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ABSTRACT

The increase in agricultural production is facing several chal-
lenges with future implications for food security and environ-
mental protection. The aim of this study was to evaluate a
remote sensing-based low-cost methodology for assessing the
effects of dicamba and 2,4 Dichlorophenoxyacetic acid (2,4D) in
a non-tolerant soybean crop. Here, we introduced the applica-
tion of six vegetation indices (VI) derived from Unmanned
Aerial Vehicle (UAV) based Red-Green-Blue (RGB) imagery con-
trasting with a conventional approach of visual injury criteria
classification to estimate soybean plant injury and the effect on
grain yield. The results demonstrated the feasibility of Modified
Green-Red Vegetation Index (MGRVI) and Excess Green (ExG)
strongly correlated with the effects of dicamba and 2,4D in
soybean. These VIs discriminated plant injury caused by
dicamba and 2,4D up to 5% of the recommended dose. The
Lethal Dose 50 (LDsg) considering the effect on grain yield was
around 13% (72.80 g a.e. ha™'), 55% (552.75 g a.e. ha™') and
48% (482.40 g a.e. ha™') for dicamba; 2,4D dimethylamine
(DMA) and 2,4D choline (CHO) of the recommended dose,
respectively. This study revealed noteworthy limitations for
the RGB indices to discriminate between the effects of different
formulations of the same herbicide, as for 2,4D DMA and 2,4D
CHO. With expectations for the introduction of new genetic
soybean events and alongside new synthetic auxin compounds,
our results pointed out that the proposed methodology can
lead to a protocol for identifying and estimating the damage to
the off-target movement from these outcoming herbicides on

neighbourhood fields.
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1. Introduction

The increase in agricultural production is facing several challenges over the past few
years. A new generation of genetically modified crops with resistance to dicamba and 2,4
Dichlorophenoxyacetic acid (2,4D) herbicides, including soybean Xtend (Behrens et al.
2007) and Enlist (Zhou et al. 2016; Wright et al. 2010; Skelton et al. 2017), respectively, has
been developed with expectations of improving weed control including glyphosate-
resistant and -tolerant weeds. Along with the commercial introduction of these geneti-
cally modified crops, synthetic auxin herbicides have been rapidly adopted (Wells,
Prostko, and Carter 2019). These compounds present a risk of drift for non-target crops
in neighbouring fields (D. R. O. da Silva et al. 2018), which is worrisome for both food
security and environmental protection. Many reports have shown that soybean can be
highly sensitive to the herbicides dicamba and 2,4D (Egan et al, 2014; Kniss 2018;
Weidenhamer, Triplett, and Sobotka 1989). Moreover, it has been demonstrated that
grain yield reduction is highly correlated to visual injury ratings from dicamba and 2,4D,
with a coefficient of determination (R ranging from 0.95 to 0.99 (Robinson et al. 2013a;
Robinson, Simpson, and Johnson 2013b). As reported, a 10% yield decrease was related to
35% visual injury observed at 14 days after treatment (DAT) and by 40%, 19%, and 15%
injury observed at 28 DAT when soybean was exposed to 2,4D at V2, V5 and R2 growth
stages, respectively (Robinson et al. 2013a). Simulated dicamba drift injured soybean and
reduced grain yield by 71% and 90% at 5% and 10% of the recommended label dose,
respectively (Huang, Lin Yuan, and Zhang 2016).

Early detection of injury from herbicide drift to non-target crops is critical in crop
management. The early evaluation of herbicide symptoms is a valuable information for
grain yield losses estimation. Although herbicide drifts are recognized worldwide as one
of the major risks for crop security, the conventional approach for assessment its damage
in crops has several limitations (Suarez, Apan, and Werth 2017). Unmanned Aerial Vehicle
(UAV) or Aircraft System (UAS) was introduced in this work for soybean plant injury
assessment from dicamba and 2,4D as an alternative to the conventional approach
based on visual criteria classification. UAV-based remote sensing has been successfully
employed to aid farmers’ management (Hunt and Daughtry 2018), analyse dose-response
relation to herbicides (Huang, Lin Yuan, and Zhang 2016) and crop yield estimation
(Balota and Oakes 2016; Yu et al. 2016). True colour Red-Blue-Green (RGB) channel
imageries were introduced for soybean crop monitoring in the last few years. For instance,
the RGB-based vegetation index Excess Green (ExG) provided information about how
canopy changes over time under different cropping conditions, thus enabling the identi-
fication of changes in soybean fields (Yun et al. 2016). Recently, the potential to estimate
soybean canopy defoliation using RGB images taken in the field was demonstrated (Liang,
Kirk, and Greene 2018). These approaches serve as examples to the potential use of RGB
remotely sensed imagery for investigating herbicides damage in a non-target soybean
crop and timely intervention with integrated crop management strategies. However,
since vegetation indices (VI) and derivative indices used in previous studies were not
explicitly designed for dicamba and 2,4D symptoms detection, a more thorough investi-
gation is needed.

