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We consider the obtention of modes and frequencies of segmented Euler-Bernoulli beams
with internal damping and external viscous damping at the discontinuities of the sections.
This is done by following a Newtonian approach in terms of a fundamental response of
stationary beams subject to both types of damping. The use of a basis generated by the
fundamental solution of a differential equation of fourth-order allows to formulate the
eigenvalue problem and to write the modes shapes in a compact manner. For this, we
consider a block matrix that carries the boundary conditions and intermediate conditions
at the beams and values of the fundamental matrix at the ends and intermediate points
of the beam. For each segment, the elements of the basis have the same shape since they
are chosen as a convenient translation of the elements of the basis for the first segment.
Our method avoids the use of the first-order state formulation also to rely on the Euler
basis of a differential equation of fourth-order and it allows to envision how conditions
will influence a chosen basis.
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uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
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1. Introduction

The methodology introduced by Tsukazan [1] in terms of a fundamental response [2, 3]
is applied here to a triple-span Euler-Bernoulli beam with internal damping of the type
Kelvin-Voight and viscous external damping at the discontinuities of the sections.

In the literature, the study of free vibrations of beams of the type Euler-Bernoulli have
been sufficiently studied [4–11]. However, the effects of the nonproportional damping
has been little studied in terms of modal analysis. Friswell and Lees [12] considered the
method of separation of variables for obtaining the eigenvalues of a double-span pinned-
pinned nonhomogeneous damped beam without intermediate devices. Chang et al. [13]
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Figure 2.1. A triple-span discontinuous cantilever beam.

uses the Laplace transform for obtaining the natural frequencies of a pinned-pinned uni-
form Euler-Bernoulli beam, by considering masses, springs, and viscous dampers located
in the middle of the beam. Sorrentino et al. [14] obtain the frequencies of the beam by
using the state space formulation with a first-order transfer matrix. The obtention of the
modes was accomplished by using the Euler basis in connection with fourth-order spa-
tial differential equations, the Laplace transform and with the state-space methodology.
Simulations were performed for double-span and four-span beams with several types of
damping: internal, external, nonproportional, viscous damping.

Here, we consider the original Newtonian approach by keeping the formulation of a
second-order system, that includes damping and stiffness, in each segment of the beam.
The coefficients for the displacement boundary conditions and intermediate continuity
conditions at discontinuity points of the beam are casted in a convenient block matrix
that we refer to as being the coefficient matrix. The values that the elements of the basis at
each segment take at the ends of the beam and intermediate discontinuity points give rise
to another block matrix called the basis matrix. The introduction of these block matri-
ces allows to formulate the eigenvalue problem in a compact matrix form. By choosing a
basis that is generated by a fundamental solution of a fourth-order differential equation,
the basis matrix becomes sparse. This approach can also be employed with double- or
four-span beams subject to classical and nonclassical boundary conditions. In a forth-
coming work, we will discuss multispan beams subject to a elastic coupling and discuss a
reduction in the computation of the coefficients of a mode in each segment.

2. Statement of problem

We consider an Euler-Bernoulli beam of length L with two intermediate devices and two
discontinuous cross sections, as in Figure 2.1. A flexural movement is represented in the
beam by vj(t,x) in the jth segment [xj−1,xj], j = 1 : 3 with 0= x0 ≤ x1 ≤ x2 ≤ x3 = L.

Here, Mw denotes value of the attached mass, Cw attached damping coefficient, Kw the
attached stiffness.

In each segment of the beam, we have the governing equations [6, 15]

Mj
∂2vj(t,x)

∂t2
+Cj

∂vj(t,x)

∂t
+Kjvj(t,x)= 0, xj−1 < x < xj , j = 1 : 3, (2.1)
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where

Mj =mj = ρjAj ,

Kj = ∂2

∂x2

[
kj(x)

∂2

∂x2

]
.

