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em Cenários Complexos

Eliseu Venites Filho

Dissertation presented in partial fulfill-
ment of the requirements for the degree of
Master of Physics

Advisor: Prof. Dr. Roberto da Silva

Porto Alegre
May, 2021



Abstract

Combinatorial optimization problems, such as the process of searching
for extrema of a function over a discrete domain, are ubiquitous in science
and engineering. Despite its ubiquity, some of these problems are notably
difficult, requiring a computational cost which exponentially scales with the
number of inputs. Among the vast collection of combinatorial optimization
problems, the traveling salesman problem (TSP) has been of particular im-
portance because of its huge number of applications. A common approach
to such hard problems is the use of heuristics such as simulated annealing.
Many versions of this heuristic are explored in the literature, but so far the
effects of the statistical distribution of the coordinates of the cities on the
performance of the heuristic has been neglected. We propose a simple way
to explore this aspect by analyzing the performance of a standard version
of simulated annealing (one using the geometrical cooling schedule) in corre-
lated systems with a simple and useful method based on a linear combination
of independent random variables. Our results suggest that performance de-
pends on the shape of the statistical distribution of the coordinates but not
necessarily on its variance corroborated by the cases of uniform and normal
distributions. On the other hand, a study with different power laws (different
decay exponents) for the coordinates always produces different performances.
We show that the performance of the simulated annealing, even in its best
version, is not improved when the distribution’s first moment diverges. Sur-
prisingly, however, we still obtain improvements when the first moment exists
but the second moment diverges. Finite size scaling, fits, and universal laws
support all of our results. In addition our study shows when the cost must
be scaled.
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Resumo

Problemas de otimização combinatorial, com problemas envolvendo en-
contrar pontos extremos de uma função sobre um domı́nio cont́ınuo, são
onipresentes em ciência e engenharia. Apesar de sua onipresença, alguns
desses problemas são particularmente dif́ıceis, exigindo um custo computa-
cional que aumenta exponencialmente com o número de entradas. Dentre a
vasta coleção de problemas de otimização combinatória, o problema do caix-
eiro viajante (TSP) tem sido de especial importância devido a seu grande
número de aplicações. Uma abordagem comum para tais problemas é a uti-
lização de heuŕısticas, como o recozimento simulado. Muitas versões dessa
heuŕıstica são exploradas na literatura, mas até então o efeito da distribuição
das coordenadas no desempenho da heuŕıstica tem sido preterido. Neste tra-
balho propomos uma maneira simples de explorar esse aspecto analisando
o desempenho de uma versão padrão do recozimento simulado (utilizando
o cronograma de resfriamento geométrico) em sistemas correlacionados com
um método simples baseado em combinações lineares de variáveis aleatórias
independentes. Nossos resultados sugerem que o desempenho depende forte-
mente do formato da distribuição e independe de sua variância, o que foi
verificado utilizando distribuições uniformes e normais. Entretanto, um es-
tudo considerando diferentes leis de potência (diferentes expoentes de decai-
mento) para as coordenadas resulta em desempenhos diferentes. Mostramos
que mesmo para a melhor versão do recozimento simulado estudada, o reco-
zimento simulado não é capaz de encontrar um ciclo satisfatório quando a
distribuição de coordenadas não têm o primeiro momento definido. Porém,
surpreendentemente, observamos melhoras mesmo quando a distribuição tem
seu segundo momento não definido. Análises de tamanho finito, ajustes e
leis universais corroboram nossos resultados. Ademais, nossa análise mostra

3



quando o custo deve ser escalado.

Palavras chave: otimização combinatorial; problema do caixeiro via-
jante; heuŕısticas; recozimento simulado; monte carlo;
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Chapter 1

Introduction

When reasoning about computational problems it is important to consider
not only if a given problem is solvable but also how much computational
resources need to be employed. In order to answer this question the field of
computational complexity classifies algorithms based on how fast their time
and space requirements increase with input size for the worst case scenario.
The time complexity of an algorithm refers to the number of elementary
steps taken to solve the problem. For our purposes the most important
complexity classes are P and NP, they can be informally defined as follows:
[1, Chapter 1]

• Polynomial time (P): A problem belongs to the class P if there exists an
algorithm for finding the solution in a computational time that grows
at most as a polynomial function of the input size.

• Non-deterministic polynomial time (NP): A problem belongs to the
class NP if given a candidate solution there is an algorithm in P for
checking if the candidate solution really solves the problem.

Algorithms that solve problems from P in polynomial time are referred to
as efficient algorithms. A problem outside P is a problem that is theoretically
solvable given a long computation time, although it can potentially become
impractical as the instance size grows. It is clear that P is a subset of NP,
that is P ⊆ NP, since if we have a way of efficiently solving a problem,
then the checking of a candidate solution can be done by simply solving the
problem and comparing the computed solution to the candidate one. The
question of whether every problem in NP is also in P remains open.
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Moreover, another important classification is that of NP-hardness and
NP-completeness. A problem belongs to the complexity class NP-Hard if
it is at least as hard as any NP problem, i.e. any problem in NP can be
reduced to it in polynomial time. Furthermore a NP problem that is also
NP-Hard is classified as NP-Complete. Figure 1.1 illustrates how the
complexity classes relate to each other.

NP

P NP-Complete NP-Hard

Complexity

TSP

SAT

HALTING

Figure 1.1: Euler diagram of the complexity classes assuming that P 6= NP.
Note that NP-Complete ⊂ NP-Hard.

In the early 1970’s it was shown through the so-called Cook-Levin theo-
rem [2] that the problem of boolean satisfiability (SAT) is NP-Complete,
therefore one could assert that a given problem is also NP-Complete by
reducing it to SAT. Later, Karp did just that for several well-known prob-
lems, among them the Traveling Salesman Problem (TSP), the subject of
this work.

For the sake of completeness, we note that the complexity classes de-
scribed above are used to classify decision problems; nevertheless, there is
a relationship between a decision problem and its optimization counterpart
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allowing for the latter to be solved in polynomial time given that the former
can be shown to be decided in polynomial time.

In order to show the importance of an efficient algorithm, consider the
problem of sorting a list of numbers, a very routine problem for which a
number of efficient algorithms are known, among them the quicksort. This
particular algorithm has an average running time of O(n log n) although it
may take as many as O(n2) for the worst case scenario, where n is the list
size. [3, Chapter 7]

If no such algorithm existed, the only available option would be a brute-
force search over the whole set of possible permutations and because there
are n! of them for a list of size n the running time of the search would be
O(n!).

Assuming that a typical personal computer has a CPU processor clock
of the order of GHz and assuming one operation per clock cycle, in Table
1.1 we estimate how long it would take to sort a list of a given size n using
the efficient quicksort algorithm versus searching through the whole set of
permutations.

Table 1.1: Estimated running time comparison of an efficient O(n2) algorithm
versus an inefficient O(n!) one as function of input size n.

Complexity n = 4 n = 16 n = 64

O(n2) 16 ns 256 ns 4.096 µs
O(n!) 24 ns 5 h 48 min 42 s 2.9× 1062 the age of the universe

1.1 Nature inspired heuristics

Traditionally, computational complexity considers the worst case scenario
when analyzing a proposed algorithm for a given problem. If the proposed
algorithm solves any instance of a given problem at most in polynomial time,
then the problem is classified as belonging to P. Sometimes, however, it is
enough to realize that for some problems even if we cannot guarantee a
solution for the worst instances in polynomial time, we nonetheless may be
able to solve some useful instances efficiently.

The classification of problems according to complexity classes and the
identification of problems which seem impossible to be efficiently solved for
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all instances motivated the search for alternative methods with more relaxed
mathematical constraints than the usual definition of an algorithm. In this
context, the concept of an heuristic come into play.

It is important to clearly differentiate between an algorithm and a heuris-
tic in the context of combinatorial optimization [4]. An algorithm is a well
defined procedure that solves a given problem exactly identifying all solu-
tions, including the optimal one, with the certainty of a mathematical proof.
The algorithm always works for the whole class of problems for which it was
designed.

On the other hand, a heuristic is an approach that yields good solutions
for certain instances of the problem, but does not guarantee that the solu-
tion is optimal, neither specifies how close to optimal the solution found is.
Arguments for its performance are usually justified empirically or by analo-
gies but, crucially, no mathematical proofs are provided. Furthermore, the
evaluation of heuristics is also done empirically.

A large number of heuristics are conceived through careful examination of
physical systems. When dealing with combinatorial optimization problems,
it is natural to draw connections to the field of statistical mechanics. The
parallels are plenty and are summarized in table 1.2.

