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ABSTRACT

Duplication With Comparison (DWC) is a traditional and accepted method for improv-

ing systems’ reliability. DWC consists of duplicating critical regions in Software or in

Hardware level by creating redundant operations in order to decrease the probability of

an unwanted event. However, this technique introduces an expensive overhead in power

consumption, processing time and in resources allocation. This obstacle is due to the fact

that the critical operations are computed at least two times in this process.

Reduced Precision Duplication With Comparison (RP-DWC) is an effective software

level solution to improve the performance of the conventional DWC. RP-DWC aims

to mitigate these overheads by enabling parallel processing in underused Floating Point

Units (FPUs) in mixed precision Graphic Processing Units (GPUs). By making use of

precision reduction to efficiently improve the reliability in mixed precision GPUs, RP-

DWC extends the DWC technique, introducing proper ways to handle redundancy with

different precision operations.

Improving GPUs reliability is an extremely valuable challenge in the fault tolerance field

since GPUs are adopted in both High-Performance Computing (HPC) and in automotive

real-time applications. When GPUs are exposed to a natural environment, such as the

surface of the Earth at sea level, they are also exposed to the Earth’s surface radiation.

Furthermore, this exposure can be critical, given that these radiation particles may hit

the GPU’s internal circuit, corrupt sensitive data and consequently generate undesired

outputs.

Introducing duplication with reduced precision in a trustworthy manner to maintain reli-

ability in safety-critical systems is an arduous task that we propose to further investigate

in this work.

Keywords: Fault tolerance. reliability. radiation. duplication. DWC. RP-DWC. GPU.

HPC.
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1 INTRODUCTION

Beforehand, we will introduce primordial concepts and definitions of the fault

tolerance area along with the current challenges of this field of study, which inspired this

monograph. In this chapter, we will discuss the importance of reliability and how the

generation of unwanted behaviors must be treated in modern computing applications.

1.1 Faults, Errors and Failures

In order to comprehend the motivations that lead to the first research projects

in fault tolerance area and the reasons why computing systems are not perfect running

engines, it is crucial to introduce the concepts of fault, error and failure. Neither hardware

nor software structures are built to predict every erroneous behavior once these systems’

correct operation depends on a great number of variable factors. As an example, a circuit

break is a natural event that has the potential to originate wrong information in electrical

circuits and hence it can take down a running application.

Just like a circuit break is a natural phenomena, there are other natural and non

natural factors that can originate the first important concept, a fault. Any undesired event

capable of giving rise to a system error may be considered a fault, which can be classified

according to their origin (LAPRIE, 1995):

• Physical: adverse physical phenomena, either internal (threshold changes, short-

circuits, open-circuits) or external (environmental perturbations: electro-magnetic,

temperature, vibration);

• Human-made: imperfections which may be:

Design faults: triggered either in the initial system’s design or subsequent mod-

ifications;

Interaction faults: triggered by violations in operating or maintenance proce-

dures.

Both previously defined faults can potentially prompt another important concept:

an error. Aforementioned, an error occurs when a fault causes an undesired circumstance

to an internal system. Lastly, the final important initial concept is a consequence that

comes from the error generation and that can be felt by the end user: a failure. It is an

undesired event that affects the service while generating wrong outputs. Failures may or
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may not be critical, depending on whether the incorrect output altered sensitive data or

not. Summarizing, a fault is an event that can introduce bad internal data, characterized

by an error. In turn, if an error propagates to the system’s output, a failure occurs. For the

purpose of this work we will focus mainly on the physical faults.

1.1.1 Radiation

Physical faults that are originated by radiation events naturally present in the sur-

face of the Earth are especially damaging. The consumer demand for more realistic, func-

tional and reliable applications requires very high standards of electronic systems. This

request comes upon the crescent technology advance which is boosting the transistor’s

layout by reducing its dimensions and operating voltages. In this scenario, the radiation

effects in the most fundamental electronic component, the transistors, are responsible for

generating major complications, from data disruptions to permanent damage and device

failure (BAUMANN, 2005).

The effects of radiation in computing systems can be summarized as energy dis-

ruptions that overflow the semiconductors voltage/current in sensitive regions generating

potential deformations. The called single-event effects (SEEs) are caused by a single ra-

diation event that can generate device failures. SEEs can be classified as hard or soft. The

former occurs when a radiation event generates permanent damage being predominant in

space and military environment thus not being explored in this scope. On the other hand,

soft faults, or transient faults, do not permanently damage the device. They are caused by

enough charge disruption that flips the state of a bit cell (i.e memory, register, latch) and

they can potentially originate misleading information or system behaviour. Additionally,

faults caused by charge disruption are the most commonly found physical faults.

Transient faults can induce different outcomes in program outputs. A fault is

called masked when no effect is observed or, in the same way, no failure is created. Con-

versely, when a fault crashes the system and generates forbidden memory access or cor-

rupts the internal data, it is described as Detected Unrecoverable Error (DUE). Lastly,

when the fault’s outcome is a data corruption but instead of crashing the system it gener-

ates a wrong output, the fault is labeled as Silent Data Corruption (SDC).

Certain systems have shown particular vulnerability to transient faults depending

mainly on two factors: the number of sensitive instructions that they execute and the

amount of time that they remain exposed to radiation. The prolonged exposure to radia-
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tion increases the probability of a system getting hit by a particle in a sensitive internal

region and, therefore, of generating a failure. When only one bit value is flipped due to a

transient fault it is described as a Single Event Upset (SEU). Nonetheless, the Multiple Bit

Upset (MBU), occurs when the radiation energy is enough to flip more than one bit value.

Radiation particles refer in majority to neutron elements, in which atmospheric flux at sea

level in the natural environment is 13n/(cm2 × h) (JEDEC, 2006).

The description of some of the failures caused by radiation events gives a better

comprehension of its impact in device circuits. There are multiple radiation sources that

are potential fault generators (BAUMANN, 2005). In the terrestrial surface environment,

we are exposed from natural radioactivity of material to industrial, medical, nuclear and

high energy physics equipment that generate considerable higher radiation doses. The

radiation events greatly increase in higher altitudes as the particles’ flux of neutrons and

electrons, for instance, can reach up to 1,000 times more than its sea level incidence.

Particularly, the space environment is much more exposed to radiation. Galactic cosmic

rays generated by supernova explosions or celestial bodies collision, solar wind and flares

and Van Allen belts are some of the radioactive events that create a great flux of radia-

tion particles such as ions, protons and electrons. Reliable space technology is, in this

perspective, much more challenging to be designed.