(2.2)

The damping coefficient can be considered to be of the form

Cj = c0 j(x) +
∂2

∂x2

[
c4 j(x)

∂2

∂x2

]
(2.3)

which includes the case of external viscous damping and internal Kelvin-Voigt damping.
In the above, we have the following usual parameter description:

(i) ρj denotes density,
(ii) Aj denotes cross-sectional area,

(iii) ci j denotes damping coefficients,
(iv) kj denotes stiffness coefficients.

In what follows, we will consider the particular case of beams with uniform sections.
Then the coefficients in the operators Cj , Kj become constants, that is,

Kj = kj
∂4

∂x4
= EjI j

∂4

∂x4
, Cj = c0 j + c4 j

∂4

∂x4
, Mj =mj , (2.4)

where Ej denotes Young’s modulus of elasticity, I j denotes the area moment of inertia.

3. Modal analysis

Free vibrations whose spatial distribution amplitude in each segment is Xj(x),

vj = eλtXj(x), x ∈ [xj−1,xj
]
, j = 1 : 3, (3.1)

can be found by substituting them into the above system. It turns out the spatial modal
differential equation

X (iv)
j (x)− a2

j (λ)ρjAjXj(x)= 0, x ∈ [xj−1,xj
]
, j = 1 : 3, (3.2)

for each segment of the beam. Here,

a2
j (λ)=−(αj + λβj

)
λ (3.3)

with

αj =
c0 j

ρ jAj
(
EjI j + λc4 j

) , βj = 1
EjI j + λc4 j

, j = 1 : 3. (3.4)

The solution for each segment (3.2) can be conveniently written as

Xj(x)= d1 jφ1 j(x) +d2 jφ2 j(x) + +d3 jφ3 j(x) +d4 jφ4 j(x)=Ψ j(x)dj, j = 1 : 3, (3.5)
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where

Ψ j =Ψ j(x,λ)= [φ1, j(x),φ2, j(x),φ3, j(x),φ4, j(x)
]

(3.6)

is a solution basis of (3.2) in the segment [xj−1,xj], j = 1 : 3, and dj is the column vector
with components d1 j , d2 j , d3 j , d4 j . Here we have emphasized that the solution matrix
basis Ψ j depend upon the parameter λ corresponding to a free vibration.

Generic boundary conditions of classical or nonclassical nature can be written as

A11X1(0) +B11X
′
1(0) +C11X

′′
1 (0) +D11X

′′′
1 (0)= 0,

A12X1(0) +B12X
′
1(0) +C12X

′′
1 (0) +D12X

′′′
1 (0)= 0,

A21X3(L) +B21X
′
3(L) +C21X

′′
3 (L) +D21X

′′′
3 (L)= 0,

A22X3(L) +B22X
′
3(L) +C22X

′′
3 (L) +D22X

′′′
3 (L)= 0.

(3.7)

The continuity conditions for the displacement, the inertia moment, the bending mo-
ment, and the shear force at the discontinuity point xj , j = 1 : 2 of the transversal section,
including an intermediate device, can be written in general as follows:

E
( j)
11 Xj

(
xj
)

+F
( j)
11 X

′
j

(
xj
)

+G
( j)
11 X

′′
j

(
xj
)

+H
( j)
11 X

′′′
j

(
xj
)

= E
( j)
12 Xj+1

(
xj
)

+F
( j)
12 X

′
j+1

(
xj
)

+G
( j)
12 X

′′
j+1

(
xj
)

+H
( j)
12 X

′′′
j+1

(
xj
)
,

E
( j)
21 Xj

(
xj
)

+F
( j)
21 X

′
j

(
xj
)

+G
( j)
21 X

′′
j

(
xj
)

+H
( j)
21 X

′′′
j

(
xj
)

= E
( j)
22 Xj+1

(
xj
)

+F
( j)
22 X

′
j+1

(
xj
)

+G
( j)
22 X

′′
j+1

(
xj
)

+H
( j)
22 X

′′′
j+1

(
xj
)
,

E
( j)
31 Xj

(
xj
)

+F
( j)
31 X

′
j

(
xj
)

+G
( j)
31 X

′′
1

(
xj
)

