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Abstract

This paper proposes a robust current control technique based on a discrete-time sliding
mode controller and a disturbance observer for high-performance permanent magnet syn-
chronous motor (PMSM) drives. This scheme is applied in the PMSM current control loops
to enable the decoupling between the dq current axes, rejection of disturbances caused by
mechanical load changes and robustness under parametric uncertainties. In order to ensure
the discrete-time sliding mode properties, which make the system cross the sliding surface
at each sampling period, the PMSM model is extended, including the digital implementa-
tion delay resulting from the discrete-time algorithm execution. The development of this
method allows direct implementation in microcontrollers and digital signal processors. Sta-
bility and convergence analysis are developed in the discrete-time domain. Simulation and
experimental results demonstrate the effectiveness and good performance of the proposed
current control approach.

1 INTRODUCTION

Permanent magnet synchronous motors have been widely used
in industrial and commercial drives, such as electric vehicles,
wind generators, and robot applications. In electric vehicles, for
example, traction motors are the key component for propulsion
and require high torque and power density, wide speed range,
high efficiency, high reliability, low noise, and reasonable cost
[1, 2].These characteristics are common in PMSM, however,
the performance of this motor depends on hardware and con-
troller design.

Field oriented control (FOC) methods are usually employed
to ensure high performance of the drive. This method results
in a cascade control structure with two inner current control
loops and an outer speed control loop. This structure decouples
the torque and flux by using the rotor dq reference frame. Also,
the model in the synchronous reference has a direct relationship
with the torque and current, so the current control is equivalent
to the torque control [3]. Then, the current controller design is
an essential task to ensure the good performance of the over-
all drive. However, the PMSM presents a non-linear model with
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coupling between the dq current axes, especially under transient
responses, load torque and parametric variations. In addition,
the PMSM current loops are subjected to parametric variations,
such as stator resistance, stator inductance, permanent magnet
flux linkage and back-electromotive force, as well as being cou-
pled with each other and also being highly dependent on speed
[4]. Different current control scheme designed to improve the
performance of the PMSM drive can also be found in the liter-
ature [3, 5–12].

Sliding mode (SM) techniques have been successfully applied
to observers and controllers for systems with disturbances and
parametric uncertainties. When compared with other robust
methods, the SM is computationally simple and provides notice-
able robustness and invariance properties to matched uncer-
tainties [13–17]. There are several studies aiming at the devel-
opment of sliding mode methods in the discrete-time domain
due to their characteristics and to the advances in microcon-
trollers and digital signal processors. It allows the rapid proto-
typing of commercial solutions with SM, such as [18–21]. The
design of the controller in the discrete-time domain is relevant
because that stability conditions and the gains obtained in the
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continuous-time domain are not directly applied to discrete-
time domain. When the design is carried out in the wrong way,
it can produce chattering and even instability [14]. The reach-
ing law approach is a procedure commonly used to design slid-
ing mode controllers in discrete-time domain [22–26]. In [25], a
reaching law is developed in order to carry the switching func-
tion to the sliding surface in a finite time. Thus, when the slid-
ing surface is reached, a zigzag motion around the surface is
obtained [27, 28].

The control law and sliding surface design in the conven-
tional SM control (SMC) is based on the plant model, result-
ing in a controller which is insensitive to matched uncertain-
ties, but sensitive to mismatched uncertainties [29]. Due to the
importance of mitigating mismatched uncertainties in practi-
cal control applications, new SMC techniques have been pro-
posed. There are several approaches combined with other con-
trol and observation methods, such as: schemes using linear
matrix inequalities (LMI), integral action, fixed switching period
or modifications in sliding surface [30–34]. In [32, 33] and
[34], the SMC is combined with another strategy. The slid-
ing mode method is associated with a backstepping strategy in
order to control a tank system with non-linear model uncertain-
ties and is cross-coupled in [34]. In addition, a PI controller is
used to reduce the steady-state error. In [32] and [33] a sliding
mode controller is based on the disturbance observer (DOB)
technique. In order to improve the DC–DC converter system
performance with mismatched disturbances, the SMCDOB is
applied to control the output voltage of a buck converter in [33].
In [32], the SMCDOB is applied to a MAGLEV suspension sys-
tem. The new sliding surface is designed using the disturbance
estimation so that the sliding motion along the sliding surface
tends to the equilibrium point even under the presence of mis-
matched uncertainties.

Control techniques based on the DOB becomes a good
approach to deal with the presence of disturbances and to
improve closed-loop system robustness [29]. A DOB design is
presented in [35]. There are two advantages to the DOB in com-
parison to the other robust control techniques. One of them
is the possibility to use it with other existing control meth-
ods improving the system robustness. The second advantage
is obtained because the DOB is designed to work in the pres-
ence of disturbances, however, when these disturbances are not
present, the behaviour of the system is not affected [36]. This
control method can be used in industrial applications, such as
mechatronics, chemical and aerospace systems [5, 7, 37]. The
sliding mode control based on the disturbance observer (SMC-
DOB) can enhance the reference tracking. The SMCDOB pro-
vides a good option as a control algorithm because even under
plant variations, the algorithm will adapt the observed distur-
bance to mitigate the coupling effect, parametric variations, load
disturbance and unknown uncertainties in the controller, as well
as reduce chattering and increase system bandwidth [32, 38–43].

