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Abstract. Thermal power plant operation depends on the knowledge of a wide range of complex and cross de-
pendent parameters. Information is usually captured through Distributed Control Systems (DCS) which allow to
access up to date data but also long periods of recorded operation. Large and available data sets are decisive for
plant operation, but they must be properly used and interpreted to achieve effectiveness. The purpose of the present
paper is to present an identification of operational patterns from historical data from an actual thermal power plant
based on unsupervised machine learning methods. The proposed methodology is applied to a long term data series
from the 360 MW Brazilian coal-fired Pecem power plant, for 29 selected parameters, concerning its steam gen-
erator and associated mills. Dataset size and redundancy is treated by the Principal Component Analysis (PCA)
approach, which defines a lower dimensional space, proper for clustering while preserving most of its variance.
The K-means clustering method identifies operating point groups according to their degree of similarity. The ap-
propriate cluster number is defined by means of the average silhouette coefficient, which measures the clusters
consistency. Cluster parameter values and distribution are evaluated to verify result consistency. The assessment
with the 29 parameters from the steam generator and mills system is presented, and the results show that the op-
eration may be described globally by a 2 clusters analysis or, for refined observations, by a 10 clusters analysis.
The different patterns encountered facilitate an understanding of the parameters arrangement and resulting perfor-
mance, enabling the identification of low efficiency operation conditions and supporting practices to improve the
plants operation.
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1 Introduction

The future of energy generation is one of today’s most important and complex challenges. Different scenarios
on the future of energy were developped by [1], and an increase in energy demand is expected to grow by more
than 25% until 2040. Thermal power plants are nowadays the main source of global energy generation, demanding
research on an efficient operation.

The comprehension of its optimal operation could improve energy consumption and reduce harmful emis-
sions. Data flow from the operating plants is accessed by a Distributed Control System (DCS), which records
long periods of operation and generates an important amount of data. It must be properly interpreted to result in
effective information.

Unsupervised machine learning methods are vastly applied for pattern identification in power plants pro-
cesses. Kuriak et al. applied k-means clustering method to generate control signatures for real-time optimization
of the combustion process [3], , being able to lead to operation control settings to optimize boiler efficiency. Hou
et al. applies Fuzzy c-mean (FCM) for performance improvement of ultra-supercritical power plants by real-time
running data [5]. The optimization of a desulfurization system operation [6] was also analysed by the FCM
method, which was able determining the optimal parameter operation settings. Xiaoying et al. established by
FCM a real-time predictive control of oxygen content in coal-fired power plants, combining it with a subspace
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Data-driven identification of operating patterns in a thermal power plant by clustering methods

method, building a combustion process model that was verified to achieve an acceptable accuracy [7]. Wang et al.
also modelled thermal power units by k-means clustering method with Spark-based FP-growth algorithm [8], to
mine optimization targets values to improve its economical index.

This paper aims to recognize the different patterns that may occur on a thermal power plant operation, based
on historical data from operation and steam generator parameters. The K-means clustering technique is applied to
identify groups of datapoints within the data, with the support of Principal Component Analysis (PCA) to reduce
the database dimensionality and of the silhouette coefficient to determine the appropriate number of clusters. The
definitive cluster configuration is presented to enrich the comprehension of the operation patterns.

The case studied is the PECEM power plant, located at São Gonçalo do Amarante, in Ceará, which is respon-
sible for 50% of the energy generation complex of the state. The power plant is composed by two independent
sub-critical coal-fired power generating units, working in two different electrical regimes of 240MW and 360MW
[EDP]. The methodology is applied to one generation unit at the 360MW electrical regime.

2 Applied Methods

Principal Component Analysis (PCA) is a statistical technique for data reduction with axis rotation [11]. The
dataset is represented with fewer components, increasing its interpretability is a way to minimize information loss.
The resulting components are sorted from the highest to the lowest variance representation, and a subset of the first
number of components is selected to be the new dimensional space.