+H
( j)
31 X

′′′
1

(
xj
)

= E
( j)
32 Xj+1

(
xj
)

+F
( j)
32 X

′
j+1

(
xj
)

+G
( j)
32 X

′′
j+1

(
xj
)

+H
( j)
32 X

′′′
j+1

(
xj
)
,

E
( j)
41 Xj

(
xj
)

+F
( j)
41 X

′
j

(
xj
)

+G
( j)
41 X

′′
j

(
xj
)

+H
( j)
41 X

′′′
j

(
xj
)

= E
( j)
42 Xj+1

(
xj
)

+F
( j)
42 X

′
j+1

(
xj
)

+G
( j)
42 X

′′
j+1

(
xj
)

+H
( j)
42 X

′′′
j+1

(
xj
)

+Fj , j = 1 : 2,
(3.8)

where Fj denotes the force exerted by an external device.
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Figure 2.1 shows a cantilever beam with intermediate continuity conditions at the
points x = x1 and x = x2 and subject to a concentrated mass, spring, and a dashpot. The
boundary conditions at x = x0 = 0 and x = x3 = L are

X1(0)= X ′1(0)= 0, X ′′3 (L)= X ′′′3 (L)= 0. (3.9)

At the intermediate point x = x1, we have

X1
(
x1
)= X2

(
x1
)
,

X ′1
(
x1
)= X ′2

(
x1
)
,

k−1
2 k1X

′′
1

(
x1
)= X ′′2

(
x1
)
,

−k−1
2

(
Mwλ

2 +Kw
)
X1
(
x1
)

+ k−1
2 k1X

′′′
1

(
x1
)= X ′′′2

(
x1
)
.

(3.10)

Similarly, at the point x = x2, we have

X2
(
x2
)= X3

(
x2
)
,

X ′2
(
x2
)= X ′3

(
x2
)
,

k−1
3 k2X

′′
2

(
x2
)= X ′′3

(
x2
)
,

−k−1
3

(
Cwλ

)
X2
(
x2
)

+ k−1
3 k2X

′′′
2

(
x2
)= X ′′′3

(
x2
)
.

(3.11)

The substitution of (3.5) into (3.7) and (3.8), the boundary and continuity conditions
leads to a linear algebraic system

�(λ)d= 0, (3.12)

for the vector d of order 12× 1,

d=
⎡
⎢⎣

d1

d2

d3

⎤
⎥⎦ , dj =

⎡
⎢⎢⎢⎣
d1 j

d2 j

d3 j

d4 j

⎤
⎥⎥⎥⎦ , j = 1 : 2. (3.13)

Here, the matrix � is of order 12× 12 and it has the form

�=�Φ, (3.14)

where � is a matrix of order 12× 24 formed with the coefficients associated to the bound-
ary and continuity conditions and Φ is a matrix of order 24× 12 whose components are
values of the solution basis at the ends and the conditions at the discontinuity. A detailed
description of these block matrices is given in Section 4. Then nonzero solutions of (3.12)
are obtained for frequency values λ real or complex that satisfy the characteristic equation

det(�)= 0. (3.15)
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In classical conservative mechanical vibration theory, modes are essential for performing
a decoupling of the system. However, any real structure with or without intermediate
devices is dissipative. This implies the existence of complex modes that not necessarily
decouple a damped system [16]. On the other hand, any pair of complex conjugate modes
represent a free vibration in which distributed coordinates oscillate and share the same
decay rate and frequency but are not synchronous. This later is because it introduced a
phase when writing the mode or amplitude was in polar form [15].