Each problem can be thought of as a system in statistical mechanical
sense while the cost function we wish to minimize is described by the total
energy of the system, its Hamiltonian. Moreover, an instance of a given
problem corresponds to a sample of a given system and the specification of
a candidate configuration for the instance is equivalent to the specification
of a microstate for the system.

Table 1.2: Similarities between the frameworks of statistical physics and combi-
natorial optimization.

Statistical Physics Combinatorial Optimization

System Problem
Hamiltonian Cost Function

Sample Instance
System Size Instance Size
Microstate Configuration

In the mid 80’s a deep connection between the statistical mechanics of
systems with many degrees of freedom, which can reach equilibrium by means
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of the Metropolis prescription, and combinatorial optimization problems con-
sidering functions with complex landscapes was exposed independently by [5]
and [6]. The former applied the method first in the context of circuit design,
revealing further analogies between this specific problem and the physics of
spin glasses, and then to the TSP. Since then, the simulated annealing heuris-
tic has been applied to several combinatorial problems including the study
of the thermodynamics of protein folding [7] and the evaluation of periodic
orbits of multi-electron atomic systems [8], among others.

About being inspired by natural mechanisms to solve computational prob-
lems, Černy noted at the very end of his paper [6]:

“We believe that this is caused by the fact that our algorithm simulates
what Nature does in looking for the equilibrium of complex systems. And
Nature often does its job quite efficiently.”

The goal of this work is not to test different simulated annealing heuris-
tics or even consider several cooling schedules, but rather to analyze the
performance of a given variation of simulated annealing when applied to
purposely crafted artificial instances of the notoriously difficult and ubiq-
uitous Traveling Salesman Problem (TSP), which concerns itself in finding
the best Hamiltonian cycle in a complete graph, i.e., the cycle that includes
all cities without repetition, with minimal cost. We focus first on investi-
gating the performance of this heuristic for artificial instances consisting of
two-dimensional points whose city coordinates are correlated and long-tailed
distributed. Our work explores the transition between the TSP for points
randomly distributed in a two-dimensional domain (NP-Complete prob-
lem), when the coordinates are uncorrelated, and sorting a list of numbers
(P problem) when coordinates are perfectly correlated.

We begin in chapter 2 by presenting the problem at hand, the Travel-
ing Salesman Problem. The simulated annealing heuristic is introduced in
chapter 3. Chapter 4 describes the random environments considered in our
analysis along with the methods used in order to generate them. The results
of the simulations carried out are compiled in chapter 5, beginning with a cal-
ibration of the method and then our main contributions. Finally, in chapter
6, general conclusions are drawn.
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Chapter 2

The traveling salesman problem

Simply stated, the Traveling Salesman Problem (TSP) asks what is the
shortest tour that visits every city once and then returns to the point of
departure, given a set of cities and the pairwise distance between them. The
namesake of the problem are 18th and early 19th century salesmen that
traveled the country stopping at several cities to gather orders for which an
efficient itinerary was important for minimizing the time en route.

Despite its simplicity, the TSP is of immense theoretical importance,
belonging to the NP-Complete complexity class. It has been shown to be
really challenging and as a result it is regarded as one of the most intensively
investigated problems in combinatorial optimization. From a more practical
standpoint, apart from the obvious logistics applications, the problem has
piqued the interest of researchers from a myriad of areas ranging from biology
to microchip fabrication.

2.1 Brief history of the problem

The precise origin of the TSP is somewhat unclear, given its ubiquity it is
thought that similar problems have been informally discussed by some math-
ematicians for many years before its modern formulation [9]. It is believed
that the earliest promotion of the problem inside the mainstream mathemat-
ical community is due to the Austrian mathematician and economist Karl
Menger, who as early as 1930 presented the problem in its modern formu-
lation. It was also Menger that first noted that a brute-force search would
be impractical for relatively small instances. A few years later, in 1934, a
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seminar talk by Hassler Whitney at Princeton University is credited as being
responsible for spreading the problem even further [10, Chapters 1 and 2].

Figure 2.1: Illustrative example of relatively small instance of the TSP containing
N = 64 points.

2.2 Mathematical formulation

A more mathematically precise formulation of the Symmetric Traveling
Salesman Problem, henceforth referred to simply as TSP is as follows: a set of
N points P = {pi}N−1

i=0 and the pairwise distance between them described by
the symmetric matrix D where its element d(i, j) is the distance between the
points pi and pj are given. The cost of a cycle σ = (σ(0), σ(1), · · · , σ(N−1))
is defined to be
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H(σ) =
N−1∑
k=0

d (σ(k), σ(k + 1)) (2.1)

with the condition for a cycle being that σ(N) = σ(0).
Since we have the choice of starting point and the orientation in which the

tour is traversed, the set of states of the system Γ is smaller than the set of
all possible permutations SN . This can be thought of as an equivalence class
between the cycles of same cost. For example, considering a N = 4 point
instance, the state σ = (0, 1, 2, 3) is equivalent to 2N = 8 permutations:

(0, 1, 2, 3) ∼
{

(0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1), (3, 0, 1, 2),
(3, 2, 1, 0), (2, 1, 0, 3), (1, 0, 3, 2), (0, 3, 2, 1)

}
(2.2)

Hence, the total number of states to be considered is:

|Γ| = |SN |
2N

=
N !

2N
=

(N − 1)!

2
(2.3)

The goal is therefore to determine the best cycle passing through all points
in P , i.e. the cycle of minimal cost σ∗ among the set Γ of all possible cycles.

σ∗ = arg min
σ∈Γ

H(σ) (2.4)

This is still an extremely large number even for a modest number of points
N . The running time of a brute-force search algorithm through the whole
space of all the (N−1)!

2
possible cycles follows closely that of the second row

of Table 1.1.

2.3 Overview of exact methods

In a landmark paper [9], a relatively large instance (at the time) of the
TSP was solved exactly and the optimality of a tour was shown exactly using
ideas from linear programming, what culminated in a method know today
as the cutting plane algorithm.

Nowadays, one of the best known methods for solving the TSP exactly
is the branch & cut algorithm which is a combination of the cutting plane
algorithm and the branch & bound algorithm [11]. The branch & bound
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algorithm, widely used for combinatorial optimization problems consists in
recursively dividing the search space in domains and ignoring the branches
containing only domains that the algorithm can determine to not contain the
optimal solution [12].

For our purposes, however, it is worth noting the following developments
since they provide insights that will be useful for us later. The nearest neigh-
bor (NN) [13] constructive heuristic corresponding to a particular case of
the tourist random walk [14, 15] is a very intuitive process, which consists
in selecting a starting point and then measuring the distance from all other
points to the selected one and finally selecting the closest one. This pro-
cess is repeated until all points are visited and the cycle is closed. This
approach, nonetheless, in general does not yield the optimal tour: because
of frustration, it is not possible to minimize all local energies at same time.

Apart from constructive methods, there are also local search methods,
that start with a given cycle and modify it iteratively in some way looking
for cost improvements. In a local search, move heuristics are employed in
order to generate a new cycle from a given one. Each move heuristic defines
a notion of adjacency between the set of cycles [16].

A very basic move for iterative improvement is that of a swap, in which
two neighboring nodes have their positions within the cycle swapped. One of
the advantages of this move is that the cost difference between the resulting
cycle and the previous one is easily calculated by subtracting the sum of the
weights of the removed edges from the sum of the weights of the new edges.
It is independent of the size of the cycle.

In the example of figure 2.2, the neighboring nodes 2 and 3 are se-
lected and have their positions swapped generating the candidate state σ′ =
(0, 1, 3, 2, 4, 5, 6) from the initial state σ = (0, 1, 2, 3, 4, 5, 6). The cost differ-
ence between the states can be easily calculated by subtracting the cost of the
removed edges ((1, 2) and (2, 3)) from the cost of the newly added edges ((1, 3)
and (2, 4)), yielding ∆H = H(σ′)−H(σ) = d(1, 3)+d(2, 4)−d(1, 2)−d(2, 3)

There exists a more interesting choice of move that is commonly employed
in iterative improvement. This mechanism makes use of the concept of n-
optimality [17]: a given cycle is said to be n-optimal (n-opt) if it cannot be
improved by replacing a set of n edges by another set of n edges. A given cycle
through N points is optimal if it is an N -opt cycle, meaning that no other
configuration of edges can improve its cost. The simplest of the n-opt moves
is the 2-opt, it was first employed by [18] albeit without naming it. It consists
in selecting two edges of the cycle and substituting them with two others.
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(a) Initial state with selected nodes
highlighted.
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(b) Resulting state. Highlighted nodes
had their orders swapped.

