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Otimização Ergódica
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Resumo

Apresentamos um procedimento iterativo para aproximar numéricamente
sub-ações calibradas. O problema principal em Otimização Ergódica consiste
de calcular médias maximais ergodicas. Dado um sistema dinâmico T : X →
X e uma função cont́ınua A : X → R, chamada de potencial, nesta teoria
o interesse principal está no valor m(A) := sup

ρ is a T -invariant probability

∫
Adρ e

na probabilidade ρ que atinge este valor, chamada de probabilidade max-
imizante. Estamos interessados em propriedades de tal ρ. Sub-ações cali-
bradas são funções V : X → R tais que max

T (y)=x
[A(y) + V (y)] = m(A) + V (x).

O motivo de interesse nas sub-ações é porque os suportes das probabili-
dades maximizantes de A estão contidos no conjunto {x |V (T (x))− V (x)−
A(x) + m(A) = 0}. Uma propriedade importante é a de que se uma prob-
abilidade invariante possui suporte no conjunto acima, ela é maximizante
(ver [5]).

Para um potencial HölderA sempre existe uma sub-ação calibrada. Também
é conhecido que genéricamente para um potencial Hölder A a sua probabili-
dade maximizante é única. Se a probabilidade maximizante é única, então a
sub-ação calibada é única a menos de uma constante aditiva.

Nosso procedimento consiste em iterar um operador em uma função ini-
cial, convergindo para um ponto fixo que será uma sub-ação calibrada. Se
existir mais de uma sub-ação calibrada o limite depende da condição inicial.
A implementação do procedimento é direta e exige pouco poder computa-
cional. O processo também pode ser aplicado na estimação de raio espectral
conjunto de matrizes.

Nos restringiremos para X = S1 := [0, 1] e A : X → R cont́ınua. Es-
tamos principalmente interessados no caso T (x) = 2x(mod 1), mas outras
dinâmicas T também são consideradas. Sub-ações calibradas são importantes
para obter o valor m(A) e a probabilidade maximizante.

O procedimento proposto aproxima numéricamente sub-ações calibradas
e o valor m(A). Com essas aproximações nós podemos adivinhar um sistema
de equações que a sub-ação deve satisfazer, a resolução deste sistema fornece
a solução expĺıcita para a sub-ação calibrada e o valor m(A). Nós deduz-
imos o sistema heuŕısticamente utilizando o gráfico da sub-ação calibrada
aproximada.
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Abstract

We present an iterative procedure for numerically approximating cali-
brated sub-actions. The central issue of Ergodic Optimization consists of
computing maximal ergodic averages. Given a dynamical system T : X → X,
and a continuous function A : X → R, called the potential, in this theory
the main interest is in the value m(A) := sup

ρ is a T -invariant probability

∫
Adρ and

the probability ρ which attains this value, called the maximizing probability.
Properties of such probabilities are the main issue here. Calibrated subac-
tions are functions V : X → R such that max

T (y)=x
[A(y)+V (y)] = m(A)+V (x).

The interest on calibrated subactions is due to the fact that the support of
maximizing probabilities for A are contained on the set {x |V (T (x))−V (x)−
A(x)+m(A) = 0}. An important property is: if an invariant probability has
support inside the above set, then, this probability is maximizing (see [5]).

For a Hölder potential A a calibrated subaction always exists. It is also
known that generically on a Hölder potential A the maximizing probabil-
ity for A is unique. If the maximizing probability is unique the calibrated
subaction is unique up to an additive constant.

Our procedure consists of iterating an operator acting on a given initial
function which will converge to a fixed point which will be a subaction. If
there exists more than one subaction the limit depends on the initial condi-
tion. Its implementation is straightforward and requires little computational
power. The iterative procedure can also be applied to the estimation of the
joint spectral radius of matrices.

We restrict ourselves to X = S1 := [0, 1] and A : X → R continuous. We
are mainly interested in the case T (x) = 2x(mod 1) but other dynamics T are
also considered. Calibrated subactions play an important role in computing
the value m(A) and the maximizing probability.

Our proposed iterative procedure approximates numerically calibrated
subactions and the value m(A). With these approximations, we can guess a
system of equations that the calibrated subaction must satisfy, solving this
system yields the explicit expression for the calibrated subaction and the
value m(A). We derive the system heuristically by using the graph of the
approximated calibrated subaction.
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sendo paciente com minhas dúvidas. Eventualmente Jairo me indicou para
trabalhar como bolsista com o professor Artur e esse foi o começo de uma
longa jornada.

Agradeço aos meus colegas e amigos matemáticos que me acompanharam
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Chapter 1

Introduction

In this work, we aim to contribute to the research in Ergodic Optimization.
We propose techniques for computing calibrated sub-actions, which are an
important tool in Ergodic Optimization. We can extract from them infor-
mation about maximizing orbits of dynamical systems.

There are two major settings that people analyze questions in Ergodic
Optimization: 1) when it is assumed the potential is just continuous, and,
2) when it is assumed some regularity (as Hölder continuity for instance)
on the potential. The two cases are conceptually distinct: in the first case,
generically, the maximizing probability has support on the all space (see [4]
and [16]) and in the second case, generically, the support has support on
a periodic orbit (see [6] and [5]). In the first case, generically, subactions
are of no help. It is in the second case that subactions are of great help
for identifying the support of the maximizing probability. In our work, we
introduce a nice tool for identifying, generically, the maximizing probability
(see [9]).

In the literature, there are other approaches to computing calibrated sub-
actions, using the involution kernel and techniques from Ergodic Transport.
However, obtaining an explicit expression for an involution kernel is not
always possible. Our proposed approach allows us to solve explicitly a mul-
titude of examples with great simplicity without requiring to know the invo-
lution kernel. Thus, to the best of our knowledge, our proposed techniques
are novel.

We begin by stating the definitions which are fundamental to our frame-
work. We also provide motivation to our definitions, so that the reader can
better understand how our work relates to other topics.
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Given a compact metric space X we consider the associated Borel sigma-
algebra A.

Definition 1.0.1. Given a continuous transformation T : X → X and a
continuous function A : X → R, a probability µ on (X,A) is said to be
T -invariant if for every measurable set A ∈ A, µ(A) = µ(T−1(A))

Definition 1.0.2. We denote m(A) := sup
ρ is aT -invariant probability

∫
Adρ. If µ is

such that
∫
Adµ = m(A), then we say µ is a maximizing probability for A.

Under the above assumptions maximizing probabilities for A exist but
may not be unique.

Definition 1.0.3. We say that a function A : S1 → R is Hölder continuous,
or simply Hölder if there are nonnegative real constants C and α such that

|A(x)− A(y)| ≤ C |x− y|α

We now give motivation for the interest in this topic within the context of
Thermodynamic Formalism - a reader familiar with these concepts can skip
to the next definition.

Suppose we have an infinite chain of atoms on the lattice Z, such that in
each place of the lattice (the i-th atom) the configuration state could be 0
or 1 (which could play respectively the role of the spin + and −). We then
identify this chain with the space Σ := {0, 1}Z, this means that a point x ∈ Σ
is of the form x = (...x−2, x−1|x0, x1, ...), where xi is the configuration of the
i-th atom.

From the point of view of Equilibrium Statistical Physics is natural to
assume that the ergodic properties we should expect from the system should
be invariant by translation on the lattice Z. In other words, there is no
natural choice for the origin 0 on the lattice Z. In this direction is natural
to consider the shift σ : Σ → Σ. That is, x → σ(x) := (..., x−1, x0|x1, x2, ...)
and σ−1(x) = (..., x−3, x−2|x−1, x0, ...). This simply represents a translation
of a chain of atoms on the lattice. If the configurations of the atoms in this
chain are changing according to a stationary probability µ (a probability
in thermodynamic equilibrium) we should expect that for each Borel set A
on Σ we have the property µ(A) = µ(σ−1(A)). This is because the choice
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of the origin should not change the likelihood of the observed outcomes.
This amounts of saying that µ is an invariant measure with respect to the
dynamical system with X = Σ and T = σ. In this case, we describe the state
of the system by a T-invariant probability acting on the measurable space,
which we will call an equilibrium state of the system.

We can further describe the interaction between the atoms in the chain
by a function A : X → X, called the potential of the system. So A(x)
could be seen as the energy (or Hamiltonian) of the system in the chain
x and could depend on the temperature of the system. For each potential
and temperature, one gets an equilibrium probability. In Thermodynamic
Formalism, it is natural to consider concepts such as the free energy and
the entropy of a given state of the system (an invariant probability on Σ).
The thermodynamic equilibrium at a certain temperature is reached on the
invariant probability which maximizes free energy.

We will not exhaust this subject here and we refer the interested reader
to [3] for more information. For a fixed generic Hölder potential A, it turns
out that when the temperature of the system goes to zero, the state that
maximizes the free energy converges to the measure that attains the value
m(A) = sup

ρ is T -invariant probability

∫
Adρ. That is, the maximizing probability for

A.
One interesting aspect is that the computations related to invariant prob-

abilities on X = {0, 1}Z can be dealt in the framework of the set X = {0, 1}N
(see [22]). Note that we can identify points in {0, 1}N as the binary expansion
of points in the interval [0, 1]. From this, we can see how our work relates to
problems in Thermodynamic Formalism.

The Hölder hypothesis for A represents the fact that the interaction de-
scribed by the Hamiltonian A decays very fast for two different points x and
y far away in Σ.

In Ergodic Optimization we are mainly interested in properties of the in-
variant probabilities that attain the value m(A). An important result is that
when A is Hölder, there is a calibrated subaction (see [6]). Thus, definition
1.0.3 gives a regularity condition to our study. The following definition is
crucial to our work.

