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“Changes aren’t permanent,

but change is.”

— NEIL PEART
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ABSTRACT

Non-stationary environments are challenging for reinforcement learning algorithms. If

the state transition and/or reward functions change based on latent factors, the agent is

effectively tasked with optimizing a behavior that maximizes performance over a pos-

sibly infinite random sequence of Markov Decision Processes (MDPs), each of which

drawn from some unknown distribution. We call each such MDP a context. Most related

works make strong assumptions such as knowledge about the distribution over contexts,

the existence of pre-training phases, or a priori knowledge about the number, sequence, or

boundaries between contexts. We introduce an algorithm that efficiently learns policies in

non-stationary environments. It analyzes a possibly infinite stream of data and computes,

in real-time, high-confidence change-point detection statistics that reflect whether novel,

specialized policies need to be created and deployed to tackle novel contexts, or whether

previously-optimized ones might be reused. We show that (i) this algorithm minimizes

the delay until unforeseen changes to a context are detected, thereby allowing for rapid

responses; and (ii) it bounds the rate of false alarm, which is important in order to min-

imize regret. Our method constructs a mixture model composed of a (possibly infinite)

ensemble of probabilistic dynamics predictors that model the different modes of the dis-

tribution over underlying latent MDPs. We evaluate our algorithm on high-dimensional

continuous reinforcement learning problems and show that it outperforms state-of-the-art

(model-free and model-based) RL algorithms, as well as state-of-the-art meta-learning

methods specially designed to deal with non-stationarity.

Keywords: Reinforcement learning. non-stationarity. model-based RL. change-point

detection.



RESUMO

Ambientes não-estacionários são desafiadores para algoritmos de aprendizado por re-

forço. Se as funções de transição de estado e/ou recompensa mudam com base em fatores

latentes, o agente é efetivamente encarregado de otimizar um comportamento que maxi-

mize o desempenho em uma sequência aleatória possivelmente infinita de Processos de

Decisão de Markov (MDPs), cada um deles amostrado de uma distribuição desconhecida.

Chamamos cada MDP de um contexto. A maioria dos trabalhos relacionados faz suposi-

ções fortes, como conhecimento sobre a distribuição sobre os contextos, a existência de

fases de pré-treinamento ou conhecimento a priori sobre o número, a sequência ou os

limites entre os contextos. Nós introduzimos um algoritmo que eficientemente aprende

políticas em ambientes não-estacionários. Ele analisa um fluxo possivelmente infinito de

dados e computa, em tempo real, estatísticas de alta confiança para detecção de pontos

de mudança que refletem se novas políticas especializadas precisam ser criadas para li-

dar com novos contextos ou se políticas previamente otimizadas podem ser reutilizadas.

Nós demonstramos que este algoritmo (i) minimiza o atraso até que mudanças impre-

vistas em um contexto sejam detectadas, permitindo assim respostas rápidas; e (ii) que

limita a taxa de alarmes falsos, o que é importante para minimizar o regret. Nosso mé-

todo constrói uma mistura de modelos composta por um conjunto (possivelmente infinito)

de preditores probabilísticos da dinâmica que modelam os diferentes modos de distribui-

ção sobre MDPs latentes subjacentes. Nós avaliamos nosso algoritmo em problemas de

aprendizado por reforço contínuos e de alta dimensionalidade e mostramos que ele su-

pera algoritmos RL estado-da-arte (livre de modelo e baseado em modelo), assim como

métodos de meta-aprendizado estado-da-arte especialmente projetados para lidar com a

não-estacionariedade.

Palavras-chave: Aprendizado por reforço. não-estacionariedade. RL baseado em mo-

delo. detecção de change-point.
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1 INTRODUCTION

Reinforcement learning (RL) techniques have been successfully applied to solve

high-dimensional sequential decision problems. However, if the state transition and/or

reward functions change unexpectedly, according to latent factors unobservable to the

agent, the system is effectively tasked with optimizing behavior policies that maximize

performance over a (possibly infinite) random sequence of Markov Decision Processes

(MDPs). Each MDP is drawn from an unknown distribution and is henceforth referred to

as a context. This is known as a non-stationary setting. Designing efficient algorithms to

tackle this problem is a known challenge in RL (PADAKANDLA, 2020). The key dif-

ficulties here result from (i) the need to quickly and reliably detect when the underlying

system dynamics has changed; and (ii) the need to effectively learn and deploy adapt-

able prediction models and policies, specialized in particular contexts, while allowing the

agent to (when appropriate) reuse previously-acquired knowledge. Non-stationary envi-

ronments often result from systems whose dynamics are inherently time-dependent; from

agents that are tasked with learning policies under noisy or missing sensors; or from prob-

lems where the agent faces sequences of unlabeled/unidentified tasks, each one with its

own transition dynamics and reward functions.

Non-stationary settings arise naturally in many situations. Humans, for instance,

are capable of learning to solve sequences of tasks from few experiences while preserv-

ing knowledge from older experiences (LAKE; SALAKHUTDINOV; TENENBAUM,

2015). Consider, for example, a person realizing the need to adapt their gait after an ac-

cident, learning novel gait patterns to use when walking with crutches, and then, after

a period of recovery, successfully re-deploying normal walking gaits. This corresponds

to a non-stationary scenario where the agent needs to learn specialized dynamics models

and policies for tackling different contexts/learning scenarios. We introduce an algorithm

that efficiently learns decision-making strategies in this setting. It assumes an agent that

experiences random sequences of contexts (MDPs) drawn from some unknown distribu-

tion, and it is capable of optimizing behaviors even when a pre-training phase (during

which the agent interacts with sample contexts) is not available. The agent’s goal is to

rapidly deploy decision-making policies that are appropriate for each randomly-arriving

context—even when the number of latent contexts is unknown and when the context dis-

tribution cannot be modeled nor controlled by the agent. We are particularly interested in

the case where quick readaptation and sample efficiency are paramount to achieving good
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performance; for instance, in cases where collecting experiences and acquiring policies

from scratch, when dealing with a novel context, is unfeasible.

Many existing related works tackle non-stationary problems either by detecting

when the underlying MDP changes, or via meta-learning approaches that construct a prior

model (or policy) capable of rapidly generalizing to novel random contexts. Hadoux et al.,

for example, introduced a technique based on change-point detection (CPD) algorithms

to deal with non-stationary problems with discrete state spaces (HADOUX; BEYNIER;

WENG, 2014; BANERJEE; LIU; HOW, 2017). We, by contrast, address the more gen-

eral setting of high-dimensional continuous RL problems. Supervised meta-learning al-

gorithms (FINN; ABBEEL; LEVINE, 2017) have also been recently combined with RL

to enable fast adaptation under changing domains (NAGABANDI et al., 2019; NAGA-

BANDI; FINN; LEVINE, 2019). Nagabandi et al. introduced a model-based algorithm

where a meta-learning technique is used to construct probabilistic dynamics models ca-

pable of rapidly adapting to recent experiences—either by updating the hidden state of

a recurrent neural network (DUAN et al., 2016), or by updating the model parameters

via a small number of gradient steps (FINN; ABBEEL; LEVINE, 2017). Meta-learning

methods typically assume disjoint training and testing phases, so that an agent can be

pre-trained over randomly sampled contexts prior to its deployment. We, by contrast, do

not require a pre-training phase. Meta-learning methods also typically assume that the

distribution over contexts experienced during training is the same as the one experienced

during testing, so that agents can adapt to novel environments with structural similarities

to those previously experienced. We, by contrast, do not require that contexts are sampled

from a previously-seen distribution, nor that contexts share structural similarities with

previously-experienced ones.

