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Abstract

Background

The recent literature reports promising results from using intelligent systems to support deci-

sion making in healthcare operations. Using these systems may lead to improved diagnostic

and treatment protocols and to predict hospital bed demand. Predicting hospital bed

demand in emergency department (ED) attendances could help resource allocation and

reduce pressure on busy hospitals. However, there is still limited knowledge on whether

intelligent systems can operate as fully autonomous, user-independent systems.

Objective

Compare the performance of a computer-based algorithm and humans in predicting hospital

bed demand (admissions and discharges) based on the initial SOAP (Subjective, Objective,

Assessment, Plan) records of the ED.

Methods

This was a retrospective cohort study that compared the performance of humans and

machines in predicting hospital bed demand from an ED. It considered electronic medical

records (EMR) of 9030 patients (230 used as a testing set, and hence evaluated both by

humans and by an algorithm, and 8800 used as a training set exclusively by the algorithm)

who visited the ED of a tertiary care and teaching public hospital located in Porto Alegre,

Brazil between January and December 2014. The machine role was played by Support Vec-

tor Machine Classifier and the human prediction was performed by four ED physicians. Pre-

dictions were compared in terms of sensitivity, specificity, accuracy, and area under the

receiver operating characteristic curve (AUROC).
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Results

All graders achieved similar accuracies. The accuracy by AUROC for the testing set was

0.82 [95% confidence interval (CI) of 0.77–0.87], 0.80 (95% CI: 0.75–0.85), 0.76 (95% CI:

0.71–0.81) for novice physicians, machine, experienced physicians, respectively. Process-

ing time per test EMR was 0.00812±0.0009 seconds. In contrast, novice physicians took on

average 156.80 seconds per test EMR, while experienced physicians took on average

56.40 seconds per test EMR.

Conclusions

Our data indicated that the system could predict patient admission or discharge states with

80% accuracy, which was similar the performance of novice and experienced physicians.

These results suggested that the algorithm could operate as an autonomous and indepen-

dent system to complete this task.

Introduction

Overcrowding in emergency departments (EDs) is internationally recognized as one of the

greatest challenges to healthcare provision [1]. Emergency department crowding is associated

both with objective negative clinical endpoints, such as mortality [2], as well as flawed clinically

important processes of care, such as lengthened time to treatment for patients with time-sensi-

tive conditions [3]. Over the years, multiple small process improvement projects have

attempted to improve ED overcrowding, but these processes do not improve the fundamental

problem of improving hospital capacity [4]. Predicting ED attendances could help with

resource allocation and reduce pressure on busy hospitals.

In healthcare operations, the growing use of intelligent systems (e.g. to support clinical deci-

sions) may represent an important transition to a “new healthcare” [5]. Intelligent systems can

help dealing with demands for more accurate diagnostics [6], safer and more effective medi-

cines [7], and more effective treatments [8]. Using these systems may lead to improved diag-

nostic and treatment protocols, procedures [8] and help to predict hospital bed demand.

Emergency departments are time sensitive, highly stressful, non-deterministic, interrup-

tion-laden, and life-critical environments [9]. In these conditions, effective decision making is

difficult or even impossible to achieve by humans. Despite some effort to develop intelligent

systems to support ED decision-making [10], there is not much evidence from studies assess-

ing their capability to operate as fully-automated, user-independent systems. We still lack

knowledge on whether computer-based systems may be considered suitable to substitute

humans in ED decision making, be it clinical or managerial decisions. This study targets such

knowledge gap by investigating the performance of an intelligent system developed to predict

hospitalizations and discharges, based on early ED patient text records using the SOAP (Sub-

jective, Objective, Assessment, and Plan) framework comparing the performance of a com-

puter-based algorithm and humans in predicting hospital bed demand in an ED.