In [32, 38, 39, 41] and [42] the SMCDOB algorithm is devel-
oped in the continuous-time domain, which could be not ideal
for practical systems. The algorithm is applied to the position
control of PMSMs using a control law with non-linear feedback
composed in [41]. In [40] the discrete-time SMCDOB is applied

in the superheated steam temperature systems. The algorithm
is based on linear feedback technique and average dwell-time
method. In addition, the combination of techniques increases
the robustness and minimises the chattering. An algorithm using
the higher-order SM for uncertain linear time-invariant systems
is proposed in [43]. A disturbance forecast technique is adopted
to estimate the future disturbance terms. A mass-spring-damper
system in different operating situations of industry is used for
the experimental tests. However, in [40] and [43], the equiva-
lent control approach is employed to obtain the control laws.
The zigzag motion around the surface is not guaranteed when
the equivalent control is used. Moreover, if the sampling time is
small, a large control input is needed and this may be undesir-
able in practice [16].

In order to provide a solution to the current control problem
of the PMSM, this paper proposes a discrete-time controller,
which combines a sliding mode technique with a disturbance
observer. Differently from previous studies in the literature,
this technique includes a digital implementation delay in the
problem formulation, which allows a suitable form to operate
with digital signal processors and PWM voltage source invert-
ers, improving the performance of the overall PMSM drive. This
paper compares the behaviour of the system with and without
the inclusion of the digital implementation delay in the problem
formulation. Moreover, the switching functions are modified to
enable the system to cross the sliding surface at each sampling
period, such as proposed in [25], which is not achieved when
the digital implementation delay is neglected. The stability anal-
ysis of the proposed discrete-time disturbance observer is per-
formed by means of a Lyapunov approach. A graphical analy-
sis is presented in order to demonstrate the impact of the gain
choice in the system stability. The main contributions of this
paper can be summarised as:

(i) the design of a new extended disturbance observer in the
discrete-time domain, which is characterised by the inclu-
sion of the plant state estimation, resulting in an improved
disturbance observer;

(ii) the inclusion of the new extended disturbance observer
in the sliding mode current control law in the discrete-
time domain;

(iii) the proposal and analysis of the system in the discrete-
time domain with the inclusion of the digital implemen-
tation delay;

As a result of the mentioned contributions, it was possible
to obtain a control strategy with a simple structure that can be
applied in different non-linear plants with mismatched uncer-
tainties. The inclusion of the observed disturbances in the slid-
ing mode current control law mitigates the coupling effect in dq

axes and improves the system robustness. In addition, the com-
bination of SMC and DOB provides a reduction in the values
of SMC gains, mitigating the chattering effect.

Simulation and experimental results are carried out to eval-
uate the performance of the proposed decoupled current con-
trol scheme. These results are compared with the PI controller,
with and without a disturbance observer, and with the conven-
tional SMC.
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2 DYNAMIC MODEL OF PMSM

To obtain the PMSM mathematical model, consider the follow-
ing assumptions [1]:

1. Stator windings are balanced with sinusoidally distributed
magnetomotive force.

2. Inductance versus rotor position is sinusoidal.
3. Saturation and parameter changes are neglected.

The PMSM can be expressed in a synchronous reference
frame by the following continuous-time non-linear equation:

d

dt
idq(t ) = 𝜸dqidq(t ) + 𝝇dqvdq(t ) + d dq(t ). (1)

The vectors and matrices in (1) are defined by,

idq(t )
Δ
= [ id (t ) iq(t ) ]T , vdq(t )

Δ
= [ vd (t ) vq(t ) ]T ,

𝜸dq

Δ
=
⎡⎢⎢⎣
−

Rs

Ld

0

0 −
Rs

Lq

⎤⎥⎥⎦ , 𝝇dq

Δ
=
⎡⎢⎢⎣

1

Ld

0

0
1

Lq

⎤⎥⎥⎦ ,

d dq(t )
Δ
=
⎡⎢⎢⎣

0
PLq

Ld

𝜔r (t )

−
PLd

Lq

𝜔r (t ) 0

⎤⎥⎥⎦ idq(t ) −

[
0

P𝜙srm

Lq

𝜔r (t )

]
,

where Rs is the stator resistance, Ld is the inductance of d-axis,
Lq is the inductance of q-axis, P is the number of pole pairs, 𝜙srm

is the permanent magnet flux linkage, id and iq are the stator
currents referred to synchronous reference frame, vd and vq are
the stator voltages in a synchronous reference frame and 𝜔r is
the rotor speed.

For a sufficiently small sampling period Ts , Equation (1) can
be discretised using the forward Euler method. In addition, the
cross-coupling terms and parametric uncertainties of the model
are included as disturbances (dd and dq), which results in the
discretised model,

idq(k+1) =
(

I + Ts𝜸dq

)
idq(k) + Ts𝝇dqvdq(k) + Tsd dq(k), (2)

where, idq(k)
Δ
= [id (k) iq(k)]T, vdq(k)

Δ
= [vd (k) vq(k)]T.

