistical analysis;
and (III) uncertainty analysis.
BIBLIOGRAPHICAL REVIEW

We have searched mainly scientific journals written in

Portuguese or English. There are a few articles on confer-
ences (IAHS Publications) and older works that are
technical reports of the government of the United States

which are included due to their relevance. The main studies
that contributed to the SSC-Q and turbidity-Q hysteresis
analysis are listed in Table S1 (supplementary material).
The studies are presented in chronological order with the

authors’ names, basin size, country where the study was
developed, year of publication, and main contributions.

In Figure 1 which shows their geographical distribution,

hysteresis studies are concentrated in western Europe and
the USA. There are also 27 basins studied in Russia. How-
ever, these basins were analyzed in one study only (i.e.,

Tananaev ). Table S1 and Figure 1 indicate that the hys-
teresis study has been carried out more in developed
countries. There should be more studies, especially in the

Southern Hemisphere, as there is a clear opportunity to
learn about hysteresis in different climate and catchment
settings.
ented in Table S1 – supplementary material).
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HYSTERESIS PATTERNS

There are many types of hysteresis in the hydrological pro-

cesses (such as tree cover–precipitation, water level–
discharge) and their patterns depend on spatio-temporal
scales (Gharari & Razavi ). Here, we focus only on the
hysteresis between SSC and Q and between turbidity and Q,

and the hysteresis concept is associated with the curves or
loops that are formed. Leopold & Maddock () were the
first to analyze hysteresis between SSC and Q. During one

event, sediment may not be temporally related only with the
discharge (Old et al. ). The non-linearity and the hysteresis
loop patterns formed by the relationship between SSC and Q
or between turbidity and Q are widely studied and known as
hysteresis (Walling & Teed ; Wood ; Klein ).

Williams () classified those into five common

patterns: (I) a single line, (II) clockwise, (III) counterclock-
wise, (IV) single line plus a loop, and (V) figure eight
(Figure 2). Hamshaw et al. () proposed 14 classes of hys-
teresis patterns based on a restricted Boltzmann machine

(RBM) that allowed for sediment-discharge event dynamics
including spatial scale, antecedent conditions, hydrology,
and rainfall. Here we expand the list of studies of Gellis

() based on the patterns proposed by Williams ()
(Table 1). When the peak of SSC and Q occurs at the same
time and the rising and the falling limb of the hydrograph

and sediment-graph are equal, the relation between these vari-
ables becomes linear (Type I in Figure 2). However, when
there is a delay in one peak compared with the other (Type
II, for example), the relation between these two variables is

not linear. The SSC-Q relation in the rising limb is larger
than in the falling limb for all the values during the event.

There are studies that have proposed HIs based on

quantification of the curves or loops of the graphs. In gen-
eral the HI is proposed for measuring the hysteresis loop
at the different stages of the hydrograph (Lawler et al.
; Lloyd et al. b) or the areas under the curve
(Langlois et al. ).

Single-valued line

The single-valued line occurs when the SSC-Q relationship
is similar in the rising and falling limbs. This pattern
occurs when the travel time of the discharge wave equals

the time of sediment transport velocity (Yang & Lee ).
Mossa () and Hudson () concluded that this type
of hysteresis is formed by fine suspension sediment. It is a

consequence of transport of sediment without restriction
during the event, or remobilization and transport of in-
s://iwaponline.com/wst/article-pdf/81/12/2471/732094/wst081122471.pdf
channel followed by a supply from distant sources (Wood

; Williams ; Jansson ; Smith & Dragovich
; Duvert et al. ). However, the single-valued line is
not common since sediment availability is exhausted

during the event (Oeurng et al. ; Gao & Josefson ).

Clockwise loop

The clockwise loop is the most common one (Klein ;

Williams ; Jansson ; Hudson ; Rovira & Batalla
; Oeurng et al. ). The SSC-Q relation in the rising
limb is larger than in the falling limb for all the values

during the event. Most studies concluded that the SSC-Q
relationship is lower in the falling limb because of the exhaus-
tion of sediment available to be transported (Table S1). This
hysteresis pattern can also be caused by the increase of the

base flow during the falling limb (Walling ; Costa ;
Wood ; Bača ) or be due to the fact that sediment
yield areas are near river channels, and early sediment

supply by the tributaries or flow paths from the source is
short (de Boer & Campbell ; Asselman ; Hudson
; Hughes et al. ). The clockwise loop is also linked

to the formation of the armoring layer before peak discharge
(Williams ), bank erosion (Smith & Dragovich ),
snowmelt runoff events (Gonzales-Inca et al. ), and

wash load (Lenzi & Marchi ; Hudson ).

Counterclockwise loop

A counterclockwise hysteresis pattern is formed when the

peak discharge occurs before the sediment peak. The coun-
terclockwise hysteresis is linked to: (a) flood wave traveling
faster than mean flow velocity; (b) sediment wave traveling

slower than the discharge wave; (c) distant sediment
source, upstream tributaries, and late sediment supply by
the tributaries; and (d) bed or bank erosion. Hudson ()
identified counterclockwise hysteresis in large basins because

the sediment wave traveled slower than the discharge wave.
Pietron et al. () observed that the counterclockwise hys-
teresis is only formed by the sediments yielded with

channel erosion, not with hillslope erosion. Complementing
this hypothesis, Yeshaneh et al. () found counterclock-
wise hysteresis during periods when the basin was

protected with vegetation and suggested that the sediment
results from the erosion of the channels’ bed and banks.