The occurrence of radiation events in computing systems can induce mechanism

failures in addition to compromising the systems’ reliability. In this hypothesis, computa-

tions can be adopted to evaluate the error rate, also called the soft error rate (SER). This

calculation uses the failure in time (FIT) as a measurable value to classify the magnitude

of failures. The SER can easily exceed 50,000 FIT/chip if any protection mechanism

is adopted, which makes a huge contrast to the typical and acceptable FIT/chip rate of

reliable structures that are in the range of 1-50 FIT/chip (BAUMANN, 2005).

1.2 Fault Tolerance

The concept of fault tolerance is historically known since the invention of the first

computers (NEWMANN, 1956) but it was only formally defined by Aviziens in 1967

(AVIZIENS, 1998). Systems that need to maintain their correctness even in the presence

of faults must be built using fault tolerance techniques. Usually such systems are those

that need high reliability, like aircrafts flight systems, on which human lives relies on its

correct operation; or availability such as high availability data clusters that need to unin-
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terruptedly operate and provide on-demand information. Either way, fault tolerance and

the concept of redundancy are extremely interconnected. In fact, fault tolerant systems

can be commonly called redundant systems due to the great relation between these terms.

A system may be referred to as fault tolerant as it is also dependable. As a matter

of fact, the main goal of fault tolerance is to reach dependability, which refers to the

quality of information that the system provides and it is measured by a number of numeric

attributes. Table 1.1 summarizes the main ones (WEBER, 2002). In this chapter, we will

focus on some of the most relevant concepts and techniques directly related to this work.

The definitions of reliability and redundancy are detailed in later sections as both of them

are crucial to a better comprehension.

Table 1.1 – The main attributes of dependability

Attribute Description
Reliability Capacity of a system to deliver well defined speci-

fications and to be operational during a well known
period of time.

Availability Probability of a system to be operational in a period
of time.

Safety Probability of a system to be operational and to de-
liver either information correctly or discontinue it in a
way to avoid damage to other systems or people who
depend on it.

Security Capacity of a system to be protected against mali-
cious faults, providing data privacy, authenticity and
integrity.

Source: (WEBER, 2002)

1.2.1 The phases of fault tolerance techniques applications

From the moment that a fault is detected, proper ways to handle and repair the

erroneous behavior that the fault generated are put into action . The most common clas-

sification technique to handle a fault is the four application phases defined by Anderson

and Lee (ANDERSON; LEE, 1981). They are: detection, confinement, recovery and

treatment as shown in Table 1.2.

It is also significant to mention that another phase present in the literature is the

fault masking, which is the non-manifestation of a fault as an error. This signifies that

the system will remain in a correct state and the fault will never be noticed by any error
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detection mechanism. If so, a permanent damage may exist even if the system never

notices its presence, and it may be located and repaired albeit it is not necessary to detect,

confine and recover.

Table 1.2 – The 4 phases of Anderson and Lee

Phase Description
Detection When some of the detection mechanisms notice the system

error generated by the fault. One of these detection mech-
anisms is duplication with comparison, which is the tech-
nique that motivated the investigation of this work

Confinement Between the error manifestation and detection there is a
time gap where the erroneous data can spread. The con-
finement proposal is to avoid the damage propagation by
implementing specific techniques.

Recovery When a switch context from an invalid state to a valid one
is established. While the system is in an invalid state it may
not be recovered. The forward error recovery leads the ex-
ecution to a new and previously unvisited state while back-
ward error recovery leads to a previous error-free state.

Treatment Consists of locating the root cause of the error, investigating
and repairing the fault that originated it and at last recover-
ing the remaining of the system.

1.2.2 Redundancy

Every fault tolerance technique involves some level of redundancy. This basic

concept is related to the provision of functional capabilities that would be unnecessary

in a fault-free environment (LAPRIE, 1995). The usage of additional backup compo-

nents in hardware or in software structures that would prevent the system from operating

incorrectly if one component fails illustrates a practical exemplification of this term.

Redundancy intrinsically comes with additional costs in an application design as

it demands extra resources or algorithms to deliver the reliability needed. For this reason

there is an extra precaution in choosing which redundancy technique will be employed

in a system structure. There are relevant trade-offs that may be considered in order to

properly implement any redundancy approach. They can be classified by the following

categories (WEBER, 2002):

• Information redundancy: Comes with a small extra hardware cost since the usage
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of extra bits are required. These bits are stored and broadcasted alongside the orig-

inal data to check whether the information is correct or not. Parity bits are common

examples of this redundancy method;

• Time redundancy: Comes with no extra hardware cost but instead brings with it

additional execution time. This technique re-executes the computation periodically

and is commonly found in applications that do not require critical execution time;

• Hardware redundancy: Consists of replicating physical components in order to

maintain the operational state of a system even if one other component fails. This

method can have a high additional cost depending on which hardware components

must or not be redundant. Hardware redundancy can be divided into:

• Static: This method uses a voting system to decide which result for the same

task produced by each redundant component is the correct one. This solution

does not propose to investigate and recover the system ergo it is called a static

method. Instead, the fault is masked by the voting system that decides to reject

the component’s result where the fault was detected and proceed the execution

with the correct output generated by an error-free component. For instance,

the Triple Modular Redundancy (TMR) is a static method that uses three re-

dundant components and typically a majority voting system to decide which

output should be used as the correct one. Since there exists three redundant

components, it is enough that two of them produces the same result to win the

voting;

• Dynamic: The dynamic flow proposes to detect the fault, locate its occurrence

and recover the system. This method utilizes a fault detection mechanism to

detect the error, a diagnostic tool to locate it and another functionality to keep

the operation in an error-free state;

• Hybrid: The last method proposes to combine both static and dynamic proce-

dures to apply hardware redundancy.

• Software redundancy: Duplicating software components is useless to detect and

handle errors. Software will probably produce exactly equal outputs for the same

identical input as many times as it is executed. There are another methods to make

software redundancy effective, classified as follows:

• N-version programming: This method is based on N-different implementa-

tions that propose to solve the same problem (CHEN; AVIZIENIS, 1995).
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Such as the TMR method, the N-version programming also makes use of a

voting system that decides which of the N-different outputs will be labeled

as the error-free one. By doing this, the method guarantees that the software

redundancy will not always produce the exact same outputs for the same input

values, since there are non-identical implementations;

• Recovery block: Very similarly to the N-version programming, this method

also uses N-different implementations for the same problem. The main differ-

ence is that does not exists a voting system, but instead an acceptance test. In

this case, every different output is submitted to the acceptance test starting by

the first version, called the primary version (WEBER, 2002). If the primary

version does not pass in the acceptance test, the testing routine proceeds with

the N-1 secondary versions until one of them passes.