4. Block matrix formulation

A detailed description of the matrix � in terms of the boundary and basis block matrices
is given in what follows for a triple-span beam subject to generic conditions. The matrix
corresponding to the boundary values can be written as follows:

�0 =
[
A11 B11 C11 D11

A12 B12 C12 D12

]
, �L =

[
A21 B21 C21 D21

A22 B22 C22 D22

]
. (4.1)

The matrix coefficients corresponding to the continuity conditions at x = xj , j = 1 : 2,
can be described in terms of the matrices

�1 j =

⎡
⎢⎢⎢⎢⎢⎣

E
( j)
11 F

( j)
11 G

( j)
11 H

( j)
11

E
( j)
21 F

( j)
21 G

( j)
21 H

( j)
21

E
( j)
31 F

( j)
31 G

( j)
31 H

( j)
31

E
( j)
41 F

( j)
41 G

( j)
41 H

( j)
41

⎤
⎥⎥⎥⎥⎥⎦

, �2 j =

⎡
⎢⎢⎢⎢⎢⎣

E
( j)
12 F

( j)
12 G

( j)
12 H

( j)
12

E
( j)
22 F

( j)
22 G

( j)
22 H

( j)
22

E
( j)
32 F

( j)
32 G

( j)
32 H

( j)
32

E
( j)
42 F

( j)
42 G

( j)
42 H

( j)
42

⎤
⎥⎥⎥⎥⎥⎦
. (4.2)

The values of the basis solutions at the ends of the beam x0, x3, and at each discontinuity
point xk, k = 1,2, can be written in terms of the Wronskian matrices in each segment

Φj(x)=

⎡
⎢⎢⎢⎢⎣

φ1 j(x) φ2 j(x) φ3 j(x) φ4 j(x)
φ′1 j(x) φ′2 j(x) φ′3 j(x) φ′4 j(x)
φ′′1 j(x) φ′′2 j(x) φ′′3 j(x) φ′′4 j(x)
φ′′′1 j (x) φ′′′2 j (x) φ′′′3 j (x) φ′′′4 j (x)

⎤
⎥⎥⎥⎥⎦ , j = 1 : 3. (4.3)

For a triple-span beam, we will have the block matrices

�=

⎡
⎢⎢⎢⎣

�0 0 0 0 0 0
0 �11 −�21 0 0 0
0 0 0 �12 −�22 0
0 0 0 0 0 �3

⎤
⎥⎥⎥⎦ , (4.4)

Φ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(0) 0 0
Φ1
(
x1
)

0 0
0 Φ2

(
x1
)

0
0 Φ2

(
x2
)

0
0 0 Φ3

(
x2
)

0 0 Φ3
(
x3
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.5)

In the above, 0 denotes null matrices with appropriate dimensions, that is, 2× 4 or 4× 4.
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4.1. A cantilever triple-span beam subject to damping. For the triple-span cantilever
beam of Figure 2.1, the corresponding blocks for the coefficients of the boundary condi-
tions are

�0 =
[

1 0 0 0
0 1 0 0

]
, �L =

[
0 0 1 0
0 0 0 1

]
, (4.6)

while the blocks for the continuity conditions at the intermediate discontinuous sections
are

�11 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 k−1

2 k1 0
−k−1

2

(
Mwλ2 +Kw

)
0 0 k−1

2 k1

⎤
⎥⎥⎥⎦ , �21 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ ,

�12 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 k−1

3 k2 0
−k−1

3

(
Cwλ

)
0 0 k−1

3 k2

⎤
⎥⎥⎥⎦ , �22 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ .

(4.7)

5. The fundamental basis

The classical or spectral Euler basis of the fourth-order equation,

X (iv)(x)− ε4X(x)= 0, (5.1)

is constructed by using the roots ±ε, ±iε of the characteristic polynomial s4− ε4 = 0, that
is,

Ψ= [sin(εx),cos(εx), sinh(εx),cosh(εx)
]
. (5.2)