Single line plus a loop

The single line plus a loop indicates that the sediment travel
time is different from the flow travel time (Yang & Lee ).



Figure 2 | Five hysteresis patterns of sediment-discharge (after Yang & Lee (2018)).
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Table 1 | Studies for each type of hysteresis pattern

Patterns Cause of hysteresis References

I. Single-valued line Discharge travel time equals the sediment travel
time

Yang & Lee ()

Abundance of fine-grained sediments in the
channel

Mossa (); Hudson ()

Low availability of fine sediment Walling & Webb ()
Uninterrupted supply of sediment/remobilization
and transport of in-channel followed by a supply
from distant sources

Wood (); Williams (); Jansson (); Smith &
Dragovich (); Duvert et al. ()

II. Clockwise loop or
positive hysteresis

Mobilization followed by depletion of in-channel/
nearby sediment sources/exhaustion effects after
an initial flush of sediment

Walling (); Wood (); Costa (); Sidle &
Campbell (); Kattan et al. (); Bull et al.
(); Kronvang et al. (); Wang et al. ();
Asselman (); Picouet et al. (); Lenzi &
Marchi (); Jansson (); Seeger et al. ();
Salant et al. (); Marttila & Kløve (); Smith
& Dragovich (); Oeurng et al. (); Gao &
Josefson (); Mukundan et al. (); Tananaev
(); Aich et al. ()

Formation of armored layer before peak discharge Williams ()
Bank erosion Smith & Dragovich ()
Increased base flow after peak discharge leading to
dilution of sediment concentration

Walling (); Costa (); Wood (); Bača ()

Snowmelt runoff events Gonzales-Inca et al. ()
Individual floods Asselman ()
Wash load (silt/clay) Lenzi & Marchi (); Hudson ()
Areas of the sediment yield are short/near-channel
source/early sediment supply by the tributaries or
flowpaths temporal and spatial differences
between SS production and water discharge
generation in small basin

de Boer & Campbell (); Asselman (); Hudson
(); Hughes et al. ()

Sammori et al. ()

III. Counterclockwise loop
or negative hysteresis

Floodwave traveling faster than mean flow velocity/
sediment wave travels slower than the discharge
wave

Heidel (); Marcus (); Williams ();
Brasington & Richards ()

High soil erodibility Williams ()
Bed and/or bank erosion Klein (); Sarma (); Asselman (),

Brasington & Richards (); Goodwin et al.
(); Rinaldi et al. (); Lenzi & Marchi ();
Hudson (); Fang et al. (); Marttila & Kløve
(); Oeurng et al. (); Mukundan et al. ();
Pietron et al. ()

Distant sediment source/upstream tributaries/late
sediment supply by the tributaries

Heidel (); Klein (); Loughran et al. (),
Williams (); Asselman (); Brasington &
Richards (); Bača (); Oeurng et al. ();
Hughes et al. (); Gao & Josefson ();
Mukundan et al. (); Pietron et al. ()

Seasonality, lower concentrations early in the year
followed by increasing sediment concentrations

Sidle & Campbell (); Wang et al. ()

Exhaustion of sediment available due to previous
event

Marttila & Kløve (); Oeurng et al. (); Gao &
Josefson ()

Valley slopes form the most important sediment
source

Klein ()

The distribution of non-uniform sediment yield in
the basin

Williams ()

(continued)
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Table 1 | continued

Patterns Cause of hysteresis References

Small events with high rainfall intensity and very
dry soil conditions

Eder et al. ()

Channel deposition (analyses sub-basin) Jansson ()
During winter freezing – river cross-sections are

often fully closed with ice
Tananaev ()

Influence of the sea tide on hysteresis Kostaschuk et al. ()
Landslide Peart et al. ()
Very high moisture and high antecedent rainfall

conditions
Seeger et al. ()

IV. Single line plus a loop This indicates if the sediment travel time is distinct
from the flow travel time in separate runoff states

Yang & Lee ()

Occurs under extreme dry conditions Seeger et al. ()

V. Figure eight Ice breakup Williams ()
Delayed contribution of sediment from sub-basins Bac ̌a (); Eder et al. ()
Influences of drainage system Eder et al. ()
Multiple peaks Eder et al. (); Gao & Josefson ();

Tananaev ()
Sediment contribution from the streambed and its

banks
Eder et al. (); Tananaev ()

VI. No hysteresis/random/
stationary

Uninterrupted supply of sediment/sediment was
still available/soil surface was not protected
sufficiently with vegetation cover

Bac ̌a ()

Snowmelt and rain events Marttila & Kløve ()
Long events; multiple peaks; multitude of factors of

sediment delivery
Nadal-Romero et al. (); Gao & Josefson ();
Yeshaneh et al. ()
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Seeger et al. () evidenced this hysteresis type under

extremely dry conditions.