The disturbances d dq(k)
Δ
= [dd (k) dq(k)]T are defined as,

d dq(k)
Δ
=

⎡⎢⎢⎢⎢⎣
0 P

Lq

Ld
𝜔r (k)

−P
Ld

Lq
𝜔r (k) 0

⎤⎥⎥⎥⎥⎦
[

id (k)

iq(k)

]
+

+

⎡⎢⎢⎢⎣
0

−P
𝜙srm

Lq
𝜔r (k)

⎤⎥⎥⎥⎦ +
[
𝜁d (k)

𝜁q(k)

]
, (3)

FIGURE 1 Sequence of digital implementation. (a) Interrupt signal gener-
ated by PWM; (b) duration of calculation; (c) loading the controller output; (d)
application of the phase voltage on the inverter by PWM. (*) means the order
of procedure.

where 𝜁d (k) and 𝜁q(k) represent parametric uncertainties and
unmodelled dynamics. It is important to note that parametric
changes of the model directly affect the terms 𝜁d (k) and 𝜁q(k).
According to [1], the main parametric variations that affect the
model are Rs and 𝜙srm due to temperature, and Lq when the
motor operates in the saturation region. In addition, note that
the cross-coupling is directly dependent on the rotor speed, in
(3). Therefore, when the rotor speed is high, a change in one
of the dq currents results in a torque distortion and in a high
transitory disturbance in the other axis current.

New states (𝜓d and 𝜓q) are added in the discrete PMSM
model aiming to include the effect of the digital implementation
delay, which results in an extended model suitable for applica-
tions using microcontrollers and digital processors. The digital
implementation is carried out in fixed time intervals or interrup-
tions, as presented in Figure 1(a) in terms of samples (k), (k + 1)
and (k + 2). The interruption is started synchronised with the
k∗ signal, when the AD converter samples the values of the
phase currents, DC bus voltage and rotor position to calculate
the output voltages. As an example, the grey period shown in
Figure 1(b) illustrates the time required for the control law cal-
culation. This control law is only applied in the next time sam-
pling, as shown in Figure 1(c). During the period of (k + 1), the
phase voltages calculated in period k are applied to the motor
by means of the inverter, as shown in Figure 1(d). One sample
delay in the system model is the result of the process depicted
by Figure 1.

The resulting extended model is given by,

idq(k+1) = 𝚪dqidq(k) + Ts𝝇dq𝝍dq(k) + Tsd dq(k), (4)

𝝍dq(k+1) =

[
𝜓d (k+1)

𝜓q(k+1)

]
=

[
vd (k)

vq(k)

]
. (5)

where, 𝚪dq = (I + Ts𝜸dq ).
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3 DISCRETE-TIME SLIDING MODE
BASED ON DISTURBANCE OBSERVER
CONTROLLER

3.1 Discrete-time disturbance observer

This paper proposes a new discrete-time disturbance observer,
which is combined with a sliding mode controller. This algo-
rithm uses the estimation of the dq currents and an additional
state to compute the expression of the observed disturbance, as
given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p
dq(k+1) = p

dq(k) − Ts

(
−l1𝜸dqidq(k) + l1𝝇dqvdq(k)+

+ l1 p
dq(k) + l 2

1 idq(k) − (l1 − l2)ĩdq(k)

)
d̂ dq(k) = p

dq(k) + l1idq(k) − l2 ĩdq(k)

îdq(k+1) = îdq(k)+Ts

(
−𝜸dqid (k)+ 𝝇dqvdq(k)+ d̂ dq(k)+

−l2 ĩdq(k)
)
,

(6)

where, p
dq(k)=[pd (k) pq(k)]T is the state vector of the observer,

d̂ dq(k)=[d̂d (k) d̂q(k)]T the observed disturbance vector, îdq(k)=

[̂id (k) îq(k)]T the observed currents vector, ĩdq(k)=[̃id (k) ĩq(k)]T the
current estimation vector error, l1 and l2 are positive gains.

The current estimation errors are defined as,

ĩdq(k+1)
Δ
= îdq(k+1) − idq(k+1). (7)

The disturbance estimation errors are given by,

d̃ dq(k+1)
Δ
= d̂ dq(k+1) − d dq(k+1). (8)

3.2 Stability analysis of discrete-time
disturbance observer

Theorem 1 is presented to carry out the disturbance observer
stability analysis.

Theorem 1. Consider the discretised system given by (2) and (3), sub-

ject to,

Assumption 1 (A1): The disturbance ddq(k) in the system (2) is

bounded, that is |ddq(k)| ≤ d ∗
dq

, where d ∗
dq

is the upper bound of the dis-

turbance.

Assumption 2 (A2): The discrete variation of the disturbance over

one sampling period, Δddq(k) = ddq(k+1) − ddq(k), is bounded and

Δddq(k) → 0 when k →∞. Then the discrete-time disturbance observer

in (6) is stable and ĩdq(k) and d̃dq(k) goes to zero when k →∞.

Proof. The stability analysis of the disturbance observer pro-
posed in (6) can be performed by means of the Lyapunov
approach. Here, this analysis is exemplified for the d -axis. Note

that a similar analysis could be conducted for the q-axis, since
the coupling and rotor speed dependent terms are modelled as
disturbances. Thus, consider the following Lyapunov candidate
function,

V(k) = d̃ 2
d (k) + ĩ2

d (k). (9)

The difference equation of the current error expression can
be obtained by replacing (2) and (6) in (7), which results,

ĩd (k+1) = (1 − Tsl2)ĩd (k) + Tsd̃d (k). (10)

The expression of the disturbance observer error is obtained
replacing (2) and (6) in (8), such that,

d̃d (k+1) = (1 − l1Ts − l2Ts )d̃d (k) − Δdd (k). (11)

From Assumption A2, Δdd (k) → 0 when k →∞, then, it is
possible to rewrite (11) as,

d̃d (k+1) = (1 − l1Ts − l2Ts )d̃d (k). (12)

The difference equation of (9) is,

ΔV(k) = V(k+1) −V(k),

ΔV(k) = d̃ 2
d (k+1) − d̃ 2

d (k) + ĩ2
d (k+1) − ĩ2

d (k). (13)