However, among all possible bases that we can choose, it would be convenient to choose
the basis that makes (4.5) as sparse as possible. In this work, this is accomplished by
choosing in each segment a fundamental basis that is a translation of a fixed basis that
is generated by an initial-value solution in the first segment. This later solution can be
found in the work of Timoshenko et al. [17] literature without the systematic treatment
considered in [2, 3, 18]. We will consider the basis for the first segment that is constituted
by the solution h(x) of the initial value problem

h(iv)(x)− ε4h(x)= 0,

h(0)= 0, h′(0)= 0, h′′(0)= 0, h′′′(0)= 1,
(5.3)

and its first three derivatives h′(x), h′′(x), h′′′(x). With respect to the spectral Euler basis,
the fundamental solution h(x) has the following representation:

h(x)= sinh(εx)− sin(εx)
2ε3

. (5.4)
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By defining

φ(i−1)
jk (x)= h( j+i−2)(x− xk−1,εk

)
, i, j = 1 : 4, k = 1 : 3,

ε4
k = a2

k(λ)ρkAk,
(5.5)

where we have emphasized the dependence of the solution of (5.3) upon the parameter ε
in each segment of the beam, it turns out

Φ j
(
xj−1

)=

⎡
⎢⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦ , j = 1 : 3. (5.6)

By taking into account the initial values of h(x,ε), the matrix (4.5) becomes more sparse
and it is given by

Φ=
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

φ11
(
x1
)
φ21
(
x1
)
φ31
(
x1
)
φ41
(
x1
)

0 0 0 0 0 0 0 0

φ′11

(
x1
)
φ′21

(
x1
)
φ′31

(
x1
)
φ′41

(
x1
)

0 0 0 0 0 0 0 0

φ′′11

(
x1
)
φ′′21

(
x1
)
φ′′31

(
x1
)
φ′′41

(
x1
)

0 0 0 0 0 0 0 0

φ′′′11

(
x1
)
φ′′′21

(
x1
)
φ′′′31

(
x1
)
φ′′′41

(
x1
)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 φ12
(
x2
)
φ22
(
x2
)
φ32
(
x2
)
φ42
(
x2
)

0 0 0 0

0 0 0 0 φ′12

(
x2
)
φ′22

(
x2
)
φ′32

(
x2
)
φ′42

(
x2
)

0 0 0 0

0 0 0 0 φ′′12

(
x2
)
φ′′22

(
x2
)
φ′′32

(
x2
)
φ′′42

(
x2
)

0 0 0 0

0 0 0 0 φ′′′12

(
x2
)
φ′′′22

(
x2
)
φ′′′32

(
x2
)
φ′′′42

(
x2
)

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 φ13(L) φ23(L) φ33(L) φ43(L)

0 0 0 0 0 0 0 0 φ′13(L) φ′23(L) φ′33(L) φ′43(L)

0 0 0 0 0 0 0 0 φ′′13(L) φ′′23(L) φ′′33(L) φ′′43(L)

0 0 0 0 0 0 0 0 φ′′′13 (L) φ′′′23 (L) φ′′′33 (L) φ′′′43 (L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.7)
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L

X1 X2

m1,k1 Mw m2,k2

Kw
Cw

Figure 6.1. A double-span discontinuous cantilever beam.

The fundamental response h(x,ε), has the same shape for each segment, but depends on
different values for the involved physical parameters.

6. Numerical examples

6.1. Double-span beam. We first consider the case of a pinned-pinned double-span
beam of length L as Figure 6.1 that was studied in Sorrentino et al. [14] and Chang
et al. [13].

The spatial modal differential equation to double-span beam can be expressed in the
form

X (iv)
j (x)− a2

j (λ)ρjAjXj(x)= 0, x ∈ [xj−1,xj
]
, j = 1 : 2, (6.1)

for each segment of the beam, where aj , j = 1 : 2 are given in (3.3).
The boundary conditions to beam above at x = x0 = 0 and x = x2 = L are

X1(0)= X ′′1 (0)= 0, X2(L)= X ′′2 (L)= 0. (6.2)

We have the intermediate continuity conditions at the point x = x1,

X1
(
x1
)= X2

(
x1
)
,

X ′1
(
x1
)= X ′2

(
x1
)
,

k−1
2 k1X

′′
1

(
x1
)= X ′′2

(
x1
)
,

−k−1
2

(
Mwλ

2 +Cwλ+Kw
)
X1
(
x1
)

+ k−1
2 k1X

′′′
1

(
x1
)= X ′′′2

(
x1
)
.