To address these limitations, we introduce an algorithm that analyzes a possibly

infinite stream of data and computes, in real-time, high-confidence change-point detection

statistics that reflect whether novel, specialized policies need to be deployed to tackle new

contexts, or whether a previously-optimized policy may be reused. We call our algorithm

Model-Based RL Context Detection, or MBCD. We formally show that it minimizes the

delay until unforeseen changes to a context are detected, thereby allowing for rapid re-

sponses, and that it allows for formal bounds on the rate of false alarm—which is of inter-

est when minimizing the agent’s regret over random sequences of contexts. Our method

constructs a mixture model composed of a (possibly infinite) ensemble of probabilistic

dynamics predictors that model the different modes of the distribution over underlying la-
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tent MDPs. Our method is capable of optimizing policies based on streams of arbitrarily

different contexts, with unknown boundaries, and which may be drawn from an arbitrary,

unknown distribution.

We evaluate our algorithm on high-dimensional continuous reinforcement learn-

ing tasks and empirically show (i) that state-of-the-art reinforcement learning algorithms

struggle to deal with non-stationarity; and (ii) that our method outperforms state-of-the-art

meta-learning methods specifically tailored to deal with non-stationary environments—in

particular, when the agent is faced with MDPs that are off-distribution with respect to

the set of training contexts provided to the agent, or when novel contexts are structurally

different from previously-observed ones.

This work is organized as follow: Chapter 2 presents theoretical background of

RL and model-based RL; Chapter 3 describes related works on non-stationary RL; Chap-

ter 4 defines our problem formulation and presents a change-point detection approach

to this problem; Chapter 5 introduces our proposed algorithm; Chapter 6 presents the

experimental settings and results, and Chapter 7 the conclusions.
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2 THEORETICAL BACKGROUND

2.1 Reinforcement Learning

Reinforcement Learning (RL) is the field of Artificial Intelligence in which an

agent learns to maximize a reward signal while interacting with an environment (SUT-

TON; BARTO, 2018). In contrast to supervised learning, it does not need a large database

of pre-labeled training data. This opens up many applications for machine learning for

which no such database exists. In recent years, RL has achieved impressive results in a

broad range of fields, as for instance: robotics tasks (HAARNOJA et al., 2018), video

games (VINYALS et al., 2019), traffic systems (ZIEMKE; ALEGRE; BAZZAN, 2020),

healthcare (YU; LIU; NEMATI, 2019), etc. Many of the recent advances in the field were

possible due to the combination of RL algorithms with deep neural networks as function

approximators, from which emerged the field of Deep Reinforcement Learning (DRL).

An RL problem is typically formulated as a Markov Decision Process (MDP). A

MDPM is a tuple (S,A, T ,R, γ, d0), where S is a (possibly continuous) state space, A
is a (possibly continuous) action space, T : S × A × S → [0, 1] is a transition function

specifying the distribution over next states, given the current state and action, R : S ×
A → R is a reward function, γ ∈ [0, 1] is the discount factor, and d0 is an initial state

distribution. In what follows, St, At, and Rt are the random variables corresponding to

the state, action, and reward at time step t.

A policy π is a mapping from each state, s ∈ S , and action, a ∈ A, to the

probability π(a|s) of taking action a when in state s. The value of a state s under a policy

π, denoted by vπ(s), is the expected sum of rewards obtained when starting in s and

following π thereafter, under a (possibly infinite) horizon H:

vπ(s) = E

[
H−1∑
j=0

γjRt+j|St = s, π,M
]
. (2.1)

Similarly, we define the action-value function, denoted qπ(s, a), as the expected return of

taking action a in state s, and thereafter following policy π:

qπ(s, a) = E

[
H−1∑
j=0

γjRt+j|St = s, At = a, π,M
]
. (2.2)

When the optimal action-values q∗ are known/learned, an optimal policy π∗ can be simply
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defined as:

π∗(s) = argmax
a

q∗(s, a). (2.3)

RL algorithms are commonly divided into two categories: model-free and model-

based methods. Model-free methods try to directly learn a policy and/or value function

from observed data, without any prior/learned information regarding the dynamics of the

MDP. Model-based methods, instead, aim to increase the sample efficiency, i.e. the num-

ber of environment interactions needed in order to learn a policy, by learning a predictive

model of the MDP dynamics. The learned model of the environment can be used to gen-

erate additional samples used to train the policy (SUTTON; BARTO, 2018) or to derive

a controller (CAMACHO; ALBA, 2013). Although model-free algorithms have achieved

remarkable success in many settings, they need a large number of samples (environment

interactions), which limits them mostly to simulators.

2.2 Model-Based Reinforcement Learning

Model-based RL algorithms aim to increase the sample efficiency, i.e. the num-

ber of environment interactions needed in order to learn a policy, by learning a model

of the MDP dynamics (SUTTON; BARTO, 2018). In model-based RL (MOERLAND;

BROEKENS; JONKER, 2020), the agent typically learns a model of the state-transition

function T and/or the reward function R using the experienced transitions collected by

interacting with the environment.

In the case where the RL agent learns a model p(St+1, Rt|St, At), which predicts

the next state and reward given the current state and action, it can use this model in com-

bination with a model-free algorithm to accelerate the learning of a policy. The original

proposal of such a combination comes from the Dyna algorithm (SUTTON, 1990), which

alternates between model learning, data generation under a model, and policy learning

using the model data (see Figure 2.1).

Another class of model-based RL algorithms uses the learned dynamics models for

planning using a Model Predictive Control (MPC) method (GARCíA; PRETT; MORARI,

1989). MPC methods work by generating candidate action sequences from a distribution,

and evaluating each candidate sequence using the learned dynamics. The optimal action

sequence is approximated as the one with the highest return. The MPC agent only applies

the first action from the optimal sequence and re-plans at every time-step. This planning
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Figure 2.1: The general Dyna architecture. Image from (SUTTON; BARTO, 2018).

process can be further improved using the Cross-Entropy Method (CEM) (BOTEV et

al., 2013). When using CEM, candidate action sequences are iteratively sampled from a

candidate Gaussian distribution, which has its mean adjusted based on best performing

action samples. Then, the mean of the adjusted candidate distribution is used as action

and re-plan is done at every time step.

The success of the model-based approach hinges critically on the quality of the

predictions of the dynamics model. In literature, there are many model architecture

choices. Linear models (SUTTON et al., 2008) and Gaussian processes (DEISENROTH;

RASMUSSEN, 2011) provide good performance in the low-data regime. Neural network

predictive models (NAGABANDI et al., 2018), in contrast, require more data samples,

but provide accurate predictions even in domains with high-dimensional state and action

spaces. Recently, works have shown that ensembles are effective in preventing a policy

or a controller from exploiting the inaccuracies of any single model (CHUA et al., 2018;

JANNER et al., 2019).
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3 RELATED WORK

In this chapter we review the most relevant related works which proposed algo-

rithms to deal with non-stationary RL domains. In Table 3.1, we summarize the described

methods and compare them to our proposed method. Notice that our method is the only

model-based method able to deal with continuous state-spaces without a pre-training pe-

riod.

3.1 Context Detection Methods

Dealing with non-stationary environments in RL via context change-point detec-

tion has been studied in discrete state and action spaces settings.

