UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA 3
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

DIOGO RAPHAEL CRAVO

Module Integration using Graph
Grammars (MIGRATE)

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Leila Ribeiro

Porto Alegre
August 2021

CIP — CATALOGING-IN-PUBLICATION

Cravo, Diogo Raphael

Module Integration using Graph Grammars (MIGRATE) /
Diogo Raphael Cravo. — Porto Alegre: PPGC da UFRGS, 2021.

112 f.: 1l

Thesis (Master) — Universidade Federal do Rio Grande do Sul.
Programa de P6s-Graduagdao em Computacao, Porto Alegre, BR—
RS, 2021. Advisor: Leila Ribeiro.

1. Graph grammar. 2. Software integration. 3. Verification
tool. I. Ribeiro, Leila. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitora: Prof®. Jane Fraga Tutikian

Pré-Reitor de Pos-Graduagao: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informatica: Prof*. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Prof*. Luciana Salete Buriol

Bibliotecdria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

“Take risks. Ask big questions.
Don'’t be afraid to make mistakes;
if you don’t make mistakes,
you're not reaching far enough”

— DAVID PACKARD

AGRADECIMENTOS

Agradeco a Professora Leila por todo o apoio, pelas muitas e longas reunides de
orientacdo em que discutimos esta dissertacao. Sem sua supervisao este trabalho nao seria
possivel.

Agradeco também ao Professor Rodrigo, que cedeu seu tempo para explicar con-
ceitos sobre gramaticas de grafos e discutir dificuldades no procedimento de verificagao.
Também aos colegas do grupo de pesquisa, ao Arthur pela ajuda com o Verigraph.

Agradeco aos colegas de empresa pelas discussdes e também pela compreensao
em todas reunides de que ndo pude participar.

Agradeco a Hellena por todo apoio neste ultimo ano. Seus conselhos me ajudaram
a persistir!

Por fim, agradeco especialmente a minha familia e a minha companheira Nick por

todo amor, apoio e compreensao.

ABSTRACT

Software, be it desktop, mobile or web, is becoming more and more connected. Software
development is also becoming more connected with ecosystems comprised of networks
of millions of packages. Engineering software today involves writing code that weaves
together libraries, services and applications. Such processes are under constant changes
due to both internal requests (e.g. new features) or external demands (e.g. dependency
updates). Avoiding integration bugs in this scenario can be quite a challenge regardless
of common strategies such as testing and versioning. We studied graph grammars to find
a set of grammars (verification grammars) that represent how software modules integrate
and leveraged existing graph grammar analysis, specifically critical pair analysis, to point
out possible integration problems in such grammars automatically. Furthermore, we cre-
ated a formalism (module nets) to represent how software modules share information and
leveraged graph grammars, by the fact that they can be proven to have functional behavior
(confluence), to translate instances of module nets to verification grammars, enabling de-
velopers to create and modify module nets and then have warnings concerning integration
problems automatically generated. We summarized this process in a framework we call
module integration using graph grammars (MIGRATE), which we illustrate in this work
through a case study with a fictitious search engine for research articles. Our approach
demonstrates how to leverage critical pair analysis of graph grammars to automatically
uncover a few integration bugs. It also serves as a pathway for future research exercising

other graph grammar analyses to full extent.

Keywords: Graph grammar. software integration. verification tool.

Integracao de médulos utilizando gramaticas de grafos (MIGRA)

RESUMO

Software, seja desktop, mobile ou web, estd se tornando mais e mais conectado. Desen-
volvimento de software também estd se tornando mais conectado com ecossistemas feitos
de redes de milhdes de pacotes. Construir software hoje corresponde a escrever cédigo
que integra bibliotecas, servigcos e aplicagdes. Essas redes estdo sob mudangas constan-
tes devido a necessidades internas (e.g. novas funcionalidades) ou demandas externas
(e.g. atualizacdo de dependéncias). Evitar defeitos de integracdo neste cendrio pode ser
um grande desafio, apesar de estratégias como teste e versionamento. NOs estudamos
gramdticas de grafos para encontrar um conjunto de gramdticas (gramdticas de verifica-
cdo) que representam como moddulos de software se integram e aproveitamos andlises
de gramadticas de grafos existentes, especificamente andlise de pares criticos, para apon-
tar automaticamente possiveis problemas de integracdo nessas gramdticas. Além disso,
nos criamos um formalismo (redes de mddulos) que representa de que forma mdédulos
compartilham informacdo e aproveitamos gramaticas de grafos, pelo fato de que pode-
se provar seu comportamento funcional (confluéncia), para traduzir instancias de redes
de moédulos para gramadticas de verificacdo, possibilitando que desenvolvedores criem e
modifiquem redes de médulos e entdo gerem automaticamente avisos que dizem respeito
a problemas de integracdo. NO&s resumimos este processo em um framework que cha-
mamos de integracdo de modulos utilizando gramaticas de grafos (MIGRATE), o qual
ilustramos neste trabalho através de um estudo de caso com um motor de busca por arti-
gos de pesquisa. Nossa abordagem demonstra como aproveitar andlise de pares criticos
de gramaticas de grafos para descobrir automaticamente alguns defeitos de integracao.
Ela também serve como caminho para pesquisas futuras exercitando todo o potencial de

andlises de gramadticas de grafos.

Palavras-chave: Gramdtica de Grafos, integracdo de software, ferramenta de verificacao.

MIGRATE

TAGG

AGG

NPM

HTTP

REST

LIST OF ABBREVIATIONS AND ACRONYMS

Module Integration using Graph Grammars
Typed Attributed Graph Grammar

The Attributed Graph Grammar System
Node Package Manager

Hypertext Transfer Protocol

Representational State Transfer

LIST OF FIGURES

Figure 3.1 Example e-graph £, in mathematical notation where W is the disjoint
union of sets, Nat is the set of natural numbers and Bool is the set of boolean

VALUES ..ottt et ettt et st 28
Figure 3.2 Example algebra A; corresponding to a signature 31ccccceeeveerueenereennenne. 28
Figure 3.3 An e-graph morphism (EHRIG, 2006)ccccoeeiiiiniiiiniieniieenieeeeeeeeee 29

Figure 3.4 Example typed attributed graph T'AG, where the morphism from AG,
to 7} is indicated by using in AG; the same names as in 77 with indices

(values of Nat are an eXCEPLION)eeeuieeriieriieeriee ettt et et e e e 29
Figure 3.5 Definition of graph transformation rule.............ccoocueeriiieniiiinnieeniieeieeeee 30
Figure 3.6 Example of a graph transformation rule Pj........cccccooviiiiiiiiniiiniiiniieeneene 30
Figure 3.7 Application of a graph transformation rule.ceceeeviiiiiiiiniieiiieenee 31
Figure 3.8 Example of a graph transformation rule application, which preserves,

deletes and creates nodes and €dges.cocueeviiiiiiiiiiiiiiie e 31
Figure 3.9 Examples of graph grammar rules and type graph in AGGcccceeueene. 32
Figure 3.10 Example critical pairs (tgll, tgll) and (tg;, tg;) ... 33

Figure 3.11 Examples of overlapping graphs as seen in AGG, we omit morphisms
from rule graphs to overlapping graphs as there is only one possible morphism

for each case (it maps as many nodes and edges as possible)ccccceeevveerunennne. 34
Figure 4.1 Overview of the proposed approachccceecueeeviieriiieeniiieeiieesiee e 37
Figure 4.2 Module Integration using Graph Grammars framework.cc..cccocceennen. 38
Figure 5.1 Example quadripartite directed graph (1cccceeveerieiiienienieiieeieenieeee 41
Figure 5.2 Modules M4 and Mg from Example 3 in visual notation.ccccceeevunenn. 43
Figure 5.3 Operation from Example 4 in visual notation.ccceeeeveeerveencieeennveenneenne 44

