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Ising spin glass in a random network with a Gaussian random field
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We investigate thermodynamic phase transitions of the joint presence of spin glass (SG) and random field
(RF) using a random graph model that allows us to deal with the quenched disorder. Therefore, the connectivity
becomes a controllable parameter in our theory, allowing us to answer what the differences are between this
description and the mean-field theory i.e., the fully connected theory. We have considered the random network
random field Ising model where the spin exchange interaction as well as the RF are random variables following a
Gaussian distribution. The results were found within the replica symmetric (RS) approximation, whose stability
is obtained using the two-replica method. This also puts our work in the context of a broader discussion, which is
the RS stability as a function of the connectivity. In particular, our results show that for small connectivity there
is a region at zero temperature where the RS solution remains stable above a given value of the magnetic field
no matter the strength of RF. Consequently, our results show important differences with the crossover between
the RF and SG regimes predicted by the fully connected theory.
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I. INTRODUCTION

The issue of disorder in spin systems is an inexhaustible
source of problems. Two manifestations of disorder, spin glass
(SG) and random fields (RFs), illustrate how rich this re-
search area can be [1]. Undeniably, the corresponding theory
has been recognized for its conceptual richness, awakening
interest and providing knowledge not only in physics but
also in other fields such as information theory and computer
science, among others. Therefore, one can expect that the
joint presence of SG and RFs can bring plenty of fascinating
possibilities. Most importantly, it is not only a theoretical
possibility. In fact, the joint presence of SG and RFs has been
suggested in physical systems as distinct as ferro and antifer-
roelectric crystals such as Rb1−x(NH4)xH2PO4 [2], the diluted
antiferromagnet FexZn1−xF2 [3] and the diluted ferromagnet
LiHoxY1−xF4 [4,5]—the first case being the realization of
the electrical equivalent of a SG with pseudospins degree of
freedom. In the three cases, the applied magnetic field couples
with Ising spins (or pseudospins). For Rb1−x(NH4)xH2PO4

and LiHoxY1−xF4, the field transverse to the Ising direction
leads to a quantum phase transition [6–8]. The diversity of
systems and scenarios to describe them can anticipate that
the theoretical description of the joint presence of SG and
RFs migth favor the rise of conceptual and methodological
novelties.

A pertinent question is the extent to which the mean-field
theory can provide a realistic description of the joint presence
of SG and RFs. As an example, but which may allow more
general conclusions, one can mention the mean-field descrip-
tion of FexZn1−xF2. Although FexZn1−xF2 has short-range
interactions, the mean-field description [9], i.e., the infinite-
range Sherrington-Kirkpatrick model [10] with a Gaussian
distribution for the RF to describe some aspects of the behav-
ior of the the mentioned system depending on the parameter
�/J where � and J are the RF and random spin exchange

interaction variances, respectively. Interestingly, it was pro-
posed that there is a crossover between the SG and RF regimes
by varying �/J or by varying T/J (T is the temperature) for a
fixed �/J . This crossover is described by τ ≡ T0 − T ∼ h2/φ

0
(T0 is the freezing temperature without field). The crossover
has the exponent φ = 1 when the RF regime dominates and
φ = 3 as given by the Almeida-Thouless (AT) line [11], i.e.,
the line that signals the limit of stability of the replica symmet-
ric (RS) solution. In addition, the mean-field theory predicts
that the typical behavior of the AT line is robust for any
value of �/J as h0 increases, i.e., there is an exponentially
small region with the SG nontrivial ergodicity breaking even
for � � J . However, one can asks whether this crossover
description is robust. In this direction of investigation, a more
specific question can be raised. For instance, what happens in
the limit of high magnetic fields? The mean-field description
in Ref. [9] predicts that the behavior in that limit is given by
the AT line. This scenario is particularly not easy to reconcile
with the direction that the debate on the existence of the AT
line for disordered spins SG systems with short-range interac-
tion has taken (see, for instance, Refs. [12–16]). Nevertheless,
the difficulties in providing answers to these questions are
in fact the difficulties in describing disordered spins systems
with short-range interactions. This puts the need for alterna-
tive approaches that can bring substantial improvements over
the mean-field description.