Figure 2.2: Example of a swap move performed on a small instance of size N = 7.

Once the two edges are selected there is only one possible resulting cycle.
This operation is equivalent to removing the selected edges, reversing the
subsequence in between them and then reconnecting the cycle back together.
Once again, the cost difference calculation is highly efficient and independent
of the size of the system and consists in subtracting the cost of the removed
edges from the newly added ones.

Starting from the initial state σ = (0, 1, 2, 3, 4, 5, 6), in figure 2.3, the
edges (0, 1) and (3, 4) are removed and the edges (0, 3) and (1, 4) are added,
resulting in the candidate state σ′ = (0, 3, 2, 1, 4, 5, 6). The cost difference
between these configurations is ∆H = d(1, 4) + d(0, 3)− d(0, 1)− d(3, 4).
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(a) Initial state with selected edges high-
lighted.
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(b) Resulting cycle with new edges high-
lighted.

Figure 2.3: Example of a 2-opt move performed on a small instance of size N = 7.
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Chapter 3

Simulated annealing heuristic

Given the classification of the Traveling Salesman Problem as a hard
problem, the utilization of heuristics for its solution is alluring. One such
physically motivated heuristic is simulated annealing [5, 6, 19], in which a
random walk in the configuration state of the system is performed until it
reaches global equilibrium or, at worst, an interesting local minimum.

This heuristics employs the Metropolis algorithm [20, 21, 22] to sample
the Gibbs ensemble of the system at decreasing temperatures. The Metropo-
lis algorithm allows us to simulate a random variable under a probability
distribution using an important concept known as Markov Chains.

3.1 Markov chains

In the study of stochastic processes, Markov chains are of the utmost
importance providing the basis for several stochastic models of physical sys-
tems. In this work we concern ourselves only with discrete time stochastic
processes over a discrete state space and the definitions follow [23].

A discrete time Markov chain (from now on simply referred to as Markov
chain) is a memoryless discrete time stochastic process, meaning the proba-
bilities for the next event do not depend on the entire history of the process
but rather only on the last state. More precisely, let the process {Xt}t∈N be
a discrete time stochastic process over the discrete state space Γ. Then this
stochastic process is a Markov chain if

23



P(Xt+1 = y|X0 = x0, X1 = x1, ..., Xt = xt) = P(Xt+1 = y|Xt = xt)

∀x0, x1, ..., xt, y ∈ Γ

Additionally, if this probability is dependent only on the departing and
arrival state and not on the time step of the process then the Markov chain is
classified as homogeneous and is completely defined by its stochastic matrix.
The stochastic matrix is a square matrix P whose elements are the transition
probabilities from one state to another and is given by

[P ]x,y = P (x→ y) = P(Xt+1 = y|Xt = x), ∀t ∈ N (3.1)

Naturally, it has the property that its rows each sum to 1:∑
y∈Γ

P (x→ y) = 1, ∀x ∈ Γ (3.2)

The product of a stochastic matrix P by a distribution µ over the state
space Γ results in another distribution ν over Γ:

ν(y) = µP (y) =
∑
x∈Γ

µ(x)P (x→ y), ∀y ∈ Γ (3.3)

This way, the transition matrix completely defines the dynamics of the
stochastic process:

µt(y) = µt−1P (y) =
∑
x∈Γ

µt−1(x)P (x→ y) ∀y ∈ Γ, (3.4)

where µt is the distribution followed by the system at time t.
Hence, if the initial state of a homogeneous Markov chainX0 is distributed

according to the distribution µ0 over Γ, then after t time steps, Xt will be
distributed according to the distribution µt given by

µt(x) = µ0P
t(x) ∀x ∈ Γ. (3.5)

The transition matrix defines a transition graph over the state space Γ.
Figure 3.1 illustrates the Markov chain transition graph defined by both the
swap and 2-opt moves over the state space of an example TSP over 7 points.
We note that the degree of each node (cycle state) for the 2-opt move is much
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(a) Swap move: Each state is adjacent to
7 others.

(b) 2-opt move: Each state is adjacent to
14 others.

Figure 3.1: Example of a Markov chain transition graph defined by each move
for a small scale example containing 7 points. Each of the |Γ| = (7−1)!

2 = 360 nodes
in this state graph represents a possible state for the cycle. Plots made using the
graph-tool library [24].
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higher allowing for a better exploration of the state space, as we will see in
our results.

Considering a single time step of the process, we can split the sum in
equation (3.4) into a term representing the probability flow coming from a
state x different from y plus the probability that the system was in state y
and remained there:

µt(y) =
∑
x∈Γ

µt−1(x)P (x→ y)

=
∑
x∈Γ
x 6=y

µt−1(x)P (x→ y) + µt−1(y)P (y → y)︸ ︷︷ ︸
x=y

∀y ∈ Γ. (3.6)

Taking the normalization condition (3.2), the probability for the system
to remain in a given state y ∈ Γ in a time step is:

P (y → y) = 1−
∑
x∈Γ
x6=y

P (y → x), ∀y ∈ Γ (3.7)

Plugging in equation (3.7) into equation (3.6), we obtain

µt(y) =
∑
x∈Γ
x 6=y

µt−1(x)P (x→ y) + µt−1(y)

1−
∑
x∈Γ
x6=y

P (y → x)


= µt−1(y) +

∑
x∈Γ
x 6=y

[µt−1(x)P (x→ y)− µt−1(y)P (y → x)]

(3.8)

Defining the finite difference ∇µt ≡ µt − µt−1 we arrive at the discrete
master equation [25]:

∇µt(y) =
∑
x∈Γ
x 6=y

[µt−1(x)P (x→ y)− µt−1(y)P (y → x)] , ∀y ∈ Γ, (3.9)

which states that the probability variation for a given state is the incoming
probability flux minus the outgoing one, implying that the probability flow
is conserved.

By definition, a distribution π over Γ is said to be stationary if it satisfies

∇π = 0, (3.10)
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From equation (3.9), this constraint implies the global balance condition:∑
x∈Γ
x 6=y

π(x)P (x→ y) =
∑
x∈Γ
x6=y

π(y)P (y → x), ∀y ∈ Γ. (3.11)

The stationary state gives us a notion of equilibrium, since once the chain
arrives at this regime it remains there indefinitely. This can be seen by
summing π(y)P (y → y) on both sides of equation (3.11) and applying the
normalization condition (3.2) on the right-hand side, yielding

π(y) =
∑
x∈Γ

π(x)P (x→ y), ∀y ∈ Γ, (3.12)

or, simply:
π = πP. (3.13)

A possible way to satisfy equation (3.11) is to require that the terms in
the sums on both sides of the equation be equal one by one:

π(x)P (x→ y) = π(y)P (y → x) ∀x, y ∈ Γ. (3.14)

This is known as the detailed balance condition and characterizes, in par-
ticular, systems whose dynamics are the same forwards and backwards in
time. Such reversible Markov chains have a simple equilibrium regime, i.e.,
without cycles.

3.2 Metropolis prescription

In physics applications, an important steady state distribution is one that
considers the equilibrium energy distribution of a system in contact with a
thermal reservoir at temperature θ, which is given by:

πθ(x) =
1

Zθ
exp

[
− 1

kBθ
H(x)

]
, ∀x ∈ Γ (3.15)

with Zθ being the partition function

Zθ =
∑
x∈Γ

exp

[
− 1

kBθ
H(x)

]
(3.16)
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where kB is the Boltzmann constant and H(x) is the energy associated with
the state x ∈ Γ of the system.

For simplicity’s sake, we will use a normalized temperature T = kbθ given
in units of cost. Hence, we employ the following distribution:

πT (x) =
1

ZT
exp

[
− 1

T
H(x)

]
, ∀x ∈ Γ (3.17)

ZT =
∑
x∈Γ

exp

[
− 1

T
H(x)

]
. (3.18)

Starting with the detailed balance condition in the equation (3.14) we
apply the Gibbs distribution as the chosen stationary distribution

P (x→ y)

P (y → x)
=
πT (y)

πT (x)
= exp

[
− 1

T
(H(y)−H(x))

]
. (3.19)

It is worth noting that this completely removes the necessity of calculating
the partition function ZT which is in general not known.

There are several ways to satisfy this condition, one way is to split the
transition process into two stages: first each state is assigned a given prob-
ability to be selected as a candidate next state and then once a candidate
next state is selected it has a probability to be accepted:

P (x→ y)

P (y → x)
=
g(x→ y)A(x→ y)

g(y → x)A(y → x)
= exp

[
− 1

T
(H(y)−H(x))

]
(3.20)

where g represents the probability that a given state is selected and A rep-
resents the probability that the selected state is accepted.