Silva et al. introduced Reinforcement Learning Context Detection (RLCD) (SILVA

et al., 2006). RLCD is a model-based algorithm that estimates the state transition and re-

ward functions from collected samples, while quality measures are used to choose and

update the current model. If the maximum quality is below a given threshold, a new

model is added to the list of known models, uniformly initialized and selected as the next

current model. RLCD does not require a priori knowledge about the number of envi-

ronment contexts nor a pre-training phase (like meta-learning algorithms). However, it is

only applicable to purely discrete settings.

Basso et al. introduced an algorithm for solving reinforcement learning prob-

lems in non-stationary continuous time and state environments through context detection

(BASSO; ENGEL, 2009). It computes the instantaneous quality of a model as a value

inversely proportional to its prediction error. A quality trace integrates the instantaneous

quality over the time and, at each moment, the model with the highest quality trace is

chosen as the current active model. If the quality traces of all models are worse than the

minimum allowed, the system assumes that the environment is in a new context. However,

the dynamics models are estimated using linear approximation functions, which limits the

algorithm to domains in which the dynamics can be linearly approximated. Our method,

by contrast, uses probabilistic neural networks, which are powerful non-linear function

approximators more suitable to tasks with complex dynamics, such as robotics locomo-

tion. In addition, unlike MBCD, their method can not perceive non-stationarity in the

reward function.

Hadoux et al. introduced an extension of RLCD that replaces its quality measures
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with a CUSUM-based method to perform change-point detection (HADOUX; BEYNIER;

WENG, 2014). Similar to RLCD, this method estimates the transition and reward func-

tions for all contexts. Each time step, a CUSUM statistic is computed for each known con-

text, indicating whether the current context has changed. An additional CUSUM statistic

is also computed for a fixed transition function represented by a uniform model (one

which gives equal probability of transition between all states for all actions). If this fixed

model is the most likely to have generated the experienced transitions, a new model is

instantiated. Unlike our method, however, it is only applicable to discrete state settings.

Banerjee et al. shows that in full information case, i.e., when complete model in-

formation is known, the change detection approach of (HADOUX; BEYNIER; WENG,

2014) leads to loss in performance with delayed detection. Based on this observation, in

(BANERJEE; LIU; HOW, 2017) it is designed a two-threshold policy switching method

based on KL divergence between transition models in order to rapidly detect context

changes. This is a principled method but—unlike MBCD—requires prior knowledge of

the dynamics model of all contexts.

3.2 Model-Free Methods

Model-free RL algorithms try to deal with non-stationarity without modeling the

MDP dynamics. Instead, they focus on building policies resilient to catastrophic forget-

ting and capable of fast adaptation.

In (ZHOU et al., 2019), it is proposed a multi-level model architecture, named as

Policy Residual Representation (PRR), as well as a training method that enables a single

model to represent multiple levels of experience. In each level of PRR, there are one or

more component modules, corresponding to a subset of the contexts. The training starts

from the top level with one module corresponding to all the contexts, i.e., the module is

the average policy over all the contexts. In each following level, a module is learned over

a selected subset of contexts according to a predefined mask. Moreover, when learning

the module, all the upper levels are fixed, and thus the module learns a residual policy

over the selected contexts. In this way, PRR forms a multilevel architecture, where the

experience of different granularities can be represented.

In (KAPLANIS; SHANAHAN; CLOPATH, 2019), it is developed an approach

called Policy Consolidation (PC) to mitigate catastrophic forgetting. Policy consolidation

means that the current behavioural policy is distilled into a cascade of hidden neural net-
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works that record policies at multiple timescales. Rather than relying on task boundaries,

consolidation in occurs at all times, with the agent’s policy being continually distilled into

a cascade of hidden networks that evolve over a range of timescales. The hidden networks,

in turn, distill knowledge back through the cascade into the policy network in order to en-

sure that the agent’s policy does not deviate too much from where it was previously. The

policies are encoded by the parameters of the neural network and the distance between

the parameters of two such networks can be used as a substitute for the distance between

policies (represented by the networks). This substitute measure is also incorporated in the

loss function used for training the policy network.

In (ROLNICK et al., 2019), Continual Learning with Experience And Replay

(CLEAR) is introduced. CLEAR mixes on-policy learning from novel experiences (for

plasticity) and off-policy learning from replay experiences (for stability). For additional

stability, they introduce behavioral cloning between the current policy and its past self.

Their method outperforms other previous methods that assumes the boundaries between

tasks are known in a set of Atari tasks. However, it is not expected that it could work

well in continuous control tasks where the dynamics changes significantly and reusing

experiences from past tasks possibly introduces negative transfer.

3.3 Meta-Learning Methods

Meta-learning algorithms are used to train a prior over dynamics models that can,

when combined with recent data, be rapidly adapted to novel contexts.

In (NAGABANDI et al., 2019), two model-based meta-learning algorithms are

proposed: Gradient-Based Adaptive Learner (GrBAL) and Recurrence-Based Adaptive

Learner (ReBAL). GrBAL employs the Model-Agnostic Meta-Learning (MAML) method

(FINN; ABBEEL; LEVINE, 2017) to learn the parameters of a meta-learning prior over

the dynamics model, given a set of training contexts. This prior is constructed so that

it serves as a good initial model for any new contexts that the agent encounters after a

pre-training phase. After training, thus, such a meta-learned dynamics model is capa-

ble of quickly adapting to a current task’s dynamics by taking only a few gradient steps.

ReBAL works similarly to GrBAL, but instead of taking gradient steps to adapt a prior

model to novel contexts, it uses a recurrent neural network that learns its own update rule

(vs. a gradient update rule) through its hidden state. Both ReBAL and GrBAL use MPC

for selecting actions by planning for a certain horizon using the adapted dynamics model.
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In (NAGABANDI; FINN; LEVINE, 2019), a similar approach is used. However,

the task changes are seen as a Dirichlet process and have their priors modeled with a

Chinese restaurant process controlled by a parameter α. The higher the value of α, the

more predisposed the method is to instantiate a new task after t time steps.

These methods, unlike MBCD, were designed to tackle settings where the non-

stationarity solely results from changes to the dynamics, but not to the agent’s goals/reward

function. Reward functions are assumed to be known a priori. These methods also require

an explicit pre-training train phase, prior to deployment, and assume that the distribution

of training and testing contexts is the same. Our method, by contrast, is better suited to

continual online settings where a pre-training phase is not possible, and where the agent

is tasked with dealing with streams of arbitrarily different contexts with unknown bound-

aries.

Additionally, meta-learning algorithms need all tasks to share a common structure

that can be exploited for fast learning. Hence, although meta-learning is attractive for

reusing previous knowledge to speed the learning of new tasks, their underlying assump-

tions are not realistic for many real-world scenarios in which the world changes abruptly

in an unpredictable manner.
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4 NON-STATIONARITY AND CHANGE-POINT DETECTION

In this Chapter, we formulate the problem of learning in non-stationary environ-

ments through RL (Section 4.1). Then, in Section 4.2 we demonstrate how this problem

can be tackled via a change-point detection approach and present the theoretical guar-

antees that such methods introduce. Next, in Chapter 5 we introduce an algorithm that

effectively implements these ideas under the assumptions discussed in this Chapter.

4.1 Problem Formulation

We define a non-stationary environment as a family of MDPs {Mz}z∈N+ . Each

MDPMz is a tuple (S,A, Tz,Rz, γ, d
0), as defined in Section 2.1. We assume that the

agent observes a random sequence (M0,M1, . . .) of MDPs—called contexts—drawn in-

dependently from some unknown distribution. We assume that the number of contexts,

|{Mz}|, is unknown. These definitions are similar to those discussed in (BANERJEE;

LIU; HOW, 2017) and (PADAKANDLA, 2020). Let z be a latent index variable indicat-

ing a particular MDP,Mz. We assume that each MDP’s transition and reward function are

parameterized by a latent vector θz. Let pθz(St+1, Rt|St, At) denote the joint conditional

probability distribution over next-state and reward associated with MDPMz. We do not

impose any smoothness assumptions on how variations to θz affect Tz and Rz: contexts

may be arbitrarily different and share no structural similarities.