Biophysical and biochemical changes in plants can induce reflectance, transmittance,
and absorptance spectral variations (Foster and Griffin 2018), which can be evaluated by
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means of Vls. The Normalized Difference Vegetation Index (NDVI) is one of the most well-
known vegetation indices, as it includes visible and near-infrared reflected electromag-
netic radiation (Gracia-Romero et al. 2017; Thelen, Kravchenko, and Lee 2004). Among the
numerous Vls, the most usual are those derived from multispectral (Ortiz et al. 2011;
Huang et al. 2015; Huang and Thomson 2010) and hyperspectral sensors (Huang, Lin
Yuan, and Zhang 2016; Henry et al. 2004). However, a large amount of investment is
required for the development and maintenance of satellite-based sensors. Furthermore,
the large volume of data generated by hyperspectral sensors makes current crop mon-
itoring expensive, laborious, and time and hardware consuming. At present, the use of
information derived from RGB images acquired from UAV cameras represents a time-
saving and low-cost alternative (Gracia-Romero et al. 2018).

The need for assessing the effects of dicamba and 2,4D at large-scale crop fields is
primarily based on the potential for the increasing use of new herbicide-resistant bio-
technology soybean cultivars in the next years. Acknowledging these concerns, we use
our data to investigate four questions: (1) could a true colour RGB sensor mounted in
a UAV provide reliable information to identify and estimate the damage caused by
dicamba and 2,4D in a non-tolerant soybean crop? (2) Is it possible to set up a dose-
response relationship in soybean to estimate plant injury caused by these herbicides by
applying vegetation indices derived from UAV-based RGB imagery? (3) Is the information
content extracted from RGB vegetation indices suitable to predict the impact on soybean
grain yield induced by dicamba and 2,4D? (4) Does this method allow discrimination
between symptoms caused by dicamba or 2,4D? Seeking to answer these questions, this
study aims to assess plant injury and the impact on grain yield caused by dicamba and
2,4D in a non-tolerant soybean crop by using UAV-based RGB vegetation indices.

2. Materials and methods
2.1. Characterization of the experimental area and treatments

A field experiment was conducted in the 2017/2018 growing season at the Agronomic
Experimental Station (30°07'17"S; 51°41'12"W) of the Federal University of Rio Grande do
Sul (Eldorado do Sul, southern Brazil) (Figure 1), with the glyphosate-resistant genotype
BMX Poténcia RR (Brasmax, GDM Genética do Brasil).

The experiment was carried out in a randomized block design in a factorial scheme.
Factor A consisted of the herbicides Dicamba (diglycolamine salt of dicamba; 3,6-dichloro-
o-anisic acid, XtendiMax® VaporGrip®, 350 g L™ acid equivalent, Monsanto Company,
St. Louis, MO, USA); 24D choline salt (2-hydroxy-N,N,N-trimethylethanaminium
(2,4-Dichlorophenoxy) acetate, Enlist™ Colex-D% 456 g L™ acid equivalent, Dow
AgroSciences Industrial Ltda., Barueri, SP, Brazil) (CHO) and 2,4D dimethylamine salt
(dimethylammonium (2,4-Dichlorophenoxy) acetate, DMA® 806 BR, 806 g L~", Dow
AgroSciences Industrial Ltda., Sdo Paulo, SP, Brazil) (DMA). Factor B consisted of different
doses applied (zero, 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100% of the maximum-
recommended label rate of each herbicide, being 560 and 1005 g a.e. ha™' for dicamba
and 2,4D, respectively). Each plot comprised five rows of 10 m in length, with a row
spacing of 0.45 m (Figure 1). Herbicide applications were made at V6 growth stage (six
nodes at the main stem with fully developed leaves) from 8:30 a.m. to 9:45 a.m. with
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[ ] South America ™™ Brazil Experimental plot

Figure 1. Characterization of the study area: (a) overview of Brazil country and part of South America;
(b) representative area of the experimental plots; (c) a high-resolution UAV-based orthophoto mosaic
of the experimental field at 8 days after herbicide treatments (8 DAT); (d) plot under treatment with
5% 2,4D choline; (e) untreated control; (f) plot under treatment with 5% dicamba; (g) plot under
treatment with 10% 2,4D dimethylamine. (page 7).

temperature variation between 23°C and 27°C, relative humidity of 60% to 75%, and wind
speed below 1 m s™'. Applications were made using a CO,-pressurized backpack sprayer
with AFXR 100-02 nozzles at 200 kPa, delivering 200 L ha™' of herbicide solution. The
choice on the V6 stage was conditioned to most critical time regarding crop stage,
climatic conditions, and the application on surrounding fields that could impact herbicide
drift. Thus, we anticipated for the coexistence among the UAV flights and the summery
season, that occurred earlier and mid-January 2018.

