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ABSTRACT

Unravelling the complexity of tonian-cryogenian (950-680 Ma) evolution of ophiolites requires the search for
rare mineral systems and their quantification with varied techniques. Ophiolites in the Brasiliano Orogen are
widely distributed over 2,000 km along the eastern half of South America. We selected two ophiolites from
different geotectonic settings of the Sul-Riograndense Shield, southern Brasiliano Orogen, to delimit the evo-
lution of the oceanic phase of the orogen. The southern portion of the Bossoroca ophiolite is inserted in the Sao
Gabriel juvenile terrane and contains rare metasomatic tourmaline in chloritite close to serpentinite and meta-
morphosed Cr-spinel. The southern Bossoroca ophiolite was intruded by Cerro da Cria and Ramada Granites and
the U-Pb-Hf isotopic study of zircon from these rocks constrains the crustal evolution of the Sao Gabriel juvenile
terrane. Capané ophiolite has similar age (793-715 Ma) as the Bossoroca ophiolite and was inserted in the
Porongos fold-thrust belt with preserved Cr-spinel of mantellic composition. Integrated use of Cr-spinel mineral
chemistry, B isotopes in tourmaline in the Bossoroca ophiolite and zircon U-Pb-Hf isotopes of granites associated
with the southern Bossoroca ophiolite revealed several steps in the evolution of the ophiolites in the Dom
Feliciano Belt. Capané Cr-spinel cores have mantle-derived compositions (Mg# 0.66 — 0.69; Cr# 0.51 — 0.53),
tourmaline from the Bossoroca ophiolite is dravite and has !'B = 0 to + 3, and granites crystallization ages are
578 &+ 3.2 and 612 4+ 12 Ma (eHf,;, = —10 to —25). Zircon from other dravite occurrences of the Bossoroca
ophiolite were previously dated at 920 Ma. We unraveled the main steps in the evolution of ophiolites from the
southern Brasiliano Orogen, with emphasis on the Bossoroca and Capané ophiolites, during their trajectory from
mid-ocean ridge (920 Ma), formation of dravite in oceanic crust, preservation of mantellic cores in Cr-spinel, and
intrusion of craton-generated granites at 612-578 Ma.

1. Introduction

(1000 km) Arabian-Nubian Shield of northeastern Africa and in South
American terranes (Goias — 500 km long, Sao Gabriel — 80 km) and are

Ophiolites are associations of mafic, sedimentary and ultramafic
rocks, remnants of oceanic crust and mantle associated with coeval
metamorphic, sedimentary and igneous rocks that occur in orogenic
belts and represent traces of ancient Wilson cycles (Dilek, 2003; Dilek
and Furnes, 2014; Hartmann et al., 2019; Amaral et al., 2020). Ophio-
lites provide information about mid-ocean ridge and subduction zone
processes, mantle dynamics, fluid-rock interactions and mechanisms of
continental growth in accretionary and collisional belts (e.g., Saccani
et al.,, 2020). Neoproterozoic ophiolites are present in the extensive
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linked with the Brasiliano-Pan-African Orogeny (Dilek, 2003; Stern
et al., 2004; Caxito et al., 2014; Azer, 2014; Brown et al., 2020). This
orogeny was associated with the break-up of supercontinent Rodinia and
later collage of West Gondwana (Suita et al., 2004; Brito-Neves et al.,
2014; Hartmann et al., 2019). Tonian-cryogenian (950-680 Ma)
ophiolites from the Dom Feliciano Belt, southern Brasiliano Orogen, are
remnants of the Adamastor oceanic crust. In the Sao Gabriel juvenile
terrane, western portion of the Dom Feliciano Belt, the remnants are
associated with metaplutonic and metavolcanosedimentary rocks of
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Fig. 1. (a) Geological map of the Dom Feliciano Belt (modified from Rapela et al., 2011; Arena et al., 2017; Hartmann et al., 2019). (b) Geological map of the
Porongos fold-thrust belt, Sao Gabriel terrane and fragments of the Rio de La Plata craton, showing the location of ophiolites (1 to 7) (modified from Philipp et al.,

2016; Hartmann et al., 2019; Cerva-Alves et al., 2020).

island arc environment (e.g., Cerro Mantiqueiras, Ibaré, Palma, Bos-
soroca and Cambaizinho ophiolites — (Hartmann and Chemale, 2003;
Arena et al., 2016, 2017; Hartmann et al., 2019; Cerva-Alves et al.,
2020). Ophiolite slices are also present in the central portion of the Dom
Feliciano Belt associated with schists of the Porongos fold-thrust belt —
Capané (Marques et al., 2003; Arena et al., 2018), Candiotinha (Xavier
et al., 2019), Arroio Grande (Ramos et al., 2020) and correlative La Tuna
(Uruguay; Peel et al., 2018).