Figure 5.4 Module net from Example 5 in visual notation. Usually a module net
will be drawn next to its modules and operations, but we omit these here

because they are already drawn in Figures 5.2 and 5.3 respectively...........c.......... 46
Figure 6.1 Examples of translation rulesccoeceeeviieriiiieniieniieerieeeiee e 50
Figure 6.2 Translation grammar type graph........cocceeeviieriiiiniiiniieinieeeieereeeeeeeeene 50
Figure 6.3 Module net M N; and corresponding graph encoding............ccceecueeevveenneenn. 52
Figure 6.4 Graph after application of layer O - translation of M Nyccccvvvvvveeiveennnnn. 53
Figure 6.5 Graph after application of layer 1 - translation of M Nycccceevvveviviniinncnn 53
Figure 6.6 Verification grammar for module net M Nj.....c.coovvieviiieiiiieeiiieiiie e 54
Figure 6.7 Module NEt M No. c..cocuviriiiiiiiiinieteeeeeee e e 59
Figure 6.8 Verification grammar for module net M No.......coovvieviiieniiiiiiiieniieeieeeiene 60
Figure 6.9 Remaining rules of verification grammar for module net M Nj.................... 61
Figure 6.10 CPA options and termination of translation grammar.c.cccceeevvernenne 62
Figure 6.11 Proof of termination...........c..eeeuieeiieeriiieeiieeeieeeseeeeieeesreeeieeesaeeeeaeesneeens 63
Figure 6.12 Termination Jayers.ccccverieriiriienienieeieeieee e 63
Figure 7.1 Verification proCedure.c.cccevuiriiinienieeiieieeneeeie e 69
Figure 7.2 Possible subgraphs of critical pair overlays and correspondence to Table 7.273
Figure 7.3 Example of required path hint computationccccceevieiiiieinieennieenneenn. 75

Figure 7.4 Example of attribute or resource not generated by the module net, but
still generated by some operation of the module netcooceeeviieniiienieennenne 77

Figure 8.1 Pseudocode for Research Net V7, functions read, find and retrieve are

part of external MOAUIES...........coviiiiriiieieeeie e 82
Figure 8.2 Example module Nt V]cccooeviiiiiiiiiiieeieeciee et 83
Figure 8.3 Critical pair analysis graph for research net Viccoccooiiiiiiiiniiinncnnneen. 84
Figure 8.4 Example module Net V5ccoceriiiiiiiiiiiiieeeeececeeee e 86
Figure 8.5 Ceritical pair analysis graph for research net Viccocceeeviieiiiiiniiiniienneene 87
Figure A.1 Rules TK1 through TK10 of translation grammar............cc.ccccevveerueennnneen. 105
Figure A.2 Rules TK11 and TR12 through TR20 of translation grammar. 106
Figure A.3 Rules TR21 through TR27 of translation grammar.cccccceceervueenueennnens 107
Figure A.4 Rules TR28, CL29 through CL33, AD34 and AD35 of translation gram-

TIRAT ..ottt ettt e ettt e ettt e bt e ettt e e ab e e e bt e e e aa et e bt e e e ab e e e bt e e e be e e ab e e s bb e e et e e e bt e e nabeeeenaeenane 108
Figure A.5 Atomic constraints Al through A8...........cciiiiiiiiiiiieeee 109

Figure A.6 Atomic constraints A9 through A12.........cccooiiiiiiiiniieeeee 110

LIST OF TABLES

Table 6.1 Translation grammar rule COdes.coouiiriiiiniiiiiniiiiieeiecee e 49
Table 6.2 Summary of translation grammar rules. For the actual rules, see appendix. ..51
Table 6.3 Node type creation layers as created by AGG.........ccoceevieniiniiinieenienienneenn 64
Table 6.4 Node type deletion layers as created by AGG..........ccoevueeeviieniieiniieeniieenieenne 64
Table 6.5 Edge type creation layers as created by AGG.ccooveieviieniieeniiieniieeeiene 65
Table 6.6 Edge type deletion layers as created by AGG.cccoevvveviieeiieeniiieeieeeieene 66
Table 7.1 Dependencies between hints and warnings..........c.ccceceeeveeneenienieeneeneeneeenn 71
Table 7.2 Information flow in subgraphs of critical pair overlayscccoeceerrveennenne 73
Table 7.3 Time complexity of each step in the verification procedure.ccceueen. 80
Table 9.1 Approaches found in related works to evaluate library integration................. 90
Table 9.2 Approaches found in related works to evaluate service integration. 93
Table 9.3 Related works with graph grammars concerning model extraction (i) and
model transformation (11)coeeeuriereeeeiiiiiiiieee e eeecciree e e e eeeerre e e e e e eerrrereeeeeeeaennens 94
Table 9.4 Related works with graph grammars concerning verification................c........ 95

CONTENTS

1 INTRODUCTION..... .13
1.1 A verification tool for software 1ntegrat10n A5
1.2 Main contribution. .16
1.3 Outline .16
2 PROBLEM...... .18
2.1 Compatibility matters...... .18
2.2 Compatibility often breaks .19
2.3 Why compatibility breaks . .20
2.3.1 Weighing deCISIONSueeeiiieeiiieeiieeeiteertee ettt e e iteesbee et e e s beeesaaeesaseeenene 22
2.3.2 ECOSYSIEIM PIESSUIEeeeuerieiiieeiieeaiteeniteeeite e sttt e ettt esateesbteesabeeesbreesbeessseeesaseeenne 22
2.4 How to avoid breaking compatibility . 23
2.4.1 PrOJECE LACTICS uvvieeeiireeeeiiieeeeiiieeeeiteeeeeitteeeeiteeeestbeeessnseeeeeaseeesenseeeesnsseeessnsseaeanns 23
2.4.2 Programming 1anguage SUPPOTLcc.eeerureerireerieeeiieenieeeireesieeenireesneeesieeesneesnne 23
2.4.3 VETSIONINE .eeeeuiviieeeiiiieeeitte e et ee e ettt e e ettt e e estteee e ateeeessasteesensseeeeanseaeesssaeesnnsseaeanns 24
244 TESES ettt sttt e b e ettt e e eanes 25
2.4.5 DEPTECALIONuvviieeiiiieeeiiieeeeiit e e et e e ettt e e e ettt e e e atteeessabteeesssbeeesnabeeessnsseeesnnsseeeanns 25
2.5 Our contribution... 25
3 TYPED ATTRIBUTED GRAPH GRAMMARS w27
3.1 Nodes and Arrows. 27
3.2 Grammars... .29
3.3 Properties.... 31
4 MIGRATE FRAMEWORK OVERVIEW ...36
5 MODULE NETS .40
5.1 Definition..... . .40
5.2 Limitations and final remarks46
6 TRANSLATION .48
6.1 Translation.. .48
6.2 Operation.... 52
6.3 Properties....55
6.3.1 Well-defINedNESScocueiriiiriiiieeiieeeeeeee ettt 55
6.3.2 CONTIULIICE ...ttt et e e st e e e be e e e e abeeeeennteeeenns 62
6.4 Limitations and final remarks 67
7 A VERIFICATION METHOD FOR SOFTWARE INTEGRATION 69
7.1 Identification 69
7.1.1 Graph identifiCatiONnccceeeriiieiiieeeiieeieeeieeesteeeeeesteeeieeesreeetaeesbeeeeaeesnneeens 70
7.2 Hints. 71
7.2.1 Critical Pairs NINt.......cccovieeiiieiiiieeiieeeiee ettt e et eetee e s aeeesaeesnaeeen 71
7.2.2 Rule decoration NIN...........coocuiiieeiiiie et e e e e v e e e seaeeeeans 71
7.2.3 Information flow RINtoccoiiiiiiiiiii e 72
7.2.4 Optional path NNtc.ccooiiiiiiiii e 74
7.2.5 Required path NINt........c.cooouiieiiiiiiiieiieceee ettt e en 74
7.2.6 Reachable rule NNtc..ooeeiiiiiiiiiiie et e e e 76
7.2.7 Critical pair explanation Rintccoevviieiiiiniieeie e 77
7.3 Warnings..... .78
7.3.1 Optional attribute, resource, module or operatlon 2210110 11 SRS 78
7.3.2 Strictly optional attribute Warningccccceeeervereueenienieniieeieeneesee e 79
7.3.3 Unreachable operation Warningcoccueeerueeerieerrireenieesniieesieeesreesieeeseeesneesnnne 79
7.3.4 Dangling resource WarnINEccccverveevienueerieeeeenieeneeeneereesseeseesneesneesseesneenne 79