Figure eight

The figure eight pattern can be related to: (i) the sediment
deposited on the bed or banks of the channel that goes

into resuspension; (ii) the time of sediment travel in
upstream sub-basins; (iii) the fact that there may be an
upstream storage area in the basin and, after its saturation,

the contribution of the discharge and sediment downstream;
and (iv) influences of the drainage system (Eder et al. ).
Gao & Josefson () observed this type of hysteresis in
events with multiple discharge peaks.

No hysteresis, random or stationary

There might not be any clear relationship between SSC and
Q and, consequently, no typical hysteresis pattern occurs.
Bača () observed that there was no clear pattern when

sediment remained available throughout the event (no
depletion). Hysteresis without clear patterns is associated
om https://iwaponline.com/wst/article-pdf/81/12/2471/732094/wst081122471.pdf
s.br
020
with long events with many peaks and suggesting the occur-

rence of several factors that contribute to the production
and transport of sediment (Nadal-Romero et al. ; Gao
& Josefson ; Yeshaneh et al. ). Marttila & Kløve

() found no hysteresis in rain events with snowmelt
contribution.
FACTORS CONTROLLING HYSTERESIS

Magnitude and sequence of events

Discharge magnitude is one of the factors that cause differ-

ent hysteresis patterns. The low discharge causes erosion
and transports the sediment to the channel, whereas the
sediment will be transported in following events with
higher discharge peaks (Marttila & Kløve ). Therefore,

the initial conditions of the sediment on the river bank
and bed become important in the sediment dynamics.
While in the high discharge events the sediment source

may be soil erosion from the whole basin, with low dis-
charge the sediment was from the river bed and banks



Figure 4 | Determination of antecedent dry days (ADD).
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(Salant et al. ). The re-transportation of material already

eroded in the channels is triggered by high discharges and
generates early sediment peaks (Hudson ).

Sediment dynamics of the event have a common charac-

teristic: the limitation of sediment transport in the events
(Gao & Josefson ). Hudson () suggested that there
is a contribution from the sediment source of an area
where there has been no exhaustion in recent events. This

phenomenon was also observed by Bac ̌a (), who further
suggested the sediment transport in one event depends on
how long it takes to occur after the previous one. Erosion

and deposition of sediments in the river in previous events
may modify sediment dynamics (Salant et al. ). If suffi-
cient time has passed, the soil will be eroded in a basin and

there will be sediment supply again. This limitation also
depends on whether the event is a ‘supply-rich flood’ or an
‘exhaustion flood’ (Rovira & Batalla , Figure 3(a)). In
Figure 3(b) the hydrograph and sediment-graph are schema-

tically designed for the case where there is a sequence of
events. The first and third peaks have sediment available
for transport and the size of the SSC peak is larger. In the

second event, there is no more sediment available and the
SSC peak is smaller.

Antecedent dry days (ADD, Figure 4) represents the

number of days between events and can be used for the analy-
sis of the sequence of events (Mukundan et al. ). TheADD
indicates how many days without rain there are before the

event, while the antecedent precipitation index (API), which
is used in most of the studies, quantifies the rain in the pre-
vious days. Even though ADD was not used in the other
studies that analyzed sequences of events, it can provide

important information to be included when there is a statisti-
cal analysis of sequences and sediment exhaustion.
Figure 3 | (a) Relation between suspended sediment concentration (SSC) and discharge for ‘sup

of the sequence of the events on hysteresis.

s://iwaponline.com/wst/article-pdf/81/12/2471/732094/wst081122471.pdf
Sediment particle size distribution

Hysteresis patterns depend on the particle size distribution
of the sediment available in the channel or in the basin.
Hudson () found that clockwise hysteresis loops occur

due to a higher washload supplied by adjacent hillslopes,
while in another basin, sediment transport was dominated
by the bed material. As the discharge increases in the

rising limb of the hydrograph, the concentration of fine sedi-
ment usually lowers in relation to the particle size of
suspended sediments in source areas (Lenzi & Marchi

). Moreover, sand supply is quickly replenished,
whereas the same does not happen in a gravel-dominated
sub-basin (Salant et al. ).

Lenzi & Marchi () analyzed the particle size vari-

ations of suspended material at an event. However, the
studies showed variations in the relative percentage of
sand and silt in transported sediment, possibly the material

eroded from hillslopes and channel banks, and affect intra-
storm variations in particle size.
ply-rich floods’ and ‘exhaustion floods’ (adapted from Rovira & Batalla (2006)). (b) Influence



Table 2 | Characteristics of the studied basins

Reference Basin name
Area
(km2)

Slope
(%) Land use

Duvert et al.
()

La Cortina 9.3 12 Forest (52%),
cropland (46%)

Duvert et al.
()

Huertitas 3.0 18 Cropland (28%),
rangeland (65%),
gullied (6%)

Duvert et al.
()

Potrerillos 12.0 15 Cropland (46%),
forest (37%),
grassland (23%)

Hughes et al.
()

Mangaotama 2.68 22.5 Forest (1%), pasture
(99%)