The Metropolis prescription [20] assigns a uniform selection probability,
meaning that every state has the same probability of being selected, and the
following acceptance probability

A(x→ y) =

{
exp

[
− 1
T

(H(y)−H(x))
]
, if H(y) > H(x)

1, otherwise
(3.21)

which satisfies the detailed balance condition, as can be verified.
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3.3 Outline of the heuristic

Finally, simulated annealing brings all these ideas together using Markov
chains to sample the Gibbs distribution of a system using the Metropolis al-
gorithm at progressively lower temperatures so that low energy states are fa-
vored and the probability of visiting such low energy states increases greatly.
Once the processes terminates at a sufficiently low temperature the state of
the system will likely be one of low energy.

The pseudocode in Heuristic 1 summarizes how simulated annealing using
the Metropolis algorithm is carried out.

The system begins at a given initial state σ0 and the temperature is set
at a sufficiently high T0 (lines 2 and 3). The program consists of two nested
loops. The outer loop (lines 4 to 17) is the annealing loop and is responsible
for cooling the system according to the given annealing schedule, it runs for
nsteps annealing steps until the system is at equilibrium at a sufficiently low
temperature Tf . The inner loop (lines 5 to 15) is the sampling loop, in which
the random walk takes place for a suitable number of iterations niter.

At each iteration of the sampling loop a new configuration is generated
(line 6) using the choice of move, in our case either the swap move or the 2-
opt move, and then the Metropolis prescription of equation (3.21) is applied
(lines 7 to 14) in order to determine if this new configuration is accepted.
As an important feature of both our move choices, they provide us with a
remarkably cheap way of calculating the cost difference between two adjacent
configurations, which is very important for an efficient sampling.

At the end of the outer loop (line 16), the temperature is updated to
a lower one cool(T ) according to the chosen cooling schedule. There are
several possible choices for the cooling schedule [26, 27, 28, 29, 30] including
one that has been shown to make the system arrive at the global minimum
with probability of one after an infinite number of annealing steps [31], whose
temperature should decrease logarithmically:

Tn =
a

b+ log(n+ 1)
, a, b ∈ R+, (3.22)

where Tn denotes the temperature at the n-th annealing step.
This choice, however, has been observed to be prohibitively slow in our

experiments. On the other hand, what is called a geometrical cooling schedule
attains very good results much faster but has no mathematical proof of per-
formance. This schedule specifies that the temperature should be updated
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Heuristic 1: Simulated Annealing with Geometrical Cooling Sched-
ule

Parameters: σ0 : initial configuration
T0 : initial temperature
Tf : final temperature
niter : number of iterations of the internal loop
α : coefficient of the geometrical cooling

Result: low energy state σ

1 begin
2 σ ← σ0;
3 T ← T0;
4 while T > Tf do
5 for i← 1 to niter do
6 σ′ ← apply move(σ);
7 if H(σ′) < H(σ) then
8 σ ← σ′;

9 else
10 x← rand([0, 1]);

11 if x < exp
[
− 1
T

(H(σ′)−H(σ))
]

then
12 σ ← σ′;
13 end if

14 end if

15 end for
16 T ← cool(T );

17 end while
18 return σ

19 end
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by multiplying the current temperature by a real constant α ∈ (0, 1):

Tn+1 = αTn. (3.23)

More details regarding this annealing schedule will be presented in section
5.1.

Finally, at the very end of the procedure (line 18) the heuristic returns
the low energy state at which the system arrives.

This process offers a distinct advantage over deterministic local search
algorithms: the Metropolis prescription allows for an increase of the system
energy making it less likely to get stuck at local minima [32]. This is ex-
tremely useful for combinatorial optimization problems with complex energy
landscapes such as the traveling salesman problem.

In this work we will apply simulated annealing as described here using
both the simple swap and the 2-opt moves and the geometrical annealing
schedule to the traveling salesman problem over complex scenarios and ana-
lyze their performance. The following chapter contains a detailed description
of the artificial environments in which we intend to apply this heuristic.
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Chapter 4

Artificial domains

As a consequence of the nature of heuristics, a number of empirical anal-
yses can be carried out. For example, these analyses can explore the perfor-
mance of the simulated annealing as an optimization heuristic for the TSP
taking into account artificial random environments with interesting tailored
characteristics. The environments are two-dimensional domains which are
populated randomly by cities that follow a given probability distribution.
Then we apply the simulated annealing heuristic to find low energy states.
The random environments considered in this work are generated using cor-
related random variables and long-tailed distributions. Such scenarios will
allow us to study the performance of the simulated annealing heuristic during
the transition from an NP-Complete problem to one belonging to class P.
They also allow to explore situations where the coordinates of the cities have
no defined second moment.

4.1 Correlated coordinates

The first random environment explored is the two-dimensional domain
populated by points whose x and y coordinates are correlated with a given
correlation ρxy. The correlated pairs of coordinates are generated from uncor-
related pairs of random variables using the same procedure outlined by [33]
in the context of emerging of rogue waves in the superposition of electrical
waves with correlated phases.
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Let us consider a random point (x, y) ∈ R2:{
x = α1z1 + α2z2

y = β1z1 + β2z2,
(4.1)

where z1 and z2 are independent and identically distributed random variables,
with means 〈z1〉 = 〈z2〉 = 〈z〉 and 〈z1z2〉 = 〈z1〉〈z2〉 = 〈z〉2.

As a result, the variance of the x coordinate is 〈(∆x)2〉 = 〈x2〉 − 〈x〉2 =
(α2

1 +α2
2)〈(∆z)2〉 where 〈(∆z)2〉 = 〈z2〉−〈z〉2. Similarly, for the y coordinate,

we have 〈(∆y)2〉 = (β2
1 + β2

2)〈(∆z)2〉.
Now, we impose the condition

〈(∆x)2〉 = 〈(∆y)2〉 = 〈(∆z)2〉, (4.2)

which implies that α2
1 + α2

2 = β2
1 + β2

2 = 1.
It is worth noting that although z1 and z2 are not correlated, the new

variables x and y are correlated, and their correlation is

ρxy =
〈(x− 〈x〉)(y − 〈y〉)〉√
〈(∆x)2〉〈(∆y)2〉

= α1β1 + α2β2. (4.3)

After some algebra we arrive at an explicit formula for the correlated
coordinates (x, y) {

x = z1 sinφ+ z2 cosφ

y = z1 cosφ+ z2 sinφ,
(4.4)

where the angle φ is obtained from the desired correlation ρxy:

φ =
1

2
arcsin ρxy. (4.5)

The average for the coordinates is given by

〈x〉 = 〈y〉 =
1√
2

[(
1−

√
1− ρ2

xy

)1/2

+
(

1 +
√

1− ρ2
xy

)1/2
]
〈z〉 (4.6)

From this we can draw two important conclusions:

1. As required by condition (4.2), the random variables x and y have the
same variance of z1 and z2 that are themselves identically distributed
and therefore their variance does not depend on the value chosen for
ρxy.
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2. According to equation (4.6), for 〈z1〉 = 〈z2〉 = 〈z〉 = 0 we have 〈x〉 =
〈y〉 = 0.

Therefore, if one considers x and y as ρxy-correlated random variables
generated from two independent and identically distributed random variables
z1 and z2 with average 〈z〉 = 0 and variance 〈(∆z)2〉 = σ2 then x and y will
also have average zero and the same variance σ2. This is important because,
in our explorations of simulated annealing in this dissertation, by keeping
the average and variance unchanged the only parameter accountable for the
observed effects in our future analyses will be the correlation ρxy.

For the domains analyzed we choose both random variables z1 and z2

to be uniform random variables assuming values in [−1
2
, 1

2
]. Then, in order

to determine the contribution of the shape of the original distribution, we
choose both z1 and z2 to be normal random variables with σ = 1√

12
which

has the same variance as the uniform distribution.
Figures 4.1 and 4.2 show examples of domains generated using both

choices of z1 and z2 for different values of ρxy.

4.2 Long-tailed distributions

Another interesting set of instances investigated in this work considers
random environments with points whose coordinates follow long-tailed dis-
tributions. We employ the following power law probability density function
to generate the coordinates of the N points in two dimensions.

p(x;x0, γ) =


γ − 1

2x1−γ
0

|x|−γ, if |x| ≥ x0

0, otherwise
(4.7)

Notably, the power law distribution given by equation (4.7) has a gap of
size ∆ = 2x0 centered at the origin in order to be normalizable. However
this gap can be made arbitrarily small by tuning the parameter x0. Figures
4.3 and 4.4 illustrate the density function for this distribution.