7.3.5 Outdated attribute Warning........cccueeeruieerieerriieeniieesiteerteeeireeeieeesireesaeeeseeesbee e 80

7.4 Complexity..80
7.5 Limitations and final remarks81
8 CASE STUDY . . .82
8.1 Outdated attribute warnings in research net V]83
8.2 Unreachable operation warnings in research net 1, 84
8.3 Optional attribute warnings in research net ;3 .85
9 RELATED WORK88
9.1 Integration of Libraries...88
9.2 Integration of Services..... .90
9.3 Graph grammar applications93
10 CONCLUSION 96
REFERENCES.. 98

APPENDIX A — TRANSLATION GRAPH TRANSFORMATION SYSTEM....104
APPENDIX B — RESUMO ESTENDIDO A11

13

1 INTRODUCTION

Software is becoming more and more connected. Desktop applications, which
used to save data to disk, now synchronize with the cloud and allow simultaneous editing
by different users. Smartphone applications connect to backend services that store data
and carry out requests. Not to mention the web itself, a huge network of sites, which are
connected, by design, to each other and to services bearing all the business logic.

Software development is also becoming more connected. Each programming lan-
guage brings with itself an ecosystem of package managers full of thousands of libraries,
sometimes even millions (DECAN; MENS; GROSJEAN, 2019). Such libraries usually
make use of one another, giving rise to vast networks of dependencies. Engineering soft-
ware today means to write code that weaves together libraries, services and applications.

There are many reasons to leverage software as a dependency rather than develop
software from scratch. The first is to avoid reinventing the wheel: if someone has al-
ready been through the development and testing, there is no reason to make that effort
again. Also, although developers know their software entirely, the development of some
libraries may require domain expertise, which is too different from the project goals, such
as research algorithms, or even database drivers and cloud development kits. Finally, con-
straints such as time and budget shrink how much work a team can perform, forcing teams
to concentrate on their business logic and leverage everything they can.

The inherent limitation on how much work a team can perform also forces orga-
nizations to scale in order to achieve big goals. In such context each team is responsible
for a set of assets, and reuse is strongly encouraged within the organization to save up
resources. An evidence of this approach to developing software is the growing interest
in microsservices by the software engineering community (FOWLER, 2014; SOLDANI;
TAMBURRI; HEUVEL, 2018).

Software can be leveraged in many ways. Control over integration is greatest when
the dependency owner and the consumer are the same, because not only dependency code
is known, but also updates can be controlled to keep integration. As dependencies attract
more consumers, these consumers will have less control over updates, but they may still
have access to code, as it happens with open source software. Integration is harder when
consumers neither own nor have access to dependency code, in which case consumers
have to rely fully on documentation and dependency updates may break the integration to

consumer software.

14

Consumers can choose when they update libraries, but they are rarely given the
chance to choose when to update dependency services. The least control consumers have
over integration is when their dependency is a service they do not develop themselves,
because this service can be updated independently of consumer software, possibly intro-
ducing integration faults.

Integration faults can arise for multiple reasons (AUE et al., 2018; MOSTAFA;
RODRIGUEZ; WANG, 2017). One example is when a consumer uses a API that is re-
moved from a dependency in an update. Another common example is changes to method
signatures in dependency updates. More subtle integration faults are related to changes
in how dependencies handle data. Even if an update keeps the APIs of a dependency, it
may change its input/output relation, which can cause all sorts of trouble when it is not
integrated properly.

There are many approaches to preventing integration faults. Semantic version-
ing (PRESTON-WERNER, 2020) aims to signaling when a change to a dependency is
considered "breaking", warning developers that updating a dependency to that version
may require changes to integration code. Automated tests written by developers can also
uncover integration faults (FOWLER, 2018). Additionally, some languages have tool-
ing that prevents compilation and bundling of code when it does not integrate well to its
dependencies (ORACLE, 2020).

Despite all of the approaches in place to prevent integration faults, some of these
faults are still subtle and hard to catch. As an example, let us consider the NodeJS library
axios, a very useful and popular HTTP client. Release 0.19.2 of axios had a configuration,
called maxContentLength, which served both as maximum response length as well as
maximum request length!, the latter was relayed to another library called follow-requests.
The confusion of responsibilities assigned to the same parameter led axios contributors
to create a new parameter, maxBodyLength?, which was relayed to follow-requests, while
maxContentLength retained its original purpose of being the maximum response length.
This change was release in version 0.20.0 of axios.

An unsuspecting developer when updating axios from version 0.19.2 (or older) to
version 0.20.0 (or newer) may overlook this change, which can lead to trouble, because
the newer version will constrain maximum upload sizes to its default maxBodyLength,
which the previous version would not do.

To brake integration faults before they make it into production, many researchers

Thttps://github.com/axios/axios/issues/2696
Zhttps://github.com/axios/axios/pull/2781

15

are proposing new approaches. This work is dedicated to proposing a method and tool to

automatically uncover some integration faults.

1.1 A verification tool for software integration

We propose a verification method and tool that can automatically uncover faults
arising from the integration of modules. Our method uses a novel formalism, which we
call module net, to model the data flow between and within modules. Module nets are
obtained by code inspection, translating programming language to module net diagrams.
Verification happens by first translating a module net to a graph grammar, which is an
automatic procedure, and then performing a series of analyses over the verification gram-
mar. The outcome of our verification procedure is a set of warnings to users highlighting
which integrations deserve their attention.

As previously mentioned, software is connected and built not only on top of li-
braries, but also on top of services, and software integration happens at both levels. For
this reason, we consider modules as any piece of software that handles data, which can be
anything: application, library or service.

Although we recognize control flow plays an important role in the behavior of
software, such as conditions and loops, our method does not address control flow. Adding
control flow would incur an even bigger problem to solve, whereas our goal in this work
is to show a prototype. Control flow can still be addressed in future work. Additionally,
because the verification is carried out at the level of module nets, we ignore language
specifics, which can be addressed when performing the extraction of module nets from
programming languages, and it is also left for future work.

The verification method we propose can be used in many ways. When given a
module net, it is able to output warnings regarding that specific module net. A developer
can then make changes to the module net and perform the verification again to assess
whether integration faults are resolved. Alternatively, that same developer can choose
to apply changes directly to code and then have this code automatically translated into
module net to perform the verification. Library and service developers can use module
nets to check that the changes they make to their code do not impact consumers.

Moreover the verification can be used to determine the correct version that should
be assigned to a module after it is updated, by checking the integration of the updated

module to a fixture module that uses all of its functionalities. Additionally, such checks

16

could be used to rank libraries according to stability, in terms of how many warnings are
present. Also, because the verification is concerned with how data flows between mod-
ules, it could be used to point out resources which are shared by many services and factor
responsibilities, achieving lower coupling. Versioning, ranking and coupling functionali-

ties are not covered in this work.

1.2 Main contribution

Our goal with this research is to eventually reach a point where we can highlight
integration faults automatically and independently of technology. This work provides the

first steps in this direction. These are the main contributions of this work:

e A formalism to model how data flows between software modules, which we call
module net;

e A method to verify and highlight integration faults arising from the data flow of
module nets;

e A prototype tool that implements the method above and its evaluation in a case

study.

1.3 Outline

Chapter 2 addresses the problem of integrating software modules in different ecosys-
tems.

Chapter 3 is a brief introduction to typed attributes graph grammars, which are used
extensively in this work.