Hughes et al.
()

Mangaotama* 2.68 22.5 Forest (4%), pasture
(38%), pine (58%)

Hughes et al.
()

Whakakai 3.11 23.8 Forest (100%)

Gellis () Rio Icacos 3.26 22.2 Forest (100%)

Gellis () Quebrada
Blaca

8.42 33.4 Forest (21%), pasture
(54%), rural (15%),
cropland (8%)

Gellis () Rio Caguintas 13.7 33.2 Forest (36%), pasture
(27%), rural (11%),
cropland (23%)

Gellis () Rio Piedras 19.4 17.6 Urban (77%), forest
(43%)
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The particle size of the transported sediment can

influence the response of optical sensors and cause interfer-
ence in the construction of the turbidity-SSC curve
(Downing ; Sari et al. , ).

Basin size

The hysteresis patterns depend on the characteristics and

size of the basin (Smith & Dragovich ). In small
basins (less than 10 km2), the hysteresis loop is linked to
factors such as soil moisture, the difference between surface

and total runoff, and bank and cannel erosion (Seeger et al.
; Langlois et al. ; Lefrançois et al. ; Sadeghi
et al. ; Smith & Dragovich ; Gao & Josefson

). There are no papers that establish the criteria of
limits among small, medium, and large basins regarding
hysteresis. There is only one indication that small basins

are less than 10 km2 and large drainage areas are those
bigger than 100 km2 (Gao & Josefson ). Therefore, we
assume that small basins are those smaller than 10 km2,
and the medium and large basins are bigger than 10 km2.

The hysteresis in small basins was mainly found to be
controlled by the soil moisture, hydrograph separation,
and bank and channel erosion (Gao & Josefson ).

Seeger et al. () also found that soil moisture influences
hysteresis in a 2.54 km2 basin. Zabaleta et al. () investi-
gated the hysteresis in two small basins (3 and 4.8 km2) and

found that sediment yield is related to total precipitation,
whereas, the SSC is related to precipitation intensity.

Hudson () identified a counterclockwise hysteresis
at large basins because the sediment wave travels slower

than the discharge wave. However, in larger basins it is
more difficult to associate the hysteresis pattern with a
single factor because there is an increasing influence of

the underground and subsurface runoff, soil type, land use,
and topography (Gao & Josefson ). In a 16 km2 basin,
Rodríguez-Blanco et al. () showed that the total precipi-

tation and the baseflow were the most relevant factors for
the hydrological response, while a large part of the sus-
pended sediment load was associated with the maximum

discharge. Zabaleta et al. () identified that in a 48 km2

basin the sediment production and suspended sediment
are linked neither to precipitation intensity nor to the total
precipitation. While Duvert et al. () did not find any cor-

relation between rainfall intensity and sediment yield in a
630 km2 basin due to the spatial variability of rainfall,
Oeurng et al. () found a significant correlation between

precipitation and peak discharge, runoff, and sediment vari-
ables in a 1,110 km2 basin. Therefore, in the case of large
om https://iwaponline.com/wst/article-pdf/81/12/2471/732094/wst081122471.pdf
s.br
020
basins, it is essential to identify which sub-basin contributes

to the water and sediment discharge and how each sub-basin
influences the hysteresis.
Land use and sediment source

Sediment yield varies according to different land uses (e.g.
Duvert et al. ). Minella et al. () evaluated factors

that control hysteresis related to soil management (conven-
tional or conservationist). The authors concluded that in
the conservation period a reduction of the descending

limb of the sedimentogram occurred, reducing the transport
and deposit sediment in the channel and generating higher
HI. In general, the authors pointed out that in the conven-

tional management the HI was lower in the events studied
– this fact being attributed to the contribution of sediment
in the basin.

Table 2 shows the works that analyzed how different

land use can influence the pattern of hysteresis. Gellis
() analyzed five basins with different land use (Table 2)
and found that hysteresis patterns in each basin were associ-

ated with land use and the distance of the sediment source
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from the monitoring point and demonstrated that, in the

forest basin (Rio Icacos), 80% of events showed clockwise
hysteresis. In the basins with mixed land use (Quebrada
Blanca, Rio Caguitas, and Rio Piedras) the hysteresis pat-

terns could be both clockwise or counterclockwise.
Hughes et al. () found that in the Mangaotama basin
(both before and after the integrated management), a hyster-
esis pattern was predominantly clockwise, suggesting that

the sediment source is close to the channels. And, in the
Whakakai (100% forest) the most common hysteresis pat-
tern was counterclockwise mainly due to soil erosion from

the hillslope. In the pine reforestation, the clockwise hyster-
esis was due to channel erosion. It was also observed that,
for the same discharge magnitude, the Mangaotama basin

could export up to three times more sediments than the
native forest basin.

Lefrançois et al. () studied the SSC-Q relationship in
two basins characterized by agriculture land use. Their con-

clusion is that the sediment supply is defined by the number
of particles that can be mobilized and that it depends on the
new and deposited sediment supply. While at low discharge

the sediment can be derived from the mobilization of depos-
ited fine sediments, at high discharge it is derived from
deposited coarse sediments or bank erosion. By applying

the sediment fingerprinting technique with cesium-137 in
order to identify suspended sediment origins, Gonzales-
Inca et al. () found that the rapid sediment mobilization

during the snowmelt in a basin generated a clockwise hyster-
esis loop. The authors considered that cropland and stream
banks were the most important sources of suspended
sediments.

