
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

VANIUS ZAPALOWSKI

Understanding and Recovering
Architecture Rules

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Ingrid Oliveira de Nunes
Coadvisor: Prof. Dr. Daltro José Nunes

Porto Alegre
March 2021

CIP — CATALOGING-IN-PUBLICATION

Zapalowski, Vanius

Understanding and Recovering Architecture Rules / Vanius
Zapalowski. – Porto Alegre: PPGC da UFRGS, 2021.

143 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2021. Advisor: Ingrid Oliveira de Nunes; Coadvisor: Daltro
José Nunes.

1. Software architecture. 2. Architecture rules. 3. Architecture
recovery. 4. Module dependency. I. Oliveira de Nunes, Ingrid.
II. Nunes, Daltro José. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Profa. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“If I have seen farther than others,

it is because I stood on the shoulders of giants.”

— SIR ISAAC NEWTON

ACKNOWLEDGEMENTS

During my Ph.D., I have had the pleasure of interacting with many great people.

The ones that I own much are my advisors Professor Ingrid Nunes and Daltro Nunes

for their patience, guidance, and support through the seven years—actually nine years

including my master’s degree– of my work. Also, I would like to thank the members of

my examining committee, Professors Cláudio Sant’Anna, Ricardo Terra, and Érika Cota,

for the valuable contributions, giving me feedback to improve my research.

I wish to express my gratitude to my parents, Irani and Walter. Without my par-

ents’ support, I would not get this accomplishment, neither the ones that will succeed.

My most sincere thanks to all my friend that had long talks and funny moments to

relieve my mind during this seven years. I especially thank Paula that always supported

me in my decisions. I must namely thanks my friends from Prosoft and Informatics Insti-

tute Borba, Biel, Jhonny, João, Serjão, Frederico, Fernando, Jacob, Carlos and Vinícius.

My thanks to the Informatics Institute that supported me in all the ways from my

undergraduate to the end of my Ph.D.

Finally, I would like to thank all the people that the name is not in this text but

have helped me in any way.

ABSTRACT

Software architecture is fundamental to clearly present the most important structures,

roles, and rules of a software, which collectively are used to guide software design and

implementation. Thus, the existence of reliable architecture documentation is critical to

develop and maintain software in a controlled way. Despite the importance of architecture

documentation, there are systems without proper documentation, as their documentation

is often outdated or nonexistent. To help overcome this problem, many studies inves-

tigate how to maintain conformity between architecture documentation and the source

code. However, most of these studies provide a low precision demanding an expert post-

verification, which is an error-prone and time-consuming task, to provide useful architec-

ture documentation. To support architecture documentation, we propose the Weighted-

graph-based (WGB) method to recover architecture rules. Our method is based on the

idea that high-level architecture rules can be derived through the investigation of source

code dependencies, thus decreasing the effort of providing useful architecture rules with a

reduced need for human verification. To achieve our goals, we investigate the source code

dependencies and the architecture differences between them. Based on this investigation,

we propose the WGB method that relies on the module dependency strength metric and

linear equation solver to provide relevant architecture rules. It is domain-independent be-

cause it needs only the source code as information to execute. We evaluate our proposed

method with a case study presenting details of how it works, an offline study presenting

the application of our method in six subject systems, and a user study analyzing the rules

extracted using our method in two commercial systems from the perspective of the de-

velopers. The results show that our method extracts useful and appropriate architecture

rules using only the source code as information, thus supporting the task of recovering the

architecture rules. Furthermore, the results of the user study present the preference of the

developers for rules extracted using our method when compared against their manually

recovered rules in most of the comparisons.

Keywords: Software architecture. architecture rules. architecture recovery. module

dependency.

Compreendendo e Recuperando Regras de Arquitetura

RESUMO

A arquitetura de software é fundamental para documentar as estruturas, papéis e regras

mais importantes de um software, que são usadas no projeto e na implementação. As-

sim, ter uma arquitetura documentada que reflete o que está implementado é importante

para o desenvolvimento e evolução de forma controlada. Apesar da importância de ter a

arquitetura documentada corretamente, é comum que os sistemas não tenham uma docu-

mentação arquitetural, ou que que ela esteja desatualizada. Para minimizar esse problema,

muitos estudos avaliam como manter a conformidade entre a documentação arquitetural e

o código-fonte. No entanto, a maioria desses estudos tem uma baixa precisão necessitando

uma verificação dos seus resultados, que é uma tarefa demorada e que pode conter erros,

para fornecer uma documentação útil. Para dar suporte à documentação da arquitetura,

nós propomos o método Weighted-graph-based (baseado em grafos com pesos) para recu-

perar regras arquiteturais. Nosso método é baseado na ideia de que regras arquiteturais de

alto nível podem ser derivadas através da análise das dependências do código-fonte. Isso

reduz o esforço de documentar as regras arquiteturais por diminuir a necessidade de veri-

ficação de um especialista. Para atingir nossos objetivos, nós analisamos as dependências

do código-fonte e as diferenças arquiteturais. Com base nessa análise, nós desenvolve-

mos o método Weighted-graph-based que se baseia na métrica de força de dependência

entre módulos, também proposta nesta trabalho, e em um resolvedor de equações lineares

para obter regras arquiteturais mais relevantes. Nosso método também é independente de

domínio e específico para cada software visto que não depende de parâmetros e documen-

tações. Nós avaliamos nosso método usando um estudo de caso para apresentar como o

nosso método funciona, um estudo offline detalhando a aplicação de nosso método em

seis sistemas e um estudo com usuários realizado para analisar o uso prático das regras

extraídas usando nosso método em dois sistemas comerciais. Os resultados mostram que

nosso método extrai regras arquiteturais que são úteis, eficientes e apropriadas. Além

disso, os resultados apresentam a preferência dos desenvolvedores por regras extraídas

usando nosso método quando comparadas com as regras recuperadas manualmente.

Palavras-chave: Arquitetura de Software, Regras Arquiteturais, Recuperação de Arqui-

tetura, Dependência entre Módulos.

LIST OF ABBREVIATIONS AND ACRONYMS

A Agreement

B Beginning

C Comparison

C-Rules Number of Conceptual Rules

Cl Number of Classes

Cl-Dep Number of Class Dependencies

CONCEP Conceptual Rule

E End

GQM Goal-Question-Metric

INTRA Intra-module rule

KLOC Kilo Lines of Code

M Metric

Max Maximum

Med Median

MDS Module Density Strength

Min Minimum

MIS Mismatch rule

MVC Model-view-controller

P Participant

Pkg Number of Packages

Pkg-Dep Number of Package Dependencies

RQ Research Question

SUB Specialization Rule

SUPER Generalization Rule

SD Standard Deviation

WGB Weighted-graph-based

LIST OF FIGURES

Figure 1.1 Implemented Rules Identification and Violation of Implemented Rules.......24

Figure 3.1 Example of Architecture and Rule Conformance..47
Figure 3.2 Distribution of Implemented Module Dependencies by Category for

each Subject System. ..50
Figure 3.3 Support Variation by Implemented Dependencies Category.54

Figure 4.1 Overview of the WGB Method..60
Figure 4.2 Running Example. ...61
Figure 4.3 Components of the Dependency Strength Metric..62
Figure 4.4 Dependency Strength Metric with Intensity and Distribution Calculation....64
Figure 4.5 Example of Redundancy. ...68

Figure 5.1 MDD4ABMS Architecture Rules Recovered by the WGB Method and
Classified by System Developers. ...73

Figure 5.2 Example of Documentation using the WGB Rules of MDD4ABMS.88
Figure 5.3 Types of Comparisons of the Questionnaire Template.92
Figure 5.4 WGB and DEV Rule Comparison: Granularity ..96
Figure 5.5 WGB and DEV Rule Comparison: Accuracy. ..97
Figure 5.6 WGB and DEV Rule Comparison: Implementation.98
Figure 5.7 WGB and DEV Rule Comparison: Understanding.98
Figure 5.8 WGB and DEV Rule Comparison: Agreement...100
Figure 5.9 Non-conformance and Missed Comparisons...101
Figure 5.10 WGB and DEV Rules: Violations and Violations Allowance...................102
Figure 5.11 Evaluation of the Documentation Built Based on the WGB Rules An-

swers. ..105

Figure A.1 AspectJ Architecture...122
Figure A.2 EC Architecture ..123
Figure A.3 Metrics Architecture ...124
Figure A.4 OLIS Architecture ..124
Figure A.5 RecSys Architecture ...125

Figure B.1 Questions Asked in the First and Third Part of the Questionnaire.128
Figure B.2 Questions Asked in the Generalization and Specialization Comparisons. .129
Figure B.3 Questions Asked in the Implicit Comparisons..130
Figure B.4 Questions Asked in the Missed Comparisons...131
Figure B.5 Questions Asked in the Non-conformance Comparisons.132
Figure B.6 Final Question About the WGB Method Appropriateness.132

LIST OF TABLES

Table 2.1 Related work input and output ..39
Table 2.2 Related work analysis..40

Table 3.1 Empirical Study Metrics..42
Table 3.2 Characteristics of our Subject Systems. ..46
Table 3.3 Subject Systems and their Characteristics...46
Table 3.4 Architecture Conformance (M1) and Rule Conformance (M2) of each

Subject System..48
Table 3.5 Support Metric by Dependency Category for each Subject System.53
Table 3.6 Nemenyi Post-hoc Test by Pairs of Dependency Category for each Sub-

ject System. ...56

Table 4.1 Alternative Implemented Architecture Rules. ...65
Table 4.2 Values of the Module Dependency Strength (MDS) Metric.67

Table 5.1 Offline Study Metrics. ...76
Table 5.2 Time taken to Execute in Seconds (M1). ..78
Table 5.3 Number of Graph Arrows by Method Step. ..78
Table 5.4 Dependency Abstraction (M2). ...80
Table 5.5 Precision (M3) and Recall (M4)..81
Table 5.6 Dependencies Allowed by Architecture Rules..82
Table 5.7 Number of Recovered Rules by Type (M5). ...83
Table 5.8 Criteria Evaluated in the User Study. ..87
Table 5.9 Subject System Characteristics. ..93
Table 5.10 Age and Development Experience of the Study Participants........................93
Table 5.11 Knowledge of the Study Participants on Software Engineering and the

Subject Systems ..94
Table 5.12 Number of Rules Documented by the Developers and Recovered by WGB 95
Table 5.13 Types of Rule Comparison in the Questionnaire by Subject System............95

CONTENTS

1 INTRODUCTION...19
1.1 Problem Statement and Limitations of Existing Work20
1.1.1 Identification of Architecture Rules...21
1.1.2 Detection of Architectural Violations ..22
1.2 Proposed Solution and Contributions Overview..23
1.2.1 Contributions..25
1.3 Outline..25
2 BACKGROUND AND RELATED WORK..27
2.1 Architecture Recovery ..28
2.1.1 Architecture Module Approaches ..28
2.1.2 Architecture Rule Approaches...31
2.2 Architecture Conformance...33
2.3 Architectural Violation Identification ...35
2.4 Final Remarks ...37
3 A STUDY OF THE GAP BETWEEN ARCHITECTURE RULES AND IM-

PLEMENTED MODULE DEPENDENCIES..41
3.1 Study Settings ..41
3.1.1 Goal and Research Questions ..41
3.1.2 Procedure ...43
3.1.3 Subject Systems ...45
3.2 Results and Analysis ...47
3.2.1 Gap between conceptual architecture rules and implemented module depen-

dencies...47
3.2.2 Implemented module dependencies categorization ...49
3.2.3 Automated distinction of implemented module dependencies52
3.3 Threats to Validity ..57
3.4 Final Remarks ...58
4 THE WGB METHOD ..59
4.1 Module Dependency Strength..59
4.2 Pairwise Clusterization of Dependencies ..65
4.3 Selection of Architecture Rules..66
4.4 Use Cases of the Method...69
4.5 Final Remarks ...70
5 EVALUATION...71
5.1 Case Study ...71
5.2 Offline Study..74
5.2.1 Study Settings ..74
5.2.1.1 Goal and Research Questions ...74
5.2.1.2 Procedure ..76
5.2.1.3 Subject Systems ..77
5.2.2 Results and Analysis ..77
5.2.2.1 RQ1: Efficiency of WGB method...77
5.2.2.2 RQ2: Effectiveness of WGB method..79
5.2.3 Threats to Validity..84
5.3 User Study..85
5.3.1 Study Settings ..85
5.3.1.1 Goal and Research Questions ...85
5.3.1.2 Procedure ..86

5.3.1.3 Questionnaire Template ..90
5.3.1.4 Subject Systems and Participants..93
5.3.2 Results and Analysis ..94
5.3.2.1 Documentation and Questionnaires ..94
5.3.2.2 RQ1: Improvement of the level of abstraction ...95
5.3.2.3 RQ2: Revealing Misunderstandings and Violations...100
5.3.2.4 RQ3: Usefulness of the WGB Method ...104
5.3.3 Threats to Validity..108
5.4 Final Remarks ...109
6 CONCLUSION ...111
6.1 Contributions...111
6.2 Future Work ..112
REFERENCES...115
APPENDIX A — DETAILS OF THE SUBJECT SYSTEMS121
APPENDIX B — QUESTIONNAIRE TEMPLATE ..127
APPENDIX C — RESUMO ESTENDIDO...133

19

1 INTRODUCTION

Since the 1980s—when software architecture foundations began as a separate

topic of study—to nowadays, when very large-scale systems are a reality, software ar-

chitecture has gained attention in different computer science areas (SHAW; CLEMENTS,

2006). Researchers are mainly interested in investigating how software architecture in-

creases the software quality and contributes to a controlled evolution. Furthermore, the

software industry sees software architecture as a model that brings quality to its prod-

ucts, providing a controlled development. Both academia and industry have interest in

software architecture because it provides fundamental information about the set of struc-

tures needed to reason about the system, such as module roles and how software elements

should interact (BASS; CLEMENTS; KAZMAN, 2012b). Even when these roles and

rules are unplanned or not explicitly documented, the system implementation has roles

played by its elements and communication rules to define how its modules interact (PAR-

NAS, 1994). Ideally, the first architecture of a system is planned and documented pre-

senting its constraints, roles and rules. Along the system life-cycle, software changes as

a consequence of its evolution, and these changes should be documented in the software

architecture to maintain a controlled evolution of the software.

Regardless of the importance of having a documented architecture in conformance

with the system’s source code, changes may not be properly documented, causing a mis-

match between the source code and the documented software architecture. This mismatch

occurs as a consequence of two situations: (i) the documented architecture was not up-

dated, which causes lack of proper architecture documentation; or (ii) source code disre-

spects documented architecture, which consists of architectural violations. In both cases,

these undocumented changes may lead developers to introduce architectural violations

(SILVA; BALASUBRAMANIAM, 2012) causing major problems to the structure of the

system, to evolve the software architecture in an unplanned way (PERRY; WOLF, 1992),

and to lack evidences of the reasoning of the previous architecture decisions (JANSEN;

BOSCH, 2005).

Aiming to support the task of keeping the source code and the architecture in

conformance, much research has been done on reverse engineering methods to (semi-)

automatically reconstruct the software architecture (DUCASSE; POLLET, 2009). These

proposed techniques and tools achieved significant results to support software architecture

recovery. However, they still demand much human verification to provide a useful model,

Vanius Zapalowski
Realce

20

which makes them error-prone and time-consuming. Furthermore, most of existing ap-

proaches focus on recovering architecture modules and do not investigate architecture

rules.

Given this context, in this thesis, we investigate how to support the recovery and

conformance of architecture rules. To achieve this objective, we analyze extracted rules,

which are rules extracted from the source code that may be architecture rules. Based on

this analysis, we investigate the relationship of implemented rules, which are high-level

rules that are present in the source code, and conceptual rules, which are those that are

in developers’ mindset, establishing characteristics to identify conceptual rules in the im-

plemented rules. Additionally, we will also analyze the characteristics of architecture

dependencies that violate software architecture. In the remainder of this chapter, we or-

ganize the main ideas of this thesis. First, we specify the addressed problem and detail

limitations of existing work in Section 1.1. To tackle the problem, we introduce our pro-

posed solution and give an overview of the contributions of this thesis in Section 1.2.

Finally, in Section 1.3, we present the outline of this thesis.

1.1 Problem Statement and Limitations of Existing Work

This thesis aims at tackling three main challenges to keep an updated and reliable

architecture documentation: (i) how to retrieve architecture rules based on the commu-

nication between architecture elements using solely source code dependencies; (ii) how

to distinguish which implemented dependencies are in fact conceptual architecture rules;

and (iii) how to support the identification of violations. Based on these three issues, we

define our research question as follows.

Research Question. How to extract architecture rules adopted in a software system

based on the source code at the right level of granularity?

Given our research question, we detail the two main challenges related to this

research question. First, we present the limitations in the identification of architecture

rules in Section 1.1.1. Second, we detail the current opportunities of research on the

detection of architectural violations in Section 1.1.2.

21

1.1.1 Identification of Architecture Rules

Aiming to tackle the lack of architecture documentation, much research has been

done on reverse engineering methods to (semi-)automatically discover the relationship

between architecture elements. Many approaches (TZERPOS; HOLT, 2000; SANGAL

et al., 2005; ZAPALOWSKI; NUNES; NUNES, 2014) focus on the extraction of source

code information to group architecture elements by their similarities to compose architec-

ture modules. Such approaches aim to derive architectural modules helping in the task of

recovering modules. However, these approaches usually present low precision in their re-

sults (GARCIA; IVKOVIC; MEDVIDOVIC, 2013) and do not present architecture rules

explicitly.

Alternatively, there are approaches addressing architecture conformance (TERRA;

VALENTE, 2009; BISCHOFBERGER; KÜHL; LÖFFLER, 2004). These approaches

rely on a well-documented set of conceptual rules to compare against the implemented

rules. In most of these approaches, such as reflexion models (MURPHY; NOTKIN; SUL-

LIVAN, 2001), the conceptual rules are written by an expert, which is error-prone because

it depends on their subjective experience in the system. Furthermore, the time demanded

to perform this activity is proportional to the system size. Thus, in large-scale systems,

the task of specifying conceptual rules is frequently impractical due to time constraints

and the constant evolution of the software.

Another problem related to the changes in the software is the software architecture

evolution. The architecture evolves along the life-cycle due to changes in requirements,

which demand significant modifications (NISTOR et al., 2005) in its modules organi-

zation and communication, such as remodularization. Thus, the software architecture

evolves and, to have a controlled architecture evolution, always knowing the current ar-

chitecture contributes to understand how to evolve it.

Based on the previous work on the recovery of software architecture and current

associated problems, we state two main challenges to improve the scenario of the identi-

fication of architecture rules below.

i) Support to the specification of architecture rules. The effort needed to specify ar-

chitecture rules is a significant barrier to the adoption of reverse engineering ap-

proaches. Reducing the effort needed to document such rules facilitates the task of

keeping the architecture documentation updated. Consequently, it will improve the

reliability of the documentation.

22

ii) Analysis of source code dependencies. An evaluation of which source code in-

teractions are part of the conceptual architecture is needed to better comprehend

the relationship between the source code and the software architecture. Using the

source code as information leads us to a domain-independent analysis of conceptual

rules.

These two limitations can be faced improving the recovery of the architecture rules im-

plemented in the source code. The knowledge of the implemented architecture improves

the documentation and helps maintain and evolve software architectures (conceptual and

implemented).

1.1.2 Detection of Architectural Violations

Software architecture is a high-level representations of the source code . How-

ever, this model is usually not completely followed during the software evolution. As a

consequence of the uncontrolled evolution, developers tend to include violations, which

diverge from the software principles early planned. These violations are introduced by

different causes, such as deadline pressure and conflicting requirements, but they degrade

software maintainability (KNODEL; POPESCU, 2007). Thus, the process of frequently

adding architectural violations transforms a well-organized software into an unmanage-

able block (SARKAR et al., 2009).

Violations in the software architecture are problems in software structure and com-

munication that demand more effort to be fixed than common source code bug fixes due

to the complexity and time to perform them. The detection of software architectural vi-

olations aims to tackle this kind of problem preventing major software problems to be

propagated along software versions. With the detection of architectural violations, we

have indications of high-level refactoring points to maintain a software well-organized

along the evolution (BOURQUIN; KELLER, 2007).

Architectural violations may not have a relationship with source code quality prob-

lems because developers can provide low-level design that has quality, but their source

code is not consistent with the conceptual architecture. Thus, architecture conformance

approaches focus on detecting architectural violations based on comparing the conceptual

and implemented architecture using a set of mapping rules. These approaches rely on this

set of rules, which are usually written by system experts (DUCASSE; POLLET, 2009).

23

There is a variety of approaches to help developers to create these rules. However, these

approaches still demand much manual effort.

An evaluation of extracted dependencies allows the detection of architecture pat-

terns used in the project scope based on rule similarly and quality. Moreover, this kind

of evaluation may reduce the effort needed to detect architectural violations and undoc-

umented architecture rules. Based on the evaluation of extracted dependencies, we can

derive three types of rules: (i) documented conceptual rules; (ii) undocumented concep-

tual rules; and (iii) rules that are violations. These three situations of extracted dependen-

cies should be investigated to provide more detailed information about the implemented

architecture rules provided in an architecture rules recovery approaches.

1.2 Proposed Solution and Contributions Overview

Given the limitations described in the previous section, we present our proposed

solution. The underlying idea is to improve the reliability and conformance of architecture

documentation, providing a method to support the recovery of architecture rules, which is

domain-independent. Our method identifies architecture rules based on frequent depen-

dencies implemented in the software source code and their abstraction level according to

the source code structure. The main advantage of our method is that it needs neither a

knowledge base nor the prior documentation of the software architecture. Based on this

idea, we next present our research hypothesis.

Research Hypothesis. By analyzing patterns of dependencies and clustering them,

it is possible to derive architecture rules that are considered at an adequate level

of granularity.

To explain our proposed solution, we take, as an example, the layered architec-

ture (HENNEY; SCHMIDT; BUSCHMANN, 2007) widely used to implement web sys-

tems. In this kind of architecture, the software is structured in layers. We assume three

layers in our example: Presentation, Business and Data. The main rule of this architecture

is that its modules can only depend on modules immediately below them, as illustrated in

Figure 1.1a. The architecture presented in this figure has two explicit architecture rules

Presentation → Business and Business → Data; and implicit rules that every other

communication is prohibited. In the source code, the architecture elements are organized

24

Figure 1.1: Implemented Rules Identification and Violation of Implemented Rules.

(a) 3-layer Architecture Pattern

(b) Dependency Subgraphs (c) Violation

in structures, such as packages or folders, that are different from architecture modules.

These source code structures represent groupings that are more fine-grained than archi-

tecture modules.

To extract architecture rules from the source code, we assume that source code ele-

ments that belong to the same module are in the same source code structure. For instance,

in Figure 1.1b, ProjectModel, ResourceModel and ActivityModel elements

are grouped in the package data.model, which corresponds to the Data module in the

source code, and they depend mainly on the package business.controller, which

corresponds to the Business module. Based on these source code dependencies, we can

derive extracted rules, which are commonly fine-grained abstractions. Therefore, to re-

cover conceptual rules, this thesis aims to investigate the relationship among extracted

rules, implemented rules and conceptual rules. We analyze characteristics of extracted

25

rules to propose a method that recover architecture rules at an adequate level of granular-

ity.

1.2.1 Contributions

The main contribution of this thesis is a method to automate the documentation

of software architecture identifying architecture rules. Its specific contributions are pre-

sented next.

i) An empirical evaluation of the conformance between architecture documentation

and the source code of software systems, which provides evidence of the gap be-

tween them based on the characteristics of architecture rules and source code de-

pendencies.

ii) A system-specific metric to measure the dependency strength and granularity level

of source code dependencies to provide support to find the most appropriate level

of granularity to represent architecture rules.

iii) An offline evaluation presenting the efficiency and effectiveness of our proposed

method comparing the architecture documentations obtained using our method and

the conceptual architectures of the systems under analysis.

iv) A user study that evaluates our proposed method based on the perspective of the

developers providing a detailed analysis of their opinion about the extracted archi-

tecture rules.

1.3 Outline

This thesis is organized as follows. In Chapter 2, we discuss the background and

related work. Next, in Chapter 3, we present an investigation of the architecture rules

to analyze the difference in the abstraction level between architecture rules and source

code dependencies. In Chapter 4, we describe our method, named Weighted-graph-based

(WGB), that automatically recovers architecture rules from source code. Then, in Chap-

ter 5, we provide three evaluations of the WGB method. Finally, we provide, in Chapter 6,

the conclusions of our investigations.

26

27

2 BACKGROUND AND RELATED WORK

Every implemented software system has an software architecture, which struc-

tures the system in terms of pieces of software (i.e. architecture modules) split according

to some criteria and dictates architectural rules that specify allowed dependencies among

them, such as when classes can depend on each other (BASS; CLEMENTS; KAZMAN,

2012a). This information should govern the development of software systems, making

their implementation in accordance with the specified architecture for a healthy software

evolution. Ideally, modules should be made explicit in the source code, e.g. by means

of packages, which contain finer-grained elements (e.g. classes) that depend only on ele-

ments that they are allowed to, according to rules.

Despite the importance of software architecture, many systems do not have re-

liable architecture documentation, because it is outdated or nonexistent, leading to ar-

chitecture violations, which are dependencies in the source code that are not allowed by

the architecture. These violations contribute to architecture erosion (PERRY; WOLF,

1992), which involves the introduction of undesired dependencies among modules. Fur-

thermore, while evolving the source code, developers may change the software architec-

ture without updating its documentation leading to knowledge vaporization (JANSEN;

BOSCH, 2005), which consists of not documenting the decisions to consult in the future.

Another problem related to the lack of architectural documentation is the architectural

drift (PERRY; WOLF, 1992), which is the gradual divergence between the conceptual

architecture and the implemented architecture along the evolution of the system. There-

fore, keeping the source code in conformance with the software architecture with updated

documentation is fundamental to avoid these problems.

In this thesis, we address three main problems related to having a useful and re-

liable software architecture: (i) maintaining conceptual and implemented architecture

in conformance; (ii) the recovery of conceptual rules based on evaluations of extracted

and implemented rules; and (iii) the detection of architectural violations. Therefore, we

present these problems and approaches related to them pointing out their strengths and

weaknesses. In Section 2.1, we present work on architecture recovery that focuses on

mining architecture information. In Section 2.2, we introduce the approaches to keep

architectures in conformance. Next, in Section 2.3, we discuss methods related to the

detection of architectural violations. Finally, in Section 2.4, we provide our final remarks

of the problems presented and the related work discussed in this chapter.

Vanius Zapalowski
Realce

28

2.1 Architecture Recovery

Architecture recovery is the process of reverse engineering an implemented soft-

ware system to obtain or support having an architecture of this system (DUCASSE; POL-

LET, 2009). Research on architecture recovery has been developed to handle the lack of

architecture documentation retrieving information present in the source code (semi-) au-

tomatically. Aiming to have an architectural structure of the systems, dependency-based

approaches investigate similarities among architecture elements to identify modules based

on metrics, such as coupling and cohesion. Complementary, there is dependency-based

work that focuses on recovering architecture rules of conceptual architectures. Then, in

this section, we present work related to architecture recovery divided into two categories.

In Section 2.1.1, we describe work related to the identification of software architecture

modules. Then, in Section 2.1.2, we present studies that aim to recover architecture rules.

2.1.1 Architecture Module Approaches

The main objective of the recovering of architecture modules is to analyze the

system elements to group them into architecture modules (DUCASSE; POLLET, 2009).

Many approaches have been proposed to group elements of the system based on different

aspects of the system elements, such as similar dependencies, names, architecture styles,

and architecture patterns. The result of the module recovery approaches is a classification

of the source code elements into modules.

One of the first tools developed to extract dependency similarities among architec-

ture elements to find architecture modules is the Bunch tool (MANCORIDIS et al., 1998).

It specifies an objective function to the software decomposition problem. This tool uses

a modularization quality metric, also proposed by the authors, applying clustering tech-

niques to organize architecture elements in modules. The proposed modularization metric

is based on an architecture module analysis of the intra-connectivity (when an element of

a module depends on an element of the same module) and the inter-connectivity (when

an element of a module depends on an element of another module) of the system mod-

ules. Then, to decide to which module each element belongs, Bunch iteratively applies a

genetic algorithm to all architecture elements calculating the intra-connectivity and inter-

connectivity of architecture modules in each iteration. Based on the mutations made by

the genetic algorithm, it evaluates the prediction using the quality metrics and keeps the

Vanius Zapalowski
Realce

Vanius Zapalowski
Realce

29

solution with the best result. Constantinou, Kakarontzas and Stamelos (2011) proposed

a method that is similar to the Bunch tool. Their method groups architectural elements

using a clustering algorithm based on source code dependencies and metrics. The main

difference between their work and the former is that Bunch has a quality threshold to de-

termine the number of modules, while the latter fixed the number of architecture modules

to be discovered. In their evaluations, both methods produce more architecture modules

than the conceptual architecture during the clustering phase. Then, to reduce the number

of modules, a hierarchical clustering algorithm is applied to merge similar modules based

on their degree of similar intra-connectivity dependencies.