Chapter 4 describes the module integration framework that we want to build, MIGRATE,
with its extraction, translation and verification procedures and all artifacts used in
the process.

Chapter S5 defines module nets, which are a formalism to describe software integration.

Chapter 6 presents a procedure to translate module nets into graph grammars using
graph grammar derivation, and proof of confluence and discussion of well-definedness
of such translation.

Chapter 7 shows how to use critical pairs generation to find integration issues and how

17

to report such issues to developers in the form of warnings.

Chapter 8 condenses the work done until here by showing a case study with three ver-

sions of a fictitious search engine for research articles.

Chapter 9 contains related work and tools to solve this problem for libraries as well as

services.

Chapter 10 provides concluding remarks.

In the appendix we have included the entire graph transformation system used to

translate module nets into verification grammars, which we presented in Chapter 6.

18

2 PROBLEM

Software is built on top of other software. Users integrate to dependencies, which
can be classes, libraries or services. Dependencies are developed either by users them-
selves, by others that belong to the same organization or by third-parties. When a depen-
dency is updated, it may break its integration to some or even all of its users. The problem
of integration is part of software engineering and although many tactics have been devised
to tackle it, there is just no way to compute whether two arbitrary functions are the same,

as observed in (RAEMAEKERS; DEURSEN; VISSER, 2014).

2.1 Compatibility matters

There is a multitude of software ecosystems out there with all kinds of package
managers such as Debian packages for Linux, Chocolatey packages for Windows, plugins

for Eclipse, etc. For programming languages we have':

e JavaScript/NodeJS and NPM? with over one million packages
e R and CRAN? with 17 thousand packages

e Java and Maven with over six million indexed artifacts

e Ruby and RubyGems with more than 164 thousand gems

e Python and PyPI/pip with over 288 thousand projects

e NET and NuGET with more than 242 thousand packages

e PHP and Packagist with almost 300 thousand packages

e Perl and CPAN* with almost 200 thousand Perl modules

e Rust and Crago with more than 54 thousand crates

e and many others such as Go, Haskell, Smalltalk, etc. See Libraries.io> for 37 pack-

age managers and almost four million packages.

Package ecosystems have been extensively studied. One study shows that most
packages in NPM, CRAN and RubyGems directly depend on other packages, and there
are even more transitive dependencies (DECAN; MENS; CLAES, 2017). Additionally

'Data extracted on 2021 from official websites of each package manager.
’Node Package Manager

3The Comprehensive R Archive Network

“The Comprehensive Perl Archive Network

Shttps://libraries.io/

19

the amount of packages that have the most dependencies seems to grow on NPM, and
these packages have a high impact on the ecosystem being dependencies of up to 30%
of the entire ecosystem (DECAN; MENS; CLAES, 2017). Decan et al. later extended
this study to Cargo, CPAN, NuGET and Packagist on top of the ecosystems previously
mentioned, finding that less than 17% of packages are dependencies of more than 80%
packages (DECAN; MENS; GROSJEAN, 2019). Breaking changes to such fundamental
packages can have catastrophic effects.

There not seems to be recent analogous studies of the size and structure of service
ecosystems. Services are agnostic to programming languages and can expose interfaces
of all kinds, including simple remote procedure call (RPC) up to more elaborate repre-
sentational state transfer (REST) architectures. Recent trends in service interfaces are
gRPC and graphQL. Services exchange messages through some protocol, usually HTTP.
A common portal for public access services is ProgrammableWeb®, which lists almost 24
thousand services. Postman API Network’ also contains over 1700 APIs and 21 thousand

Postman collections.

2.2 Compatibility often breaks

Compatibility often breaks. A study with more than 22 thousand Java libraries
released prior to 2011 has shown that roughly 35% of minor releases and 23% of patch re-
leases contained breaking changes (RAEMAEKERS; DEURSEN; VISSER, 2014). This
is in contrast to semantic versioning principles, which restrict patch and minor updates
to non-breaking changes. Perhaps what is more surprising is that breaking changes were
found not to influence the adoption time of new updates (RAEMAEKERS; DEURSEN;
VISSER, 2014). A more recent study with 317 popular Java libraries has shown that
roughly 28% of changes were considered breaking, and the larger a library gets, the more
breaking changes it introduces (XAVIER et al., 2017). The authors also studied 260
thousand clients of those libraries, estimating that in the worst case scenario, on median,
roughly 2.5%, but up to 100% in rare cases, were affected by breaking changes (XAVIER
et al.,, 2017). Developers are compelled to update their libraries in an effort to escape
vulnerabilities, but the very fixes may also contain breaking changes. Wang et al., when

studying the update risk of Java libraries have found that an impressive 35% of studied

Ohttps://www.programmableweb.com/
Thttps://www.postman.com/explore

20

libraries, more than 4200 libraries, had more than 300 deleted APIs between a vulnerable
version and its corresponding fix (WANG et al., 2020).

Fear of breaking changes also scares developers away from updates. This is true
in the mobile development environment too, where just 13% of sampled apps update de-
pendencies constantly and 63% never update them (SALZA et al., 2018). The longer
developers take to update, the more they lag behind. This is known as "technical lag"®
and has been studied in the NPM ecosystem showing that out of 120 thousand packages,
almost 1,5 million releases and 8 million dependencies roughly 25% of dependencies and
40% of releases present technical lag, with an average of 7 to 9 months (DECAN; MENS;
CONSTANTINOU, 2018). Decan et al. highlight that patch and minor dependency up-
dates are the most affected by technical lag®, corroborating the findings of Raemarkers
et al., which is that developers are and should be afraid of updates, even though these
studies were carried out in different ecosystems. Wang et al. approach this phenomenon
with various metrics, such as "usage outdatedness", "update intensity" and "update de-
lay". They find that very few projects keep all their libraries up-to-date and more than
50% of projects take longer than 60 days to update dependencies (WANG et al., 2020).

Integration issues are not restricted to libraries, services also suffer a great deal of
compatibility problems. Aué ef al. have studied millions of faults logged by a large scale
web service in the payments business and came up with eleven categories for those faults
(AUE et al., 2018). While some errors can be attributed to end users, such as providing
a maxed out credit card, others are due to the programming that integrates clients, ser-
vice and third-parties. Even microservices, a relatively new architectural pattern known
for achieving loosely coupled modules, are affected by compatibility problems, and API
versioning and contracts are mentioned in 13 of 51 grey literature papers (SOLDANI;

TAMBURRI; HEUVEL, 2018).

2.3 Why compatibility breaks

As mentioned in the introduction, there are different levels of complexity when
handling module integration. This complexity can be classified in three dimensions:

Users, Influence and Distribution. In the following, we discuss these three dimensions,

8 A formal definition can be found in referenced articles.

9 Although Decan et al. find that patch and minor are the most affected by technical lag, they judge that
such updates should be automatic, contrary to Raemarkers ez al. findings that patch and minor updates are
often not backwards compatible, when they should be.

21

considering easier to more difficult integrations in each one.

i) Users

e Single user, such as a module developed for a single project
e Few users, such as modules shared within an organization across projects

e Many users, such as open source modules that integrate to many modules

With a single or even few users, it is often possible for a module to verify its
integration to users prior to releasing changes, but the more users a module has, the tighter
these users integrate to dependencies, increasing the impact of breaking changes. On the
other end, breaking change aversion encumbers dependency developers more and more
to the point of stagnation. This is what happened to the NPM request module, which
has gone into maintenance mode!® due to the tremendous amount of users, making it
impossible to publish breaking changes without causing huge trouble.

ii) Influence

e Users own code or can propose changes to code
e Users can view code

e Users only have access to documentation or live/compiled software

Integration is a difficult task, which requires insights on how each of the integrated
components work. The ability to see dependency code comes in handy many times and
can make a difference to avoid bugs. Even better is when users can propose/make changes
to code, as it enables development of better interfaces.

iii) Distribution
e Released as single entity, such as a class
e Released coupled with consumer, such as a library
e Released independently for a subset of users, such as backend services

e Released independently, such as a generally available service

We include distribution because it affects the time a user has to adapt to changes.
If the dependency is part of a project, either a class or a library, its update can be coupled
with a project release, thus meeting project schedule. Of course, libraries have their own
release schedule and when security updates are released, users are required to update as
soon as possible. Services are the hardest to integrate because they often are not even

aware of their users’ schedules, and a service release can immediately break users.