It is important to clarify that this work is based on a fault detection method com-

monly used in dynamic hardware redundancy, the Duplication With Comparison (DWC).

This technique aims to duplicate components, compare their outputs and decide whether

to handle or not a potential error.

1.2.3 Reliability

Reliability can be defined as the probability of failure-free operation of a computer

program for a specified time in a specific environment (EUSGELD et al., 2005). Reliable

programs are often evaluated by software and architectural metrics that measure the com-

ponent’s robustness and how sensitive they are in the presence of faults. Traditionally,

the large amount of failures is caused by hardware physical wearout or deterioration that

introduce faults into the components and hence lead to an incorrect output (EUSGELD

et al., 2005). Some systems implement robust fault treatment in order to maintain their

internal correctness in the presence of faults since critical data is computed. In particu-

lar, safety-critical or life-critical systems are those that require great reliability to operate

safely without causing (KNIGHT, 2002):

• Death or serious injury to people;

• Loss or severe damage to equipment/property;

• Environmental harm.
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Fault tolerance has been one of the most challenging subjects in the reliability

area of study in recent years for safety-critical applications (LUCAS et al., 2014). One of

the main reasons for the considerable relevance given is the increased usage of Graphic

Processing Units (GPUs), modern hardware architectures that explores great level of par-

allelism, in High-Performance Computing (HPCs). This includes programs such as neural

networks or real-time object detection in self-driven vehicles, for which reliability needs

to be paramount. GPUs are widely adopted since they have physical resources that are

able to deliver the high computational power needed by these algorithms. In this scenario,

vulnerability has a particular unbearable impact that must be reduced to avoid unwanted

effects.

GPUs have shown to be particularly sensitive to transient faults (SANTOS et al.,

2020). A considerable number of techniques to detect and decrease erroneous behaviors

of computer systems are known for different applications and purposes. Safety-critical

ones are specially crucial in this scenario as any undesirable and incorrect data caused by

any fault, especially transient ones (GONÇALVES DE OLIVEIRA et al., 2016), has the

potential to generate a catastrophic impact. Executing high performance applications for

safety-critical purposes demands great computational capacity thus parallel processing

units like the GPUs are normally used. In order to detect and correct with assertiveness

bad sensitive data in runtime, software or hardware modifications need to be implemented.

To achieve reliability in these architectures without relative loss of computational power

some trade-offs must be considered.

In this work we present a technique for Duplication With Comparison (DWC), a

software level solution widely used to improve reliability of computing systems, including

Graphic Processing Units (GPUs). DWC consists of duplicating sensitive operations of

the system and comparing their outputs. This approach is extremely effective as it detects

in best cases up to 90% of transient faults (OLIVEIRA et al., 2014), (MAHMOUD et al.,

2018). However, this implementation introduces an overhead in power consumption and

processing performance that can reach up to more than 2× of the original execution time

as it comes intrinsically with a significant increase in instructions and usage of resources.

Reduced Precision Duplication With Comparison (RP-DWC) is proposed in this

work as the main software level solution to preserve reliability and improve hardware

performance when compared to the traditional method. The intention is to demonstrate

how hardware parallelism can be boosted by executing in both underused single precision

Floating Point Units (FPUs) and double precision Floating Point Units (FPUs) duplicated
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instructions without compromising the application correctness and reliability.
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2 FAULT TOLERANCE IN GPUS

Considering that GPUs architectures were first invented to introduce consider-

able performance gain in graphics processing applications, they feature more robust and

complex hardware structures when compared to the ones found in general-purpose pro-

cessors’ (GPPs). With the microtechnology advance in recent years, the complexity of

modern parallel architectures is enabling more powerful and accelerated Graphic Pro-

cessing Units to be designed. The architectural components that make up these GPUs

enable a great number of different and independent contexts of the same program to be

simultaneously executed.

Hence, preserving the reliability and the correctness in such applications is a par-

ticularly challenging task. To gain a better comprehension of why fault tolerance is critical

in GPUs, a brief introduction of modern architectures is presented.

2.1 Modern GPUs Architectures

Since this work is based on implementations made in a NVIDIA Volta architecture

GPU, this discussion is limited by some of the GPUs architectures from the NVIDIA’s

products line. The referred ones are predecessors of the Volta architecture, like Pascal

and Kepler.

The NVIDIA line of products is composed by high performance General-Purpose

Graphic Processing Units (GP-GPUs) which are known as the GPUs reference in

High Process Computing (HPC) market (ACCELERATING. . . , 2021 (accessed May 12,

2021)). Each of them is based on a parallel computing platform along with an applica-

tion programming interface model created by NVIDIA named CUDA (Compute Unified

Device Architecture) (CUDA. . . , 2021 (accessed May 12, 2021)).

The probably most basic parallel architecture model is the multiple instruction

multiple data (MIMD). Every single thread has its own set of instructions and therefore it

also has its own context. At the code level, the programmer can manually configure the

number of threads that will be launched in the program context. Traditionally, a MIMD

model enables multiple instructions between multiple threads to be executed in parallel.

On the other hand, the NIVIDA GPUs handle the parallelism model differently to opti-

mize the performance gain. These GPUs use the single instruction multiple thread (SIMT)

that unifies a set of equal instructions of each thread into a single large one, called warp,
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the minimal execution unit for GPUs, as shown in Figure 2.1. The usage of a warp is

beneficial to the GPU chiefly because the same instruction that accesses the same region

of memory is executed by multiple threads differing only in the index of each one. Pro-

grams that take advantage of this process normally are those with great number of vector

operations. This mechanism reduces the complexity of decoding different instructions by

different threads.

Figure 2.1 – Warp scheme

It is fundamental to emphasize that the GPUs optimization models are only advan-

tageous to programs that execute a large set of instructions that can be parallelizable.This

applications must present a low dependency level between instructions such as matrix

operations mainly found in image processing algorithms.

CUDA GPUs structures comprise a scalable array of multithreaded streaming mul-

tiprocessors (SMs) (PROGRAMMING. . . , 2010 (accessed May 12, 2021)). Each of them

contains a great number of CUDA cores. They are defined to indicate structures inside

the SM that are capable to execute one thread with dedicated resources, including the

arithmetic units. In the Volta SM structure, the concept of the traditional CUDA Core

was deprecated. The Floating Point Units (FPUs) found with both 64-bit an 32-bit pre-

cision provide, alongside the other components inside the SM, the same parallelism and

dedicated execution approach found within the CUDA Cores. The FPUs are responsible

for executing the floating point instructions being specially important in this context as

they are the enablers mechanisms that motivated this study.