Metasomatic mineral assemblages in ophiolite, in particular tour-
maline associated with chloritite enclosed in serpentinite, help decipher
the evolution of ultramafic rocks in oceanic crust environments. Cr-
spinel is a main mineral in podiform chromitites (e.g., Abdel-Karim
et al., 2018; Qiu and Zhu, 2018; Derbyshire et al., 2019; Hodel et al.,
2019). Chromite indicates the mantle component of the ophiolite
sequence (Arai and Miura, 2015). The only Cr-spinel with mantle-like
composition in the Brasiliano Orogen was described in the Araguaia
Belt (Kotschoubey et al., 2005; Hodel et al., 2019)). Despite accurate
characterization of ophiolites in the Dom Feliciano Belt (e.g. Arena et al.,
2016, 2017, 2018, 2020; Ramos et al., 2020; Hartmann et al., 2019),

recent studies question the presence of oceanic crust in the Brasiliano
Orogen (e.g., Konopasek et al., 2020), requiring additional character-
ization and evaluation of origin and evolution of the ophiolites.
Accordingly, we studied mantellic Cr-spinel and dravite from the
ophiolites; we added U-Pb-Hf isotopes in zircon from intrusive granites
to constrain the final evolutionary stage of the terrane.

The objective is to describe the evolution of the Bossoroca and
Capané ophiolites from the oceanic, accretionary phase of the Brasiliano
Orogen. We studied petrography and mineral chemistry of serpentinite
and chloritite samples from the two ophiolites. We focused on Cr-spinel
and tourmaline mineral chemistry, B isotopes in tourmaline from the
Bossoroca ophiolite and zircon U-Pb-Hf isotopes of two intrusions, Cerro
da Cria and Ramada Granites, in the southern portion of the Bossoroca
ophiolite. In addition, we report the chemical composition of mantle-
derived Cr-spinel from the Capané ophiolite. The study of the Bos-
soroca and Capané ophiolites integrated with U-Pb dating and Lu-Hf
isotopes in zircon of two intrusive granites in the Bossoroca ophiolite
is key to understanding the evolution of the oceanic crust, mantle and
continental crust in the Brasiliano Orogen.
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Fig. 2. (a) Geological map of Bossoroca ophiolite (modified from Gubert et al., 2016 and Massuda et al., 2020). (b) Geological map of Capané Antiform, Porongos

Group (modified from Zvirtes et al., 2017).

2. Geological setting

The studied rock association is part of the extensive Neoproterozoic
orogenic belt that extends along the eastern half of South America. Most
of the Brasiliano Orogen was formed by continental collisional processes
(660-500 Ma), but the Sao Gabriel terrane formed during the oceanic,
accretionary stage (950-660 Ma) of the orogen. The terrane is part of the
local Dom Feliciano Belt.

The Dom Feliciano Belt is the southern extension of the
Neoproterozoic-Cambrian Brasiliano Orogen. The belt was formed by
the collision of oceanic domains and continental fragments between the
Rio de La Plata, Congo and Kalahari cratons during the formation of
West Gondwana (Fernandes et al., 1992; Silva et al., 2005; Saalmann
et al., 2011; Philipp et al., 2016). This orogenic belt extends from
southern Uruguay to Santa Catarina state (Brazil) (Fig. 1a). The Sul-
Riograndense Shield is located in the center of the Dom Feliciano Belt
(Fig. 1b) and divided (from W to E) into: (1) Taquaremb¢ terrane with
Archean and Paleoproterozoic rocks interpreted as a fragment of the Rio
de La Plata craton, (2) Sao Gabriel terrane as an association of juvenile
magmatic arcs, (3) Porongos fold-thrust belt with metavolcanosedi-
mentary rocks and inliers of basement rocks, (4) granitic rocks of Pelotas
batholith and (5) foreland Camaqua Basin (Hartmann et al., 1999;
Babinski et al., 1996; Saalmann et al., 2005; Pertille et al., 2017; Philipp
and Machado, 2005; Paim et al., 2014).

The Sao Gabriel terrane is the western portion of the Dom Feliciano
Belt and records the initial stages of the Brasiliano Orogen (Hueck et al.,
2018). The terrane contains ophiolites (Arena et al., 2016), oceanic arc
associations (Saalmann et al., 2007), late-tectonic basins (Cerva-Alves
et al., 2020) and was pierced by post-tectonic granites (Chemale et al.,
2000). The ophiolites are the oldest portion of the Sao Gabriel terrane.

The mafic, ultramafic and metasomatic rocks that are remnants of the
proto-Adamastor oceanic crust formed at ca. 920 Ma (Arena et al., 2016;
Hartmann et al.,, 2019) between the Rio de La Plata and Kalahari
cratons.

The ophiolites are tectonically intercalated with rocks of the Cambai
Complex (e.g., Cerro Mantiqueiras, Cambaizinho ophiolites) and with
supracrustal rocks of the Vacacai Group (e.g., Ibaré, Palma and Bos-
soroca ophiolites) (Fig. 2a). The Cambai Complex is composed of juve-
nile diorite, tonalite and trondhjemite orthogneiss and by granitoids of
the Lagoa da Meia Lua and Sanga do Jobim suites (Saalmann et al.,
2011; Hartmann et al., 2011). The supracrustal rocks include the met-
avolcanosedimentary rocks of the Vacacai Group (Remus et al., 1999)
including Campestre (Gubert et al., 2016), Passo Feio (in part; (Lopes
et al., 2015), Cambaizinho (Cerva-Alves et al., 2020) and Pontas do
Salso (Vedana et al., 2017) formations.