10https://github.com/request/request/issues/3142

22

2.3.1 Weighing decisions

When faced with the choice of whether or not to break compatibility, developers
have to weigh the costs of decaying code and the benefits of opting to break. Keeping
compatibility can incur maintenance costs in the form of more code, interfaces, releases
and branches to maintain as well as holding-off new features, whereas opting to break
compatibility can incur costs of providing support for broken clients and communicating
changes to users (BOGART et al., 2016; BRITO et al., 2018b). Keeping compatibility
has the benefit of preventing cascading breaks, but breaking compatibility can have many
benefits such as addressing technical debt in terms of style, deprecation, refactorings,
etc., performance improvements and bug fixes and even add new features (BOGART et

al., 2016; BRITO et al., 2018b).

2.3.2 Ecosystem pressure

Whether breaking compatibility is acceptable or not has a lot to do with the ecosys-
tem the software inhabits. In a survey with 28 developers from three different ecosystems,
researchers have found that Eclipse developers value backwards compatibility, whereas
NPM developers make use of versioning to deliver breaking code due to the pressure of
a fast moving environment and finally CRAN developers have easy installations at the
cost of fast reaction to updates (BOGART et al., 2016). To support these values, Eclipse
platform plans yearly releases and only then are developers compelled to make changes,
NPM allows dependency versions to be pinned and thus dependency updates are decou-
pled from package releases, and R/CRAN requires users to update their dependencies
shortly after new releases and does not allow version pinning as in NPM (BOGART et al.,
2016).

These ecosystem values also have to do with the functionality provided by the
tooling. Whereas NPM is capable of installing various releases of a same package in the
same project, thus enabling package maintainers to delay updates, CRAN require that
only the latest release of a package is installed, forcing timely updates (DECAN; MENS;
CLAES, 2017).

23

2.4 How to avoid breaking compatibility

Integration is a problem pertaining to two actors: dependency users and depen-
dency developers. While users will apply tactics, run tools, implement tests, manage
dependency versions and avoid deprecated interfaces, developers will follow best prac-
tices, apply versioning guidelines and deprecation and run regression tests. All of this to

ensure the healthy integration of dependencies.

2.4.1 Project tactics

A common strategy adopted by users to avoid breaking compatibility is to keep
dependencies to a minimum and select dependencies they trust (BOGART et al., 2016).
Despite this strategy, trivial packages are very popular for example in the NPM ecosystem.
Trivial packages are packages with low cyclomatic complexity and few LOC and should
be considered with care due to lack of tests and high dependency count (ABDALKA-
REEM et al., 2017). They later extended this study and included the PyPI ecosystem with
similar results (ABDALKAREEM et al., 2020).

For services, common advice is to relax the assumptions on data received, ignor-
ing any extra information sent and avoiding any kinds of format enforcing, unless it is
absolutely necessary. By ignoring extra information and avoiding format checks, services
ensure longer compatibility with clients that use old versions of the API. This pattern is

known as the Tolerant Reader (FOWLER, 2011; LiiBKE et al., 2019).

2.4.2 Programming language support

From the library developers perspective, language specifications can provide means
to avoid breaking compatibility. Java specification includes the notion of "Binary Com-
patibility", which defines what kinds of changes are compatible, such as adding modifiers,

inserting new types, and many others (ORACLE, 2020).

24

2.4.3 Versioning

Versioning schemes signal to users the degree of changes and enable users to spec-
ify rules for automatic updates of their dependencies. Perhaps the most popular scheme
in practice i1s Semantic Versioning (PRESTON-WERNER, 2020), which uses the form
"major.minor.patch"!!, where major releases increase the major version (and reset minor
and patch versions) and contain breaking changes, while minor and patch releases keep
major versions and do not contain breaking changes. Another kind of versioning scheme
is the Eclipse versioning!'2, also known as OSGi semantic versioning, which is very much
like semantic versioning, except for the inclusion of a fourth version number to address
builds.

Semantic versioning assigns a special meaning to versions of major 0. Such ver-
sions are considered in "initial development" and are permissive to API changes, being
considered unstable (PRESTON-WERNER, 2020). Despite this meaning, many popular
NPM modules are released with major version 0 and are nonetheless widely adopted by
the community. Axios is one such example, a HTTP client for JavaScript/NPM with al-
most 15 million weekly downloads, that still has a major version 0 and there is no forecast
as to when 1.0.0 will be released'.

The widespread use of major O can be a concern precisely because it hinders the
release of security fixes for older versions. Additionally, unstable APIs even prevent
the automatic update of such fixes when affected modules are transitive dependencies,
because minor version increases with major 0 contain breaking changes, which delays
updates even more and exposes the ecosystem to vulnerabilities. As we write this text,
this is the current state of axios'*.

Versioning is also used in services, where it can be found in addresses, HTTP
headers or bodies (LUBKE et al., 2019). Applying versioning in services gives clients a
buffer to transition to new APIs, which otherwise would have to be done coupled with
service deploy. This of course comes at the expense of service developers who then need
to maintain multiple versions of an API running. Operational costs constrain the amount
of versions a service can expose and usually only major versions are exposed, with at

most two versions running in parallel (LUiBKE et al., 2019).

Semantic versioning is in fact a little bit more complex making room for prerelease versions and initial
development phase (version 0).

Phttps://wiki.eclipse.org/Version_Numbering

Bhttps://github.com/axios/axios/issues/1333

“https://github.com/axios/axios/issues/3407

25

In spite of the available schemes, but perhaps by mistake, many projects release

breaking changes without signaling so (RAEMAEKERS; DEURSEN; VISSER, 2014).

2.4.4 Tests

Tests are yet another approach to ensure compatibility for both users and develop-
ers. There are all kinds of tests in the literature, but specifically integration tests address
the problem of compatibility. In his blog, Fowler says that integration tests are meant
to show whether software modules work as expected when brought together (FOWLER,
2018) and splits integration tests into two categories: "narrow integration tests" and "broad
integration tests" (FOWLER, 2018). While the former requires some kind of mock to re-
place the actual module integrated and thus isolate tested code to just a single module, the
latter tests all modules working together. The blog advocates in favor of "narrow integra-
tion tests", which according to Fowler are more effective because it spares the trouble of
building an entire test environment.

The issue with unit tests is that they mock integration points, effectively shadow-
ing precisely what we want to test here. Integration tests can help us find such bugs, but
they are often very expensive to write because they require such test environments as we

have mentioned.

2.4.5 Deprecation

Deprecation is a valid strategy to signal to users that a feature is not to be used
anymore and that it may be removed in the future, however deprecation is seldom used
properly (ZHOU; WALKER, 2016). Deprecation is also practiced in services and coupled
with "aggressive obsolescence", essentially enforcing deprecation with deadlines (LiBKE

et al., 2019).

2.5 Our contribution

Software modules essentially share data. Users send data to dependencies, which
perform computations, carry out side effects and provide back some data. Even side

effects are the exchange of data with third-party modules. When a dependency is updated

26

and it is not compatible anymore to a user, the dependency either still shares the same
kind of data and computations or not. In case it does, then fixing compatibility is just a
matter of rewiring the programming to the user so that the right type or the right method
or the right name, etc., is used.

When the dependency changes the way it handles data, then this change can go un-
noticed and cause trouble when it gets to production. Even worse, sometimes the change
is so fundamental there is no amount of rewiring that will bring back the compatibility
it had before to a user: it just does not perform the same functions that user needs any-
more. This dissertation is concerned with finding those kinds of compatibility issues,
when compatibility breaks due to deeper problems than syntactic changes.