Our proposal is to use random networks. The main reason
is that these networks do allow that the coordination num-
ber, i.e., the network connectivity, becomes a controllable
parameter of the theory [17–20]. Thereby, one can interpolate
between the limit of high connectivity that would be closer
to the usual mean-field theory (called from now on the fully
connected theory) until the situation with a spin with very few
connections to other spins. Although this limit is not equiva-
lent to treating the problem with short-range interactions, it
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can certainly highlight, at least, the limitations of the fully
connected description. Actually, this approach has already
been used in an Ising spin system with a RF. The random
network random field Ising model (RNRFIM) was developed
in Ref. [21] to study the ferromagnetic (FM) to paramagnetic
(PM) transition in networks with nonuniform, finite averaged
connectivity. There, the existing couplings were uniformly
FM and the disorder was restricted to the existence or not of
a bond between two given sites. The results there showed that
the existence of a tricritical point, when the RF distribution
is discrete, is very dependent on the connectivity. In fact,
the tricritical point tends to disappear when connectivity is
very small. This result is in evident contrast with the fully
connected theory for the RF Ising model [22].

In the present paper, we use the RNRFIM where, besides
the presence of a RF with a Gaussian distribution, the spin
couplings are also disordered following the same kind of
distribution. This type of choices allows us to investigate
not only the SG to PM phase transition but also the SG to
FM phase transition in the presence of a RF. Since the RF
couples with the local magnetic moments, the RS Edwards-
Anderson SG order parameter will be induced whenever a
RF is applied, turning out not to be useful to localize the SG
transition. Therefore, it is inescapable to test the RS stability
to locate the onset of nontrivial ergodicity associated to the
SG transition [23]. To accomplish that, we use the two-replica
method [24] which is quite suitable to our approach, since it
allows us to obtain the limits of stability of the RS approx-
imation using the RS calculations themselves. In particular,
having obtained the limits of RS stability, i.e., the AT line, and
counting connectivity and RF variance as controllable param-
eters, we can check any crossover between SG and RF regimes
in low and high connectivity scenarios when a magnetic field
is applied. For completeness, we also investigate effects of
connectivity on the nonlinear susceptibility χ3. This quantity
is a well-established fingerprint of the SG transition [25]. It is
known that χ3 is strongly affected by the RF in the limit of the
fully connected random network [7,8]. Therefore, it is also an
interesting issue how the RF affects the χ3 at low connectivity.

Lastly, we remark that there exist other approaches to deal
with finite connectivity in spin-disordered problems, such as
the cavity method (see, for instance, Refs. [26,27]). How-
ever, we focus mainly on the RS approximation for which
the random network is quite suitable. The development of
a replica symmetry breaking theory for the random network
with finite connectivity for the SG problem with RF is beyond
the objective of this paper.

The paper is organized as follows: In Sec. II, the free
energy and order parameter are obtained using finite con-
nectivity within the RS scheme. The two-replica method
employed to localize the AT line is explained in this sec-
tion. Sections III and IV present the theoretical results and
the results obtained from numerical simulations, respectively.
Section V offers concluding remarks.

II. THE MODEL

The Hamiltonian is an extension of RNRFIM which has
two-site disordered interaction and local RF to single site
interaction terms,

H = −
∑
i, j<i

σici jJi jσ j −
∑

i

hiσi , (1)

where i = 1 · · · N and σi = ±1 are canonical Ising spin
variables. The connectivity variables ci j are independent,
identically distributed random variables (i.i.d.r.v.’s) chosen
according the probability distribution

p(ci j ) = c

N
δci j ,1 +

(
1 − c

N

)
δci j ,0 , (2)

where c ∈ R is the average number of bonds per site. The cou-
plings are i.i.d.r.v.’s with Gaussian distribution with average
J0/c and variance J/

√
c:

p(Ji j ) = 1√
2πJ2/c

exp

[
− (Ji j − J0/c)2

2J2/c

]
. (3)

The local RF hi are i.i.d.r.v.’s that follow a Gaussian distribu-
tion:

p(hi ) = 1√
2π�2

exp

[
− (hi − h0)2

2�2

]
. (4)

with average h0 and variance �.
As usual, the thermal equilibrium properties are derived

from the free-energy

f (β ) = − lim
N→∞

1

βN
〈ln Z〉{Ji j ,hi,ci j } (5)

where the brackets stand for the disorder average and Z =∑
σ e−βH is the partition function. The symbol σ represents

an N-coordinate system’s state vector.
To average over the quenched disorder, we follow the

replica method, where we need to calculate the average over
the replicated partition function instead of the logarithm of the
partition function. The replicated partition function becomes

〈Zn〉{Ji j ,hi,ci j} =
∑

σ1···σn

〈
exp

(
β

∑
i,α

hiσ
α
i

)
exp

(
β

∑
i, j<i

Ji jci jσ i · σ j

)〉
{Ji j ,hi,ci j }

. (6)

The N-dimensional vector σα represents the state of the whole network in the replica α, while the n-dimensional vector σ i

represents the state of the n replicas in the site i.
The main outcome of the RS solution is a recursive equation for the distribution of effective local fields (see the Appendix),

W (x) =
∑

k

e−cck

k!