These juvenile rocks are the remnants of two magmatic arcs (Saal-
mann et al., 2011; Hartmann et al., 2011). The older Passinho arc
formed in an intra-oceanic setting and marks the first accretionary event
in the Dom Feliciano Belt at ~880 Ma (Leite et al., 1998). The younger
Sao Gabriel arc was intra-oceanic (780 — 680 Ma) and evolved to an
active continental margin at ca. 700 Ma (Hartmann et al., 2011; Philipp
et al., 2018; Cerva-Alves et al., 2020) and represents a second orogenic
accretionary event. The Sao Gabriel terrane was covered by the sedi-
mentary and volcanic sequences of the foreland Camaqua Basin (610 —
540 Ma) and was intruded by post-collisional granites (Cacapava, Jag-
uari, Ramada, Cerro da Cria, Sao Sepé Granites) associated with the
third and last major tectonic event in the Sul-Riograndense Shield —the
Dom Feliciano orogeny (650 — 550 Ma) (Chemale et al., 2000; Hueck
et al., 2018; Philipp et al., 2018).

The eastern-central portion of the Dom Feliciano Belt — Porongos
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Fig. 3. (a) Thin section of serpentinite from Bossoroca ophiolite with mesh texture and disseminated Cr-spinel, plane polarized light. (b) Thin section of serpentinite
from Capané ophiolite with aggregates of Cr-spinel, plane polarized light. (c) Selected backscattered electron (BSE) image of zoned Cr-spinel from Bossoroca
ophiolite, displaying dark gray core and light gray rim. (d) Selected backscattered electron image of zoned Cr-spinel from Capané ophiolite.

fold-thrust belt — includes the Ediacaran Porongos Group schists, the
Paleoproterozoic Encantadas Complex gneisses and Santana Formation
quartzites (Hartmann et al., 2004; Pertille et al., 2015). Also known as
Tijucas terrane, this belt is separated from the Sao Gabriel terrane in the
west by the Cacapava High (Fernandes et al., 1995; Chemale et al.,
2000) (Fig. 1b). Large areas, including the contact between the terranes,
were covered by the sedimentary rocks of the Camaqua Basin.

The Porongos Group is the major component of the fold-thrust belt
and comprises metasedimentary rocks (semipelitic schist, metapelite,
quartzite) and hosts slices of ophiolites (e.g., Capané — (Marques et al.,
2003; Pertille et al., 2017; Arena et al., 2018), granite, quartzite and
marble (Fig. 2b). This group was part of an Ediacaran (650 — 550 Ma)
foreland basin with sediments derived from the granitoids of the Pelotas
Batholith and from the reworked basement (Pertille et al., 2015). The
Camaqua Basin, Porongos fold-thrust belt and Pelotas Batholith formed
a coeval orogenic triad (Pertille et al., 2015a, 2015b, 2017). The triad,
added to the pre-1000 Ma basement and the tonian juvenile terrane,
constitute the Dom Feliciano Belt.

3. Analytical methods

We integrated geological survey, petrography, electron microscopy,
electron microprobe analyses (EPMA) of Cr-spinel and tourmaline, LA-
ICP-MS boron isotope analyses in tourmaline and U-Pb and Lu-Hf ana-
lyses in zircon.

We selected samples of serpentinite from the Bossoroca (BM09-A,
BM14-C, BM17-A) and Capané ophiolites (JP51) to make polished thin
sections and mineral mounts and separated zircon from Cerro da Cria
and Ramada granitic intrusions (Supplementary Table S1). Samples
were prepared at ‘Laboratorio de Separacao de Minerais, Centro de
Estudos em Petrologia e Geoquimica, Instituto de Geociéncias, Uni-
versidade Federal do Rio Grande do Sul (CPGq-IGEO-UFRGS)’, Brazil.
Electron microprobe analyses (EPMA) were undertaken at Universidade
Federal de Ouro Preto, Laboratory of Microscopy and Microanalysis
(DEGEO-UFOP-Brazil) using a JEOL JXA-8230 superprobe, equipped
with five wavelength dispersive spectrometers (WDS). Analytical pro-
cedures followed methodology established at UFOP (e.g., Hartmann
et al., 2019). Operating conditions were 15 kV accelerating voltage,
20nA beam current and 5 um beam diameter. Boron isotopes by LA-ICP-
MS U-Pb and Lu-Hf isotopes were determined at Departamento de
Geologia of Universidade Federal de Ouro Preto, Minas Gerais, Brazil,
with a Thermo-Scientific Neptune Plus multi-collector ICP-MS. The
procedures follow the pattern described in Cerva-Alves et al. (2020),
Hartmann et al. (2019) and Schannor et al. (2019). Mineral abbrevia-
tions follow Whitney and Evans (2010). Methodology is given in Sup-
plementary Text S1.
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Fig. 4. Quantitative characteristic X-ray maps of Cr-spinel. (a-c) Bossoroca ophiolite, showing two zones. (d-f) Capané ophiolite, showing three zones (Cr-spinel 1, 2

and 3) similar to BSE images.
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Fig. 5. Triangular classification diagram of Cr-spinel, Bossoroca and Capané
ophiolites. Y(Cr**) = Cr/(Cr + Fe3*+Al); Y(Fe") = Fe**/(Cr + Fe3*+Al); Y
(AI*) = Al/(Cr + Fe* +Al) (modified from Gargiulo et al., 2013); (spinel gap
after Barnes and Roeder, 2001).