Our work can be divided into three phases: (i) transformation of code into module
nets (model extraction), (ii) translation of module nets into graph grammars with graph
grammars as the translation engine and (iii) verification of module nets as graph gram-

mars.

27

3 TYPED ATTRIBUTED GRAPH GRAMMARS

The formalism of Graph Grammars (or Graph Transformations) is based on defin-
ing states of a system as graphs and state changes as rules that transform these graphs.
In this chapter we review informally the main concepts of the area needed for our work.
Graph grammars have been studied for almost six decades and there are many approaches
backed by various researchers all around the world (EHRIG, 1979; CORRADINI et al.,
1997; EHRIG et al., 1999). We use the algebraic approach to graph grammars, which
bases all definitions on category theory. More concretely, we use the DPO-approach
(EHRIG et al., 1997; EHRIG, 2006) and use typed attributed graph grammars.

Graph-based formal description techniques are a friendly means of explaining
complex situations in a compact and understandable way. Graph grammars are a gen-
eralization of Chomsky grammars from strings to graphs suitable for the specification of
distributed, asynchronous and concurrent systems. The basic notions of this formalism
are: states are represented by graphs and possible state changes are modeled by rules,
where the left- and right-hand sides are graphs. Graph rules are used to capture the dy-
namical aspects of the systems. That is, from the initial state of the system (the initial
graph), the application of rules successively changes the system state.

The definitions presented in this chapter are informational, they are simplified and
presented mostly in terms of examples, as these definitions are classical definitions of
typed attributed graph grammars and can be found in the literature. All of the definitions
in this section come from (EHRIG, 2006). Throughout the chapter, each time we define a

concept, we will mark it in boldface.

3.1 Nodes and Arrows

A graph is a tuple (Vg, Eq, sq, tg) with sets of graph vertices Vi and edges E,
and functions source sg : F¢ — Vi and target t : E¢ — V. Graphs can be augmented
with data sets, forming tuples (V, Vp, Eq, Evp, Egp, (s, ti)icfc,vp,ppy) Which we call
e-graphs'. The set V contains the values that may be used as attributes of vertices and
edges (this set is potentially infinite, containing, for example all natural numbers, strings,
etc.). Sets Eyp and Epp denote connections that assign values (of Vp) to vertices (of

Vi) and edges (of L), respectively. Figure 3.1 shows an example e-graph £; and Figure

Ine" is for extended

28

3.4a shows this same graph with visual notation.

An algebra is a mathematical structure containing sets (called carrier sets) and
functions over these sets (called operations). Algebras can be specified using algebraic
specifications, that are composed of a set of sorts (set names), operations (signatures of
functions) and equations (to specify the behaviour of the functions). An attributed graph
is a pair (G, A) of an e-graph and an algebra, where V), is the disjoint union of all carrier
sets of the algebra. The advantage of using algebras to obtain values of V), is that we can
specify which values belong to this set. Moreover, the use of term algebras allows to use

variable and terms as attributes, which is particularly useful to describe general rules.

Figure 3.1: Example e-graph F; in mathematical notation where & is the disjoint union
of sets, Nat is the set of natural numbers and Bool is the set of boolean values

Ey = (Va,Vp, Eq, Evp, Egp, (Si; ti)ic{c,vD,ED})
Ve ={Th, 1>}
Vp = Nat W Bool
Eq = {t1,t2}
EVD = {ntl,ntg}
Epp ={}
Sg = {tl — Tl,tg — TQ},tG = {tl — Tg,tg — TQ}
syp = {nty — Ti,nty — To}, typ = {nty — 1,nty — 2}
sep = {},tep = {}

Figure 3.2: Example algebra A; corresponding to a signature >;

¥, =(S,0P)
S = {51, 5}
OP = {opy,0ps}
op1 :— St
ops : ST — S
Ay = ({Nat, Bool}, {0, iszero})

We can use all graph definitions provided so far to build categories, where graphs,
e-graphs or attributed graphs are the objects and the morphisms are graph morphisms.
A graph morphism m : G; — G5 is a tuple (my, mg) that maps nodes with my :
Vg, — Vg, and edges with mg : Eg, — FEg, from a graph to another preserving
edge source and target along the morphism. For e-graphs, we have morphisms m;,: €
{Ve,Vp, Eq, Evp, Egp} as depicted in Figure 3.3. For attributed graphs, morphisms

require morphisms between the algebras of the two attributed graphs as well.

29

Figure 3.3: An e-graph morphism (EHRIG, 2006)

EED N ta'r‘get}sD —_— VDI ﬁ\— ta'r‘get%,D —_— E‘l/D -
sou,rce}sD o mEED so’urue‘l/D mvp T MEy p
\\ /SOW“G\ ﬂ/ T T
L - o 2 T 2 \\\\) 2
EG \\\ /’ V(v — EED mrgetQEDq VD <—mrget%,D EVD
fmge‘fL - *x; /
b Tmpg - sourcegED Wa sour ce%/D
\\\‘\\\\ \ eourr‘ec /
Ty \

tm"get2

Figure 3.4: Example typed attributed graph T'AG';, where the morphism from AG; to T}
is indicated by using in AG; the same names as in 77 with indices (values of Nat are an
exception)

G
T
_ 2 Nat
=l
Ty Dty TOt
(a) Attributed graph AG}. (b) Type graph Ty

A typed attributed graph is a triple (G, m,T) where G and T are attributed
graphs and m : G — T'is a graph morphism, T is called type graph (because it defines all
types of vertices and edges of a graph grammar). Figure 3.4 shows the typed attributed
graph TAG, = (AG1,m4,T}). From here on, whenever we refer to graphs, we mean

typed attributed graphs.

3.2 Grammars

A graph transformation rule (or production) p is a pair of graph morphisms [
and r and graphs L, G and R as depicted in Figure 3.5, where G is usually called the
gluing graph. Graph L denotes the items that must be present for the rule to be applied,
graph R the ones that will be present after rule application (including preserved and cre-
ated items), and G represents the preserved items. Morphisms [and r are used to connect
the preserved items from L to R, using the gluing graph G. Figure 3.6 shows an example
graph transformation rule, we omit sets Vp, Fyp and Fgp as well as typing for concise-

ness. A graph transformation rule can be applied to a graph if there is a match, that is, a

30

morphism from the left-hand side of the rule L to the graph, such application is usually

called a graph transformation. Figure 3.7 depicts graph transformation L; 2> R;, which

is exemplified by Figure 3.8. A graph transformation rule may additionally have negative

application conditions, which are situations (graphs) that prevent the application of the

rule. A procedure to apply a transformation rule follows (see Figure 3.7 for the names of

graphs):

1.
2.
3.

Choose graph L; and production p
Choose a morphism m that matches graph L to L;

The rule is not applicable if it has a negative application condition n withn : L —
N and there is a morphism my : N — L;. In this case, application is aborted and

the next steps are not executed.

. Given match m, construct a gluing graph G; (also called context graph) such that

PO; is a pushout. This pushout construction basically deletes from L; all items that
are to be removed by the rule. If this construction is not possible (due to conflicts
between preserving and deleting items or trying to delete vertices without deleting

corresponding edges), rule application is aborted.

. Finally, pushout PO, is construted, giving rise to the resulting graph R;. This

pushout adds to G; all items created by the rule.

Figure 3.5: Definition of graph transformation rule.
l r
L+~G—=R

Figure 3.6: Example of a graph transformation rule P;.

ab A BC‘;’/"\ cc

| -~ L-Abc

BT

\bb b

A graph transformation system is a set of graph transformation rules. A graph

grammar is a graph transformation system with an initial graph.

31

Figure 3.7: Application of a graph transformation rule.

¢ ! G

L T > R
I PO, PO, ‘
. N R

L; < Gz

~
Ny

Figure 3.8: Example of a graph transformation rule application, which preserves, deletes
and creates nodes and edges.