〈∫ k∏
l=1

dxl W (xl )δ

(
x − hl − 1

β

∑
l

arctan[tanh(βxl ) tanh(βJl )]

)〉
Jl ,hl

, (7)
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that can be solved through a population dynamics algorithm to be explained below. By knowing W (x), the order parameters can
be obtained: the magnetization,

m =
∑

σ 1···σ n

P(σ )σ 1 =
∫

dx W (x) tanh(βx) , (8)

and the SG order parameter,

q =
∑

σ 1···σ n

P(σ )σ 1σ 2 =
∫

dx W (x) tanh2(βx) . (9)

A key point concerns the stability of the RS solution. In fully connected networks, the so-called AT line is the locus where
the replicon eigenvalue vanishes [11], but it becomes very difficult to apply this method to finite connectivity networks. Here we
follow the method of two replicas [19,24], that consists of calculating the joint distribution

W (x, y) =
∑

k

e−cck

k!

〈∫ k∏
l=1

dxl dyl W (xl , yl )δ

(
x − hl − 1

β

∑
l

arctan[tanh(βxl ) tanh(βJl )]

)

×δ

(
y − hl − 1

β

∑
l

arctan[tanh(βyl ) tanh(βJl )]

)〉
Jl ,hl

. (10)

When the RS solution is stable, the two replicas are identical
and W (x, y) is diagonal. When the RS is unstable, ergodicity
is broken and the two-replica distribution is no longer diago-
nal. To localize the edge of stability, it is easier to calculate
the overlap between two replicas:

q′ =
∫

dx dy W (x, y) tanh(βx) tanh(βy) . (11)

It occurs that q′ = q if RS is stable and q′ �= q otherwise.
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FIG. 1. Joint distributions for c = 4, h0/J = 0.2 and �/J = 0.0.
(a) T/J = 0.8, PM phase, RS-stable diagonal distribution. (b) T/J =
0.6, SG phase, RS-unstable nondiagonal distribution.

III. RESULTS

The saddle-point equation for the local field distribution,
Eq. (7), is solved by the population dynamics method [20].
It starts with a randomly chosen population of local fields.
Typically, the size of the population is 100 000 fields. The
method is iterative. Each iteration, a number k ∈ N is sorted
according to the Poissonian distribution with average c. Then,
k fields are randomly chosen from the field population and
the summation of the argument of the δ function in Eq. (7)
is evaluated. The result is assigned to another field randomly
chosen from the same population. This recipe is applied till
W (x) converges. It takes, on average, 100 iterations per field
to converge. The distribution W (x, y) is calculated similarly.
Examples of joint distributions are shown in Fig. 1.

In the PM phase, the system is ergodic and the RS solu-
tion is stable. As mentioned above, the correspondent joint
distribution is diagonal, as is shown in the top panel of Fig. 1.

0.2 0.4 0.6
T/J

0.4

0.6

0.8

q,q’

FIG. 2. q (thick lines) and q′ (thin lines) versus T/J for c = 4,
h0 = 0.15, � = 0, J0 = 0.5 (solid lines), and h0 = 0, � = 0.2 and
J0 = 0 (dashed lines).

022133-3



ERICHSEN JR., SILVEIRA, AND MAGALHAES PHYSICAL REVIEW E 103, 022133 (2021)

Conversely, the ergodicity is broken in the SG phase, i.e., this
phase is RS unstable and the joint distribution is no longer
diagonal, as can be seen in the bottom panel of Fig. 1. We
proceed by considering that the SG to PM transition coincides
with the AT line.
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(b)
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FIG. 3. T/J versus J0/J phase diagrams for h0/J = 0.0, �/J =
0.0 (thick lines) and �/J = 0.2 (thin lines), for (a) c = 4, (b) c = 8,
and (c) fully connected.

Representative examples of how the order parameters q and
q′ behave as the temperature varies is shown in Fig. 2 for c = 4
and two sets of parameters (h0,�, J0). The set (0.15,0,0.5),
representing an example of uniform magnetic field and ran-
dom couplings with a FM constant, is shown in solid lines.
The set (0,0.2,0), representing an example of fully disordered
magnetic local fields and couplings, is shown in dashed lines.
This figure reveals that the whole behavior is robust against
changes on the parameters, with ergodicity being broken at
low temperature.