To enrich the source of information to group elements, Corazza et al. (2011) and

Belle, Boussaidi and Kpodjedo (2016) proposed methods based on the lexical information

elements. Corazza et al. (2011) evaluate the parts of the source code and how they affect

the recovery of modules. Belle, Boussaidi and Kpodjedo (2016) developed a method to

recover architecture modules assuming that the elements of a module use the same set

of words and theses elements should be grouped to form a module. Additionally, Belle,

Boussaidi and Kpodjedo (2016) method has a refinement of these modules built based

on the lexical similarity using source code structures, e.g., packages, to infer a layered

architecture.

In general, these methods provide inaccurate results because they analyze only the

architectural roles ignoring further information that can be extracted from the code, such

as architecture rules. Furthermore, these methods recover the architecture of software

that follows a hierarchical architecture, such as layered patterns (HENNEY; SCHMIDT;

BUSCHMANN, 2007). Thus, software implementing non-hierarchical architecture pat-

terns, such as Model-View-Controller (MVC) (BASS; CLEMENTS; KAZMAN, 2012a),

are incorrectly recovered using these methods. Consequently, the architecture rules de-

rived from these approaches are inaccurate too.

Looking for complementary information related to the architecture dependencies

to improve the precision of recovered architectures, Xiao and Tzerpos (2005) investigated

the extraction of dynamic dependencies at runtime. In their study, they investigated ar-

chitecture recovery by applying different clustering algorithms using static and dynamic

dependencies. In addition, they ran experiments varying the degree of element depen-

dencies to reduce the search scope of the dependency graphs. They concluded that the

dynamic dependencies provided a better model using different weights according to run-

time dependencies between elements. However, the extraction of runtime dependencies

30

relies on the exercised zones of the source code, i.e. only the system parts activated during

runtime execution are evaluated. Then, the data collected is proportional to the activation

of system parts, i.e. their approach is limited to the exercised parts of source code. Fur-

thermore, they did not report a coverage analysis of their experiments.

To comprise a complete software coverage and to understand module roles, we, in

a previous work (ZAPALOWSKI; NUNES; NUNES, 2014), exploited the usefulness of

adopting a set of code-level characteristics to group elements into architecture modules.

We evaluated the relationship between different sets of characteristics (source code met-

rics and object-oriented properties) and the accuracy achieved by an unsupervised learn-

ing algorithm for the identification of architecture modules. By the use of code-oriented

information, our previous approach achieved a significant average accuracy evaluating

the prediction of architecture modules, which indicates the importance of the selected in-

formation to recover software architecture. However, the identification of modules is a

sub-problem of recovering the whole software architecture (modules and rules). Then,

our previous approach lacks information about architecture rules to provide a more useful

architecture documentation.

Recently, Kong et al. (2018) proposed a technique to improve the information pro-

vided by the source code dependencies based on a directory-based metric to recover ar-

chitecture modules. Their metric is based on thresholds to determine these (sub-)modules

analyzing inter-coupling and intra-coupling metrics to group files and directories into

(sub-)modules. Their method is applied before the well-known recovering methods to

reduce the number of elements analyzed to compose modules. Their results present an

improvement in the module classification but still are relatively low, ranging from 24% to

69% depending on the threshold and metrics used to measure.

Given the variety of sources of information and results reported, Garcia, Ivkovic

and Medvidovic (2013) presented a standardized comparison of six architecture recov-

ery techniques using three metrics to measure differences between software architectures.

They concluded that ACDC (TZERPOS; HOLT, 2000) and ARC (GARCIA et al., 2011)

perform better than the other techniques. Both these approaches exploit the similarities

in architecture element dependencies and textual information by evaluating two different

aspects. On the one hand, ACDC proposes seven patterns based on expert knowledge

providing a more general approach to group architecture elements into modules. On the

other hand, ARC performs a statistical evaluation of individual projects using information

retrieval and graph similarity techniques to provide a more narrow classification of ele-

31

ments. Although these two approaches achieved the best precision compared to the other

four techniques, Garcia, Ivkovic and Medvidovic (2013) reported that all techniques still

provide poor precision. It occurs due to the complexity to group architecture elements

without domain-specific knowledge, such as the number of modules a software has and

their roles. In a more recent comparison, Lutellier et al. (2015) investigated the effect

of accurate dependencies on the metrics proposed to recover architecture modules. They

concluded that the quality of the modules recovered varies according to the system size

and the granularity of the dependencies used to recover architecture modules. Further-

more, they presented limitations, such as the mismatch and non-conformance of the ar-

chitectural elements and source code elements of the analyzed methods.

In general, studies that recover architecture modules provide a high-level struc-

ture of the architecture organization and many of them use source code dependencies

to generate their architecture organization. However, they do not provide information

about the rules that architecture elements should respect. Consequently, the architec-

ture comprehension gain is limited due to the need for manual investigation of elements

to know each module communication rules. Additionally, violations of communication

rules result in an inaccurate grouping of elements because they drift or erode the archi-

tecture (MEDVIDOVIC; TAYLOR, 2010). The violations induce the recovery techniques

to classify elements in wrong modules considering just the architecture dependencies to

recover modules.

2.1.2 Architecture Rule Approaches

The recovery of architecture rules aims to derive high-level rules based on the

analysis of source code dependencies grouping them according to some criteria (ZA-

PALOWSKI; NUNES; NUNES, 2018). The problem of recovering architecture rules

rises because it is complex to examine all source code dependencies of large-scale system

and decide which dependencies should be presented, omitted, or merged together in an ar-

chitecture documentation. Considering that a large-scale software is complex and evolves

quickly, architecture documentation is rarely updated. This updating process should be

done frequently and fast to keep track of the changes of the source code in the archi-

tectural level. Therefore, approaches to recover architecture rules aim to extract source

code dependencies and analyze their occurrence in the software. For this purpose, these

approaches mine for frequent communications to establish architecture rules.

Vanius Zapalowski
Realce

32

Few approaches focus on recovering implemented rules, as ours. One of the first

studies based on this idea is a tool called PR-Miner, proposed by Li and Zhou (2005).

They analyzed the dependency between functions and variables in procedural program-

ming languages. Based on the element dependencies, they mined the frequent itemsets of

the function and variable calls to establish implicit code rules. They evaluated the rules

found by their method using three large-scale systems considering, the confidence, sup-

port and size of the frequent itemsets. Their results suggest that the retrieved rules are

relevant to software organization, but these rules are at the code-level. Due to this low-

level of abstraction, their approach provides too many rules. PR-Miner lacks abstraction

in the retrieved rules because it found 6K implicit rules in a system with 381K of lines

of code, i.e. one rule to each 62 lines of code. Thus, architects still must verify manually

6K rules and their relevance to the software architecture. To improve the usefulness of

PR-Miner, the number of rules extracted should be refined.

Using a similar idea of PR-Miner, Hora et al. (2013) proposed an approach to

mine system specific rules from change patterns. Their work focuses on the analysis of

patterns along the software evolution considering the changes in application programming

interface (API) calls in different releases of a system. They compared the relevance of spe-

cific rules based on the recurrent changes considering just one software at a time against

generic bug-fix rules, such as a suggestion of good practices or reduction of method com-

plexity. Evaluating a closer scope, they found that specific rules are more relevant than

general rules because the information provided by specific rules is more contextualized

than that of generic rules. The fundamental idea of their approach is to analyze a nar-

rowed scope to provide more useful information. However, the provided specific rules

are related just to API communication. Then, the rules extracted are related to how to

communicate to external parts of the software and lack an analysis of the communica-

tion between internal modules. It is important to evaluate internal rules because software

architecture erodes mainly based on the violations added to the internal modules.

Focusing on the lack of evaluation of internal rules, Maffort et al. (2013b) pre-

sented a data mining approach for architecture conformance based on a combination of

static and historical software analysis. Their approach aims to identify architectural vio-

lations, but, to do that, they need the architecture rules to perform an architecture confor-

mance check. Then, they divided their methodology into three main components: Code

Extractor is a source code parser; Architecture Miner mines the architecture rules accord-

ing to their frequency in a project; and Violation Detector matches the architecture rules

33

provided by the Architecture Miner against the source code. Despite their focus on the ar-

chitectural violations, the main contribution of their work is the statistical evaluation of the

architecture rules mined in the Architecture Miner component. The assessment of rules

is important to their approach because they are the basis of the architecture conformance

check. Despite the relevance of their assessment, the mining process performed could be

better exploited considering an evaluation of individual architecture modules instead of

the entire software. A key limitation of this approach is that it requires the specification

of a threshold to define when the frequency of dependencies is high enough to be con-

sidered a rule. This threshold is essentially the manual definition of which dependencies

correspond to rules.

There are also approaches that rely on the Dependency Structure Matrix (DSM)

(HUYNH et al., 2008; PAIVA et al., 2016; SANGAL et al., 2005; WONG et al., 2011;

MO et al., 2015), which captures source code dependencies. The visualizations provided

by DSMs ease the analysis of dependencies that occur in the source code to identify imple-

mented architecture rules. However, this identification process is manual, thus demanding

significant effort, mainly in large-scale software systems.

2.2 Architecture Conformance

Given that we have a documented architecture, a verification is needed to check

whether the conceptual architecture is matching the implemented architecture. So, a pro-

cess that matches the conceptual architecture against the implemented architecture veri-

fies the conformance, process that is referred as to architecture conformance. Architecture

conformance approaches require the specification of the software architecture to compare

it with the implementation. Some of which include sophisticated means of specifying

architectural modules and rules. One important premise of these approaches is the need

for a conceptual architecture, which is not commonly found.

Reflexion models (MURPHY; NOTKIN; SULLIVAN, 1995) is a technique that

represents the fundamental concept of architecture conformance. To check the confor-

mance of a conceptual architecture against an implemented architecture, reflexion models

requires a list of rules, which map architecture elements to source code elements that

should exist, as input. Reflexion models try to match the architecture elements of the list

with source code based on this mapping list. To perform this matching of rules, the Mur-

phy, Notkin and Sullivan (1995) described two basic entity types: an high-level model,

34

which is parsed to a high-level model entity (HLMENTITY) format; and source code,

which is parsed to a source code model entity (SCMENTITY). They defined a format to

state the mapping rules, which is similar to a regular expression. After submitting the

entity models to the matching process, it returns a high-level model and three variables

that report convergence, divergence and absence of the rules given. Each variable has

an important meaning in the process: convergence indicates a correct matching between

high-level and source code entities; divergence describes when a source model does not

match the high-level model; and absence reports when a high-level dependency is miss-

ing on the source code. With the output of the matching process, it is possible to analyze

the results and change the implementation or update the architecture to achieve a better

consistency between them.

Aiming to reduce the manual effort needed to apply reflexion models during

an architecture conformance process, the Human-Guided Mapping Generation Method

(HuGMe) (CHRISTL; KOSCHKE; STOREY, 2005; CHRISTL; KOSCHKE; STOREY,

2007) algorithm was proposed to assist software architects in the task of mapping concep-

tual elements to implemented elements. HuGMe is an algorithm to bind HLMENTITY and

SCMENTITY based on similarities between entity dependencies. By the results obtained,

HuGMe reduces the effort needed to match the elements considering software that is in

conformance between conceptual and implemented architectures. However, software with

many architectural violations or in disagreement with the conceptual architecture tends to

produce poor matching because the conceptual and implemented elements have different

dependencies and, consequently, the algorithm does not bind them correctly.

Bittencourt et al. (2010) proposed another approach to ease the effort of stating

the mapping rules of reflexion models. Their approach relies on the textual similarities

of conceptual and implemented elements facing design documentation and source code

files as text information. They use information retrieval techniques to associate the el-

ements based on a predefined threshold of similarity needed to establish a relationship

between implemented and conceptual elements. This threshold is a key point of their ap-

proach because a relaxed threshold produces a general bind where the elements are almost

one to one binding, and a strict threshold produces few bindings. Analyzing the textual

information, they depend on the use of textual conventions in both implemented and con-

ceptual documents. Furthermore, the architecture view produced is driven by the textual

terms used. For instance, when analyzing a point of sale software structured in Model-

View-Controller architecture, their approach tends to present an architecture organized

35

in domain words, such as User, Sale and Payment, instead of modules with independent

roles, such as Presentation, Business and Data.

As an alternative to reflexion models, Terra and Valente (2009) proposed a domain-

specific language, called DCL (Dependency Constraint Language), to conformance check

context. They developed a tool, named DCLcheck, that implements their language. This

tool focuses on providing conformance mapping of object-oriented concepts, such as

packages, classes and methods, to the binding process between conceptual and imple-

mented architecture elements. One of the main contributions of these approaches is the

standardization of how to bind source code and the conceptual architecture of different

granularities. The improvement of their binding process is that it supports conformance

of systems written in object-oriented paradigm and has a simple syntax providing a variety

of dependency types. For instance, we can specify not only allowed dependencies (can)

but also prohibited dependencies (cannot). Schröder and Riebisch (2017) also proposed

an approach to architectural conformance. Their approach is based on the description log-

ics aiming to provide an ontology to the architectural conformance process. They provide

a set of definitions written in SROIQ to form a ontology that should be used to recover

architectures. The main difference from Terra and Valente (2009) is that Schröder and

Riebisch (2017) set of definitions may be extended using the SROIQ language.

Despite their contributions, one main limitation of these approaches is the need

for a high-level model to extract the architectural rules and parse them to their specific

language. Having a conceptual architecture properly documented is a challenge due to

many problems that may occur during the software development, which causes archi-

tecture erosion and drift. In both approaches, if we do not have an architecture model

well-documented and updated, the architecture rules should be created based on a man-

ual investigation of the code or the architects knowledge of the software. Both activities

are time-consuming and error-prone, considering thousands of lines of code and complex

software structures. Consequently, the applicability of this kind of approach is limited

due to the lack of reliable architectural rules.

2.3 Architectural Violation Identification

Software architectural violations are implemented elements that are not allowed

by the documented architecture (MURPHY; NOTKIN; SULLIVAN, 1995), such as a de-

pendency between two modules that is not listed in the set of rules of the documented

Vanius Zapalowski
Realce

36

architecture. Many violations are evidence of architecture erosion. The mismatching

between conceptual and implemented architecture decreases the maintainability and in-

creases the cost to evolve software. Thus, to avoid these problems, much work has been

done to facilitate the task of detecting architectural violations. The detection of architec-

tural violations without a set of specified architectural rules is a challenge because it is

complex to discover which dependencies are not allowed without knowing which depen-

dencies are allowed in the architecture. To detect architectural violations, studies investi-

gate source code characteristics of architectural violations to relate or predict architectural

violations based on these characteristics.

Brown et al. (1998) provides a catalog of architecture anti-patterns. Based on

their experience on handling different systems, they documented recurring solutions that

are applied, but decrease software quality at an architecture level. Another similar idea

is the architecture smells (GARCIA et al., 2009). These are also recurrent problems at

an architecture level, but they are usually related to trade-off decisions that may lead to

an architecture problem. The architecture smells help to find design-level opportunities

to improve the architecture quality. Both these approaches are related to architectural

violations because both investigate architecture flaws using architects’ past experiences.

Mo et al. (2019) propose a catalog of architecture anti-patterns based on their empirical

investigation. Their definition of anti-patterns are highly dependent on the thresholds of

each pattern. Therefore, it requires a calibration, which is system specific, to identify

anti-patterns. Commonly, these catalog approaches report general architecture problems

and, to provide a more useful detection of architectural violations, a specific investigation

is needed or a set of threshold should be defined.

Macia et al. (2012a) investigated the relationship between architecture problems

and source code problems. Their first study focused on establishing the effect of archi-

tectural violations in the source code. They performed an empirical study evaluating the

origin of architecture problems. They concluded that 78% of the architecture problems

were generated by code anomalies. Additionally, they analyzed system evolution and,

even in the system with frequent refactoring activities, the code anomalies persisted dur-

ing many versions. Their second study (MACIA et al., 2012b) evaluated the opposite

direction of the relationship, i.e. if all code anomalies have a relationship with architec-

ture problems. They investigated automatically-detected code anomalies and their effect

in higher level models, such as software architecture. Their experiments evidenced that

the techniques used to detect code anomalies automatically must be improved to detect

Vanius Zapalowski
Realce

37

anomalies related to architecture problems, since their results showed that most of the

code anomalies detected are not related to architecture problems.

Assuming that architectural violations occur with low frequency and are specific

to each software, Maffort et al. (2013a) performed a study that proposed heuristics to

discover architectural violations. They implemented a prototype tool called ArchLint to

evaluate the effectiveness of their four heuristics. The heuristics idea is similar to ar-

chitecture smells proposed by Garcia et al. (2009), because both specified the smells or

heuristics based on recurrent experience stated by software architects that usually led to

violations. The difference between these approaches is that the heuristics can be cali-

brated with a set of thresholds to refine the detection of architectural violations instead of

having fixed structures matched to the code. Furthermore, ArchLint needs a conceptual

architecture to perform the detection of architectural violations. Thus, ArchLint assists

software architects in the task of detecting architectural violations but only if: (i) archi-

tects have knowledge about the system architecture to state a conceptual architecture and

set proper thresholds; (ii) the system under evaluation is partially eroded, in a system

with many violations, the violations are frequent; and (iii) the system have the violations

specified in the heuristics. An extension of ArchLint was proposed to help architects in

the task of adjusting the thresholds (MAFFORT et al., 2015). They provide an iterative

method to guide the architect to find a proper value based on the number of false positives

detected by ArchLint. ArchLint extension helps architects to set the thresholds, but the

decision if the threshold is appropriate is still based on the architect knowledge.

2.4 Final Remarks

In this chapter, we presented the related work to architecture conformance, archi-

tecture recovery, and architectural violations analyzing their strengths and weaknesses.

Much research has been done to improve the results obtained in these topics, but there

are relevant challenges to be faced to apply the proposed methods. Most of the problems

arise from inaccurate or insufficient architecture documentation, which demands the re-

verse engineering of architectures. Due to the poor results provided by recovery methods,

they assist architects in a manual investigation. Furthermore, the poor results of these

methods are a consequence of the lack of information about the rules that architecture

elements should respect and lack of an analysis of the communication between internal

modules. Assuming that architecture recovery provides useful, but not reliable, results, ar-

38

chitects perform an architecture conformance to check differences between implemented

and conceptual architectures. To check the conformance of these two different views of

the software, architecture rules should be stated. This specification of rules is usually

based on a manual investigation of the code or expert knowledge of the software making

this task time-consuming and error-prone. A misunderstanding in architecture confor-

mance or software development could lead to a violation in the conceptual architecture.

Architectural violations are complex to detect due to the lack of architecture documenta-

tion and limited evaluation of architecture rules implemented in the source code.

In order to provide a better understanding of the fundamental differences among

existing approaches, we summarize them in Table 2.1, highlighting their required input

and output, and, in Table 2.2, the performed analysis. Architecture conformance ap-

proaches and module identification approaches are grouped in the first and second rows

of this table, respectively. The remaining rows refer to approaches that focus on architec-

ture rules.

39

Table 2.1: Related work input and output

Approach Input Output

Type Description

Reflexion
Models and
DSLs

architecture mod-
ules
architecture rules
Code dependencies

Architecture ab-
sences
Architecture
compliance
Architecture
divergences

A list of architecture rules
and code dependencies,
each with a label to indicate
if it is a case of absence,
compliance, or divergence.

Module
Identification

Code dependencies
Code metrics
Hierarchical mod-
ule structure
Lexical informa-
tion

architecture mod-
ules

A mapping from code ele-
ments to architecture mod-
ules indicating to which
module they belong.

DSM Code dependencies
Design rules
Hierarchical code
structure

architecture mod-
ules
Architecture
divergences
Matrix visualiza-
tion

A visualization of the de-
pendencies highlighting the
divergences.

PR-Miner Function calls Code-level rules
Violations in
function calls

A list of rules with support
values and a list of viola-
tions based on the violations
of the rules found.

Hora et al. Code dependencies
CVS repository

Code-level Rules A set of system-specific
rules regarding API usage.

Architectural
Miner

architecture mod-
ules
Code dependencies
CVS repository
Thresholds

Architecture Ab-
sences
Architecture Di-
vergences

A list of architecture ab-
sences and divergences ac-
cording to the identified pat-
terns.

WGB
Method

Code dependencies
Hierarchical mod-
ule structure

architecture rules A set of architecture rules.

40

Table 2.2: Related work analysis

Approach Analysis

Type Description

Reflexion
Models and
DSLs

Conformance check-
ing
Clustering algorithms
to modules

Verification of compliance between the ar-
chitectural specification and the implemented
code to check their divergences. Some ap-
proaches rely on clustering algorithms to as-
sist the specification of modules.

Module
Identification

Clustering algorithms Algorithms that cluster source code elements
into modules using different types of informa-
tion.

DSM Conformance check-
ing

Conformance checking of the dependencies
and structure of the source code according to
design rules. A matrix representation of de-
pendencies supports the specification of de-
sign rules based on the hierarchical organiza-
tion of the code.

PR-Miner Association rule algo-
rithm
Comparison of sup-
port values

Use of an association rule algorithm to find
frequent itemsets using the function call paths,
which are the sequences of calls in function.

Hora et al. Frequent patterns
Historical changes

Mining of similar refactorings over the system
evolution related to API usage.

Architectural
Miner

Association rule algo-
rithm
Conformance check-
ing

Analysis of frequent structural or historical
actions. Actions whose frequency is above
a threshold (informed by an expert) are pat-
terns. This is used for performing a confor-
mance check.

WGB
Method

Dependencies cluster-
ing
Hierarchical cluster-
ing
Linear equation solver

Use of the Module Dependency Strength
(MDS) metric to prune dependencies and
specify a linear equation problem to discard
redundant dependencies.

41

3 A STUDY OF THE GAP BETWEEN ARCHITECTURE RULES AND IMPLE-

MENTED MODULE DEPENDENCIES

Evaluations of approaches and tools that assess the matching between a conceptual

software architecture and its implementation show that divergences typically occur. How-

ever, there is limited investigation of the nature of these divergences. Such an investigation

can reveal underlying problems, e.g. the use of inadequate granularity to document the ar-

chitecture. In this chapter, we evaluate and characterize the divergences between concep-

tual architecture rules and dependencies among modules implemented in the source code,

potentially reflecting implemented rules. This was done by means of a study involving

six subject systems, in which we extracted source code dependencies and compared them

against architecture rules using an association rule algorithm that provides a metric based

on frequency. Thus, we detail the settings of this study in Section 3.1. Next, we present,

analyze and discuss the results obtained during the study in Section 3.2.

3.1 Study Settings

The previous chapter introduced many approaches that aim to support software ar-

chitects to document architectures and keep them consistent with the implemented code.

However, as discussed, the gap between conceptual architecture rules and implemented

module dependencies is large. In this Section, we analyze this gap to understand why it

occurs, so that we can identify whether there are problems associated with the way con-

ceptual rules are documented and also to understand properties associated with module

dependencies that help automatically recover rules. Our analysis is done based on an

empirical study described in this section.

3.1.1 Goal and Research Questions

We adopted the widely used Goal-Question-Metric (GQM) (SOLINGEN et al.,

2002) paradigm to design our study. We thus structured it with a goal statement, research

questions to achieve this goal, and metrics that provide the necessary information to an-

swer our research questions. We next state our study goal.

42

To understand why there is a (large) gap between conceptual architecture rules and

implemented module dependencies, evaluate and characterize their divergences

from the point of view of the researchers in the context of a multi-project study.

To achieve our goal, we formulated three research questions (RQs) considering the

previously discussed challenges, and selected metrics (M) to answer them, as shown next.

We detail the metrics in Table 3.1 associating to which RQ they are related according to

the column Research Question, e.g. M1 in related to RQ1 in the Table 3.1.

RQ1. What is the gap between conceptual architecture rules and implemented module

dependencies?

RQ2. How can implemented module dependencies be categorized in relation to concep-

tual architecture rules?

RQ3. Are implemented module dependencies distinguishable considering their catego-

rization?

Table 3.1: Empirical Study Metrics.

Metric Research
Question Description

M1 RQ1 Architecture conformance: fraction of implemented module de-
pendencies that are in conformance with architecture rules.

M2 RQ1 Rule conformance: fraction of allowed dependencies that are
implemented

M3 RQ2 Number of implemented dependencies by identified category.
M4 RQ3 Support of implemented dependencies.

Although it is known that implemented software often does not strictly follow

its conceptual architecture, having many more dependencies than planned (HORA et al.,

2013)—and that is the motivation for architecture conformance approaches—with RQ1,

we aim to identify how large is the gap between architecture rules and implemented de-

pendencies. While RQ1 focuses only on analyzing the conformance level, our goal with

RQ2 is to provide a detailed analysis of the dependencies and classify them with respect

to rules. This classification allows us to understand the types of divergences that occur

between rules and dependencies, which can help identify missing information in archi-

tecture documentation. Finally, with RQ3, we focus on verifying whether identified types

43

of divergences have particular properties that characterize them, so that it is possible to

(semi-)automatically distinguish them. For example, being able to distinguish dependen-

cies that are architecture violations from undocumented architecture rules.

3.1.2 Procedure

In this section, we describe the steps of the procedure adopted to perform our

study. In a nutshell, we first recover the conceptual architecture of our subject systems.

Next, we extract dependencies among classes, which are used to build a dataset to obtain

the module dependencies using an association rule algorithm (that gives M3, the support

metric). This extraction of dependencies is independent of the manual architecture recov-

ery. Recovered rules are then matched against extracted dependencies. We provide details

of each of the steps of our study procedure as follows.

Manually Recover System Architecture. We recovered the architecture of our subject

systems based on the guidelines presented by Garcia et al. (2013). The foundation

to the recovery process consists of previous architecture documentation and the

knowledge provided by information providers (software architects and developers)

of the systems. We first identified software modules by identifying packages (con-

sidering the Java language) of a particular level of the package hierarchy of the sys-

tem that correspond to architecture modules. For example, a package named data

has different sub-packages such as data.dao and data.hibernate. Our in-

formation providers informed that the data package is an architecture module. As

a consequence, sub-packages are sub-modules. Another consequence of specifying

data as a module is that all dependencies between sub-modules of data are al-

lowed in our recovered architecture. Next, information providers stated conceptual

rules that inform whether modules can depend on elements of another module. For

example, if a Presentation module depends on a Business module, classes of the

former (or of sub-modules) can, e.g., invoke methods of classes of the latter (or of

sub-modules). We represent this rule as Presentation→ Business. In some cases,

we had available architecture documentation (mainly for the large subject systems)

and in others we drafted modules and rules, and validated them by consulting the

system architects and developers to reduce the effort needed from them. As a re-

44

sult of this task, we obtained modules and architecture rules, which comprise the

architecture of our subject systems.

Extracting Module and Class Dependencies Based on the source code of each subject

system, we extract dependencies using the Classycle1 tool, which automatically

extracts dependencies between classes for each system class. The extraction of

dependencies considers any type of dependency between classes, which in Java

means that a class depends on all classes that it imports. Based on the graph built

considering these dependencies, we derived module dependencies, considering to

which module each class belongs.

Calculating Support. In order to analyze dependencies, we investigate the frequency in

which classes of a module depend on classes of another. This analysis considers the

specific module to which a class belongs and also its parent modules. For example,

consider a class cA located in the child module AC , part of the parent module AP .

cA depends on the class cB, located in the child module BC , part of the parent mod-

ule BP . Therefore, we investigate the dependency considering four perspectives:

AP → BP , AP → BC , AC → BP and AC → BC . If there are more modules in

the module hierarchy, we consider classes as part of any module. These different

perspectives allow us to evaluate all possible representations of architecture rules

with different granularity levels.

To investigate the dependency frequency, we calculate the percentage of classes

within a source module that depends on classes of a target module, considering

all possible perspectives described above. This calculation was made by means of

the Apriori, an association rule mining algorithm (TAN; STEINBACH; KUMAR,

2005), more specifically, the GNU-R2 implementation. The support metric given

by this algorithm, using a particular setup, corresponds to dependency frequency.