Before sowing, seed treatment was performed with triadimenol fungicide
(0.0027 L kg™"), imidacloprid insecticide (0.001 L kg™'), and inoculation with
Bradyrhizobium Japonicum inoculant (0.003 L kg~' - SEMIA 5079 and 5080 strains
(Nitragin Cell Tech HQ)). Insect pest control was performed with the biological insecticide
Bacillus thuringiensis var. kurstaki HD-l strain at 0.5 L ha™' (Dipel) and Karate Zeon 50
insecticide. Disease control was performed with trifloxystrobin + prothioconazole (Fox,
150 + 175 g L', Bayer S. A. Sdo Paulo, SP, Brazil) at 60 + 70 g ha™' and the adjuvant-
methylated seed oil (Aureo, 720 g L™', Bayer S. A. Sao Paulo, SP, Brazil) at 0.25% volume
per volume (v v7') at the beginning of flowering and 15 days later. Weed control was
provided by the application of glyphosate herbicide (isopropylamine salt,
N-(phosphonomethyl) glicine, Glifosato Nortox, 480 g L™', Nortox S.A., Arapongas, PR,
Brazil) at 1080 g ha™" plus hand weeding. Sprinkler irrigation was used when necessary to
supplement natural rainfall.
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2.2. Data acquisition

Evaluation was performed on spectral data (digital images) acquired from a UAV-based
RGB sensor, plant injury analysis, and grain yield. The UAV system comprised a DJI™
Zenmuse X3 RGB sensor (12.4 megapixel digital camera) onboard on a DJI™ Matrice 100
quadcopter, equipped with Inertial Navigation System (IMU) and Global Satellite
Navigation System (GNSS). The UAV was configured for automated measurements at
50 m above the ground with an average speed of 6 m s™' and 80% lateral and frontal
overlaps. Flights were carried out concurrently to the plant injury analysis between 10:00
a.m. and 10:30 a.m. Plant injury of soybean associated with the effect of herbicides was
assigned based on visual estimative from zero being no injury to 100% standing for
complete necrosis and plant death. All evaluations were performed at 8, 15, and 56 DAT.
Grain yield was determined in an area of 3.60 m? in each plot, and the grains weight was
expressed at 130 g kg™ of moisture.

2.3. Digital image processing

Digital images pre-processing was performed with PhotoScan Professional Edition v.1.4.0
(Agisoft LLC, St. Petersburg, Russia) software according to the following workflow: i)
Loading Images: Images were imported with their corresponding altitude data deter-
mined by the IMU, plus the ellipsoidal height and geographic coordinates (WGS84 datum)
of its central point measured by the GNSS receiver; ii) Aligning Images: Once the images
were loaded, PhotoScan found the camera position and orientation for each image
(Geotags); then, a sparse point cloud model was built. This model carries with it the
digital numbers (DN) of the respective spectral s (Red, Green, and Blue) and elevation
related to the flight surface in its dataset; iii) Alignment Optimization: As poor input can
influence the alignment result negatively, this step was performed to improve the camera
position estimates. Thus, it was possible to get the georeferenced precision from this
image block optimization, and was settled a coordinate reference system to the ortho-
mosaic; iv) Building Dense Point Cloud: New depth points were set based on the
estimated image positions and sparse points model, then combined into a single dense
point cloud; v) Building Mesh: A polygonal model (mesh) was rebuilt based on the dense
point cloud; vi) Building Orthomosaic: As a result, the orthomosaic building allowed the
generation of a 3 cm pixel high-resolution imagery based on the source images and
reconstructed mesh model. The orthomosaic of the study area was exported in Geotiff
archive format, with Universal Transverse Mercator (UTM) coordinate system, Zone 225, in
the WGS84 reference system.

After the initial processing described above, six vegetation indices were derived by
applying band arithmetic on software QGIS Las Palmas v.2.18: Carotenoid Reflectance
Index 1 (CRly; Equation (1)) (Gitelson, Yoav Zur, and Merzlyak 2002), Excess Green (ExG;
Equation (2)) (Meyer and Neto 2008; Zheng et al. 2017), Excess Green minus Excess Red
(ExGR; Equation (3)) (Ballesteros et al. 2018; Meyer and Neto 2008; Zheng et al. 2017),
Modified Green-Red Vegetation Index (MGRVI; Equation (4)) (Bendig et al. 2015), Modified
Photochemical Reflectance Index (MPRI; Equation (5)) (Li, Li, and Sun 2014) and Red-Green
-Blue Vegetation Index (RGBVI; Equation (6)) (Bareth et al. 2016; Bendig et al. 2015). The
vegetation indices were calculated as follows:
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where Pred, Pereen aNd Pgiue are the reflectance values of the Red, Green, and Blue bands.
The VIs were all normalized between 1 and —1 in order to easily compare among them.

2.4. Statistical analysis

Initially, data were tested for Shapiro-Wilk normality and Hartley homoscedasticity. Grain
yield data were subjected to a two-way ANOVA (p < 0.05) to test for effects of dose,
dicamba and 2,4D treatments, and the interaction between dose and herbicides related to
plant injury at 8, 15, and 56 DAT. Herbicide doses were analysed by a three or four
parameters log-logistic model:

flx, (b.d.e)) = d/(1+ (x/e)b> )

f(x, (b,c.d,e)) = c + (d - c) /(1 + (x/e)b> ®)

where ‘f(x(b,c,d,e)) is the dependent variable (grain yield (kg ha™)); ‘X’ is the independent
variable (recommended dose of herbicide (%)); ‘b’, 'c’, ‘d’, and ‘e’ are the parameters. The
parameter ‘e’ refers to the dose producing a response half-way between the upper limit ‘d’
and lower limit ‘c’, i.e., the parameter ‘e’ is the 50% lethal dose (LDsq; %); and parameter ‘b’
is the slope of the curve. The LDs, were obtained through an arithmetic calculation
according to the parameters generated in the model equations.