4. Results
4.1. Field relationships

The Bossoroca ophiolite consists of several serpentinite bodies, vol-
canoclastic rocks, and chloritite in the studied southern portion. Ser-
pentinite hosts Cr-spinel and the associated chloritite contains
tourmaline.

Serpentinites form hilly outcrops in grasslands approximately 1 km
long and 200 m wide dipping ~60° to NNW. Serpentinite is green to
dark grey, fine to medium grained and shows mesh texture with veins of
opaque minerals; Cr-spinel is accessory. In some intensely altered por-
tions, serpentinite is light grey. The two post-tectonic intrusions — Cerro
da Cria and Ramada Granites, are in direct, covered contact with the
ophiolite.

Chloritites (chl > 90 vol%) form 0.5-1.0 m-long loose blocks
enclosed in serpentinite. Most blocks are massive but some have incip-
ient foliation. Chlorite is dark green and shows lepidoblastic texture.
Tourmaline is dispersed in chloritite and is better identified in sawed,
polished hand samples.

Sample JP51 is a chromitite enclosed in serpentinite from the Capané
ophiolite. These rocks are hosted in schists from the Porongos Group and
covered by rocks of the Camaqua Basin and Rio Bonito Formation,
Parana Basin.

4.2. Petrography and mineral chemistry

Three samples of serpentinite, one sample of chloritite from the
Bossoroca ophiolite and one sample (JP51) of serpentinite from the
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Capané ophiolite were selected for petrography and mineral chemistry
(results in Supplementary Tables S2-S6). In thin section, serpentinite
from the Bossoroca ophiolite has mesh texture and is composed of
serpentine, tremolite, magnetite, chlorite and Cr-spinel. Chloritite has
lepidoblastic texture; some crystals form radial bundles. This meta-
somatic rock is composed of chlorite and accessory apatite, magnetite
and monazite. WDS analyses were carried out on Cr-spinel from ser-
pentinite and tourmaline from chloritite.

4.2.1. Cr-spinel in serpentinite

Modal composition of serpentinite from the Bossoroca ophiolite is
serpentine (75-90 vol%), tremolite (10 vol%), magnetite (7-10 vol%),
forsterite (5 vol%), chlorite (4 vol%) and Cr-spinel (3 vol%) (Fig. 3a).
Serpentine has mesh texture, is fine to medium grained and also fills

Precambrian Research 351 (2020) 105979

fractures. Tremolite presents radial growth with crystals up to 0.7 mm in
size. Magnetite fills veins and fractures in serpentine, also occurring in
rims of Cr-spinel that were formed during metamorphism. Chlorite is
usually associated with Cr-spinel showing reaction textures. Accessory
Cr-spinel in serpentinite is subhedral and up to 500 pym in size (Fig. 3a).
Cr-spinel shows distinct core and rim zoning in BSE (Fig. 3c). Cores are
homogeneous and dark grey and surrounded by thin, light gray rims.
Some Cr-spinel crystals are broken with chlorite growth between pairs of
fragments.

EPMA analyses and characteristic X-ray maps of Cr-spinel from
Bossoroca ophiolite show cores with high Al;03, Cro03 and low TiO5 and
MgO concentrations (Fig. 4a, b, ¢; Supplementary Tables S2-54). Rims
are enriched in Fe;Os. This indicates a trend of alteration of Cr-spinel
from aluminous cores (picotite, Al-chromite and chromite) to ferric
rims (Fe-chromite, Cr-magnetite and magnetite) (Fig. 5). FeO is homo-
geneous. Chromium numbers — Cr# = Cr/(Cr + Al), vary in cores from
0.57 to 0.74 and Mg# = Mg/(Mg + Fe?") vary from 0.14 to 0.26; Cr# of
the rims vary from 0.87 to 0.97 and Mg# from 0.01 to 0.19. Chemical
zoning of chromite is reflected in the mineral classification diagram
(Fig. 5).

Serpentinite of Capané ophiolite has a mineral assemblage of
serpentine (85 vol%), Cr-spinel (10 vol%) and magnetite (5 vol%)
(Fig. 3b). Pseudomorphic texture and magnetite veins are common in
serpentinites. Cr-spinel shows three zones in BSE images (Fig. 3d): ho-
mogeneous dark core (spinel 1), medium-gray mantle (spinel 2) and
light gray rim (spinel 3). EPMA analyses and characteristic X-ray maps
of Cr-spinel from the Capané ophiolite (Fig. 4d, e, f) show homogeneous
cores with high Al;03 (26.62-28.19 wt%), Cry03 (47.74-45.64 wt%)
and MgO (14.42-15.53 wt%) (Supplementary Table S5). Spinel classi-
fication diagram indicates picotite in the cores (Fig. 5). Cr# varies from
0.51 to 0.53 and Mg# from 0.66 to 0.69. Mantle of spinel 2 has lighter
gray tone in BSE images. EPMA analyses and characteristic X-ray
maps show low Aly03 (1.56-4.46 wt%), Cry03 (36.82-39.92 wt%), MgO

(Mixed- 2

Fig. 7. (a-b) Photomicrographs of chloritite with dravite, Bossoroca ophiolite, plane polarized light. (c-d) Selected backscattered electron images of

zoned tourmaline.
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Fig. 9. Binary diagrams displaying compositional variation between cores, rims and mixed zones of tourmaline.