Using the transformation method [34, Section 7.3], it is possible to draw
samples from the distribution of equation (4.7) by making use of only two
uniformly distributed random variables ξ1 and ξ2 assuming values in [0, 1].
Firstly, we decide if the value is on the negative or positive branch by checking
the sign of 2ξ1 − 1. Then we make ξ2 equal to the cumulative distribution
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Figure 4.1: Effects of correlation between coordinated on the points distribution
using a starting pair of uniform random variables over [−1

2 ,
1
2 ].
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Figure 4.2: Effects of correlation between coordinated on the points distribution
using a starting pair of normal random variables with σ = 1√

12
.
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Figure 4.3: Two-tailed power law probability density function p(x;x0, γ) for
γ = 2 and different values of x0.

function
γ − 1

x1−γ
0

∫ w

x0

x−γdx of the power law. This results in w = x0(1−ξ2)
1

1−γ

and therefore the random variable following the probability distribution in
equation (4.7) constructed from ξ1 and ξ2 is:

x =
2ξ1 − 1

|2ξ1 − 1|x0(1− ξ2)
1

1−γ (4.8)

Since ξ2 is uniformly distributed over the interval [0, 1], so is 1−ξ2. Hence,
renaming the variable ξ2 ← 1 − ξ2 and using the sign function sgn which is
equal to +1 for positive values and −1 for negative values, the simplified
version becomes:

x = sgn(2ξ1 − 1)x0ξ
1

1−γ
2 (4.9)

Using the method above we can generate two dimensional points whose
(x, y) coordinates follow the power law distribution of equation (4.7), which
we shall label Power law I :x = sgn(2ξ1 − 1)x0ξ

1
1−γ
2

y = sgn(2ξ3 − 1)x0ξ
1

1−γ
4

(4.10)
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Figure 4.4: Two-tailed power law probability density function p(x;x0, γ) for
x0 = 10−1 for different values of γ. The histogram is obtained with points sampled
with equation (4.9) for γ = 5.5 in order to demonstrate the sampling method used.

Since both x and y coordinates are sampled from the same distribution,
this configuration of points is axially symmetric. Another possibility is to
generate radially symmetric points (here labeled Power law II ) using only two
uniform random variables, ξ1 to determine the direction and ξ2 to determine
the distance from the origin:x = r0 cos(2πξ1)ξ

1
1−γ
2

y = r0 sin(2πξ1)ξ
1

1−γ
2 ,

(4.11)

both of these approaches are illustrated in the figure 4.5.
The Gaussian distribution along with the plot of Power Law I with γ =

3.4 are two cases that will be important for our results later on. Immediately,
we notice the abundance of outlier points in the cases with γ ≤ 3 for which
the distribution has no second moment defined. This effect is weakened for
the cases with higher γ.

Having studied the environments for which we will apply simulated an-
nealing to obtain approximate optimal cycles of the traveling salesman prob-
lem, we will present our results. We divided them in two parts: a preparatory
part which is more pedagogical and a second part where our main results are
presented.
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Figure 4.5: Scattering of points comparing coordinates generated using standard
Gaussian distribution and power law distributions using both equations (4.10) and
(4.11) for different exponents γ. Notice the gap around the origin for the case of
the power laws.
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Chapter 5

Computational results

In this chapter we present the results obtained when analyzing the per-
formance of the simulated annealing applied to the environments described
in the previous chapter. We begin by exposing some general and pedagog-
ical aspects of the heuristic with the geometrical cooling schedule. Then,
an analysis of the effects of the correlations between the coordinates on the
performance of the simulated annealing is performed. Finally, the effects of
a long-tailed distribution of points is considered.

5.1 Pedagogical aspects of simulated anneal-

ing

In this preliminary study of the simulated annealing heuristic we begin
by considering the chosen annealing schedule, i.e., the geometrical annealing
schedule, and then evaluate the performance of the heuristic when applied to
the traveling salesman problem over uniformly distributed points in a unit
square.

5.1.1 Geometrical annealing schedule

The geometrical annealing schedule has been used since the earliest im-
plementations of simulated annealing to the TSP [5]. Despite the lack of
concrete mathematical proof for its performance, it has been an attractive
choice for yielding very good results in a reasonable amount of time. It con-
sists in starting at a given initial temperature T0 and at each annealing step
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decrease the temperature by multiplying the current temperature by a given
α ∈ (0, 1). Hence, the temperature at the t-th annealing step is

Tt = αtT0 (5.1)

This procedure is repeated until a final temperature Tf is reached after
nsteps annealing steps.

Tf = αnsteps−1T0 (5.2)

The integer nsteps can be thought of as how many different temperatures
the system was subject to during the annealing process. For instance, the
case for which nsteps = 2 corresponds to sampling the system at T0 and then
decreasing the temperature to Tf = αT0 and sampling the system again
before ending the process.

Another important variable is niter which is the number of iterations that
the system was sampled at each annealing step. It is straightforward to note
that the total number of samples generated ntotal is simply the product of the
number of annealing steps nsteps and the number of iterations at each step
niter.

ntotal = nsteps × niter (5.3)

In order to quantify how divided the temperature range is by a given
cooling schedule, we introduce the following ratio:

Rcs =
log(nsteps)

log(ntotal)
(5.4)

A less divided temperature range will have very few annealing steps, that
is nsteps � ntotal yielding Rcs → 0. On the other hand, for a more subdivided
temperature range nsteps → ntotal which in turn implies Rcs → 1.

5.1.2 Uniformly distributed points

Now, we apply the simulated annealing heuristic using the geometrical
cooling schedule to traveling salesman problem instances consisting of N
uniformly distributed points over the unit square [0, 1]2. The measure for
performance used throughout this work is the ratio between the average cost
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achieved C and the expected cost of a cycle drawn randomly for a given
system specification. The average cost achieved is calculated over nrun runs:

C =
1

nrun

nrun∑
i=1

Ci (5.5)

where Ci is the cost achieved at the i-th run.
And the expected cost of a cycle is given by the expected distance between

two points multiplied by the size of the cycle:

〈C0〉 = N

∑
i<j d(i, j)(

N
2

) =
2

N − 1

∑
i<j

d(i, j) (5.6)

For the two dimensional unit uniform domain the expected value for the
distance between two points can be calculated exactly (see Appendix 1).
Hence, the expected cost of a random cycle composed of N randomly dis-
tributed points is

〈C0〉 =
N

15

(
2 +
√

2 + 5 ln(
√

2 + 1)
)
. (5.7)

In figure 5.1, we present the results from the annealing of systems with
N uniformly distributed points using both the swap and the 2-opt moves.
We begin at the highest temperature T0 = 102 and decrease the temperature
geometrically until the final temperature Tf = 10−7 is reached. At each an-
nealing step the system is sampled for 222 ≈ 4.19 × 106 iterations to allow
it thermalize and then the average cost is calculated over the next 222 itera-
tions. This process is repeated for nrun = 60 different systems. Finally, the
performance is defined as the average cost at each temperature step divided
by the expected random cycle cost.

We can see that the 2-opt move offers a better performance than the swap
move especially for larger instances. Additionally, we note that Tf = 10−7 is
clearly low enough since even larger instances are frozen at this temperature.
As an argument in support of the geometrical annealing schedule we note in
figure 5.1 how smoothly the average cost varies in a log-log plot as a function
of the temperature.

An illustration of the state of a sample system being annealed using the
2-opt move is shown in figure 5.2. We note how the system goes from very
messy and costly cycles at high temperatures to remarkably inexpensive ones
at lower temperatures.
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Figure 5.1: Annealing of systems with N uniformly distributed points using both
the swap and 2-opt moves.

At low temperatures the cycle cost obtained using the 2-opt move follows
a power law of the form

C(Tf )

〈C0〉
∝ N−δ, (5.8)

as shown in figure 5.3, along with the coefficient of determination r2 of the
fit. Once again, we note how much better the 2-opt move performs when
compared to the swap move. For this reason we will use the 2-opt move in
the remainder of this section.