Methods

Study database

This was a retrospective cohort study, which compared the performance of humans and

machines in predicting hospital bed demand from an ED. Predictions were made by a set of
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physicians and by a trained algorithm, based solely on the records of the initial ED evaluation

(i.e. SOAP notes), and compared to actual patient status after (admitted as an inpatient or dis-

charged from the ED) 24 hours since first evaluation. This study was approved by the ethics

committee of Hospital de Clı́nicas de Porto Alegre. Consent was not obtained because the data

were analyzed anonymously and retrospectively. Authors have complied with the recommen-

dations of the Declaration of Helsinki. The database was made available by the ED of an

842-bed, tertiary care and teaching public hospital located in the city of Porto Alegre, Brazil.

Each electronic medical records (EMR) contained relevant information on early clinical care

provided to patients, such as SOAP framework notes, prescriptions and exams. All textual rec-

ords were written in Brazilian Portuguese.

EMR from all 16,703 patients who visited the ED between January and December 2014

were assessed in this study. Exclusion criteria were duplicated and empty textual records and

those where patient final status were explicitly described in the SOAP notes; e.g. texts such as

“HAA” (hospital admission authorized), “patient left”, “PD” (patient discharged), “patient not

located”, and “patient did not answer when called”. Also excluded incomplete textual records,

corresponding to those with missing information on one or more subjects of the SOAP frame-

work. Consequently, the number of EMRs was reduced to 9,030, of which 4,673 were records

from discharged patients and 4,357 were records of admitted patients; Table 1 details the rea-

sons for records removal. Note that this hospital’s ED classifies patient acuity according to the

Manchester Triage System [11], and is tasked within the local health system with providing

care only to patients in the immediate (I), very urgent (VU), and urgent (U) categories. The

balanced ratio between inpatient and discharged classes in the dataset reflects the type of care

provided by the ED. No sample adjustments were made.

The database was adjusted to be used as input to both machine and human graders. Records

were structured with two fields of information. The first was a dummy variable indicating

patient final status (inpatient or discharged). The second contained the free-form textual

SOAP notes entered by the hospital’s healthcare providers during the first patient-physician

encounter.

Next, the dataset was randomly split into stratified (i.e. same ratio between classes, inpatient

and discharged, as in the original sample distribution) training and testing sets. The training

set was used to develop the machine’s algorithm and the testing set was used to compare

machine and human graders. We sampled 2.5% of the records to comprise the testing set (230

records). This sample translates to a margin of error of 6.4%, with a confidence interval of

95%. The remaining 8,800 records were considered the training set. The ratio between records

belonging to classes inpatient and discharged was kept constant in both sets, according to the

original sample distribution. As a result, training and testing sets presented 4,553 and 120, and

4,247 and 110 records in classes discharged and inpatient, respectively.

Table 1. Selection of reports from the database.

Description Inpatient Discharged Total

Number of reports in the original database 8,038 8,665 16,703

Duplicated reports -10 -5 -15

Information on final status explicit in reports -191 -2,009 -2,200

Empty reports -2,246 -1,067 -3,313

Incomplete SOAP reports -1,234 -911 -2,145

Number of reports used in the study 4,357 4,673 9,030

SOAP: Subjective, Objective, Assessment, and Plan.

https://doi.org/10.1371/journal.pone.0237937.t001
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Intelligent system protocol

The machine role was played by Support Vector Machine Classifier (SVMC), which was the

best predicting algorithm according to a previous analysis [12]. Textual information from all

records were pre-processed and the algorithm trained. Next, the algorithm was used to predict

the final status of 230 patients from the testing set.

The SVMC was first introduced by [13], being widely used to solve supervised classification

problems from different application domains [14]. The two-class SVMC finds a hyperplane

that ensures maximum separation between classes. Separating margins are identified by few

data elements named support vectors [13]. The best predicting algorithm in [12] uses a varia-

tion of the two-classes SVMC called nu-Support Vector Classifier (nu-SVC). Proposed by [15],

nu-SVC uses a parameter to control the number of support vectors and training errors. More

details about the classifier are available in [15]. In this study, the nu-SVC was implemented

using a linear kernel and default parameters of the package scikit-learn [16] from Python 3.6

[17].