(2.96-5.50 wt%) and high Fe;O3 (22.24-27.56 wt%). In the spinel
classification diagram, these mantles are chromite. Values of Cr# are
high and vary from 0.85 to 0.94; Mg# are low from 0.19 to 0.35. BSE
images, EPMA analyses and characteristic X-ray maps of spinel 3 show a
light gray portion in contact with spinel 2. Spinel 3 is magnetite (Fig. 5).

4.2.2. Dravite in chloritite

Chloritite samples consist of Mg-chlorite (>85 vol%), apatite (7 vol
%), magnetite (5 vol%) and accessory monazite. One sample of chloritite
(BM16-T) has tourmaline in the mineral assemblage. Low U concen-
trations in monazite from the chloritite precluded in situ U-Pb age
determination.

EPMA results (n = 37) classify tourmalines as dravite from the alkali
group (Fig. 6; Supplementary Table S6). This classification is similar to
dravites designated Bossoroca A (Hartmann et al., 2019) and Ibaré
(Arena et al., 2020) described in the juvenile terrane. Dravite is con-
tained in chlorite and shows light pink to dark green pleochroism and

internal zoning (Fig. 7a, b). Crystals are euhedral with sizes up to 0.8 cm.
Cataclasis fractured and broke crystals, fractures filled with chlorite.
Integrated observation of BSE images, characteristic X-ray maps and
EPMA analyses of dravite displays three zones with compositional dif-
ferences (core, rim and mixed zone) (Fig. 7c, d; Fig. 8; Fig. 9a, b, ¢, d;
Supplementary Fig. S1). The cores are heterogeneous with darker gray
portions, the mixed zones have lighter portions. Rims are homogeneous,
light gray and surround the cores along straight, crystallographic faces
(Fig. 7¢, d). Characteristic X-ray map of Fe shows core, mixed zone and
rim (Fig. 8a), whereas Mg, Al and Na outline the rim (Fig. 8b, ¢ and d).
Heterogeneous cores have high SiO» (36.12-37.05 wt%) and Al;Og3
(28.32-31.7 wt%) concentrations, low TiO5 (0.18-1.36 wt%) and FeO
(6.08- 9.38 wt%). Rims have high FeO (7.36-8.82 wt%), TiO2
(0.69-1.33 wt%) and low SiO (34.88-36.66 wt%) and Aly,Os
(28.45-31.29 wt%) compared to the cores (Fig. 9). Compositions of
mixed zones are gradational between cores and rims and have high FeO
and TiO; (Fig. 9).
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4.3. Boron isotopes of dravite

In situ B isotopes analyses of distinct tourmaline zones (cores, mixed
zones and rims) yeld significant isotopic variation (Supplementary
Table S7). Cores have 5''B values of + 1.95 to + 2.50%o (peak at + 2.30)
(n = 7), mixed zones (n = 11) have 5''B values of + 0.26 to + 1.99%o
(peak at + 1.16) and rims (n = 28) have 5!1B values of —0.56 to + 2.42%o
(peak at + 1.42).

4.4. Zircon U-Pb-Hf isotopes

U-Pb-Hf isotope data are listed in Supplementary Tables S8 and S9.
Zircon crystals from the two granites are mostly euhedral, homoge-
neous, little fractured, and show aspect ratios 2:1 (Supplementary
Fig. S2). Thirty zircons from the Ramada Granite yield concordia age
(Fig. 12a) of 578 + 3.2 Ma with MSWD of concordance = 0.066. Th/U
ratios of zircon are 1.47-5.69, considered magmatic (Hartmann et al.,
2000). Zircons from the Cerro da Cria Granite yield an intercept U-Pb
age (Fig. 12b) of 612 + 12 Ma with MSWD of concordance = 0.087.
Some analyses show discordant ages younger than 570 Ma. These
younger ages are interpreted as due to Pb loss. Th/U ratios vary between
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1.49 and 2.84.

The eHf values for Cerro da Cria Granite vary from —8 to —13 and for
Ramada Granite from —16 to —25. Negative, subchondritic eHf values
indicate contribution from old continental crust during melting of the
granites (Fig. 13).

5. Discussion
5.1. Evolution of Bossoroca ophiolite

Cr-spinel is a petrogenetic indicator in mafic and ultramafic rocks.
However, Cr-spinel is susceptible to modifications during alteration and
subsequent prograde metamorphism of host rocks, thus affecting the
petrogenetic interpretation and erasing the magmatic history (Kimball,
1990; Barnes, 2000). The serpentinites of the Bossoroca ophiolite have
accessory, zoned Cr-spinel. Despite preserved magmatic core and rim
textures visible in BSE images, mineral chemistry indicates modification
of composition during metamorphism. Low Mg# for cores (0.26-0.14)
and rims (0.19 — 0.01) and increase in Cr# (0.57-0.97) from cores to
rims in Cr-spinel of serpentinite from the Bossoroca ophiolite demon-
strate alteration during metamorphism under greenschist and low
amphibolite facies (Fig. 10) (Kimball, 1990; Suita and Strieder, 1996).
The low values of Mg# reflect exchange of Mg?>" and Fe?" between Cr-
spinel and other silicates during metamorphic alteration of the ultra-
mafic rocks (Barnes, 2000; Gonzalez-Jiménez et al., 2009; Bhat et al.,
2019). The mineral assemblage tremolite + talc + forsterite 4 chlorite in
serpentinite from the Bossoroca ophiolite indicates low amphibolite
facies metamorphism (Barnes and Roeder, 2001). These results are
compatible with the low amphibolite facies conditions described by
Hartmann et al. (2019) in the northern portion of the Bossoroca
ophiolite.