Another important organizational structure present in Volta is the Tensor Core.
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This specific core will remain apart from the discussion but is noteworthy that it enables

even more compute capability to GPUs specially when executing deep learning algo-

rithms. In figures 2.2 and 2.3 is possible to see and compare the organization of two

different modern GPU SMs in Pascal and Volta architectures.

Figure 2.2 – Pascal Streaming Multiprocessor (SM)

Source: NVIDIA Pascal architecture whitepaper (PASCAL. . . , 2016)

Table 2.1 summarizes this differences and facilitates the visualization of the par-

allelism level that a GPU powered by a Volta architecture can perform.

In a CUDA model programming language, the programmer can directly specify

the GPU kernel size which describes the parallelism level for the specific program. A

multithreaded CUDA program can be divided into sets of threads named blocks that spec-

ifies the kernel size as shown in figure 2.4. Depending on the quantity of available SMs,

the blocks distribution may vary. The parallelism level depends on the availability of re-

sources, such as the arithmetic units, and the blocks allocation within the SMs. Indeed,

each block of threads can be scheduled on any of the available streaming multiproces-

sors within a GPU, in any order, concurrently or sequentially, so that a compiled CUDA

program can execute on any number of multiprocessors (PROGRAMMING. . . , 2010 (ac-

cessed May 12, 2021)). It is important to mention that GPU Blocks are organized into

a one-dimensional, two-dimensional, or three-dimensional grid of thread blocks. The di-

mensional aspect gives a unique accessible index within the kernel to identify separately
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Figure 2.3 – Volta Streaming Multiprocessor (SM)

Source: NVIDIA Volta architecture whitepaper (VOLTA. . . , 2017)

each block inside the grid. Finally, the number of thread blocks in a grid is usually dic-

tated by the size of the data being processed (PROGRAMMING. . . , 2010 (accessed May

12, 2021)).

When comparing the compute capabilities between streaming multiprocessor in

modern GPUs architectures, table 2.2 exposes that there are no considerably relevant

differences between these GPUs architectures. This information demonstrates that paral-

lelism capability basically remains the same in newer versions yet the number of cores

almost doubled between Kepler and Volta architectures.
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Table 2.1 – A comparison between NVIDIA Tesla GPUs

Architecture Kepler Maxwell Pascall Volta
GPU GK180 GM200 GP100 GV100
SMs 15 24 56 80
FP32 Cores/SM 192 128 64 64
FP32 Cores/GPU 2880 3072 3584 5120
FP64 Cores/SM 64 4 32 32
FP64 Cores/GPU 960 96 1792 2560
FP64 Cores/GPU +
FP32 Cores/GPU

3840 3168 5376 7680

Transistors 7.1 billion 8 billion 15.3 billion 21.1 billion
Manufacturing Process 28nm 28nm 16nm 12nm

Source: NVIDIA Volta architecture whitepaper (VOLTA. . . , 2017)

Table 2.2 – Compute Capability in modern architectural NVIDIA GPUs

Architecture Kepler Maxwell Pascall Volta
GPU GK180 GM200 GP100 GV100
Threads/Warp 32 32 32 32
Max Warps/SM 64 64 64 64
Max Threads/SM 2048 2048 2048 2048
Max Thread Blocks/SM 16 32 32 32
Max Thread Block Size 1024 1024 1024 1024

Source: NVIDIA Volta architecture whitepaper (VOLTA. . . , 2017)

2.2 Vulnerability to transient faults

The preceding section has shown how powerful modern GPUs computational ca-

pabilities can be. The increasing number of Streaming Multiprocessors and processing

units within these structures facilitates the understanding of why GP-GPUs are such po-

tent engines. The GPU employed in this work can execute up to 32 parallel threads per

warp distributed in 32 thread blocks within an SM providing up to 1024 threads per com-

puting cycle. Even when a kernel is composed of a number of threads smaller than the

warp size, the GPUs will dispatch the hole warp, since it is the minimal possible execution

unit. If the number of threads is exceeded in a thread block, some of them will have their

execution postponed.

In addition, Volta architecture improves both latency and bandwidth when com-

pared to Pascal (VOLTA. . . , 2017) as the L1 cache size is more than 7x larger.

From a radiation point of view, the higher the number of processing units, the



26

Figure 2.4 – Blocks distribution

The same set of blocks in a multithreaded program distributed in two different GPUs in
two different executions. The leftmost one has two available SMs, while the other one,

four.

higher the potential of one of them being corrupted. Nonetheless such structures are

isolated from each other which means that one single radiation-induced event will only

corrupt the thread assigned to it (OLIVEIRA et al., 2014). In a worst case scenario, the

hole set of warp threads will be corrupted if the warp scheduler is affected. The GPU

radiation response, however, demonstrates to be strictly related to resources distribution

such as the chosen grid and block sizes (RECH; PILLA et al., 2014) which have direct

relation with the programmer decision.

Parallel programs are usually written to execute with greater number of blocks and

threads than the maximum supported by GPUs capabilities. To provide optimal operation,

the GPUs have internal complex warp schedulers that are responsible for implementing

the threads parallelism. The scheduler assigns a number of blocks to each streaming

multiprocessor depending on the resources needed by the block. If the grid size exceeds

the maximum number of thread blocks that can be dispatched, some of the blocks are

queued to execute whenever some SM becomes available. It is important to highlight that

the queued block will only be dispatched if the GPU scheduler asserts that one or more

SMs have already concluded their execution correctly. If a corruption occurs in some of
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these structures and the execution is not concluded the scheduler may present potential

erroneous operation.

2.3 Duplication With Comparison

As shown in (OLIVEIRA et al., 2014), both memory and logic GPU resources are

sensitive to radiation events. In order to alleviate such effects, efficient solutions to reduce

vulnerability must be implemented within GPUs. Hardening strategies are commonly

adopted to deal with reliability issues. They consist of implementing both error detection

and handling mechanisms which introduce intrinsic redundancy overheads. A complete

software level hardening strategy can be designed as show in (RECH; AGUIAR et al.,

2013) and (PILLA et al., 2014). If an error occurs the system is efficient on correcting it

or triggering recomputation. Even so, for most applications such hardening solutions are

not available requiring great effort to be implemented (OLIVEIRA et al., 2014). In later

sections, error detection techniques will be presented for which an complete hardening

strategy were not implemented.