An important question regarding the annealing schedule is how the tem-
perature range subdivision impacts the system’s final cost. That is, how the
choice of α impacts the final cost for uniformly distributed domains. In order
to assess this effect, we fix the initial temperature T0, the final temperature
Tf and the total number of samples ntotal generated by the heuristic and
then vary the number of temperature steps nsteps choosing an appropriate
number of iterations at each temperature step niter = ntotal

nsteps
to maintain ntotal

constant. This also implies that

α =

(
Tf
T0

) 1
nsteps−1

. (5.9)

We apply the simulated annealing heuristic using the 2-opt move and
geometrical annealing schedule on TSP instances consisting of uniformly dis-
tributed points using as initial temperature T0 = 1 and a final temperature
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Figure 5.2: State of a TSP cycle on N = 2048 uniformly distributed points
sampled at different temperatures using 2-opt moves. The values of the cycle
costs C for each state are also shown on top of each figure. We can observe the
interesting unfolding of the cycle.

44



16 32 64 128 256 512 1024 2048

N

0.100

1.000

C(Tf)

〈C0〉

δ = 0.5289± 0.0060
r2 = 0.9992

Moves

Swap

2-opt

Figure 5.3: Low temperature Tf = 10−7 normalized costs obtained by using both
the swap and 2-opt moves.

Tf = 10−7 and plot the final cost obtained as a function of the total number
of iterations ntotal in figure 5.4.
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Figure 5.4: Final cost obtained as a function of the total number of samples
ntotal generated by the simulated annealing with 2-opt moves. The color of each
marker represent the value of Rcs which indicates how subdivided the temperature
range is.
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We note that the final cost obtained does not depend heavily on the
way the temperature range is divided, that is on the choice of α; however,
a smaller number of annealing steps nsteps is still disfavored. In fact, as
figure 5.5 suggests, for the final cost obtained, CSA, follows a power law as a
function of ntotal:

CSA ∝ n−δtotal. (5.10)
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Figure 5.5: Power law fit on the final cost obtained as a function of the total
number of samples ntotal generated the simulated annealing with 2-opt moves. The
fit is performed on instances N = 2048 and using the Rcs = 1 curve, but similar
results can be obtained for other values of Rcs.

We observe a transition between two power laws with very different ex-
ponents: from δ ≈ 0.44 to δ ≈ 0.032, which shows that for ntotal > 222 ≈
4.2 × 106 the optimal cost found does not show a meaningful improvement
for increased number of samples.

In order to show that there are indeed several data points sitting on top
of one another we show in figure 5.6 the high ntotal region of the previous
plot in more detail and in figure 5.7 the final costs obtained for using ntotal =
224 ≈ 1.68× 107 as a function of Rcs.

Figure 5.7 shows that apart from the very first point which corresponds
to having only two annealing steps, one at T0 = 1 and the other at Tf = 10−7,
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Figure 5.6: Same plot as in figure 5.5 but with a linear y-axis, highlighting the
multiple points lying on top of each other and their uncertainties.
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Figure 5.7: Final costs for Simulated Annealing with 2-opt moves of domains
with N = 2048 points.
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there is no substantial difference in the final cost obtained.
For the range of temperatures studied, we observe in figure 5.8 that as

the total number of samples generated ntotal grows the normalized final cost
approaches a power law CSA/〈C0〉 ∝ N−δ with exponent δ ≈ 0.53.
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Figure 5.8: Normalized final costs obtained by simulated annealing with 2-opt
moves for uniformly distributed points. Different curves represent different number
of total samples ntotal generated.

We compare the simulated annealing heuristic with the nearest neighbor
heuristic, recalling that the latter is a constructive heuristic which only takes
into account local constraints to build the cycle. In figure 5.9 we plot the
ratio between the average cost obtained by simulated annealing with 2-opt
moves and the average cost obtained by the nearest neighbor heuristic for
different sizes of the uniform domain.

We observe that for sufficiently high ntotal the cost obtained by simulated
annealing remains consistently lower for all system sizes considered.

In order to assess the final costs obtained in the absence of the actual
optimal costs for each cycle we can use a theorem in [35] that for the case of
two dimensional uniform domains states that:

lim
N→∞

Coptimal(N)√
N

= β with probability 1, (5.11)
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Figure 5.9: Final costs obtained by simulated annealing with 2-opt moves over
the average cost obtained by the nearest neighbor heuristic for uniformly dis-
tributed points. Different curves represent different number of total samples ntotal
generated by simulated annealing.

where Coptimal(N) is the optimal cost of the TSP for N uniformly distributed
points over the unit square and β is a constant often called the traveling
salesman constant. The currently available upper and lower bounds to the
traveling salesman constant were calculated in [36] and can be used to judge
how good a TSP cycle over a large number of points N is. Figure 5.10 shows
the cycle cost obtained divided by the square root of the point count N as a
function of N .

Importantly, we do not claim that the costs obtained by simulated an-
nealing for the TSP over uniformly distributed points are optimal, rather
this suggests that they are close to optimal.

49



4 16 64 256 1024 4096

N

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

CSA√
N

βupper ≈ 0.906

βlower ≈ 0.629

Figure 5.10: Final costs CSA obtained by simulated annealing using 2-opt moves.
The upper and lower bounds shown here were calculated in [36].

In this preliminary investigation, we were able to determine that when
applied to the TSP over uniformly distributed points simulated annealing
with 2-opt move is much more efficient than when using the swap move. Re-
garding the geometrical annealing schedule, we have shown that the cycle
cost obtained by the heuristic does not depend heavily on how the tempera-
ture range is divided, that is, on the choice of α. Additionally, this heuristic
suffers a considerable performance reduction after a certain number of itera-
tions. Finally, the efficiency, in this context defined as the average cost cycle
obtained over the expected cost of a random cycle was shown to improve for
larger systems following a power law of the form

CSA

〈C0〉
∝ N−δ, (5.12)

with exponent δ ≈ 0.53.

5.2 Main results

In this section we will expose our main results. First, in subsection 5.2.1
we explore the effects of the correlation between the coordinates of the points
on the performance of simulated annealing. Then, in subsection 5.2.2 the
effects of long tailed distributions of points are studied.
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5.2.1 Correlation effects

In this section, we investigate the effects of correlations between the co-
ordinates of points on the efficiency of the simulated annealing when applied
to the TSP. The systems are generated following the procedures outlined in
the previous chapter. We analyze the performance of the heuristic for sys-
tems with a correlation ranging from ρxy = 0, which is the uniform domain
considered in the previous section, to ρxy = 1, which consists essentially of
N collinear points. It is important to point out that an optimal TSP cycle
on such a finite one-dimensional aperiodic domain can be found by simply
sorting the points position. Hence, we are essentially investigating the be-
havior of the simulated annealing heuristic on the boundary between a NP
and a P problem.

We begin by probing the behavior of the heuristic in such systems for
different values of correlation ρxy in figure 5.11. The annealed systems consist
of N = 2048 points and each curve corresponds to a different correlation ρxy
between its coordinates. Importantly, since there is no analytical expression
for the expected cost of a random cycle on such a system for arbitrary ρxy,
we will calculate an average initial cost over nruns = 214 runs:

C0(ρxy) =
1

nrun

nrun∑
i=1

Ci
0(ρxy) (5.13)

where Ci
0(ρxy) is the initial cost for the i-th run, and then define the perfor-

mance as the average cost obtained C divided by the average initial cost.
The same temperature range as in the preliminary investigation of uni-

form domains is used. At each annealing step the system is sampled for
222 ≈ 4.19× 106 iterations in order to thermalize and then the average cost
is calculated over the next 222 iterations. The values at each temperature
are then averaged over 60 different systems.

The values of correlation range from ρxy = 0 to ρxy = 0.99 in steps of 0.01
and then from ρxy = 0.99 to ρxy = 1 in finer steps of 0.001 in order to take into
account the rapid variation of the final cost near ρxy = 1. We observe once
again that the 2-opt move is vastly more efficient than the swap move and
is able to attain lower costs at low temperatures. Another interesting point
is that the normalized final cost for low temperatures quickly diminishes as
ρxy approaches one, i.e., in the 2D → 1D limit.
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Figure 5.11: Annealing of a system with N = 2048 points with correlated coor-
dinates using both the swap and 2-opt moves.

An analysis of the geometrical annealing schedule similar to the one done
for the uniformly distributed domain is shown in figure 5.12 by setting the
initial temperature to T0 = 1 and the final temperature to Tf = 10−7, we
apply the heuristic dividing the temperature range with different values of
RCS. All systems considered are composed of N = 2048 points.

Similarly to the case of the uniform domain, the way that the temperature
range is subdivided by the annealing schedule does not play a very important
role in determining the average final cost obtained. Once again, we observe
that at first the final cycle cost obtained quickly diminishes as the total
number of samples generated by the heuristic grows (first region, ntotal .
106), until a point after which the performance quickly diminishes (second
region, ntotal & 107). In both of these regions the average final cost obtained
CSA displays a power law behavior as a function of ntotal:

C ∝ n−δtotal (5.14)

The exponents δ of the fits performed for the different values of correlation
ρxy in the first region are presented in table 5.1 along with the coefficient of
determination for each fit.