(6.3)

For a double-span beam, the blocks that correspond to the boundary conditions are

�0 =
[

1 0 0 0

0 0 1 0

]
, �L =

[
1 0 0 0

0 0 1 0

]
. (6.4)
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At the intermediate points, where continuity conditions are to be held, we have

�11 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 k−1

2 k1 0
−k−1

2

(
Mwλ2 +Cwλ+Kw

)
0 0 k−1

2 k1

⎤
⎥⎥⎥⎥⎦ , �21 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

(6.5)

Thus, the coefficient block matrix of the given double-span beam is

�=

⎡
⎢⎢⎣

�0 0 0
0 �11 −�21

0 0 �L

⎤
⎥⎥⎦ (6.6)

or expanded

�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0

0 0 0 0 0 0
k1

k2
0 0 0 −1 0

0 0 0 0 Γ 0 0
k1

k2
0 0 0 −1

0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.7)

where Γ=−k2(Mwλ2 +Cwλ+Kw).
For constructing the basis matrix, that carries the values of the generic solution basis at

the ends of the beam and at the discontinuity points of a double-span beam, we consider

φ(i−1)
jk (x)= h( j+i−2)(x− xk−1,εk

)
, i, j = 1 : 4, k = 1 : 2, (6.8)

where h(x) is the solution of (5.3). Then, the basis matrix is given by

Φ=

⎡
⎢⎢⎢⎢⎣

Φ1(0) 0
Φ1
(
x1
)

0
0 Φ2

(
x1
)

0 Φ2(L)

⎤
⎥⎥⎥⎥⎦ (6.9)
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Table 6.1. Parameter values of a double-span beam.

Parameter Numeric value Unit

m1 =m2 1.6363× 104 kg/m

k1 = k2 1.6669× 1011 Nm2

L 15.24 m

Table 6.2. Eigenvalues (rad/s) to double-span beam.

Mode (n) Proposed method [14]

1 −11.25426117± 135.0795544 I −11.30627± 135.1799 I

2 .5512552857e-7 ±542.5166750 I 0± 542.5144 I

3 −8.442911066± 1128.708193 I −8.482803± 1128.716 I

or expanded

Φ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

φ11
(
x1
)

φ21
(
x1
)

φ31
(
x1
)

φ41
(
x1
)

0 0 0 0
φ′11

(
x1
)

φ′21

(
x1
)

φ′31

(
x1
)

φ′41

(
x1
)

0 0 0 0
φ′′11

(
x1
)

φ′′21

(
x1
)

φ′′31

(
x1
)

φ′′41

(
x1
)

0 0 0 0
φ′′′11

(
x1
)

φ′′′21

(
x1
)

φ′′′31

(
x1
)

φ′′′41

(
x1
)

0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 φ12(L) φ22(L) φ32(L) φ42(L)
0 0 0 0 φ′12(L) φ′22(L) φ′32(L) φ′42(L)
0 0 0 0 φ′′12(L) φ′′22(L) φ′′32(L) φ′′42(L)
0 0 0 0 φ′′′12 (L) φ′′′22 (L) φ′′′32 (L) φ′′′42 (L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.10)

Numerical simulations with the proposed method are presented by using the data in
Table 6.1. The parameter values at the discontinuity point x = x1 = (L/2) of beam used
are Mw = 0.1mL, Kw = 0.1mLw2

1, and Cw = 0.1mLw1 where m =m1 =m2 and w1 is the
first natural frequency of the beam without added mass and spring [13]. In Table 6.2,
the first three eigenvalues of the beam were obtained by solving the characteristic equa-
tion (3.15) with an approximation of h(x) and compared with the ones obtained in [14].
We observed a good agreement among the two methods. In Figures 6.2, 6.3, and 6.4 are
showed the modes shapes corresponding to the first three eigenvalues of the beam, where
(a) indicates the real part of the mode and (b) the imaginary part of the mode.
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Figure 6.2. First mode to double-span beam.