When discussing error detection, the Duplication With Comparison (DWC) tech-

nique is a very efficacious solution as it can detect more than 90% of transient faults

in GPUs. It consists of a very simple software level implementation based on duplicat-

ing critical program operations or regions and comparing their outputs as an attempt of

guaranteeing that any potential system corruption is detected. Usually, DWC implemen-

tation requires an exact copy of the critical code regions, re-executing them and saving

each output resultant from each execution for further comparison. To decide whether a

fault is detected or not, DWC detection technique checks if there were differences be-

tween both outputs and flags them if true. The methodology assures that the duplica-

tion points to the existence of a potential failure. This hardening strategy, even being

software-implemented, refers to a hardware level fault tolerance technique. A simplified

duplication and detection mechanism is illustrated in figure 2.5

In the GPUs scenario, DWC can be introduced as an instruction, block or thread

duplication. The solution’s simplicity and efficiency is overshadowed by the substan-

tial overheads in power consumption, processing time and resources allocation specially

when referring to its GPU implementation. These overheads have the potential to reach

up to 2.5× higher in execution time as every critical instruction is executed at least 2

times. Even if advanced software strategies for instruction replication are employed these
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Figure 2.5 – A simplified vision of the DWC detection strategy

In the Duplicated Version redundant blocks (represented with d) are executed and
compared to the original version. If a difference is noticed, an SDC detection is raised

overheads still can be near of 1.7×. In the case of deep learning applications that re-

quire high resources usage, the overheads could be even greater than 2.5×. The more the

GPUs are stressed, the more expensive the overheads can be. Thereafter, DWC shows to

be ineffective for high processing computation and real-time safety critical applications

(SANTOS et al., 2020).

For further analysis and comparison, a brief demonstration of the applicable re-

sults found in (OLIVEIRA et al., 2014) is made relevant for this proposal. Using the final

outcomes in the detailed fault injection campaigns, the error detection rates demonstrated

to be very effective. When exposed to a radiation flux similar to the one found in New

York City (NYC), detailed in (OLIVEIRA et al., 2014), the demonstrated benchmark ex-

ecuted in a NVIDIA Kepler GPU presented near 200 Failures In Time (FITs) which 100%

of them resulted in Silent Data Corruptions (SDCs). When enabling ECC, an NVIDIA

error correction tool embedded in the GPU, the benchmark was able to recover from the

majority of the errors originated. Still 22% of the SDCs occurred in the Plain version
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(program version without any hardening strategy) were still undetected while the FIT rate

reduced considerably. With the introduction of the DWC hardening strategy, the bench-

mark showed great resilience. In short, more than 90% of the SDCs were detected and

corrected. This first analysis shows the potential corruption impacts that such vulnera-

bility can introduce in high processing applications, for instance, the referred benchmark

when executed in a potent GPU.
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3 PROPOSAL

As an alternative to the traditional DWC hardening solution for mixed precision

GPUs, the Reduced Precision DWC (RP-DWC) (SANTOS et al., 2020) proposes to op-

timize the overheads introduced by the former one. It consists of parallel executing the

redundant operations using both full precision (FP) and single precision (SP) floating

point units available in the referred GPUs architectures. While the original operation is

executed with full precision operands, the replica is rounded to single precision and ex-

ecuted in underused less precise floating point units (FPUs). This model is the proposal

solution adopted for this work and it is detailed in further sections. RP-DWC hardening

strategy is illustrated in figure 3.2 and detailed in the Implementation section.

3.1 Definition

When discussing the purpose of GPUs utilization in computing applications one

major attribute that makes these processing units stand out is the high parallelism level that

they provide. In order to get the most out of GPUs powerful data processing is necessary

that specific applications with a set of instructions that enables parallel computation is

executed. Such applications, as mentioned earlier, are in their majority those ones that

uses a great number of vector or matrix operations such as image processing ones. Matrix

operations usually do not own relevant dependency levels between internal instructions

which favors parallelism.

Aiming to enable a even greater level of parallelism improving the execution time

in high processing applications without considerably reliability loss, RP-DWC provides

a simple software level hardening solution for mixed precision GPUs. Image processing

applications are an ideal example that could benefit from RP-DWC reliability capability as

they tolerate a low level of data corruptions in their outputs. In this scenario, a bit differing

from the original one does not have the same impact in an application where every single

output bit has a major relevance. Due to human beings’ various insensitivities to images

with different frequencies, an acceptable error difference between two outputs can be

established in order to preserve the correctness in human image interpretation (HSIEH;

PENG; KU, 2013).

When mentioned in this work, full precision (FP) and single precision (SP) float-

ing point operands refer to 64-bit and 32-bit instruction width respectively since these
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precisions are those adopted in referred FPUs. Considering figures 2.2 and 2.3, the GPU

processing operation when using SP or FP floating point instructions remains the same.

Both of them can be executed independently since the streaming multiprocessor has in-

dependent floating point units specific for each one and supposing that there are enough

available resources. The difference that enables both execution and power consumption

reduction resides in the number of parallel instructions that can be executed in the GPU

pipeline. While executing one 64-bit floating point (FP64) instruction the pipeline can

execute two 32-bit floating point (FP32) instructions. This procedure introduces intrinsic

reduction both in total time execution and power consumption when compared to DWC

hardening method. With precision reduction, since the number of instructions per warp

increases, the total execution time is lessened. Consequently, the GPU spends less time

processing operations which leads to a reduction in power consumption. Figure 3.1 sum-

marizes the thread execution gain explored by RP-DWC method in a basic vision.

Figure 3.1 – A simplified pipeline view to illustrate the thread execution gain explored by
RP-DWC hardening strategy
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3.2 Implementation

Differing from the original DWC implementation where an instruction is executed

twice, RP-DWC adds extra steps that must be followed to operate correctly. In this pro-

posal it is assumed that all the original instructions are 64-bit large and in order to reduce

them to 32-bit, casting steps are needed. Figure 3.2 illustrates in a high-level vision the

RP-DWC procedure.

Figure 3.2 – A macro visualization of the RP-DWC strategy

Source: Reduced-Precision DWC for Mixed-Precision GPUs (SANTOS et al., 2020)

Initially, the original and the redundant FP64 inputs are ready to be used. In DWC

execution, both inputs would be executed in the FP64 FPUs, referred as FP64 Domain

in the figure. Instead, in step 1, both inputs, X64 and Y 64, must be casted to 32-bit

precision (X32 and Y 32). This first step can potentially introduce rounding errors as the

difference between two nearby quantities with different precisions can be very large as

shown in (GOLDBERG, 1991). Here, the NVIDIA rounding standard round-to-nearest

method is employed since it was designed to reduce as much as possible the difference

between the original data from the casted one.