The hysteresis pattern results not only from the exhaus-
tion of the sediments in the channels but also from the
time of the sediment supply of the tributaries (Asselman

). Jansson () showed that in the case of counterclock-
wise hysteresis, there was channel deposition between sub-
basins. In another sub-basin, a rapid rising and falling dis-

charge limb, and rapidly increasing and decreasing SSC
were obtained with a small loop of hysteresis. These might
result from bank erosion.
QUANTIFICATION OF HYSTERESIS

Hysteresis indexes

Visually it is possible to compare the pattern and size of the

hysteresis. However, Langlois et al. (), Lawler et al.
(), Smith & Dragovich (); Aich et al. (), Lloyd
s://iwaponline.com/wst/article-pdf/81/12/2471/732094/wst081122471.pdf
et al. (a), Zuecco et al. () and so on suggested

some methods to quantify the patterns, lines, curves and
angles of the hysteresis (Figure 5).

The Langlois et al. () method calculates HI by plot-

ting SSC or turbidity data (dependent variable) and
discharge data as an independent variable. The curves of
the rising and falling limbs are generally estimated with
natural logarithms and exponential equations, respectively.

The areas under the curves for the two regression
equations were estimated through integration by using the
minimum and maximum discharges observed in the event

as the lower and higher limits, respectively. Then, the HI
was proposed by using the ratio of these two areas:

HI ¼
ÐQmax

Qmin
SSCrÐQmax

Qmin
SSCf

(1)

where SSCr and SSCf are the concentration of suspended
sediment in rising and falling limb, respectively; and Qmax

and Qmin are the maximum and minimum discharge in the

event, respectively (Figure 5(a)).
Aich et al. () and Zuecco et al. () suggested the

normalization of the discharge and turbidity or SSC data to
obtain the HI value that is not influenced by the absolute

amount of the measurements.
The index proposed by Zuecco et al. () is basically

calculated in the same way as proposed by Langlois et al.
().

In order to improve the hysteresis analysis in events, Aich
et al. () proposed tomeasure themaximum distance of the

rising limb (Drise) and the falling limb (Dfall), and hysteresis
index (HIA) which is defined as the sum of Drise and Dfall
(Figure 5(d)). The normalization of data allows comparison
of events and the information on behavior during increase

(Drise) and the decrease in discharge (Dfall). In this way, the
hydrograph limb can be analyzed separately, improving the
interpretation of hysteresis patterns.

The Lawler et al. () method proposed that the HI
should be measured at the midpoint of the discharge
(Qmid) in both the rise and fall of hysteresis (Figure 5(b)).

Equation (2) determines the midpoint discharge, at which
turbidity values are to be compared:

HI ¼ 0:5(Qmax �Qmin)þQmid (2)

The TURL is the turbidity value atQmid on the rising limb

and TUFL is the turbidity value at Qmid on the falling limb of
the hydrograph.



Figure 5 | Hysteresis quantification proposals: (a) Langlois et al. (2005); (b) Lawler et al. (2006); (c) Lloyd et al. (2016a); (d) Aich et al. (2014); and (e) Smith & Dragovich (2009).
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The HImin of the clockwise hysteresis, i.e. TURL>TUFL,
is calculated with Equation (3), and theHImin of the counter-

clockwise hysteresis, i.e. TUFL>TURL, is calculated with
Equation (4):

HImin ¼ TURL

TUFL

� �
� 1

� �
(3)

HImin ¼ �1
TURL

TUFL

0
BB@

1
CCA

0
BB@

1
CCAþ 1

0
BB@

1
CCA (4)
om https://iwaponline.com/wst/article-pdf/81/12/2471/732094/wst081122471.pdf
s.br
020
The HI proposed by Lawler et al. () is more fre-
quently utilized in studies, for example, Minella et al.
(), Gao & Josefson (), and Anguilera & Melack
().

Based on the method of Lawler et al. (), Lloyd et al.
(a) proposed a new method of calculating HI. This
method uses the difference between turbidity or SSC
values in the rising and falling limbs of normalized events.

However, instead of calculating only the point in the Qmid,
the analysis was done at different discharge intervals (25,
10, 5, and 1%) (Figure 5(c)). The comparison of the methods
showed how to characterize almost all storm sizes and
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shape; the section should be calculated at least every 10% of

the discharge range.
Smith & Dragovich () presented another method to

quantify the hysteresis patterns by applying a similarity func-

tion (SF). SF was derived based on individual line lengths
and angles formed between SSC and Q (Figure 5(e)) for
each sampling time (t).