/IA ’_,VE‘\\\
/ _ ~ "\ cc
prab g BC B

V-l bc I/

Mo B.——T] 1 | A7
[PI I | /1 D
=\ bb L (1
\/)} | |I 1 :
A\l\l 1 1' 203
N -
|\L12 //2 u\r/,, \ 22
\ \ l /// '_’/)\ 22
\\\2:\k//‘ 3

M 22 3T T3

3.3 Properties

In this dissertation we are interested in critical pairs, which are used in the verifi-
cation process, and also in the property of confluence, which is fundamental for correct
model transformations. A confluent graph transformation system presents functional be-
havior, in the sense that given an initial graph it will always produce the same final graph
(EHRIG, 2006). In order to define critical pairs and confluence, there are a few properties
of grammars that we will have to review.

An ordered pair of transformations is parallel dependent if the first transforma-
tion disables the second. Similarly, such pair is sequentially dependent if the first trans-
formation enables the second. More formally, given transformations 7! = K "' R,
and t72 = K "2 Ry, we say (5, t%2) is parallel dependent if 7! disables t22. Given
transformations 2! = L; "2 K and 72 = K "2 R,, we say (5, t%2) is sequentially
dependent if ¢4} enables ¢72. In both cases, K is known as context graph.

A pair (t5},t72) of transformations is a critical pair of conflict if it is parallel

dependent, and (¢}, t%?) is a critical pair of dependency if it is sequentially dependent.

32

Figure 3.9: Examples of graph grammar rules and type graph in AGG

FindArticle

Researchiet”

Website ™ j¢———{Wabsits Search |

-of 3
resource-of attribute-of.

ResearchNetAricle”
InventorySenvice Document

attribute-of

FinpDacument

respdice-of

inventorySenvice *| [inventorySenice Document Location ©

(a) Type Graph

ResearchietAricle.D

value-of

resource-of

ittribute-of

valug-of

mockgenerate-ResearchNet.Article.|D of researchnet-verif3-verification-grammar

FResearchNet

fresource-of

2:ResearchMet Article

Website.Search.D0I "

(b) Rule mockgenerate-ResearchNet.Ar-
ticle.ID

7fh6c233-1925-486b-b3ed-8d11ae937c86

GET.call-FindArticle of researchnet-verif3-verification-grammar

Tresource-of
2:Website 3:Website Search
Y

10:value-of

G:attribute-of

6:Website.Search DOI

[1Ressarchiet] [ResearchietArticle.D)

Bresourcg-of aftribute-of
4:ResearchNet Article

7resource-of

3:Website.Search

10value-of B:attribute-of

6Website Search.DOI

1:ResearchNet

B:resource-of

4:ResearchNet Article

=

FindArticle

[:Researchiet] [Researchietanicie. D]

8:resource-of
aftriftiute-of

4:ResearchMet Article

(c) Rule GET.call-FindArti

cle

9a965a43-9014-424f-a993-d03af3ff3b88

GET.call FindDocument of researchnet verif3-verification-grammar

2Researchiaet 4 Researchiet Aticle 1D 2Researchilet 4:ResearchNetArticle.D
B18SOUTCE-OF 7 oy ot Bgvatmeat
gvalue-of
gresource-of
SReszarcnMetAticle S:ResearchetAtice

[1:mnventorysenvice]

[InventorySenvice Document Location]

1:inventoryService

1 0:resource-of
aftribute-of

lnventorySenvice.Document

10:resource-of

GInventorySenvice Document

ZResearchMet

FindDocument

[1

attribute-of
10:resource-of
6InventorySenice.Document

ice Document Location

(d) Rule GET.call-FindDocument

require-Inventory Service.Document.Location of researchnet-verifi-verification-grammar

)
3

Tvalue-of
1:InventorySewice.Document.Location

Sresource-of

G:attribute-of

FnventoryService 2:InventoryService Document

Tvalue-of

FlnventorySenvice 2InventarySenvice.Document

1.Invemur\rsewice.DUtumem.Lucatiun|

Gattribute-of

Sresource-of 5

(e) Rule require-InventoryService.Document.Location

In order to compute critical pairs arising from any pair of productions (py, p2), it is

necessary to compute every single context graph K for which we have (5}, t%?). Because

there can be infinite such graphs, usually the set of context graphs is reduced by allowing

only graphs which are not subgraphs of other graphs in such set. To compute this set,

provided p; = L; < G; — R; and po = Ly < G2 — R,, we can compute the finite

set of overlaps between L, and L- for critical pairs of conflict, or the finite set of overlaps

between Ry and L, for critical pairs of dependency, provided Lq, Lo and R, are finite

graphs. The elements of such set are known as overlapping graphs. In summary, we

say (tfy,¢73) is a critical pair between transformations of rules p; and p, with overlapping

graph O. As just explained, there can be many such pairs for two rules p; and p, with

Figure 3.10: Example critical pairs (tgll, tgll) and (tg;, tg;)

1:A

l2:ab
3: BD 4:bb

3 Bj 4:bb

D

1: A

lQ:ab

3 BD 4:bb

(a) Rule P1 which is both left and right compo-

nent of (tgl1 , tgll) (b) Overlapping graph O; of (tgl1 , tgll)

1: A

4:bb

2:ab 3B

1: A

3 BD 5:bb

33

lQ:ab
3:

3: Bj 4:bb Bj 5:bb

(c) Rule P1 left component of (tgl2 , tglz)

D D

(d) Rule P1 right component of (tgz, tgz)

4:bb

)

1:A %%, 3.1B

O

5:bb

(e) Overlapping graph O of (tgl2 , tg;)

different O. Figure 3.10 shows two critical pairs of conflict between rule P; and itself. In
this example, we can see that rule P, on the left hand side deletes node A and edge ab,
which are needed to trigger rule P, on the right hand side of both critical pairs. This is
captured by the overlapping graphs O; and O, and morphisms from the graphs of rules to
O; and Os.

There are different kinds of critical pairs, depending on how its productions relate
to each other. For critical pairs of conflict we have delete-use, produce-forbid, change-use
and change-forbid. For critical pairs of dependency we have produce-use, delete-forbid,
change-use and change-forbid. All of these kinds of critical pairs can be found in more
detail in the AGG Manual?.

Finally, if an initial graph is large enough, it may be that both rules of a critical
pair of conflict are applicable to different subgraphs. Similarly, it may be that after some
transformations, a context graph never arises which would induce a pair of transforma-
tions that comprise a specific critical pair. Also, even if such context graph is found, it
may be a third transformation is applied which again disables one or both transformations

of that specific critical pair. In these regards, we say that critical pairs are potential.

https://www.user.tu-berlin.de/o.runge/agg/ AGG-ShortManual/node36.html

34

Figure 3.11: Examples of overlapping graphs as seen in AGG, we omit morphisms from
rule graphs to overlapping graphs as there is only one possible morphism for each case (it
maps as many nodes and edges as possible)

@@ {6)produce-forbid-verigraph-conflict(NA... o’ = I @ {4)produce-forbid-verigraph-conflict{NA... o’ =

ResearchMet

ResearchMNet

resolirce-of resource-of

|ResearchNetAnic\e| |Website.Search|

attribute-of atfibute-of

[Researchet Arlicle.ID [website.Search.Dol|

valye-of

(a) Overlapping graphs of two different produce-forbid critical pairs
of conflict between rules mockgenerate-ResearchNet.Article.ID and
GET.call-FindArticle

@@ (3)produce-use-verigraph-dependency :

@ {3)produce-use-verigraph-dependency &

Researchiet

InventoryService

resoulce-of

FindDocument

FindArticle

ResearchMet

o .
reee |InventowSer\f|ce.D0cument|

\Website Search resourge-of

attributejof attribute-of

attributg-of

Website Search.DOI

|Inventun,rSewice.Document.Lucation |

(b) Overlapping graph of produce-use (c) Overlapping graph of produce-use
critical pair of dependency between critical pair of dependency between rules
rules GET.call-FindArticle and GET.call- GET.call-FindDocument and require-
FindDocument InventoryService.Document.Location

If we can show that for a critical pair of conflict (¢, t{;) there are transformations
(or a series of transformations) 2 = Ry "2 X and t% = R, "2’ X, then we say
this critical pair is confluent (EHRIG, 2006). In other words, if we can get around the
critical pair by applying other transformations such that we arrive at a common graph
X, then the critical pair is confluent. Furthermore, we say this critical pair is strictly
confluent if this series of transformations preserves a subgraph of O (EHRIG, 2006).
A graph transformation system is locally confluent if all its critical pairs of conflict are
strictly confluent.