Tourmaline in ophiolite is a powerful tool in the study of the evo-
lution of oceanic rocks during interaction with seawater. The mineral is
refractory, capable of accommodating many elements and is stable
during most geological processes. Tourmaline is widely used in
geochemical and boron isotope studies of continental and oceanic crust
environments, because the mineral maintains the isotopic composition
after crystallization (Henry and Dutrow, 1996; Trumbull et al., 2013;
Grew et al., 2015; Farber et al., 2015; Trumbull and Slack, 2018; Hart-
mann et al., 2019; Arena et al., 2020).

Boron isotopic ratios show large variations in natural systems. The
main geochemical reservoirs of B are the continental crust (average 5''B
= -10%o), mantle (average 5''B = -7%o) and seawater (average 1B =
+39.6%0) (Fig. 11) (Van Hinsberg et al., 2011; Yamaoka et al., 2015;
Marschall and Foster, 2018). Fresh mantle (MORB, OIB) has very low B
concentrations (0.060 ppm) and relatively uniform §!'B = —7%. Ser-
pentinites have high B concentrations (10-91 ppm) and high 5!B values
(+7 to +19.9%0) compared to fresh mantle. The increase in B concen-
trations and the high §!'B values in serpentinites are due to the inter-
action of seawater with the mantle rocks (Marschall et al., 2006, 2018).

Previous studies of the Bossoroca ophiolite described in the northern
portion a massive tourmalinite close to serpentinite and amphibolite
(massive tourmalinite — Bossoroca A; (Hartmann et al., 2019; Werle
et al., 2019). Bossoroca A tourmaline is dravite with three distinct zones:
Tur 1, 2 and 3. Tur 1 is homogeneous and has & g — 1.8%o, Tur 2 is
heterogeneous with !B = —1 to +0.4%.. Irregular contacts between the
two zones led to the interpretation that Tur 2 formed by alteration and
replacement of Tur 1. Tur 3 has §'1B = —8.2 to —9.2 and was interpreted
as formed from metamorphic fluids in the greenschist facies after
obduction (Hartmann et al., 2019). Massive tourmalinite from the Ibaré
ophiolite has homogeneous dravite with §!'B = +3.2 to +5.2%o that
formed in altered oceanic crust (Arena et al., 2020).

We identified a second occurrence of tourmaline in the Bossoroca
ophiolite (Tourmaline B). This dravite occurs included in magnesian
chlorite from chloritite enveloped by serpentinite. The three zones
identified in BSE images (cores, rims and mixed zones) show
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Fig. 11. Histogram of boron isotopic compositions of
tourmaline from Bossoroca and Ibaré ophiolites. (a)
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Fig. 12. U-Pb concordia diagrams for igneous zircon from (a) Ramada Granite and (b) Cerro da Cria Granite.

correspondence between mineral chemistry and boron isotopic compo-
sition. The different zones (cores, rims and mixed zones) identified in
BSE images of dravite and in the characteristic X-ray maps indicate the
occurrence of two events of tourmaline growth, which is supported by
mineral chemistry and boron isotopes. The first event is recorded in
cores that have high 5'1B values (+1.95 to + 2.50%o0), low Fe?* (0.826 —
0.993 apfu), Ti (0.02 - 0.09 apfu) and high Al (5.78 - 6 apfu) and Si
(5.96 — 6.01 apfu) compared to the rims. The higher 8''B and large
chemical difference between core and rim seen in the binary diagrams
suggest formation of tourmaline cores by direct interaction with hy-
drothermal seawater with high fluid/rock ratio. Rims grew outwards
from the cores and have low !B values (—0.56 to +2.42%o), high Fe?t
(1.01 - 1.24 apfu), Ti (0.05 - 0.16 apfu) and low Al (5.65 — 5.94 apfu)
and Si (5.75 - 6.0 apfu) compared to the cores. Rims record the second
episode of tourmaline formation within the oceanic crust with influence
of terrigenous sediments. Dravite (Tourmaline B) formed below the
interface of seawater with oceanic crust with composition controlled by
host rock and hydrothermal fluids. Positive 3'1B values of Tourmaline B
point to the formation of dravite in altered oceanic crust from seawater-

derived hydrothermal fluids present in terrigenous marine sediments
(Fig. 11). The decrease in 5B values between tourmaline cores and
rims is explained by reaction with seawater that had small fluid/rock
ratios (e.g., Yamaoka et al., 2015). Mixed zones portions have 5!''B and
chemistry that vary between the compositions of cores and rims. The
mixed zones correspond to portions of cores partly altered during for-
mation of rims (second event of tourmaline growth). Cores with high
5''B = +2.30%0 and low Fe*" (0.83 to 0.99 apfu) are similar and com-
parable to Tur 1 described in Tourmaline A by Hartmann et al. (2019).
Tur 1 is homogeneous and has high & 1'B = +1.8%0 and low Fe>" (0.74 -
0.85 apfu). Rims in Bossoroca Tourmaline B are comparable with Tur 2
of Hartmann et al. (2019), reflected by heterogeneous structure in BSE
and characteristic X-ray maps with lower 8''B = —1 to +0.4%0 and
higher Fe?* (0.85 — 1.25 apfu). Tourmaline type Tur 3 described in
Bossoroca A was not identified in Tourmaline B.