A more complete view of the role played by the RF and
average connectivity on finite connectivity SG is revealed
through the phase diagrams. In Fig. 3, T/J versus J0/J phase
diagrams for c = 4, c = 8, and the fully connected network,
with RF and without RF are presented. The SG to PM transi-
tion, as well as the transition from the mixed phase FM’ to FM
are AT lines, i.e., lines that signal the locus where the ergod-
icity is broken, with q and q′ becoming different. The FM’ to
SG and F to PM transitions are signaled by the magnetization
m going to zero. All the transitions are continuous. The mixed

0.0 0.5 1.0
h

0
/J
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0.2

0.4

0.6

0.8
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(a)
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(b)

FIG. 4. (a) T/J versus h0/J phase diagrams for c = 4 and J0 = 0
for different values of �/J . (b) The same, but for c = 8.
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FM’ phase is a nonergodig FM phase, where m �= 0, q > 0
(it is the correlation of a replica with itself), q′ �= 0 (it is the
correlation between two distinct replicas), and q �= q′. As a
general remark, when increasing the random field the transi-
tion lines are displaced in a way that the surface occupied by
more entropic phases increases and the less entropic phases
are reduced. The differences between average connectivities
c = 4 and c = 8 are mainly quantitative. When increasing c,
the transition lines are again displaced, this time in a way
the area occupied by the less entropic phases increases, while
the more entropic are reduced. So speaking, the SG to PM
transition line displaces upward, the SG to FM’ displaces to
the left, FM to PM displaces to the left, and FM to FM’
displaces downward.

It should be remarked that, by comparing finite and full
connectivity, the relevant qualitative difference is that, in the
fully connected case, the transition line FM’ to FM goes
asymptotically to T = 0 when J0/J increases, unlike the finite
case c, where the transition line intersects the T zero axis. This
means that a finite connectivity favors the ergodicity at zero
temperature.

Next, we analyze the SG to PM transition through T/J
versus h0/J phase diagrams. Figure 4 shows the SG to PM
transitions for connectivities c = 4 and c = 8, for four rep-
resentative values of the field disorder. Although the pictures
for different values of c are qualitatively similar, with both
the uniform field component h0 and the RF component �,
both given in units of J , acting to suppress the SG phase in
favor of the PM phase, there are some aspects to consider.
First, � is much more effective in suppressing the SG at
small than at a large h0. Second, it is also more effective the
smaller the c. This, even considering that both the mean value
and the variance of the couplings scale with c [see Eq. (3)].
This means that a more connected network with weaker cou-

0.001 0.010
h

0
/J

0.005

0.010

0.050

τ

c=4, Δ= 0.00
c=4, Δ=0.01
c=8, Δ=0.00
c= 8, Δ=0.01
c=16, Δ=0.00 
c=16, Δ=0.01

FIG. 5. Reduced temperature versus RF amplitude h0/J for
�/J = 0.00 and �/J = 0.01, c = 4, c = 8, and c = 16. The solid
lines are only guidelines. Shown in dashed, slope 1, and slope 2
straight lines.

plings produces a more robust SG phase than a less connected
network with stronger couplings. Other aspect that must be
stressed is that the SG phase is suppressed completely above
a certain h0 for any value of �. Moreover, for the same fixed
value of �, this suppression is much more effective for c = 4
than for c = 8.

We remark in Fig. 4 that the convexity of the curves at
small h0/J values changes from �/J = 0 to �/J > 0. To
investigate this in detail, in Fig. 5 we plot, in logarithmic
scale, the reduced temperature τ = (T0 − T )/J versus h0/J
for small h0/J , where T0 = T (h0/J = 0), for �/J = 0.00 and
� = 0.01, with connectivity ranging from c = 4 to c = 16.
If the reduced temperature is expressed as a power law τ ∼
(h0/J )2/φ as h0/J → 0, the slopes in the figure indicate that
φ = 2 for �/J = 0.00 and φ = 1 for �/J as small as 0.01.
Here, we compare our results with those obtained for the
fully connected network [9], where φ = 3 for �/J = 0.00,
identified as SG regime, and φ = 1 for finite �/J , identified
as the RF regime. We guess that the φ = 3 in the SG regime is
a particularity of c → ∞, since the curves for increasing c in
Fig. 5 superimpose, suggesting that φ = 2 in the SG regime
is robust for all finite c. To resume, the results for both finite
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(a)
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FIG. 6. (a) Nonlinear susceptibility versus temperature for c = 4
and several values of �/J . (b) The same, but for c = 8.
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FIG. 7. T/J versus �/J phase diagram for h0 = 0. (a) J0/J = 0; c = 4 (solid lines) and c = 8 (dashed lines). (b) J0/J = 1.22 and c = 4
(solid lines); J0/J = 1.15 and c = 8 (dashed lines). (c) J0/J = 1.4; c = 4 (solid lines) and c = 8 (dashed lines). All the transitions are
continuous.