As proposed previously [12], four pre-processing steps were carried out to prepare the tex-

tual information to be used as input to the algorithm: normalization, tokenization, feature

selection, and conversion to set-of-words. In the normalization step, punctuation marks,

numerical characters, and stop words were removed; capital letters were substituted by lower-

cases; and words were reduced to radical forms. In the tokenization step, the continuous string

of characters of each record was broken down into linguistic units called tokens, which were

delimited by blank spaces in the string. The algorithm uses the combination of unigrams,

bigrams and trigrams as features, which are sequences of one, two or three adjacent words

from the list of tokens. In the feature selection step, the F-Value of each feature from the train-

ing set was calculated. Following [12], features with an F-Value above the 65-th percentile of

largest values were selected. The F-Value of a particular feature is calculated by:

FvalueðiÞ ¼
ðXimp

i � XiÞ
2
þ ðXdis
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2
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nimp� 1

Pnimp
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imp
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where Xi, X
imp
i and Xdis

i is the average of the i-th feature in the complete, inpatient, and dis-

charged datasets, respectively; Ximp
k;i is the i-th feature of the k-th inpatient instance, and Xdis

k;i is

the i-th feature of k-th discharge instance. The last pre-processing step was the conversion to

set-of-words representation, which results in a matrix indicating the occurrence of selected

features in records. Matrix columns represent each of all selected features, while matrix rows

represent each of the records. Matrix cells were filled out using term frequency–inverse docu-

ment frequency (TF-IDF) indicator results. It may be expressed as:

TFIDF t; d;Dð Þ ¼
f ðt; dÞ

maxff ðt; dÞ : t 2 dg
� log

jDj
jfd 2 D : t 2 dgj

ð2Þ

where t denotes the feature, d denotes the record, D is the total number of records in the collec-

tion, and f(t,d) is the number of occurrences of feature t in record d.

Once all pre-processing steps were performed, the algorithm was trained and the final sta-

tus of patients from the testing set was predicted. Records of the testing set could be classified

as belonging to one of two classes, inpatient or discharged. It was assumed that if a record was

classified as inpatient, the patient stayed in the hospital and a ward bed was required. On the

other hand, if a record was classified as discharged, there was no need for hospitalization. As a

result, a list indicating the class of the 230 records in the testing set was made available. This

list was used to measure the intelligent system performance in the present study.
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Human predictions

The manual prediction of the testing set was performed by four hospital’s ED physicians. Fol-

lowing [18], recruited physicians had different levels of experience. Two were novice ED phy-

sicians, with less than two years of experience working in the hospital’s ED, while the other

two had been working in the hospital’s ED for more than 10 years.

Manual prediction was carried out in two steps. The first step aimed to verify substantial

inter-observer agreement between physicians with similar experience. A trial testing subset of

30 randomized records was created, 14 belonging to the inpatient class and 16 belonging to the

discharged class. All four physicians analysed the records and the Cohen’s Kappa coefficient

[19] was used to measure their level of agreement. Kappa values between 0.61 and 0.80, and

between 0.81 and 1.00 represent “substantial” and “almost perfect” strengths of agreement

respectively [19]. Thus, 0.61 was used as minimum threshold for grouping evaluations from

each pair of physicians with same experience.

The pair of novice physicians and the pair of experienced physicians disagreed in 4 and 5

predictions respectively. As a result, Cohen’s Kappa coefficient was 0.74 for novice physicians

and 0.66 for experienced physicians; both scores indicated “substantial” level of agreement,

surpassing the minimum established threshold for grouping evaluations.

In the second step, the remaining 200 records were split into subsets, observing class fre-

quencies, and assigned to physicians for assessment. Eventually, each of the 200 records were

analyzed by both experienced and novice physicians.