Definition 1.0.4. Given a continuous function A : S1 → R, a continuous
function V : S1 → R that satisfies for any x ∈ S1, V (x) = max

T (y)=x
[V (y) +

A(y)−m(A)], is called a calibrated sub-action
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Note that if V is a calibrated subaction for A, then V plus a constant
is also a calibrated subaction for A. If the maximizing probability is unique
the calibrated subaction is unique up to adding a constant.

For Hölder potentials A there exists Hölder calibrated sub-actions (see
[5]). In this work, we provide techniques to compute such calibrated sub-
actions, from which one can obtain m(A) and the support of the maximizing
probabilities. It follows from the definition that for all x ∈ S1

R(x) := V (T (x))− V (x)− A(x) +m(A) ≥ 0.

If a given point x ∈ S1 belongs to the support of a maximizing measure,
then R(x) = 0 (see [5]). Moreover, if an invariant probability has support
inside the set of x such that R(x) = 0, then, this probability is maximizing for
A (see [5]). If the potential A is just continuous a calibrated subaction may
not exist. Therefore we restrict ourselves to Lipschitz or Hölder potentials.

In this work, we give a mixture of numerical solutions and explicit so-
lutions for the calibrated sub-actions. We use numerical solutions to guide
us towards explicit solutions. This procedure has been shown to be quite
effective as we will see.

For reproducibility of our analysis, we provide the code used to gen-
erate the results in https://github.com/hermes-hf/Explicit_examples_

ergodic/. This text derives from our work [9] and [10].
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Chapter 2

Approximating calibrated
subactions

In this chapter, we introduce the iterative procedure used to approximate
calibrated subactions. We first introduce the concepts used and then show
that the iterations converge.

2.1 The 1/2-Iterative process

For simplicity we define

Definition 2.1.1. Denote by C[0, 1] the set of continuous functions on [0, 1].

We define a building block for our procedure.

Definition 2.1.2. Denote K = KA : C[0, 1]→ C[0, 1] the operator such that

K(f)(x) = max
T (y)=x

[A(y) + f(y)]− κf .

Where κf := max
z∈S1

max
T (y)=x

[A(y) + f(y)].

Observe that if f is a fixed point for K, it must be that it is a calibrated
subaction. Unfortunately iteratingK does not necessarily lead to a calibrated
subaction.

Example 2.1.3. Consider A(x) = −(x − 1/3)2 with T (x) = 2xmod 1. Set
F0 = 0 and Fn = Kn(F0) to be the iterations of K. In this case Fn does not
converge, see Figure 2.1.
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Figure 2.1: With A and T as in Example 2.1.3, iterations of K do not seem to
converge. As it can be seen from the figure, F103 ≈ F100, and so the iterations
appear to cycle between 3 functions.

To bypass this issue, we construct an averaging scheme by defining

Definition 2.1.4. Given A : S1 → R, consider the operator
G = GA : C[0, 1]→ C[0, 1] such that, for f : S1 → R,

G(f)(x) =
K(f)(x) + f(x)

2
− cf ,

for any x ∈ S1, where cf := 1
2

max
z∈S1

[K(f)(z) + f(z)].

The 1
2

factor used allows iterations of the operator G to converge as we
will show in the following section. This form of averaging for operators has
been discussed in [15], [14] and [8].

We first choose the initial function f0 := 0 (the constant zero function),
then we compute the iterates fn := Gn(f0). If n is sufficiently large, we then
expect that

fn(x) + 2 · cfn ≈ max
T (y)=x

[A(y) + fn(y)] .

So that iterations of G yield estimates to m(A) ≈ 2 · cfn and the calibrated
subaction V ≈ fn as well. We then define the iterative procedure consisting
of iterating the operator G on the zero function f0 = 0. We will refer to this
procedure as the 1/2-Iterative process or procedure.
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2.2 Convergence of the iterations

We will discuss the convergence properties of the operator G. This first result
shows that K is continuous. We set the sup norm |f |∞ := supx∈[0,1] |f(x)|.

Theorem 2.2.1. The operator K satisfies for f, g ∈ C[0, 1]

|K(f)−K(g)|∞ ≤ 2|f − g|∞ .

Proof. Let f, g ∈ C[0, 1]. We have

K(g)(x) = max
T (y)=x

[A(y)+f(y)+(g−f)(y)]−max
z∈S1

max
T (y)=z

[A(y)+f(y)+(g−f)(y)]

Bounding the terms (g − f) by above we obtain K(g)(x) ≤

≤ max
T (y)=x

[A(y)+f(y)]+max
z

[(g−f)(z)]−max
z∈S1

max
T (y)=x

[A(y)+f(y)]−min
z

[(g−f)(z)]

so that

K(g)(x)−K(f)(x) ≤ max
z

[(g − f)(z)]−min
z

[(g − f)(z)]

and also K(g)(x) ≥

≥ max
T (y)=x

[A(y)+f(y)]+min
z

[(g−f)(z)]−max
z∈S1

max
T (y)=x

[A(y)+f(y)]−max
z

[(g−f)(z)]

Thus
K(g)(x)−K(f)(x) ≤ 2|g − f |∞

Interchanging the roles of f and g we obtain the other inequality, and so

|K(f)−K(g)|∞ ≤ 2|f − g|∞

We can strengthen this result by using another norm on C[0, 1]. To this
end, consider the space of functions

Definition 2.2.2. Define the quotient C = C[0, 1]/R.

In this space, function classes are defined up to addition, with this we
mean that if f − g is constant, then the equivalence class [f ] is equal to [g].
We equip this space with the norm:

14



Definition 2.2.3. Given a function f ∈ C[0, 1], consider its class [f ] ∈ C.
Set |[f ]|C = |f |C = min

α∈R
|f + α|∞

Then C with this norm becomes a Banach space (see [21]).
We state an improvement of the previous setting.

Theorem 2.2.4. Let f, g ∈ C[0, 1]. Then |K(f)−K(g)|C ≤ |f − g|C

Proof. Let f, g ∈ C[0, 1] and d such that

|f − g|C = |f − g + d|∞ .

Consider K(f)(x)−K(g)(x) =

= −κf + max
i

[(A+ f) ◦ τi(x)] + κg −max
i

[(A+ g) ◦ τi(x)] .

We can then obtain

K(f)(x)−K(g)(x)− κf + κg + d =

max
i

[(A+ f − g + g + d) ◦ τi(x)]−max
i

[(A+ g) ◦ τi(x)] . (2.1)

Observe that −|f − g|C ≤ f(y) − g(y) + d ≤ |f − g|C for any y ∈ [0, 1]. By
monotonicity of the supremum we get

− |f − g|C + max
i

[(A+ g) ◦ τi(x)] ≤

max
i

[(A+ g + f − g + d) ◦ τi(x)] ≤ |f − g|C + max
i

[(A+ g) ◦ τi(x)] .

Which is equivalent to

− |f − g|C ≤
max
i

[(A+ g + f − g) ◦ τi(x)]−max
i

[(A+ g) ◦ τi(x)] ≤ |f − g|C ,

thus∣∣∣max
i

[(A+ g + f − g) ◦ τi(x)]−max
i

[(A+ g) ◦ τi(x)]
∣∣∣ ≤ |f − g|C . (2.2)

We assumed |f − g + d|∞ = |f − g|C. Therefore, using (2.1) and (2.2)

|K(f)−K(g) + κf − κg + d|∞ ≤ |f − g|C

15



Recall that

|K(f)−K(g)|C =

min
k∈R
|K(f)−K(g) + k|∞ ≤ |K(f)−K(g) + (κf − κg + d)| ≤ |f − g|C .

(2.3)

This means |K(f)−K(g)|C ≤ |f − g|C as we wanted to show.

Theorem 2.2.5 shows that K acting on C is a weak contraction. It is not
a strong contraction - even in the case the subaction is unique - as it was
shown in [10]. One can also show that if Ck is the set of Lipschitz functions
of same constant k, then K(Ck) ⊆ Ck is compact in C, see [10] Theorem 11.
We then borrow results from Theorem 1 in [15] to obtain:

Theorem 2.2.5. Let A ∈ C[0, 1] be a given Lipschitz or Hölder function.
Given f0 ∈ C[0, 1] we have lim

n→∞
Gn(f0) = V , where V is a subaction.

We restrict ourselves to Lipschitz (or Hölder potentials). This is because
for a generic continuous potential there might be no subaction.

In the case the maximizing probability is unique, the subaction is unique
up to adding a constant. Then, there is a unique class in C representing
a subaction. In this case, independent of the initial condition, the iterative
process will converge to such class (which represents a subaction). In the case
there exist more than one subaction, given an initial condition, according to
Theorem 2.2.5 the iterative process will converge to a subaction, but the
limit can depend on the initial condition (see Section 3.9)

For such iterative methods, we can wonder if there exists an exponential
convergence rate of convergence. Even though the iterations Gn converge
to the desired solution, there are situations where there is no exponential
convergence rate. For practical results, we noticed that the method works
fine in almost all cases. In our experimental results, we achieved good results
with at least 30 iterations.

We will not focus on guaranteeing numerical estimates for the approxi-
mate solutions. Instead, we choose to construct the explicit solution from
the numerical results. This is possible in many cases as we will see in the
following chapter.

Counter example: G may not be a strong contraction (by a factor
smaller than 1). We will present an example where f0, g0 ∈ C but |G(f0) −
G(g0)| = 1/2 = |f0 − g0|.
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Consider the potential A with the graph given by Figure 2.2. This po-
tential is linear by parts and has the value 0 on the points 1/8, 1/4, 3/4, 7/8.
The value −1 is attained at the points 0, 3/16, 1/2, 13/16, 1.