Statistical analysis

Table 3 shows the variables synthesized from Table S1. The

variables used by most of the studies are precipitation (P, I,
Pac and API), discharge (Qmax and Qmed), and sediment or
turbidity (SSCmax and SST). We can highlight that Oeurng

et al. () used variables that will characterize the dis-
charge before the event (such as QAmax and QAmed) and
that Ram & Terry () used some variables to measure

time, mainly turbidity dynamics (such as ‘lag time’). It is
also observed that only some authors used variables runoff
(R and C) or base flow (QA and Qmax/QA).

Most studies used the Pearson correlation matrix to

identify the high linear correlations between the variables.
Table 4 summarizes basin size and variables with a high cor-
relation in various studies. After analyzing the correlations

through the Pearson correlation matrix, Ram & Terry
() and Rodríguez-Blanco et al. () established
relationships between variables to construct a model that

represents the events, giving discharge and/or turbidity
and/or SSC as output data. Smith & Dragovich ()
showed the correlation between the precipitation and dis-
charge variables (P, Iev, and Qmax) with the SF equations.

Nadal-Romero et al. (), Oeurng et al. (), and
Zabaleta et al. () used the variables of Table 3 as input
factors for analysis of principal component analysis (PCA)

and factor analysis (FA, Tables 4 and 5). Seeger et al.
() used canonical analysis and not FA.

Based on the weights of the major components

Mukundan et al. () identified three important factors
to generate a large variability in turbidity for each region.
Therefore, PC1, PC2, and PC3 represent one (or two) sub-

basin of the study area. PC1 is related to the soil moisture
condition of the basin (based on the weights of the ADD
and QAmed variables). The main component of PC2 is
NTUAmed and the season of the year. PC3 is related to

QAmed. The first three major components were able to
explain 82% of the variability in the data.

Furthermore, Mukundan et al. () analyzed the vari-

ables through cluster analysis. Cluster 1 showed high
values of discharge and low values of turbidity; cluster 2
s://iwaponline.com/wst/article-pdf/81/12/2471/732094/wst081122471.pdf
showed high values of high discharge and high turbidity

values. Cluster 2 and 3 showed low discharge values and
high turbidity values.

Analyzing the hysteresis in the basin and one sub-basin,

Aich et al. () calculated the HIA, Drise, and Dfall, and
correlated them with the variables of Qmax and SSCmax

and Pac1d, Pac7d, Pac30d, Pac60d. The Pac is the accumu-
lated precipitation before the flood (mm), e.g. Pac1d – 1 day.

They used the Spearman coefficient (unlike most authors
using the Pearson). Then, they pointed out a different behav-
ior of the hysteresis patterns between the basin and the sub-

basin.
Nadal-Romero et al. () and Oeurng et al. ()

identified two PCs representing 63.5% of the data variance.

In the results of Zabaleta et al. () the variance data were
smaller in two basins (Table 5).

There are a very small number of studies which carried
out the statistical analysis of the variables of precipitation,

discharge, turbidity, and sediment in the events. In reality,
most of the studies just estimated the variables of the
events, with little use of Pearson’s correlation matrix, and

usually not reaching the multivariate statistical analysis
such as PCA and FA.

Uncertainty analysis

The investigation of relations between methods and uncer-

tainty can give important information on which method
for each type of hysteresis pattern is better. For example,
McMillan et al. () showed benchmarking observational
uncertainties for hydrology and water quality. The typical

values of the relative error of discharge are ±50–100% for
low flows, ±10–20% for medium or high (in-bank) flows,
and a single estimate of ±40% for out-of-bank flows.

Uncertainty analysis was not presented in most of the
previous studies on hysteresis analysis. There are still a
few studies that analyzed the uncertainties in discharge

measurements (with turbidity, sediment, or water quality
parameters) with hysteresis analysis.

Based on the data presented in Lloyd et al. (a,

b), who used an analytical framework to evaluate uncer-
tainty, the largest uncertainties in the HI were associated
with the low discharge, and the largest uncertainly bounds
for the loop were observed in the highest discharge.

Krueger et al. () proposed an empirical model fra-
mework for hysteresis, where SSC is a function of Q and
rate change ofQ is proposed. The model for uncertainty ana-

lyses was the generalized likelihood uncertainty estimation
(GLUE, Beven & Binley ).



Table 3 | Synthesis of the variables used in statistical analysis for hysteresis studies

Symbol Variables Reference

Precipitation P Total rainfall in the event (mm) Seeger et al. (); Zabaleta et al. (); Nadal-Romero
et al. (); Smith & Dragovich (); Duvert et al.
(); Oeurng et al. (); Rodríguez-Blanco et al.
(); Ram & Terry (); Sherriff et al. ()

ADD Antecedent dry days Mukundan et al. ()
Iev Average intensity in the event (mm/h) Seeger et al. (); Smith & Dragovich ();

Rodríguez-Blanco et al. (); Sherriff et al. ()
Imax5 Maximum rainfall in 5 min (mm/5 min) Seeger et al. (); Nadal-Romero et al. (); Duvert

et al. ()
Imax10 Maximum rainfall in 10 min (mm/10 min) Zabaleta et al. (); Eder et al. (); Rodríguez-

Blanco et al. (); Ram & Terry (); Sherriff et al.
()

Imax30 Maximum rainfall in 30 min (mm/30 min) Seeger et al. ()
Imaxh Maximum rainfall intensity of the flood (mm/h) Oeurng et al. (); Ram & Terry ()b; Sherriff et al.