Let the time steps in which context changes occur be an increasing sequence of

integer random variables, {Ci}i≥1, for which a prior φ(Ci) is unknown or cannot be de-

fined. We call each Ci a change-point. At every change-point Ci, the current contextMz

is replaced by a random MDP drawn from {Mz}. To perform well, an agent must rapidly

detect changes to its environment and deploy an appropriate policy. If a new random con-

text differs significantly from previously-experienced ones, the agent may have to learn a

policy from scratch; otherwise, it may choose to reuse previously-acquired knowledge to

accelerate learning and avoid catastrophic forgetting.

At each time t, when interacting with its environment, the agent selects an action

At based on its state St according to a stochastic policy π(·|St). Let vHπ,Mz
be the value
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function associated with policy π, MDPMz, and defined over a horizon H:

vHπ,Mz
(s) = E

[
H−1∑
j=0

γjRt+j|St = s, π,Mz

]
. (4.1)

To simplify our analysis, we first consider (without loss of generality) the simpler

case of a family of MPDs {M0,M1}, where a context change occurs fromM0 toM1

at some unobserved random time C. The mathematical arguments that follow can be

extended to the more general setting with an arbitrary number of contexts. Let Π∗ be a

policy that follows the optimal policy forM0, π0, before C, and the optimal policy for

M1, π1, afterwards. This policy’s value function is defined as:

v∞Π∗,{M0,M1}(s) = E
[
vCπ0,M0

(s) + γCEs′∼ρπ0
M0,C−1

[
v∞π1,M1

(s′)
]]
, (4.2)

where ρπM,t denotes the distribution of states reachable after following policy π for t steps

under MDP M. Notice that Eq. 4.2 models the case when M1 starts in the (random)

state whereM0 terminated, immediately prior to the random time C. This implies that

d0
M1

= ρπ0
M0,C−1.

By contrast, consider an alternative policy Π that follows policy π1 only after a

random time Γ, for Γ > C; that is, a policy that deploys the correct decision-making

strategy forM1 with a delay of ∆ = Γ− C steps. Its value function is given by:

v∞Π,{M0,M1}(s) = E[vCπ0,M0
(s)+

γCEs′∼ρπ0
M0,C−1

[
v∆
π0,M1

(s′)
]

+

γC+∆+1Es′∼ρπ0
M1,∆

[
v∞π1,M1

(s′)
]
]. (4.3)

Notice that we can rewrite Eq. 4.2 in the same form as Eq. 4.3:

v∞Π∗,{M0,M1}(s) = E[vCπ0,M0
(s)+

γCEs′∼ρπ0
M0,C−1

[
v∆
π1,M1

(s′)
]

+

γC+∆+1Es′∼ρπ1
M1,∆

[
v∞π1,M1

(s′)
]
]. (4.4)

We now define the regret L(∆) as the expected discounted sum of rewards lost due

to the delay ∆ = Γ− C, when changing from π0 to π1 only at time step Γ. This quantity

is given by difference between Eq. 4.3 and Eq. 4.4. Since we are interested in minimizing
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the delay ∆, we assume the adversarial case when policies π0 and π1 do, in the short-

term (i.e., within the delay window ∆), have a nearly indistinguishable distribution over

the states that are reachable in ∆ steps. In particular, we assume that the KL divergence

between ρπ0
M1,∆

and ρπ1
M1,∆

is bounded and small for small values of ∆. In this case, the

regret can be approximated by:

L(∆) ≈ E
[
γCEs′∼ρπ0

M0,Γ−1

[
v∆
π1,M1

(s′)− v∆
π0,M1

(s′)
]]

(4.5)

as DKL(ρπ0
M1,∆

||ρπ1
M1,∆

) → 0. From Eq. 4.5, it should be clear that to maximize the

expected return over the random sequence of MDPs, one needs to minimize regret; and

to minimize regret, one needs to minimize the random delay ∆. This definition can be

extended in a straightforward way to the case where there is a sequence of random change-

points, {Ci}i≥1. In particular, the regret will be defined in terms not of a single random

delay, but of a sequence of random delays associated with the corresponding random

contexts that are observed by the agent.

In the next chapter, we introduce a method capable of minimizing the worst-case

delay until unforeseen changes to a stochastic process are detected, while also bounding

the rate of false alarm—i.e., the likelihood that the method will incorrectly indicate that a

context change occurred.

4.2 High-Confidence Change-Point Detection

Change-point detection (CPD) algorithms (VEERAVALLI; BANERJEE, 2012;

AMINIKHANGHAHI; COOK, 2016) are designed to detect whether (and when) a change

occurs in the distribution generating random observations from an arbitrary stochastic pro-

cess. These methods have been widely used in a variety of fields—from financial markets

(LAM; YAM, 1997) to biomedical signal processing (SIBANDA; SIBANDA, 2007). Al-

though CPDs have been applied to reinforcement learning problems (HADOUX; BEYNIER;

WENG, 2014; BANERJEE; LIU; HOW, 2017), the application and formal analysis of

such methods has been restricted to discrete state spaces settings.

In the online CPD setting, a sequential detection procedure is defined with the

objective of rapidly and reliably estimating when the parameter θ of some underlying

distribution or stochastic process has changed. Online CPD algorithms should produce

high-confidence estimates, Γ, of the true change-point time, C. Notice that Γ is a ran-
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dom variable whose stochasticity results from the unknown stochastic prior over context

changes, φ, and from the fact that each MDP in {Mz} produces random trajectories of

states, actions, and rewards.

Suppose that at each time t, while the agent interacts withM0, sample next-state

and rewards are drawn from pθ0(St+1, Rt|St, At), where θ0 is the latent vector parameter-

izingM0’s transition and reward functions. At some unknown random change-point C,

the context changes toM1, and experiences that follow are drawn from pθ1(St+1, Rt|St, At).

We propose to identify such a change by computing high-confidence statistics that reflect

whether θ0 has changed. This can be achieved by introducing a minimax formulation of

the CPD problem, as discussed by Pollak (POLLAK, 1985). In this formulation, the goal

of a CPD algorithm is to compute a random estimate, Γ, of the latent change-point timeC,

such that (i) it minimizes the worst case expected detection delay, ∆worst(Γ), associated

with the random estimates Γ produced by a particular CPD algorithm, when considering

all possible change-points C; and (ii) bounds on the maximum false alarm rate (FAR)

may be imposed. The worst-case expected detection delay, ∆worst(Γ), and the FAR, are

defined as:

∆worst(Γ) = sup
c≥1

E[Γ− C|Γ ≥ C,C = c], (4.6)

FAR(Γ) =
1

E[Γ|C =∞]
, (4.7)

where the expectations in Eq. 4.6 and Eq. 4.7 are over the possible histories of experiences

produced by the stochastic process, and where conditioning on C = ∞ indicates the

random event where the context never changes. Given these definitions, the objective of

a high-confidence change-point detection process is the following:

inf
Γ

∆worst(Γ) subject to FAR(Γ) ≤ α, (4.8)

where α denotes the desired upper-bound on the false alarm rate.