Denote g0 = 0 and f0 = A. Then, |f0 − g0| = |f0 − g0 + 1/2|0 = 1/2.
We denote f1 = G(f0) and g1 = G(g0). The graph of the function x →
|f1(x)− g1(x) + 0.5| is described by the bottom rigth picture on Figure 2.2.
One can show that |f1 − g1| = |f1 − g1 + 1/2|0 = 1/2. Therefore, for such
potential A the transformation G is not a strong contraction.

♦
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Figure 2.2: On the top: from left to right the graph of A = f0, the graph
of x → |(f0(x) − 0) + 0.5|, the graph of f1 = G(f0). On the bottom: from
left to right the graph of g1 = G(0) = G(g0) and the graph of x → |f1(x)−
g1(x) + 0.5|. Therefore, G is not a strong contraction because |f0 − g0| =
1/2 = |f1 − g1| = |G(f0)−G(g0)|.
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Chapter 3

Extracting explicit solutions
from the approximations

In this chapter, we introduce heuristical procedures to obtain explicit solu-
tions to the subaction equation

max
T (y)=x

[A(y) + V (y)] = V (x) +m(A) . (3.1)

We will be relying on an important fact from [2] : given A and V , if for
some constant c

V (x) = max
T (y)=x

[A(y) + V (y)− c], (3.2)

then V is a calibrated subaction and c = m(A). In the figures we will be
presenting our numerically approximated subaction is denoted by Ṽ in each
example (in order in order not to confuse with the exact one V ).

3.1 The case A(x) = −(x− 1
3)

2

Consider the potential A(x) = −(x − 1
3
)2. We will present the explicit ex-

pression for V in this case (which was not known before). Later we compare
the explicit expression with the graph we get via the 1/2-procedure.

We consider in this subsection that T (x) = 2x (mod 1) acts on [0, 1].
Consider also the inverse branches of T given by τ1(x) = x

2
and τ2(x) = x+1

2
.

For the reader familiar with the subject, it is known from [17] that the
maximizing probability in this case is Sturmian. Notice that we are in fact
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computing V such that

V (x) = max
i=1,2

[A ◦ τi(x) + V ◦ τi(x)−m(A)] (3.3)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.05

0.04

0.03

0.02

0.01

0.00

0.01
t1
t2

Figure 3.1: Case A(x) = −(x − 1
3
)2 - The blue (dashed) graph describes

the values of the approximation of the calibrated subaction V where the 1/2
iterative procedure shows that the maximizing branch was τ2, by this we
mean that Equation 3.3 is satisfied by τ2 in the blue part of the graph. The
orange (straight) graph describes the values of the approximation of V where
the 1/2 iterative procedure shows that the maximizing branch was τ1. The
graph for the approximation of V is the supremum of the two curves. We
iterate 15 times G obtain this graph.

By looking at Figure 3.1 which we get from the 1/2 iterative procedure,
it is natural to assume the existence of V1, V2, V3, V4, such that

V1(x) +m(A) = V3 ◦ τ2(x) +A ◦ τ2(x), V2(x) +m(A) = V1 ◦ τ1(x) +A ◦ τ1(x),

V3(x) +m(A) = V2 ◦ τ1(x) +A ◦ τ1(x) , V4(x) +m(A) = V3 ◦ τ1(x) +A ◦ τ1(x).
(3.4)

The idea is, for each of the Vi observe which τj seems to yield the maximum
in the expression Vj(x) = max

i∈{1,2}
[A ◦ τi(x) + V ◦ τi(x)−m(A)].

19



As A is a polynomial of degree two is natural to try to express V on the
form V (x) = sup{Vi(x), i = 1, 2, 3, 4 } = sup{ ai+bix+cix

2, i = 1, 2, 3, 4 } for
some choices of ai, bi, ci, i = 1, 2, 3, 4. Assuming each Vi(x) = ai + bix+ cix

2

we can convert the four equations (3.4) in a linear system that can be easily
solved. From this procedure, we get m(A) = −2/63.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.05

0.04

0.03

0.02

0.01

0.00

0.01

(x)
V1(x)
V2(x)
V3(x)
V4(x)

Figure 3.2: Case A(x) = −(x− 1
3
)2 - In blue (dashed) we present the graph

of the approximation of the calibrated subaction V via the 1/2 iterative
procedure. The picture also show the graphs of the different Vj, j = 1, 2, 3, 4.

The function V1 is a continuation of V4 when we look these functions Vj as
defined on S1 (periodic). Let us recall thatm(A) := sup

ρ T -invariant probability

∫
Adρ

Equation (3.4) suggests that the maximizing probability has support on
an orbit of period three (Note that iterating T on 1/7 yields period 3).

Note that A(1/7)+A(2/7)+A(4/7)
3

= −2/63. This means that the maximizing
probability is given by µ = 1

3
(δ1/7 + δ2/7 + δ4/7), where δx is the Dirac delta

at x.
Moreover, we obtain V1(x) = 10

63
− 2x

21
− x2

3
, V2(x) = 5

63
+ 2x

7
− x2

3
, V3(x) =

10x
21
− x2

3
, and V4(x) = − 5

63
+ 4x

7
− x2

3
. A tedious computation confirms that

the V we obtained from V (x) = sup{V1(x), V2(x), V3(x), V4(x)}, is really
the calibrated subaction (with maximum value zero) for such A (this can
be done by directly checking that V satisfies Eq. 3.1 ). In Figure 3.2 we
compare the graph of the approximated calibrated subaction obtained from
the 1/2 iterative procedure (in red) and the exact analytic expression for V
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we obtained above (in blue). We have a perfect match. With 15 iterations
of the 1/2 iterative procedure, we get a good approximation of V (which was
analytically obtained above).

3.2 A procedure to obtain piecewise analytic

expressions

In some examples we have to proceed in a different way from the previous
one. The general idea is that from observing the numerical approximation
of V , we detect it has the form V (x) = max{V1(x), ..., Vr(x)} where each Vi
is analytical. We then determine which τi maximizes which Vj, obtaining a
system of equations. We then can perform substitutions within this system
to obtain the explicit form of one of the Vj. We will look for a way to express
such initial Vj via the relation

Vj(x)− Vj(η(x)) = F (x)−K, (3.5)

where F and η are known functions and K = N m(A), where N is the period
of the maximizing orbit, j = 1, 2, ..., N . The function F will be chosen
according to convenience in each example. The value K is a fixed variable on
the process of trying to find the calibrated subaction. We use the notation
m̂(A) = K

N
to express the fact that we do not know beforehand the exact

value m(A) and in the end we will show that m(A) = m̂(A). We assume
η : [0, 1]→ [0, 1] is such that

ηn := η ◦ η ◦ ... ◦ η︸ ︷︷ ︸
n−times

satisfies lim
n→∞

ηn(x) = q for some fixed point q ∈ [0, 1]. This indeed will

happen in some of the examples we will consider. Note that (3.5) implies

Vj ◦ η(x)− Vj ◦ η2(x) = F ◦ η(x)−K. (3.6)

If q is fixed by η we get F (q) = K. Therefore, adding (3.5) and (3.6) we get

Vj(x)− Vj ◦ η2(x) = F (x) + F ◦ η(x)− 2K. (3.7)

We can go on and inductively, obtaining for each n in N,

Vj(x)− Vj ◦ ηn(x) =
n−1∑
i=0

[
F ◦ ηi(x)− K

]
. (3.8)
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If Vj is continuous we get lim
n→∞

Vj ◦ηn(x) = Vj(q). Using the notation η0(x) =

x we obtain finally a series (which should be the expression of this Vj we are
looking for)

Vj(x) = lim
n→∞

n−1∑
i=0

[
F ◦ ηi(x)−K

]
− Vj(q). (3.9)

We can consider the truncated approximation

V n∗
j (x) =

n−1∑
i=0

[F ◦ ηi(x)− K]− Vj(q). (3.10)

Since calibrated subactions added by a constant value are still calibrated
subactions, we can assume that V (q) = 0. In this way the initial Vj should
be given by

Vj(x) = lim
n→∞

V n∗
j (x) = lim

n→∞

n−1∑
i=0

(F◦ηi(x)−nK) =
∞∑
i=0

(F◦ηi(x)−K), (3.11)

Then, by knowing the expression for a single Vj we are able to obtain the
appropriate expression for the other branches Vi. All of this is dependent of
smart choices for F and η. In each example we have to show that the above
limits Vj, j = 1, 2, ..., r, indeed exist. Moreover, we have to show that

V (x) = sup{V1(x), V2(x), V3(x), ..., Vr(x)}, (3.12)

solves the the subaction equation for A. When F is analytic (if A is analytic
this will be the case in most of our examples) the expression (3.11) will
provide an analytic expression for Vj, j = 1, 2..., r. In this case V will be
piecewise analytic. More than that, in most of the cases, there is an analytic
dependence of F on the analytic potential A (see Remark 3.2.1). Under
appropriate conditions (on absolutely convergence, etc.) this will provide an
analytic dependence of the calibrated subaction V (x) for A, in each point
x, on the potential A. In the computational procedure to be followed for
getting such Vj one does not know in advance the value m(A). When F
has Lipschitz constant equal M we get the estimate |F ◦ ηi(x) − F (q)| ≤
M |ηi(x) − q|. In some of the examples we will get uniform convergence
because

∑+∞
i=0 M |ηi(x) − q| is uniformly bounded. In this way the series

defining Vj converges uniformly. We will follow the above reasoning in several
examples to be presented next.
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Remark 3.2.1. We point out that if we were considering another potential
A close to sin2(2 π x), then, the reasoning we are going to consider below
would apply similarly. Note that F depends nicely on A. In this case (3.11)
provides an analytical dependence of V on the nearby potential A.

3.3 The case A(x) = sin2(2πx)

Consider the periodic function A(x) = sin2(2πx), T (x) = 2 xmod(1), τ1(x) =
x
2
, τ2(x) = x+1

2
. According to page 23 in [7] the maximizing probability µ has

support on the periodic orbit of period 2 (the points 1/3 and 2/3). Therefore,
we know beforehand that m(A) = 1

2
(A(1/3) + A(2/3)) ≈ 0.75.