()
KE Rainfall kinetic energy (MJ/ha) Rodríguez-Blanco et al. (); Duvert et al. ()
Pac, Accumulated precipitation before the flood (mm)

(Pac1d – 1 day, Pac1 h – 1 hour and thus
varying the intervals)

Seeger et al. (); Zabaleta et al. (), Duvert et al.
(); Oeurng et al. (); Aich et al. (); Sherriff
et al. ()

API Antecedent precipitation index (mm) (API1d – 1
day, API1 h – 1 hour and thus varying the
intervals)

Seeger et al. ()a; Zabaleta et al. (); Nadal-
Romero et al. (); Rodríguez-Blanco et al. ();
Aich et al. (); Ram & Terry (); Sherriff et al.
()

t Discharge duration (h) Duvert et al. (); Oeurng et al. (); Ram & Terry
()

Discharge Qmax Maximum discharge (m3/s) Lenzi & Marchi (); Seeger et al. ()a; Nadal-
Romero et al. (); Salant et al. (); Smith &
Dragovich (); Duvert et al. (); Oeurng et al.
(); Rodríguez-Blanco et al. (); Gao & Josefson
(); Aich et al. (); Sherriff et al. ()

Qmed Mean discharge (m3/s) Hudson (); Seeger et al. (); Zabaleta et al.
(); Oeurng et al. (); Gao & Josefson ();
Mukundan et al. (); Ram & Terry ()

QAmed Mean baseflow before the flood (m3/s) Oeurng et al. ()
QAmax Antecedent maximum discharge Oeurng et al. ()
Qbase Baseflow before the flood (m3/s or l/s) Zabaleta et al. (); Nadal-Romero et al. ();

Oeurng et al. (); Rodríguez-Blanco et al. ()
Qmax/Qbase Zabaleta et al. ()
WY Total water yield (mm or m3) Zabaleta et al. (); Nadal-Romero et al. ();

Oeurng et al. (); Duvert et al. (); Sherriff et al.
()

R Runoff Lenzi & Marchi (); Nadal-Romero et al. ();
Rodríguez-Blanco et al. (); Sherriff et al. ()

C Coefficient of runoff Rodríguez-Blanco et al. (); Duvert et al. ();
Sherriff et al. ()

tr Time of rise (time to reach maximum discharge) Lenzi & Marchi (); Oeurng et al. ()

Sediment and
turbidity

NTUmax Maximum turbidity (NTU) Ram & Terry ()
NTUmed Mean turbidity (NTU) Ram & Terry ()
NTUAmed Mean turbidity before the event (NTU) Mukundan et al. ()
SSCmax Maximum suspended sediment concentration (g/

L)
Seeger et al. ()a; Zabaleta et al. (); Nadal-

Romero et al. (); Salant et al. (); Oeurng et al.
(); Eder et al. (); Rodríguez-Blanco et al. ();
Gao & Josefson, (); Aich et al. ()

(continued)
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Table 3 | continued

Symbol Variables Reference

SSCmed Mean suspended sediment concentration (g/L) Seeger et al. ()a; Nadal-Romero et al. (); Oeurng
et al. (); Rodríguez-Blanco et al. (); Gao &
Josefson ()

SSCAmed Mean SSC before the event (g/L) Zabaleta et al. ()
SST Total suspended sediment yield (kg, ton, or Mg) Zabaleta et al. (); Nadal-Romero et al. ();

Oeurng et al. (); Eder et al. (); Rodríguez-
Blanco et al. (); Gao & Josefson ()

NTUd Turbidity response duration Ram & Terry ()
LagR-NTU Lag time from rainfall start to maximum

turbidity
Ram & Terry ()

LagRImax-
NTU

Lag time from maximum rainfall intensity to
maximum turbidity

Ram & Terry ()

Season Season of year Mukundan et al. ()

aThe time interval of measurement was 5 minutes and 30 minutes.
bIn this study, the authors had two rainfall measurement stations, with which the maximum intensity estimation was done.

Table 4 | Variables with high linear correlation

Reference Variable
High linear
correlations

Basin
area
(km2)

Nadal-Romero
et al. ()

P Qmax, R, SSCmax,
STT and WY

0.45

WY, R and Qmax P, Imax5
SSCmax and SST Qmax, P, R

Oeurng et al.
()

P Qmed, Qmax,
SSCmax, STT and
WY

1,110

Qmed, Qmax P, QAmed, Qbase
SSCmax and SST P, Imaxh, R, Qmed,

Qmax.