Solving (13) from (10) and (12), results,

ΔV(k) =
(

(1 − l1Ts − l2Ts )d̃d (k)
)2
− d̃ 2

d (k)+

+
(

(1 − Tsl2)ĩd (k) + Tsd̃d (k)
)2
− ĩ2

d (k). (14)

Rewriting (14),

ΔV(k) = −ad̃ 2
d (k) − bĩ2

d (k) − c
(
d̃d (k) − ĩd (k)

)2
, (15)

where, a = (1 − c2
1 − Ts + c2Ts ), b = (1 − c2

2 + c2Ts ), c = c2Ts .
The c1 and c2 are defined by, c1 = (1 − l1Ts − l2Ts ) and
c2 = (1 − Tsl2). For the appropriate design of l1 and l2,
that ensures a, b and c positive, the expression (15) will
be negative defined, which will make V(k) = 0 when
k →∞. □

Remark 1: Assumption A2 is not very restrictive in elec-
tric machines systems. The disturbance expressions given in
(3) are dependent of the stator currents, rotor speed, model
parameters and parametric uncertainties. The stator currents are
in a synchronous reference frame with DC characteristic and
these currents are constant in steady state operation (constant
rotor speed and constant load). In addition, the rotor speed
dynamic is slower than the electrical dynamics, therefore, for
small values of Ts it can be assumed constant. If a fast change
is imposed to the stator current, the disturbance will change in
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accordance with this current, however, the disturbance varia-
tion Δdqd will assume a limited value. Moreover, in steady-state
the disturbance will vary slowly in agreement with the rotor
speed dynamic.

3.3 Current control by the conventional
sliding mode approach

Generally, the first step in the design of a discrete-time con-
troller is the choice of the reaching control laws. The literature
presents two groups of reaching laws for the discrete-time slid-
ing mode approach: based on inequalities [22–24] and based on
equalities [25, 26, 44]. This paper adopts the reaching law pro-
posed by [25], where the control law can be obtained from the
equality given by,

sn(k+1) − sn(k) = −qTssn(k) − 𝜖Tssign
(
sn(k)

)
, (16)

where sn is the sliding surface, the subscript n represents the
direct or quadrature dq axes, 𝜖 and q are positive gains and 1 −
qTs > 0, 𝜖 > 0 and q > 0.

The reaching law given by (16) defines a quasi-sliding mode
band, in which the trajectory of the discrete variable structure
system crosses the sliding surface every sampling period, result-
ing in a zigzag motion.

Conventional sliding mode approach defines the switching
function as an error between a measured value and its reference,
for example sn(k) = in(k) − i∗

n(k). Note that this choice implies the
knowledge of the future reference (i∗

n(k+1)) to obtain the expres-
sion of sn(k+1) given in (16). In order to avoid this problem,
the current reference was delayed in one sampling period, such
that,

sdq(k) = idq(k) − i∗dq(k−1), (17)

where the vectors sdq(k) and i∗dq(k) are defined as,

sdq(k)
Δ
=
[

sd (k) sq(k)
]T

, i∗dq(k)
Δ
=
[

i∗
d (k) i∗

q(k)

]T

. (18)

Thus, sdq(k+1) can be obtained from (2), as follows,

sdq(k+1) = idq(k+1) − i∗dq(k)

=𝚪dqidq(k)+Ts𝝇dqvdq(k)+ Tsd dq(k)−i∗dq(k).
(19)

The control law can be obtained by replacing the expressions
(17) and (19) in (16), which results,

vdq(k) =
(

Ts𝝇dq

)−1[(
I − 𝚪dq

)
idq(k) − Tsd dq(k) + i∗dq(k)+

− i∗dq(k−1) − qTssdq(k) − 𝜀Tssign
(
sdq(k)

)]
.

(20)

Then, replacing the actual disturbances, d dq(k), by its
observed values, d̂ dq(k), the control law vdq(k) is written in the
form,

vdq(k) =
(

Ts𝝇dq

)−1[(
I − 𝚪dq

)
idq(k) − Ts d̂ dq(k) + i∗dq(k)+

−i∗dq(k−1) − qTssdq(k) − 𝜀Tssign
(
sdq(k)

)]
.

(21)

When the control law is implemented in digital signal proces-
sors, such as presented in Figure 1, the control law calculated
in the sample (k) is only updated in the next sample (k + 1).
In other words, the control law used in sample (k) was calcu-
lated in sample (k − 1). Thus, the dynamic of the PMSM can be
obtained by replacing (21) in (4), which results,

idq(k+1)= 𝚪dq

(
idq(k)−idq(k−1)

)
−Ts d̃ dq(k−1)+ i∗dq(k−1)+(

1 − qTs

)
sdq(k−1) − 𝜖Tssign

(
sdq(k−1)

)
.

(22)

From the analysis of (22) it is possible to observe that the
choice of switching function (17) is not suitable to obtain the
zigzag motion proposed by the reaching control law (16). There-
fore, it is necessary to develop a new switching function taking
into account the model with the inclusion of the digital imple-
mentation delay.