3.3.1 Overview

In the graphs presented in Figure 3.3 - which were obtained from the 1/2-
procedure we call V2 (blue color) the function we get when the maximizer is
τ2 and V1 (orange color) the function we get when the maximizer is τ1. The
numerical result we get from the iterative procedure shows the evidence (see
Figure 3.3) that the calibrated subaction V should satisfy

V (x) = sup {V1(x), V2(x) }. (3.13)

We will present an analytic expression for V2. We will show that

V2(x) =
+∞∑
i=0

[
sin2

(
π

(
2

3
+

(
−1

2

)i
(x− 2/3)

))
− sin2(2π/3)

]
.

and

V1(x) =
+∞∑
i=0

[
sin2

(
π

(
2

3
−
(
−1

2

)i
(1/3− x)

))
− sin2(2π/3)

]
.

This will finally produce from (3.13) the explicit expression for the subaction
V for such A. It is instructive to explain step by step our reasoning. The
procedure can be applied to other examples. By observing figure 3.4 we
assume that

V2(x) + m̂(A) = V1(τ1(x)) + A(τ1(x)), (3.14)
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Figure 3.3: Case sin2 (2πx) - From the 1/2 iterative procedure taking G20(0)
we get that the approximated subaction V is given by the supremum of the
two functions in orange and in blue (dashed). The graph in blue describe
the values where the calibrated subaction equation is maximized by τ2. The
graph in orange describes the values where the calibrated subaction equation
is maximized by τ1.

and, also
V1(x) + m̂(A) = V2(τ2(x)) + A(τ2(x)). (3.15)

Therefore composing (3.15) with τ1(x) and substituting in (3.14)

V2(x)− V2
(
x

4
+

1

2

)
= A

(x
2

)
+ A

(
x

4
+

1

2

)
− 2 m̂(A). (3.16)

Taking η(x) = x
4
+1

2
andK = 2m̂(A), note that if x ∈ [0, 1], then lim

n→+∞
ηn(x) =

2/3. Define F (x) = A(x
2
) + A(x

4
+ 1

2
), then, by (3.10) lim

n→+∞
F (ηn(x)) =

F (2/3) = A(1/3) + A(2/3) = 2m̂(A). We point out that in the present case
we already know from [7] that the above m̂(A) = m(A). Note that F (x) =
sin2(πx) + sin2(πx/2) is analytic. The 1/2 iterative procedure produces the
numerical approximation m(A) ≈ 0.75. We assume that V (2/3) = 0. Now
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Figure 3.4: Case sin2 (2πx) - The graph in blue (dashed) shows the numerical
approximation of the subaction V by G30(0) with a discretization of 2000
points of the form n

2000
. In green and orange we show the graph of V 10∗

1 (x)
and V 10∗

2 (x) (which approximate V1 e V2) according to (3.17).

we will express V2 - using (3.11) - up to adding a constant via truncation

V n∗
2 (x) =

n−1∑
i=0

[F ◦ ηi(x)− 2m(A) ]. (3.17)

From (3.14), (3.15) and (3.16) we obtain V1(x) = V2(1−x) (this is expected,
since if A(x) = A(1−x) then the same holds for the calibrated subaction, as
shown in [11]). It will be shown in the next subsection that V1(x) = V2(1−x)
holds. We then define V n∗

1 (x) := V n∗
2 (1−x). Figure 3.4 shows that for small

values of n one can get a good approximation of the subaction via V n∗
2 (x),

x ∈ [0, 1].

Proposition 3.3.1. lim
n→+∞

V n∗
2 (x), n ∈ N, given by (3.17), converges uni-

formly.

Proof. We get 2m̂(A) = sin2(2π/3) + sin2(π/3) and

|F◦ηi(x)−2m̂(A)| =
∣∣(sin2(ηi(x)π)− sin2(2π/3)) + (sin2(ηi(x)π/2)− sin2(π/3))

∣∣
≤ | sin2(ηi(x)π)− sin2(2π/3)|+ | sin2(ηi(x)π/2)− sin2(π/3)|.
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Moreover,

ηi(x) = 2/3

(
1−

(
1

4

)i)
+
x

4i
,

which means ηi(x) − 2/3 = 1
4i

(x− 2/3) . We have that sin2 is Lipschitz in
[0, 1] for some constant K. Therefore, | sin2(x)− sin2(y)| ≤ K|x− y|. Then,

| sin2(ηi(x)π)− sin2(2π/3)| ≤ |ηi(x)π − 2π/3| = Kπ

4i
|x− 2/3|

and | sin2(ηi(x)π/2)− sin2(π/3)| ≤ |ηi(x)π−π/3| ≤ Kπ
2

1
4i
|x−2/3|. From this

|
+∞∑
i=0

(F ◦ ηi(x)− 2m̂(A))| ≤
+∞∑
i=0

|F ◦ ηi(x)− 2m̂(A)|

≤
+∞∑
i=0

(
Kπ

4i
|x− 2/3|+ Kπ

2

1

4i
|x− 2/3|

)
≤ Kπ

+∞∑
i=0

1

4i
< +∞.

Denote δ(x) = 1− x/2. It is possible to get from the system (3.16) that
V1(x) = V2(1 − x) and V2(x) + m(A) = V1(x/2) + A(x/2) we then obtain
V2(x) +m(A) = V2(1−x/2) +A(x/2). As m(A) = A(2/3) and lim

n→+∞
δn(x) =

2/3, for x ∈ [0, 1] we obtain

V2(x)− V2(δ(x)) = A(x/2)− A(2/3) .

From this we get V2(x)−V2(2/3) =
∑+∞

i=0 (A(δi(x)/2)− A(2/3)). As V2(2/3) =
0, it follows that V2(x) =

∑+∞
i=0 (A(δi(x)/2)− A(2/3)). Finally, as δn(x +

2/3) = 2
3

+
(
−1

2

)n
x , we obtain the expression

V2(x) =
+∞∑
i=0

[
sin2

(
π

(
2

3
+

(
−1

2

)i
(x− 2/3)

))
− sin2(2π/3)

]
. (3.18)

The corresponding expression for V1 can be obtained from the equality V1(x) =
V2(1−x).We will show in the next subsection that V (x) = sup {V1(x), V2(x) }
is a calibrated subaction for A. Moreover, we will present a power series ex-
pansion around 2/3 for V2:

V2(x) =
sin(4π/3)

2

+∞∑
k=0

(−1)k(2π
(
x− 2

3

)
)2k+1

(2k + 1)!

22k+1

22k+1 + 1
−
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Figure 3.5: case sin2(2πx) - The graph of R using the approximation of the
calibrated subaction. The orbit of period 2 is inside the set R = 0.

cos(4π/3)

2

+∞∑
k=1

(−1)k(2π
(
x− 2

3

)
)2k

(2k)!

22k

22k − 1
. (3.19)

As V1(x) = V2(1 − x) a similar result can be derived for V1 (which can
be expressed in power series around 1/3). In Figure 3.5 we plot the graph
of R we get via the 1/2 iterative procedure. In Figure 3.6 we compare the
obtained power series for V1 and V2 with the numerical approximation of V .

3.3.2 Computing the subaction

We want to show that V (x) = sup {V1(x), V2(x) } is a calibrated subaction
for A.

Lemma 3.3.2. If V2(x) = lim
n→+∞

V n∗
2 (x), then V2(x) =

N∑
i=0

(
F ◦ ηi(x)− 2m̂(A)

)
+

εN(x), where |εN(x)| ≤ 2π
∑+∞

i=N
1
4i

= 2π
3·4N−1 ≤ 2

3·4N−2 .

Proof. We just have to use that sin2 has Lipchitz constant 2 in (3.18).
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Figure 3.6: Case sin2 (2πx) - The graph in blue (dashed) shows the numerical
approximation of the subaction V by G30(0) with a discretization of 2000
points of the form n

2000
. In green and orange we plot the power series obtained

for V1 and V2 truncated at the 10th term

We want to show that V2 := limV ∗n2 indeed satisfies (3.16). It is important
to show this because once we define V2 as this limit, we cannot guarantee it
still satisfies (3.16).

Lemma 3.3.3. If V2(x) = lim
n→+∞

V n∗
2 (x), then

V2(x) = V2(η(x)) + A
(x

2

)
+ A

(
x

4
+

1

2

)
− 2 m̂(A).

Proof. DenoteH(x) = A
(
x
2

)
+A

(
x
4

+ 1
2

)
−2 m̂(A). Then, V2(x) =

+∞∑
i=0

H(ηi(x))

and V2(η(x)) =
∑+∞

i=1 H(ηi(x)). Therefore, V2(η(x)) =
∑+∞

i=0 (H(ηi(x)) −
H(x). From this follows V2(η(x)) = V2(x) − H(x), and, finally V2(x) =
V2(η(x)) + A(x

2
) + A(x

4
+ 1

2
)− 2m̂(A).

Next we want to construct the V1 which satisfies (3.15) and (3.14).