When θ0 and θ1 are known, the Log-Likelihood Ratio (LLR) statistic can be used

to recursively compute the Cumulative Sum (CUSUM) statistic (PAGE, 1954). As we

will discuss next, such a statistic can be used to construct a high-confidence change-point

detection method. The LLR statistic, Lt, and the CUSUM statistic, Wt, are updated at

each time t as follows:

Lt = log
pθ1(St+1, Rt|St, At)
pθ0(St+1, Rt|St, At)

, (4.9)
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Wt = max (0,Wt−1 + Lt) , W0 = 0. (4.10)

Importantly, notice that before the change-point C is reached, E[Lt] < 0, which implies

that the expected value of Wt is zero. After the change-point C is reached, E[Lt] > 0, and

therefore Wt will tend to increase. Higher values of Wt, thus, serve as principled statistics

reflecting evidence that a change-point has occurred between θ0 to θ1. The random time

Γ when a change-point is estimated to have happened is defined as the first time when the

CUSUM metric Wt becomes greater than a detection threshold h:

Γ = min{t ≥ 1 : Wt > h}. (4.11)

(LORDEN, 1971), shows that choosing h = | logα| ensures that FAR(Γ) ≤ α.

Furthermore, (LAI, 1998) demonstrated that the CUSUM detection time Γ is asymptoti-

cally optimum with respect to the problem specified in Eq. 4.6. In particular, they showed

that the worst expected detection delay (under h = | logα|) respects the following ap-

proximation:

∆worst(Γ) ≈ | logα|
DKL(pθ1||pθ0)

as α→ 0. (4.12)

In Eq. 4.12, the denominator DKL(pθ1||pθ0) = Eθ1
[
log

pθ1 (St+1,Rt|St,At)
pθ0 (St+1,Rt|St,At)

]
is the Kull-

back–Leibler divergence under θ1. Eq. 4.12 implies that the larger the difference between

the distributions pθ1 and pθ0 , the smaller the expected delay (∆ = Γ− C) for detecting a

change-point. The above results allow us to construct high-confidence statistics reflecting

whether (and when) a context has changed; importantly, they are both accurate and have

bounded false alarm rate.
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5 MODEL-BASED RL CONTEXT DETECTION

In this chapter, we introduce an algorithm that iteratively applies a CUSUM-

related procedure to detect context changes under the assumptions discussed in Chap-

ter 4. The algorithm incrementally builds a library of models and policies for tack-

ling arbitrarily different types of contexts; i.e., contexts that may result from quantita-

tively and qualitatively different underlying causes for non-stationarity—ranging from

unpredictable environmental changes (such as random wind) to robot malfunctions. Our

method can rapidly deploy previously-constructed policies whenever contexts approxi-

mately re-occur, or learn new decision-making strategies whenever novel contexts, with

no structural similarities with respect to previously-observed ones, are first encountered.

Unlike existing approaches (see Chapter 3), our method is capable of (i) optimizing poli-

cies online; (ii) without requiring a pre-training phase; (iii) based on streams of arbitrarily

different contexts, with unknown change-point boundaries; and (iv) such that contexts

may be drawn from an arbitrary, unknown distribution.

5.1 Method Overview

We now introduce a high-level description of our method (Model-Based RL Context

Detection, or MBCD). In subsequent sections, we provide details for each of the method’s

components. As the agent interacts with a non-stationary environment, context changes

are identified via a multivariate variant of CUSUM (HEALY, 1987), called MCUSUM.

MCUSUM-based statistics inherit the same formal properties as those presented in Sec-

tion 4.2. In particular, they formally guarantee that MBCD can detect context changes

with minimum expected delay, while simultaneously bounding the false alarm rate. As a

consequence, MBCD can effectively identify novel environmental dynamics while ensur-

ing, with high probability, that new context-specific policies will only be construct when

necessary.

As new contexts are identified by this procedure, MBCD updates a mixture model,

M , composed of a (possibly infinite) ensemble of probabilistic context dynamics predic-

tors, whose purpose is to model the different modes of the distribution over underlying

latent MDPs/contexts. New models are added to the ensemble as qualitatively different

contexts are first encountered. The mixture modelM associates, with each identified con-

textMz, a learned joint distribution pθz over next-state dynamics and rewards associated.
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Let K be the number of context models currently in the mixture. After each agent expe-

rience, MBCD identifies the most likely context, zt, by analyzing a set of incrementally-

estimated MCUSUM statistics (see Section 5.3). Whenever a novel context—one with

dynamics that are qualitatively different from those previously-experienced—is observed,

a new model is added to the mixture. Context-specific policies, πψz , are trained via a

Dyna-style approach based on the corresponding learned joint prediction model ofMz,

pθz (see Section 5.4). We provide details in the next sections. Pseudocode for MBCD is

shown in Algorithm 1.

Algorithm 1: Model-Based RL Context Detection
Input: Non-stationary environment E, threshold h.

1 z0 ← 1; K ← 1; Wz0,0 ← 0; Wnew,0 ← 0
2 Initialize model pθz0 , policy πψz0 , datasets Dz0 and Dmodel

3 M ← {pθz0}
4 for t = 0...∞ do
5 Execute action at ∼ πψzt , observe st+1, rt
6 Update MCUSUM statistics Wk,t,∀k, with Eq. 5.7
7 Update zt with Eq. 5.10
8 if zt 6= zt−1 then // Context changed
9 Reset MCUSUM statistics

10 Dmodel = {}
11 if zt = new then // New context detected
12 K ← K + 1; zt ← K
13 Initialize pθzt and Dzt

14 Let πψzt ← πψzt−1

15 M ←M ∪ {pθzt}
16 Dzt ← Dzt ∪ {(st, at, rt, st+1)}
17 if t mod F = 0 then
18 θzt ← θzt − λp∇Jp(θzt , Dzt) // Update model
19 for L simulated 1-step rollouts do
20 Sample state si from tuples in Dzt

21 ai ∼ πψzt (·|si)
22 (s′i, ri) ∼ pθzt (·|si, ai)
23 Dmodel ← Dmodel ∪ (si, ai, ri, s

′
i)

24 ψzt ← ψzt − λπ∇Jπ(ψzt , Dmodel ∪Dzt) // Update policy

5.2 Stochastic Mixture Model of Dynamics

In this paper we assume that pθz , the joint distribution over next-state dynamics

and rewards associated with context Mz, can be approximated by a multivariate Gaus-
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sian distribution. In particular, following recent work on model-based RL (JANNER et

al., 2019; CHUA et al., 2018), MBCD models the dynamics of a given environmentMz,

pθz(St+1, Rt|St, At), via a bootstrap ensemble of probabilistic neural networks whose out-

puts parameterize a multivariate Gaussian distribution with diagonal covariance matrix.

The bootstrapping procedure accounts for epistemic uncertainty (i.e. uncertainty about

model parameters), which is crucial when making predictions about the agent’s dynamics

in regions of the state space where experiences are scarce. For each contextMz identi-

fied by MBCD, an ensemble of N stochastic neural networks is instantiated and added

to the mixture model M . Each network n in the ensemble is parameterized by θnz and

computes a probability distribution, pθnz , that approximates pθz by predicting the mean

and covariance over next-state and rewards conditioned on the current state and action:

pθnz (St+1, Rt|St, At) = N (µθnz (St, At),Σθnz (St, At)), (5.1)

where µθnz (St, At) and Σθnz (St, At) are the network outputs given input (St, At). To sim-

plify notation, let Xt = (St, At) ∈ Rdim(S)+dim(A) and Yt = (St+1, Rt) ∈ Rdim(S)+1.