3.4 Design of the discrete-time sliding
mode controller based disturbance observer

Due to the presence of the digital implementation delay in the
extended model, the switching function must be changed aim-
ing to obtain a control law from (16). The new switching func-
tions are based on sample (k + 1) of the dynamic model. The
current reference is delayed to allow the control law to be writ-
ten with past values of the reference (see (24)). The resulting
switching functions are given by,

sdq(k) = idq(k+1) − i∗dq(k−1)

= 𝚪dqidq(k)+Ts𝝇dq𝝍dq(k)+Tsd dq(k)−i∗dq(k−1).
(23)

Note that expression (23) is developed based on the actual
disturbances. These values are replaced by their observed values
in implementation. The step (k + 1) of the switching function
is obtained to make possible to calculate (16), as follows,

sdq(k+1) = idq(k+2) − i∗dq(k)

= 𝚪dq

(
𝚪dqidq(k) + Ts𝝇dq𝝍dq(k) + Tsd dq(k)

)
+

+ Ts𝝇dq𝝍dq(k+1) + Tsd dq(k+1) − i∗dq(k).

(24)

The system will track the reference with two delays (2Ts) as
consequence of the choice of switching functions in (23) and
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(24). This can be verified by means of convergence analysis
(see (29)). For small values of Ts , the system can operate with
this delay.

The control law is obtained from (16). Replacing (23) and (24)
in (16) it is possible to obtain the dq-axes control law, which is
given by

vdq(k) =
(

Ts𝝇dq

)−1[(
I − 𝚪dq

)(
𝚪dqidq(k) + Ts𝝇dq𝝍dq(k)+

+Tsd dq(k)
)
− Tsd dq(k+1) + i∗dq(k) − i∗dq(k−1)+

− qTssdq(k)−𝜖sign
(
sdq(k)

)]
.

(25)

Expression (25) presents variables dependent on the distur-
bance that are not computable. Then, using Assumption A2 and
replacing the actual disturbances, d dq(k), by their observed val-
ues, d̂ dq(k), the discrete-time sliding mode control law combined
with the observed disturbance is obtained, such that,

vdq(k) = 𝝍dq(k+1)

=
(

Ts𝝇dq

)−1[(
I − 𝚪dq

)(
𝚪dqidq(k) + Ts𝝇dq𝝍dq(k)

)
+

− 𝚪dqTs d̂ dq(k) + i∗dq(k) − i∗dq(k−1) − qTssdq(k)+

−𝜖sign
(
sdq(k)

)]
.

(26)

3.5 Convergence analysis of the PMSM with
the discrete-time sliding mode current
controller and disturbance observer

From the control law defined in (26), step (k − 1) can be written
as,

vdq(k−1) = 𝝍dq(k)

vdq(k−1) =
[(

I − 𝚪dq

)(
𝚪dqidq(k−1) + Ts𝝇dq𝝍dq(k−1)

)
+

+ Ts𝚪dqd̂ dq(k−1) + i∗dq(k−1) − i∗dq(k−2) +

− qTssdq(k−1) − 𝜖Tssign
(
sdq(k−1)

)](
Ts𝝇dq

)−1
. (27)

The dynamic of the PMSM with the proposed controller
can be obtained by replacing the control law (27) in (4), which
results,

idq(k+1) =
(
1 − qTs

)
sdq(k−1) − 𝜖Tssign

(
sdq(k−1)

)
+

+ i∗dq(k−1) + Ts𝚪dqd̃ dq(k).
(28)

Note that the dynamics of the PMSM currents with the pro-
posed controller, in accordance with (28), are dependent on
the discrete-time SMC function, the switching functions, the

FIGURE 2 Block diagram of the proposed control scheme

delayed references and the disturbance observer error. Thus, the
composite system of the switching functions and disturbance
observer errors is presented as follows,

⎧⎪⎪⎨⎪⎪⎩
sdq(k) =

(
1 − qTs

)
sdq(k−1) − 𝜖Tssign

(
sdq(k−1)

)
+

+ Ts𝚪dqd̃ dq(k)

d̃ dq(k+1) =(1 − Tsl1 − Tsl2)d̃ dq(k) − Δd dq(k).

. (29)

The expressions given by (29) present the tracking error and
disturbance observer error dynamics. From Assumption A2,
the disturbance observer errors converge to zero for appro-
priates values of l1 and l2 when k → ∞ (see Section 3.2
and Figure 5). If Δd dq(k) is different from zero, the practical
value for these variables are very small in steady-state condition
using high sampling frequency, thus, the maximum disturbance
observer errors will be bounded to these small values. More-
over, once the system reaches the sliding surface, it will cross
this sliding surface each sampling period. When a perturbation
occurs in the system, it will converges to zero in accordance
with sdq(k) = (1−qTs )sdq(k−1), for (1 − qTs ) > 0, if the distur-
bance observer errors are close to zero.

4 SIMULATION AND EXPERIMENTAL
RESULTS

Simulations and experimental results are presented in order to
demonstrate the effectiveness of the proposed current control
approach. A DSP TI TMS320F28335 was used with a three-
phase voltage source inverter (VSI) to carry out the experimen-
tal results. The geometric approach for PWM modulation was
adopted, according to [45]. The switching frequency used was
10 kHz which is equivalent to a sampling period of 100 μs.

The block diagram of the proposed control scheme is
depicted in Figure 2. It is possible to note the simple
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FIGURE 3 Experimental platform

TABLE 1 Electrical and Mechanical parameters of the PMSM

Prated 11 kW

nrated 1800 RPM

irated 19,29 A

Rs 0,5 Ω

Ld 20,1 mH

Lq 40,9 mH

J 0,03877 kgm2

B 0,0194 Nms

𝜙srm 0,5126 V/rad/s

P 3

implementation structure, which is carried out through expres-
sions (6), (23) and (26).