and fully connected networks indicates that a crossover from
the SG to RF regime takes place as �/J becomes nonzero.

The nonlinear susceptibility χ3 = ∂3m/∂h3
0|T/J,h0/J=0 di-

verges at the SG to PM transition (AT line) in the SG regime
(zero �/J) [25]. The nonlinear susceptibility as a function of
T/J is shown in Fig. 6 for some small values of �/J . For
�/J = 0, indeed there is a divergence at the same T/J where
the two-replica method localizes the SG to PM transition for
both c = 4 and c = 8. For �/J > 0, there is a peak instead of
a divergence that no longer signals the SG to PM transition.
As �/J increases, the peak becomes quickly less pronounced
and moves to higher temperature values, as can be seen in
Fig. 6.

To complete the description, T/J versus �/J phase dia-
grams for h0/J = 0 and J0/J constant are present in Fig. 7.
In the top left panel we have J0/J = 0, that is, a prototype
for all phase diagrams where the uniform part of the coupling
constant is too weak to allow the appearance of FM phases.

In the top right panel, a constant J0/J in the reentrant region
was chosen. Here, the uniform coupling becomes sufficiently
strong to allow the appearing of FM and FM’ phases, although
the SG remains the most ordered phase at zero temperature.
For c = 4 and c = 8, this takes place, e.g., in the neighbor-
hood of J0/J = 1.22 and J0/J = 1.15, respectively. In the
bottom panel, the T/J versus �/J phase diagram for a con-
stant J0/J = 1.4 for both c = 4 and c = 8 is shown. Here,
the uniform coupling becomes stronger, and the mixed phase
FM’ can be found at zero temperature. The phase diagrams
are qualitatively similar for both values of the connectivity.
All the transitions are continuous. As �/J increases, FM and
FM’ phases are the first to be suppressed. Then, the SG to PM
transition line decreases monotonically to T/J = 0 and PM is
the only remaining phase at large �.

The last comment concerns the comparison with the fully
connected network. Here again, the FM’ to FM transition
intercepts the zero temperature axis, contrary to the fully
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P

FIG. 8. Limiting h0/J of the SG phase versus c at T = 0, for
�/J = 0.0 and �/J = 0.2. Below and above the lines are the loci of
the SG (nonergodic) and PM (ergodic), respectively.

connected network. If the two-replica method to localize the
AT line is correct, the finite connectivity results should ap-
proach the fully connected ones as c increases. This seems
to be the case for the general aspects of the phase diagrams
shown above, except in the high field and high coupling
constant regimes. In the fully connected network, there is
no PM phase at zero temperature, in contrast to the finite
connectivity case. Note that this does not mean that there is
no magnetization at zero T : there is, indeed a field-induced
magnetization. The main outcome is that we can find the finite
connectivity network ergodic at zero T , contrary to the fully
connectivity network. To illustrate how the zero T ergodicity
region evolves as a function of the connectivity is shown in
Fig. 8. The figure shows the limiting h0/J of the SG phase, at
T = 0. As one should expect, this limit increases slowly but
monotonically with c.

IV. CONCLUSIONS

In this paper, we have investigated the problem of the joint
presence of SG and RFs in a random network. To accomplish
that, we have considered the RNRFIM [21] where the spin
exchange interaction, as well as the RF, are random variables
following a Gaussian distribution. Our goal has been, using
the connectivity as a control parameter in the theory, to verify
what the differences are with the mean-field theory, i.e., the
fully connected theory [9], particularly in the presence of a
magnetic field. As a methodological novelty in the problem,
we performed the check of the stability of the RS solution
using the two-replica method. This procedure, which gives the
AT line, has been used for the SG problem without RF. Thus,

in fact, it can be considered that our paper also belongs to
a more general discussion concerning the description of the
SG nontrivial ergodicity breaking using the AT line when the
network connectivity can vary.