The relationship of the RGB vegetation indices with plant injury and soybean grain
yield was assessed by linear and quadratic regression analyses. As input data for the Vs,
the arithmetic mean of the pixels within a corresponding area of 11.44 m? in each
experimental plot was calculated (Figure 1). Finally, dose-response curves of a three
(Equation (7)) or four parameters (Equation (8)) log-logistic model were carried out for
Vs that were mostly correlated with plant injury and grain yield.

All described statistical analyses were done through R v.3.6.2 (The R Foundation for
Statistical Computing, Vienna, Austria) by using the caret (Kuhn 2020), tidyverse (Wickham
et al. 2019) and drc (Ritz et al. 2015) packages.
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3. Results
3.1. Drift effect on grain yield

The three parameters log-logistic model (Equation (7)) fitted properly to describe the
effect of dicamba and DMA and CHO 2,4D in soybean grain yield (Figure 2), as both
herbicide and treatment dose effects were significant (p < 0.05).

Dicamba treatments reduced soybean grain yield from the 5% dose, decreasing on
average by 12%, 13%, 41%, and 77% with 1%, 5%, 10%, and 20% treatment doses,
respectively. In contrast, no grain was produced when plants received from 40% to
100% of dicamba. For both 2,4D DMA and CHO formulations, grain yield significantly
decreased only after the doses of 20% (Figure 2). The LDs, for dicamba; 2,4D DMA and
2,4D CHO was around 13%, 55%, and 48% of the recommended label dose of these auxin
herbicides (Figure 2).

Untreated control
2,4D DMA: #fix,(b,d.e)) = 4422.22/(1 + x/54.50)363, R2 = 0.87**, RMSE (kg ha-!) = 625.67

6000 — Dicamba: fx,(b,d,e)) = 4117.94/(1 +x/13.05)2%, R = 0.96***, RMSE (kg ha-!) = 362.42
2,4D CHO: f(x,(b,d,e)) = 4565.03/(1 + x/48.45)363, R? = 0.93***, RMSE (kg ha'!) = 521.94
5000 —
o
==
:\ c—(?—"s‘
1 \
S 4000 — !?f? N
en [}
v [y
~ [
= 3000 — ;
2 i
o) [y
£ !
g 2000 — .‘
ds) .
A}
.
1000 — Q
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g [ A———
M T 1 [ I I | |
o 5 10 20 40 60 80 100

Recommended dose of herbicide (%)

Figure 2. Dose-response curves of a three parameters” log-logistic model describing the soybean
grain yield (kg ha™") according to applied doses (%) of dicamba (100% = 560 g a.e. ha™"); 2,4D
dimethylamine (DMA) (100% = 1005 g a.e. ha™") and 2,4D choline (CHO) (100% = 1005 g a.e. ha™").
Gray bars correspond to the standard error. “Three parameters log-logistic model: f(x,(b,d,e)) = d/(1
+ (x/e)?), where ‘f(x(b,d,e))" is grain yield (kg ha™"); X’ is the herbicide dose (%); ‘b’ is the curve slope;
and parameter ‘e’ refers to the dose producing a response half-way between the upper limit ‘d" and
lower limit ‘c’ (which by definition is equal to zero), i.e., the parameter ‘e’ is the 50% lethal dose
(LDso; %). ***Significance by t-test (p = 0.01). Grain yield for untreated control was 4581 kg ha™".
(page 11).
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3.2. Plant injury

The levels of soybean plant injury related with dicamba and 2,4D treatments were
significantly (p < 0.05) described by quadratic models, shown a close relationship
(R? = 0.82) with the applied doses of these herbicides at 8, 15 and 56 DAT (Figure 3).
For dicamba, the model higher performed at 8 DAT with R? = 0.93 and with a lower Root
Mean Square Error (RMSE = 8.88%). Although models for 2,4D herbicides achieved high
results at 8 DAT, the performance for both DMA and CHO formulations was pronounced
(R?> = 0.98 and 0.97, respectively) at 15 DAT as its RMSE reduced to 5.62% and 4.84%,
respectively.

In general, the soybean plant injury was increased as the dose of herbicides increases.
However, the injury levels shifted concerning the evaluation time after treatment (Figure
3). At 8 DAT, plant injury was similar for 2,4D and dicamba treatments, mainly up to the
dose of 80% (Figure 3). At 15 DAT, dicamba presented higher plant injury than 2,4D and
reached close to 100% plant injury at the dose of 40%, while 2,4D DMA and CHO reached
approximately 60% injury. At 56 DAT, the plant injury decreased to 2,4D; however, it
noticed increasing injury for dicamba since the lower evaluated dose (Figure 3).

The soybean grain yield as a function of plant injury associated with the effects of
herbicides treatment was also described in most instances by quadratic regression (Figure
4). The results showed that soybean grain yield was strongly correlated (R* = 0.83) to plant
injury regarding the tested herbicides and evaluation time after treatment. For dicamba
and 2,4D CHO, the models fitted higher (R? = 0.95 and 0.91, respectively) at 56 DAT. For
2,4D DMA, the higher (R* = 0.89) performance was achieved at 15 DAT. At 8 and 15 DAT for
the same level of injury dicamba decreased the grain yield more than 2,4D.