Zabaleta et al.
()

P Qmed, WY, Qmax 4.8
SST P, SSCmed, SSCmax

SST P 3
SSCmed and
SSCmax

Imax10

Qmed, Qmax and
WY

API1d, API1 h, 48

SST API1d, API1 h,

Rodríguez-
Blanco et al.
()

Qmax, R, C P, Ke, Qb, 16
ST P, Ke, Qmax, R, C
SSCmax P, Ke, Qmax

SSCmed P, Qmax

Ram & Terry
()

NTUd P, Iev, Dmax 9.3
NTUmed P, Dmax, Iev

Imax10

NTUmax P, Dmax, Iev, Imax10

Table 5 | Summary of study basins areas and the results of PCA and FA

Reference
Area
(km2) Variable Variance

Mukundan et al.
()

493 ADD
QAmed

82%

NTUAmed

Season of year
QAmed

Nadal-Romero
et al. ()

0.45 WY, Qmax, SSCmax, SST,
P

44%

R, Imax5, API 19.5%

Oeurng et al. () 1,110 Td, Qmed, Qmax, P, WY,
SST

46.7%

If, SSCmed, SSCmax,
Imaxh

16.83%

Zabaleta et al.
()

4.8 Iev, Imax5, SSCmed,
SSCmax, Qmax/Qb

29%

P, WY, Qmed 23%
3 Qmed, Qmax, Qt, SSt 33%

Iev, Imax5, SSCmax,
SSCmed

28%

48 Qmed, Qmed, WY, API1d,
API1 h

47%

SSCmed, SSCmed 22%

Seeger et al. () 2.84 P, APd3, SWCa 78%
P, APd3, SWCa 21%

aSWC, soil water content.
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Thus, it is necessary to pay attention to these data as

well as the process of obtaining the data and estimating
their uncertainty. There was a close relation between
s://iwaponline.com/wst/article-pdf/81/12/2471/732094/wst081122471.pdf
turbidity and SSC (Navratil et al. ), which allows the use
of turbidity as an indirect measure of SSC. However, it

must be noted that there are several factors of uncertainty
associated with this relation. The interference caused by the
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sediment was a function of the SSC, the particle size, shape,

roughness, color, and mineralogy composition (Downing
; Sari et al. , ).

For example, the optical sensor measures mA or mV,

which is transformed into turbidity by one or more
equations. Another equation transforms the turbidity into
SSC, which consequently creates a number of factors influ-
encing the final value of SSC. If a sensor could be

developed for direct measurement of SSC, these types of
uncertainty or errors could be reduced. There are some
studies that do this conversion directly (Brasington &

Richards , for example).
As mentioned above, the particle size also interferes

with the optical sensor response. Harmel & Smith ()

carried out streamflow measurement, sample collection,
sample preservation/storage, and laboratory analysis
during the storm events. Then, they demonstrated that the
cumulative probable uncertainty during the events varied

from 3% (the best case) to 117% (the worst case). This
type of interference is not often quantified in scientific
studies.

Ziegler et al. () studied hysteresis with uncertainty in
the turbidity-SSC, and also the problems with the limitations
related to the turbidity sensor. They reported an interval in

their annual estimates (underestimated by 38–43% and over-
estimated by 28–33%).
FINAL REMARKS

In a review of 71 papers we identified the most significant fac-

tors influencing sediment-discharge hysteresis: the magnitude
and sequence of events; the sediment particle size distri-
bution; land use and sediment source; and the basin area.

The sequence of events can cause sediment exhaustion;
with less sediment available the hysteresis loop may get smal-
ler. Small particle size sediments are replenished faster

because they can be transported by low discharge also. There-
fore, there is a binding of at least three factors (magnitude,
sequence, and diameter of the particles) to be analyzed.

There is still a need to systematize ways of measuring the
magnitude of discharge, mainly because the study basins
have different sizes and varying magnitudes of discharge.

Land use influences the amount of sediment produced,

but those hypotheses related to land use were not fully
tested. The basin size factor influences the hysteresis due
to the different behaviors of the hydrological and sediment

processes in small and large basins. Studies typically use
statistical analysis to analyze which processes most
om https://iwaponline.com/wst/article-pdf/81/12/2471/732094/wst081122471.pdf
s.br
020
influence hysteresis. In small basins the factors that influ-

ence it are soil moisture and runoff. There seems to be no
consensus on quantifying hysteresis in medium and large
basins. But overall, studies show that for large basins

the precipitation, discharge, and sediment variables control
hysteresis.

Three main techniques were identified that can be used
to analyze the hysteresis quantitatively: (a) hysteresis

indexes; (b) statistical analysis (simple or multivariate);
and (c) uncertainty analysis. The HI is very commonly
used. It is based on the difference in sediment concentration

or turbidity in the rise and fall of the hydrograph in the
different curves and quickly shows (due to the simplicity
of the calculation) the measurement of the two limbs. Stat-

istical analysis of hydrological and sedimentological
variables turned out to be a tool for analyzing the processes
in the events and not a quantification of the hysteresis itself.
Most studies divide their samples into small and large basins

and use correlation statistics to explore what processes are
more significant in each case.

Even though the area of the uncertainty of estimation in

hydrology has been increasingly applied over the past
20 years, there are still a few studies that used it in hysteresis
analysis. Furthermore, there are studies that include only

sediment uncertainty and limitations on the analysis of
events on a temporal scale (annual or monthly among
others. Hence, there are opportunities for further explora-

tion of hysteresis and uncertainty analysis.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this paper is available

online at https://dx.doi.org/10.2166/wst.2020.279.
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