Following the flowchart, in step 2, both FPUs execute the instructions with the

respective precision considering the availability of hardware resources. As previously

shown, while one 64-bit instruction is executed, another two 32-bit instructions can be

carried out as well. When the instructions complete their executions, the outputs are
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created, represented by Z64 and Z32. In this stage of the process, the original output is

set, since the original program 64-bit instructions have been accomplished. In this manner,

the Operation Result is the Z64 output itself. Step 3 consists of casting the original 64-bit

output to 32-bit precision represented by Z32′ and dispatched to a 32-bit FPU.

The final steps of the process consists of comparing both FP32 outputs in step 4a.

An additional evaluation of the output difference, an integer (INT) unit, is needed. This

computation does not require any rounding operation, but instead an re-interpretation of

the 32-bit output which considers unsigned integer (UINT) interpretation of the operand.

Step 4b compares the re-interpreted values to find bit-level differences without consider-

ing the floating point structure. This comparison operation can be made in parallel since

it makes use of a dedicated integer core and executes a simple 32-bit subtraction opera-

tion, improving even more the comparison operation and giving a better evaluation of the

magnitude of the difference.

In general, in step 4 occurs the evaluation of the output differences. When dis-

cussing the Relative Error, the difference between both FP32 outputs is given by σ = Z32
Z′32

.

Concurrently, the Absolute Error (UINT32 Error) is the absolute difference between them,

represented by α = | Z32− Z ′32 |. This evaluation is relevant because depending on the

comparison result, the execution will raise or not a flag indicating that a potential fail-

ure occurred while the program was executing. In this work the absolute difference was

adopted to handle the error detection since it presents faster execution and greater pre-

cision of the divergences. To decide whether each disparity must be treated as a failure,

RP-DWC uses the concept of Expected Precision Lost (EPL).

3.2.1 Expected Precision Lost

An EPL can be defined as the intrinsic difference between two operands when

precision reduction occurs. In traditional methodology the EPL is a number used to esti-

mate an acceptable range where the difference may vary in order to distinguish an error

due to a fault from the intrinsic divergence resulting from reduced precision computation.

When the comparison is made the result may not be within the EPL’s range and in this

circumstance an exception is raised. This deviation can stop the program’s execution or

roll-back the computation to the operation that caused the execution to be redone.

The optimal EPL varies for each instance of an operation depending on its inputs.

Calculating the ideal EPL in each iteration would require knowing the fault-free version of
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each different precision operation for every new input at runtime, which is, unfortunately,

impractical in high processing applications (SANTOS et al., 2020).

The EPL estimate is a very challenging and fundamental task to RP-DWC since

the difference of each operation changes while the program is running depending on the

inputs. Furthermore, the EPL determines whether the execution must handle or not an

error. An sub-optimal EPL alternative, adopted in this work, is defined as an interval

over which the outputs difference may diverge and no longer a number for each input and

operation. This method can define an interval that is too narrow leading to false positives

errors or too wide leading to false negatives ones when not properly calculated. In this

solution an sub-optimal EPL interval is measured by observing the lowest and highest

difference in a fault free code execution generating a very effective fault coverage. In

order to corroborate with the absolute comparison, the EPL was defined as an unsigned

integer 32-bit number.

3.2.2 Fault Injection

NVBitTFI is an architecture-level fault injection tool for GPUs resilience evalua-

tion specially designed on top of a dynamic NVIDIA binary instrumentation library. In

order to simulate an approximated realistic radiation environment and evaluate RP-DWC

performance, NVBitTFI was adopted.

The usage of NVBitTFI allows the programmer to select instruction groups to

evaluate how errors in them can propagate to the program’s output, such as:

• Instructions that write to general purpose registers;

• Single precision floating point instructions;

• Double precision floating point instructions;

• Load instructions.

Besides, this tool implements different routines to modify the current bit value in

one specific register, listed as below:

• Single bit-flip: one bit-flip in one register in one thread;

• Double bit-flip: bit-flips in two adjacent bits in one register in one thread;

• Random value: random value in one register in one thread;

• Zero value: zero out the value of one register in one thread.
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In this project, in order to simplify the final analysis, the chosen instruction groups

were single precision, double precision and instructions that write to general purpose

registers. Only the single bit-flip injection was used.

The fault injection campaigns consisted of a total of 1200 fault injections per

different benchmark, reaching up to more than 5h hours of execution. The total number

of injections were equally divided by every different instruction group, resulting in 400

fault injections per group. Every single fault injection originates a different output log that

contains detailed information about when the fault was introduced, which GPU kernel was

executing at the time, to which group the affected instruction belongs and what was the

final program output originated from the fault injection.

To evaluate the final result of a single fault injection, NVBitTFI classifies the

outcome in three different categories: Masked, Detected Unrecoverable Error (DUE)

and Silent Data Corruption (SDC). The same concept presented in section 1.1 must be

considered here to differentiate each of these outcomes. The injection evaluation relies

on comparing the program output to a fault-free output generated in the beginning of the

campaign, named golden output. If a difference between these two outputs is accused in

the analysis stage of the injection the fault outcome is computed as an SDC. On the other

hand, if no difference is noticed, the computation results in Masked. In turn, the majority

of DUEs occurs when an injection:

• hangs the program execution until the maximum execution time configured is

reached, resulting in a DUE timeout;

• tries to access an illegal memory address.

The results analysis in the following section is attached to the concepts of the fault

injection campaign previously delineated.

3.2.3 Benchmarks

For the experiments, a Tesla GPU with Volta Architecture, the NVIDIA Titan V

was used. The aforementioned GPU features dedicated hardware resources that speed up

instruction execution in both 32-bit and 64-bit precision units as show in figure 2.3. The

metrics measured from the results provided information to evaluate both reliability and

execution time. The results obtained from the fault injection campaign were used to gen-

erate the RP-DWC reliability analysis, while a NVIDIA profiler embedded in the CUDA
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Toolkit (CUDA. . . , 2021 (accessed May 12, 2021)) package for CUDA programming was

utilized to analyze the computational performance in execution time for RP-DWC.