Figure 3 presents a picture of the experimental platform.
Table 1 presents the rated parameters of the PMSM. An induc-
tion machine (IM) is connected to the rotor shaft of the PMSM
to provide mechanical load. The IM is used as a generator with
a capacitor bank and a variable load, which allows to change the
mechanical load applied in the PMSM rotor shaft.

In the first test, in both simulation and experimental, the
rotor speed is not controlled. The rotor speed is kept in open
loop while the currents id and iq are controlled. Then, i∗q is
changed in order to observe the coupling between the axes.
The second test, only experimental, the rotor speed loop is
closed and the i∗q is generated from the output of the PI con-
troller of the rotor speed loop. The reference current i∗

d
is calcu-

lated by (30) in the maximum torque-per-ampere region (below
rated speed). This reference has been adapted from [46]. The
rotor speed reference and currents references are the same in
simulation and experimental tests to demonstrate the coupling
between the dq axes and to evaluate the performance of the
controller.

i∗
d

(k) =

√
3∕2𝜙srm

2P
(
Lq − Ld

) −
√√√√√√

(√
3∕2𝜙srm

)2

4P2
(
Lq − Ld

)2
+ i∗q (k)2

. (30)

FIGURE 4 Analysis of coefficients a, b and c of (15) with respect to change
in the values for gains l1 and l2. (a) Coefficient a in the range of ]0, 2Fs [; (b)
Coefficient a in the range of ]0, Fs [; (c) Coefficient b in the range of ]0, 2Fs [; (d)
Coefficient b in the range of ]0, Fs [; (e) Coefficient c in the range of ]0, 2Fs [; (f)
Coefficient c in the range of ]0, Fs [.

4.1 Gain design procedure

The choice of controller gains is crucial to obtain high perfor-
mance of the PMSM drive. High control gain values increase
the oscillations of the stator currents, while low gain values can
impair the performance of the controller and do not ensure
the existence of the sliding surface. From Equations (10), (11)
and (15) it is possible to design l1 and l2 aiming to obtain an
asymptotically stable system. The following conditions must be
ensured: l2 < 1∕Ts and (l1 + l2) < 1∕Ts . Thus, the upper bound
of the interval can be set to 1∕Ts , which is the switching fre-
quency (Fs ).

The impact of the design of the gains l1 and l2 in the system
stability in accordance with the Lyapunov analysis presented in
(15) is demonstrated in Figure 4. The values of l1 and l2 are
tested as greater than the upper bound (Fs ) in Figure 4(a),(c),(e).
It is possible to observe that the coefficients a, b and c assume
negative values in some regions, as a result, the stability of the
system cannot be ensured. Figure 4(b),(d),(f) presents the coef-
ficients a, b and c when the gains l1 and l2 are properly designed,
l1 ⊂ ]0, Fs[ and l2 ⊂ ]0, Fs[. In these results, it is observed that
the coefficients a, b and c assume only positive values, therefore,
the system stability can be ensured such as presented in (15).

The disturbance observer error, expression (11), is imple-
mented in order to analyse the convergence and an appropri-
ated combination of gains for the disturbance observer. Fig-
ure 5 presents the disturbance observer error response for three
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FIGURE 5 Analysis of the design of gains l1 and l2 applied to (11)

design combinations of the gains l1 and l2. The system has a
positive value for the initial condition (d̃ dq(0) ≠ 0) and a pertur-
bation is carried out at time 0.01 s (Δd dq(k) ≠ 0). The first design
gives l1 + l2 < 0.5Fs , as a result, the system response is damped.
However, this response presents a slow dynamic. In the second
combination, l1 + l2 < 2Fs , the system response is undamped.
The third combination uses l1 + l2 < Fs . In this case, the system
response is damped and it presents a good dynamic response.
From appropriate choice of gains, the dynamic of expression
(11) tends to zero, even if the system suffers some perturbation,
in a short period of time.

According to the information presented, l1 and l2 gains can
be designed as follows:

1. Define the upper bound to (l1 + l2), by analysing (10), (11)
and (15), which ensures that the system is asymptotically
stable;

2. Define the expected dynamic system response. A fast
dynamic response requires the (l1 + l2) near to the upper
bound, while for a slower dynamic response, (l1 + l2) is
adopted significantly less than the upper bound;

3. The current error in (6) is directly related to the l2
gain.Therefore, to minimise this error, gain l2 must be set
higher than gain l1.

Here, in accordance with the three points, the gain values
chosen are l1 = 990 and l2 = 9000.

In [25] the controller gains 𝜖 and q are defined as, 𝜖 > 0, q >
0 and (1 − qTs ) > 0. Alternatively, the approaches in [27] and
[28] can be used for the design of the controller gains. Thus,
following these guidelines, it was defined here 𝜖 = 450 and q =
2750.