We follow (LAKSHMINARAYANAN; PRITZEL; BLUNDELL, 2017) and model the

ensemble prediction as a Gaussian distribution whose mean and covariance are computed

based on the mean and covariances of each component of the ensemble. In particular, the

ensemble predictive model, p̂θz , associated with a given contextMz, is defined as:

p̂θz(Yt|Xt) = N (µ∗z(Xt),Σ
∗
z(Xt)), (5.2)

where

µ∗z(Xt) = N−1

N∑
n=1

(µθnz (Xt)), and (5.3)

Σ∗z(Xt) = N−1

N∑
n=1

(
diag(Σθnz (Xt)) + µ2

θnz
(Xt)

)
− µ2

∗(Xt). (5.4)

MBCD stores all experiences collected while in contextMz in a buffer Dz. After

every F steps, it uses data in Dz to update the ensemble model p̂θz by minimizing the

negative log prediction likelihood loss function:

Jp(θ,D) = E(st,at,rt,st+1)∼D[− log pθ(st+1, rt|st, at)]. (5.5)
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5.3 Online Context Change-Point Detection

As previously discussed, MBCD employs a multivariate variant of CUSUM, MCUSUM,

to detect context changes with high confidence. (HEALY, 1987) demonstrated that, when

detecting shifts in the mean of a multivariate Gaussian distribution, MCUSUM inherits

all theoretical optimality guarantees possessed by the univariate CUSUM procedure. Fur-

thermore, Healy also proved that the detection delay is independent of the dimensionality

of the data.

In the particular case where the dynamics of each context are modeled as multi-

variate Gaussians, the LLR statistic can be computed as follows. To simplify notation, let

µ0 = µθ0(St, At) and Σ0 = Σθ0(St, At). It is then possible to show that the LLR statistic,

Lt, between distributions pθ1(Yt|Xt) and pθ0(Yt|Xt), is given by:

Lt = log
(2π)−

d
2 |Σ1|−

1
2 exp{−0.5(Yt − µ1)Σ−1

1 (Yt − µ1)}
(2π)−

d
2 |Σ0|−

1
2 exp{−0.5(Yt − µ0)Σ−1

0 (Yt − µ0)}
(5.6)

where d is the dimensionality of the multivariate Gaussian. At each time step t, MBCD

uses Lt to compute MCUSUM statisticsWk,t for each known context k, plus an additional

statisticWnew,t, used to infer, with high probability, whether a novel context has been first

encountered:

Wk,t ← max

(
0,Wk,t−1 + log

pθk(Yt|Xt)

pθzt (Yt|Xt)

)
, ∀k ∈ [1, K] ∪ [new]. (5.7)

Here, Wnew,t can be seen as evidence that a previously-unseen context has been first

encountered, based on whether the likelihood of all known contexts k ∈ [1, K] is smaller

than pθnew , where

pθnew(Yt |Xt) = N (Ŷt, Σθzt
(Xt)), (5.8)

and

Ŷt = Yt + δ diag(Σθzt
(Xt)). (5.9)

Intuitively, Wnew,t indicates whether none of the known contexts is likely to have gener-

ated the observed transitions. In Eq. 5.8, pθnew is the likelihood of a new context under

the alternative hypothesis that the true observation Yt is δ standard deviations away from

the true observation Yt. In particular, δ indicates the minimum meaningful change in

the distribution’s mean that we are interested in detecting. Given updated statistics Wk,t,

the most likely current context, zt (which may or may not have changed) can then be
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identified as:

zt ←

argmaxkWk,t, if ∃k ∈ [1, K] ∪ [new] s.t. Wk,t > h,

zt−1, otherwise.
(5.10)

If no alternative contexts are more likely to have generated the observations collected up

to time t, no context change is detected and zt = zt−1.

Notice that in Eq. 5.7, models pθk are assumed to be known a priori. In our setting,

these models are estimated based on samples. MCUSUM has been studied in scenarios

where the parameters of the distribution are known only approximately (MAHMOUD;

MARAVELAKIS, 2013). In our work, we address this challenge by computing change-

point detection statistics only after a small warm-up period within which the agent is

allowed to operate in a given context. In particular, and similarly to Sekar et al. (SEKAR

et al., 2020), we define the warm-up period by using ensemble disagreement as a proxy to

quantify the system’s uncertainty regarding the current distributions. Assuming a warm-

up period where the agent is allowed to operate within each newly-encountered context

is a common assumption in the area (NAGABANDI et al., 2019; NAGABANDI; FINN;

LEVINE, 2019; RAKELLY et al., 2019). In fact, it is a necessary assumption: if contexts

are allowed to change arbitrarily fast, adversarial settings can be constructed where all

methods for dealing with non-stationary scenarios fail.

Finally, notice that a key element of Eq. 5.10 is the threshold h, against which each

Wk,t is compared in order to check if a context change has occurred. Different methods

have been proposed to set h (SAHKI; GEGOUT-PETIT; WANTZ-MÉZIÈRES, 2020).

Here, we take a conservative approach. As discussed in Section 4.2, setting h = | logα|
ensures that FAR(Γ) ≤ α. In this work, we set h by considering negligible values of α;

e.g. h = 100 if α ≈ 10−43. In our experiments, we observed that detection delays remain

low even even for very conservative values of h.

5.4 Policy Optimization

Since MBCD estimates dynamics models for each context, it is natural to ex-

ploit such models to accelerate policy learning by deploying model-based RL algorithms.

MBCD learns context-specific policies via a Dyna-style approach (SUTTON, 1990). In

particular, at every time step t during which the model pθzt is trained, L 1-step simu-
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lated rollouts are sampled from πψzt . Each rollout starts from a random state drawn from

Dzt . All rollouts are stored in a buffer, Dmodel.1 Notice that this is similar to the proce-

dure used by the Model-Based Policy Optimization (MBPO) algorithm (JANNER et al.,

2019). Each context-specific policy πψzt is optimized by taking into account both real

experiences (stored in Dzt) and simulated experiences (stored in Dmodel).

Policy optimization is performed using the Soft Actor-Critic (SAC) algorithm

(HAARNOJA et al., 2018). SAC alternates between a policy evaluation step, which

estimates qπ(s, a) = E[
∑∞

t=0 γ
tRt|St = s, At = a, π] using the Bellman backup oper-

ator, and a policy improvement step, which optimizes the policy π by minimizing the ex-

pected KL-divergence between the current policy and the exponential of a soft Q-function

(HAARNOJA et al., 2018). Optimizing the policy, then, corresponds to minimizing the

following loss function:

Jπ(ψ,D) = Est∼D
[
Eat∼πψ(β log(πψ(at|st))− qπψ(st, at)

]
(5.11)

1Notice that, in Algorithm 1, Dmodel is cleared every time a context change is detected in order to avoid
negative transfer from experiences drawn from previous contexts.
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6 EXPERIMENTS

We evaluate MBCD in challenging continuous-state, continuous-action non-stationary

environments, where the non-stationarity may result from qualitatively different reasons—

ranging from abrupt changes to the system’s dynamics (such as changes to the configu-

ration of the agent’s workspace); external latent environmental factors that impact the

distribution over next states (such as random wind); robot malfunctions; and changes to

the agent’s goals (its reward function). We compare MBCD both against state-of-the-art

RL algorithms and against state-of-the-art meta-learning methods specifically tailored to

deal with non-stationary environments.