0.3

0.2

0

�0.2

�0.3

2 4 6 8 10 12 14

x

(a) Real part

1.6e� 05

1.2e� 05

8e� 06

4e� 06

2 4 6 8 10 12 14

x

(b) Imaginary part

Figure 6.3. Second mode to double-span beam.

6.2. Triple-span beam. We now consider the triple-span beam given in Figure 2.1. First,
we assume that the beam is uniform with parameter values given in Table 6.3. The viscous
damping at the point of discontinuity x = x2 is given by Cw = 0.1mLw1, where x1 = 4m,
x2 = 10m, and w1 is the first natural frequency of the beam without added mass and
spring [13].

In Table 6.4, we have the values of the first three eigenvalues of the beam and in Figures
6.5, 6.6, and 6.7 the correspondent modes shapes, where (a) it indicates the real part of
the mode and (b) the imaginary part of the mode.
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Table 6.3. System parameters to beam uniform triple-span.

Parameter Numeric value Unit

m1 =m2 =m3 =m 1.6363× 104 kg/m

k1 = k2 = k3 1.6669× 1011 Nm2

L 15.24 m

Table 6.4. Eigenvalues of a uniform triple-span beam.

Mode (n) Eigenvalues

1 −1.355547843± 48.31860604 I

2 −12.43829644± 302.5538405 I

3 −8.226875796± 847.5582997 I

Table 6.5. System parameters to triple-span beam.

Segment first Segment second Segment third Unit

Mass 1.6363× 104 0.8×m1 0.8×m1 kg/m

Stiffness 1.6669× 1011 1.4× k1 0.6× k1 Nm2

Damping 5× 10−1 0.5× c1 11.7× c1 Ns/m2

Length (L) 4 6 5.24 m
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Figure 6.4. Third mode to double-span beam.

For the second case, we consider that the cantilever beam in Figure 2.1 is nonuniform.
Its parameters values are given in Table 6.5. The first three eigenvalues of the beam are
listed in Table 6.6.



14 Mathematical Problems in Engineering

Table 6.6. Eigenvalues (rad/s) to triple-span beam.

Mode (n) Eigenvalues

1 −.4314672830± 49.72926784 I

2 −8.906552965± 278.6470011 I

3 −16.73690547± 797.5457311 I
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Figure 6.5. First mode of a uniform triple-span beam.
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Figure 6.6. Second mode of a uniform triple-span beam.
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Figure 6.7. Third mode of a uniform triple-span beam.

0

�0.001

�0.002

�0.003

x

(a) Real part

0.5

0.4

0.3

0.2

0.1

0
2 4 6 8 10 12 14

x

(b) Imaginary part

Figure 6.8. First mode to triple-span beam.

In Figures 6.8, 6.9, and 6.10 are plotted the first three shape modes corresponding to
the first three eigenvalues of the beam, where (a) it indicates the real part of the mode and
(b) the imaginary part of the mode.

We can observe the effect of varying the parameters values in each segment of the
beam on the modes shapes. The second and third modes are quite different from those of
the uniform beam. This means that a beam with different sections some how influences
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Figure 6.9. Second mode to triple-span beam.
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Figure 6.10. Third mode to triple-span beam.

more the modes than external devices such as lumped mass, lumped stiffness, and lumped
damping.

7. Conclusion

We have considered the study of the eigenanalysis of a triple-span Euler-Bernoulli beam
subject to internal and external damping and to intermediate devices by keeping the orig-
inal second-order Newtonian formulation. We also employed a matrix formulation that
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allows to observe the influence of the boundary and intermediate continuity conditions
of the beam. Also, the values of a solution basis of the fourth-order differential equation
for each segment. By choosing the elements of the basis in each segment as a convenient
translation of the elements of a fundamental basis for the first segment, computations are
reduced. This fundamental later is generated by a specific initial-value solution and its
first three derivatives. The matrix method avoids the use of the first-order state formula-
tion or to rely on the Euler basis of a differential equation of fourth order. It also allows
to envision how conditions will influence a chosen basis.
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