For example, if a module A has 100 classes from which 75 depend on classes of a

module B, the dependency A→ B, in this case, has a support of 75%.

Analyzing Extracted Dependencies. To answer our research questions, we analyze mod-

ule and class dependencies and compare them with architecture rules obtained from

the manual architecture recovery. This comparison is made using the metrics spec-

ified in the previous section.
1<http://classycleplugin.graf-tec.ch>
2<https://CRAN.R-project.org/package=arules>

http://classycleplugin.graf-tec.ch
https://CRAN.R-project.org/package=arules

45

3.1.3 Subject Systems

We selected six subject systems to be investigated in our study. They were selected

because they matched the criteria of having available source code and a recoverable or

updated architecture documentation. In addition to these criteria, variations on the nature

of the software, such as adopted architectural patterns, domain and size, was important to

have representative software systems.

Table 3.2 and 3.3 summarize key characteristics of our selected systems, and fur-

ther information can be obtained in Appendix A. In Table 3.2, the first column introduces

the system name followed by the term used to refer to the system throughout the thesis

highlighted in italics in Table 3.2. In addition to their names, we detail their domains,

the architecture adopted in their development, and a brief description of their main pur-

pose. In Table 3.3, we detail quantitative data about the systems: (i) number of lines of

code (KLOC); (ii) number of classes (Cl); (iii) number of class dependencies (Cl-Dep);

(iv) number of packages (Pkg); (v) number of packages dependencies (Pkg-Dep); (vi)

number of manually recovered conceptual rules (C-Rules); and (v) number of manually

recovered architecture modules (Modules). Moreover, by analyzing the architecture of

subject systems, we observed significant differences in architectural aspects due to their

different purposes.

To have representative systems in our study, we selected systems that are from

different domains, sizes and architecture organizations. On the one hand, EC, Metrics

and OLIS have traditional architectures, with elements concentrated in business modules.

On the other hand, ArchStudio, AspectJ and RecSys have more complex architectures,

which integrate many architecture styles.

In order to obtain the conceptual architecture of our subject systems, we obtained

information with architects and developers of each system when possible, used available

documentation, and followed existing guidelines (GARCIA; IVKOVIC; MEDVIDOVIC,

2013). ArchStudio had its architecture recovered in a prior study (GARCIA; IVKOVIC;

MEDVIDOVIC, 2013), while AspectJ had available architecture documentation which

was refined based on the manual investigation of specific modules. Further information

regarding the subject systems and their architectures can be seen in Appendix A.

46

Table 3.2: Characteristics of our Subject Systems.

Name Short Name Domain Architecture Description

ArchStudio 4 ArchStudio Software Development Heterogeneous Open-source software to support the development of
system architectures.

AspectJ Compiler and
Weaver

AspectJ Software Development Heterogeneous Eclipse platform based tool for aspect-oriented soft-
ware development.

Expert Committee EC Conference Management Layered Web conference management system.
Eclipse Metrics Plu-
gin Continued

Metrics Software Development Extended MVC Eclipse plugin for calculation of project metrics.

OnLine Intelligent
Services

OLIS Personal Assistance Layered Web application to provide personal assistant ser-
vices.

Recommender Sys-
tem

RecSys Recommender Systems Heterogeneous Desktop-based decision making system.

Table 3.3: Subject Systems and their Characteristics.

System KLOC Cl Cl-Dep Pkg Pkg-Dep C-Rules Modules

ArchStudio 236.9 2308 15894 319 2580 53 57
AspectJ 217.9 1667 11581 215 1779 31 15
EC 11.7 195 1095 52 309 19 6
Metrics 15.6 150 654 28 156 8 4
OLIS 11.4 211 798 45 221 13 5
RecSys 22.8 404 1625 92 930 19 10

47

3.2 Results and Analysis

We next present and discuss our study results, answering each of our research

questions.

3.2.1 Gap between conceptual architecture rules and implemented module depen-

dencies

As discussed, previous work (BRUNET et al., 2012; LUTELLIER et al., 2015)

has shown that there is a large gap between conceptual architecture rules and implemented

module dependencies. Differently from previous analyses, we investigate this gap from

two perspectives. First, similarly to previous work, we observe how implemented de-

pendencies match architecture rules. Considering the semantics of architecture rules, we

evaluate which implemented dependencies are allowed. Second, we make this analysis

in the opposite direction. We evaluate which allowed dependencies are implemented. We

refer to these two evaluations as architecture and rule conformance, respectively, corre-

sponding to our M1 and M2 metrics. To illustrate, assume that a system, shown in Fig-

ure 3.1, has a rule web→ business. This rule leads to 12 possible allowed dependencies.

Further assume that implemented dependencies are the arrows in bold. As a result, the

architecture conformance is 60% (3 of 5 implemented dependencies are in conformance

with the rule) and 2 (40%) are architectural violations. The rule conformance is 25% (3

of 12 allowed dependencies are implemented).

Figure 3.1: Example of Architecture and Rule Conformance.

Results obtained for each subject system are shown in Table 3.4. We show the

number of allowed module dependencies according to the conceptual architecture rules

48

Table 3.4: Architecture Conformance (M1) and Rule Conformance (M2) of each Subject
System.

System Dependencies Conformance

Allowed Implemented Architecture Rule

ArchStudio 16764 1178 26.1% 1.8%
AspectJ 1398 683 28.7% 14.0%
EC 756 135 94.1% 16.8%
Metrics 63 45 55.6% 39.7%
OLIS 701 86 93.0% 11.4%
RecSys 923 375 36.0% 14.6%

AVG 55.6% 16.4%
SD 31.2% 12.8%

and those implemented. The metrics derived from them are shown in the last two columns.

We also show in the last two rows the average (AVG) and standard deviation (SD) of these

two metrics.

The results associated with architecture conformance corroborates with existing

results, that is, architecture conformance is low. The number of architectural violations

ranges from 44.4%–73.9% of the implemented dependencies for the majority of the sys-

tems. Exceptions are EC and OLIS, in which developers apparently followed architecture

rules while implementing the system, having almost 95% of its implemented dependen-

cies in accordance with rules.

Regarding rule conformance, no system achieved high results, being the highest

39.7% (Metrics). The low results of this metric show that there is a significant number

(in the worst case, 98.2%) of dependencies that are allowed by rules but do not actually

occur in the code. This result indicates that architecture rules are possibly too permissive.

Analyzing our subject systems, we observed that the architecture modules referred in rules

are often coarse-grained and have a high number of sub-modules organized in a module

hierarchy. Therefore, the architecture corresponds to an abstract model of the system,

without specifying fine-grained architecture decisions. As a consequence, a significant

portion of the system is developed without any governance, which can lead to an emergent

organization that can include violations to initially planned rules. Although an abstract

model of the system is important to understand the system as a whole, this scenario gives

evidence of the need for finer-grained architecture rules.

The only system that has higher rule conformance is Metrics, which is our smallest

system. This level of conformance is explained by the fact that it has a low number

49

of modules (in comparison with the other systems). Therefore, the granularity level of

modules referred in rules is closer to that of implemented modules.

The analysis of the conformance between conceptual architecture rules and imple-

mented module dependencies revealed a large gap between them, with divergences

ranging from 5.9% to 73.9%. Consequently, the number of architectural violations

is high. Moreover, we observed that the amount of allowed dependencies that never

occur in the code is even higher, ranging from 60.3% to 98.2%. This indicates that

rules should be finer-grained and more restrictive than they are.

3.2.2 Implemented module dependencies categorization

Our previous analysis allowed us to observe that there are many divergences be-

tween conceptual architecture rules and implemented module dependencies. We now

further investigate them to understand the nature of these divergences, in order to answer

RQ2.

The analysis of this section takes into consideration the previously introduced

definition of architecture rules that we use in this chapter. Rules are specified in terms of

modules, such as a rule A→ B, meaning that any class of A (including those in A’s sub-

modules) can depend on any class of B (including those in B’s sub-modules). Moreover,

within a module, dependencies are allowed. Based on this definition, we identified four

categories of dependencies, with respect to their relationship with conceptual architecture

rules.

Conceptual dependencies are those that exactly match conceptual rules of a subject sys-

tem. For instance, dependencies from classes of the preference.explanation

package to the preference.reasoner package, which correspond to the

Explanation → Reasoner rule.

Sub-conceptual dependencies are those that are in accordance with conceptual rules but

do not exactly match them. For example, the dependency preference.reasoner .labreuche

→ preference.explanation.domain does not exactly match the Reasoner →

Explanation rule. However, both source and target packages correspond to sub-

modules of modules referred in the rule, no finer-grained rule exists. Therefore,

50

this dependency is in accordance with the rule, but occurs at a finer-grained granu-

larity.

Intra-module dependencies are those that occur between sub-modules within the same

architecture module. Architecture rules refer to modules at some level of gran-

ularity, and dependencies within modules at a finer-grained granularity level are

considered allowed, although not explicitly stated. We take the View module of

RecSys as an example. No conceptual rule specifies allowed dependencies within

this module, but there is the dependency ucpb.view .action → ucpb.view .state,

which is an intra-module dependency.

Unexpected dependencies are all those remaining. Consequently, if a module depen-

dency cannot be classified in one of the categories above, it is considered unex-

pected, because it neither corresponds to a conceptual rule nor is derivable from

them. By analyzing dependencies of this type, we observed that they can be: (i)

violations of architecture rules; or (ii) dependencies that should be documented as

conceptual rules (i.e. undocumented or unknown architecture rules). Considering

the same subject system used to exemplify the rule categories above, the depen-

dency database → domain.mobile is classified as unexpected.

Based on the categories identified in our systems, we investigate the frequency

of each category in our subject systems. In Figure 3.2, we show the results of this in-

vestigation indicating the percentage of dependencies that are present in each identified

category.

Figure 3.2: Distribution of Implemented Module Dependencies by Category for each
Subject System.

As expected, the percentage of conceptual dependencies is low across all sub-

ject systems, varying from 0.5% (ArchStudio) to 17.8% (Metrics). This low percent-

age is expected because rules typically correspond to generalizations of sub-conceptual

51

and intra-module dependencies, which occur among sub-modules of modules referred in

rules. Some of our subject systems have no classes in the modules referred in rules and,

consequently, it is impossible to have dependencies directly among them. However, small

systems, such as Metrics, do not have a deep module hierarchy causing the percentage of

conceptual dependencies to be higher.

Dependencies that are in accordance with architecture rules thus mostly occur

as sub-conceptual and intra-module dependencies. The majority of dependencies of the

systems that are in conformance with their architectures, namely EC and OLIS, are sub-

conceptual, while in the remaining cases they range from 2.5% to 20.0%. The amount

of intra-module dependencies is mostly consistent across the different systems, ranging

from 16.0% to 30.4%.

Although these dependencies are in accordance with architecture rules, the cases

in which they are representative in subject systems reveal two potential problems. First,

the high amount of sub-conceptual rules may indicate that architecture rules are at a too

coarse-grained level of granularity. For example, EC implements a Facade pattern to the

Presentation module use the Business module. Although the architecture rule informed

by developers is Presentation → Business, dependencies (should) occur to the busi-

ness.facade module. Therefore, the rule allows dependencies that should not be present

in the code. This issue was discussed in the previous section, which showed that the num-

ber of dependencies allowed by rules is much higher than what is actually implemented.

Second, the modest high amount of intra-module dependencies also indicates the possible

need for refinement of architecture rules. All the dependencies that occur within mod-

ules specified in rules are allowed. However, the number of dependencies is high, and this

means that there are many dependencies that occur without any governance, as mentioned

earlier, which can lead to a disorganized system evolution.

Not surprisingly, the number of unexpected dependencies in most of the systems

is high, representing up to 73.9% of the dependencies. This is expected because we

identified in the previous section that many of the systems are not in conformance with

their architectures. Only two systems have a low number of unexpected dependencies,

EC and OLIS, because they are mostly in accordance with their architecture, as discussed.

This high number is justified not only by architectural violations but also by architecture

rules that, based on code inspection, we believe are undocumented. This is the case of

AspectJ and RecSys. Moreover, we observed that dependencies to utility modules were

often ignored when specifying architecture rules, leading to unexpected rules.

52

Four categories of implemented module dependencies were identified, namely con-

ceptual, sub-conceptual, intra-module, and unexpected. The high number of sub-

conceptual (AVG = 29.0%) and intra-module (AVG = 21.5%) dependencies indi-

cates that there is need for finer-grained architecture rules. These are in confor-

mance with the architecture but not explicitly documented.

3.2.3 Automated distinction of implemented module dependencies

Our previous results suggest that the granularity used in architecture rules may

be inadequate. In some occasions, as exemplified, a better granularity might correspond

to a sub-conceptual or intra-module rule. In order to investigate if it is possible to pro-

vide some automation in the identification of an adequate granularity level for rules, we

evaluate the frequency of dependencies between classes of modules. The selection of an

adequate granularity level is done using the following reasoning. Consider a module A

that has two sub-modules A1 and A2. If many classes of A1 depend on classes of a mod-

ule B but this is not the case of classes in A2, we assume that the best granularity for a

rule would be A1 → B. However, if classes of A2 also depend on classes of B, the best

granularity would be A→ B.

To make this evaluation, we use the support metric, as mentioned in our study

procedure. As explained, we calculate the support not only of individual modules, but

also modules combined in a super-module. We analyze obtained support values and also

verify whether dependencies of different categories are distinguishable by their support

metric, that is, there are statistically significant differences among support values. If

this is the case, this metric is a potential candidate to be used as input to a method that

automatically recommends the granularity level to be used in architecture rules.

We report the values obtained for the support metric considering each dependency

category and subject system in Table 3.5, where AVG stands for the average, SD stands

for the standard deviation, Med stands for the median, and Min and Max stand for the

minimum and maximum values, respectively. These data are also shown in Figure 3.3,

which presents a box plot of the values obtained for each subject system by dependency

category.

53

Table 3.5: Support Metric by Dependency Category for each Subject System.

Dependency Category AVG SD Med Min Max
(%) (%) (%) (%) (%)

A
rc

hS
tu

di
o Conceptual 41.3 30.1 41.7 1.0 100.0

Sub-conceptual 50.5 38.1 50.0 0.2 100.0
Intra-module 37.8 33.4 26.2 0.2 100.0
Unexpected 31.3 33.6 16.7 0.1 100.0
All 39.5 35.1 25.0 0.1 100.0

A
sp

ec
tJ

Conceptual 34.1 27.9 24.4 0.8 100.0
Sub-conceptual 46.0 32.1 40.0 0.6 100.0
Intra-module 29.1 28.0 16.7 0.7 100.0
Unexpected 25.1 27.2 14.3 0.1 100.0
All 30.6 29.7 20.8 0.1 100.0

E
C

Conceptual 55.3 33.3 46.9 11.1 100.0
Sub-conceptual 60.2 31.7 50.0 1.9 100.0
Intra-module 58.3 32.0 50.0 7.7 100.0
Unexpected 35.6 29.7 50.0 2.0 100.0
All 55.6 32.6 50.0 1.9 100.0

M
et

ri
cs

Conceptual 53.3 29.1 50.0 16.7 100.0
Sub-conceptual 39.6 29.9 22.2 13.3 100.0
Intra-module 46.6 37.5 25.4 14.3 100.0
Unexpected 23.2 24.3 14.3 1.0 88.9
All 30.5 28.4 18.3 1.0 100.0

O
L

IS

Conceptual 46.6 34.9 37.5 4.4 100.0
Sub-conceptual 56.9 35.9 62.5 1.5 100.0
Intra-module 61.0 43.9 100.0 4.0 100.0
Unexpected 9.1 8.7 6.3 2.5 42.9
All 52.2 38.0 50.0 1.5 100.0

R
ec

Sy
s

Conceptual 48.1 32.9 30.4 5.6 100.0
Sub-conceptual 58.4 34.9 50.0 2.6 100.0
Intra-module 35.1 28.0 25.0 1.1 100.0
Unexpected 27.1 25.4 20.0 0.7 100.0
All 33.3 29.7 25.0 0.7 100.0

54

Figure 3.3: Support Variation by Implemented Dependencies Category.
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Dependency Type

Su
pp

or
t

All Conceptual Sub−conceptual Intra−module Unexpected

(a) ArchStudio
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Dependency Type
S

u
p

p
o

rt

All Conceptual Sub−conceptual Intra−module Unexpected

(b) AspectJ

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Dependency Type

S
u

p
p

o
rt

All Conceptual Sub−conceptual Intra−module Unexpected

(c) AspectJ

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Dependency Type

S
u

p
p

o
rt

All Conceptual Sub−conceptual Intra−module Unexpected

(d) Metrics

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Dependency Type

S
u

p
p

o
rt

All Conceptual Sub−conceptual Intra−module Unexpected

(e) OLIS

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Dependency Type

S
u

p
p

o
rt

All Conceptual Sub−conceptual Intra−module Unexpected

(f) AspectJ

55

Our first observation is that both average and median of the support of sub-conceptual

dependencies are higher than conceptual dependencies for all systems but Metrics. When

we analyze dependencies throughout the module hierarchy, all analyzed levels are sub-

conceptual except the conceptual level. Consequently, many of the sub-conceptual levels

can possibly have low support because they might not correspond to a pattern in the im-

plementation, that is, when many classes from a module depend on another. Despite this,

which justifies a lower support for some of the sub-conceptual dependencies (leading to

higher variance), conceptual dependencies still have generally lower support. This is thus

a supporting argument to sustain our claim that architecture rules should be finer-grained

because it indicates that only a subset of sub-modules of a module referred in a conceptual

rule consistently depends on the same module. Therefore, rules would better reflect what

should be in the implementation if they were expressed in terms of these sub-modules.

The Metrics system does not have this behavior because it has a flat module hierarchy

with few modules and has dependencies at the conceptual level, as shown in Figure 3.2.

With respect to intra-module dependencies, we observed that all systems are dif-

ferent from each other. There are three different cases. First, within a module, there are

many dependencies among sub-modules, all of them with not so high support (lower than

50%). Therefore, the lack of rules governing dependencies among sub-modules might

be the adequate choice. Second, there are specific cases where a sub-module strongly

depends on another (support higher than 50%). In this case, rules indicating allowed de-

pendencies within these modules would have helped to limit dependencies to these spe-

cific cases, preventing violations. Third, there are situations similar to the second case,

but dependencies can be generalized to a coarse-grained rule. For example, A → B,

A1 → B, and A2 → B have all high support; therefore, a single rule A → B captures

these dependencies.

Unexpected dependencies generally have low support, being most of them vio-

lations according to our analysis. This can be clearly seen in OLIS, which is the system

with the smallest gap between conceptual rules and implemented dependencies. However,

there are few exceptions. For example, EC has unexpected dependencies with 100% of

support, which are a consequence of two possible high-level undocumented rules. After

consulting developers, no consensus was reached regarding this because although the de-

pendency expressed in these two rules is a violation (as no rule allows it), EC developers

did not consider a violation if only getters are invoked (no business operation is executed).

56

In order to verify whether the support metric significantly varies across the dif-

ferent dependency categories, we performed a Kruskal-Wallis test for each system (a

Shapiro-Wilk test revealed that the distribution of the support values is not normal for all

systems, at a significance level of α = 0.05). As result, the Kruskal-Wallis tests indicated

that all support values are significantly different across the different dependency cate-

gories (p < 0.05), for all systems. We then conducted a Nemenyi post-hoc test, which are

presented in Table 3.6, to identify significant differences. Unexpected dependencies have

a support significantly different in most of the cases, indicating that the support metric

can be used to help identify architectural violations or undocumented rules, because low

support likely corresponds to unexpected dependencies.

Table 3.6: Nemenyi Post-hoc Test by Pairs of Dependency Category for each Subject
System.

Dependency Category Sub-conceptual Intra-module Unexpected

A
rc

hS
tu

di
o Conceptual 0.72 0.91 0.18

Sub-conceptual - <0.01 <0.01

Intra-module - - <0.01

A
sp

ec
tJ Conceptual 0.48 0.85 0.31

Sub-conceptual - <0.01 <0.01

Intra-module - - <0.01

E
C

Conceptual 0.94 0.99 0.19

Sub-conceptual - 0.98 <0.01

Intra-module - - <0.01

M
et

ri
cs Conceptual 0.74 0.92 <0.01

Sub-conceptual - 99.0 <0.01

Intra-module - - 0.08

O
L

IS

Conceptual 0.71 0.61 <0.01

Sub-conceptual - 96.0 <0.01

Intra-module - - <0.01

R
ec

Sy
s Conceptual 0.88 0.25 <0.01

Sub-conceptual - <0.01 <0.01

Intra-module - - <0.01

57

The support of conceptual dependencies is generally lower than the support of

sub-conceptual dependencies (except for systems with a flat and small module hi-

erarchy), confirming that architecture rules should be finer-grained. The support

of unexpected dependencies is significantly lower than the support of other de-

pendency categories, indicating that this metric can be used to identify groups of

dependencies that correspond to architectural violations or undocumented rules.

3.3 Threats to Validity

We identified a set of threats to the validity of our study. We next state them and

describe how they were mitigated. An internal threat is associated with our manual archi-

tecture recovery process performed with our subject systems, because the same system

can be viewed by different architects or developers in different ways, leading to alterna-

tive architectures and architecture rules. The two largest systems had their documented

architecture available and we used them (GARCIA et al., 2013). To increase the reliabil-

ity of the recovered architectures of the other systems, we contacted key architects and

developers directly involved in their development. Moreover, we validated the correctness

of the recovered conceptual architecture following guidelines presented in a study done

by Garcia et al. (GARCIA et al., 2013), regarding the provision of ground-truth software

architectures.

An external threat that may compromise the generalization of our results is the

number of systems investigated. Systems that share many commonalities, e.g. domain,

and architecture style, are likely to produce similar results, limited to systems with their

characteristics. To mitigate this problem, we selected systems with different character-

istics. Our subject systems are from different domains, have different sizes and adopt

different architecture styles, as discussed in Section 3.1.3. Our findings provide evidence

of system diversity, and results differ across the systems, which is important due to the

exploratory nature of our study. We emphasize that our goal is to observe key reasons

that explain the divergence between conceptual software architectures and implemented

dependencies rather than to test a hypothesis.

58

3.4 Final Remarks

In this chapter, we presented an exploratory study that assesses and investigates

the gap between conceptual architecture rules and dependencies among modules imple-

mented in the source code. Six subject systems had their conceptual architecture recov-

ered and compared with implemented module dependencies. As expected, many of the

systems have many divergences between rules and dependencies. While investigating

these divergences, we identified that not only there are dependencies that do not comply

with rules (thus typically being considered violations) but also that many allowed depen-

dencies do not occur in the code. This suggests that many rules are more general than

they should be, and could have been specified in a finer-grained way.

Based on the analysis of these four categories, we identified particularities to char-

acterize them. The key characteristic that was analyzed was the support metric, which is

associated with the dependency frequency. As result of this analysis, key findings are:

(i) support of conceptual dependencies varies according to system organization, and is

also influenced by the support of sub-conceptual and intra-module dependencies; (ii) sub-

conceptual and intra-module dependencies are two types of dependencies typically not

investigated, which can provide information about the quality of the system architecture,

giving evidence with respect to coupling and cohesion; and (iii) unexpected dependen-

cies, which can be identified by the support metric, are useful to identify unplanned rules

that should be documented as conceptual or violations. In the next chapter, we present

our proposed method to recover architecture rules, which was developed based on the

findings of this analysis.

59

4 THE WGB METHOD

In this chapter, we present our WGB method. The WGB method chooses a set

of architecture rules to represent an implemented software architecture taking as input

a given software module organization (e.g., package structure) and dependencies among

module elements (e.g., classes). These recovered rules are a coarse-grained representa-

tion of the implemented architecture that are an architectural view of the system. Our

method is composed of three sequential steps: (i) calculation of a metric that captures

the dependency strength between every two modules, considering dependencies between

elements (Section 4.1); (ii) pairwise clusterization of dependencies based on this metric,

considering neighbor module levels (Section 4.2); and (iii) selection of the set of rules

that maximizes the dependency strength without redundancy, which we assume as the

correct rule granularity to represent element dependencies (Section 4.3). In Section 4.4,

we discuss scenarios in which our method can be used.

These steps and associated inputs and outputs are illustrated in Figure 4.1. Based

on source code dependencies, we extract metrics (intensity and distribution), which are

combined in a single metric, the Module Dependency Strength (MDS). The calculated

MDS is then used to prune less representative dependencies. Finally, from candidate

rules, we select a set of rules with no redundant information and has the highest MDS.

4.1 Module Dependency Strength

As discussed, dependencies from elements of a given module to elements of an-

other can be used to evaluate the dependency between both these modules, and their parent

modules. Such dependencies can be used to calculate a metric that indicates the depen-

dency strength between modules in different levels of the module organization structure.

This metric captures how strong the dependency between two modules is, being composed

of two key components, namely dependency intensity and dependency distribution.

The reasoning of this metric is twofold. First, the higher the percentage of ele-

ments of a module X that depend on elements of a module Y , as well as the percentage

of such Y ’s elements; the higher the dependency intensity. Second, the dependency from

X to Y when X’s elements depend on Y ’s elements is stronger than when the elements

of X’s siblings also depend on Y ’s elements, or X’s elements also depend on the ele-

ments of Y ’s siblings. The opposite must occur when evaluating the dependency between

Vanius Zapalowski
Realce

60

Figure 4.1: Overview of the WGB Method.

X’s and Y ’s parents. This is captured by the dependency distribution. We next detail

how this metric—named module dependency strength, or MDS(X, Y), where X and Y

are modules—is calculated for parent and child modules using a bottom-up approach. It

mainly differs from module coupling (ALLEN; KHOSHGOFTAAR; CHEN, 2001; OF-

FUTT; HARROLD; KOLTE, 1993) by having low values when the dependency between

a pair of modules that have high coupling are due to parent modules.

Before detailing our metric, we introduce the adopted notation where:

• X, Y, ... are modules in a module set M ;

• XP is used to denote a module being analyzed as a parent module;

• XC is used to denote a module being analyzed as a child module;

• XCi
is the ith child of XP ;

• x, y, ... are element of the element set E;

• x, y, ... are elements of the modules X, Y, ..., respectively;

• The parent function p :M →M gives the parent module of a given module; and

• The children function c :M → ℘(M) gives its children.

61

Figure 4.2: Running Example.

Given that we assume a hierarchy in the form of a tree, a module has only one parent

and can have many children. Moreover, the element function el : M → E, described in

Equation 4.1, gives all elements in a module hierarchy.

el(X) =

{x|x ∈ X}, if c(X) = ∅⋃
XCi
∈c(X) el(XCi

), otherwise
(4.1)

For now, assume that parent modules do not have elements within it, that is, el(XP) = ∅.

Later, we explain how this is dealt with. Finally, x → y indicates that an element x

depends on an element y, and X → Y indicates a module dependency, i.e. there is a

x ∈ el(X) and y ∈ Y , such that x→ y.

Using this notation, we also introduce an example that is used throughout this

section to illustrate our approach. Consider a system that has two main modules, Pre-

sentation, or P for short, and Service, or S for short. P implements three features, each

implemented by elements within their respective modules, F1,F2, and F3. S provides dif-

ferent services, implemented in four different modules, namely S1, S2, S3, and S4. This

structure of modules with their elements is presented in Figure 4.2. The dependencies

between elements of child modules are depicted with arrows. The elements of parent

modules, P and S, are the union of children’s elements—we highlight in gray those ele-

ments in a parent module that have a dependency (or is a dependee).

We first describe how the dependency intensity is calculated. The intensity intS(X, Y)

of the dependency of a dependent module X with respect to a dependee module Y is the

percentage of X’s elements that depend on Y’s elements, as shown in Equation 4.2. This

is illustrated in Figure 4.3a, which shows that one of F3’s elements depend on one of

S2’s elements. Therefore, intS(F3, S2) = 0.33 in this example. Similarly, the inten-

62

Figure 4.3: Components of the Dependency Strength Metric.