Physicians received personalized weblinks to access the records they were expected to evaluate.

For each record, physicians were instructed to read and answer the following question: “Based

exclusively on this SOAP note, what do you think happened to the patient?” Two options were

given: (i) “INPATIENT–Patient required a hospital ward bed” or (ii) “DISCHARGED–Patient

was discharged after consultation, not requiring a hospital ward bed”. Records consisted of four

paragraphs, one to each subject of the SOAP framework. Physicians did not receive any feedback

about their answers. In addition, physicians we not allowed to consult any other records, systems,

colleagues, or other resources. Fig 1 shows an example of record presented to physicians.

In case of divergence between answers of physicians in the same experience group the con-

servative answer (“Inpatient”) was considered. The conservative answer maximized patient

safety and was consistent with clinical practice when there is doubt regarding patient immedi-

ate prognosis.

Statistical analysis

This study used validation methods similar to those in [18]. The statistical analysis was carried

out in R x64 3.3.3 [20]. Receiver Operating Characteristic (ROC) analysis was performed for

both machine and humans. Accuracies of the intelligent system protocol and human predic-

tions were expressed as the area under the receiver operating characteristic curve (AUROC),

and compared using the nonparametric test by [21]. Youden’s J statistic [22] was used to calcu-

late the optimal cutoff for sensitivity and specificity. According to [23], sensitivity and specific-

ity are the same as true positive rate (i.e., the number of true inpatients divided by the total

number of cases classified as inpatients) and true negative rate (i.e., the number of true dis-

charged divided by the total number of cases classified as discharged), respectively. We consid-

ered a p-value equal to or smaller than 0.05 as indicative of significant differences.

Results

All computations were performed on an Intel Core i7-7500U@2.9GHz and 16GB RAM.

Machine training was completed successfully in 2 minutes and 46 seconds. Processing time
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per test EMR was 0.00812±0.0009 seconds. In contrast, novice physicians took on average

156.80 seconds per EMR, while experienced physicians took on average 56.40 seconds per

EMR.

Receiver Operating Characteristic curves for machine and novice and experienced physi-

cians are presented in Fig 2.

Table 2 shows accuracy by AUROC for the testing set. All graders achieved similar accura-

cies. The accuracy by AUROC for the testing set was 0.82 [95% confidence interval (CI) of

0.77–0.87], 0.80 (95% CI: 0.75–0.85), 0.76 (95% CI: 0.71–0.81) for novice physicians, machine,

experienced physicians, respectively. Table 2 also shows sensitivity and specificity for the test-

ing set at optimal cutoff point.

Prediction accuracy by AUROC was not significantly different among graders (Table 3).

Table 4 summarizes prediction success in the 230 cases. The machine was correct, but

the physicians were not in 14 cases; the opposite occurred in 19 cases. All graders were cor-

rect in 137 cases, but incorrect in 10 cases. There were divergences between physicians in 50

cases.

The intelligent system protocol used 1,538,956 features to make predictions. The most

informative features for admission were associated with the presence of symptoms (e.g.

“edema”, “non-measured fev”, “paroxysmal nocturnal dyspnea”). On the other hand, the

Fig 1. Record sample in SurveyMonkey (translated from Portuguese).

https://doi.org/10.1371/journal.pone.0237937.g001
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most informative features for discharge were related to normal physical examination or

absence of symptoms (such as “well perfused extrem”, “normal breath sound”, and “no his-

tory dysuria”).

Fig 2. ROC curves by group.

https://doi.org/10.1371/journal.pone.0237937.g002

Table 2. Accuracy, sensitivity and specificity with 95% CI considering the testing set.