We investigate the performance of MBCD in two settings: (i) a setting that sat-

isfies all standard requirements made by meta-learning algorithms; in particular, that all

contexts in Mz are structurally similar, and that the agent is tested on a distribution of

contexts that matches the training distribution; and (ii) a more general setting where such

requirements are not be satisfied: contexts may differ arbitrarily, and future contexts ex-

perienced by the agent may be off-distribution with respect to those sampled during the

training phase. We show that our method outperforms both standard state-of-the-art RL

algorithms and also specialized meta-learning algorithms in both settings.

In the following figures depicting our experimental results, each curve shows the

mean and shaded areas present information about the standard deviation, when running

the experiments with different random seeds. We used 20 different random seeds in all

experiments, except for the experiments in Fig. 6.2 and Fig. 6.5, in which we used 7

random seeds.

6.1 Environments

In what follows, we evaluate MBCD in two domains with qualitatively different

non-stationary characteristics (see Fig. 6.1).
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Figure 6.1: (a) Non-Stationary Continuous Particle Maze; (b) Half-Cheetah in a Non-
Stationary World.

6.1.1 Non-Stationary Continuous Particle Maze

This domain simulates a family of two-dimensional continuous mazes where a

particle must reach a non-observable goal location.

• Observation. St = [xpos, ypos]. The observed state consists of the particle coordi-

nates in the continuous grid.

• Action. At ∈ [−1.0, 1.0]2. Represents the direction of movement along the two

dimensions.

• Reward. Rt = −||St − goal||2. The reward function corresponds to the negative of

the Euclidean distance between the particle and the goal location. The agent also

receives a bonus reward of +1 when it is near the goal location.

Non-stationarity is introduced by either changing the location of walls or by ran-

domly changing the latent goal location.

6.1.2 Half-Cheetah in a Non-Stationary World

This domain consists in a simulation of the high-dimensional Half-Cheetah robot

from OpenAI Gym (BROCKMAN et al., 2016), using MuJoCo’s physics engine (TODOROV;

EREZ; TASSA, 2012). Half-Cheetah agent is made up of 7 rigid links (1 for torso, 3 for

forelimb, and 3 for hindlimb), connected by 6 joints.

• Observation. St ∈ R17. The observed state is given by a 17-dimensional real-

valued vector, including the position and velocity of the agent’s center of mass and
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the angular position and angular velocity of each of its 6 joints.

• Action. At ∈ [−1.0, 1.0]6. The action vector is the torque applied to each one of

the agent’s 6 joints.

• Reward. Rt = −|vx − vg| − 0.1||At||2, where vx is the agent’s observed velocity

along the x-axis, and vg is the target velocity. The agent’s goal is to move forward

while reaching a target-velocity and minimizing control costs.

We introduce three sources of non-stationarity:

1. random wind: an external latent horizontal force, opposite to the agent’s movement

direction, is applied;

2. joint malfunction: either the torque applied to a joint of the robot has its polar-

ity/sign changed; or a joint is randomly disabled;

3. target velocity: the target velocity of the robot is sampled from the interval 1.5 to

2.5, causing a non-stationary change to the agent’s reward function.

6.2 Results in the Non-Stationary Half-Cheetah Domain

We first evaluate our method on the non-stationary Half-Cheetah domain and com-

pare it with two state-of-the-art RL algorithms: MBPO (JANNER et al., 2019) and SAC

(HAARNOJA et al., 2018). In our setting, MBPO can be be seen as a particular case

of our algorithm, where a single dynamics model and policy are tasked with optimizing

behavior under changing contexts. SAC works similarly to MBPO but does not perform

Dyna-style planning steps using a learned dynamics model.

Fig. 6.2a shows the total reward achieved by different methods (ours, MBPO,

SAC) as contexts change. Colored shaded areas depict different contexts, as discussed in

the figure’s caption. Notice that our method and MBPO have similar performances when

interacting for the first time with the first three random contexts. In particular, both MBCD

and MBPO’s performances temporarily drop when a novel context is encountered for the

first time. MBCD’s performance drops because it instantiates a new dynamics model

for the newly encountered context, while MBPO’s performance drops because it under-

goes negative transfer. SAC, which is model-free, never manages to achieve reasonable

performance during the duration of each context, due to sample inefficiency. However,

as the agent encounters contexts with structural similarities with respect to previously-

encounters ones (around time step 160k), MBCD’s performance becomes near-optimal:
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it rapidly identifies whenever a context change has occurred and deploys an appropri-

ate policy. Notice that MBCD modeled the wind context (yellow area) using the same

model as the default context (blue area). This is because wind did not introduce a signif-

icant change to the MDPs state transition function. Consequently, MBCD automatically

inferred that a single policy could perform well in both contexts and operated without

significant reward loss in the long term—see, e.g., time steps 320k to 400k. MBPO and

SAC, on the other hand, suffer from negative transfer due to learning average policies

or dynamics models. They are also subject to catastrophic forgetting and do not reuse

previously-acquired, context-specific knowledge.
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Figure 6.2: Evaluation of MBCD on the non-stationary Half-Cheetah domain. Colored
shaded areas represent different contexts: (blue) default context; (red) joint malfunction;
(yellow) wind; (green) novel target velocity.
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(a) Total reward achieved by different methods (MBCD, MBPO, and SAC) as contexts change.
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(b) Log-likelihood of the predictions made by each context model learned by MBCD as contexts
change.
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(c) Time evolution, as contexts change, of the MCUSUM statistics, Wk, for each model k. A
context change is detected online whenever one of the statistics crosses the threshold h.
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Fig. 6.2b and Fig. 6.2c allow us to observe the inner workings of MBCD and un-

derstand the reasons that underlie its performance. Fig. 6.2b shows the log-likelihood of

the predictions made by each context model learned by MBCD as contexts change. No-

tice that all context changes in this experiment—even those caused by qualitatively dif-

ferent sources of non-stationarity—are detected with minimal delay. As contexts change,

MBCD rapidly detects each change and instantiates new specialized joint prediction mod-

els for each context. Furthermore, when structurally similar contexts are re-encountered

(e.g., at time steps 160k and timestep 360k), MBCD successfully recognizes that previously-

learned models may be redeployed and avoids having to relearn context-specific dynam-

ics or policies. Fig. 6.2c shows the time evolution, as contexts change, of the MCUSUM

statistics, Wk, for each model k in the ensemble. A context change is detected, online,

whenever one of the statistics crosses the threshold h. Notice that MCUSUM statistics

grow rapidly and cross the threshold almost instantaneously—only a few steps after a

context change. This empirically confirms the minimum-delay guarantees provided by

our change-point detection method.

Figure 6.3: Regret of different methods (MBCD, MBPO, SAC) in the non-stationary
Half-Cheetah domain, as contexts change rapidly, compared to an Oracle algorithm.
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We now evaluate MBCD’s ability to rapidly detect context changes after an ini-

tial training period. Fig. 6.3 shows the cumulative sum of rewards achieved by MBCD,

MBPO, SAC, and by an Oracle algorithm that is initialized with optimal policies for

all contexts and that detects context changes with zero delay. This is a challenging set-

ting where contexts change very rapidly—after only 25 steps. Notice that our algorithm

closely matches the performance of the zero-delay Oracle, thus empirically confirming its
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ability to minimize regret (Eq. 4.5).

Figure 6.4: Performance of MBCD and meta-learning methods (after a pre-training phase)
in the Half-Cheetah domain with non-stationary malfunctions that disable random joints.
Vertical dashed lines indicate context changes.
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Next, we analyze how MBCD performs when compared with state-of-the-art meta-

learning methods specifically tailored to deal with non-stationary environments: Gradient-

Based Adaptive Learner1 (GrBAL) (NAGABANDI et al., 2019) and Recurrence-Based

Adaptive Learner1 (ReBAL) (NAGABANDI et al., 2019). Both methods were detailed

previously in Section 3.3.