(a) Intensity

(b) Distribution

sity intT (X, Y) of the dependency of a dependee module Y with respect to a dependent

module X is the percentage of Y’s elements on which X’s elements depend, as shown

in Equation 4.3. According to the scenario shown in Figure 4.3a, intT (F3, S2) = 0.5,

because there are one S2’s element (out of two) on which F3’s element depend. The sub-

scripts S and T are used in the dependency intensity to indicate whether the source or

target modules, respectively, are being considered.

intS(X, Y) =
|{x|x ∈ el(X) ∧ y ∈ el(Y) ∧ x→ y}|

|el(X)|
(4.2)

intT (X, Y) =
|{y|y ∈ el(Y) ∧ x ∈ el(X) ∧ x→ y}|

|el(Y)|
(4.3)

The dependency distribution, in turn, does not take into account a single module,

but a set of modules. It evaluates how much the dependency of a module on another

is spread among its children. Therefore, the base of this metric component is evaluated

considering one of the modules as a parent. The distribution dstSP
(XP , Y) of a source

parent moduleXP is the percentage of its children that depend on the Y module, while the

dependency dstTP
(X, YP) of a target parent module YP is the percentage of its children on

which X depend, as shown in Equations 4.4 and 4.5, respectively. Figure 4.3b illustrates

63

this metric component.

dstSP
(XP , Y) =

|{XC |XC ∈ c(XP) ∧XC → Y }|
|c(XP)|

(4.4)

dstTP
(X, YP) =

|{YC |YC ∈ c(YP) ∧X → YC}|
|c(YP)|

(4.5)

To take distribution into account, we must know whether the dependency strength

is being calculated for a parent or a child module. The higher the number of children

of a parent module that depend on another, the higher the dependency strength, from a

parent perspective; while the lower the number of siblings of a child module that depend

on another, the higher the dependency strength, from a child perspective. Therefore, the

distribution of a module being analyzed as a parent module corresponds to the equations

above, while the distribution of a module being analyzed as a child module is the inverse.

Consequently, the dependency distribution is given by the equations below, in which a

level function l :M → {P,C} is used to tell whether a module X ∈M is being analyzed

as a parent (P) or a child (C) module.

dstS(X, Y) =

dstSP
(X, Y), if l(X) = P

1− dstSP
(p(X), Y), if l(X) = C

(4.6)

dstT (X, Y) =

dstTP
(X, Y), if l(Y) = P

1− dstTP
(X, p(Y)), if l(Y) = C

(4.7)

After introducing the intensity and distribution components, we can proceed to

our MDS metric. Approaches that mine dependencies to derive architecture rules only

consider the dependency intensity between a source (sub-)module to another. This only

serves as an indication that there must be a rule to represent the coupling between a

source module to a target module. However, this information is not enough to decide

whether (1) this coupling occurs solely from a particular sub-module to another, making

a rule that refers to this sub-module more adequate, or (2) from many sibling modules

to another, making a rule that refers to the parent module more adequate. Therefore, it

is crucial to use the dependency distribution to indicate if the dependencies are localized

64

Figure 4.4: Dependency Strength Metric with Intensity and Distribution Calculation

in a particular (sub-)module (leading to a high intensity associated with this module) or

are also present in sibling modules, suggesting that a coarse-grained rule would be more

adequate to represent the dependencies in an architecture model.

The dependency strength between two modules thus takes into account how fre-

quent the dependency occurs from both the source and target module perspectives (in-

tensity), adjusted by how this dependency is distributed. As a consequence, our metric

is context-sensitive, in the sense that it takes into account the dependency that occurs

between surrounding modules. The distribution is used as a weight of the intensity, as

detailed in Equation 4.8. Given that the dependency strength must be on a similar scale

so that we can compare its value calculated for different pairs of modules, weights are

normalized so that the dependency strength MDS(X, Y) ∈ [0, 1].

MDS(X, Y) = ̂dstS(X, Y)× intS(X, Y) + ̂dstT (X, Y)× intT (X, Y) (4.8)

where ̂dstS(X, Y) and ̂dstT (X, Y) are normalized dstS(X, Y) and dstT (X, Y), respec-

tively, such that 0 ≤ ̂dstS(X, Y), ̂dstT (X, Y) ≤ 1, and ̂dstS(X, Y) + ̂dstT (X, Y) = 1.

In order to illustrate the module dependency strength metric, we use the example

scenario presented in Figure 4.2. Based on the equations above, intensity and distribution

are calculated, and they are detailed in Figure 4.4. Values are shown in P and S consid-

ering MDS(P, S), in Fi considering MDS(Fi, S), and in Si considering MDS(P, Si).

With these values, we can calculate the dependency strength between parent mod-

ules, child modules, parent-child modules and child-parent modules. For example:

• MDS(P, S) = 0.47 × 0.44 + 0.53 × 0.36 = 0.21 + 0.19 = 0.40, where 0.47 and

0.53 are the normalized distribution values 0.67 and 0.75, respectively; and

• MDS(F2, S) = 0.40× 0.67 + 0.60× 0.18 = 0.27 + 0.11 = 0.38, where 0.40 and

0.60 are the normalized distribution values 0.33 and 0.50, respectively.

65

Table 4.1: Alternative Implemented Architecture Rules.

Parent-to-Parent Parent-to-Child Child-to-Parent Child-to-Child

P → S(0.40) P → S1(0.20) F2 → S(0.31) F2 → S2(0.40)

P → S2(0.43) F3 → S(0.38) F2 → S3(0.25)

P → S3(0.17) F3 → S1(0.33)

F3 → S2(0.43)

AVG = 0.40 AVG = 0.27 AVG = 0.34 AVG = 0.35

Note that MDS(P, S) > MDS(F2, S) and, if the dependency distribution were

not used as a weight, the values obtained for MDS(P, S) and MDS(F2, S) would be

0.40 and 0.43, respectively, causing MDS(F2, S) > MDS(P, S). This means that, al-

though the intensity absolute values from F2 to S are higher indicating a stronger coupling

between them than between P and S, there are siblings from F2 that also depend on S,

leading to a high distribution. This indicates that the overall dependency from P to S is

higher and that a rule from P to S would better capture the dependencies from many of

its children to S, instead of individual rules from (some of) its children to S.

4.2 Pairwise Clusterization of Dependencies

We now explain how we use the dependency strength metric to select the appro-

priate granularity to represent implemented architecture rules. We first make pairwise

comparisons between adjacent levels in the module hierarchy in order to decide whether

to cluster children dependencies in a parent module (for both source and target), and then

select the best non-conflicting set of rules. We focus in this section on explaining the

former. This step also helps reduce the number of considered implemented rules in the

next step, which has a higher computational cost.

It is possible to represent the implemented architecture rules of the example pre-

sented in Figure 4.4 in four different ways, detailed in Table 4.1. In a real software system,

we make a similar analysis, extracting all possible portions of the module organization,

i.e. if there is an element of a module XC that depends on the element of a module YC ,

we analyze two trees of two-adjacent-level modules: one with X’s parent with its children

and another with Y’s parent with its children.

To choose between alternatives of architecture rules, we evaluate the dependency

strength between every two pairs of modules using our metric. Obtained MDS values

66

for our example, with intermediate calculated components, are shown in Table 4.2 and

summarized next to the architecture rules presented in Table 4.1. When there is no de-

pendency between two modules, the metric value is 0, and these cases are omitted in

Table 4.2. Based on obtained metric values, we take the average MDS of each set of pos-

sible rules, which is shown in the last row of Table 4.1. The set with the highest average is

assumed to have the most appropriate granularity level to represent existing dependencies

as implemented architecture rules. In our example, the best representation is using the

parent-to-parent level, that is, P → S.

4.3 Selection of Architecture Rules

As result of the pairwise clusterization of dependencies, sets of dependencies that

are candidates to represent implemented architecture rules are already discarded—three

of the four options presented in Table 4.1. However, the resulting collection of sets of

dependencies may still include redundant information.

Assuming that after performing the step above we have the following scenario,

illustrated in Figure 4.5: (i) a parent module P depends on a child module S1, after the

analysis of P and S, and their children; and (ii) a child module F3 depends on grand-

children modules S1G1
and S1G2

, after the analysis of F3 and S1, and their children. This

consists of a redundant scenario because, if the first alternative is considered an imple-

mented architecture rule, module elements in the module hierarchy of P are allowed to

depend on module elements in the module hierarchy of S1. Because F3 is in the hierarchy

of P , and S1G1
and S1G2

are in the hierarchy of S1, adding F3 → S1G1
and F3 → S1G2

as

architecture rules would be redundant. Previous work on software rule mining results in

a large number of rules, which is often large enough to become infeasible to be useful in

practice, thus it is crucial to eliminate this redundant information.

67

Table 4.2: Values of the Module Dependency Strength (MDS) Metric.

Level Source Target intS(X, Y) intT (X, Y) dstS(X, Y) dstT (X, Y) ̂dstS(X, Y) ̂dstT (X, Y) MDS(X, Y)

Parent-to-Parent P S 4/9 = 0.44 4/11 = 0.36 2/3 = 0.67 3/4 = 0.75 0.47 0.53 0.40

Parent-to-Child P S1 1/9 = 0.11 1/3 = 0.33 1/3 = 0.33 1/4 = 0.25 0.57 0.43 0.20
P S2 2/9 = 0.22 2/2 = 1.00 2/3 = 0.67 1/4 = 0.25 0.73 0.27 0.43
P S3 1/9 = 0.11 1/4 = 0.25 1/3 = 0.33 1/4 = 0.25 0.57 0.43 0.17

Child-to-Parent F2 S 2/4 = 0.50 2/11 = 0.18 1/3 = 0.33 2/4 = 0.50 0.40 0.60 0.31
F3 S 2/3 = 0.67 2/11 = 0.18 1/3 = 0.33 2/4 = 0.50 0.40 0.60 0.38

Child-to-Child F2 S2 1/4 = 0.25 1/2 = 0.50 1/3 = 0.33 2/4 = 0.50 0.40 0.60 0.40
F2 S3 1/4 = 0.25 1/4 = 0.25 2/3 = 0.67 2/4 = 0.50 0.57 0.43 0.25
F3 S1 1/3 = 0.33 1/3 = 0.33 2/3 = 0.67 2/4 = 0.50 0.57 0.43 0.33
F3 S2 1/3 = 0.33 1/2 = 0.50 1/3 = 0.33 2/4 = 0.50 0.40 0.60 0.43

68

Figure 4.5: Example of Redundancy.

To solve this problem, we model our scenario as an optimization problem, formal-

ized next, in which our goal is to select a dependency set that maximizes the dependency

strength, subject to the elimination of dependencies that lead to redundant rules.

max

|D|∑
i=1

ini ×
(
ω(di)×MDS(diS , diT)

)
inx + iny ≤ 1, ∀dx, dy(redundant(dx, dy))

(4.9)

where D is the set of dependencies that are candidates to be implemented architecture

rules, di ∈ D having diS and diT as source and target, respectively, ini ∈ [0, 1] indicates

whether the dependency di is selected (1) or not (0) as an architecture rule, ω(di) is a

weight function for MDS, and redundant(dx, dy) is true when the dependencies dx and

dy are redundant. The weight function ω(di) is needed to adjust MDS according to how

many dependencies a coarser-grained dependency is representing. Consider the example

of Figure 4.5. All the three candidate dependencies have a value in the range [0, 1]. Con-

sequently, if we simply use the sum of MDS values to be maximized, finer-grained rules

would be selected, because the sum of the dependencies of many finer-grained depen-

dencies is often higher than that of a single coarser-grained dependency. Therefore, the

weight function multiplies the MDS value by the number of finer-grained dependencies it

represents, i.e. those that are eliminated if this coarser-grained dependency is selected.

By solving this optimization problem, we obtain a set of values for ini, which

gives us the set of dependency representations selected as implemented architecture rules,

i.e. those that have ini = 1. This resulting set of rules gives the implemented or concrete

software architecture. The modules referred in selected rules are those that should be

explicitly documented, and rules indicate allowed dependencies between modules.

Finally, we detail how we deal with parent modules that contain elements. Assume

that a module XP has both elements and children XCi
. While modeling the module

69

hierarchy, we add an extra child module to XP , which we denote as XC∗ , that contains

XP ’s elements. If, as result of our method, the dependency XP → Y is selected as an

implemented architecture rule, all elements of XP ’s hierarchy, including those within XP

can depend on Y . While, if the dependency XC∗ → Y is selected, only the elements

within XP can depend on Y . We represent such rules as XP
∗−→ Y .

4.4 Use Cases of the Method

As described in the previous sections, our method recovers a set of architecture

rules based on the source code dependencies from an implemented system that has a

source code with a hierarchical structure without any additional information. The main

objective of our method is to recover this set of rules to be used as information to build

the architecture of a system, which makes our method an architecture recovery approach

if used considering only a snapshot of the source code.

Our method can also support the detection of violations based on a previously

extracted set of architecture rules. By applying our method frequently, such as to every

change in the source code, the developers are able to detect changes in the set architecture

rules and decide if the changes should be integrated as new rules of the architecture or

should be refactored to respect the previous architecture of the system. Therefore, this

kind of comparison helps keep the conformance of the architecture and the source code

because the developers can detect changes in the architecture and decide whether they are

violations.

Our method can also supports the analysis of how the architecture of a system

evolved. Our method can be applied in different snapshots of the source code to compare

and understand the changes made during the evolution concerning the architecture to

understand the reasoning that lead to the current architecture. Comparing different sets

of architecture rules of two versions may provide evidence of the decisions made during

the development that lead to a remodularization or which changes made the architecture

erode or drift.

Vanius Zapalowski
Realce

70

4.5 Final Remarks

In this chapter, we proposed a novel method that automatically recovers imple-

mented architecture rules, named the Weighted-graph-based (WGB) method. Our method

does not require the specification of any threshold, or system-specific customizations.

Our method includes the calculation of a proposed metric, module dependency strength

(MDS), between module pairs and the resolution of an optimization problem. MDS not

only takes into account dependencies within a module, but also its context, i.e. its sur-

rounding modules. Given our method, in the next chapter, we evaluate the WGB method

presenting a case study, an offline study and a user study.

71

5 EVALUATION

Our WGB method was designed based on the analysis of different alternatives in

many distinct hypothetical scenarios aiming to recover the more appropriate granularity

to represent implemented architecture rules. There are fundamental differences between

existing module recovery approaches and our method to recover architecture rules, which

limit us to make a qualitative rather than an experimental comparison between them. In

the module recovery, the approaches do not provide rules or restrictions on the depen-

dencies between modules. They focus on the classification of source code elements into

modules. Considering the conformance approaches, the main difference that limits the

comparison is the output of the WGB method. Our method output is a set of architecture

rules extracted from the source code that are not previously defined or classified as in the

approaches discussed in Chapter 2.

To provide evidence that our method recovers an adequate set of architecture rules,

we performed three evaluations: a case study; an offline study; and a user study. The case

study consists of the use of the method to recover rules from an existing system and a

discussion of obtained results taking into account the feedback of the system developers,

which is presented in Section 5.1. Next, we present a quantitative and qualitative evalu-

ation, in which we assess the method efficiency and effectiveness in Section 5.2. Finally,

we evaluate our method based on the opinion of the developer about the usefulness and

appropriateness of the rules recovered using the WGB method in Section 5.3.

5.1 Case Study

In order to demonstrate our method in action, we selected as a case study an on-

going software project that focuses on an evolving system named MDD4ABMS, which

provides support to agent-based modeling and simulation. The project currently has two

developers, and received contributions from other two past developers. MDD4ABMS

is implemented as an eclipse plug-in that provides a domain-specific modeling language

to model agent-based simulations. Moreover, it includes other features associated with

model-driven development, such as code generation. This system has 41.3 KLOC, 335

classes and 40 packages. There are 1348 and 148 dependencies between classes and

packages, respectively.

Vanius Zapalowski
Realce

72

We selected this system because it is a medium-sized system, had no architecture

documentation, and developers showed interest in using our method to produce documen-

tation for future project developers as well as to keep its evolution organized in terms of

code structure.

Before executing our method on MDD4ABMS, we asked the two current project

developers to sketch the architecture of the system, indicating its modules and allowed

dependencies (rules). As result, they listed 14 rules. Then, we recovered architecture rules

using the WGB method, which identified 44 rules. Based on these rules, we interviewed

the developers, asking them three main questions for each rule, shown as follows.

1. Is this rule useful to understand the system organization?

2. Should this rule be documented in the architecture?

3. How do you evaluate the granularity of this rule?

Moreover, to understand the rationale behind the answers, we asked developers to

justify them.

We present the resulting architecture documentation in Figure 5.1. It shows the

packages referred in rules (which are architecture modules), with rules represented with

arrows. We also distinguish rules according to the classification provided by the develop-

ers (coarse-grained, fine-grained, or implementation detail).

Almost all of the recovered rules were considered useful to understand the system

organization, being only 2 (out of 44) considered useless. Developers considered use-

ful rules that convey information about dependencies that should actually occur and are

allowed. For example, rules within the properties module reflect dependencies that

semantically exist. The two rules that were considered useless are mm.* → mm.impl

and mm.statemachine.* → mm.statemachine.impl. These are dependen-

cies caused by a library to automatically generate code. Thus, they are not related to the

MDD4ABMS business logic.

From the 44 recovered rules, 26 (59%) were selected to compose the architecture

documentation of the system, which are the coarse-grained and fine-grained rules in the

diagram. From these, 10 are coarse-grained rules that match conceptual rules informed

by developers. The 4 remaining conceptual rules were also recovered, but in a finer gran-

ularity, i.e. they refer to sub-modules of the modules referred in conceptual rules. For

instance, there is a conceptual rule m2c → mm that is implemented using the xtend li-

brary that caused WGB to recover the rule m2c.xtend → mm.statemachine. The

73

Figure 5.1: MDD4ABMS Architecture Rules Recovered by the WGB Method and Clas-
sified by System Developers.

other 12 rules that are included in the architecture documentation were not initially listed

as rules by the developers, but they considered these rules important to be documented.

They are mostly related to dependencies between properties’s sub-modules and be-

tween mm’s sub-modules.

The rules classified as implementation details are those that, according to the de-

velopers, should not be part of the architecture documentation. The reason for such a

classification is that these rules reflect current implementation patterns in the code, but

they are not considered architecturally relevant by the developers. First, rules within the

mm module are implementation patterns but other dependencies that currently do not oc-

cur are allowed. Second, dependencies to the classes directly in the properties and

panels packages (that is, in their * sub-packages) can be omitted because developers

assume that classes in sub-packages can access the classes in the * package (i.e. in their

parent package). Our validation also captured one violation (* → mm) that should be

refactored.

Finally, we asked the most experienced developer to generally evaluate the docu-

mentation generated by our method, using a 7-point Likert scale. This developer (strongly)

agreed that the generated diagram (1) provides useful information, (2) provides accurate

74

information, (3) reflects what is implemented in the code, (4) will be used as architecture

documentation, and (5) facilitates the understanding of the system organization.

5.2 Offline Study

Given the case study presented in the previous section, in this section, we provide

a quantitative analysis of the WGB method. We evaluate it to understand the gap between

the conceptual rules and the rules extracted using the WGB method analyzing the efficient

and the effectiveness of our method to recover architecture rules.

We organized this section as follows. Section 5.2.1 detail the settings of our user

study. In Section 5.2.2, we present the results and discuss the findings derived from them.

Finally, we present the threats to the validity of our study presenting actions adopted to

reduce their impact on our study in Section 5.2.3.

5.2.1 Study Settings

To present the offline study that evaluates the WGB method, we used the same

structure of the study detailed in Chapter 3. The GQM paradigm was adopted to present

the goal and questions of our study. Next, we detail the procedure used to conduct this

study based on the goal and research question. Finally, we presented the subject systems

selected to evaluate the WGB method.

5.2.1.1 Goal and Research Questions

We adopted the widely used Goal-Question-Metric (GQM) (SOLINGEN et al.,

2002) paradigm to design our study. We thus structured our study stating a goal, asking

research questions related to this goal, and metrics that provide the necessary informa-

tion to answer our research questions. Our goal, according to the GQM template is the

following.

To assess our proposed WGB method, evaluate recovered implemented architecture

rules from a perspective of the researcher as they are extracted from the source code

using the method in a multi-project study.

75

Based on our goal, we derived two research questions listed below.

RQ1. How efficient is our WGB method?

RQ2. How effective is our WGB method to recover implemented architecture rules?

With RQ1, we are interested in evaluating our method performance to verify the

feasibility of our method in practice, as it involves solving an optimization (i.e. combi-

natorial) problem that is solved using an algorithm with an exponential time complexity.

To answer RQ1, we measure the metric M1, described in Table 5.1. With RQ2, we focus

on the quality of the recovered rules. A key issue to answer this research question is to

have a ground truth or gold standard to be compared with rules recovered by our method.

There are two main types of information we have available: (i) code dependencies ex-

tracted from the source code; and (ii) conceptual rules provided by software developers.

Therefore, we measure the quality of recovered rules using both types of information. The

former is used to calculate metric M2, and the latter is used to calculate M3, M4 and M5,

described in Table 5.1. Metric M5 allows us to make a qualitative analysis of recovered

rules, classified according to types, which are introduced later.

There is a need for a qualitative analysis of the rules because the metrics M2, M3

and M4 cannot be interpreted as traditionally, i.e. the higher, the better. Consequently,

they are used not as an indication of how good the method is but to understand the di-

vergences between conceptual rules (manually recovered from subject systems) and im-

plemented rules (recovered by our method). Implemented rules have no ground truth,

because any set of rules that is in accordance with the code would be correct. The issue is

to identify rules that express the highest granularity level as possible and provide useful

information about the implemented dependencies. Therefore, using conceptual rules as

a reference point, recovered implemented rules that are true positives or true negatives

mean positive results, because they are consistent with the code and at a level of gran-

ularity that matches what was conceptualized by developers. However, false positives

or false negatives point out divergences between conceptual and implemented rules that

must be inspected to understand if the granularity level of implemented rules is adequate

according to its expected characteristics. This inspection is done using M5.

Note that our research questions do not focus on comparing our method with exist-

ing work. Although a baseline would improve our evaluation, there is a lack of approaches

that provide solutions similar to ours. Existing approaches can be used in a complemen-

tary way, but neither have the same goals nor provide the same outputs. Moreover, our

76

Table 5.1: Offline Study Metrics.

Metric Research Description
Question

M1 RQ1 Time in seconds to execute our method with a given software
project.

M2 RQ2 Ratio between the number of recovered rules and source code
dependencies.

M3 RQ2 Precision of recovered rules, with respect to conceptual rules.
M4 RQ2 Recall of recovered rules, with respect to conceptual rules.
M5 RQ2 Number of recovered rules by type, categorized in relation to

conceptual rules.

evaluation of efficiency does not focus on showing that our method is more scalable than

another, but its ability to execute in an acceptable time.

5.2.1.2 Procedure

The key steps of our offline study are detailed next. In short, we recover the

conceptual architecture of out target systems. Then, we execute the WGB method using

the source code of the subject system and calculate the results of our study. We provide

details of each of the steps of our study procedure as follows.

Manually Recover System Architecture. To calculate some of our metrics, we must

know the conceptual rules of our subject systems. Therefore, our first step consists

of manually recovering the architecture of these systems. This was accomplished

based on previous architecture documentation and the knowledge provided by key

software architects and developers. We focus on identifying architecture modules

and rules based on a particular level of the package hierarchy of the system (assum-

ing the Java language). The tasks to manually recover system architecture are the

same as presented in our evaluation of the gap between conceptual rules and source

code dependencies in Section 3.1. As a result of this step, we obtained modules

and conceptual architecture rules, which comprise the architecture of our subject

systems.

Execute the WGB Method. Our method was executed with each of our subject systems,

detailed in next section. The method was implemented using a set of available tools.

Source code dependencies were extracted using the Classycle1 Plugin for Eclipse,

1Available at: <http://classycle.sourceforge.net/>

http://classycle.sourceforge.net/

77

which automatically provides an XML file with each class and package dependency

for Java projects. To solve the optimization problem, we used an academic version

of the IBM ILOG CPLEX Optimization Studio2. Additional scripts were written to

integrate these tools and implement our method3.

Calculate Metrics and Analyze Results. Using the manually recovered system archi-

tectures and results of our method execution, we calculated our metrics presented

in Table 5.1, and analyzed them.

5.2.1.3 Subject Systems

In this study, we selected the subject systems based on the feasibility to manually

recover their architecture, and selecting projects that varied in size and architecture orga-

nization. Given that the requirements of the subject systems are the same of the empirical

study previously presented in Chapter 3, we selected the same subject systems to this

evaluation. Therefore, we use the same systems with the same conceptual architectures

and source code detailed in Section 3.1.3.

5.2.2 Results and Analysis

We next present the data collected in our study, and analyze and discuss results,

by research question.

5.2.2.1 RQ1: Efficiency of WGB method

Following our study settings, we executed our WGB method with the six subject

systems, measuring the time it took to provide an output (metric M1). We report the

obtained results in Table 5.2, which details time in seconds taken (in total and by each

method step) to execute our method. Table 5.3 complements these results with additional

data about the systems, which affect these results. Pairwise dependencies are depen-

dencies between packages represented in the way required by our method. Clustered

dependencies are those that remain after the pairwise clusterization (step 2). Conflicts

correspond to the dependencies that lead to redundant rules, from which some must be

selected resulting in our recovered rules.

2Available at: <https://www.ibm.com/products/ilog-cplex-optimization-studio>
3Available at: <https://www.inf.ufrgs.br/prosoft/projects/wgb-method>

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.inf.ufrgs.br/prosoft/projects/wgb-method
Vanius Zapalowski
Realce

78

Table 5.2: Time taken to Execute in Seconds (M1).

Subject System Step 1 (s) Step 2 (s) Step 3 (s) Total (M1)

ArchStudio 44.17 1.19 0.19 45.55s
AspectJ 19.69 0.74 0.14 20.57s
EC 0.38 0.02 0.08 0.48s
Metrics 0.22 0.01 0.07 0.30s
OLIS 0.19 0.01 0.07 0.27s
RecSys 2.92 0.16 0.11 3.19s

Table 5.3: Number of Graph Arrows by Method Step.

Subject Pairwise Clustered Conflicts Recovered
System Dependencies Dependencies Rules

ArchStudio 1872 869 3726 324
AspectJ 1552 684 2021 239
EC 180 88 294 35
Metrics 220 59 260 19
OLIS 204 78 125 27
RecSys 784 292 1350 117

Based on the analysis of our results, it is possible to observe that, for all systems,

we obtained acceptable execution time results, i.e. lower than one minute. Small systems

(EC, Metrics, and OLIS) are associated with an execution time lower than one second,

while with our largest subject system, namely ArchStudio with 236.9 KLOC, the WGB

method takes 45.5s to execute. Although these results are good, the time taken largely

increases as the number of pairwise dependencies, which is the key factor that influences

the processing time, is higher. For example, ArchStudio has approximately 10 times more

dependencies than EC, but the method took 95 times more time to execute (0.45s vs.

45.5s). Nevertheless, considering that the absolute time taken is low and ArchStudio can

be considered a medium-large project, results indicate that our WGB method is feasible

to be used in practice, with industry-sized software systems.

By looking at the time taken to execute individual steps, it is possible to see that

step 1, which calculates the MDS metric, is responsible for this increase in the time. For

the larger systems, approximately 95% of the total time corresponds to this step. This

is mainly due to the many components associated with our metric which, to analyze a

pair of modules, takes into account neighbor modules. Our results could be significantly

improved if we had used an auxiliary structure to store intermediate values, which are

calculated many times. However, given that the absolute time taken is low, such improve-

ments are currently not implemented.

79

Note that a step that could be critical in our method, involving the resolution of an

optimization problem that has an exponential time algorithm in the worst-case scenario,

had no significant impact on results and scaled well. This is due to the efficiency of the

tool, i.e., the IBM ILOG CPLEX, used to solve the problem instances.

The results of our method efficiency show that it executed in less than one minute

considering all systems. Therefore, we consider it efficient enough to be adopted

in the software development. As expected, the time taken to run increases as the

number of dependencies of the system increases.

5.2.2.2 RQ2: Effectiveness of WGB method

As discussed in the description of our study settings, it is a challenge to evaluate

our recovered architecture rules because of the lack of a ground truth of implemented

rules. Therefore, we analyze our recovered rules from three perspectives: (i) how much

our method is able to abstract from dependencies among modules; (ii) the relationship

between the recovered (implemented) rules and conceptual rules; and (iii) the qualitative

nature of recovered rules using conceptual rules as a basis.

Dependency Abstraction. Implemented architecture rules reflect dependencies

that actually occur in the source code. However, due to the many dependencies, it is

practically unfeasible for a developer to analyze all of them. Our method thus aims at

reducing the number of dependencies by abstracting them into a set of coarser-grained

rules, when appropriate. M2 assesses this reduction provided by our method.

Table 5.4 details how much our method abstracted from dependencies of our sub-

ject systems. On average, the reduction from module (package, in our subject systems)

dependencies to recovered rules is of 87.6% (SD = 0.7). Consequently, there is a large

reduction in developers’ effort to analyze dependencies in the form of implemented rules

recovered by our method. Moreover, the standard deviation in this reduction is low, indi-

cating that our method provides such a reduction consistently across all subject systems.