Lemma 3.3.4. If V2(x) = lim
n→+∞

V n∗
2 (x) and m̂(A) = A(1/3)+A(2/3)

2
, then the

function V1(x) = V2((x + 1)/2) + A((x + 1)/2) − m̂(A) satisfies V1(x/2) +
A(x/2) = V2(x) + m̂(A).
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Proof. From the relation between V1 and V2 we have V2((x+ 1)/2) +A((x+
1)/2) = V1(x) + m̂(A). Taking composition with τ1(x) = x/2 we get

V1(x/2) + A(x/2) = V2(x/4 + 1/2) + A(x/4 + 1/2) + A(x/2)− m̂(A)

= V2(η(x)) + A(x/2) + A(x/4 + 1/2)− m̂(A). (3.20)

From Lemma 3.3.3 we obtain V2(η(x))−V2(x) = 2m̂(A)−(A(x/2)+A(x/4+
1/2)), therefore, adding and subtrating V2(x) in (3.20) we have

V1(x/2)+A(x/2) = V2(η(x))−V2(x)+V2(x)+A(x/2)+A(x/4+1/2)−m̂(A)

= 2m̂(A)−(A(x/2)+A(x/4+1/2))+V2(x)+A(x/2)+A(x/4+1/2)−m̂(A).

Finally, V1(x/2) + A(x/2) = V2(x) + m̂(A).

Now we can show the simmetry result for V1.

Lemma 3.3.5. Defining V2(x) = lim
n→+∞

V n∗
2 (x) and V1(x) := V2((x+ 1)/2) +

A((x+ 1)/2)− m̂(A). We have the simmetry V1(x) = V2(1− x).

Proof. By Lemma 3.3.4 V1(x) − V1((x + 1)/4) = A((x + 1)/4) + A(x/2) −
2m̂(A) . Observe that

V1(x)− V1((x+ 1)/4) = sin2(πx) + sin2(πx/2 + π/2)− 2m̂(A)

= sin2(πx) + sin2(πx/2 + π/2)− 2m̂(A)

= sin2(π(1− x)) + sin2(π(1− x)/2)− 2m̂(A) = F (1− x)− 2m̂(A) (3.21)

Defining l(x) = (x + 1)/4, it can be seen that 1 − l(x) = η(1 − x) and
therefore V1(x) − V1(l(x)) = F (1 − l(x)) − 2m̂(A) = F (η(1 − x)) − 2m̂(A) ,
so that for natural n, V1(x) − V1 ◦ ln(x) = V n∗

2 (1 − x). From l(1/3) = 1/3,
we obtain limn→∞ l

n(x) = 1/3 for x ∈ [0, 1], and so

V1(x)− V1(1/3) = lim
n→+∞

V ∗n2 (1− x)

By Lemma 3.3.4 V1(1/3) = V2(2/3)+m̂(A)−A(1/3). But m̂(A)−A(1/3) = 0
and V2(2/3) = 0. Then V1(1/3) = 0 and finally V1(x) = limn→∞ V

∗n
2 (1−x) =

V2(1− x).

We need some differentiability results for V1 e V2.
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Proposition 3.3.6. V2(x) is differentiable in [0, 1] and V ′2(x) =∑+∞
i=0 2π(ηi)′(x)

(
sin (πηi(x)) cos(πηi(x)) + 1

2
sin
(
πηi(x)

2

)
cos
(
πηi(x)

2

))
.

Differentiability follows from uniform convergence.

From this proposition we get

V ′2(x) =
∑+∞

i=0 2π 1
4i

(
sin (πηi(x)) cos(πηi(x)) + 1

2
sin
(
πηi(x)

2

)
cos
(
πηi(x)

2

))
.

Lemma 3.3.7. V ′2(x) = ϕN(x) + ξN(x), where |ξN(x)| ≤ 3π
∑+∞

i=N |
1
4i
| =

π
4N−1 ,

ϕN(x) =
N∑
i=0

2π
1

4i

(
sin
(
πηi(x)

)
cos(πηi(x)) +

1

2
sin

(
πηi(x)

2

)
cos

(
πηi(x)

2

))

=
N∑
i=0

2π
1

4i

(
1

2
sin
(
2πηi(x)

)
+

1

4
sin
(
πηi(x)

))
. (3.22)

We leave the proof for the reader.

IE denotes the indicator function of the interval E.

Theorem 3.3.8. Taking V2(x) = lim
n→+∞

V n∗
2 (x) and V1(x) = V2((x+ 1)/2) +

A((x+ 1)/2)− m̂(A), we get that V (x) = V1(x)I[0,1/2)(x) +V2(x)I[1/2,1](x). is

a calibrated subaction for A, when m̂(A) = A(1/3)+A(2/3)
2

= m(A).

Proof. We have to show that maxT (y)=x[A(y) + V (y)] = max{V1(x/2) +
A(x/2), V2((x+ 1)/2) +A((x+ 1)/2)}. As V1(u/2) +A(u/2) = V2(u) + m̂(A),
and, V1(x) = V2(1− x), then, we have to show that

max
T (y)=x

[A(y) + V (y)] = max{V2(x) + m̂(A), V2(1− x) + m̂(A)} (3.23)

We will show first that if u ∈ [0, 1/2], then

V2(u) + m̂(A) ≤ V2(1− u) + m̂(A) = V1(u) + m̂(A).

Denote γ(u) = V2(u)− V2(1− u). By Lemma 3.3.7 we get

γ′(u) = V ′2(u) + V ′2(1− u) = ϕN(1− u) + ϕN(u) + (ξN(1− u) + ξ(u))
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≥ ϕN(1− u) + ϕN(u)− 2
π

4N−1
.

Taking N = 4 it is possible to see that if u ∈ [0.1, 0.9] then γ′(u) > 0.
The function γ is monotone increasing from 0.1 to 0.9 and γ(1/2) = 0.
Then γ is negative on the interval [0.1, 0.5]. A similar argument can also
handle the case x ∈ [0, 0.1]. We use Lemma 3.3.2, the fact that γ(u) =
V2(u) − V2(1 − u) and the control of the error |εN(x)|. Then, finally we get
that γ is also negative in [0, 0.1] and is positive for x ∈ [0.9, 1]. From the
above we get maxT (y)=u[A(y) + V (y)] = V2(1 − u) + m̂(A), u ∈ [0, 1/2]
and maxT (y)=u[A(y) + V (y)] = V2(u) + m̂(A), u ∈ [0, 1/2]. Therefore, for
all x ∈ [0, 1] we get maxT (y)=x[A(y) + V (y)] = V (x) + m̂(A) Then, V is a
calibrated subaction.

3.3.3 Expressing V as piecewise power series

Now we will express V2 in power series. Our final result will be given by
expression (3.28). Using the property sin2(x) = 1−cos(2πx)

2
, and trigonometric

properties for the sum of angles we get from (3.18)

V2(x+ 2/3) =
1

2

+∞∑
i=0

[
sin

(
4π

3

)
sin

(
2π

(
−1

2

)i
x

)

− cos

(
4π

3

) [
cos

(
2π

(
−1

2

)i
x

)
− 1

]]
. (3.24)

Now, define

P (x) =
sin(4π/3)

2

+∞∑
i=0

( sin(2π(−1/2)ix) − sin(0) )

and

Q(x) =
− cos(4π/3)

2

+∞∑
i=0

( cos(2π(−1/2)i x − cos(0) ).

We will express later V2 as V2(x) = Q(x− 2/3) + P (x− 2/3).

Lemma 3.3.9. P and Q are uniformly convergent in each interval [−a, a].

31



Proof. As the function sin is Lipschitz, then, there is a constant C, such that,

| sin(x)− sin(y)| ≤ C|x− y| ≤ 2aC,

and
∑+∞

i=0

∣∣∣sin(2π
(
−1

2

)i
x
)∣∣∣ ≤∑+∞

i=0 2 aC
∣∣∣2π (−1

2

)i∣∣∣ ≤ +∞. For Q we use

an analogous argument.

As cos(x) =
∑+∞

k=0
(−1)kx2k

(2k)!
one can write Q as

Q(x) =
− cos(4π/3)

2

+∞∑
k=1

+∞∑
i=0

(
(−1)k(2πx)2k

22ik(2k)!

)
. (3.25)

Finally, we get Q(x) = − cos(4π/3)
2

∑+∞
k=1

(−1)k(2πx)2k
(2k)!

22k

22k−1 if we exchange the

order of summation in (3.25). Proceeding in analogous way we get P (x) =
sin(4π/3)

2

∑+∞
k=0

(−1)k(2πx)2k+1

(2k+1)!
22k+1

22k+1+1
. We need, however, to guarantee we can

change the summation order. To show this we will use

Theorem 3.3.10. Let f(i, k) be a double sequence. Assume that
∑+∞

k=1 |f(i, k)|
converges for each fixed i and that

∑+∞
i=1

∑+∞
k=1 |f(i, k)| converges. Then

+∞∑
k=1

+∞∑
i=1

f(i, k) =
+∞∑
i=1

+∞∑
k=1

f(i, k)

A proof of this theorem can be found in [1] in page 373.

Proposition 3.3.11. For a fixed 0 < ε < 1, if x ∈ [−1 + ε, 1 − ε], we can
exchange the order in the sum of (3.25) to obtain

Q(x) =
− cos(4π/3)

2

+∞∑
k=1

(−1)k(2πx)2k

(2k)!

22k

22k − 1
.

Proof. Note that if |x| < 1 there exists a constant M (the coefficients on the
power series of cos are decreasing) such that∣∣∣∣∣

+∞∑
k=1

(−1)k(2πx)2k

22ik(2k)!

∣∣∣∣∣ ≤
+∞∑
k=1

∣∣∣∣ (2πx)2k

22ik(2k)!

∣∣∣∣ ≤ 1

2i

+∞∑
k=1

(
Mx2k

)
=

M

2i

(
x2

1− x2

)
≤ M

2i

(
|1− ε|2

1− |1− ε|2

)
.
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We can exchange the order on the double sum: ∀x ∈ [−1 + ε, 1− ε],

+∞∑
i=0

+∞∑
k=1

∣∣∣∣(−1)k(2πx)2k

22ik(2k)!

∣∣∣∣ ≤ +∞∑
i=0

M

2i

(
x2

1− x2

)
≤ 2M

(
|1− ε|2

1− |1− ε|2

)
< +∞.