3.3. Vegetation indices

The six RGB vegetation indices obtained from the UAV-based imagery fitted significantly
(p < 0.05) for soybean plant injury and grain yield concerning the treatments with
dicamba, and both 2,4D herbicides. The results suggested that the Vis were strongly
correlated with each other considering herbicides and evaluation time after treatments
(Figures 5 and Figures 6).

«[4 Dicamba &\ 2,4D dimethylamine (DMA) == 2,4D choline (CHO)
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Figure 3. Relationship between soybean plant injury (%) and doses (%) of dicamba; 2,4D dimethy-
lamine (DMA) and choline (CHO) formulations at (a) 8 days after treatment (DAT), (b) 15 DAT, and (c)
56 DAT. Bars correspond to the standard error. (page 11).
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Figure 4. Soybean grain yield (kg ha™") as a function of plant injury (%) associated with dicamba; 2,4D
dimethylamine (DMA) and 2,4D choline (CHO) at (a) 8 days after treatment (DAT), (b) 15 DAT, and (c)
56 DAT. Bars correspond to the standard error. (page 12).

For plant injury, the relationship with the indices was generally higher at 15 DAT. The
range of R? (0.85 to 0.94) and RMSE values (8.76% to 14.27%) of the regression analyses
suggested that five Vis (ExG, EXGR, MGRVI, MPRI, and RGBVI) could estimate plant damage
with satisfactory performance. Curiously, MGRVI and MPRI showed a very narrow perfor-
mance improvement (upper R* and lower RMSE) concerning dicamba and 2,4D DMA at 8
DAT (Figure 5). Importantly, these indices were the ones that most correlated with the
symptoms of plant injury caused by dicamba and 2,4D over the three evaluated dates
after treatments.

Similarly to plant injury results, when evaluating the relationship between Vis and final
grain yield, it was observed that the R? for ExG, EXGR, MGRVI, MPRI, and RGBVI was positive
and had high values (Figure 6). Considering the high relationship between plant injury
and grain yield as showed in Figure 4 and the results from VIs versus plant injury (Figure
5), it could be expected that both MGRVI and MPRI models achieved superior perfor-
mance contrasting to the other Vis. At 8 DAT, the use of MGRVI to predict soybean grain
yield from the effects of herbicides resulted in higher accuracy (R? = 0.90, 0.90 and 0.88
and RMSE = 535.51 kg ha™', 546.22 kg ha™' and 652.24 kg ha™' for dicamba, DMA, and
CHO 2,4D, respectively). The performance by applying the MPRI was as high as for the
MGRVI index (Figure 6). Accurate grain yield predictions were generally obtained when
images were taken at 15 DAT, although higher results for 2,4D DMA treatments curiously
occurred at the earlier stage (8 DAT).

After identifying that in general MGRVI, MPRI, and ExG established a superior relation-
ship with plant injury and grain yield, dose-response was tested for the three- (Equation
(7)) and four-parameter (Equation (8)) log-logistic models. Dose-response curves of Vis
are then illustrated in Figure 7 for the MGRVI and ExG four-parameter models as in most
instances the parameter ‘b’ (curve slope) of the three-parameter models was not signifi-
cant (p > 0.05). Details on the parameters of the log-logistic models describing the dose-
response of MGRVI, MPRI, and ExG to the tested herbicides are described in the supple-
mental material. MPRI curves were not shown because its fit performance did quite similar
to MGRVI, where MGRVI models reached higher R? (Table 1). Therefore, discussion was
made on MGRVI due to this index being an MPRI transformation supported by assump-
tions that squaring band reflectance values helps increase red, green, and blue reflectance
differences (Bendig et al. 2015).
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Figure 5. Relationship between soybean plant injury (%) and RGB vegetation indices according to
applied doses (%) of dicamba; 2,4D dimethylamine (DMA) and 2,4D choline (CHO): left figures (a)
Carotenoid Reflectance Index 1 (CRI,), (d) Excess Green (ExG), (g) Excess Green minus Excess Red (ExGR),
(j) Modified Green-Red Vegetation Index (MGRVI), (m) Modified Photochemical Reflectance Index (MPRI)
and (p) Red-Green-Blue Vegetation Index (RGBVI) are results from 8 days after treatment (DAT); central
figures (b) CRI4, () ExG, (h) EXGR, (k) MGRVI, (n) MPRI and (q) RGBVI are results from 15 DAT; right figures
() CRI, (f) ExG, (i) EXGR, (I) MGRVI, (o) MPRI and (r) RGBVI are results from 56 DAT. (page 13).
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Figure 6. Relationship between soybean grain yield (kg ha™") and RGB vegetation indices according to
applied doses (%) of dicamba; 2,4D dimethylamine (DMA) and 2,4D choline (CHO): left figures (a)
Carotenoid Reflectance Index 1 (CRI,), (d) Excess Green (ExG), (g) Excess Green minus Excess Red (ExGR),
(j) Modified Green-Red Vegetation Index (MGRVI), (m) Modified Photochemical Reflectance Index (MPRI)
and (p) Red-Green-Blue Vegetation Index (RGBVI) are results from 8 days after treatment (DAT); central
figures (b) CRI4, () ExG, (h) EXGR, (k) MGRVI, (n) MPRI and (q) RGBVI are results from 15 DAT; right figures
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(c) CRI, (f) ExG, (i) EXGR, (I) MGRVI, (o) MPRI and (r) RGBVI are results from 56 DAT. (page 13).
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Figure 7. Dose-response curves of a four parameters” log-logistic model describing the response of
vegetation indices Modified Green-Red Vegetation Index (MGRVI) and Excess Green (ExG) associated
with applied doses (%) of dicamba (100% = 560 g a.e. ha™'); 2,4D dimethylamine (DMA)
(100% = 1005 g a.e. ha™") and 2,4D choline (CHO) (100% = 1005 g a.e. ha™") at (a) 8 days after
treatment (DAT) (b) 15 DAT (c) 56 DAT. Bars correspond to the standard error. *Four parameters log-
logistic model: f(x,(b,c,d,e)) = ¢ + (d - ¢)/(1 + (x/e)°), where ‘f(x(b,c,d,e))’ is the response of vegetation
index; 'x’ is the herbicide dose (%); ‘b’ is the curve slope; and parameter ‘e’ refers to the dose
producing a response half-way between the upper limit ‘d’ and lower limit ‘c’, i.e., the parameter ‘e’
is the 50% lethal dose (LDsq; %). (page 14).