How this dependency abstraction occurs throughout the execution of our method

can be seen in Table 5.3. The method starts with pairwise dependencies (and associated

dependency strength) represented as described in the first method step. With pairwise

clusterizations, the second step reduces such dependencies in more than a half. Such

clustered dependencies have many conflicts (i.e. represent redundant information) and,

80

Table 5.4: Dependency Abstraction (M2).

Subject Pairwise Package
System Dependencies Dependencies

ArchStudio 82.7% 87.4%
AspectJ 84.6% 86.6%
EC 80.0% 88.7%
Metrics 91.4% 87.8%
OLIS 86.8% 87.8%
RecSys 85.1% 87.4%

AVG 85.1% 87.6%
SD 3.9% 0.7%

after the execution of the third method step, we have the recovered rules, which are as-

sociated with the reported reduction with respect to package dependencies and also to

pairwise dependencies (AVG = 85.1%, SD = 3.9).

Recovered Implemented Rules vs. Conceptual Rules. As discussed in our study

procedure, there is no ground truth to which we can match our recovered rules against.

We then use conceptual rules as a basis for comparison and calculate obtained precision

and recall. This is done using two approaches. First, we use the syntax of conceptual

rules, i.e. we check which recovered rules exactly match conceptual rules. Precision, in

this case, is the fraction of recovered rules that are conceptual, while recall is the frac-

tion of conceptual rules that were recovered. Second, we use the semantics of conceptual

rules. A set of architecture rules, regardless if they are conceptual or implemented, has

implications in the allowed module dependencies: from the set of rules, it is possible to

determine whether the dependency between two modules is allowed or forbidden. Con-

sequently, in this second approach, we check whether the recovered rules have the same

implications as the conceptual rules. Precision is then the fraction of module dependen-

cies allowed by recovered rules that are also allowed by conceptual rules, while recall is

the fraction of module dependencies allowed by conceptual rules that are also allowed by

recovered rules.

The precision and recall calculated using these two approaches are shown in Ta-

ble 5.5. As can be seen, values largely differ across different systems and most of them are

not high. Low values are in fact expected for precision and recall because implemented

architecture rules capture what is actually in the code while the conceptual architecture

hides information that is implemented in the source code.

81

Table 5.5: Precision (M3) and Recall (M4).

System Exact Matching Allowed Dependencies

Precision Recall Precision Recall

ArchStudio 0.6% 4.4% 14.3% 8.8%
AspectJ 2.9% 25.9% 14.8% 41.9%
EC 22.9% 42.1% 78.8% 40.2%
Metrics 10.5% 25.0% 13.7% 61.9%
OLIS 22.2% 46.2% 84.7% 37.2%
RecSys 6.8% 42.1% 16.2% 36.8%

AVG 11.0% 31.0% 37.1% 37.8%
SD 9.6% 15.8% 34.7% 17.0%

Low precision and recall values indicate different types of divergences between

conceptual and recovered rules. Low precision means that there are many recovered rules

capturing code dependencies that are not allowed according to conceptual rules, meaning

that there are many undocumented rules and architectural violations. When the imple-

mented code reflects the conceptual architecture, higher values are obtained, as it is the

case of OLIS and EC. Low recall, in turn, means that there are many specified concep-

tual rules that are not actually implemented in the code. It may not necessarily be due

to divergences that occur between conceptual rules and code dependencies, but because

these rules may be too general, allowing many dependencies that should not be allowed,

as in our example, in which the rule must allow the Presentation module to depend on the

Service module only, rather than the whole Business module.

Differences between conceptual and recovered rules are extremely large in our

largest subject system, ArchStudio, which has both low precision and recall. This shows

a large mismatch between the conceptual architecture, which has an available ground

truth (LUTELLIER et al., 2015), and the implemented architecture. Although the differ-

ence is large, the number of allowed dependencies differs only in 6.7% in this system (see

Table 5.6), providing further evidence of this mismatch. Table 5.6 indicates the number

of dependencies that are allowed, considering every pair of modules. In general, posi-

tive differences lead to lower precision (due to occurrences of dependencies inconsistent

with conceptual rules), while negative differences lead to lower recall (due to too general

conceptual rules).

Nature of Recovered Implemented Rules. To better understand the precision and

recall values detailed above, we now make a qualitative analysis of recovered imple-

mented rules, using conceptual rules as a baseline. We classified each of the recovered

82

Table 5.6: Dependencies Allowed by Architecture Rules.

System Conceptual Recovered Difference

% # % # %

ArchStudio 16764 17.2 10257 10.5 -6507 -6.7
AspectJ 1398 3.2 3964 9.0 +2566 +5.8
EC 756 35.3 386 18.0 -370 -17.3
Metrics 63 11.3 284 50.9 +221 +39.6
OLIS 701 45.2 308 19.8 -393 -25.4
RecSys 923 13.1 2097 29.7 +1174 +16.6

rules into five identified categories, which are associated with the relationship between

the recovered rule and a conceptual rule. These categories are described next.

Match (CONCEP). A recovered rule that exactly matches a conceptual rule. For exam-

ple, if a conceptual rule is X → Y , the recovered rule is the same.

Generalization (SUPER). A recovered rule that is a generalization (super-rule) of a con-

ceptual rule. For example, if a conceptual rule is XC → Y , the recovered rule is

X → Y .

Specialization (SUB). A recovered rule that is a specialization (sub-rule) of a conceptual

rule. For example, if a conceptual rule isX → Y , a recovered rule can beXC → Y .

Intra-module (INTRA). A recovered rule that states allowed dependencies between non-

represented sub-modules of a module in the conceptual architecture. An example

is when a conceptual architecture shows X as a module with no sub-modules, and

thus dependencies within X are allowed. An intra-module recovered rule is, for

example, XC1 → XC2 .

Mismatch (MIS). A recovered rule that is not in accordance with conceptual rules. For

example, there is no conceptual rule that is X → Y (and no coarser-grained rule,

if X or Y have parents), when there is such a recovered rule. This can be either a

forbidden dependency (architecture violation) or an undocumented rule.

The classification of recovered rules according to these categories is shown in Ta-

ble 5.7, which confirms our general analysis above, based on precision and recall. The

precision of most of the systems (ArchStudio, AspectJ, Metrics and RecSys) is low due to

the presence of a high amount of dependencies captured in recovered rules that are not al-

lowed according to conceptual rules. More than a half of recovered rules fall into the MIS

83

Table 5.7: Number of Recovered Rules by Type (M5).

System CONCEP SUPER SUB INTRA MIS

% # % # % # % # %

ArchStudio 2 0.6 1 0.3 39 12.0 79 24.3 203 62.7
AspectJ 7 2.9 5 2.1 11 4.6 56 23.4 160 66.9
EC 8 22.9 2 5.7 9 25.7 9 25.7 7 20.0
Metrics 2 10.5 3 15.7 3 15.7 0 0.0 11 57.9
OLIS 6 22.2 1 3.7 10 37.0 4 14.8 6 22.2
RecSys 8 6.8 0 0.0 7 6.0 28 23.9 74 63.2

AVG 11.0 4.9 16.8 18.7 48.8

category. For the systems in which a high precision is achieved, there is a higher number

of rules that matches conceptual rules, but also sub-rules (i.e. specializations). The latter

compromises recall, because they are more restrictive than the original rule. Intra-module

rules are also responsible for lowering recall. These are rules not captured by conceptual

rules, because dependencies between non-represented sub-modules are allowed. In con-

trast, recovered rules are able to identify how dependencies within modules occur, thus

being more restrictive than conceptual rules from an intra-module perspective.

By analyzing the cases in which our method made generalizations (super-rules)

and specializations (sub-rules) of conceptual rules, we observed that they are all plausi-

ble, and considered correct in our view, that is, the method has the expected behavior.

For example, ArchStudio has one conceptual rule for each child of the module Comp,

indicating that it can depend on the Util module. Our method, in contrast, derived a

rule Comp → Util, which gives the notion that all children from Comp can depend

on Util. Another scenario of generalization occurs when a parent module has a single

child, the Touchgraph module that has Graphlayout as an only child in Metrics. As re-

sult, in our method, arrow weights are the same in this case—Touchgraph → Core and

Graphlayout → Core have equal weights—and our method gives priority to the most

generalized rule (i.e. Touchgraph→ Core).

An example from OLIS illustrates a case of specialization. The conceptual rule

Business→ Agent allows dependencies between all Business’s sub-modules to all Agent’s

sub-modules. However, the Agent module uses a façade pattern, so all dependencies occur

from Business’s sub-modules to the Agentlayerfacade module, an Agent’s child. The rule

recovered by our method is, in this case, Business → Agentlayerfacade. Although in all

these cases the recovered rule is in accordance with the expected method behavior, both

84

conceptual and recovered rules are adequate, and the final choice for the most suitable

representation is a subjective developers’ decision.

Concerning the effectiveness, our method achieves a reduction from module depen-

dencies to recovered rules of 87.6%, on average, thus reducing most of the develop-

ers’ effort. The comparison of recovered implemented rules with conceptual rules

shows that they largely differ, leading to 37.1% and 37.8% of precision and re-

call, respectively, on average. A qualitative analysis of recovered rules shows that

our method: (i) generalizes many rules associated with sub-modules of a module

as a single super-rule; (ii) is able to capture rules that occur specifically between

sub-modules, being often sub-rules of conceptual rules; (iii) identifies rules that

govern dependencies within a module, which are typically not specified as con-

ceptual rules; and (iv) leaves architectural violations as fine-grained rules, so that

it is easier to distinguish them from other recovered rules using our dependency

strength metric.

5.2.3 Threats to Validity

We identified two main tasks performed while elaborating our study design that

may affect results. These consist of threats to the study validity, and we describe ac-

tions done to mitigate them as follows. The first is an external threat, which refers to

the selection of our subject systems. Although in many studies a set of large-scale sys-

tems would bring more generalizable results, in our case this would not show how our

method behaves with systems with different characteristics. Consequently, our selected

systems vary in many aspects, such as development environments, adopted architecture

patterns, domain, and size. The variation in our obtained rules reflect these different

explored scenarios. The second threat is associated with how conceptual rules were man-

ually recovered from subject systems. As previously mentioned, different developers and

architects may have different views of a system’s architecture. In order to mitigate this

threat to construct validity, we consulted architects and developers directly involved in the

development of each subject system, comparing their own views regarding the system’s

architecture with available documentation, following the guidelines introduced by Garcia,

Ivkovic and Medvidovic (2013).

85

5.3 User Study

In the previous studies presented in this chapter, we analyzed the WGB method

using the conceptual architecture rules as a baseline to evaluate it, assuming that those are

the most appropriate representation of the architecture. Aiming to investigate whether the

architecture rules extracted using the WGB method could improve the architecture doc-

umentation, we now present a user study. This user study enriches our previous analysis

examining the reasoning of the developers about the architecture rules recovered using

the WGB method. We detail the settings of our user study in Section 5.3.1, present and

discuss its results in Section 5.3.2, and point the threats to validity of our study in Sec-

tion 5.3.3.

5.3.1 Study Settings

The structure of the user study in this section is similar to that adopted in our

previously described studies. We present in this section details of the user study design

adopting the GQM paradigm. Then, we describe the procedure used to conduct this study

and adopted materials. Finally, we present details of the subject systems and the study

participants.

5.3.1.1 Goal and Research Questions

We designed our user study by formulating its goal, research questions to achieve

it and the metrics that provide the necessary information to answer our research questions.

Our goal, according to the GQM template, is the following.

To evaluate the proposed WGB method, analyze the architecture rules recovered by

this method from the perspective of the developers as they are extracted from the

source code using the WGB method in an commercial multi-project study.

Based on our goal, we derive three research questions (RQs), which are described

below, and the metrics associated with each research question. The metrics are measure-

ments of the degree that the WGB method and its recovered rules satisfy a set of criteria.

These criteria are listed in Table 5.8.

86

RQ1. How does the WGB method improve the abstraction of architecture rules?

RQ2. How does the WGB method reveal architectural misunderstandings and violations?

RQ3. How do developers perceive the usefulness of the WGB method to the system

architecture?

By answering RQ1, we assess whether the level of abstraction of the rules recov-

ered using the WGB method is appropriate to architecture documentation. With RQ2, we

investigate how the rules recovered by the WGB method can identify violations, undocu-

mented rules, and allowance of prohibited dependencies. The answers to R1 and R2 help

understand the usefulness of each rule recovered by the WGB method. To analyze the

architecture that results from the WGB retrieved rules, we collect 11 metrics to answer

RQ3, which aims to assess the usefulness and the characteristics of this resulting archi-

tecture. All the metrics associated with the RQs are collected using questionnaires, which

are further detailed, asking the developers of the systems about their opinions.

5.3.1.2 Procedure

In this section, we describe the steps of the user study procedure. In short, we first

apply the WGB method in the selected subject systems to extract their architecture rule.

Then, we ask developers of the subject systems to manually recover the architecture of

each subject system and its rules. To evaluate the architecture built based on the rules ex-

tracted by the WGB method, we instantiate questionnaires for each subject system based

on a set of template questions that should be answered by the system developers. We

provide further details of each of the steps of our study procedure as follows.

Recovery of Architecture Rules of the Subject Systems using the WGB Method. To

obtain the architecture rules of the subject systems using the WGB method (WGB

rules), we execute our method, as presented in Chapter 4 and using the same im-

plementation presented in Section 5.2. Based on the WGB rules of each system,

we provide a documentation that is similar to the architecture documentation of the

case study described in Section 5.1. To exemplify the rule visualization, we present

the documentation of MDD4ABMS in Figure 5.2. We use rectangles and arrows

to represent modules and rules, respectively. Additionally, the documentation has

a color to each granularity level, e.g. in Figure 5.2a, the modules properties

and m2c are in blue because they are at the same level of granularity, and their

87

Table 5.8: Criteria Evaluated in the User Study.

Metric Research
Question Description

Granularity RQ1 The adequacy of the rules extracted using the WGB
method as part of the architecture documentation consid-
ering the level of granularity.

Accuracy RQ1, RQ2 The adequacy of the rules extracted using the WGB
method as part of the architecture documentation consid-
ering the the accuracy.

RQ3 The rules extracted using the WGB method are accurate.

Understanding RQ1, RQ2 The adequacy of the rules extracted using the WGB
method as part of the architecture documentation con-
sidering the usefulness for developers to understand the
system.

Implementation RQ1, RQ2 The adequacy of the rules extracted using the WGB
method as the architecture documentation considering the
usefulness for developers to implement the system.

Violations RQ2 The rules extracted using the WGB method represent an
architectural violation.

Violation
Allowance

RQ2 The rules extracted using the WGB method allow depen-
dencies that are prohibited in the architecture.

Usefulness RQ3 The rules extracted using the WGB method provide use-
ful information.

Organization RQ3 It is easy to understand how the system is organized ana-
lyzing the rules extracted using the WGB method .

Dependencies RQ3 It is easy to understand the system dependencies analyz-
ing the rules extracted using the WGB method.

Allowed De-
pendencies

RQ3 The rules extracted using the WGB method show depen-
dencies that are allowed in the system.

Forbidden De-
pendencies

RQ3 The rules extracted using the WGB method show depen-
dencies that are forbidden in the system.

Coarse-
granularity

RQ3 The rules extracted using the WGB method are an overly
coarse-grained representation of the system.

Fine-
granularity

RQ3 The rules extracted using the WGB method are an overly
fine-grained representation of the system.

Conformance RQ3 The rules extracted using the WGB method capture what
is implemented in the system’s source code.

Use Intent RQ3 The documentation built based on the rules extracted us-
ing the WGB method could be used as an architecture
model of the system.

Appropriateness RQ3 The documentation built based on the rules extracted us-
ing the WGB method is more adequate for developers to
understand and evolve the system than the documentation
manually recovered.

88

Figure 5.2: Example of Documentation using the WGB Rules of MDD4ABMS.

(a) Complete architecture of MDD4ABMS

(b) MM module of MDD4ABMS. (c) Properties module of MDD4ABMS.

internal modules deasemodelcapability, xpand and xtend are in green

because they are also at the same level of granularity. In the cases where the visu-

alization of the rules has many modules and rules, we present the documentation

of some modules in a separate document. For instance, the MDD4ABMS has two

partial documentations presenting the internal modules and rules of module MM

and properties in Figure 5.2b and 5.2c respectively. The modules that have a

partial documentation has a thicker border in all documents, such as the modules

properties and mm in Figure 5.2a. Using this representation of the architecture,

we provide two documentations of each system: one that is built using the WGB

rules, and another manually recovered by the developers.

Collection of the Demographic Information of the Participants. The first step involv-

ing the participants consists of asking their consent to participate in this study and

collecting their demographic information using a questionnaire. We ask about per-

89

sonal information, their knowledge on software development, and their experience

working on the systems.

Tutorial on Software Architecture. In order to have a common understanding of what

a software architecture is and using a standard notation to represent modules and

architecture rules, we provide a brief tutorial on software architecture to the partici-

pants. We introduce a software architecture as a set of design decisions that govern

a software system. It includes the structuring of the system as a hierarchy of mod-

ules (each having a role) and rules that specify allowed dependencies. Modules are

represented as squares and rules are arrows between modules.

Recovery of Architecture Rules of the Subject Systems by the Developers. To obtain

the architecture rules from the developers’ perspective, we ask the participants to

document the software architecture of the subject systems. They perform this task

as a group and are able to access any data available, such as the source code of

the systems. During this task, one researcher is available to provide support to the

participants in case of any problems or doubts. Moreover, there is no time limit to

this task. The purpose of this task is that they discuss and decide which modules and

rules should be included in the architecture. The developers can also choose how to

document the architecture rules, i.e. there is no specific method or tool to document

the architectures. For instance, they may use the blackboard or any CASE tool they

prefer. As a result of this step, we have an architecture documentation with a set of

rules based on the developers’ perspective (DEV rules) for each subject system.

Questionnaires of Evaluation of the WGB Method. To evaluate the WGB rules and

compare them with the DEV rules, we formulate a questionnaire to be answered by

the participants. This questionnaire varies according to the quantity and the types of

rules extracted using the WGB method and the rules recovered by the developers.

Therefore, we use a questionnaire template with a set of questions and comparisons

that is instantiated according to the rules of each system. We present details of the

questionnaire template as follows. Given the instantiated questionnaire, we ask the

participants to answer it individually. As a result of this step, we obtain the answers

to the questionnaires evaluating the documentation built based on the WGB rules

and each rule extracted using the WGB method individually.

90

5.3.1.3 Questionnaire Template

We formulate a questionnaire template to instantiate the questionnaires to collect

the opinion of the participants about the rules recovered by WGB. We split the question-

naire template into three parts. The first and third parts of the template aim to collect

data about how the developers perceive the usefulness of the documentation built using

the WGB rules (RQ3), while the second part focuses on compare the WGB rules and the

DEV rules (RQ1 and RQ2). To evaluate the effect of the inspection of the rules of the sec-

ond part in the answers of the participants, the first and third part of the template have the

same questions. Therefore, we can compare the answers and analyze whether and why

participants change their opinion about the architecture built based on the WGB rules.

In the beginning of the first part, we provide the architecture documentation built

using the WGB rules of the subject system under analysis. Both these parts have ten ques-

tions, which are associated with the metrics of RQ3. These questions are about the par-

ticipant agreement with the phrase “Analyzing WGB architecture model, please indicate

how much you agree with the sentences below.” followed by the sentences associated with

one of the RQ3’s metrics, e.g. the sentence associated with accuracy is “It is accurate”.

In the end of the third part, we ask the participants their agreement on the statement “The

WGB architecture model is more appropriate for developers to understand and evolve the

system than the model recovered by the developers.”. This question is related to the appro-

priateness, which is also a metric associated with RQ3. These questions are objective and

can be answered based on a 7 point Likert scale ranging from strongly agree to strongly

disagree. Additionally to the objective questions, these parts have open-ended questions

at the end asking the participant to justify his answers. To instantiate these parts of the

template, the questions do not change, but the provided documentation changes based on

the system under evaluation.

The second part of the questionnaire template focuses on comparing the WGB

rules with the DEV rules in a case-by-case basis. We compare rules that refer to the same

source code dependencies, but with different granularity, e.g. the developers recovered a

rule allowing dependencies from module A to module B while the WGB method extracted

a rule allowing dependencies from a module A.1, which is a sub-module of A, to module

B. The questions in this part of the template are associated the criteria related to RQ1 and

RQ2, listed in Table 5.8. We ask the participants about the correctness, preference, and

existence of violations in each pair of rules presented. Given that we compare the WGB

rules with the DEV rules, the number of comparisons of each system varies according to

91

the recovered rules, and how they are related to each other. In the template, we have six

types of comparisons, which are derived from the results of our previous studies. These

types of comparisons are exemplified in Figure 5.3 and described below.

Specialization comparisons (Figure 5.3a) have the rules recovered by the developers

with a higher granularity level than the rules extracted by the WGB method.

Generalization comparisons (Figure 5.3b) have the rules recovered by the developers

with a lower granularity level than the rules extracted by the WGB method.

Explicit comparisons (Figure 5.3c) are those in which the developers explicitly document

rules internal to a module, while WGB does not recover any rule (indicating that

dependencies within the module are allowed).

Implicit comparisons (Figure 5.3d) are those that the developers do not document any

rule (indicating that dependencies within the module are allowed), while WGB ex-

plicitly recovers rules internal to a module.

Non-conformance comparisons (Figure 5.3e) are those documented by the developers

and have no corresponding rule recovered by WGB.

Missed comparisons (Figure 5.3f) are those that have rules recovered by WGB but no

corresponding rule documented by the developers.

In Figure 5.3, we show the comparisons as they are presented in questionnaires to

the participants. The rules recovered by the developers are labeled with Yours and placed

on the left-hand side, and the rules extracted using the WGB method are labeled with Our

and placed on the right-hand side.

For each of the comparisons of the second part of the questionnaire, we ask the

participants about the granularity, accuracy, understanding, and implementation. The

questions are about the appropriateness of the rules to be part of the system architec-

ture. The participants have six objective answers to these metrics: (i) both rules are

equally appropriate (WGB = DEV); (ii) both rules are inappropriate (!WGB !DEV); (iii)

the WGB rule is appropriate while that documented by the developers is inappropriate

(WGB !DEV); (iv) Both rules are appropriate, but that recovered by WGB is more appro-

priate (WGB > DEV); (v) the rule documented by the developers is appropriate while that

recovered by WGB is inappropriate (!WGB DEV); and (vi) Both rules are appropriate, but

92

Figure 5.3: Types of Comparisons of the Questionnaire Template.

(a) Specialization. (b) Generalization.

(c) Explicit. (d) Implicit.

(e) Non-conformance. (f) Missed.

that documented by the developers is more appropriate (WGB < DEV). With these objec-

tive answers, the participants show their opinion on the appropriateness and preference

between both rules.

In addition, we also ask whether the rules consist of architectural violations (Vio-

lations) or allow prohibited dependencies (Violation Allowance), which are criteria asso-

ciated with RQ2. Therefore, the participants answer about the presence of violations and

the allowance of violations by the WGB rules, or by the DEV rules. They answer using a

5-point Likert scale ranging from definitely yes to definitely no. At the end of this part of

the questionnaire, we ask them to justify their answers in an open-ended question.

All the questions of the questionnaire template can be seen in detail in Appendix B.

93

Table 5.9: Subject System Characteristics.

Name KLOC Cl Cl-Dep Pkg Pkg-Dep

System A 30.3 494 1964 133 846
System B 57.1 835 3912 184 1920

Table 5.10: Age and Development Experience of the Study Participants.

AVG SD Min Max

Age 30.8 5.0 24 36
Development Experience 8.2 4.9 4 14
Experience in System A 3.2 1.6 1 5
Experience in System B 2.8 1.6 1 5

5.3.1.4 Subject Systems and Participants

In our user study, we investigate two commercial systems. In Table 5.9, we present

the following information related to these systems: lines of code (KLOC); number of

classes (Cl); the number of dependencies between classes (Cl-Dep); the number of pack-

ages (Pkg); and the number of package dependencies (Pkg-Dep). We perform this study

analyzing these systems under a non-disclosure agreement, which does not allow sensi-

tive or specific data of the systems to be revealed. Therefore, all data related to the subject

systems are anonymized.

To have answers to our questionnaires, we ask the developers who currently evolve

the systems to participate in our study. Their demographic information about software ar-

chitecture, experience in these systems, and general information of the five participants

of our study are presented in Tables 5.10 and 5.11. They have an average of 31 years old,

all participants are male, four participants have an undergraduate degree, and one has a

master’s degree in information systems. The participants have at least four years of ex-

perience in software development and at least one year working on the subject systems.

Their knowledge on software development, architecture, design, programming, and engi-

neering is intermediate or advanced. In the questions about their knowledge about each

system, they consider themselves intermediate or advanced in most of the topics.

94

Table 5.11: Knowledge of the Study Participants on Software Engineering and the Subject
Systems

Topic Knowledge Basic Intermediate Advanced Expert

% # % # % # % #

Software
Engineering

Development 0 0 20 1 60 3 20 1
Architecture 0 0 60 3 40 2 0 0
Design 0 0 20 1 80 4 0 0
Programming 0 0 20 1 60 3 20 1
Engineering 20 1 40 2 20 1 20 1

System A
Architecture

Modules 0 0 40 2 60 3 0 0
Rules 0 0 40 2 60 3 0 0
Modules Implementation 20 1 40 2 40 2 0 0
Most Familiar Modules 0 0 40 2 60 3 0 0
Least Familiar Modules 20 1 80 4 0 0 0 0

System B
Architecture

Modules 0 0 80 2 20 3 0 0
Rules 0 0 60 3 40 2 0 0
Modules Implementation 20 1 60 3 20 1 0 0
Most Familiar Modules 0 0 60 3 40 2 0 0
Least Familiar Modules 40 2 60 3 0 0 0 0

5.3.2 Results and Analysis

Given the study settings, we present the results of our study detailing the documen-

tation of the subject systems, showing the answers to the questionnaires, and analyzing

and discussing them.

5.3.2.1 Documentation and Questionnaires

Our study is based primarily on the analysis and comparison of the recovered

WGB rules and those documented by the developers. The number of each retrieved set

of rules is shown in Table 5.12. We present the number of rules recovered by the devel-

opers (DEV Rules), the number of rules extracted using the WGB method (WGB Rules),

and the number of rules that are in both sets of rules (Equal Rules). The WGB method

extracted seven rules recovered by the developers indicating that the WGB method can

extract architecture rules that are similar to the rules recovered by the developers. How-

ever, similarly to the offline study results, the WGB method extracted more rules than the

rules extracted by the developers.

95

Table 5.12: Number of Rules Documented by the Developers and Recovered by WGB

System Dev Rules WGB Rules Equal Rules

System A 11 54 5
System B 16 252 2

Table 5.13: Types of Rule Comparison in the Questionnaire by Subject System

System Specialization Generalization Implicit Non-conformance Missed

System A 1 1 4 0 3
System B 8 1 8 2 0

Based on the rules that are not in both sets of rules, we instantiate the questions

of the second part of the questionnaire for each system. In Table 5.13, we present the

number of comparisons by type for each subject system. We omitted the number of ex-

plicit comparisons because none occurred for both systems. Most of the comparisons are

specializations or implicit because the rules extracted using the WGB method have lower

level of granularity than the rules recovered by the developers.

5.3.2.2 RQ1: Improvement of the level of abstraction

To understand the abstraction level of the WGB rules, we analyze the rules that

are related to specializations (Figure 5.3a), generalizations (Figure 5.3b), and implicit

(Figure 5.3d) comparisons. We investigate these types of comparisons because they show

the differences in the level of abstraction of the WGB rules and the DEV rules. In Fig-

ures 5.4–5.7, we present the answers associated with RQ1 where:

• P1–P5 are the participants;

• A is the agreement between the participants;

• C1–C23 are the comparisons instantiated in the questionnaires; and

• The colored squares are the answers of the participants (lines) to the questions of

the comparisons (columns).

An example of the information provided in Figure 5.4 is that, for comparison C3, the

participant 1 (P1) answered that the WGB rule is more appropriate (WGB > DEV), which

corresponds to the third blue square of the first line in the upper left corner.