Note that (x− 2/3) ∈ [−2/3, 1/3]. Then,

Q(x− 2/3) =
− cos(4π/3)

2

+∞∑
k=1

(−1)k(2π(x− 2/3))2k

(2k)!

22k

22k − 1
. (3.26)

In the same way we get

P (x− 2/3) =
sin(4π/3)

2

+∞∑
k=0

(−1)k(2π(x− 2/3))2k+1

(2k + 1)!

22k+1

22k+1 + 1
. (3.27)

As V2(x + 2/3) = P (x) + Q(x), then, V2(x) = Q(x− 2/3) + P (x− 2/3).
Finally, from (3.26) and (3.27) the power series expression of V2 around 2/3
is given by

V2(x) =
sin(4π/3)

2

+∞∑
k=0

(−1)k(2π
(
x− 2

3

)
)2k+1

(2k + 1)!

22k+1

22k+1 + 1

−cos(4π/3)

2

+∞∑
k=1

(−1)k(2π
(
x− 2

3

)
)2k

(2k)!

22k

22k − 1
(3.28)

We can express the power series of V1 around 1/3 from V1(x) = V2(1−x).

3.4 The case A(x) = sin(2πx)

Now we consider the potential A(x) = sin(2πx) and that T (x) = 2x (mod
1) acts on [0, 1]. Consider also the inverse branches of T given by τ1(x) = x

2

and τ2(x) = x+1
2

. In page 23 in [7] the authors conjectured that in this case
the maximizing probability has support on the periodic orbit of period 4
given by {1/15, 2/15, 4/15, 8/15}. The graph for the subaction V we obtain
from the 1/2 iterative procedure for such A is presented in Figure 3.7. Note
that in the present case we do not know the value m(A) beforhand. In
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Figure 3.7: Case sin(2πx) - In blue we show the graph of the subaction we get
from the 1/2 iterative procedure when the calibrated subaction equation is
maximized by the branch τ1. In orange when it is maximized by the branch
τ2. The graph of the approximation of the calibrated subaction V is the
supremum of the blue and orange graphs.

[7] the authors conjectured that m(A) = A(1/15)+A(2/15)+A(4/15)+A(8/15)
4

. It is
possible to show that the conjecture is true. In order to do the computations
we consider the [0, 1] point of view. From the graph we obtained via the
1/2-procedure it is natural to try to obtain V via the expression V (x) =
sup{V1(x), V2(x), V3(x), V4(x), V5(x)}. Examining the Figure 3.7 we propose
the following relations

V5(x) + m̂(A) = V4(τ1(x)) +A(τ1(x)), V4(x) + m̂(A) = V3(τ1(x)) +A(τ1(x)),

V3(x) + m̂(A) = V2(τ1(x)) + A(τ1(x)), V2(x) + m̂(A) = V1(τ1(x) + A(τ1(x)),

and V1(x) + m̂(A) = V4(τ2(x)) + A(τ2(x)).

The analysis of this case is similar to the previous one. We will just
outline the proof. In order to simplify the analytic expressions on this section
(that depends on adding constants) we will write an expression Vj(x) =
limn→∞

∑n−1
i=0 (F ◦ ηi(x)− K) =

∑∞
i=0(F ◦ ηi(x)− K).
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With the explicit expression for V1, from the system above we can also
obtain the explicit expressions for V2, V3, V4 and V5. It will be shown that

V1(x) =
+∞∑
m=0

3∑
j=0

[
sin

(
π

2(j+4m)

(
24(m+1) − 1

24 − 1
+ x

))
− sin

(
2π

2m

15

)]
.

(3.29)
Assuming that the above relations among the Vj are true we get

V1(x)−V ◦τ 31 ◦τ2(x) = A◦τ 31 ◦τ2(x)+A◦τ 21 ◦τ2(x)+A◦τ1◦τ2(x)+A◦τ2(x)−4m̂(A).

Now, we take η(x) = τ 31 ◦ τ2(x), and F (x) = A ◦ τ 31 ◦ τ2(x) +A ◦ τ 21 ◦ τ2(x) +
A ◦ τ1 ◦ τ2(x) + A ◦ τ2(x), with K = 4 m̂(A). Then, we get η(x) = x

24
+ 1

24
.

Note that if x ∈ [0, 1], then lim
n→+∞

ηn(x) =
1

15
. In this way we get nu-

merical evidence that m̂(A) = lim
n→+∞

F (ηn(x))

4
=
F (1/15)

4
≈ 0.4841. This

is consistent with the value m(A) = A(1/15)+A(2/15)+A(4/15)+A(8/15)
4

≈ 0.4841.

Using the truncated expression we get V n∗
1 (x) =

∑n−1
i=0 [F (ηi(x))−K]. Ap-

plying the above reasoning in a recursive way we obtain an expression for

V1(x) =
+∞∑
i=0

[
A

(
ηi(x) + 1

24

)
+ A

(
ηi(x) + 1

23

)
+ A

(
ηi(x) + 1

22

)
+ A

(
ηi(x) + 1

2

)
− 4m̂(A)

]
. (3.30)

From this follows (3.29). The function V2 can be obtained from V1. The
function V3 from V2 and so on. One can show that

V (x) = sup{V1(x), V2(x), V3(x), V4(x), V5(x)}

is a calibrated subaction for A and that m̂(A) = m(A).

3.5 Revisiting the case A(x) = −(x− 1
3)

2

Recall that we obtained the expressions for the subaction for A through a
linear system, by simply guessing what should be the general expression for
each Vj. For reference, we obtained the system of equations

V1(x) +m(A) = V3 ◦ τ2(x) +A ◦ τ2(x), V2(x) +m(A) = V1 ◦ τ1(x) +A ◦ τ1(x),
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V3(x) +m(A) = V2 ◦ τ1(x) +A ◦ τ1(x) , V4(x) +m(A) = V3 ◦ τ1(x) +A ◦ τ1(x).
(3.31)

It is possible to obtain the same solution by using the procedure outlined
in Section 3.2. We can proceed in the same way as in the last examples by
chossing a function F and obtaining the power series for the case A(x) =
−(x− 1

3
)2. Taking F (x) = −21

64
(x+ 1/9)2 + 4/189, and η(x) = τ1 ◦ τ1 ◦ τ2(x),

we will get

limn→+∞ V
n∗
1 (x) = −21

64

∑+∞
i=0

(
(ηi(x) + 1/9)

2 − 256/3969
)
.

One can show that ηi(x+ 1/7) =
1

7
+
x

8i
. Therefore,

V1(x+ 1/7) = lim
n→+∞

V n∗
1 (x+ 1/7) =

−21

64

+∞∑
i=0

((
16

63
+
x

8i

)2

− 256

3969

)
.

(3.32)
After simplification and canceling terms we get V1(x) = −x2

3
− 2x

21
+ 1/49,

which shows the same form (up to an additive constant) of the V1 we obtained
before on section 3.1.

3.6 Estimation of the joint spectral radius

In the class of examples we consider in the present section, there is no map
acting on [0, 1] but there are two naturally defined inverse branches (an it-
erated function system). The 1/2 iterative procedure will produce useful
information.

Consider

A1 =

(
a1 b1
c1 d1

)
A2 =

(
a2 b2
c2 d2

)
,

with

τ1(x) =
(a1 − b1)x+ b1

(a1 + c1 − d1 − b1)x+ b1 + d1

and

τ2(x) =
(a2 − b2)x+ b2

(a2 + c2 − d2 − b2)x+ b2 + d2
.

Take I1 = τ1([0, 1]), I2 = τ2([0, 1]) and define the potential

A(x) =

{
1/2 (log |(τ−11 )′(x)|+ log(det(A1)) ), x ∈ I1,
1/2 ( log |(τ−11 )′(x)|+ log(det(A2)) ), x ∈ I2.
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In [19] the authors explain how the joint spectral radius can be analyzed from
the point of view of Ergodic Optimization. The special space of “invariant
probabilities” to be considered on this case is described on Definition 7 of [19].
It follows from results on [19] that the value em(A), obtained in a similar way
as in classical Ergodic Optimization, is equal to the joint spectral radius
ρ(A1, A2) (under some conditions for A1, A2). In this section the main issue
is to estimate m(A). We will estimate the value m(A) using the 1/2 iterative
procedure.

3.6.1 First example

Take

A1 =

(
2 1
2 2

)
and A2 =

(
2 2
1 2

)
.

In this case the inverse branches are τ1(x) = x+1
x+3

e τ2(x) = 2
4−x .

The potential is given by

A(x) =

{
1/2 ( log(| 2

(x−1)2 |) + log(2) ), 1/3 ≤ x ≤ 1/2,

1/2 (log(| 2
x2
|) + log(2) ), 1/2 ≤ x ≤ 2/3.

Observe that I1 = [1/3, 1/2] and I2 = [1/2, 2/3]. Corollaries 13 and 14 of [19]
describe the values of the joint spectral radius ρ(A1, t A2), for some values
of t > 0. Looking Figure 3.8 which was obtained from the 1/2 iterative
procedure (showing the possible realizers) we assume that we should take
V1, V2 (with maximizers, respectively, τ1 and τ2) satisfying

V2(x)+m̂(A) = V1(τ1(x))+A(τ1(x)), V1(x)+m̂(A) = V2(τ2(x))+A(τ2(x)).
Finally, we get

V2(x)− V2 ◦ τ2 ◦ τ1(x) = A ◦ τ2 ◦ τ1(x) + A ◦ τ1(x)− 2m̂(A). (3.33)

As q = 1
2
(
√

17−3) is the fixed point of τ2◦τ1 we obtain m̂(A) = A◦τ2◦τ1(q)+A◦τ1(q)
2

=
A( 1

2
(
√
17−3))+A( 1

2
(5−
√
17))

2
= 1

4
(2 log(2) + log(2/(q − 1)2) + log(2/(q2))) ≈ 1.2702.