Ahead of presenting the experiment benchmarks, is important to mention that the

full Duplication With Comparison method was also implemented for every chosen pro-

gram in order to create better results for the study. Moreover, all the benchmarks thread

block sizes configurations were set accordingly to the input matrices of each program in

order to provide greater execution capacity.

Hotspot is a well known application that requires HPC capabilities. This algo-

rithm consists of solving a great number of differential equations that calculate the esti-

mated processor surface temperature given an architectural floorplan and simulated power

measurements. The surface is divided into a number of spots; each spot is represented as

an matrix index input (i.e a matrix of size 1024 X 1024 results in 1,048,576 different

spots).

To compute the surface temperature in a specific spot, Hotspot calculates an av-

erage value considering the estimated temperature at the neighbor spots. This procedure

can potentially mask a least significant bit difference at one spot considering that the

averaging calculation reduces the precision impact compared to a single element alone.

Therefore, when computing the Hotspot RP-DWC EPL the absolute comparison of each

output presented a very low difference in the worst case. The chosen input size was a ma-

trix of size 1024X 1024, the maximum provided by the Rodinia Benchmark Suite (CHE;

BOYER et al., 2009)-(CHE; SHEAFFER et al., 2010). The block size adopted was not

set as the optimal size to avoid thread queuing since the GPU occupancy evaluation for

the RP-DWC version of the benchmark showed not to be critical.

Nonnegative Matrix Factorization (NMF) calculates the factorization of the

matrix V into two other matrices, W and H, so that all matrices have no negative ele-

ments. Matrix factorization consists basically of decomposing a matrix into the product

of two lower dimensionality rectangular matrices. For the given experiments, the matrices

sizes were larger than the original benchmark provided by the Vienna Computing Library

(RUPP et al., 2016), since greater sizes allow a facilitated evaluation of the execution time

comparison between RP-DWC and DWC techniques. The EPL in this case resulted from

the intrinsic difference between the rounding operations of RP-DWC. Since NMF does

not present the same averaging treatment as the Hotspot benchmark the EPL was also

greater than the former one. Finally, the thread block size appeared to have low impact

in the algorithm performance, since the matrices sizes adopted were relatively small and
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the GPU occupancy for the benchmark was also not critical. The block size was chosen

to fit one thread per output index (i.e a factorized matrix size of 100 X 60 results in 6000

different threads divided in blocks of 60 threads each).

Conjugate Gradient Solver (CGS) proposes to solve a system of linear equations

in the Ax = b form where A is a well known n x n symmetric matrix (when the transpose

equals to the original matrix) and also positive-definite (i.e xTAx > 0 for all non-zero

vectors x). In this benchmark, a GPU accelerated solution is proposed by the NVIDIA

CUDA Samples (CUDA. . . , 2018 (accessed May 12, 2021)).

Since the benchmark is an iterative algebric linear system solution, the algorithm

consists of a great number of matrix operations that use the previous result to calculate

the output for the next iteration. This treatment potentiates the propagation of an intrin-

sic precision difference between the original value and the less precise redundant one in

RP-DWC, specially if the difference occurs in an early stage of the iterations. In order

to mitigate this potential inequality the precision used in the full precision method was

reduced. This decision softened the precision loss effects in the most significant bits of

the output. Nevertheless, it also seemed to have no impact when compared to the original

program, which doesn’t use a representation where all the output values require the 64-bit

precision. Instead, a much smaller quantity of bits is necessary to correctly represent the

resultant numeric values.

Similar to the Hotspot and the NMF, the CGS RP-DWC solution doesn’t stress the

GPU resources when using the default block size configuration of the benchmark which

is 512 threads per block. Since the output matrix size is of 1024 X 1024, increasing the

number of threads per block and the number of blocks to 1024 could be possible. This

would theoretically elevate the parallelism level. Yet, it was observed that augmenting the

block size caused the benchmark to stress the GPU resources to the limit, which could

lead to a potential commitment of the multithreaded parallel execution.

Bisect is an abbreviation for the bisection algorithm, a simple method for finding

the eigenvalues of a tridiagonal matrix. The algorithm routine is to implement a root-

finding method to any continuous function defined on a given interval [a, b], where f(a)

and f(b) have opposite signs. For a provided input size, the algorithm generates a random

tridiagonal matrix along with the respective super-diagonal. By having these values, the

algorithm is capable of describing a continuous function and calculating the respective

eigenvalues (RUPP et al., 2016).

However, when implementing the method on a computer system such as a GPU,
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there can be complications with finite precision. Even though f(x) is continuous, finite

precision may preclude a function value from ever being zero, for example when using

the π value in a function and trying to find an x value that equals π. Unfortunately this

equality is not precise in finite computation, which leads to the first problem found in

Bisect. In order to correctly evaluate the algorithm, additional verification tests are neces-

sary, which harms the high processing application, and thus, they were not implemented

in the experiment.

After executing the fault injection campaign in Bisect it was possible to notice that

the vast majority of the fault injections led to SDCs. Not enough, a great number of false

positives was detected. This happens when the result of a fault injection is not computed

as an SDC, but the comparison algorithm accuses a difference greater than the EPL. Even

when increasing the EPL interval, the algorithm continued to show extreme sensitivity to

every single fault injection. Due to this behaviour the Bisect reliability evaluation was not

satisfactory, but the benchmark was not discarded yet.

When evaluating the execution time and the GPU allocation resources to either the

DWC and RP-DWC version, relevant information was noted. Despite the low resource

utilization in both methods, the Bisect did not show any improvement in the execution

time from the DWC version to the RP-DWC which was unexpected. After investigating

the reason for this behaviour, it is supposed that there are a synchronization mechanism

within the benchmark which blocks and hangs the parallel kernel execution until the first

kernel is not completed, resulting in a sequential execution procedure. Finally, it was de-

cided that the Bisection-algorithm would be detailed as a counterexample in this analysis.

Table 3.1 – A summary of the benchmarks attributes

Benchmark UINT32 EPL Matrix Input Size Thread Block Size
Hotspot 1 1024 X 1024 1024
Conjugate Gradient Solver
(CGS)

4 1024 X 1024 512

Nonnegative Matrix Factor-
ization (NMF)

41 100 X 60 60

The main attributes of each experimental benchmark for results analysis
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4 RESULTS

This final chapter presents the experiments results from both original DWC and

RP-DWC benchmarks. They are divided into two major groups: the reliability metric

and the performance metric. The first is based on the concepts of detected and undetected

Silent Data Corruptions (SDCs), whereas the second is greatly influenced by the execution

time. Here we refer to both redundancy techniques as their abbreviations, DWC and RP-

DWC. Whenever the reliability metric is cited, it refers to the SDC detection capability of

each method. On the other hand, the performance metric is related to the execution time

of the benchmarks when using the full precision redundancy and the single precision one.