Machine Novice Physicians Experienced Physicians

Accuracy 0.80 (0.75–0.85) 0.82 (0.77–0.87) 0.76 (0.71–0.81)

Sensitivity 0.80 (0.73–0.87) 0.85 (0.78–0.92) 0.85 (0.79–0.92)

Specificity 0.80 (0.73–0.87) 0.78 (0.71–0.86) 0.67 (0.58–0.75)

https://doi.org/10.1371/journal.pone.0237937.t002
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Discussion

To our knowledge, this is the first study comparing an algorithm generated through machine

learning with ED physicians in predicting patient admissions after their first evaluation. A

computer running such algorithm could provide real-time data on bed necessity and aid bed

management teams to improve patient flow processes. Our main results show that perfor-

mances (accuracy) of physicians (novice or experienced) and machine were similar. Highest

sensitivity was achieved by both novice and experienced physicians, and higher specificity was

achieved by the machine, although confidence intervals had some overlap. In addition, the

algorithm was significantly faster when compared to doctors. On average, novice and experi-

enced physicians took 156.80 seconds and 56.40 seconds to analyze each record, respectively.

In contrast, the algorithm analyzed the whole testing set in less than two seconds.

From a practical perspective, predictions made by the algorithm are almost instantaneous

and allow immediate action from bed capacity planners, independent of the number of

patients. There are some months in the year or times of the day that ED is most overcrowded

as demonstrated by [24] using two scales: National Emergency Overcrowding Scale

(NEDOCS), and Emergency Department Work Index (EDWIN). When humans are responsi-

ble for planning hospital bed demand, waiting times may increase when the ED is over-

crowded, because of diminished physicians’ availability.

In our study, the computer algorithm was as accurate as the doctors. Note that physicians

reviewed records outside working hours in the ED, in a calm setting, without multitasking or

time constraints. It is difficult to predict how their performances could be affected if evalua-

tions were carried out in parallel with their ED working activities, but it is reasonable to specu-

late that they would be worse. On the other hand, machine performance is not affected by the

working environment.

Improving patient flow and discharge processes through bed management supporting

teams [25] have resulted in reduction in length of stay, cancelled interventions and increase in

planned discharges [26]. The use of a computer algorithm as decision support system could

enable hospital staff and health decision makers to better manage hospital inpatient beds, thus

potentially reducing costs and inpatient length of stay [27]. Previous studies evaluated mathe-

matical programs to model bed assignment [28] and prediction models to improve efficiency

Table 3. DeLong’s test p-values for two correlated ROC curves.

Comparison p-values

Machine vs. Novice Physicians 0.5528

Machine vs. Experienced Physicians 0.2395

Novice Physicians vs. Experienced Physicians 0.0517

https://doi.org/10.1371/journal.pone.0237937.t003

Table 4. Comparison of mistakes and successes among graders.

Situation Occurrences

Discharged Patients Admitted Patients Total

Machine and physicians were wrong 9 (3.91%) 1 (0.44%) 10 (4.35%)

Machine was correct and all physicians were wrong 12 (5.22%) 2 (0.87%) 14 (6.09%)

All physicians were correct and machine was wrong 10 (4.35%) 9 (3.91%) 19 (8.26%)

Divergences between novice and experienced physicians 23 (10.0%) 27 (11.7%) 50 (21.74%)

Machine and physicians were correct 66 (28.7%) 71 (30.8%) 137 (59.56%)

Number of reports used in the study 9 (3.91%) 1 (0.44%) 10 (4.35%)

https://doi.org/10.1371/journal.pone.0237937.t004
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[29] with positive results, but none could made the predictions in real time, as it is possible

with the herein tested algorithm.

The algorithm presented similar sensitivity and specificity values, while doctors tended to

present higher sensitivity and lower specificity. That could be due to a clinical conservative

bias–when in doubt, it would be safer to admit a patient then to discharge her. However, from

a management standpoint a more balanced cut-off point on the ROC curve would be poten-

tially more beneficial, since bed demand prediction would then be more stable with similar

false negative and false positive rates. As [30] have discussed, a key requirement for effective

bed management is information; anticipatory planning requires prediction of admissions and

discharges. The authors have stated that there is a huge potential to improve information

made available to bed management teams, and that few bed management functions have access

to reliable data on patients expected to come in and be admitted.