In general, the response of MGRVI and ExG decreased for both dicamba and 2,4D
compared to the untreated control, although the decrease was superior for dicamba since
lower doses throughout 8, 15, and 56 days after treatment (Figure 7). At 8 DAT, ExG
demonstrated to be able to discriminate between the damage level caused by dicamba
and 2,4D up to 5% dose (Figure 7(a)), as was successfully achieved by MGRVI for all doses
only at 15 DAT (Figure 7(b)). The discrimination between the effects of dicamba and 2,4D
for ExG at 15 DAT was achieved by up to 60% dose. As for 56 DAT, the VIs response
significantly shifted down even for the untreated control. Moreover, separability between
treatments only occurred for moderate doses (about 20% to 60%) of herbicides (Figure 7
(c)). The VIs were not suitable to assign significant differences in response between DMA
and CHO 2,4D formulations.

4. Discussion
4.1. Dicamba and 2,4D effects on soybean

Dicamba can injury non-tolerant (susceptible) soybean by doses from 0.56 to 560 g a.e.
ha™', which consequently induced significant losses in grain yield (Figure 2), how has
been reported by several studies (Foster and Griffin 2018; D. R. O. da Silva et al. 2018;
Robinson, Simpson, and Johnson 2013b). Even soybean plants receiving dicamba at 0.56 g
(1% of the recommended dose) presented plant injury (Figure 3). The decreasing in grain
yield for up 0.56 g a.e. ha™' dose surpassed 12%, with over to 40% at 112 g a.e. ha™'
(Figure 2), meaning that a drift event of dicamba on those non-dicamba-tolerant soybean
plants will cause critical damage and significant yield loss.

The effect of sublethal doses of 2,4D in the tested non-2,4D-tolerant soybean sug-
gested a hormesis phenomenon (Belz and Duke 2014; J. R. O. Silva et al. 2019). It was
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Table 1. Performance of the four parameters® log-logistic models describing the dose-
response of the vegetation indices Excess Green (ExG), Modified Green-Red Vegetation
Index (MGRVI) and Modified Photochemical Reflectance Index (MPRI) to dicamba (DIC);
2,4D dimethylamine (DMA) and 2,4D choline (CHO) at (a) 8 days after treatment (DAT),
(b) 15 DAT, and (c) 56 DAT. The performance of each model was expressed by means of
the coefficient of determination (R?) and the Root Mean Square Error (RMSE).