The difficulty of dating ultramafic rocks and characterizing oceanic
pre-obduction processes was overcome by the systematic study of
metasomatic rocks in the ophiolite. Metasomatic rocks in ophiolites
include commonly chloritite, tourmalinite, rodingite, and albitite, which
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concentrate Zr during their formation and thus favors zircon crystalli-
zation (Arena et al., 2016, 2017, 2018; Hartmann et al., 2019; Cerva-
Alves et al., 2020). Zircon included in tourmaline from tourmalinite in
the Bossoroca ophiolite (Tourmaline A) was dated and characterized as
oceanic in composition. The U-Pb age is 920. 4 + 9.8 Ma, with oceanic
signature (U/Yb < 0.1) and origin from depleted mantle with eHf = +12
(Hartmann et al., 2019) marking the earliest mantle-derived composi-
tion in the Sao Gabriel terrane.

A continuum of U-Pb-Hf isotopic evolution of the crust is observed in
the terrane from mantle-derived compositions in the Bossoroca ophiolite
(e.g., Hartmann et al., 2019) evolving to Cambai Complex metatonalite
and Sanga do Jobim Granite (Cerva-Alves et al., 2020) (Fig. 13). The
descending curve indicates interaction with continental crust in the
formation of the Sanga do Jobim Granite. A strong descent in eHf
occurred during formation of Cerro da Cria and Ramada Granites. Zircon
from the Cerro da Cria granite has age = 612 4+ 12 Ma, eHf = —8to —13;
Ramada granite is 578 + 3.2 Ma, ¢Hf = —16 to —25, altogether indi-
cating melting of old continental crust in the underburden of the terrane.
This interpretation by Remus et al. (1999) based on isotopic geochem-
istry was corroborated by magnetotelluric investigations of Bologna
et al. (2019) that show presence of craton underneath the juvenile Sao
Gabriel terrane.

The evolution of the Bossoroca ophiolite started in the mid-ocean
ridge with the fragmentation of Rodinia supercontinent at 920 Ma
(Hartmann et al., 2019). The pre-obduction processes consist of intense
serpentinization and metasomatism of the Tonian oceanic crust and
mantle. A long-lived history of heated seawater infiltration altering the
rocks formed serpentinites, metasomatic chloritite and zoned dravite.
Dravite from the southern Bossoroca ophiolite formed below the
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interface of seawater with oceanic crust and has compositions controlled
by host rock and hydrothermal fluids. Dark (in BSE) tourmaline cores
formed directly in contact with seawater. Rims formed with less influ-
ence of the seawater and the mixed zone represents alteration of cores by
fluids. This process can be compared to modern mid-Atlantic ridge in the
Lost City hydrothermal system described by Boschi et al. (2008). In the
system, seafloor hydrothermal activity formed serpentinites with high
boron concentration (34 — 91 ppm) and high 8*1B values (+11 to +16%o)
and metasomatic rocks (chlorite-rich talc schist). The data indicate
extensive serpentinization dominated by seawater at temperatures be-
tween 150 and 250 °C with high fluid/rock ratio (Boschi et al., 2008).

The low amphibolite facies metamorphic event altered the Cr-spinel
composition during obduction of the ophiolite over the Sao Gabriel arc.
Overthrusting of the juvenile Sao Gabriel terrane and ophiolites over the
Rio de La Plata Craton occurred between 660 Ma (Cerva-Alves et al.,
2020) and 612 Ma (this work) and triggered a descending curve of eHf
from mantellic to continental crust.

5.2. Evolution of Capané ophiolite

Podiform chromitites in ophiolites support the understanding of
geological setting of ultramafic rocks (e.g., Rollinson, 2008; Miura et al.,
2012; Dechamps et al., 2013; Gonzalez-Jiménez et al., 2014; Mohanty
et al., 2018; Hodel et al., 2019). Cr# of Cr-spinel allows the distinction
between peridotites (and related serpentinites) formed in abyssal envi-
ronments and in suprasubduction zones (Dick and Bullen, 1984;
Dechamps et al., 2013). Cr-spinel of abyssal peridotites has low Cr#
(0.20 < Cr# < 0.60), whereas in subduction-related rocks (SSZ peri-
dotites) the Cr-spinel has higher Cr# (>0.60) (Dick and Bullen, 1984;
Rizeli et al., 2016). Cr-spinel in ophiolite records the nature of ancient
upper mantle, young oceanic mantle and processes of melt formation
(Gonzalez-Jiménez et al., 2014).