PI and SM controllers were designed aiming to compare the
proposed control scheme with conventional methods given in
the literature. For the PI design, the first step is the deter-
mination of the transfer function that defines the closed-loop
dynamics of the stator currents. Besides, it is necessary to
define the cutoff frequency and the damping coefficient for
the calculation of the proportional and integral gains. The dis-
cretisation is based on [47]. The cutoff frequency was defined
one decade above the highest natural frequency of the sys-
tem. The damping coefficient was defined as 0.8, that is, an
underdamped condition in order to avoid overshoot in the sys-

FIGURE 6 Simulation results of the stator currents with PI and PIDOB
controllers implemented in the current control loops. (a) PI controller without
decoupling; (b) PI controller with Disturbance Observer (PIDOB).

tem response. The proportional and integral gains obtained for
discrete-time implementation of the current PI controllers were
respectively, kpd

= 7.4378 and kid
= 0.1244 for the d-axis and

kpq
= 15.6521 and kiq

= 0.2531 for the q-axis.
The conventional SMC implemented is based on the con-

trol law developed in (26). However, in this case, the PMSM
coupling terms, ddq(k), are not replaced by the observed values,
d̂dq(k). Therefore, control gains must be redesigned. As the SM
control law is based on the plant model, the controller is insen-
sitive to matched uncertainties, but sensitive to mismatched
uncertainties. For this reason, the new gains must be greater to
compensate the mismatched uncertainties. Thus, it was defined
𝜖 = 2500 and q = 9900.

4.2 Simulation results

In order to verify the performance of the system under para-
metric variations, at time of 1.4 s the permanent magnet flux
linkage is reduced to 80% of its rated value in all of the simula-
tion results. This parametric variation is adopted in accordance
to [1]. Figures 6 and 7 present the simulation results using PI
and conventional SM controllers.
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FIGURE 7 Simulation results of the stator currents with a SMC without
DO implemented in the current control loops

Figure 6(a) shows the simulations results when a PI controller
without decoupling action is used in the current control loop. It
is possible to observe the coupling between the axes and the
influence of the iq current variation in the id current dynamic.
At high rotor speeds the id current has more pronounced vari-
ations, approximately 10 A, as shown in detail of Figure 6(a) at
instant 2 s. Figure 6(b) shows the simulation results when a PI
controller is associated to the disturbance observer (PIDOB).
These results show smaller oscillations, however, there is still
coupling between the axes, a variation of approximately 5.4 A,
seen in the zoom of the Figure 6(b) at instant of 2 s. It is possible
to verify a perturbation in the system response due to paramet-
ric variation, in the detail of Figure 6(a), (b) at time of 1.4 s, when
the flux linkage is changed.

The simulation results using conventional SMC is shown in
Figure 7. The effect of the parametric variation, at the time of
1.4 s, and the coupling between the axes, at instant 2 s, are mit-
igated with the non-linear controller. However, the chattering
in idq(k) currents presents an amplitude of approximately 1.2 A
around the reference. Chattering is a harmful phenomenon, as
it, given it decreases the control precision, increases the wear
of mechanical components of the machine and heat losses in
power circuits [48].

Figures 8 and 9 present the results using the proposed SMC-
DOB scheme in the current control loops. The i∗

d
and i∗q current

references are the same used in the previous simulation, with PI
and conventional SM controllers. Figure 8 presents references
for id and iq currents and its simulated values. When the pro-
posed controller is used, the coupling between the dq axes is
mitigated even at high rotor speeds, according to the detail in 2
s of Figure 8.

Figure 9(a) presents a comparison between the measured
and observed currents and Figure 9(b) shows a comparison
between the actual and observed disturbances. The actual dis-
turbances (dd and dq) are obtained from the expression (3) and
the observed disturbances (d̂d and d̂q) in accordance with Equa-
tion (6). It is possible to observe the good estimation of the dis-
turbances and currents even with parametric change. The dis-

FIGURE 8 Simulation results of the stator currents with SMCDOB imple-
mented in the current control loops

FIGURE 9 Simulation results with the discrete-time SMCDOB imple-
mented in the current control loops. (a) id and iq currents, îd and îq observed
currents; (b) d̂d and d̂q observed disturbance and dd and dq actual disturbances.

turbance of the q axis is changed at time of 1.4 S when the
flux linkage is reduced and the observed disturbance tracked this
variation. It is possible to see by means of the tracking, that the
perturbation due to the parametric variation was mitigated, as
can be seen in the detail of Figure 8 at the instant 1.4 s.

Simulation results are carried out using the pair of expres-
sions (21) and (26) to illustrate the difference between the sys-
tems with and without the inclusion of the digital implemen-
tation delay. Note that, when (21) is used, as presented in Fig-
ure 11(a), the zigzag motion is not achieved and the system will
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FIGURE 10 Simulation result of the rotor speed behaviour for both
implemented current control methods

FIGURE 11 Detail of the simulation result of the d -axis sliding surface
with the control laws (21) and (26) implemented. (a) Control law implemented
by (21); (b) Control law implemented by (26).

not cross the sliding surface at each sampling time. Figure 11(b)
gives the switching function when (26) is used as the control
law. The system crosses the sliding surface at each sampling
period in accordance with the theoretical development. These
results demonstrate the importance of the inclusion of the digi-
tal implementation delay in the PMSM model. Figure 12 details
the change in the reference for the iq current. It is possible to
observe that the iq current starts to track its reference with a
delay of 2Ts such as was demonstrated in the theoretical devel-
opment (see (28)).

4.3 Experimental results

Figures 13 and 14 present the experimental results when PI and
conventional SM controllers are used. The id and iq currents
and their respective i∗

d
and i∗q references are shown. The refer-

FIGURE 12 Detail of the simulation result: iq tracking i∗q with two delays
(2Ts )

FIGURE 13 Experimental results of the stator currents with PI and
PIDOB controllers implemented in the current control loops. (a) Discrete-time
PI controller; (b) Discrete-time PIDOB controller.

FIGURE 14 Experimental results of the stator currents with the conven-
tional SMC implemented in the current control loops

ence currents are the same used in the simulation results, i∗
d

is
implemented by (30) while i∗q is changed.