52



104 105 106 107 108

ntotal

10

100

C
ρxy = 0.0
ρxy = 0.9

ρxy = 1.0

0.2

0.4

0.6

0.8

1.0

R
cs

Figure 5.12: Final cost obtained by simulated annealing using 2-opt move for
two dimensional domains with correlated coordinates as a function of the total
number of samples ntotal generated by the heuristic. The fit is performed using
the Rcs = 1 curve, but similar results can be obtained for other values of Rcs.

ρxy First region Second region

0.0
δ = 0.4361± 0.0043
r2 = 0.9993

δ = 0.02631± 0.00045
r2 = 0.9991

0.9
δ = 0.4734± 0.0074
r2 = 0.9983

δ = 0.02583± 0.00043
r2 = 0.9992

1.0
δ = 0.7784± 0.012
r2 = 0.9983

δ = 0.00016± 0.00083
r2 = 0.01279

Table 5.1: Exponents for power law fit of the average final cost obtained CSA as
a function of ntotal in both regions.
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Now we examine how the performance of the heuristic behaves as we
vary the correlation ρxy for different system sizes (i.e., different values of N).
First, we consider simulated annealing with swap moves in figure 5.13.
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Figure 5.13: Performance of the simulated annealing using swap moves as func-
tion of ρ for different number of cities.

We observe a performance improvement as ρxy → 1 which was already
apparent from the low temperature behavior shown in figure 5.11. Addition-
ally, the performance decreases as the number of points in the system grows.
In fact, a reasonable empirical scaling on the system size of the performance
curves of the form can be observed in figure 5.14. Choosing b = Nmax

N
, where

Nmax = 2048 is the size of the largest system considered, the base z ≈ 0.0760

allows for a collapse of the curves zb CSA
C0

.
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Figure 5.14: An approximate scaling on the system size for the performance of
the simulated annealing with swap moves as a function of the correlation ρxy.

55



The same procedure is followed in figures 5.15 and 5.16, this time con-
sidering the 2-opt move. The base for the scaling for the 2-opt move is
z ≈ −0.502, a negative value, since for this move the performance improves
with the size of the system.
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Figure 5.15: Performance of the SA as function of ρ for different number of cities.
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Figure 5.16: An approximate scaling on the system size for the performance of
the simulated annealing with 2-opt moves as a function of the correlation ρxy.
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As for the dependence of the performance on the system size, another
power law behavior can be identified:

CSA

C0

∝ N−δ, (5.15)

with a different exponent δ for each value ρxy. Figure 5.17 shows how the
heuristic performance behaves as function of the system size highlighting the
exponents δ for both of the extreme cases (ρxy = 0 and ρxy = 1).
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Figure 5.17: Performance of the simulated annealing with 2-opt moves as a
function of system size N for different values of correlation ρxy. Power law fits
were performed for both the one dimensional case (ρxy = 1, in black) and the two
dimensional case (ρxy = 0, in red).

The exponent goes from δ ≈ 0.52 for the two dimensional case (we note
that it is, as expected, very close to the one calculated in figure 5.8) to
δ ≈ 0.93 for the one dimensional case.

We also attempt to find good fits for the performance of the simulated

annealing CSA
C0

as a function of ρxy. In the following we make the change
ρxy = ρ to simplify the notation. As a preliminary investigation, we attempt
a polynomial fit:

pn(ρ) =
n∑
k=0

akρ
k, (5.16)
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by testing the orders n = 2, 3 and 4 (with 3, 4 and 5 parameters, respec-
tively).

Then, we test exponential decay fits with only two parameters:

eI(ρ) = eI(0) + c1e
−ρ/ρ1 , (5.17)

where the term eI(0) is fixed and equal to the data point value CSA
C0

(ρ = 0).

Next, we consider a simple linear combination of exponential decays (us-
ing 4 parameters):

eII(ρ) = eII(0) + c1e
−ρ/ρ1 + c2e

−ρ/ρ2 (5.18)

also assuming eII(0) = CSA
C0

(ρ = 0).
Alternatively, other functions with 4 parameters were explored and the

one that yielded a good result was the rational function:

r(ρ) =
a+ bρ

1 + cρ+ dρ2
(5.19)

The results are shown in figures 5.18 and 5.19 for the performance of
simulated annealing with swap and 2-opt moves respectively. The values
for the coefficient along with the coefficient of determination for each fit are
summarized in the table 5.2.

As expected, the higher the degree of the polynomial fitting the function,
the better the coefficient of determination r2 (the closer to one, the better it
is). Our analysis also shows that in both the swap and 2-opt cases, the single
exponential (labeled Exponential I, requiring 2 parameters) is not enough to
nicely fit the curve.

Using the rational function shown in equation (5.19) a good fit can be
obtained using 4 parameters. It is important to mention that the coefficient

a found in both cases is exactly CSA
C0

(ρ = 0) so the fit can effectively be
performed using only the remaining 3 parameters.

However the best result is achieved using the two exponentials from equa-
tion (5.18) (labeled Exponential II, requiring 4 parameters) yielding a fit
with coefficient of determination r2 ≈ 0.999 for both cases. This linear com-
bination of exponentials seems to be a universal fit for CSA

C0
(ρ) for both the

simulated annealing with swap and 2-opt moves.
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Figure 5.18: Fits for the performance of the simulated annealing with swap moves
versus ρ: (a) preliminary polynomial fit, (b) simple exponential, (c) a reasonable fit
with rational function and (d) the best fit obtained by combining two exponentials.
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Figure 5.19: Fits for the performance of the simulated annealing with simple
2-opt versus ρ: (a) preliminary polynomial fit, (b) simple exponential, (c) a rea-
sonable fit with rational function and (d) the best fit obtained by combining two
exponentials.
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Move Quadratic Cubic Quartic

Swap

a0 = 0.4710(42) a0 = 0.4815(34) a0 = 0.4755(26)
a1 = 0.067(19) a1 = −0.076(30) a1 = 0.077(38)
a2 = −0.132(18) a2 = 0.230(70) a2 = −0.49(16)
r2 = 0.92124 a3 = −0.237(45) a3 = 0.90(24)

r2 = 0.96729 a4 = −0.57(12)
r2 = 0.98495

2-opt

a0 = 0.0339(21) a0 = 0.0382(21) a0 = 0.0353(20)
a1 = 0.0247(96) a1 = 0.0330(19) a1 = 0.041(29)
a2 = −0.0419(91) a2 = 0.104(43) a2 = −0.25(12)
r2 = 0.78373 a3 = −0.096(28) a3 = −0.46(19)

r2 = 0.86162 a4 = −0.275(92)
r2 = 0.90423

Move Exponential I Rational Exponential II

Swap

c1 = −3.1(1.2) · 10−4 a = 0.47951(65) c1 = −0.00190(13)
ρ1 = 0.179(13) b = −0.4443(29) ρ1 = −0.2852(62)
r2 = 0.98309 c = −0.8923(39) c2 = −(2.4± 3.3) · 10−15

d = −0.0165(51) ρ2 = −0.0331(15)
r2 = 0.99798 r2 = 0.99984

2-opt

c1 = −4.9(7.9) · 10−7 a = 0.03733(34) c1 = −1.5(5.4) · 10−26

ρ1 = −0.092(14) b = −0.03719(35) ρ1 = −0.0180(12)
r2 = 0.93539 c = −0.832(24) c2 = −3.27(61) · 10−4

d = −0.136(25) ρ2 = −0.261(14)
r2 = 0.99312 r2 = 0.99914

Table 5.2: Values of coefficients found for nonlinear fitting using Levenberg-
Marquadt method. The parameter r2 corresponds to the coefficient of determina-
tion for each fit.
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Finally, we move on to consider the effects of the shape of the distribution
used to draw the coordinates. If before we considered z1 and z2 drawn from
identically distributed uniform distributions, now we also consider them as
identically distributed Gaussian random variables. It is important to mention
once again that the x and y coordinates generated have the same average
(equal to zero) and variance of the variables z1 and z2 regardless of the value
chosen for ρxy. As previously stated, the effects observed are only dependent
on ρxy since average and variance remain unchanged.