Dk

DAT Dose-response model of vegetation index R RMSE
8 ExGpic = —0.09 + (0.21)/(1 + (x/42.61)"7°) 0.9167 0.0201
MGRVIpic = —0.28 + (0.57) /(1 + (x/27409)"27) 0.9531 0.0385
MPRIpic = —0.14 + (0.29)/(1 + (x/26.68)1'26) 0.9516 0.0201
ExGowa = —0.15 + (0.31) /(1 + (x/68.99)1'5°) 0.9383 0.0194
MGRVIpya = —0.47 + (0.85) /(1 + (x/64.68)1'3°) 0.9553 0.0430
MPRIpwa = —0.27 + (0.49)/ (1 + (x/67.98)"") 0.9537 0.0235
ExGero = —0.04 + (0.20) /(1 + (x/36‘73)2‘32) 0.9528 0.0166
MGRVIgio = —0.17 + (0.50) /(1 + (x/30.27)2'36) 0.9789 0.0287
MPRIcyo = —0.08 + (0.26) /(1 + (x/29.43)2'32) 0.9769 0.0157
15 ExGpic = —0.02 + (0.12)/(1 + (x/17.75)*") 0.9323 0.0148
MGRVIpic = —0.16 + (0.36) /(1 + (x/14442)2'48> 0.9414 0.0362
MPRInc = ~0.08 + (0.18)/ (1 + (x/14.31)**") 0.9403 0.0185
ExGown = —0.02 + (0.18) /(1 + (X/46.60)3'96) 0.9503 0.0167
MGRVIpwa = —0.14 + (0.47) /(1 + (x/43‘98)3'96> 0.9545 0.0414
MPRIpys = —0.07 + (0.24) /(1 + (x/43.68)3-9°) 0.9531 0.0216
ExGero = —0.02 + (0.20)/ (1 + (x/38.03)*%) 0.9780 0.0127
MGRVcho = —0.14 + (0.50) /(1 + (x/36.20)3'79> 0.9831 0.0277
MPRIo = —0.07 + (0.26)/(1 + (x/35.81)3'74) 0.9808 0.0152
56 ExGoic = —0.05 + (0.15) /(1 + (x/14.68)4'16) 0.9438 0.0161
MGRVIpic = —0.15 + (0.32) /(1 + (x/14421)4'12> 0.9508 0.0321
MPRIpic = —0.08 + (0.16)/ (1 + (x/14.16)*"") 0.9491 0.0167
ExGown — —0.06 + (0.17)/ (1 + (x/64.50)"*) 0.8336 0.0266
MGRVIpys = —0.16 + (0.35) /(1 + (x/62‘62)5‘°3) 0.8255 0.0567
MPRIgua = —0.08 + (0.18) /(1 + (x/62.38)5'°7) 0.8221 0.0293
ExGro = —0.07 + (0.20) /(1 + (x/59.47)3‘5') 0.9421 0.0165
MGRVico = ~0.18 + (0.40)/ (1 + (x/57.34)*7 ) 0.9336 0.0379
MPRIcio = —0.09 + (0.21)/ (1 + (x/56.94)”) 0.9332 0.0195

& our parameters log-logistic model: f (x,(b, ¢, d, &) = ¢ + (d - W1 + (x/e)?); where ‘F(x (b, ¢, d, €)' is the
response of vegetation index; ‘x’ is the herbicide dose (%); ‘b is the curve slope; and parameter ‘e’
refers to the dose producing a response half-way between the upper limit ‘d’ and lower limit ‘c’, i.e.,
the parameter ‘e’ is the 50% lethal dose (LDsg; %).

p-value significance codes: 0 “***' 0.001 **' 0.01 ‘ *"0.05"." 0.1 "".

reported that 2,4D induced some stimulating effects on soybean plants (Schabenberger
et al. 1999; Morré 2000; Belz and Duke 2014), as the increase in grain yield from 1 g a.e.
ha~' for DMA and CHO 2,4D treatments (Figure 2). Despite the visual symptoms of plant
injury ranging from 0 (8 DAT) to 15% (56 DAT) and from 0 (8 DAT) to 6% (56 DAT) for 2,4D
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DMA and CHO (Figure 3), respectively, the soybean grain yield increased 229 kg ha™" (5%)
on average related to the untreated control. Although low doses may stimulate plant
development, thus characterizing the hormetic effect, high doses of 2,4D significantly
decreased grain yield (Egan, Barlow, and Mortensen 2014). The findings outcoming from
this paper agree with other works reporting both stimulatory or inhibit effects from low to
high concentrations of 2,4D and other synthetic auxin herbicides on soybean (Solomon
and Bradley 2014; J. R. O. Silva et al. 2019).

The LDs, for dicamba considering the effect on grain yield was around 13% (72.80 g a.
e. ha™") of the recommended dose. The same effect for 2,4D DMA and CHO occurred with
around 55% (552.75 g a.e. ha™') and 48% (482.40 g a.e. ha™") of the recommended dose
(Figure 2). These results suggest how a drift event from an auxin herbicide, especially
dicamba, can be active in non-tolerant soybean genotypes. Moreover, it must be con-
sidered for the potential impact from moderate to high doses of both 2,4D DMA and CHO
when applied at V6 growth stage. Recent research suggested that 2,4D (including on
Choline formulation) doses higher than those inducing hormetic effects seem to com-
promise soybean yield components more strongly when applied in early vegetative
growth stages (J. R. O. Silva et al. 2019; Rizzardi et al. 2019).

4.2. Vegetation indices for detection of plant injury and soybean yield

Vegetation indices are a remote sensing valuable tool to gather plant physiological and
biochemical changes in a non-destructive way. Although some recent studies have
evaluated herbicide symptoms in soybean by using traditional Vis from visible plus
infrared spectral images or hyperspectral data (Zhang et al. 2019; da Silva et al. 2019),
few attempted to predict effects by applying only UAV-based RGB images (i.e., visible
electromagnetic radiation spectrum). In this paper, we accomplished that five RGB
vegetation indices (ExG, ExGR, MGRVI, MPRI, and RGBVI) demonstrated to be useful for
assessing soybean plant injury and estimate yield loss caused by low to high doses of
dicamba and 2,4D.