Clustering methods are unsupervised machine learning techniques aiming to divide unlabeled data into ho-
mogenous subgroups [12]. The K-means method uses the Euclidian distance metric, to assign each item with the
nearest cluster centroid. Its implementation requires the specification of the number of clusters beforehand, and
finding a reasonable optimal clustering number is essential for the accuracy of the results. The Silhouette Coeffi-
cient is an internal evaluation of the clustering consistency result and is considered in this paper to determine the
more adequate number of clusters for a dataset. This cluster validation criteria considers the intracluster proximity
and the intercluster separation. It ranges from -1 to 1, as a high positive value represents a compact cluster.

3 Methodology

The present work employed a methodology framework composed of 11 steps, that can be observed in Fig. 1.
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Figure 1. Proposed methodology framework.

The first step is the parameter selection. The analysis should contemplate process elements which may be
relevant on the characterization of the operation to be studied, considering the available data.

The data is preprocessed following the parameter selection is the data preprocessin, by outlier removal and
data standardization. For the data cleaning, the data point is identified as an outlier if any of its parameter values
is three standard deviations away from the mean. Data standardization is then the conversion of the different data
structures into a common data format.

The Principal Component Analysis defines new components for dimensionality reduction. The cumulative
original variance for each component is obtained. The minimal number of PCA components for a defined cumula-
tive variance is selected to be used in the analysis.

The K-means clustering starts with the application of the method to the dimensionally reduced data. The
data is clustered multiple times for different numbers of clusters, in order to select the best fitted number in the
next step. The average silhouette coefficient is calculated for each set of the multiple clustering from the previous
phase. An average silhouette coefficient curve is plotted with the objective of evaluating the clustering consistency
results, and the higher average silhouette coefficient values are identified. The corresponding number of clusters is
adopted.

The results assessment starts with the the intercluster variability analysis step for the clustering results. For
each parameter, boxplots for the different clusters are generated and compared. A visual inspection of these plots
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may indicate the intercluster behavior of the selected parameters and, also, the coordination between different
parameters. The following step is the individual parameter analysis, to inspect specific parameter behaviors.

Finally, the results are analysed for its usefulness and physical relevance in order to obtain process informa-
tion. A comprehension of the process is required for such evaluation. It is then possible to define the power plant
operation patterns.

4 Results and Discussion

The presented method is applied to identify operation patterns from 29 selected parameters of one generation
unit at PECEM power plant. The selected parameters cover the mills and the steam generator processes. An
extensive list of the parameters is presented in App. 1. The data is taken at one hour intervals over a 14 month
period, from the beggining of September 2018 to the end of October 2019. The analysis was done to the plant’s
designed power generation, which is the 360MW operating load. The generation unit operates under this condition
33% of the time over the considered period, resulting in 3.357 samples.

The original dataset was reduced 15% by applying the outlier removal procedure. The dimensionality reduc-
tion by PCA is applied after the dataset standardization. The cumulative variance obtained by the selected number
of components is presented in Tab. 1.

Table 1. PCA cumulative variance result for the case study.

Cumulative Variance Number of Components

100.00% 29

90.41% 15

82.01% 11

62.35% 5

The number of components is here defined to be 11, since it represents 82,01% of the variance while substan-
tially reducing the original 29 components dimensionality.

The data is clustered multiple times, from 2 to 13 clusters, which is done for each number of components
considered at the PCA reduction. To better understand the dimensionality results and to verify that the definition
of 11 components is adequate, this is done for each considered number of components PCA reduction in Tab. 1,
from 2 to 29 components, each one presenting a different curve. The average silhouette coefficient is determined
for each clustering result, and Fig. 2 presents its results.
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Figure 2. The average silhouette coefficient from different number of clusters for each number of PCA components
for analysis B.

It can be observed that the lower the number of components, the higher is the average silhouette coeffi-
cient, indicating more consistent clustering results. The data sparcity increases rapidly with the volume of high-
dimensional spaces. On the other hand, as presented in Tab. 1, a low number of components wouldn’t represent
adequately the original dataset variance and the shape of the curve and its results are affected. The defined number
of 11 PCA components sufficiently conserves the higher-dimentional average silhouette coefficient curve shape.
Moreover, the higher average silhouette coefficient of 0.26 is observed occurring for 2 clusters and a local max-
imum average silhouette coefficient of 0.19 is observed for 10 clusters, whose analysis may distinguish subtle
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operation patterns than for 2 clusters. Figure 3 and 4 present the clustering results with different colors for the 2
and the 10 clustering analysis, respectively.