The 1/2 iterative procedure is able to estimate the joint spectral radius
ρ(A1, A2). After some computations we will show later that m(A) satisfies
m(A) = log

(
1
2
(3 +

√
17)
)
, and taking b = 1

2
(3 +
√

17) we will finally get that
V (x) = max{log(x + b), log(1 − x + b)} is a subaction. Now we will begin
the computations for this case. Taking F (x) = A ◦ τ2 ◦ τ1(x) +A ◦ τ1(x) and
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Figure 3.8: The graph in blue indicates where the maximizer is attained by
τ2 and in orange by τ1.

η(x) = τ2 ◦ τ1(x), we get V2(x) = lim
n→+∞

n∑
i=0

[
F ◦ ηi(x)− m̂(A)

]
. This means

V2(x) = log
+∞∏
i=0

11 + 3ηi(x)

11 + (3
2

(√
17− 3

)
)
. (3.34)

We note that from equation (3.33) we get V1(x) = V2(1 − x). One can also
show that in this case the piecewise analytic expression for the calibrated
subaction V can given by V (x) = max of{

log
∞∏
i=0

(
11 + 3(τ2 ◦ τ1)i(x)

11 + (3
2

(√
17− 3

)
)

)
, log

∞∏
i=0

(
11 + 3(τ2 ◦ τ1)i(1− x)

11 + (3
2

(√
17− 3

)
)

)}
(3.35)

There is a quite strong simplification of all this. Indeed, we get that in this
case the subaction V satisfies V (x) = max{V1(x), V2(x)}, where V2(x) =
log (h(x)) for some function h. From the information we get from the 1/2
iterative procedure it seems that h is linear. Assuming that V2(x) = log(x+b)

we get the system log
(

(b+x)(11+3x)
b(11+3x)+6+2x

)
= log

(
(11 + 3x)e−2m(A)

)
. This means

e−2m(A) = b+x
6+11b+2x+3bx

. As m(A) satisfies m(A) = log
(
1
2
(3 +

√
17)
)
, taking
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derivative on x and using the condition to be equal to zero we get 6 + 11b+
2x + 3bx − (2 + 3b)(b + x) = 0, that is 6 + 9b − 3b2 = 0. Finally, we get
b = 1

2
(3 +

√
17). Note that b = em(A), therefore we get the candidate for

subaction V (x) = max{log(x+ b), log(1− x+ b)} = max{V2(x), V1(x)}. It is
not difficult to check that this in fact yields a subaction. The next example
illustrates how to do such proof, for a more general case.

3.6.2 Second example

We consider a more general case. Given t > 0, denote

A1 =

(
2 1
2 2

)
and tA2 =

(
2 t 2 t
1 t 2 t

)
.

In this case τ1(x) = x+1
x+3

and τ2(x) = 2
4−x . As t > 0, then

A(x, t) =

{
(1/2)(log(| 2

(x−1)2 |) + log(2)), 1/3 ≤ x ≤ 1/2,

(1/2)(log(| 2
x2
|) + log(2t2)), 1/2 ≤ x ≤ 2/3.

With different values of t we get different maximal values m(A) and different
subactions. Denote by m(A, t) the function which gives the maximal value of
A(x, t) (where em(A,t) is the joint spectral radius ρ(A1, t A2) ), for each t > 0.
We are not able to obtain in a rigorous manner the subaction for all cases
of t > 0. However, we are able to show rigorously that there is an interval

0 ≤ t ≤ 4(4+3
√
2)

18+13
√
2

where the maximal value is constant. Via the 1/2 iterative

procedure we will be able to plot (a non rigorous estimation) the maximal
value as a function of t (see figures 3.9 and 3.11). The main idea here is to
try to take one of the Vi in the form Vi(x) = log(x + b) (or, log(b − x)). To
guess the total number r of Vi, i = 1, 2..., r, we use the graph we get from
the 1/2 iterative procedure.

We will obtain explicitly that m(A, t) = log(2 +
√

2), when 0 ≤ t ≤
4(4+3

√
2)

18+13
√
2

. We will elaborate on that. For small values t ∼ 0, the approximated

value m(A, t) indicates that m(A, t) = log(2 +
√

2). Moreover, it suggests
that in order to get the calibrated subaction V we should work with two Vi:

V1(x, t) + m̂(A, t) = A(τ2(x), t) + V2(τ2(x), t), (3.36)

V2(x, t) + m̂(A, t) = A(τ1(x), t) + V2(τ1(x), t). (3.37)
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Figure 3.9: Numerical estimation of m(A, t) obtained via the 1/2-procedure.

This system of equations is sugested by Figure 3.10. Then

V (x, t) = max{V1(x, t), V2(x, t)}

is the candidate to be the subaction for A(x, t). As m(A, t) seems to be
constant in an interval and A(τ1(x), t) = log( 2

1−τ1(x)) we conclude that V2
should not depend on t. We assume V2(x, t) = log(x+ b) and then from last
equation we get b = 1 +

√
2 and finally V2(x, t) = log(x+ 1 +

√
2). It is easy

to confirm that V2(x, t) + log(2 +
√

2) = V2(τ1(x), t) + A(τ1(x), t). Making

a substitution in (3.36) we get V1(x, t) = log
(
t(2 +

√
2− x√

2
)
)

. Clearly

m̂(A, t) = log(2 +
√

2) is a natural candidate to be m(A, t). We will look for
the largest interval [0, t1] such that the subaction V is given by

V (x, t) = max[V1(x, t), V2(x, t)] . (3.38)

We wish to find the largest t such that given x ∈ [1/3, 2/3] and i ∈ {1, 2},
for some j ∈ {1, 2}

A(τi(x), t) + V1(τi(x)) ≤ Vj(x, t) + m̂(A, t).

That is, the largest t such that

max

{
log

(
t(3 + x)

(
2 +

1√
2

+

√
2

3 + x

))
, log

(
t2(4− x)

(
2 +
√

2−
√

2

4− x

))}
≤
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Figure 3.10: Numerical estimation of the subaction obtained via the 1/2-
procedure for t = 0.9.

≤ max
{

log
(
t(2 +

√
2− x√

2
)(2 +

√
2)
)
, log

(
(1 +

√
2 + x))(2 +

√
2)
)}

.

If x ∈ [1/3,
√
2

2+
√
2
] then

t(3 + x)
(

2 + 1√
2

+
√
2

3+x

)
≤
(
t(2 +

√
2− x√

2
)(2 +

√
2)
)
.

Therefore, in this interval A(τ1(x), t) + V1(τ1(x), t) ≤ V (x, t) + m̂(A, t).
Now, consider x ∈ [x(t), 2/3], where x(t) is the point such that

t(3+x(t))
(

2 + 1√
2

+
√
2

3+x(t)

)
=
(
(1 +

√
2 + x(t)))(2 +

√
2)
)
. This means

that if x ∈ [x(t), 2/3], then, A(τ1(x), t) + V1(τ1(x), t) ≤ V (x, t) + m̂(A, t).

From this follows that x(t) ≤
√
2

2+
√
2

= 0.414214..., Then, for x ∈ [1/3, 2/3] we

get A(τ1(x), t)+V1(τ1(x), t) ≤ V (x, t)+m̂(A, t). This condition is satisfied for

t ≤ 4(4+3
√
2)

18+13
√
2
≈ 0.9061. It is compatible with the information we get from the

1/2 iterative procedure. Now we will show that A(τ2(x), t) + V1(τ2(x), t) ≤
V (x, t) + m̂(A, t) for such values of t. Note that if 0 ≤ t ≤ (2+

√
2)2

8+3
√
2
≈ 0.952,

then, t2(4−x)
(

2 +
√

2−
√
2

4−x

)
≤ t(2 +

√
2− x√

2
)(2 +

√
2). Therefore, V (x, t)

given by equation (3.38) is a calibrated subaction with m(A, t) = log(2+
√

2)

if 0 ≤ t ≤ 4(4+3
√
2)

18+13
√
2

. The final conclusion is that m(A, t) = log(2 +
√

2) for

t ∈ [0, t1], where t1 := 4(4+3
√
2)

18+13
√
2
≈ 0.9061. In Figure 3.11 we show a detailed
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Figure 3.11: Graph of m(A, t) for t around the point t1 where m(A, t) is not
constant anymore.

estimation of the graph of m(A, t) (via the 1/2 iterative procedure) for t close
to t1. It is also possible to determine other intervals contained in [0, 1] for t
such that we can find explicitly the value m(A, t). We could not, however,
obtain joint intervals.

3.7 Minus distance to the Cantor set

Now, we consider the case whereA(x) = −d(x,K) where d(x,K) = mink∈K |x−
k| and K ⊂ [0, 1] is the Cantor set. Also, T (x) = 2x (mod 1) acts on [0, 1]
and the inverse branches of T are given by τ1(x) = x

2
and τ2(x) = x+1

2
. In this

section we present pictures we get from the use of the 1/2 iterative procedure
and we present some conjectures. We do not provide mathematical proofs.
We consider an approximation of the Cantor set via the mesh of points of the
form m = 1

2
+
∑+∞

i=1 ai
1
3i

where ai ∈ {1,−1}, and therefore we take A(x) =

−d(x,K) = −min(ai)∈{1,−1}N
∣∣x− (1

2
+
∑+∞

i=1 ai
1
3i

)∣∣ . It is easy to see that
m(A) = 0, since maxA(x) = 0. Note that µ = 1

2
(δ1/3 +δ2/3), δ0 and δ1 are all

maximizing probabilities. As A is symmetric there is a symmetric subaction.
Consider the truncation An(x) = −min(ai)∈{1,−1}n

∣∣x− (1
2

+
∑n

i=1 ai
1
3i

)∣∣ .
The points 0 and 1 are also in the Mather set. We will try to get a

subaction via V1(x)−V1(τ1(x)) = A(τ1(x)) and V2(x)−V2(τ2(x)) = A(τ2(x)).
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In this way we get V1(x) =
∑+∞

i=1 A ◦ τ i1(x) and V2(x) =
∑+∞

i=1 A ◦ τ i2(x) =
V1(1−x). We believe that V (x) = V1(x)I[0,1/2)+V1(1−x)I[1/2,1] is a subaction
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Figure 3.12: Graph of the truncation A100(x) in a discretization of 105 points
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Figure 3.13: Picture obtained using the 1/2 iterative procedure for A50(x)
with a discretization of 104 points with 30 iterations. The blue (dashed)
graph shows when the maximizer is obtained via τ1 and the orange graph is
for the case when the maximizer is τ2.