Following a population dynamics algorithm, the effective
distribution of local fields was determined, allowing the calcu-
lation of relevant order parameters. Then, we obtained phase
diagrams temperature versus FM exchange interaction J0

[see Eq. (3)] and temperature versus the magnetic field h0

[see Eq. (4)] for several values of the RF variance � and
for two values of the average connectivity, namely, c = 4 and
c = 8. All energy scales in the problem are given in units of
the variance J of the random exchange spin interaction. The
differences in the phase diagrams with the two values of c
are mainly quantitative. Nevertheless, the results have shown
that the less entropic phases occupy growing areas to the
detriment of the more entropic ones as c increases. This means
that the connectivity favors the ordered phases, even consid-
ering that the coupling constant is correctly normalized with c
[see Eq. (3)]. Moreover, we do remark that the AT line inter-
cepts both the J0 and h0 axis at zero temperature, contrary to
the observed in the fully connected theory. In other words, the
SG ground state prevails only within a certain interval of J0

and h0. This also means that, even with quenched disorder,
for finite connectivity there is a region at zero temperature
where the ergodicity remains unbroken above a given value
of the magnetic field, no matter the strength of the RF Gaus-
sian variance �. We notice that, in the limit of large values
of c, there are indications that the fully connected theory is
recovered, particularly with regard to the AT line.

To conclude, one of the main outcomes of the present
investigation concerns the crossover between the RF and the
SG regime. Within the fully connected theory, the crossover
between the RF and SG regimes was described by τ ≡ T0 −
T ∼ h2/φ

0 (T0 is the freezing temperature without field). In the
fully connected theory, the values φ = 1 and 3 corresponds
to RF and SG regimes, respectively. We found, in this work,
that at small h0, τ ∼ h0 at � = 0 and τ ∼ h2

0 for any finite �.
In other words, φ = 1 and φ = 2 in the RF and SG regimes,
respectively.
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APPENDIX

The finite connectivity replica method has become stan-
dard. We rewrite here only some key points and refer to
Refs. [17,18] for details. After averaging over ci j we obtain,
in the c/N → 0 limit,

〈Zn〉{Ji j ,hi,ci j } =
∑

σ1···σn

〈
exp

[
β

∑
i,α

hiσ
α
i + c

2N

∑
i, j �=i

(eβJi jσ i·σ j − 1)

]〉
{Ji j ,hi}

. (A1)

Next, we introduce the fraction P(σ ) of sites where the replica configuration σ is realized and the auxiliary variables P̂(σ), and
evaluate the trace over the spin variables. This reduces to the problem of one site, and the replicated partition function can be
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rewritten as

〈Zn〉{Ji j ,hi,ci j } =
∫ ∏

σ

dP(σ )dP̂(σ ) exp

{
N log

∑
σ

〈
exp

[
βh

∑
α

σα − P̂(σ)

]〉
h

+N
∑
σ

P̂(σ )P(σ ) + Nc

2

∑
σσ ′

P(σ )P(σ ′)〈(eβJσ ·σ ′ − 1)〉J

}
. (A2)

In the limit N → ∞, the saddle-point method applies and the free energy becomes

f (β ) = − lim
n→0

1

βn
ExtrP(σ )

{
− c

2

∑
σσ ′

P(σ )P(σ ′)〈(eβJσ ·σ ′ − 1)〉J + log
∑
σ

〈
exp

[
βh

∑
α

σα+c
∑
σ ′

P(σ ′)〈(eβJσ ·σ ′ − 1)〉J

]〉
h

}
,

(A3)

where the auxiliary variables P̂(σ) were eliminated by the saddle-point equations ∂ f (β )/∂P(σ ) = 0. The variables P(σ ) must
satisfy the remaining saddle-point equations:

P(σ ) =
〈
exp

[
βh

∑
α σα + c

∑
σ ′ P(σ ′)〈(eβJσ ·σ ′ − 1)〉J

]〉
h∑

σ ′
〈
exp

[
βh

∑
α σ ′α + c

∑
σ ′′ P(σ ′′)〈(eβJσ ′ ·σ ′′ − 1)〉J

]〉
h

. (A4)

We are interested in those solutions satisfying the RS ansatz:

P(σ ) =
∫

dx W (x)
eβx

∑
α σα

[2 cosh(βx)]n
. (A5)

This expression is equivalent under permutation of replicas. Introducing the RS ansatz in Eq. (A4), we obtain a recursive equation
for the distribution of effective local fields W (x), Eq. (7)
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