The Capané ophiolite is composed of lenses of serpentinite, magne-
sian schist, talc schist, podiform chromitite and rodingite (Jost and
Hartmann, 1979; Marques et al., 2003; Arena et al., 2018). The recog-
nition of primary compositions of Cr-spinel establishes these rocks as a
fragment of the oceanic lithosphere in the accretionary Brasiliano Oro-
gen. The cores of Cr-spinel from the Capané ophiolite (spinel 1 — pico-
tite) record high Mg# (0.69-0.66) and low Cr# (0.53-0.51) consistent
with formation in abyssal peridotites (Fig. 10). Abyssal peridotites form
in the mid-ocean ridge environment and are residues of adiabatic
decompression melting mostly in slow to ultraslow spreading ridges
(Dechamps et al., 2013; Warren, 2016). The rims (spinel 2 — chromite,
spinel 3 — magnetite) decrease in Cr and Mg contents and increase in Fe
compared to the core. Lower Mg# and higher Cr# in rims indicate that
chromite and magnetite rims formed by alteration during low-grade
metamorphism (Fig. 10) (Ismalil, 2009; Gonzalez-Jiménez et al., 2009;
Azer, 2014).

Podiform chromitites from the Araguaia Belt include Cr-spinel with
primary mantle-derived composition, as pioneering description in Bra-
siliano Orogen ophiolites (Kotschoubey et al., 2005; Hodel et al., 2019).
In the Dom Feliciano Belt, mantle-derived composition of Cr-spinel from
the Capané ophiolite was recognized by Marques (1996) and is
described in this work. In contrast to the metamorphic composition of
Cr-spinel from other ophiolites in the Dom Feliciano Belt, fresh cores of
the Capané spinel have high Al;03 (26.62-28.19 wt%), CrpO3
(47.74-45.64 wt%) and MgO (14.42-15.53 wt%) and very low TiOy
(<0.06 wt%). These compositions are characteristic of primary, mantle-
derived Cr-spinel described for podiform chromitites from other
ophiolites (e.g., Zhou et al., 2001; Azer, 2014; Gonzalez-Jiménez et al.,
2014).

The Capané ophiolite marks the closure of the Adamastor ocean in
the evolution of West Gondwana (Arena et al., 2018). The evolution of
the ophiolite started in the mid-ocean ridge environment in a slow to
ultraslow spreading ridge. Abyssal peridotites are considered the pro-
toliths of the serpentinites consistent with the primary composition of
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Cr-spinel cores. Intense metasomatism produced rodingites. Previous
studies of metasomatic zircon from a rodingite blackwall in the Capané
ophiolite yielded ages of 793 + 0.9, 757 + 2.1, 715 + 2.2 Ma (Arena
etal., 2018). These ages were interpreted as multiple alteration events in
the mantle. Values of eHf = +10.7 to + 15 and trace elements of zircon
(e.g., U/Yb < 0.1) indicate that the metasomatic rock was formed in an
oceanic crust environment (Arena et al., 2018). The obduction occurred
during the collision that formed the Porongos fold-thrust belt at
650-570 Ma (Arena et al., 2018).

Finding and analyzing some rare and informative minerals in the
Bossoroca and Capané ophiolites integrated with U-Pb dating and Lu-Hf
isotopes in zircon from the Ramada and Cerro da Cria Granites fostered
the understanding of the evolution of the mantle, oceanic and conti-
nental crust in the southern Brasiliano Orogen. The evolution of Neo-
proterozoic oceanic crust in southern Brasiliano Orogen started at 920
Ma with metasomatic events forming chloritites with tourmaline with
positive 5''B values, indicating altered oceanic crust from seawater-
derived hydrothermal fluids present in terrigenous marine sediments.
Intense serpentinization altered abyssal peridotites from spreading ridge
center environment (Fig. 14a). Subduction zones are the fundamental
driver for the incorporation of oceanic crust and mantle into continental
margins or island arcs (Dilek and Furnes, 2014). The process of closure
of Adamastor ocean resulted in preservation of oceanic crust and mantle
in different geotectonic settings in southern Brasiliano Orogen. The final
geotectonic scenario at 550 Ma was marked by granitic intrusions trig-
gered by melting of old continental crust beneath Sao Gabriel juvenile
terrane (Fig. 14b). Characterizing the pre-obduction processes that
occurred in ophiolites is key to the reconstruction of the geodynamic
evolution of the accretionary, oceanic stage of the Brasiliano Orogen in
the consolidation of Gondwana Supercontinent.

6. Conclusions

Tonian-cryogenian evolution of ophiolites in the southern Brasiliano
Orogen started at 920 Ma with crystallization of zircon and dravite in an
oceanic ridge of the proto-Adamastor Ocean during intense serpentini-
zation of abyssal peridotite consistent with mantle-derived Cr-spinel
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cores. Oceanic crust was preserved in the southern Bossoroca ophiolite
as evidenced by heavy B isotopic compositions of tourmaline. Over-
thrusting of assembled oceanic crust and Sao Gabriel arc onto the Rio de
La Plata Craton resulted in melting of cratonic rocks and intrusion of
Ediacaran granites consistent with negative zircon eHf values. The
agglomeration of Gondwana involved overthrusting of oceanic crust +
mantle sections + intra-oceanic arcs over the Paleoproterozoic
basement.
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