The results accomplished with the use of RGB indices in the proposed methodology
can be strongly supported by correlating agronomic knowledge upon herbicides
mechanism of action with the physical principles of remote sensing for vegetation. On
one hand, herbicides like dicamba can lead to severe destruction of the pigment systems
associated with photosynthesis, consequently affecting dry matter accumulation, thus
resulting in corresponding changes in biophysical parameters (Huang, Lin Yuan, and
Zhang 2016; Robinson, Simpson, and Johnson 2013b). Compounds of 2,4D were related
to reducing the photosynthetically activity (D. R. O. da Silva et al. 2018) in a lower intensity
than dicamba. Therefore, this reduced leaf area, inhibited the growth of soybean plants,
caused fewer main stem nodes, and result in significant yield loss (Robinson et al. 2013a).
On the other hand, the leaf pigments are directly correlated with the changes in the
reflectance of Red-Green-Blue (RGB) part of the electromagnetic radiation spectrum. Our
main results showed that symptoms of plant injury strongly correlated with ExG, MGRVI,
MPRI, and RGBVI (Figure 5). These VIs were developed to address the photosynthetic
efficiency of vegetation (Bendig et al. 2015; Li, Li, and Sun 2014). Furthermore, a great
advantage of this remote sensing-based technique is its non-destructive way of gathering
information about vegetation status.
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Unlike the conventional method based on injury criteria by visual analysis, the
protocol by applying RGB vegetation indices revealed some orderly Vl-response
patterns related to the effect of the synthetic auxins (Figure 5). Therefore, these
findings could lead to quantify and distinguish between the early effects of sublethal
doses of dicamba or 2,4D drift events, how was successfully achieved for ExG at 8
DAT (Figure 7(a)) and MGRVI and MPRI (data not shown) at 15 DAT (Figure 7(b)). The
response of these indices show substantial changes in its values and serve as
examples of typical reflectance responses to plant stress in the corresponding wave-
length range (visible spectrum about 400 to 700 nm) of the RGB bands, which here
were due to the effects of herbicides. The change in ViIs values refers to the
specificity of the mechanism of action of dicamba (Grossmann 2010), showing how
soybeans are most susceptible to this synthetic auxin than 2,4D compounds
(Solomon and Bradley 2014; Silva et al. 2018).

The notable shift down in dose-response curves for MGRVI and ExG (Figure 7) when
comparing between dicamba and 2,4D occurred because of several typical spectral traits
of green vegetation, such as green peak related to xanthophyll cycle and red valley
related to chlorophyll concentration (Zhang et al. 2019). These spectral traits gradually
became vague as a consequence of stronger soybean susceptibility to dicamba, so the Vls
response was decreased. As a result, this spectral property suggested that the vitality of
the soybean plants was already compromised at 8 DAT since lower doses of dicamba
(Figure 7 (a)). Also observed at 15 DAT was a tendency shift up in dose-response curves
for doses of 2,4D between 10% and 20% (Figure 7(b)), which could be a sign that injured
soybean can recovery from low to moderate rates of this compound. The attenuation of
the Vs response towards lower values at 56 DAT (Figure 7(c)) can be mainly credited to
the background (e.g., soil) that became prominent as the vegetation fraction decreased
due to soybean senescence.

The strong orderly patterns of the Vis-response suggested the possibility to spectrally
quantify different herbicides doses (Zhang et al. 2019) and early predict the herbicide drift
effects (Figures 5 and Figures 6), as we accomplished for dicamba and 2,4D. Particularly,
our results demonstrated noteworthy limitations to early discrimination versus the effects
of 2,4D dimethylamine or choline salt. This is because both are just different formulations
of the same herbicide and once absorbed cause the same effect on plants. The difference
between this formulation is associated with physical properties related to the drift
potential at the moment of application (Marcinkowska et al. 2017).

When it comes to herbicides that indirectly affect plant pigment cycles such as
dicamba and 2,4D, RGB vegetation indices can be useful to measure injury symptoms
and predict grain yield in soybean crops. RGB imagery based on UAV platforms
enables assessment at the desired time. Consecutive measurements on the same
plots showed high repeatability and consistency of the vegetation indices tested in
the present study. Temporal planning of field and UAV sampling were performed
with flexibility pointing to the feasibility to assess the effects of a drift from off-target
auxin herbicides when main events occurred. The protocol described here allowed
the analysis of a soybean field with a low-cost UAV system and having the corre-
sponding RGB vegetation indices. This analysis will be useful to indicate distinct parts
of the field with associate levels of soybean injury and the corresponding impact on
grain yield.
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5. Conclusion

This study demonstrated the feasibility of the combined use of agronomic metrics and
UAV-based vegetation indices derived from a low-cost RGB consumer-grade camera for
plant injury detection and to assess the impact of synthetic auxin herbicides, as dicamba
and 2,4D, in a soybean crop.

The vegetation indices MGRVI and ExG achieved high-performance for real-time
assessment of plant injury and soybean grain yield from both dicamba and 2,4D effects.
Furthermore, this remote sensing technique can be used to assess typical changes in
plant spectral response to some herbicides. This methodology has the potential to
provide an objective measurement of symptoms and grain yield loss, as well as for
distinguishing between the herbicides that caused the damage.

With expectations for the introduction of new genetic soybean events and concomi-
tantly new synthetic auxin compounds, our results pointed out that the proposed
methodology can lead to a protocol for identifying and estimating the damage to the off-
target movement from these outcoming herbicides on neighbourhood fields.
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