The experimental result with PI controller without DOB is
presented in Figure 13(a). Both currents track their references,
however, when iq is changed a perturbation in id is observed.
This perturbation is due to the coupling between the axes
and it has a direct relationship to the rotor speed value. Fig-
ure 13(b) shows the results when a PI controller with DOB
is used in the current control loop. The observed disturbance
was used as a feed-forward action. The coupling between the
axes was reduced, however, it was not totally eliminated. The
results using the conventional SMC are shown in Figure 14. The
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FIGURE 15 Experimental results of the stator currents with the SMC-
DOB implemented in the current control loops

FIGURE 16 Experimental results of the proposed SMCDOB method. (a)
Calculated disturbances (dd and dq) and estimated disturbances (d̂d and d̂q); (b)
id and iq currents and îd and îq estimated currents

currents track the references, even when i∗q is varied at instant
of 2 s. However, the high oscillation caused by the chattering,
characteristic of the conventional SMC with high gains, can
be observed.

Figures 15 and 16 are obtained aiming to evaluate the per-
formance of the proposed discrete-time SMCDOB. Figure 15
presents the id and iq measured currents and the i∗

d
and i∗q refer-

ence currents. The proposed current controller has good track-
ing capability. A good performance of the proposed controller
is achieved once iq is changed and it did not affect id dynamic.
Thus, the coupling effect between the axes was mitigated.

Figure 16(a) presents the observed (d̂d and d̂q) and calcu-
lated (dd and dq) disturbances. Expression (3) was calculated in

FIGURE 17 Experimental result of the d-axis current error. Comparison
of SMCDOB, SMC, PI and PIDOB methods

FIGURE 18 Experimental result of the rotor speed behaviour for both
implemented current controllers

the software to represent the actual disturbance of the motor.
Parametric uncertainties and unmodelled disturbances were
neglected in this calculation. The convergence of the estimated
disturbance to the calculated disturbance can be observed. Note
that the calculated disturbances present a linear characteristic
while the observed disturbances present an oscillation around
the calculated disturbance. This behaviour is due to the non-
ideal characteristic of the motor, that is the back electromotive
force and the magnetomotive force present harmonics, there is
saturation for some operating conditions. Figure 16(b) gives the
îd and îq estimated currents (see (6)). It is possible to observe
the good convergence to their measured values.

The d-axis current error, difference between reference and
measured current (ed = i∗

d
− id ), are represented in Figure 17.

In the zoom of Figure 17, it is possible to observe that when
a variation is imposed in iq the error ed is closed to zero by
using the proposed method and the conventional SMC. How-
ever, when using PI and PIDOB controllers this error has a
perturbation of approximately 9 and 5 A, respectively. When all
results are compared, oscillations in the current using the con-
ventional SMC can be observed. Figure 18 shows the behaviour
of the measured rotor speed (open-loop) in both implemented
current control schemes. When the iq current is changed the
rotor speed is approximately 1800 RPM, as seen in Figure 18.
At high speed the coupling between the current axes is more
accentuated, and when the proposed controller is used this cou-
pling is mitigated, in accordance with the comparison presented
in the Figure 17.

Figure 19 shows the experimental results with addition of
the rotor speed control loop. Thus, i∗q is generated from the
speed error through the proportional-integral compensator.
Figure 19(a) shows a step of approximately 100 RPM in the
rotor speed reference. Figure 19(b)(top) presents iq and its
reference i∗q . The iq current dynamic was similar among the
tested current controllers. In Figure 19(b)(bottom), id currents
and their references are presented. From this result, it is possible
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FIGURE 19 Experimental results with a rotor speed reference step using
PI, PIDOB, SMC and SMCDOB in the current control loops. (a) Rotor speed
behaviour; (b) iq and its reference, and a comparison among the id currents and
their references for implemented current controllers

FIGURE 20 Experimental results when a mechanical load is applied using
SMCDOB in the current control loops. (a) Rotor speed behaviour; (b) id and iq
currents and i∗

d
and i∗q references

to observe that the proposed control scheme presented a better
rejection of the disturbance. It is also observed that when the
DOB was added to the PI controller, a significant rejection of
the perturbation caused by the speed variation was achieved.

The experimental result when a load step is applied to the
PMSM is shown in Figure 20. This load step was imposed by
means of the IM present in Figure 3. Figure 20(a) shows the
behaviour of the rotor speed under effect of the imposed load

disturbance. Figure 20(b) presents the currents and their refer-
ences. In this test, the good performance of the proposed con-
troller is shown with load condition change.

5 CONCLUSIONS

This paper has proposed a discrete-time combined control
method by means of sliding mode algorithm and disturbance
observer aiming to decouple the dq PMSM currents of vector
controlled drives. The new proposed disturbance observer is
characterised by the presence of an additional state which esti-
mates the stator current of the motor, which improves the con-
vergence of the system and tracks the divergences between the
real model and the model used in the control algorithm. The
motor model was obtained including the digital implementa-
tion delay, which allows the design of a control law suitable
to direct implementation in microcontrollers and digital sig-
nal processors. Furthermore, it ensured zigzag motion of the
discrete-time sliding mode system by means of the modification
in the switching functions of the sliding mode control. Stability
and convergence analysis were performed in the discrete-time
domain. Simulation and experimental results show the effec-
tiveness of the proposed combined control technique. The pro-
posed method can be extended to other application, such as,
electrical vehicles, control of grid-tied converters, robotic sys-
tems etc.
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