Appropriateness of the WGB and the DEV rules. First, we analyze the answers to

the four criteria associated with RQ1 regarding the appropriateness of the rules. Concern-

96

Figure 5.4: WGB and DEV Rule Comparison: Granularity

ing the granularity, 99.1% of answers report the WGB rules as appropriate. Moreover,

80.0% of the answers are that the WGB rules are better or the only appropriate rule in

the comparison. Regarding the accuracy, the WGB rules are considered appropriate in

all comparisons, and 83.5% of the answers report the WGB rules as better than the DEV

rules or the only appropriate rule in the comparison. The implementation criteria has

96.5% of the answers indicating the WGB rules as appropriate, and 73.0% of the answers

inform that the WGB rules are better than the DEV rules or the only appropriate rule in

the comparison. Concerning the understanding, 98.3% of the answers report the WGB

rules as appropriate, and 61.7% of the answers are that the WGB rules are better than the

DEV rules or the only appropriate rule in the comparison. The results of these evaluation

are similar and indicate that the WGB rules are appropriate in almost all comparisons

(96.5%–100.0%). Furthermore, they are considered better representations than the DEV

rules in many comparisons (61.7%–83.5%). Surprisingly, the DEV rules are considered

inappropriate in 31.3%, 37.4%, 36.5%, and 22.6% regarding the granularity, accuracy,

implementation, and understanding, respectively.

Observing the answers by types of the comparisons and by criteria, we notice that

each type of comparison has a most common answer. In generalization comparisons,

the accuracy, understanding and implementation have the both rules appropriate as most

common answers (30.0%–40.0%), while the granularity most common answer is that the

WGB rules are a better representation (40.0%). The most frequent answer to specializa-

tion comparisons is that both rules are appropriate but the WGB rule is a better represen-

tation of the architecture rule (44.4%–53.3%) independently of the criteria analyzed. In

the implicit comparisons, the majority of the answers to accuracy and understanding is

that the WGB rules are the only appropriate rules in the comparison (51.7% and 55.0%,

97

Figure 5.5: WGB and DEV Rule Comparison: Accuracy.

respectively). Concerning the granularity and implementation of implicit comparisons,

the most common answer is that both rules are appropriate but the WGB rule is a better

representation (47.7% and 36.7%, respectively).

Although the WGB rules are considered appropriate in most of the comparisons,

there are eight comparisons with answers reporting the WGB rules as inappropriate or

worst than the DEV rules. In C1, P2 and P5 do not agree with the restriction of depen-

dencies represented in the WGB rule where P5 explained that (DEV rules) presents more

details of different possible implementations.... In C6, C7, C12, and C23, some partic-

ipants prefer the DEV rules and argued that WGB rules had unnecessary details. With

the same justification, P2 considers only the WGB rule inappropriate in C10. P2 reports

both rules as inappropriate in C13 and C14, which is contradictory to his justifications.

His textual answers indicate that the DEV rules is better and both rules are appropriate

because he commented that “Your diagram is way more useful to understand the module,

but I do not think that our diagram is wrong...” to C13 and that “Again, a more detailed

rule helps to understand the service, but the our diagram is only less detailed.”.

Analysis of the comparisons individually. Inspecting the answers to each compar-

ison, we note that there is a variation in the answers to the same comparison. 33.7% of

the comparisons has at least three different answers. For instance, C6 has four different

answers regarding the granularity and implementation. In the answers to the open-ended

questions, these differences are reinforced. In C6, P4 stated that “(WGB rule) has unnec-

essary details.”, while P2 explained that “(WGB rule) is interesting because it presents

internal modules of the service...”. Another example is the C12 where P2 reported that

“In this case, the three dependencies are not relevant...”, while P4 argued that “It has

relevant details that could help.”. C6 and C12 are comparisons with opposite answers

98

Figure 5.6: WGB and DEV Rule Comparison: Implementation.

Figure 5.7: WGB and DEV Rule Comparison: Understanding.

about the WGB rules, but the most common differences are less contradictory about the

WGB. As already presented, the majority of the answers reported the WGB rules as more

appropriate than DEV rules or the only appropriate rule in the comparison. Thus, the

divergences in the answers are about whether the DEV rules are appropriate.

Perspectives of the participants. To understand these differences in the answers of

the participants to the same comparison, we also analyze the answers of each participant

to all comparisons. We observed that the participants frequently do not agree with each

other, as can be noticed by the variation of color in the lines in Figures 5.4–5.7. The pair

of participants with the most and the least similar answers are P3 and P5 with 67.4% equal

answers, and P3 and P4 with 30.4% equal answers. Moreover, there are the divergences in

the justifications, as C6 and C12 previously mentioned. These differences between partic-

ipants may occur because they have different perspectives on what should be documented

in the architecture. Therefore, establishing a unique view of a system architecture that is

appropriate for all purposes and people a complex task.

99

Agreement of the answers of the participants. Given the lack of consensus in

the answers to each comparison and the between the participants, we analyze the agree-

ment (A) between the participants on each comparison. In this analysis, the agreement

is given by the simple majority, i.e., three or more participants answering the same to

a comparison. An example of the agreement by simple majority occurs in the answers

to the granularity of C2, in Figure 5.4. In this comparison, three of the five participants

answer that the WGB rule is better than the DEV rule. Therefore, the agreement to C2

regarding the granularity is that the WGB rule is more appropriate than the DEV rule. In

the comparisons without a simple majority, the agreement is based on the appropriateness

of the rules and the preferred rule. The appropriateness is given by the majority of the

participants reporting the rule as appropriate, e.g., three participants reporting a rules as

appropriate. The preferred rule is the rule with more participants reporting it as better

or the only appropriate rule. For instance, the implementation of C6 have both rules as

appropriate according to the simple majority because more than two participants report

the WGB rule and the DEV rule as appropriate. Analyzing the preferred rule of C6, it

has one participant preferring the DEV rule, and two participants preferring the WGB

rule. Therefore, the agreement to C6 considering the implementation is that both rules are

appropriate, but the WGB rule is best. This agreement is represented in the last line of the

C6 in Figure 5.6.

We summarize the agreement results in Figure 5.8. The WGB rules are appro-

priate in 100.0% of the comparisons, and preferred in 73.9–95.7% of the comparisons

analyzing the four criteria. There is one comparison that the DEV rule is preferred, which

is the generalization comparison already discussed. These results reinforce that the par-

ticipants prefer the WGB rules. They also suggest that the architecture rules should be

more detailed because the participants prefer rules that are finer-grained instead of com-

monly adopted coarse-grained rules. This preference for fine-grained occurs even in the

comparison where the DEV rule is better than the WGB rule.

In the answers to the comparisons, the WGB rules are considered appropriate in

96.5%–100.0%, better than the DEV rules in 61.7%–80.0%, and the only appro-

priate rule in 22.6%–36.5%. Analyzing these results, we notice a divergence in

the answers to each comparison and between participants, which may occur be-

cause the developers have different perspectives of the architectures of the systems.

100

Figure 5.8: WGB and DEV Rule Comparison: Agreement.

Given these divergences, we consolidate the answers analyzing the agreement to

each comparison. These results present the WGB rules as appropriate in all com-

parisons, and preferred in 73.9–95.7% of the comparisons concerning the four

analyzed criteria. Thus, our method recovers appropriate architecture rules and,

in most of the cases, even better rules than the manually recovered rules. Further-

more, the results indicate a preference for more detailed architecture rules than the

commonly adopted high-level rules.

5.3.2.3 RQ2: Revealing Misunderstandings and Violations

In the previous section, we analyzed the comparisons of the WGB rules and the

DEV rules. However, in both documentations, some rules do not have a corresponding

representation in the other documentation. In this section, we analyze the comparisons as-

sociated with RQ2, aiming to investigate the rules related to non-conformance and missed

comparisons.

Nature of the misunderstandings. In Figure 5.9, we present the answers to the

two non-conformance and three missed comparisons about the granularity, accuracy, un-

derstanding and implementation. We analyze these answers by their type considering

that non-conformance comparisons are related to DEV rules, and missed comparisons are

related to the WGB rules.

In C24 and C25, which are non-conformance comparisons, the participants are

mostly neutral in their answers—70.0% neither agree nor disagree to all criteria. In the

open-ended question of C24, P1 and P3 explained that they were not sure about these

101

Figure 5.9: Non-conformance and Missed Comparisons.

(a) Granularity (b) Accuracy

(c) Understanding (d) Implementation

rules, P4 reported that “we may misrepresent the dependencies...”, and P5 recognized a

problem and reported that “We made a mistake...”. In C25, P1–3 explained that they did

not remember the reason to document this rule.

Differently from the non-conformance comparisons, in the missed comparisons

(C26–C28), the participants vary more their answers to each criteria. 80.0%, 93.3%,

66.7%, and 66.7% of the answers to granularity, accuracy, understanding and implemen-

tation, respectively, at least weakly agree that the WGB rules are adequate. The under-

standing of C26 and C27 have divergences in the answers because they are related to the

integration tests of the System B. This nature of the rule led P2 to disagree about the

correctness of the granularity, understanding, and implementation. P2 argued that “This

module contains the integration tests and should not be documented...” about C26 and

C27. P3 do not agree to understanding and explained that “I do not think that the it tests

should be documented in the architectural level.”. In C28, P3 and P4 pointed out that

“this is an important part of the system...”. Furthermore, P2 identify a mistake in the

102

Figure 5.10: WGB and DEV Rules: Violations and Violations Allowance.

(a) DEV rules.

(b) WGB rules.

DEV rule and reported that “this module (presented in the WGB rule) should be docu-

mented.” in the justification of C28. These results present that the WGB rules support

the identification of problems and reveal important parts of the system that were forgotten

during the manual architecture recovery of the systems. There are also divergences in the

answers due to the nature of the rules.

Given the divergences in the answers, we investigate the agreement to these com-

parisons. The agreement is given by the average of answers according to the Likert

scale, where the answers have a variation of one and ranges from 3 (strongly agree) to -3

(strongly disagree). In the non-conformance comparisons, C24 is not adequate because

it is a problem according to two participants, and C25 is neutral. In the missed compar-

isons, in most cases, the WGB rules are adequate. Only C26 and C27 in the understanding

criteria are neutral because of the divergences already mentioned.

Presence and reasoning of violation. Additionally to the analysis of mistakes,

we analyze the architectural violations that are explicitly documented (violation) and the

violations that are not explicitly documented but may exist due to an overly coarse-grained

representation of the rules (violation allowance). Therefore, we present the answers to

questions of both sets of rules in Figure 5.10. We split our results presenting the answers

to the DEV rules, in Figure 5.10a, and to the WGB rules in Figure 5.10b.

The answers to violations in the DEV rules show 3% of them presenting violations

and 11% of them maybe presenting violations. Specifically, the DEV rules in C24 have

103

violations according to P2 and P4. C24 is related to a missed rule that is a mistake in

the documentation, as previously mentioned. We have four comparisons that the DEV

rules may present violations: C2 is a generalization comparison that we did not find any

specific reason to P3 report it as a violation; C7 is a specification comparison which P2

possibly noticed a violation comparing the DEV rule against the WGB rule because he

answered that the WGB rule do not present violations; C24 is a missed comparison which

P1 and P3 do not have information about as already discussed; and C25 is also a missed

comparison that P1–3 report not having the knowledge to answer.

Analyzing the violation allowance in the DEV rules, there are more participants

answering maybe in the allowance of violations than in violations. The comparisons that

allow or maybe allow violations are the same four comparisons of violations (C2, C7,

C24, and C25), and three more (C3, C4, and C11). C3 is a specialization comparison that

P4 answer maybe to violation allowance but answered no to the presence of violations.

This answer is possibly due to the lack of details in the DEV rule because he reported that

“It might help to declare the dependency relationship better”. C4 is also a specialization

comparison that P4 answer maybe to the violation allowance but no to the presence of

violations. He reported that “the WGB representation has useful details that actually

could help understand the system”. C11 is a specialization comparison that P1-4 answer

maybe to the DEV rule and no to the WGB rule because of the fine-grained information

provided by the WGB rule. The detailed information of the WGB rule made them sure

about the dependencies related to these rules as P2 reported “The developer diagram may

represent violations given that a module X should not interact with components inside

DAO.”.

Analyzing the answers to the violations in the WGB rules presented in Figure 5.10b,

there are few rules presenting or allowing violations. The two answers related to the vi-

olations in the WGB rules are to C22 and C23 given by P2. He reported that “It is clear

the packaging problem...” and “the WGB diagram clarifies that this part of the system

has much more problems and that this part of the system is really spaghetti.” to C22 and

C23, respectively. Additionally, there are four rules that participants answer maybe to

the presence of violations. One of them is C11 that is a comparison with a fine-grained

representation but still may have violations, according to P2. C21 also may have viola-

tions and is a fine-grained rules that P2 reported as “possibly a mistake in the modeling

of the system...”. C26 and C27 are reported by P1 as maybe due to their doubts about the

importance of the integration test module to be documented.

104

According to the answers about the violations and allowing violations in the WGB

and DEV rules, both sets of rules present few violations. Based on the previously dis-

cussed results, we expected these answers about violations in the WGB rules because

they are reported as appropriate in RQ1. Thus, it is coherent that those same rules do not

present violations. In DEV rules, we expected more violations because 22.6%–36.5% of

them were reported as inappropriate in RQ1. These results indicate that the presence of

violations is not the main reason that make participants reporting rules as inappropriate.

In the results of RQ1, the implicit rules are the type of comparisons with most of the an-

swers reporting the DEV rules as inappropriate. Thus, these results suggest that the rules

are reported as inappropriate because of the lack of the details.

Analyzing the WGB rules, the participants identified violations and problems in

the systems. These problems were related to the organization of the systems or

the nature of the recovered rules. Moreover, the analysis of violations suggests the

main reason to consider a rule as inappropriate is the level of abstraction and not

the presence of violations.

5.3.2.4 RQ3: Usefulness of the WGB Method

We investigated the rules individually or compared the WGB rules and the DEV

rules in the previous analysis. To evaluate the entire documentation recovered built based

on the WGB rules, we analyze the opinion of the participants about it to answer RQ3.

Therefore, we collect the eleven criteria associated with RQ3 based on the answers to the

first and third parts of the questionnaires. These answers are presented in Figure 5.11,

where the 20 first columns are associated with the ten questions asked at the beginning

(B) and the end (E) of the questionnaires, and the last column is the appropriateness that

was asked only at the end. To facilitate the visualization of the answers that changed after

the inspection of the WGB rules, we highlighted these changes. A box with a solid border

means that a participant agrees more in the last answer. A box with a dotted border means

that a participant agrees less in the last answer.

Usefulness of the documentation extracted using the WGB method. To evaluate

the usefulness of the documentation built based on the WGB rules, we depict the crite-

ria based on the overall usefulness, dependencies, granularity and practical usage of the

documentation.

105

Figure 5.11: Evaluation of the Documentation Built Based on the WGB Rules Answers.

(a) System A.

(b) System B.

The information of the usefulness, accuracy, organization, and conformance, which

are criteria related to the overall usefulness of the documentation, have most of the an-

swers agreeing in both systems. These results indicate that the documentation built based

on the WGB rules provides useful information. However, there are two participants dis-

agreeing on these criteria. P2, in the first question to System B, and P4, in all answers,

weakly disagrees on the organization because of the overly fine-grained representation in

some parts of the documentation.

Concerning the dependencies, allowed dependencies, and forbidden dependen-

cies, the results also show most of the participants agreeing. Although most of the partici-

pants agree to these criteria, there are few participants not agreeing to these criteria. These

criteria are directly related to the conformance of the implementation with the architec-

ture. Given that the WGB method extracts the rules from the source code, the participants

agree that the WGB method extracted the architecture rules properly with these answers.

The forbidden dependencies criteria depends on the violations of the systems. In the re-

sults of RQ2, the participants identified few violations and problems in the architecture,

106

which may make them agree with the presence of forbidden dependencies in the docu-

mentation.

To evaluate the level of abstraction of the documentation, we evaluate the granular-

ity of the documentation based on the answers to fine-granularity and coarse-granularity

criteria. Analyzing these criteria, the documentations are not considered coarse-grained to

both systems. Moreover, the documentation of System B is considered fine-grained. As in

the comparisons of the WGB and DEV rules previously discussed, these answers indicate

that the documentations of System A and B are more fine-grained than coarse-grained.

Independently of the level of abstraction, we evaluate whether the participants

would use the documentation built based on WGB rules based on the use intent and ap-

propriateness criteria. All participants agree to both criteria excepting P1 and P5. P1 is

neutral about the use intent before inspecting the rules of System A. P5 strongly disagrees

on the appropriateness of System B. The disagreement of P5 may be due to a mistake

because his answer is the opposite of what he reported in the open-ended question. He re-

ported that “The architecture of WGB is richer than the architecture made by us.”. These

results corroborate with the individual rule evaluation in which the WGB rules were con-

sidered appropriate and can be used as architecture documentation of the systems despite

of their level of abstraction.

In their textual answer about the documentation, the comments of the participants

are related to the usefulness of the information provided and the context that the docu-

mentation should be adopted. P3 reported that “The diagram is very detailed. I think that

it helped in finding some problems, but they would be detected with a more high-level di-

agram and the few detailed diagrams.”. Moreover, P2 reported that “The documentation

has too much details... The dependencies of the internal components could be repre-

sented only in the detailed diagrams.”. P1 and P4 consider the documentation proper for

developers and reported that “For developers, the documentation provides fundamental

information... and facilitates the conformance.” and “It depends to whom it would be

presented... However to an experienced developer or someone with a deep understanding

of the product, a more detailed representation could be helpful indeed.”, respectively.

In most of the evaluations of the documentation, there are no contradictory an-

swers, i.e., the evaluations have only agreeing or neutral answers. However, 43.2% of

the evaluations have contradictory answers. For instance, the organization of System A

has one participant disagreeing and the others agreeing. To obtain a consolidated answer

to these 19 evaluations, we analyze the agreement (A) of these evaluations. In organi-

107

zation, dependencies, forbidden dependencies, conformance, and appropriateness of both

systems, the majority of the participants agrees and only one or two participants disagree.

Thus, these agreements are at least weakly agree. The opposite occurs in the coarse-

granularity, where P1 and P3 agree and the others disagree. Therefore, the agreement of

the coarse-granularity is weakly disagree or disagree. In fine-granularity in System A, the

agreement is neutral and, in System B, is weakly agree. Considering all the evaluations,

the consolidated results are that the participants agree with the statements of the criteria.

Only the evaluations related to the granularity that have neutral and disagreeing con-

solidated answers. Considering the agreement of fine-granularity and coarse-granularity

criteria, there is a difference in the answers according to the systems. The difference in

the granularity of System A and B may be due to their size and architectural differences.

Given that System B is larger than System A, it is expected that System B has more

modules and rules than System A.

Changes in the answers after the inspection of the rules. In the previous analysis,

we evaluated the documentation based on the answers to the first part and the third part

of the questionnaire not considering the effect of inspecting the WGB rules in the second

part. To evaluate this effect on the answers, we compare the answers from the first and

the third part of the questionnaire.

The inspection of individual rules affected perception of the participants in 32%

of the answers. Only the usefulness of the documentation built using the WGB method

of System A has no changes. In all the other criteria, at least one participant changed

his opinion. P2 is the participant that most changed his opinion—changed his opinion

in 70% of the evaluations. The inspection of individual rules made some participants

agree more to questions. The accuracy improved in both systems due to P2 changes. The

organization had four opinions changed and the conformance had three changes. These

criteria are related to information about the systems suggesting that the inspection of the

architecture rules improved the knowledge of the participants about the systems.

Another two criteria had three changes to agree less after the participants inspect-

ing the rules: allowed dependencies and coarse-granularity criteria. These criteria are

related to the information and the abstraction of the architecture rules. Based on the indi-

vidual rule analysis, these changes are expected because most of the justifications reported

that the WGB rules are appropriate and have a detailed representation of the architecture.

108

The documentation built based on the WGB rules is adequate concerning the qual-

ity and practical usage criteria according to the answers of the participants. Al-

though it is considered fine-grained, the participants prefer the documentation built

based on the WGB rules instead of high-level documentation commonly adopted.

Therefore, the documentation provided by the WGB method is more detailed but

also more useful. Additionally, the inspection of the rules individually had little

influence on the answers of the participants about the documentation.

5.3.3 Threats to Validity

In this section, we identify threats to validity in our evaluation and detail the ac-

tions adopted to mitigate them.

A threat to construct validity identified is that some steps of our evaluation re-

quire the involvement and knowledge of the developers about software architecture and

the subject systems. The lack of knowledge and experience could affect the recovered

architectures. It is important to note that we asked the developers that work in the sys-

tems daily, and, consequently, they are the most expert developers in these systems to

participate in this experiment. Moreover, we noticed in the demographic information that

all of them have at least one year of working on the systems and have formal degrees in

information systems. Additionally, we provided a brief tutorial on software architecture

that ensured that the concepts adopted in this study were presented to all participants. We

also were available during the recovery of software architectures to answer any doubts

they may have. Another threat to construct validity is that our evaluation relied on five

developers to answer questions about the comparisons of documentations of the subject

systems. Thus, our results might be affected by some degree of subjectivity. We analyzed

the agreement between the developers to provide a more consensual perspective between

the participants mitigating the subjectivity in the answers.

An internal validity threat of our study is related to the involvement of the partici-

pants in time-consuming activities. To reduce the tiredness and boredom impact in these

activities, we did not set a time-limit to finish any of the tasks. Moreover, they were free

to take breaks whenever they want. Another threat to internal validity is related to the di-

agrams provided to the participants to analyze the rules, which may difficult the activity.

109

The diagrams were used to facilitate the understanding with different color, presenting

the modules and rules in a better organization possible. Furthermore, we provided the

documentation to the participants to let them inspect the documentation freely.

An external threat, which refers to the selected subject systems, is related to the

generalization of the results. Given that the selected systems were developed by the same

company, i.e. both had the same domain, similar development methods, almost the same

developers, and are not large systems, there is few variability on these aspects of the

subject systems. In this evaluation, we focused on the quality of the extracted rules to

provide complementary investigation of the results presented in Section 5.2, which was a

trade-off in this evaluation.

5.4 Final Remarks

In this chapter, we evaluated the WGB method according to its efficiency, effec-

tiveness, and usefulness. Considering the efficiency, our method takes 45.5s to execute

with our largest subject system. With respect to effectiveness, our method achieves a re-

duction from module dependencies to recovered rules of 87.6%, on average, thus reducing

most of the developers’ effort. The comparison of recovered implemented rules with con-

ceptual rules shows that they largely differ, leading to 37.1% and 37.8% of precision and

recall, respectively, on average. A qualitative analysis of recovered rules shows that our

method: (i) generalizes many rules associated with sub-modules of a module as a single

super-rule; (ii) is able to capture rules that occur specifically between sub-modules, being

often sub-rules of conceptual rules; (iii) identifies rules that govern dependencies within a

module, which are typically not specified as conceptual rules; and (iv) leaves architectural

violations as fine-grained rules, so that it is easier to distinguish them from other recov-

ered rules using our dependency strength metric. The evaluation of usefulness reinforces

that it extracts fine-grained rules. However, based on the opinion of the developers, the

WGB method extracts rules that are more appropriate than the rules recovered by them

in most of the comparisons and could be used as documentation. Additionally, the user

study revealed the disagreement between developers about the proper granularity of the

rules, which according to our results, should be fine-grained to be more useful during the

development, maintenance, and evolution of the system.

Vanius Zapalowski
Realce

110

111

6 CONCLUSION

The lack of understanding of architecture rules that are implemented in the code

is a key barrier to a healthy software development and evolution, leading to many main-

tainability problems. This thesis addressed the problems related to the recovery of ar-

chitecture rules aiming to mitigate this lack of understanding. Then, in this chapter, we

summarize the contributions of this thesis in Section 6.1 and present future work in Sec-

tion 6.2.

6.1 Contributions

As the result of this thesis, a number of contributions can be enumerated. These

contributions present the reasoning, the development and the evaluation of the Weighted-

graph-based method to recover architecture rules and are listed below.

Architecture Recovery Review. We provide a review of the research related to architec-

ture recovery presenting them based on their input, output, analysis, and purpose

(Chapter 2).

Empirical Analysis of Architecture Conformance. We presented an exploratory study

that assesses and investigates the gap between conceptual architecture rules and

dependencies among modules implemented in the source code (ZAPALOWSKI;

NUNES; NUNES, 2018). This study shows how complex the task of keeping the

architecture documentation in conformance with the source code is because the

abstraction commonly used to document architectures is not easily mapped to the

source code. (Chapter 3).

WGB Method to Recover Architecture Rules. We proposed the Weighted-graph-based

(WGB) method to recover architecture rules (ZAPALOWSKI; NUNES; NUNES,

2018), which is automatic and domain-independent. Our method does not require

the specification of any threshold, or system-specific customizations. Our method

includes the calculation of a proposed metric, module dependency strength (MDS),

between pairs of modules and the resolution of an optimization problem. MDS not

only takes into account dependencies within a module, but also its context, i.e. its

surrounding modules. Furthermore, our method relies on a optimization problem

proposed by us to choose the best set of rules using the results of MDS (Chapter 4).

112

Offline Evaluation. We evaluated the performance and effectiveness of the WGB method

(ZAPALOWSKI; NUNES; NUNES, 2018). The results show that our method pro-

duces results in a timely fashion. Considering the effectiveness, our method reduces

the gap between module dependencies and recovered rules in 87.6%, on average.

Furthermore, the comparison of recovered implemented rules with conceptual rules

shows that they differ due to the inevitable gap between an intended architecture

and an implemented architecture. The qualitative analysis of recovered rules pre-

sented many specialization and intra-module rules, which allowed rules but more

specific than commonly adopted conceptual rules. It also shows the architectural

violations as fine-grained rules facilitating the identification of them from other re-

covered rules using our dependency strength metric (Chapter 5).

User Evaluation. We evaluated our method from the perspective of developers to under-

stand the usefulness of the rules extracted using the WGB method. We analyzed the

architectures of two commercial systems comparing the architecture manually re-

covered by developers and the architecture built based on the rules extracted using

the WGB method. This study indicates that the WGB method extracts architecture

rules that are more appropriate than the architecture rules recovered by the develop-

ers of the systems in most of the cases. The results also indicate that the developers

would use the WGB rules as architecture documentation. Furthermore, these re-

sults reinforce that the architecture rules should be finer-grained because of the

preference of the developers for the WGB rules mainly concerning more detailed

rules—specialization and implicit comparisons (Chapter 5.3).

6.2 Future Work

In addition to the discussions presented in the previous chapters, we present in this

section further insights that emerged from our proposal and its evaluations.

Undocumented Rules vs. Architectural Violations. Our offline study, presented in Chap-

ter 5, resulted in many recovered implemented rules that are inconsistent with the

conceptual rules. Rules in this category occur due to two causes: (i) an undocu-

mented rule, which should be added as a conceptual rule; or (ii) an architectural

violation, which should be fixed in the code. Based on our qualitative analysis of

recovered rules, we identified many undocumented rules. Architectural violations,

113

in turn, should not be abstracted as a general rule, so that they can be identified as

a violation. Our method addresses this assuming there are few occurrences of the

same violation type, causing our metric to have a low value. Thus, the MDS metric

(i.e. the weight) associated with the rules recovered using our method can serve as

an indicator to distinguish undocumented rules from architectural violations. Fur-

ther work should be done to do this automatically.

Alternative Architecture Views. As a result of the pairwise clusterization of dependen-

cies of the WGB method, presented in Chapter 4, there are many arrows in the

graph that are candidates to be recovered implemented rules. However, a subset of

arrows should be selected to provide rules that are not redundant, e.g. a rule is a

sub-rule of another. We denote redundant rules as conflicting, and they both cannot

be in the solution that gives recovered rules.

Our method considers as an optimal solution that with the highest dependency

strengths. Nevertheless, there are many alternative solutions with non-conflicting

rules. Such alternative solutions consist of possible alternative recovered imple-

mented rules, providing different representations of the same architecture. Further-

more, the idea of having alternative views of a system architecture is reinforced by

the results of our user study that presented many divergences between the partici-

pants’ answers. The participants have different opinions about the rules and mod-

ules that should be presented in the architecture. This can be potentially further

explored to investigate the suitability of these alternative sets of rules to represent

implemented rules.

Tool Support. We developed a tool (SCHMITZ et al., 2017) that provided support to the

investigation presented in Chapter 3. However, this tool does not have the WGB

method implemented. In our evaluations of the WGB method, we used the IBM

ILOG CPLEX Optimization Studio as the optimization problem solver, which is

one of the best optimization problem solvers available. However, it is a multi-

purpose solver, which is large and complex to use, and cannot be distributed as part

of the tool due to legal rights. To integrate the WGB method into a tool, this solver

cannot be used. Thus, the implementation of the WGB method in a tool using

a different optimization problem solver would promote the adoption of the WGB

method and facilitate the recovery of architecture rules.