In the experiments, every execution was completed even when an error was de-

tected since the goal was to evaluate and compare the error detection rate in both hard-

ening strategies. Moreover, it was considered an error any difference greater than the

minimal tolerance between the computed output and the expected one. It was adopted

as minimal tolerance for RP-DWC the maximum difference between a fault-free output

resultant from: a full precision execution of the algorithm, and a single precision one.

For the DWC method since there is no precision loss and consequently no differences

originated from this, there was no minimal tolerance adopted.

In order to demonstrate the intrinsic undetected errors for the RP-DWC technique,

figure 4.1 illustrates the bits where the method is incapable to detect differences. By

demonstrating the IEEE 754 floating point formats it becomes clearer to visualize this

characteristic. The 29 least significant bits from the full precision operand’s mantissa

compose the undetectable region. Since these bits may not be represented in a single

precision format it becomes impractical to detect any bit difference in this region. There-

fore, if any corruption occurs in one of those bits it will be intrinsically undetected by the

RP-DWC strategy.

Figures 4.2 to 4.4 illustrate the detection rate in every benchmark for both RP-

DWC (left column) and DWC (right column). For a total of 1, 200 fault injections per

campaign a number of SDCs was detected. 100% of detection means that every single

fault that generated an SDC was detected. As expected, DWC detects a relatively larger

number of SDCs since no precision reduction is required and consequently the implica-

tions caused by the bit-loss are non-existent. For both NMF (Figure 4.3) and Hotspot

(Figure 4.2) the DWC detection rates are greater than 90% and for CGS (Figure 4.4) it

is approximately 80%. This can be explained from the CGS algorithm sensitivity when
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Figure 4.1 – RP-DWC undetectable region

bit corruptions are introduced, as detailed in the benchmark section. When it comes to

the RP-DWC it can be observed that the undetected errors increase for all benchmarks.

However for the Hotspot and the NMF the detecion rates remains high which means that

for both algorithms the precision reduction method adopted did not introduced significant

differences.

The CGS results prove that the algorithm is incredibly sensitive to faults, which

becomes even more evident when precision reduction is added to it. Even if presenting

the worst reliability results between the benchmarks, the detection rates for both DWC

and RP-DWC are unsatisfactory, that reduces in this way the negative impact of the RP-

DWC. The DWC also detects a low number of errors when compared to the other DWC

benchmark results.

The RP-DWC technique introduced the expected reduction in the algorithms ex-

ecution time as demonstrated in figures 4-5 to 4.7. Considering the: high availability

for the single precision FPUs since originally the algorithms were implemented to oper-

ate with 64 bits; and the floating point computing capacity which is considerably higher

for the FP32 instructions (VOLTA. . . , 2017) a summarized comparison is demonstrated

in table 4.1. The respective table shows that, for the GPUs Volta architecture, exists a

greater number of 32-bit floating point units per GPU. This favors the RP-DWC since the

technique makes a balanced use of both FP64 and FP32 units while the DWC uses, in the

majority, 64-bit FPUs. Ultimately, the peak TFLOPS exposes that the FP32 instructions

take advantage over the full precision ones. This metric describes the maximum number



41

Figure 4.2 – Hotspot Fault Detection

of the respective floating point instructions that the GPU can execute in one second.

Table 4.1 – Comparison between FP32 and FP64 instructions in Volta

Method DWC RP-DWC
FPUs Cores/GPU 2560 FP64 2560 FP64 + 5120

FP32
Peak TFLOPS 7.8 (FP64) 15.7 (FP32)

Source: NVIDIA Volta architecture whitepaper (VOLTA. . . , 2017)

The data from the tables proves the gain that comes with the precision reduction

in execution time. Original kernel time refers to the kernels execution time without any

redundant technique applied. DWC and RP-DWC kernel time, in turn, consider each

duplication technique respectively. In average, more than 40% of the total time spent is

saved when compared to the DWC technique. The metrics are divided into kernel time

and comparison time. The former one is related to the period the algorithm spends to

compute the GPUs kernels without considering the memory instructions while the last

references the comparison operations to detect errors at the end of both methods.

It is observed different behavior in the comparison time when correlating the three

benchmarks. Hotspot has a very expensive kernel particularly when the full precision re-

dundancy is applied. The comparison method for both techniques when compared to the

kernel execution time are also considerable. This can be explained by the relevance of the

time the method spends comparing the outputs with the kernel execution time itself. In

Hotspot specially, the kernel seems to be less complex than the other benchmarks. The
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Figure 4.3 – NMF Fault Detection

NMF benchmark presents very expensive kernels and relatively fast comparison opera-

tions due to the modest matrices sizes. This characteristic minimizes the comparison time

when compared to the original kernel, leading to the removal of this data from the exhi-

bition. Finally, it is possible to conclude from these results that the RP-DWC hardening

strategy introduces very interesting performance gain in both NMF and CGS benchmarks.

The total time in this cases is less than 200% which suggests that even with the duplicated

versions of the kernel and the comparison method, the total time is not even doubled from

the original kernel. On the other hand, with the DWC technique, this barrier is surpassed

only considering the kernel time. When adding the comparison time to this equation,

DWC becomes more expensive. The Hotspot algorithm also seems to benefit from the

RP-DWC adoption. Whereas presenting greater overheads in the comparison step, the

redundancy itself granted interesting performance gain.
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Figure 4.4 – CGS Fault Detection

Figure 4.5 – Hotspot Performance Results

Figure 4.6 – NMF Performance Results
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Figure 4.7 – CGS Performance Results
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5 CONCLUSION

When referring to high-computing applications in mixed precision GPUs, the re-

duced precision technique to maintain reliability even in the presence of radiation events

can introduce interesting benefits. The RP-DWC technique requires no complex code

modification, being necessary only to introduce the redundancy and the comparison meth-

ods. Besides, the performance gain when compared to the original DWC technique pro-

vides more satisfactory execution time for these applications, a considerable metric when

powerful GPUs architectures like Volta are adopted. Moreover, the detection rate with

precision reduced seems to have a small impact in the final outputs.

As cited previously, one of the main challenges found in RP-DWC is to main-

tain acceptable error detection rates even with the intrinsic limitation that comes with

the precision loss. Finally, to improve fault coverage and reduce the sensitivity when

a bit corruption occurs, better floating point handling approaches might be studied and

employed.
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