The proportion of cases in which physicians were correct while the machine was wrong,

and in which the machine was correct while physicians were wrong was similar (8.26% and

6.09%, respectively). The former group (physicians correct) is composed of nine admissions

and ten discharges. On the discharges, it would seem that the algorithm has difficulty in recog-

nizing information on patients being sent to other health services (two cases). On six other

cases, there seemed to be extensive information on patient health history on the SOAP note,

which was not directly related to the current condition of the patient. On the admissions, it is

harder to presume causes for incorrect classification; for human readers, some SOAP notes

clearly indicated either emergencies or the need for interventions: e.g. unstable angina, intesti-

nal obstruction, nephrolithiasis necessitating a double J stent, and new onset atrial fibrillation.

Since these descriptions were shortly stated on the Assessment item of the note, it is possible

that the algorithm did not find enough information in the remaining of the note to justify

admission and could not interpret the medical condition alone.

Regarding the cases where the algorithm was correct and physicians were wrong, most

cases were discharges (12 of the 14 cases). This again may show a conservative bias from physi-

cians, tending to classify cases as “admissions” when in doubt. It is hard for human readers to

explain why the algorithm was correct; some SOAP notes describe serious diagnostic hypothe-

ses, such as suspicion of acute coronary syndrome or of deep vein thrombosis, while others

describe cases which appear to be non-complicated urinary tract infections, gastroenteritis or

headaches. Human understanding of artificial intelligence (AI) decisions is known to be lim-

ited, and it has been proposed that it would be possible to train AI itself to provide natural lan-

guage justifications of its decisions [31].

A possible refinement to the tested algorithm would be to include lab results into the avail-

able data; however, since the authors’ goal was to have the earliest possible prediction on

patient admission or discharge, they chose to use only the first SOAP note registered by a phy-

sician. Indeed, the combination of four data mining operations including from lab results to

clinical information let to a correct diagnosis in 98% of the cases in a pediatric emergency

room, although retrospectively [32].

The study has some limitations. It was not confirmed whether the evaluators had the same

clinical experience, the graduation time was used to choose the evaluators. The ED of HCPA

provided care to high complexity cases, which includes only patients in the immediate, very

urgent and urgent categories of the Manchester Triage System. The raw database presented a

50:50 proportion of cases in the inpatient and discharged categories. If the algorithm was

applied to low complexity cases the results could be different. This is a single-hospital study,

and thus its results may not be generalizable to other institutions. In one hand, few annotation

studies assessed the SOAP framework for ED approaches and thus may be difficult to compare
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our results with other studies. No other machine learning options were explored, limited to

the methods presented in the original document [12].

Conclusion

The sophisticated computer algorithm here tested could predict patient admission or dis-

charge with 80% accuracy, based solely on the first SOAP note from the ED. The algorithm

had comparable performance to both novice and experienced ED physicians. We believe there

are potential uses of intelligent computer systems in aiding hospital management, and it is pos-

sible that these systems could effectively support physicians in clinical decision making. The

proposed algorithm is one such example; its implementation could provide useful data for bed

management teams, improving patient flow processes throughout the hospital.

Author Contributions

Conceptualization: Filipe Rissieri Lucini, Flavio Sanson Fogliatto, Beatriz D’Agord Schaan.

Formal analysis: Filipe Rissieri Lucini, Flavio Sanson Fogliatto, Beatriz D’Agord Schaan.

Investigation: Mateus Augusto dos Reis, Giordanna Guerra Andrioli, Rafael Nicolaidis, Rafael

Coimbra Ferreira Beltrame, Jeruza Lavanholi Neyeloff.

Methodology: Filipe Rissieri Lucini, Flavio Sanson Fogliatto, Beatriz D’Agord Schaan.

Software: Filipe Rissieri Lucini, Michel José Anzanello.
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