114

In summary, this thesis advances research on recovery of the software architecture.

Clearly there is still much to be done to have a method that fully automate the process of

architecture recovery, but our work consists of a relevant step towards the reduction of the

effort needed to have reliable and up-to-date architecture documentation.

115

REFERENCES

ALLEN, E. B.; KHOSHGOFTAAR, T. M.; CHEN, Y. Measuring coupling and
cohesion of software modules: An information-theory approach. In: INTERNATIONAL
SOFTWARE METRICS SYMPOSIUM. Proceedings... 2001. p. 124–134. ISBN 0-
7695-1043-4. Available from Internet: <http://doi.org/10.1109/METRIC.2001.915521>.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Architectural tatics and patterns.
In: . Software Architecture in Practice. Pearson Education, 2012. (SEI
Series in Software Engineering). ISBN 9780132942782. Available from Internet:
<http://books.google.com.br/books?id=-II73rBDXCYC>.

BASS, L.; CLEMENTS, P.; KAZMAN, R. What is a software architecture?
In: . Software Architecture in Practice. Pearson Education, 2012. (SEI
Series in Software Engineering). ISBN 9780132942782. Available from Internet:
<http://books.google.com.br/books?id=-II73rBDXCYC>.

BELLE, A. B.; BOUSSAIDI, G. E.; KPODJEDO, S. Combining lexical and structural
information to reconstruct software layers. Information and Software Technology,
v. 74, p. 1–16, 2016. Available from Internet: <https://doi.org/10.1016/j.infsof.2016.01.
008>.

BISCHOFBERGER, W.; KÜHL, J.; LÖFFLER, S. Sotograph – a pragmatic approach
to source code architecture conformance checking. In: EUROPEAN WORKSHOP
SOFTWARE ARCHITECTURE. Proceedings... 2004. p. 1–9. ISBN 978-3-540-24769-2.
Available from Internet: <https://doi.org/10.1007/978-3-540-24769-2_1>.

BITTENCOURT, R. A. et al. Improving Automated Mapping in Reflexion Models Using
Information Retrieval Techniques. In: WORKING CONFERENCE ON REVERSE
ENGINEERING. Proceedings... IEEE, 2010. p. 163–172. ISBN 978-1-4244-8911-4.
Available from Internet: <http://doi.org/10.1109/WCRE.2010.26>.

BOURQUIN, F.; KELLER, R. High-impact refactoring based on architecture
violations. In: EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE
AND REENGINEERING. Proceedings... 2007. p. 149–158. Available from Internet:
<http://doi.org/10.1109/CSMR.2007.25>.

BROWN, W. J. et al. AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. New York, NY, USA: John Wiley & Sons, Inc., 1998. ISBN
0-471-19713-0.

BRUNET, J. a. et al. On the Evolutionary Nature of Architectural Violations. In:
WORKING CONFERENCE ON REVERSE ENGINEERING. Proceedings... 2012. p.
257–266. Available from Internet: <https://doi.org./10.1109/WCRE.2012.35>.

CHRISTL, a.; KOSCHKE, R.; STOREY, M.-a. Equipping the reflexion method with
automated clustering. In: WORKING CONFERENCE ON REVERSE ENGINEERING.
Proceedings... IEEE, 2005. p. 89–98. ISBN 0-7695-2474-5. Available from Internet:
<http://doi.org/10.1109/WCRE.2005.17>.

http://doi.org/10.1109/METRIC.2001.915521
http://books.google.com.br/books?id=-II73rBDXCYC
http://books.google.com.br/books?id=-II73rBDXCYC
https://doi.org/10.1016/j.infsof.2016.01.008
https://doi.org/10.1016/j.infsof.2016.01.008
https://doi.org/10.1007/978-3-540-24769-2_1
http://doi.org/10.1109/WCRE.2010.26
http://doi.org/10.1109/CSMR.2007.25
https://doi.org./10.1109/WCRE.2012.35
http://doi.org/10.1109/WCRE.2005.17

116

CHRISTL, A.; KOSCHKE, R.; STOREY, M.-A. Automated clustering to support the
reflexion method. Information and Software Technology, v. 49, n. 3, p. 255–274, 2007.
ISSN 0950-5849. Available from Internet: <https://doi.org/10.1016/j.infsof.2006.10.
015>.

CONSTANTINOU, E.; KAKARONTZAS, G.; STAMELOS, I. Towards Open Source
Software System Architecture Recovery Using Design Metrics. In: PANHELLENIC
CONFERENCE ON INFORMATICS. Proceedings... 2011. p. 166–170. Available from
Internet: <http://doi.org/10.1109/PCI.2011.36>.

CORAZZA, A. et al. Investigating the Use of Lexical Information for Software System
Clustering. In: EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND
REENGINEERING. Proceedings... 2011. p. 35–44. ISBN 978-1-61284-259-2. ISSN
15345351. Available from Internet: <https://doi.org/10.1109/CSMR.2011.8>.

DUCASSE, S.; POLLET, D. Software architecture reconstruction: A process-oriented
taxonomy. IEEE Transactions on Software Engineering, v. 35, n. 4, p. 573–591, 2009.
ISSN 00985589. Available from Internet: <https://doi.org/10.1109/TSE.2009.19>.

GARCIA, J.; IVKOVIC, I.; MEDVIDOVIC, N. A comparative analysis of software
architecture recovery techniques. In: INTERNATIONAL CONFERENCE ON
AUTOMATED SOFTWARE ENGINEERING. Proceedings... 2013. p. 486–496.
Available from Internet: <https://doi.org/10.1109/ASE.2013.6693106>.

GARCIA, J. et al. Obtaining ground-truth software architectures. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING. Proceedings... 2013. p. 901–910.
ISSN 0270-5257. Available from Internet: <https://doi.org/10.1109/ICSE.2013.
6606639>.

GARCIA, J. et al. Toward a catalogue of architectural bad smells. In: Architectures
for Adaptive Software Systems. Springer Berlin Heidelberg, 2009, (Lecture Notes in
Computer Science, v. 5581). p. 146–162. ISBN 978-3-642-02351-4. Available from
Internet: <https://doi.org/10.1007/978-3-642-02351-4_10>.

GARCIA, J. et al. Enhancing architectural recovery using concerns. In: INTER-
NATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING.
Proceedings... 2011. p. 552–555. ISBN 978-1-4577-1638-6. Available from Internet:
<http://doi.org/10.1109/ASE.2011.6100123>.

HENNEY, K.; SCHMIDT, D.; BUSCHMANN, F. Pattern Oriented Software
Architecture: On Patterns and Pattern Languages. John Wiley & Sons, 2007. (Wiley
Series in Software Design Patterns). ISBN 9780471486480. Available from Internet:
<http://books.google.com.au/books?id=wzplRf3uh-EC>.

HORA, A. et al. Mining system specific rules from change patterns. In: WORKING
CONFERENCE ON REVERSE ENGINEERING. Proceedings... IEEE, 2013. p.
331–340. ISBN 978-1-4799-2931-3. Available from Internet: <https://doi.org/10.1109/
WCRE.2013.6671308>.

HUYNH, S. et al. Automatic modularity conformance checking. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING. Proceedings... 2008. p. 411–420.
Available from Internet: <https://doi.org/10.1145/1368088.1368144>.

https://doi.org/10.1016/j.infsof.2006.10.015
https://doi.org/10.1016/j.infsof.2006.10.015
http://doi.org/10.1109/PCI.2011.36
https://doi.org/10.1109/CSMR.2011.8
https://doi.org/10.1109/TSE.2009.19
https://doi.org/10.1109/ASE.2013.6693106
https://doi.org/10.1109/ICSE.2013.6606639
https://doi.org/10.1109/ICSE.2013.6606639
https://doi.org/10.1007/978-3-642-02351-4_10
http://doi.org/10.1109/ASE.2011.6100123
http://books.google.com.au/books?id=wzplRf3uh-EC
https://doi.org/10.1109/WCRE.2013.6671308
https://doi.org/10.1109/WCRE.2013.6671308
https://doi.org/10.1145/1368088.1368144

117

JANSEN, A.; BOSCH, J. Software architecture as a set of architectural design decisions.
In: WORKING IEEE/IFIP CONFERENCE ON SOFTWARE ARCHITECTURE.
Proceedings... 2005. p. 109–120. Available from Internet: <http://doi.org/10.1109/
WICSA.2005.61>.

KNODEL, J.; POPESCU, D. A comparison of static architecture compliance
checking approaches. In: WORKING IEEE/IFIP CONFERENCE ON SOFTWARE
ARCHITECTURE. Proceedings... 2007. p. 12–22. Available from Internet:
<http://doi.org/10.1109/WICSA.2007.1>.

Kong, X. et al. Directory-based dependency processing for software architecture
recovery. IEEE Access, v. 6, p. 52321–52335, 2018. Available from Internet:
<http://doi.org//10.1109/ACCESS.2018.2870118>.

LI, Z.; ZHOU, Y. Pr-miner: Automatically extracting implicit programming rules and
detecting violations in large software code. ACM SIGSOFT Software Engineering
Notes, v. 30, n. 5, p. 306–315, sep. 2005. ISSN 0163-5948. Available from Internet:
<https://doi.org/10.1145/1081706.1081755>.

LUTELLIER, T. et al. Comparing Software Architecture Recovery Techniques Using
Accurate Dependencies. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING. Proceedings.. 2015. v. 2, p. 69–78. ISBN 978-1-4799-1934-5. ISSN
02705257. Available from Internet: <https://doi.org/10.1109/ICSE.2015.136>.

MACIA, I. et al. On the relevance of code anomalies for identifying architecture
degradation symptoms. In: EUROPEAN CONFERENCE ON SOFTWARE
MAINTENANCE AND REENGINEERING. Proceedings... 2012. p. 277–286.
Available from Internet: <http://doi.org/10.1109/CSMR.2012.35>.

MACIA, I. et al. Are automatically-detected code anomalies relevant to architectural
modularity? In: INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED
SOFTWARE DEVELOPMENT. Proceedings... ACM Press, 2012. p. 167–178. ISBN
9781450310925. Available from Internet: <https://doi.org/10.1145/2162049.2162069>.

MAFFORT, C. et al. Heuristics for discovering architectural violations. In:
WORKING CONFERENCE ON REVERSE ENGINEERING. Proceedings...
IEEE, 2013. p. 222–231. ISBN 978-1-4799-2931-3. Available from Internet:
<https://doi.org/10.1109/WCRE.2013.6671297>.

MAFFORT, C. et al. Mining architectural patterns using association rules. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND
KNOWLEDGE ENGINEERING. Proceedings... 2013. p. 375–380. Available from
Internet: <http://www.dcc.ufmg.br/~mtov/pub/2013_seke_archlint.pdf>.

MAFFORT, C. et al. Mining architectural violations from version history. Empirical
Software Engineering, jan. 2015. ISSN 1382-3256. Available from Internet:
<http://doi.org/10.1007/s10664-014-9348-2>.

MANCORIDIS, S. et al. Using automatic clustering to produce high-level system
organizations of source code. In: INTERNATIONAL WORKSHOP ON PROGRAM
COMPREHENSION. Proceedings... 1998. p. 45–52. ISSN 1092-8138. Available from
Internet: <https://doi.org/10.1109/WPC.1998.693283>.

http://doi.org/10.1109/WICSA.2005.61
http://doi.org/10.1109/WICSA.2005.61
http://doi.org/10.1109/WICSA.2007.1
http://doi.org//10.1109/ACCESS.2018.2870118
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1109/ICSE.2015.136
http://doi.org/10.1109/CSMR.2012.35
https://doi.org/10.1145/2162049.2162069
https://doi.org/10.1109/WCRE.2013.6671297
http://www.dcc.ufmg.br/~mtov/pub/2013_seke_archlint.pdf
http://doi.org/10.1007/s10664-014-9348-2
https://doi.org/10.1109/WPC.1998.693283

118

MEDVIDOVIC, N.; TAYLOR, R. N. Software architecture: Foundations, theory, and
practice. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING.
Proceedings... 2010. p. 471–472. ISBN 978-1-60558-719-6. Available from Internet:
<http://doi.org/10.1145/1810295.1810435>.

MO, R. et al. Hotspot Patterns: The Formal Definition and Automatic Detection of
Architecture Smells. In: WORKING IEEE/IFIP CONFERENCE ON SOFTWARE
ARCHITECTURE. Proceedings... IEEE, 2015. p. 51–60. ISBN 978-1-4799-1922-2.
Available from Internet: <https://doi.org/10.1109/WICSA.2015.12>.

MO, R. et al. Architecture anti-patterns: Automatically detectable violations of design
principles. IEEE Transactions on Software Engineering, p. 1–21, 2019. Available
from Internet: <https://doi.org/10.1109/TSE.2019.2910856>.

MURPHY, G.; NOTKIN, D.; SULLIVAN, K. Software reflexion models: bridging
the gap between design and implementation. IEEE Transactions on Software
Engineering, v. 27, n. 4, p. 364–380, apr 2001. ISSN 00985589. Available from Internet:
<https://doi.org/10.1109/32.917525>.

MURPHY, G. C.; NOTKIN, D.; SULLIVAN, K. Software reflexion models.
ACM SIGSOFT Software Engineering Notes, ACM, New York, NY, USA,
v. 20, n. 4, p. 18–28, oct. 1995. ISSN 01635948. Available from Internet:
<http://doi.org/10.1145/222132.222136>.

NISTOR, E. C. et al. Archevol: Versioning architectural-implementation relationships.
In: INTERNATIONAL WORKSHOP ON SOFTWARE CONFIGURATION
MANAGEMENT. Proceedings... 2005. p. 99–111. ISBN 1-59593-310-7. Available from
Internet: <https://doi.org/10.1145/1109128.1109136>.

OFFUTT, A. J.; HARROLD, M. J.; KOLTE, P. A software metric system for module
coupling. Journal of Systems and Software, v. 20, n. 3, p. 295–308, mar. 1993. ISSN
0164-1212. Available from Internet: <https://doi.org/10.1016/0164-1212(93)90072-6>.

PAIVA, R. et al. Exploring the combination of software visualization and data clustering
in the software architecture recovery process. In: ACM SYMPOSIUM ON APPLIED
COMPUTING. Proceedings... 2016. p. 1309–1314. ISBN 9781450337397. Available
from Internet: <https://doi.org/10.1145/2851613.2851765>.

PARNAS, D. Software aging. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING. Proceedings... 1994. p. 279–287. ISSN 0270-5257. Available from
Internet: <https://doi.org/10.1109/ICSE.1994.296790>.

PERRY, D. E.; WOLF, A. L. Foundations for the study of software architecture.
SIGSOFT Software Engineering Notes, v. 17, n. 4, p. 40–52, oct. 1992. ISSN
0163-5948. Available from Internet: <https://doi.org/10.1145/141874.141884>.

SANGAL, N. et al. Using dependency models to manage complex software architecture.
In: ACM SIGPLAN CONFERENCE ON OBJECT ORIENTED PROGRAMMING
SYSTEMS LANGUAGES AND APPLICATIONS. Proceedings... 2005. p. 167. ISBN
1595930310. Available from Internet: <http://doi.org/10.1145/1094811.1094824>.

http://doi.org/10.1145/1810295.1810435
https://doi.org/10.1109/WICSA.2015.12
https://doi.org/10.1109/TSE.2019.2910856
https://doi.org/10.1109/32.917525
http://doi.org/10.1145/222132.222136
https://doi.org/10.1145/1109128.1109136
https://doi.org/10.1016/0164-1212(93)90072-6
https://doi.org/10.1145/2851613.2851765
https://doi.org/10.1109/ICSE.1994.296790
https://doi.org/10.1145/141874.141884
http://doi.org/10.1145/1094811.1094824

119

SARKAR, S. et al. Modularization of a large-scale business application: A case study.
IEEE Software, v. 26, n. 2, p. 28–35, March 2009. ISSN 0740-7459. Available from
Internet: <https://doi.org/10.1109/MS.2009.42>.

SCHMITZ, C. et al. Extracting implemented module dependencies with the arr
tool. In: CONGRESSO BRASILEIRO DE SOFTWARE: TEORIA E PRáTICA -
SESSãO DE FERRAMENTAS. Proceedings... 2017. p. 89–96. Available from Internet:
<https://www.lia.ufc.br/~cbsoft2017/proceedings_files/AnaisSessaoFerramentas_
CBSoft2017.pdf>.

SCHRöDER, S.; RIEBISCH, M. Architecture conformance checking with description
logics. In: EUROPEAN CONFERENCE ON SOFTWARE ARCHITECTURE.
Proceedings... 2017. p. 166–172. ISBN 9781450352178. Available from Internet:
<https://doi.org/10.1145/3129790.3129812>.

SHAW, M.; CLEMENTS, P. The golden age of software architecture. IEEE
Software, v. 23, n. 2, p. 31–39, mar. 2006. ISSN 0740-7459. Available from Internet:
<http://doi.org/10.1109/MS.2006.58>.

SILVA, L. D.; BALASUBRAMANIAM, D. Controlling software architecture erosion:
A survey. Journal of Systems and Software, v. 85, n. 1, p. 132–151, jan 2012. ISSN
01641212. Available from Internet: <https://doi.org/10.1016/j.jss.2011.07.036>.

SOLINGEN, R. van et al. Goal question metric (gqm) approach. In: . Encyclopedia
of Software Engineering. [S.l.]: John Wiley & Sons, Inc., 2002. ISBN 9780471028956.

TAN, P.-N.; STEINBACH, M.; KUMAR, V. Introduction to data mining. In: . [S.l.]:
Addison-Wesley, 2005. chp. Association Analysis: Basic Concepts and Algorithms.

TERRA, R.; VALENTE, M. T. A dependency constraint language to manage
object-oriented software architectures. Software: Practice and Experience,
v. 39, n. 12, p. 1073–1094, 2009. ISSN 1097-024X. Available from Internet:
<http://doi.org/10.1002/spe.931>.

TZERPOS, V.; HOLT, R. C. Acdc: an algorithm for comprehension-driven
clustering. In: WORKING CONFERENCE ON REVERSE ENGINEERING.
Proceedings... 2000. p. 258–267. ISSN 1095-1350. Available from Internet:
<https://doi.org/10.1109/WCRE.2000.891477>.

WONG, S. et al. Detecting software modularity violations. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING. Proceeding... 2011. p. 411–420.
ISBN 9781450304450. Available from Internet: <https://doi.org/10.1145/1985793.
1985850>.

XIAO, C.; TZERPOS, V. Software clustering based on dynamic dependencies.
In: EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND
REENGINEERING. Proceedings.. 2005. p. 124–133. ISSN 1534-5351. Available from
Internet: <https://doi.org/10.1109/CSMR.2005.49>.

ZAPALOWSKI, V.; NUNES, D. J.; NUNES, I. Understanding architecture non-
conformance: Why is there a gap between conceptual architectural rules and source code
dependencies? In: BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING.

https://doi.org/10.1109/MS.2009.42
https://www.lia.ufc.br/~cbsoft2017/proceedings_files/AnaisSessaoFerramentas_CBSoft2017.pdf
https://www.lia.ufc.br/~cbsoft2017/proceedings_files/AnaisSessaoFerramentas_CBSoft2017.pdf
https://doi.org/10.1145/3129790.3129812
http://doi.org/10.1109/MS.2006.58
https://doi.org/10.1016/j.jss.2011.07.036
http://doi.org/10.1002/spe.931
https://doi.org/10.1109/WCRE.2000.891477
https://doi.org/10.1145/1985793.1985850
https://doi.org/10.1145/1985793.1985850
https://doi.org/10.1109/CSMR.2005.49

120

Proceedings... 2018. p. 22–31. ISBN 9781450365031. Available from Internet:
<https://doi.org/10.1145/3266237.3266261>.

ZAPALOWSKI, V.; NUNES, I.; NUNES, D. J. Revealing the relationship between
architectural elements and source code characteristics. In: INTERNATIONAL
CONFERENCE ON PROGRAM COMPREHENSION. Proceedings... 2014. p. 14–25.
ISBN 9781450328791. Available from Internet: <https://doi.org/10.1145/2597008.
2597156>.

ZAPALOWSKI, V.; NUNES, I.; NUNES, D. J. The wgb method to recover implemented
architectural rules. Information and Software Technology, v. 103, p. 125 – 137, 2018.
ISSN 0950-5849. Available from Internet: <https://doi.org/10.1016/j.infsof.2018.06.
012>.

https://doi.org/10.1145/3266237.3266261
https://doi.org/10.1145/2597008.2597156
https://doi.org/10.1145/2597008.2597156
https://doi.org/10.1016/j.infsof.2018.06.012
https://doi.org/10.1016/j.infsof.2018.06.012

121

APPENDIX A — DETAILS OF THE SUBJECT SYSTEMS

In this appendix, we detail each subject systems used in the exploratory study

presented in Chapter 3, and in the offline evaluation of the WGB method in Section 5.2.

AspectJ is an extension of the Java language that provides support to aspect oriented

programming. The conceptual architecture recovered from AspectJ is illustrated in

Figure A.1. This architecture was recovered mainly based on the documentation

available in the AspectJ official website. This architecture has specific modules.

This variation in the module roles lead us to classify it as heterogeneous architec-

ture. The diagram presented in Figure A.1 was used to extract the implemented

architecture of AspectJ, which was extracted from the system source code based on

its package structure.

ArchStudio is an architecture development environment. It was developed based on the

idea of supporting the task of document software architecture. ArchStudio has built-

in for modeling the hierarchical structure of complex systems, the types of various

components, connectors, and interfaces, product-lines of systems that are related

by a common base. ArchStudio is also a architecture meta-modeling environment,

which adopts xADL 2.0 architecture description language to model the architec-

tures. The architecture of ArchStudio could not be classified in one architecture pat-

tern due to their size and complexity. Another studies investigated its architecture

and represented it as a heterogeneous architecture with specific dependencies be-

tween architecture modules. The architecture of ArchStudio was mostly recovered

based on the previous analysis of its source code. Garcia, Ivkovic and Medvidovic

(2013) provided a module diagram and a mapping between ArchStudio architecture

modules and source code package. The recovered information provided by Garcia,

Ivkovic and Medvidovic (2013) is available in their study website1. Another source

of documentation was the analysis provided by Lutellier et al. (2015). They also

provided diagrams of the source code of ArchStudio and documented the modules

dependencies in their study website2.

EC is a web application developed to support conference organization. Its features cover

paper submission, reviewing processes and notifications of the users involved. It

1Availabe at: <https://softarch.usc.edu/wiki/doku.php?id=recoveries:archstudio_4>
2Available at: <http://asset.uwaterloo.ca/ArchRecovery/>

https://softarch.usc.edu/wiki/doku.php?id=recoveries:archstudio_4
http://asset.uwaterloo.ca/ArchRecovery/

122

Figure A.1: AspectJ Architecture

is written in Java uses agent technology. The conceptual architecture recovered

from Expert Committee is illustrated in Figure A.2. This architecture was validated

by Expert Committee developers and verified by us during the experiment. As

can be seen in Figure A.2, this architecture follows the layered pattern with an

agent module. From the six architecture rules are explicitly presented in Figure

1, we mapped these rules to package structure of the project. This mapping of

rules generated 19 architecture rules analyzed during our experiment. We used the

information presented in EC official page 3 and the source code of the system used

during our experiment4.

Metrics is a plugin for Eclipse IDE, which extracts a suite of metrics related to object-

oriented good practices from projects developed using Eclipse. It automatically ex-

tracts and exports the design metrics – proposed in two books: "OO Design Quality

Metrics, An Analysis of Dependencies" and "Object-Oriented Metrics, measures

of Complexity" – and also plot a dependency graph of the project. It is concep-

tual architecture follows an Model-View-Controller pattern with two modules of

3Available at:<https://www.inf.ufrgs.br/~ingridnunes/maspl/index.php?base=casestudies&page=
expertcommittee>

4Available at: <https://www.inf.ufrgs.br/~ingridnunes/maspl/casestudies/ec_work_products.zip>

https://www.inf.ufrgs.br/~ingridnunes/maspl/index.php?base=casestudies&page=expertcommittee
https://www.inf.ufrgs.br/~ingridnunes/maspl/index.php?base=casestudies&page=expertcommittee
https://www.inf.ufrgs.br/~ingridnunes/maspl/casestudies/ec_work_products.zip

123

Figure A.2: EC Architecture

view. One view (Eclipse View) has the responsibility of handle user interaction

with the Eclipse and the other (Exporting View) provide the different format of

export the projects information. Figure A.3 presents the architecture diagram of

Metrics architecture. Metrics’ implemented architecture was extracted using its

package structure as (sub-)modules to recover the implemented rules. Investigating

Metrics’ implemented architecture, we noticed a strong dependency from Eclipse

model classes since most of the model classes used are from Eclipse API. We pro-

vide the link to the official home page5 and the source code of the system6 used

during our experiment.

OLIS is a web application that provides several personal services to users, developed

using a reactive approach. It is composed mainly by two services: the Events

Announcement and the Calendar Services. However, the OLIS was designed in

such a way that it can be evolved to incorporate new services without interfering

5Available at: <https://sourceforge.net/p/metrics2/>
6Available at: <https://sourceforge.net/p/metrics2/code/162/tree/>

https://sourceforge.net/p/metrics2/
https://sourceforge.net/p/metrics2/code/162/tree/

124

Figure A.3: Metrics Architecture

Figure A.4: OLIS Architecture

the existing ones. It is also is written in Java. OLIS conceptual architecture is il-

lustrated in Figure A.4. We presented this diagram to OLIS developers to ensure

that this layered architecture represents their conceptual ideas about the system ar-

chitecture. Furthermore, during the mapping of conceptual rules to implemented

rules, we inspected its source again to be sure of the correctness of the 13 con-

ceptual rules stated. The implemented architecture of OLIS was recovered based

on its source code. Analyzing the conceptual architecture (Figure A.4), we can

notice that the dependency between Data → Agent and Data → GUI are not al-

lowed. During our inspection of the implemented rules, we noticed two unexpected

rules that are clearly not allowed considering Figure A.4. The unexpected rules are

persistence(Data) → ui(GUI) and persistence(Data) → agent(Agent). We

also used the information presented in OLIS official page 7 and the source code of

the system used during our experiment8.

7Available at:<https://www.inf.ufrgs.br/~ingridnunes/maspl/index.php?base=casestudies&page=olis>
8Available at: <https://www.inf.ufrgs.br/~ingridnunes/maspl/casestudies/olis_work_products.zip>

https://www.inf.ufrgs.br/~ingridnunes/maspl/index.php?base=casestudies&page=olis
https://www.inf.ufrgs.br/~ingridnunes/maspl/casestudies/olis_work_products.zip

125

Figure A.5: RecSys Architecture

RecSys is a Java desktop-based recommender system that aims to recommend items

based on their properties and user-defined preferences. RecSys recommends three

types of items: hotels, laptops, and cellphones. The conceptual architecture of Rec-

Sys is mainly formed by its business tasks, as can be seen in Figure A.5. Its concep-

tual architecture follows a layered pattern to organize its Data and Presentation

modules. However, the majority of RecSys source code handle business task. This

concentration of complexity in one module created a necessity of sub-divide the

Business module in other modules to properly organize its architecture.

126

127

APPENDIX B — QUESTIONNAIRE TEMPLATE

In this appendix, we present the question of the questionnaire template as they

were presented to the participants of the study detailed in Section 5.3. In Figure B.1, we

show the 10 questions of first and third part of the questionnaire associated with the evalu-

ation of the documentation built based on the WGB rules. Next, we present the questions

related to the second part of the questionnaire, which compares pairs of rules from the

WGB rules and the developers’ rules. In Figure B.2, we present the questions of gener-

alization and specialization comparisons. In Figures B.3-B.5, the question asked in the

implicit, missed, and non-conformance comparisons respectively. Finally, in Figure B.6,

we present the last question which is related to the evaluation of the WGB documentation.

Additionally, we provide a complete questionnaire online1 with a made-up architecture to

present an example of the questions, comparisons, and documentations of the question-

naires used in our user study.

1Available at: <https://forms.gle/TpwGgkuhipZrdLYC8>

https://forms.gle/TpwGgkuhipZrdLYC8

128

Figure B.1: Questions Asked in the First and Third Part of the Questionnaire.

129

Figure B.2: Questions Asked in the Generalization and Specialization Comparisons.

130

Figure B.3: Questions Asked in the Implicit Comparisons.

131

Figure B.4: Questions Asked in the Missed Comparisons.