Lemma 3.7.1. The series G(x) =
∑+∞

i=1 A(τ i1(x)) converges uniformly in the
interval [0, 1].

Proof. Notice that

G(x) =
+∞∑
j=1

− min
(ai)∈{1,−1}N

∣∣∣∣∣x/2j −
(

1

2
+

+∞∑
i=1

ai
1

3i

)∣∣∣∣∣
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and

min
(aj)∈{1,−1}N

∣∣∣∣∣x/2j −
(

1

2
+

+∞∑
i=1

ai
1

3i

)∣∣∣∣∣ ≤ ∣∣x/2j∣∣ .
In this way |G| is bounded by a geometric series and therefore we get the
claim.

Conjecture 3.7.2. Suppose A(x) = −d(x,K) and T (x) = 2x mod(1), then,
a subaction is given by V (x) = G(x)I[0,1/2)(x) + G(1 − x)I[1/2,1](x), where

G(x) =
∑+∞

i=1 A(τ i1(x)).

This subaction is obtained through the two maximizing probabilities
which have support in {0} and {1}. Now, we want to try to find another
subaction but this time associated to the maximizing probability with sup-
port on {1/3, 2/3}. In this way we will look for solutions of the form V2(x) =
V1(τ1(x))+A(τ1(x)) and V1(x) = V2(τ2(x))+A(τ2(x)). As in the previous ex-
amples η(x) = τ2(τ1(x)) take V2(x) =

∑+∞
i=1 (A(τ1(η

i(x))) + A(τ2(τ1(η
i(x)))) ,

and V1(1− x) = V2(x). As η(2/3) = 2/3 one can show that this series is ab-
solutely convergent (similar to the previous Lemma 3.7.1). Define H(x) =∑+∞

i=1 (A(τ1(η
i(x))) + A(τ2(τ1(η

i(x)))).
We want to show that W (x) = H(x)I[0,1/2)(x) + H(1 − x)I[1/2,1](x) is a

subaction. In the same way as before we want to show that
maxT (y)=x[A(y) + V (y)] = max{H(x), H(1− x)} = W (x).

Conjecture 3.7.3. The function W given by W (x) = H(1−x)I[0,1/2)(x)+

H(x)I[1/2,1](x), H(x) =
∑+∞

i=1 (A(τ1(η
i(x))) + A(τ2(τ1(η

i(x)))) , is a subaction
for A.

Above we conjectured that W and V were subactions. If this was true,
then max{W + C1, V + C2} is also a subaction, where C1, C2 ∈ R.

44



0.0 0.2 0.4 0.6 0.8 1.0
x

0.06

0.05

0.04

0.03

0.02

0.01

0.00

V(x)

Figure 3.14: Truncation of the
subaction V as described in
Conjecture 3.7.2, where n=10.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.20

0.15

0.10

0.05

0.00 W(x)

Figure 3.15: Truncation of the
subaction W as described in
Conjecture 3.7.3, where n =
10.
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Figure 3.16: Superposition of the two above graphs resulting in a new subac-
tion with the graph in blue (dashed). We can see that the iterative process
was in fact computing this superposition.

3.8 A potential equal to its subaction

Set T (x) = 2 xmod(1), with inverse branches τ1(x) = 1/2, τ2(x) = (x+1)/2.
We will now obtain a non-trivial potential which is equal to its subaction.
We make assumptions on A. Set A = u and choose u to be symmetrical

u(x) =

{
f(x), x < 1/2

f(1− x), x ≥ 1/2
(3.39)

where

f(x) =

{
g1(x), x < 1/3
g2(x), x ≥ 1/3
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We want to have max
T (y)=x

[A(y)+V (y)] = max
T (y)

[2u(y)] to be maximized in [0, 1/2],

by τ2, and in [1/2, 1] by τ1. This yields the system

g1(x) +m(u) = 2g2(1− τ2(x)), g2(x) +m(u) = 2g1(1− τ2(x))
g1(1− x) +m(u) = 2g2(τ1(x)), g2(1− x) +m(u) = 2g1(τ1(x))

Two equations above are redundant. Make η(x) = 1+x
4

, the system of equa-
tions is reduced to

g1(x) +m(u) = 2g2(1− τ2(x)), g2(x) +m(u) = 2g1(1− τ2(x)) . (3.40)

We then obtain

g2(1− τ2(x)) =
g1(x) +m(u)

2
= 2g1(η(x))−m(u) .

And then g1(x) = 4g1(η(x)) − 3m(u) gives m(u) = g1(1/3). Now suppose
that g1 is differentiable, obtaining g′1(x) = 4g′1(η(x))η′(x), then

g′1(x)− g′1(η(x)) = 0

composition with η and substitution gives g′1(x)− g′1(η3(x)) = 0. Continuing
g′1(x)− lim

k→+∞
g′1(η

k(x)) = 0. This means that

g′1(x) = g′1(1/3) .

Therefore g1 and g2 must be linear. By (3.40)

g1(x) = α

(
x− 1

3

)
+ β, g2(x) = α

(
1

3
− x
)

+ β

With the restrictions

g1(τ1(x)) ≤ g2(1− τ2(x)), x ∈ [0, 1/3]
g1(τ1(x)) ≤ g1(1− τ2(x)), x ∈ [1/3, 1/2]

Which means with α > 0

−α/6 ≤ 0, x ∈ [0, 1/3]
α(x− 1/2) ≤ 0 x ∈ [1/3, 1/2]

And this always holds. We conclude that

max
T (y)=x

[2u(y)] = u(x) + β .

By symettry the same holds in [1/2, 1]. Finally u is its own subaction with
maximizing probability with support in {1/3, 2/3}, m(u) = β. Figure 3.17
shows the general form of such potential u.
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Figure 3.17: The graph of u given by (3.39)

3.9 The 1/2 iterative procedure applied to the

case where A has more than one maximiz-

ing probability.

The discussion that will be made in this section only addresses questions
regarding numerical evidence obtained from the 1/2 iterative procedure. We
do not present rigorous proofs in this section. The interest in this section
is to understand better the dynamics of the 1/2 iterative procedure on the
case there is more than one maximizing probability. In some sense, there are
basins of attraction depending on where one begins the iteration of the 1/2
iterative procedure.

Consider the potential A(x) = −x2(x−1/3)2(x−2/3)2(x−1)2 which has
maximal value m(A) = 0. The ergodic maximizing probabilities are µ1 = δ0,
µ2 = δ1 and µ3 = 1

2
(δ1/3 + δ2/3). In this case there exist more than one

calibrated subaction (see Theorems 12 and 15 in [11] or Theorem 5 in [13]).
One can obtain numerical evidence of the graph of these different calibrated
subactions by considering the iteration of G on distinct initial conditions.
Taking the initial condition f0 = 0 and iterating G we get the function V
which has the graph shown on Figure 3.18. This function V (x) := G30(0)(x)
”should be” a calibrated subaction. The graph of the associated function
R is displayed on Figure 3.19. Suppose we did not know the maximizing
ergodic probabilities. From Figure 3.19 we have numerical evidence that the
values of R on the periodic orbits {0}, {1} and {1/3, 2/3} are equal to zero
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(or, ∼ 0).
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Figure 3.18: The approximated subaction obtained from the initial condition
f0(x) = 0.
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Figure 3.19: The approximated R function obtained from the initial condition
f0(x) = 0.

The general idea is: even in the case the maximizing probability is not
unique we get numerical evidence about the possible maximizing probabil-
ities. Another initial condition f0 can be attracted to another calibrated
subaction V by iteration of G. Indeed, let αε,a : [0, 1] → R be a piecewise
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linear bump function defined by

αε,a(x) =


0, 0 ≤ x ≤ a− ε
−x+ (a− ε), a− ε ≤ x ≤ a
x− (a+ ε), a ≤ x ≤ a+ ε
0, a+ ε ≤ x ≤ 1

where a ∈ (0, 1) and ε > 0 is arbitrary small. We consider two different
initial conditions:
a) A(x) = −x2(x− 1/3)2(x− 2/3)2(x− 1)2 and f0(x) = α0.01,1/5(x): In this
case there is a numerical evidence that the high iterates Gn(f0) converge to
the blue (dashed) graph described by Figure 3.20.
b)A(x) = −x2(x − 1/3)2(x − 2/3)2(x − 1)2 and f0(x) = α0.01,2/3(x): In this
case, there is numerical evidence that the high iterates of Gn(f0) converge to
the orange graph described by Figure 3.20. In these two last cases, the graph
of the corresponding R (see Figure 3.21) also confirms the numerical evidence
that such functions V are calibrated subactions. An interesting future work
is to analyze the basin of attraction of each subaction by the iteration Gn.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

V1(x)
V2(x)

Figure 3.20: The approximated subactions V1 with initial condition α0.01,1/5

and V2 with initial condition α0.01,2/3
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Figure 3.21: The approximated R functions for V1 and V2 as in Figure 3.20
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