Fig. 6.4 compares the adaptation performance of MBCD and the meta-learning

methods in a non-stationary setting where (inspired by (NAGABANDI et al., 2019)) ran-

dom joints of the Half-Cheetah robot are disabled after every 100 time steps. In this ex-

periment we compare MBCD, ReBAL, GrBAL, and also (for fairness) a variant of MBCD

that chooses actions using MPC instead of SAC. All implementations of MPC make use of

the cross entropy method (CEM) (BOTEV et al., 2013) to accelerate action selection. All

methods are allowed to interact with each randomly-sampled context during a training

phase comprising 60000 time steps. Although the meta-learning methods have lower-

variance, their meta-prior models do not perform as well as the MBCD context-specific

dynamics models and policies. We also observe that when MBCD uses parameterized

policies, learned through Dyna-style planning, it performs better than MBCD coupled

with MPC. This confirms the findings of (JANNER et al., 2019) regarding the possible

advantages of learning a parameterized policy instead of using MPC for action selection.

1We used the authors’ implementation of the method, publicly available at <https://github.com/iclavera/
learning_to_adapt>.

https://github.com/iclavera/learning_to_adapt
https://github.com/iclavera/learning_to_adapt
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6.3 Results in the Continuous Particle Maze Domain

Figure 6.5: Rewards in the non-stationary continuous particle maze domain. Shaded col-
ored areas indicate different contexts: (blue) default maze; (red) maze with non-stationary
wall positions; (yellow) non-stationary target positions.
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We now evaluate MBCD in a setting where contexts may differ arbitrarily and

where future contexts may be off-distribution with respect to those sampled during the

training phase. To do this, we compare MBCD, MBPO, SAC, ReBAL, and GrBAL, in

the non-stationary continuous particle maze domain, where the sources of non-stationarity

are as discussed earlier. Fig.6.5 compares MBCD, MBPO, and SAC in the fully-online

setting—no pre-training phase is allowed. Notice that, even in this relatively simple sce-

nario, state-of-the-art RL algorithms may fail if the underlying state transition or reward

function changes drastically. MBCD’s performance, by contrast, remains approximately

constant (and high) as contexts change.
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Figure 6.6: Rewards in the non-stationary maze domain. We introduce a phase with off-
distribution contexts—contexts unlike those observed during pre-training.
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In Fig. 6.6, we compare MBCD with meta-learning methods after a phase of pre-

training. All contexts observed up to time step 3k are on-distribution: they are simi-

lar to those experienced during training. MBCD outperforms ReBAL and GrBAL be-

cause the meta-learning approaches construct models that try to average characteristics

of structurally different contexts. At time 3k, we initiate a phase with off-distribution

contexts—contexts unlike those observed during training. When this occurs, MBCD faces

a short adaption period and rapidly recovers, while meta-learning techniques perform

poorly. This emphasizes MBCD’s advantages over meta-learning models, both when a

pre-training phase is not allowed/possible (e.g., Fig 6.5) and also when testing contexts

arise from a distribution different from the training distribution.

6.4 Sensitivity Analysis of the Detection Threshold Parameter

Next, we perform a sensitivity analysis on the impact of the value of the detection

threshold parameter h on the MBCD performance. In Fig. 6.7, we show the impact of the

value of the MCUSUM detection threshold h on the cumulative sum of rewards obtained

with MBCD, and we compare it with the performance of an Oracle, which knows the

change-points a priori. This experiment setting is the same as Fig 6.3, in which the Half-

Cheetah undergoes a context change every 25 steps.

When the detection threshold is sufficiently small (h = 10), MBCD suffers from

false alarms that mistakenly identify new contexts. For intermediate values (h = 50 and
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h = 100), MBCD shows low regret and closely approximates the Oracle performance, as

it does not present any false alarms. As the detection threshold increases (h = 200 and

h = 300), the detection delay also increases, therefore resulting in high regret during the

period in which the incorrect policy is being selected.

Figure 6.7: Impact of the MCUSUM detection threshold parameter h.
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Notice that this experiment corresponds to an extreme case in which context changes

happen very frequently, and the impact of the value of the detection threshold would be

less significant in more regular scenarios.
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7 CONCLUSION

We introduced a model-based reinforcement learning algorithm (MBCD) that learns

efficiently in non-stationary settings with continuous states and actions. It makes use of

high-confidence change-point detection statistics to detect context changes with minimum

delay, while bounding the rate of false alarm. MBCD is capable of optimizing policies

online, without requiring a pre-training phase, even when faced with streams of arbitrarily

different contexts drawn from unknown distributions.

We empirically showed that it outperforms state-of-the-art (model-free and model-

based) RL algorithms, and that it outperforms state-of-the-art meta-learning methods

specially designed to deal with non-stationarity—in particular if the agent is faced with

MDPs that are off-distribution with respect to the set of training contexts. We evaluated

the algorithms in high-dimensional tasks where the non-stationarity result from qualita-

tively different reasons—ranging from abrupt changes to the system’s dynamics (such

as changes to the configuration of the agent’s workspace); external latent environmental

factors that impact the distribution over next states (such as random wind); robot mal-

functions; and changes to the agent’s goals (its reward function).

We also point out the advantage of model-based over model-free reinforcement

learning algorithms in what regards fast adaptation. Our results emphasize the better

sample-efficiency of model-based algorithms, which makes them capable of learning with

orders of magnitude fewer environment interactions when a new context is introduced.

Additionally, we observed that meta-learned models can not match the performance of

specialized policies and, especially, that they struggle in scenarios in which testing con-

texts arise from a distribution different from the training distribution.

As future work, we would like to extend our method so that it can actively trans-

fer policies between contexts. This research direction suggests that our method may be

combined with meta-learning techniques that operate over policies, instead of over dy-

namics models. Another interesting direction is to explore multi-objective reinforcement

learning problems (ROIJERS et al., 2013), in which multiple conflicting objectives must

be considered. In this case, instead of different MDP dynamics or reward functions, the

agent must quickly adapt to different user preferences regarding the objectives priorities.
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APPENDIX A — PARAMETER SETTINGS

In Table A.1 we show the parameters used for MBCD in the Half-Cheetah and the

Continuous Particle Maze domains.

Table A.1: MBCD parameters.
Environment Half-Cheetah Continuous Particle Maze

N 5 5
Dynamics architecture 4 layers with 200 neurons 2 layers with 32 neurons

F 250 250
L 105 105

Policy architecture 2 layers with 256 neurons 2 layers with 64 neurons
h 100 1000
δ 2 2.5

The neural networks used to model both the dynamics and the policies are Multi-

Layer Perceptrons (MLP) with Rectified Linear Units (ReLU) activation function (NAIR;

HINTON, 2010). They were trained with mini-batch gradient descent using the Adam

optimizer (KINGMA; BA, 2015).

The parameters used for SAC and MBPO were the same (when applied) parame-

ters as in Table A.1.

For GrBAL and ReBAL, we used a reference implementation provided by the

authors1. The parameters used for the Half-Cheetah domain were the same as in the

original paper (NAGABANDI et al., 2019). A reduced number of layers and neurons

were used for the Continuous Particle Maze domain. Regarding the action selection using

MPC, we used the CEM method with 1000 candidate actions and planning horizon equal

to 20 for all methods.

1https://github.com/iclavera/learning_to_adapt
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