Figure 3. Cloud of datapoints representing the 2 clusters on the first 3 PCA components.

Figure 4. Cloud of datapoints representing the 10 clusters on the first 3 PCA components.

Its important to remark that, comparing these figures, the 10 different clusters from the Fig. 4 are subdivisions
from the two clusters from Fig. 3. Table 2 presents these subdivision relations.

Table 2. Subdivision from the 2 cluster analysis to the 10 cluster analysis.

2 clusters Subdivision in 10 clusters

0 2, 3, 5, 8 and 9

1 0, 1, 4, 6 and 7

Accordingly, the results assessment is performed, examining the clustering results. For each of the 29 param-
eters, the 10 clusters boxplots are visually inspected. The observations for a selection of the parameters is presented
at Fig. 5, for an analysis of the cluster’s different operation performances. The boxplots colors represent the cor-
respondancy to the 2 clusters as presented in Tab. 2, as the clusters presented in grey boxplots are subdivisions of
cluster 0 and the clusters presented in green boxplots, the subdivisions of cluster 1.

The clusters subdivisions of cluster 0, presented in grey boxplots, operate with a lower average steam gener-
ator efficiency than the clusters subdivisions of cluster 1, presented in green boxplots.

From the 10 clusters, cluster 3 presents the lower steam generator efficiency (P11), which is coherent due to
its high total coal flow consumption (P12) and low power generation (P13). Clusters 2 and 9 are also characterized
by lower efficiency, while clusters 0, 4 and 7 present the highest steam-generator efficiency values (P11). The main
steam flow (P14) boxplots patterns are similar to the steam generator efficiency (P11), which is coherent since the
main steam flow transports energy from the steam generator to the turbines.

The time the power plant has operated at each pattern (cluster) over the considered period is obtained. Table 3
presents the percentage of the time operated at each of the 10 operation patterns from the encountered clusters.

Table 3. Percentage of the time operated at each of the 10 clusters.

Cluster 0 1 2 3 4 5 6 7 8 9

Occurance 8.41% 12.77% 7.88% 10.87% 7.84% 3.80% 9.78% 19.59% 2.67% 16.39%

It is possible to observe that there are patterns at which the power plant operates for short periods of time, by
up to 10% of the considered condition, and others that operate for relatively longer periods, such as cluster 7.
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Figure 5. Boxplots representing each of the 10 clusters for the selected parameters: (a) steam generator efficiency
(P11), (b) total coal flow (P12), (c) power generation (P13) and (d) main steam flow (P14).

Regarding the timeline of the operation conditions, the order at which the operation alternates between the
different clusters is analysed. The clustering in two clusters has essentially divided the operation in two periods,
finding the difference that operation has gone through along the analysed year. Cluster 0 is observed predominant
from November 2018 until May 2019, and cluster 1 is predominant from May 2019 until October 2019.

Meanwhile, the operation alternates between the different patterns encountered at the 10 clusters. The opera-
tion alternates between clusters 2, 3, 5 and 9 from September 2018 until May 2019, and, from May until October
2019, the operation alternates between clusters 0, 1, 4, 6 and 7. These informations along with the time the power
plant has operated at each cluster from Tab. 3, its noteworthy that the operation may be characterized by one pre-
dominant condition for a determined period of time, such as operating predominantly at cluster 9 until May 2019
or at cluster 7 from May 2019 until October 2019.

With the understanding that the operation conditions from cluster 7 pattern is one of the predominant pattern
and that it presents a high steam-generator efficiency average, the operation ranges for each parameter is presented.
Table 4 presents the lower and upper range limit for all considered 29 parameters for cluster 7, considering the first
and third quartiles, whose parameters details are presented at Appendix 1.