132

Figure B.5: Questions Asked in the Non-conformance Comparisons.

Figure B.6: Final Question About the WGB Method Appropriateness.

133

APPENDIX C — RESUMO ESTENDIDO

Compreendendo e Recuperando Regras de Arquitetura

Todos os sistemas tem uma arquitetura que estrutura o sistema em módulos que

são divididos de acordo com alguns critérios e com regras arquiteturais que especificam

dependências permitidas entre os módulos. Os módulos e regras arquiteturais definem os

principais conceitos que devem ser seguidos para que a implementação esteja de acordo

com a arquitetura especificada. Isso faz com que o software tenha um desenvolvimento

e evolução saudáveis e controlados. Idealmente, os módulos devem ser explicitados no

código-fonte, por exemplo, por meio de pacotes, que contêm elementos menores de soft-

ware (classes) que dependem apenas de elementos aos quais são permitidos, de acordo

com as regras definidas na arquitetura. Apesar da importância da arquitetura de software,

muitos sistemas possuem sua documentação arquitetural desatualizadas ou nem possuem

documentação. Isso acontece porque a tarefa de documentar a arquitetura deve ser feita

constantemente, consome bastante tempo e precisa ser feita por uma pessoa com conhec-

imento sobre o software.

A recuperação de arquitetura de software tem sido estudada para reduzir o tra-

balho necessário para os sistemas que não possuem sua arquitetura documentada ou pos-

suem uma documentação desatualizada terem sua arquitetura documentada adequada-

mente. Ter a arquitetura do software corretamente documentada e em conformidade com

o código-fonte ajuda a entender a estrutura do software, bem como as regras de dependên-

cias entre seus módulos que estão implementada. A falta de conhecimento sobre a ar-

quitetura dificulta um desenvolvimento de forma organizada, o que leva a problemas de

manutenção que poderiam ser evitados ou minimizados com uma documentação arquite-

tural bem documentada. Por exemplo, a introdução de violações à arquitetura do software

faz com que problemas como o desvio da arquitetura conceitual (architectural drift) e

erosão arquitetural aconteçam pela falta de conhecimento de como o software deve ser

implementado. Além disso, a análise das regras arquiteturais que estão implementadas

no código-fonte pode revelar regras não planejadas introduzidas pelos desenvolvedores,

que normalmente permanecem não documentadas. Consequentemente, recuperar esse

tipo de informação arquitetural minimiza o problema de vaporização do conhecimento

(knowledge vaporization).

134

Dado que a arquitetura de software é importante para o desenvolvimento e que

existem dificuldades para manter a arquitetura em conformidade com o código-fonte, a

questão de pesquisa desta tese é: Como extrair regras arquiteturais adotadas na imple-

mentação de um sistema com base no código-fonte considerando a falta de documentação

adequada?

Para responder a questão de pesquisa é preciso endereçar três problemas impor-

tantes: (i) como recuperar regras arquiteturais usando somente dependências de código-

fonte; (ii) como distinguir quais dependências de código-fonte são mais adequadas para

serem representadas na arquitetura; e (iii) como auxiliar na identificação de violação das

regras arquiteturais. Então, nosso objetivo é melhorar a confiabilidade e a conformidade

da documentação arquitetural através da análise das dependências de código para recu-

peração de regras arquiteturais. Com o resultado das análises, nós propomos um método

para reduzir o esforço necessário para obter as regras arquiteturais de um sistema. Nosso

método é independente de domínio e produz resultados específicos de acordo com as

características do sistema. Nosso método identifica regras de arquitetura com base em

dependências frequentes e relevantes implementadas. A principal vantagem do nosso

método é que ele não precisa de informações adicionais como, por exemplo, uma arquite-

tura inicial ou uma lista de definições de regras.

Com base nessa ideia, apresentamos a seguir nossa hipótese de pesquisa. A análise

e adoção de uma técnica independente de domínio é efetiva para extrair regras arquite-

turais do código-fonte que são específica para cada sistema.

Existem muitos estudos que investigaram os problemas relacionados a questão de

pesquisa desta tese, mas a maioria deles produzem resultados que não são efetivos, i.e.

eles produzem uma baixa precisão sobre os módulos e regras recuperados. Isso acontece

porque o código-fonte e a arquitetura são abstrações muito diferentes que representam o

mesmo sistema. Essa diferença de abstração dificulta a tarefa de manter uma documen-

tação arquitetural atualizada e confiável.

Para entender por que existe uma (grande) diferença entre as regras conceituais

de arquitetura e dependências implementadas entre os módulos, nós avalamos e caracter-

izamos suas divergências do ponto de vista dos pesquisadores no contexto de um estudo

multi-projeto. Nesse estudo buscamos entender o quão distante são as regras arquiteturais

das dependências de código analisando a conformidade das regras arquiteturais com o

código-fonte desses sistemas. Detalhes dos sistemas usados nessa análise são apresenta-

dos nas Tabelas 3.2 e 3.3.

135

Para esse primeiro estudo, nós formulamos três questões de pesquisa: Q1. Qual

é a diferença entre as regras conceituais de arquitetura e as dependências implementadas

entre módulos? Q2. Como as dependências implementadas entre módulos podem ser

categorizadas em relação às regras conceituais da arquitetura? Q3. É possível distinguir

as dependências implementadas entre módulos considerando sua categorização?

Para responder essas questões de pesquisa, nós extraímos as dependências de

código-fonte considerando módulos e seus elementos dois seis sistemas analisados. As

dependências entre módulos são consideras através das estruturas hierárquicas do código,

pacotes para a linguagem Java, e as dependência entre elementos são os arquivos ou, por

exemplo, classes em Java. Para analisar as informações das dependências implementadas,

foi utilizado o algoritmo de regras de associação que mede o suporte de cada uma das de-

pendências. Além disso, nós recuperamos manualmente as arquiteturas dos seis sistemas,

que são detalhas no Apêndice A.

Com base nas dependências implementadas e nas regras conceituais da arquite-

turas, nós apresentamos os dados referentes à conformidade das dependências permitidas

pelas regras da arquitetura conceitual e as dependências de implementadas no código-

fonte na Tabela 3.4. Analisando os resultados, fica claro uma grande diferença entre as

dependências implementadas e as regras conceituais da arquitetura, com divergências var-

iando de 5,9% a 73,9%. Consequentemente, o número de violações arquiteturais é alto.

Além disso, observamos que a quantidade de dependências permitidas que nunca ocorrer

no código é ainda maior, variando de 60,3% a 98,2%. Isso indica que as regras da ar-

quitetura devem ser mais detalhadas e restritivas do que são atualmente para serem mais

úteis.

Analisando a diferença entre as regras conceituais e as dependências implemen-

tadas, nós derivamos quatro categorias de dependências implementas com base nas regras

conceituais: Conceituais que são exatamente iguais as regras conceituais quando ma-

peadas para o código; Sub-conceituais que são dependências que respeitam as regras con-

ceituais, mas com um nível de granularidade mais baixo; Intra-módulo que são dependên-

cias permitidas que não existem explicitamente na arquitetura por serem de comunicação

interna dos módulos; e Inesperadas que são dependências que não se encaixam em nen-

hum elemento da arquitetura conceitual. Usando essa categorização de dependências, nós

classificamos cada uma das dependências extraídas do código-fonte. A distribuição de

dependências por categoria é apresentada na Figura 3.2. Desses resultados, um ponto

interessante é o grande número de dependências sub-conceituais (AV G = 29, 0%) e

136

intra-módulo (AV G = 21, 5%) indicando que há necessidade de regras arquiteturais mais

detalhadas. Isso por que essas categorias de dependências estão em conformidade com a

arquitetura conceitual, mas não estão explicitamente documentadas.

Visando diferenciar as dependências implementadas entre as categorias propostas,

nós analisamos o suporte de cada uma das dependências implementadas. Na Tabela 3.5,

os valores de suporte de cada categoria com seus respectivos médias, desvios padrão, me-

diana, mínimo e máximo. Além disso, o gráfico de caixa é apresentado para cada uma

das categorias em cada um dos sistemas na Figura 3.3. Analisando esses resultados, o

suporte de dependências conceituais é geralmente inferior ao suporte de dependências

sub-conceituais (exceto para sistemas com uma hierarquia de módulo plana e pequena),

confirmando que as regras de arquiteturais devem ser mais detalhadas. O suporte de de-

pendências inesperadas é significativamente menor do que o suporte de outras categorias

de dependência, indicando que essa métrica pode ser usada para identificar grupos de

dependências que correspondem a violações de arquitetura ou regras não documentadas.

Dadas as limitações encontradas e as diferenças entre a arquitetura conceitual e o

código-fonte encontrados no nosso primeiro estudo, nós propomos um método para recu-

peração de regras arquiteturais chamado Weighted-graph-based (WGB)—método baseado

em grafos ponderados. O método WGB escolhe um conjunto de regras de arquitetura

para representar uma arquitetura implementada de software usando como entrada uma

determinada estrutura de módulos (por exemplo, estrutura de pacote) e dependências

entre elementos de módulo (por exemplo, classes). Essas regras recuperadas são uma rep-

resentação de granularidade maior das dependências implementadas, que é uma visão ar-

quitetural do sistema. Nosso método é composto de três etapas sequenciais: (i) cálculo de

uma métrica que quantifica a força das dependências entre dois módulos, considerando as

dependências entre os elementos; (ii) clusterização em pares de dependências com base na

nossa métrica, considerando níveis de módulos de mesmo nível e níveis acima ou abaixo;

e (iii) seleção de um conjunto de regras que maximiza as dependências implementadas de

acordo com seus valores calculados por nossa métrica visando remover redundâncias nas

dependências.

Essas etapas, as entradas e as saídas associadas a cada uma das etapas são ilustradas

na Figura 4.1. Com base nas dependências do código-fonte, extraímos métricas (inten-

sidade e distribuição), que são combinadas em uma única métrica, a Module Strength

Dependency (MDS)—Força de Dependência entre Módulos. O valor de MDS da de-

pendências implementadas é calculado e então usado para remover dependências menos

137

representativas. Por fim, a partir das regras implementadas que são candidatas, sele-

cionamos um conjunto de regras sem informações redundantes e com o maior valor de

MDS.

A métrica de intensidade (int) avalia as dependências implementadas entre módu-

los considerando os elementos internos de cada módulo nos dois sentidos da dependência,

i.e. ela avalia as dependências do módulo de fonte e do módulo alvo. Assim a definição

da métrica é dada por duas equações, uma para o módulo que é fonte da dependência

(Equação 4.2), outra para o módulo que é alvo da dependência (Equação 4.3). Dessa

forma a métrica contribui com uma avaliação mais completa da dependência do que as

métricas comumente utilizadas para medir dependência que só consideram um sentido da

dependência. O cálculo da métrica de intensidade é exemplificado na Figura 4.3a.

Complementando a métrica de intensidade, a métrica de distribuição (dst) mensura

as dependências entre módulos analisando dois níveis por vez da estrutura hierárquica do

código-fonte e também diferencia os módulos fonte e alvo. Com isso, a análise é feita

da perspectiva do módulo pai e seus submódulos filhos diretos em ambas as direções da

dependência. A definição dessa métrica é dada também em duas equações, uma equação

para a os módulos fonte (Equação 4.6), e outra para os módulos alvos (Equação 4.7).

Para o cálculo da métrica de distribuição são considerados os módulos filhos e irmãos

para medir quão representativa é a dependência dentro do contexto de níveis. Ou seja,

não são considerados os elementos internos de cada módulos. O cálculo da métrica de

distribuição é exemplificado na Figura 4.3b.

Essas duas métricas combinadas compõem a MDS que considera as dependências

dos elementos dos módulos, dois níveis de granularidade diferentes e os dois sentidos da

dependência implementada, como pode ser visto no cálculo de um exemplo de calculo

das métricas relacionadas a MDS na Figura 4.4. A MDS é definida na Equação 4.8, onde

as distribuições são pesos normalizados para os valores de intensidade. Um exemplo

completo de cálculo de cada uma das partes da MDS é apresentando na Tabela 4.2. Esse

valores utilizados são com base no exemplo apresentado na Figura 4.2.

O cálculo da MDS nos da valores para as dependência entre pares de módulos

considerando módulos filhos e pais. Então, existem quatro formas de representar essas

dependências na arquitetura para que não existam conflitos e nem repetições: (i) módulo

pai para módulo pai; (ii) módulo pai para módulos filhos; (iii) módulos filhos para módulo

pai; e (iv) módulos filhos para módulos filhos. Para decidir qual dessas dependências

implementas é melhor, nós fazemos a clusterização das dependência calculadas usando a

138

MDS fazendo a média entre cada nível delas. Assim, consideramos a média da MDS por

nível para selecionar as regras das dependências como regras candidatas. Um exemplo

dessa seleção é apresentado na Tabela 4.1, onde é selecionada a dependência de módulo

pai para módulo pai por ser a que tem a maior média (AV G = 0.40).

As regras candidatas entre os pares de módulos do sistema consideram somente

dois níveis de granularidade diferentes. Isso faz com que existam regras redundantes,

como no exemplo da Figura 4.5, porque a árvore da estrutura do código-fonte poder ter

vários níveis e, logo, várias regras candidatas. Para resolver esse problema, nós mode-

lamos o cenário de regras candidatas como um problema de otimização, formalizado na

Equação 4.9, no qual nosso objetivo é selecionar um conjunto de regras candidatas que

maximize a MDS geral, eliminando regras candidatas redundantes. Na formalização do

problema, nós definimos um peso para regras de mais alto nível que representam várias

eliminam várias outras regras quando selecionadas. Definimos dessa forma para que re-

gras de mais alto nível tenham um valor apropriado de acordo com a quantidade de regras

que ela elimina caso seja selecionada.

Apresentado o nosso método, nós avaliamos ele com um estudo de caso que

mostra detalhes da aplicação em um sistema, um estudo offline que analisa a aplicação

em seis sistemas mostrando a eficiência e eficácia, e um estudo com desenvolvedores que

visa entender a utilidade do resultado gerado.

O estudo de caso é baseado na aplicação do nosso método no sistema MDD4ABMS.

Esse sistema é de médio porte tendo 41.3 KLOC, 335 classes e 40 pacotes. Nesse es-

tudo nós recuperamos a arquitetura do MDD4AMBS manualmente e aplicamos o nosso

método para comparar as duas documentações da arquitetura. O resultado é o diagrama

mostrado na Figura 5.1. Nessa figura são mostradas as regras extraídas utilizando o WGB

e a classificação das regras de acordo com a definição da arquitetura recuperada manual-

mente. Das 44 regras recuperadas, 26 (59%) foram selecionadas para compor a docu-

mentação da arquitetura do sistema, que são as regras iguais as definidas na recuperação

manual e de granularidade fina comparadas as recuperadas manualmente. As regras de

granularidade fina referem-se a submódulos dos módulos referidos nas regras recuperadas

manualmente. Por exemplo, existe uma regra conceitual m2c →mm que é implementada

usando a biblioteca xtend que fez com que o WGB recuperasse a regra m2c.xtend →

mm.statemachine. Além disso, nós perguntamos ao desenvolvedor mais experiente

que avaliasse de maneira geral a documentação gerada por nosso método, usando uma

escala Likert de 7 pontos. Ele concordou (fortemente) que o diagrama gerado fornece in-

139

formações úteis, fornece informações precisas, reflete o que está implementado no código,

que será usado como documentação de arquitetura e que facilita a compreensão da orga-

nização do sistema.

Para obter uma avaliação mais completa do nosso método, nós analisamos de

maneira quantitativa o método WGB em um estudo offline. Nosso objetivo com esse

estudo é avaliar nosso método WGB com base nas regras de arquitetura recuperadas

por ele que estão implementadas no código-fonte sob a perspectiva dos pesquisadores

aplicando nosso método em seis sistemas. Para atingir esse objetivo, nós aplicamos nosso

método nos seis sistemas já mencionados anteriormente, detalhados nas Tabelas 3.2 e 3.3,

e analisamos a eficiência e a efetividade dos resultados.

Para avaliar a eficiência, nós medimos o tempo que nosso método leva para exe-

cutar nos seis sistemas considerando os três passos do método. A Tabela 5.2 detalha essa

medição. Como podemos ver, mesmo para o maior sistema, nosso método executa em

um tempo aceitável para ser executado frequentemente.

No que diz respeito à eficácia, nós comparamos as regras extraídas pelo WGB

com as dependências entre módulos do código-fonte e as regras da arquitetura conceitual

recuperada pelos desenvolvedores. Os resultados da comparação entre as regras extraídas

pelo WGB e as dependências entre módulos são apresentados na Tabela 5.4. Nessas com-

parações vemos uma diminuição no número de regras de 87,6%, em média, reduzindo

assim a maior parte do esforço dos desenvolvedores na verificação de dependências. A

comparação das regras implementadas recuperadas com as regras conceituais mostra que

elas diferem amplamente, apresentado na Tabela 5.5, levando a 37,1% e 37,8% de pre-

cisão e revocação, respectivamente, em média. Para uma análise qualitativa da regras

recuperadas, nós classificamos cada uma delas de acordo com as regras recuperadas con-

ceituais. Essa classificação é apresentada na Tabela 5.7. Essa análise qualitativa das

regras recuperadas indica que nosso método: (i) generaliza muitas regras associadas aos

submódulos de um módulo como uma única super-regra; (ii) é capaz de capturar regras

que ocorrem especificamente entre submódulos, sendo muitas vezes sub-regras de regras

conceituais; (iii) identifica regras que governam as dependências dentro de um módulo,

que normalmente não são especificadas como regras conceituais; e (iv) deixa as violações

de arquitetura como regras refinadas, de modo que seja mais fácil distingui-las de outras

regras recuperadas usando nossa métrica de força de dependência.

Nos estudos anteriores apresentados, nós analisamos o WGB usando as regras da

arquitetura conceitual como parâmetro para avaliá-lo, supondo que as regras conceitu-

140

ais são a representação mais adequada da arquitetura. Com o objetivo de investigar se

as regras da arquiteturas extraídas usando o método WGB podem melhorar a documen-

tação das arquiteturas. Esse estudo conta com a participação de desenvolvedores de

dois sistemas comerciais que são usados para avaliar a utilidade das regras extraídas pelo

WGB. Esse estudo com usuários complementa nossa análise anterior investigando se os

desenvolvedores concordam que as regras extraídas pelo WGB são adequadas para serem

usadas com documentação dos seus projetos. Detalhes desses projetos são apresentados

na Tabela 5.9.

O estudo com usuário foi feito comparando as arquiteturas recuperadas pelos de-

senvolvedores com as arquiteturas construídas com base nas regras extraídas pelo WGB.

Para isso, cada um dos participantes respondeu dois questionários—criados questionários

com base em um modelo de questionário—, sendo um para cada sistema. O modelo de

questionário tem perguntas que visam entender três pontos principais sobre as regras ex-

traídas pelo WGB: (i) a melhoria na abstração; (ii) os erros ou violações mostrados; e

(iii) a utilidade prática. Cada um desses pontos tem uma série de perguntas que são detal-

hadas na Tabela 5.8. Nos dois primeiros pontos, nós comparamos as regras extraídas pelo

WGB com as regras recuperadas pelos desenvolvedores. Já para o terceiro ponto, nós

construímos o diagrama de arquitetura com as regras do WGB para que os participantes

avaliassem sua utilidade.

As respostas sobre a melhoria na abstração da regras são apresentadas nas Fig-

uras 5.4–5.7. Analisando as respostas das melhorias na abstração das regras, as regras

extraídas pelo WGB são consideradas adequadas em 96,5%–100,0%, melhores do que

as regras recuperadas em 61,7%–80,0%, e a única regra apropriada em 22,6%–36,5%.

Analisando os resultados, nós notamos uma divergência nas respostas para cada com-

paração entre os participantes, o que pode ocorrer pelas diferentes perspectivas diferentes

da arquitetura de acordo com o participante. Diante dessas divergências, consolidamos as

respostas analisando a concordância de cada comparação. Esses resultados apresentam

as regras extraídas pelo WGB como apropriadas em todas as comparações, e preferidas

em 73,9%–95,7% das comparações considerando os quatro critérios analisados. Assim,

nosso método recupera regras de arquitetura adequadas e, na maioria dos casos, regras

ainda melhores do que as regras recuperadas manualmente. Além disso, os resultados

indicam uma preferência por regras de arquitetura mais detalhadas do que as regras de

alto nível comumente adotadas.

141

Dado que as regras extraídas pelo WGB provem melhoria na abstração das regras

arquiteturais, nós analisamos os casos em que existem erros. Para analisar os erros foram

feitas as mesmas perguntas que para melhoria na abstração para o conjunto de regras que

aparecem em somente um dos dois conjuntos de regras. Foram encontrados cinco erros

de documentação considerando ambos os conjuntos de regras e ambos os sistemas. As

respostas para esse grupo de regras são apresentados na Figura 5.9. Esses erros acontece-

ram por engano dos desenvolvedores no momento da recuperação manual da arquitetura,

no caso das regras recuperadas, e por não serem módulos relevantes, no caso das regras

extraídas pelo WGB.

Para entendermos se as regras extraídas pelo WGB ajudam na identificação de vi-

olações, nós perguntamos aos participantes sobre a presença de violação e a permissão de

violações nas regras apresentadas. As respostas são apresentadas através de gráficos de

caixa na Figura 5.10b. Os participantes identificaram poucas violações em ambos con-

juntos de regras. Na maioria dos casos em que existem violações é decorrente de um

problema de implementação. Além disso, a análise das violações sugere que o principal

motivo para considerar uma regra como inadequada é o nível de abstração e não a pre-

sença de violações. Chegamos a essa conclusão porque muitas regras recuperadas pelos

desenvolvedores foram reportadas como inadequadas, mas poucas foram reportadas tendo

violações.

Dado que individualmente as regras extraídas pelo WGB são adequadas, é preciso

analisar se elas em conjunto provem uma arquitetura apropriada. Isso é investigado na

primeira e última parte dos questionários respondidos pelos participantes, onde são feitas

as mesmas perguntas para os participantes. Isso possibilita compararmos as respostas

antes e depois de eles analisarem as regras individualmente. As respostas dos partici-

pantes sobre a documentação construída com as regras extraídas pelo WGB é apresentada

na Figura 5.11. De acordo com as respostas, a documentação construída com base nas

regras do WGB é adequada considerando os critérios de qualidade e utilidade. Embora

seja considerada muito detalhada em grande parte dos casos, os participantes preferem a

documentação construída com base nas regras extraídas pelo WGB ao invés da documen-

tação de alto nível comumente adotada. Portanto, a documentação fornecida pelo método

WGB é mais detalhada, mas também mais útil. Além disso, a inspeção individual das

regras teve pouca influência nas respostas dos participantes sobre a documentação visto

que houveram poucas mudanças nas respostas.

142

Como resultado desta tese, uma série de contribuições podem ser enumeradas.

Essas contribuições apresentam a motivação, o desenvolvimento e a avaliação do método

de recuperação de regras arquiteturais WGB. As principais contribuições são listadas a

seguir.

Revisão dos Estudos de Recuperação de Arquitetura. Fornecemos uma revisão da pes-

quisa relacionada à recuperação da arquitetura, apresentando-as com base em sua

entrada, saída, análise e propósito.

Análise Empírica de Conformidade Arquitetural. Apresentamos um estudo explora-

tório que avalia e investiga a diferença na abstração entre as regras da arquite-

tura conceitual e as dependências entre os módulos implementados no código-

fonte (ZAPALOWSKI; NUNES; NUNES, 2018). Esse estudo o quão complexa é a

tarefa de manter a documentação da arquitetura em conformidade com o código-

fonte porque a abstração comumente usada para documentar arquiteturas não é

facilmente mapeada para o código-fonte. Com base nos resultados deste estudo,

derivamos quatro categorias de relacionamentos entre regras conceituais e dependên-

cias de código-fonte que foram analisadas.

Método WGB para Recuperar Regras de Arquitetura. Propusemos o método Weighted-

graph-based (baseado em grafo ponderado) para recuperar regras de arquitetura (ZA-

PALOWSKI; NUNES; NUNES, 2018), que é automático, independente de domínio

e específico de sistemas. Nosso método não requer a especificação de nenhum lim-

ite ou personalizações específicas do sistema. Além disso, nosso método inclui o

cálculo de uma nova métrica, nomeada como MDS, para medir a força da dependên-

cia entre módulos e a modelagem do problema de recuperação de arquitetura como

um problema de otimização.

Avaliação Offline do Método WGB. Avaliamos o desempenho e a eficácia do método

WGB (ZAPALOWSKI; NUNES; NUNES, 2018). Os resultados mostram que

nosso método produz resultados em tempo hábil. Com relação à eficácia, nosso

método atinge uma redução das dependências do módulo para regras recuperadas.

Além disso, a comparação das regras implementadas recuperadas com as regras

conceituais mostra que elas diferem amplamente. Uma análise qualitativa das re-

gras recuperadas mostra que nosso método recupera da arquitetura dentro das qua-

tro categorias identificadas e principalmente regras que provem mais detalhes sobre

143

a arquitetura implementada. Nosso método também recupera violações arquitetu-

rais, caso elas existam, como regras refinadas, de modo a facilitar distingui-las de

outras regras recuperadas através do valor atribuído a essa regra.

Avaliação com Usuários do Método WGB. Avaliamos nosso método a partir da per-

spectiva dos desenvolvedores para entender a utilidade do nosso método. Esse es-

tudo indica que o método WGB extrai regras de arquitetura mais adequadas do que

as regras de arquitetura extraídas pelos desenvolvedores dos sistemas na maioria

dos casos. Eles também indicaram que usariam as regras WGB como documen-

tação de arquitetura. Além disso, os resultados reforçam que as regras arquiteturais

devem ser mais detalhadas devido à preferência dos desenvolvedores pelas regras

WGB, principalmente em relação a regras mais detalhadas—comparações de espe-

cialização e implícitas.

Em resumo, esta tese avança na pesquisa de recuperação de regras de arquiteturais

de software. É evidente que ainda há muito a se fazer para ter um método que automatize

completamente a recuperação de arquitetura, mas nosso trabalho consiste em um passo

para reduzir o esforço necessário para se ter um documentação de arquitetura confiável e

atualizada.

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Problem Statement and Limitations of Existing Work
	1.1.1 Identification of Architecture Rules
	1.1.2 Detection of Architectural Violations

	1.2 Proposed Solution and Contributions Overview
	1.2.1 Contributions

	1.3 Outline

	2 Background and Related Work
	2.1 Architecture Recovery
	2.1.1 Architecture Module Approaches
	2.1.2 Architecture Rule Approaches

	2.2 Architecture Conformance
	2.3 Architectural Violation Identification
	2.4 Final Remarks

	3 A study of the gap between architecture rules and implemented module dependencies
	3.1 Study Settings
	3.1.1 Goal and Research Questions
	3.1.2 Procedure
	3.1.3 Subject Systems

	3.2 Results and Analysis
	3.2.1 Gap between conceptual architecture rules and implemented module dependencies
	3.2.2 Implemented module dependencies categorization
	3.2.3 Automated distinction of implemented module dependencies

	3.3 Threats to Validity
	3.4 Final Remarks

	4 The WGB Method
	4.1 Module Dependency Strength
	4.2 Pairwise Clusterization of Dependencies
	4.3 Selection of Architecture Rules
	4.4 Use Cases of the Method
	4.5 Final Remarks

	5 Evaluation
	5.1 Case Study
	5.2 Offline Study
	5.2.1 Study Settings
	5.2.1.1 Goal and Research Questions
	5.2.1.2 Procedure
	5.2.1.3 Subject Systems

	5.2.2 Results and Analysis
	5.2.2.1 RQ1: Efficiency of WGB method
	5.2.2.2 RQ2: Effectiveness of WGB method

	5.2.3 Threats to Validity

	5.3 User Study
	5.3.1 Study Settings
	5.3.1.1 Goal and Research Questions
	5.3.1.2 Procedure
	5.3.1.3 Questionnaire Template
	5.3.1.4 Subject Systems and Participants

	5.3.2 Results and Analysis
	5.3.2.1 Documentation and Questionnaires
	5.3.2.2 RQ1: Improvement of the level of abstraction
	5.3.2.3 RQ2: Revealing Misunderstandings and Violations
	5.3.2.4 RQ3: Usefulness of the WGB Method

	5.3.3 Threats to Validity

	5.4 Final Remarks

	6 Conclusion
	6.1 Contributions
	6.2 Future Work

	References
	Appendix A — Details of the Subject Systems
	Appendix B — Questionnaire Template
	Appendix C — Resumo Estendido