Hence, in figure 5.20 we plot the performance of both the simulated an-
nealing using swap and 2-opt moves when considering the following distribu-
tions:

• Uniform distribution with σ = 1√
12

• Gaussian distribution with σ = 1

• Gaussian distribution σ = 1 using scaled costs inside the Metropolis
prescription of the form

Cs =
C√

(xmax − xmin)(ymax − ymin)
(5.20)

where x(y)max(min) = max(min){x(y)1, x(y)2, · · · , x(y)N}. This is used
to take into account the fact that, in contrast to the uniform distribu-
tion, the normal distribution does not have finite support.

• Gaussian with same standard deviation as the uniform distribution:
σ = 1√

12

We can observe that in all cases, the shape of the distribution plays a much
more important role than the variance since the Gaussian distributions with
different variances display practically the same behavior while the uniform
and Gaussian distributions with the same variance produce very different
results. Additionally the scaling performed for the costs in the case of the
Gaussian distribution shows no effect.
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Figure 5.20: Analysis for different distributions of N = 2048 points: Gaussian
and uniform. The plot on left corresponds to the simulated annealing with swap
moves and the the plot on the right corresponds to the one using with 2-opt moves.
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5.2.2 Long tail effects

Finally, we analyze the effects of coordinates drawn from long-tailed dis-
tributions on the performance of the simulated annealing heuristic. Thus,
we employ the power law probability density function from equation (4.7)
to generate the coordinates of the N points in dimensions in both radially
symmetric and axially symmetric configurations.

We start by considering the simulated annealing with swap moves applied
to the axially symmetric power law distribution of points generated by equa-
tion (4.10). The scaling of equation (5.20) is used here in order to take into
account the fact that the power law distribution also does not have finite
support.

Figure 5.21 shows the performance of the simulated annealing with swap
moves as a function of γ for different values of x0 for the axially symmetric
domain, the number of points is N = 2048. The inset plot does not take into
account the scaling.

The first thing we observe is that the performance improves as the ex-
ponent γ gets higher. There is also a noticeable instability in the region
2 ≤ γ ≤ 3 where the variance is not defined but the average is. For γ < 2,
that corresponds to the region where the average also cannot be defined,
the performance is negligible with overwhelming instability which suggests
that the heuristic should not be applied to such instances. Interestingly, the
scaling results in a collapse of all curves into one, regardless of the value of
x0.

In the more detailed figure 5.22 the error bars show the instability for the
low γ region. Also in this picture we identify the values of γ for which the
performance coincides with that of the Gaussian and uniform distribution
analyzed before.
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Figure 5.21: Performance of the simulated annealing with swap moves applied
to the system with axially symmetric power law coordinates as a function of γ for
different values of x0 using the scaling of equation (5.20). The inset plot shows
the same curves without the scaling.
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Figure 5.22: Refinement of the region presenting the error bars. We observe
that for γ ≈ 3.4 we obtain the same improvement as for the Gaussian distribution
and that γ ≈ 4.3 has an improvement equal to that obtained for the uniform
distribution.
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Finally we consider the simulated annealing with 2-opt moves applied
to both the axially symmetric and radially symmetric power law point dis-
tributions. For the axially symmetric domain (figure 5.23), we can draw
basically the same conclusions as before: the increase of performance as γ
grows, the small instability with some performance for 2 ≤ γ ≤ 3 and the
lack of improvement for γ < 2. Surprisingly, the performance for the radially
symmetric distribution (shown in figure 5.24) exhibits essentially the same
behavior, hinting that the phenomenon of the performance improvement of
the simulated annealing is universal as a function of γ. In both configurations
the scaling is able to take into account the effect of different values of x0.
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Figure 5.23: Improvement of the performance for simulated annealing with 2-
opt moves applied to the system with axially symmetric power law coordinates
(equation 4.10) as function of γ for different values of x0 using the scaling of
equation (5.20). The inset plot shows the same curves without scaling.
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Figure 5.24: Improvement of the performance for simulated annealing with 2-
opt moves applied to the system with radially symmetric power law coordinates
(equation 4.11) as function of γ for different values of x0 using the scaling of
equation (5.20). The inset plot shows the same curves without scaling.
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Chapter 6

Conclusion

In this work we explored an example of the use of the framework provided
by statistical physics applied to a hard combinatorial optimization problem.
More specifically a standard version of the simulated annealing heuristic ap-
plied to the traveling salesman problem.

We were able to determine that the 2-opt move is able to explore the state
space better and as a consequence achieve lower costs when compared to the
swap move in all systems considered. For the domain formed by uncorrelated
and uniform random points we identified two power laws: one regarding the
performance of the heuristic and the system size and the other regarding the
performance and the total number of samples generated by the heuristic.

As the main focus of this work, we analyzed how the statistics of the
distribution of points impacts the performance of the heuristic. First, we
considered the correlation between the coordinates which is equivalent to a
dimensionality reduction (2D to 1D), essentially transforming the problem
from a TSP into a sorting problem. We showed that the performance of the
simulated annealing increases as the correlation increases and performed a
reasonable finite size scaling for this data as well as experimented with some
functions in order to fit its behavior. We also identified a power law behavior
of the performance on the total number of samples generated showing that
after a given point there is no meaningful improvement. Additionally, we
identified power law fits for the performance as a function of the system size
for both the one dimensional end two dimensional case. Furthermore, when
using different types of distributions, we found that the shape played a more
important role than its variance.

Finally, considering the long tail effects on the coordinates, we observed
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that the higher the exponent of the power law, the better the performance of
the heuristic. For the special case with γ < 2, i.e., distributions without the
first moment, we observe no cost improvement at all. We were also able to
obtain an universal behavior of the performance as a function of the power
law exponent regardless of whether the distribution is axially symmetric or
radially symmetric.

A considerable part of the results obtained in this dissertation can be
found in our recent publication: R. da Silva, E. Venites Filho, A. Alves,
Physica A 577, 126067 (2021).
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Appendix A

Average Distance Between Two
Uniformly Distributed Points
on a Square

Considering points uniformly distributed on a square S = [0, L]2 of sides
L, the average distance between two points is:

〈d〉 =
1

L4

∫
S

dxidyi

∫
S

dxjdyj

√
(xi − xj)2 + (yi − yj)2

=
1

L3

∫ L

0

dxi

∫ L

0

dyi

∫ L

0

dxj

∫ L

0

dyj

√(
xi − xj
L

)2

+

(
yi − yj
L

)2

Performing the change of variables z1 = xi
L

, z2 =
xj
L

, z3 = yi
L

, and z4 = yi
L

yields

〈d〉 = L

∫ 1

0

dz1

∫ 1

0

dz2

∫ 1

0

dz3

∫ 1

0

dz4

√
(z1 − z2)2 + (z3 − z4)2 (A.1)

Here we see that the average distance between two points is indeed the
length L of each side of the square times the average distance for a unit
square.

Since z1 and z2 are uniformly distributed, the random variable u = |z1−z2|
has a triangular probability density function 2(1 − u). The same applies to
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u = |z3− z4| and thus considering the distribution of the differences u and v
the integral becomes:

〈d〉 = L

∫ 1

0

du 2(1− u)

∫ 1

0

dv 2(1− v)
√
u2 + v2

= 4L

∫ 1

0

du

∫ 1

0

dv (1− u)(1− v)
√
u2 + v2

We now note that the integrand is symmetric with respect to the u = v
line and hence the integral can be performed only on the right triangle below
this line.

〈d〉 = 8L

∫ 1

0

du

∫ u

0

dv (1− u)(1− v)
√
u2 + v2 (A.2)

Changing from the Cartesian coordinates (u, v) to the polar coordinates
(r, θ) the integral becomes

〈d〉 = 8L

∫ π
4

0

dθ

∫ sec θ

0

r dr (1− r cos θ)(1− r sin θ)r

= 8L

∫ π
4

0

dθ

∫ sec θ

0

dr
[
r2 − r3(cos θ + sin θ) + r4 cos θ sin θ

]
= 8L

∫ π
4

0

dθ

[
sec3 θ

3
− sec4 θ

4
(cos θ + sin θ) +

sec5 θ

5
cos θ sin θ

]
= 8L

∫ π
4

0

dθ

[
sec3 θ

10
− sec4 θ sin θ

20

]
=

4L

5

∫ π
4

0

dθ

[
sec3 θ − sec3 θ tan θ

2

]
The first term is a well know integral and can be found to be∫

dθ sec3 θ =
1

2
(sec θ tan θ + ln|sec θ + tan θ|) + C (A.3)

the second term can be easily calculated using the substitution w = sec θ
and evaluates to ∫

dθ sec3 θ tan θ =
sec3 θ

3
+ C (A.4)
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Finally, the average distance is

〈d〉 =
L

15

(
2 +
√

2 + 5 ln(
√

2 + 1)
)
≈ 0.5214L (A.5)
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