Table 4. Lower and upper limit for each parameter operation ranges for cluster 7 pattern.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Lower 102.20 66.62 0.80 1.96 15.94 75.89 2.00 344.50 13.82 32.95

Upper 105.39 69.54 0.80 2.37 17.30 76.42 3.00 349.59 14.44 33.56

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Lower 0.75 131.97 355.03 1163.71 167.33 536.57 36.03 325.59 1129.30 198.12

Upper 0.76 134.31 356.98 1174.90 167.82 538.48 36.30 327.73 1144.77 198.93

P21 P22 P23 P24 P25 P26 P27 P28 P29

Lower 270.41 31.93 537.30 357.98 76.32 293.28 22.64 341.85 333.00

Upper 271.97 32.19 541.85 358.31 78.64 298.55 23.86 348.99 337.30
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Conditions with higher steam generator efficiency are desirable for a profitable operation. The operational
ranges described in Tab. 4 provide preferable arrangements to assure the higher steam generator efficienciesThese
conditions were already attained for 19.59% of the analysed period. Further analysis should evaluate the reasons
why this condition is not kept and support practices to improve the power plant operation.

5 Conclusions

This paper applies unsupervised machine learning methods to recognize different operation patterns at a
360 MW thermal power plant based on one year historical data, from September 2018 to October 2019. The
methodology based at the principal component analysis and K-means clustering methods was implemented to 29
selected operation parameters. It was identified a partition in 2 and a subdivision in 10 clusters. The 2 clusters have
identified two period-based patterns dividing the analysed year operation. The first cluster represents the operation
until May 2019, while the second cluster represents the operation from May until October 2019 and presents
higher average efficiencies, up to 8% higher than clusters from the first period. The analysis of its subdivisions
in 10 different clusters identified different patterns that alternate along the operation, exposing the behavior of the
analysed parameters and enabling the identification of conditions for maintaining a high steam generator efficiency
operation. The defined operation ranges for each parameter for such condition is obtained. The understanding of
these configurations and its resulting performance on the plant may support practices to improve its operation and
to have an efficient decision making in the plant.
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1 APPENDIX

The extensive operation parameter list presents the 29 selected parameter names and measure unit. The last
two columns indicate the lower and upper limits for the operating range for cluster 7.

Table 5. Extensive operation parameter list

Name Operation Parameter Unit Lower limit - cluster 7 Upper limit - cluster 7

P1 Mill A dynamic classifier speed rpm 102.20 105.39

P2 Secondary air flow kg/s 66.62 69.54

P3 Stoichiometric ratio - 0.80 0.80

P4 Average O2 excess % 1.96 2.37

P5 Secondary air collector pressure mbar 15.94 17.30

P6 Primary air collector pressure mbar 75.89 76.42

P7 Average CO furnace output ppm 2.00 3.00

P8 Average furnace combustion gas temperature °C 344.50 349.59

P9 Intern consumption A MW 13.82 14.44

P10 Intern consumption B MW 32.95 33.56

P11 Steam generator efficiency - 0.75 0.76

P12 Total coal flow t/h 131.97 134.31

P13 Power generation MW 355.03 356.98

P14 Main steam flow t/h 1163.71 1174.90

P15 Main steam pressure barg 167.33 167.82

P16 Main steam temperature °C 536.57 538.48

P17 Steam to be reheated pressure bar a 36.03 36.30

P18 Steam to be reheated temperature °C 325.59 327.73

P19 Feedwater flow t/h 1129.30 1144.77

P20 Feedwater pressure barg 198.12 198.93

P21 Feedwater temperature °C 270.41 271.97

P22 Hot reheated steam pressure barg 31.93 32.19

P23 Hot reheated steam temperature °C 537.30 541.85

P24 Drum water temperature °C 357.98 358.31

P25 Average coal temperature °C 76.32 78.64

P26 Average mill air temperature °C 293.28 298.55

P27 Average mill air flow kg/s 22.64 23.86

P28 Total of primary and secondary air flow kg/s 341.85 348.99

P29 Average heated air temperature °C 333.00 337.30

∗ short for Heat Exchanger
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