To define termination criteria for graph transformation systems, we may use the

concept of production layers. Intuitively, we classify the productions of a grammar in

35

layers, such that elements of some type are only created by productions of the same layer,
and may be deleted only by productions of subsequent layers. This ensures that if an
element of a type is created by a transformation, some other transformation will delete
it using rules of the same or subsequent layers only, when creation is no longer possible.
To guarantee termination we additionally have to prove that each layer terminates before
the grammar moves to the next layer of productions. For deletion layers, i.e., layers which
contain only deleting rules, layer termination is shown by arguing that there is only a
finite number of items that can be deleted in this layer and that these items are the ones
that have been created by previous layers, but which are not created in the current layer
(or else this deletion layer would not terminate). Layer termination of creation layers,
1.e., layers that have rules that create items of some type, is shown by arguing that at
some point creation will be halted by negative application conditions. The procedure
assigning productions to deletion and creation layers, and thus showing whether a graph
transformation system terminates, can be automated (EHRIG, 2006).

A graph transformation system is confluent if it is locally confluent and termi-
nates. Confluence is relevant when we expect a system to exhibit a deterministc behavior,
1. e. to produce unique final graph (up to isomorphism) for a given initial graph. In this
work, we will use graph grammars in two different ways: (i) verification grammar: to
express the semantics of a module net, and (ii) translation grammar: to associate a seman-
tics to a module net. A verification grammar is a grammar that describes the integration
behavior of the underlying module net, whereas a translation grammar basically defines
a model transformation, generating the verification grammar that corresponds to a mod-
ule net. Verification grammars may be non-deterministic (since they express behavior
of possibly non-deterministic systems), but the translation grammar must be confluent to

associate a unique meaning (verification grammar) to each module net.

36

4 MIGRATE FRAMEWORK OVERVIEW

Module Integration using Graph Grammars (MIGRATE) is a framework that aims
to help developers in the process of integrating software modules. MIGRATE takes as
input software artifacts, such as source code, and automatically produces a set of warnings
informing developers what needs their attention.

This chapter presents the general framework for MIGRATE. It is a framework,
because it is not usable out of the box. In order to use this framework, each of its abstract
procedures has to be instantiated with a concrete procedure. In fact, the next few chapters
of this dissertation are dedicated to explaining in detail a few of such concrete procedures.
As previously mentioned, this framework can be instantiated to verify many kinds of
modules, be it a class, library or service. If framework procedures are instantiated, we
call the resulting procedure comprised of concrete procedures a verification tool.

The goal of our framework is to provide developers with useful information (warn-
ings) concerning the integration of modules that compose their software. To produce such
warnings, we start with software artifacts, from which we extract a single module net (see
next section for its definition). We use a confluent graph grammar, which we call the
translation grammar, to translate this module net into another graph grammar, which we
call verification grammar. We generate critical pairs of rules of verification grammars and
analyse these pairs to produce warnings, which we then report to users. Figure 4.1 shows
an overview of the approach (figures are just meant to give an overview, each step will be
explained better in next sections).

Many integration bugs are related to how information is passed from a module to
another. For example, if a service asks for more data than it uses, then we can suggest
that excess attributes should be deprecated. On the other hand, if a client fails to provide
information required by a service, then we can tell developers we have likely found a
bug. In order to uncover such bugs, we have to analyse how information is used by each
module and what are the actual dependencies that emerge from data.

Our verification procedure consists of interpreting the critical pairs of rules gen-
erated for a verification grammar. This verification grammar does not mirror the exact
behavior of the software that originated it, but rather it reflects how information flows
in this software. In that regard, we can say the verification grammar describes a kind of

software integration semantics and it is not suitable for simulation.

37

Figure 4.1: Overview of the proposed approach

ReadSearch () { FindArticle(doi) { FindDocument (id) {
DOI := read(); id := find(doi); location := "res/" + id;
FindArticle (DOI); FindDocument (id) ; retrieve (location);

(a) Software artifacts are taken as input

Search DO
Website W ebsite —-—---- s generate:T ————- » generate:T
~ require:F Tequire: F
FindArticle
Article 19
h’t'a;\frfv'f‘h H‘M{:ﬂ"h ______ 3 generate:T ————- y generate:F
el Net require: F require:
FindDocument
Inve Ino Document, Location
nventory nventory ______ » gemeraterl _____ y generate:F
Service Service require: F require:T
73 . call . :
FindArticle Search —="— Arlicle call DOl ———— ID
. . call .
FindDocument Article —— Documentl call 1D ———— Location

(b) Module net is extracted from software artifacts

pitribute-of

resgfce-of attribute-of

value-of

valyge-o

z e
|In\rentorysewlce.Document.Locatlon \Website Search.00l
*
it Article of s =" h.DOI of &
B
* = e] (]
I .
[t [rResearcnn] e oo
ssourcs-of

[Website Search

1:InventorySenics

ResearchNetAicle
inventorySenice Document]

(d) Verification grammar resulting from translation (some rules have been omitted)

B |

(e) Critical pairs generated for verification grammar using Verigraph

Website.Search.DOI can become outdated (generated and FindArticle)
The return of operation FindArticle is not used
The return of operation FindDocument is not used

(f) Warnings are generated based on critical pairs

38

Figure 4.2 depicts the module integration verifier framework. Dark squares with
snipped corner represent artifacts, while squares with rounded corners and no fill are
procedures that have to be instantiated. We will explain each of those squares in detail

shortly.

Figure 4.2: Module Integration using Graph Grammars framework.

\ s 2
Software Artifacts > Extraction
\. J
|
A 4
\ s 2
Module Net —> Translation
\. J
|
v
\ s 2
Graph Grammar > Verification
\ J
|
A
N\
Warnings

The framework is given as input a set of software artifacts. These artifacts can
be anything that is machine readable and provides insight into how information flows in
a system. For services, these can be OpenAPI documents. For libraries and classes, the
actual code and interfaces. Models (such as UML) can also be used as software artifacts
for all kinds of modules. Further kinds of artifacts can be used such as dynamic data of
real payload exchanges and logs for services, and execution traces and automated tests
for libraries and classes. In Chapter 8 we illustrate the framework using pseudocode as
software artifacts.

The extraction procedure takes software artifacts and produces a module net. Ex-
traction strategy can vary depending on what we choose as software artifacts. If a verifica-
tion tool implements extraction procedures for different kinds of artifacts, these extraction
procedures can be applied over all artifacts and the resulting module nets can be joined
together to obtain a single output module net that provides a system wide view. Because
different kinds of artifacts provide different insights into a system, this strategy allows
building richer module nets. At the time of writing we do not have an implemented ex-
traction procedure yet.

Chapter 5 introduces the idea of a module net. This structure is used to present

39

how modules of a system exchange data. It is language agnostic and thus enables a ver-
ification procedure that is independent of language. Furthermore, module nets are visual
models that can be edited by developers who wish to design and verify such design, skip-
ping the extraction procedure partially or entirely.

Module nets are solely a syntactic structure and their semantics is defined via a
translation procedure that translates a module net into a single graph grammar, which,
in turn, can be verified later. Chapter 6 is dedicated to showing one translation procedure.

Finally, the verification procedure builds upon existing graph grammar verifica-
tion techniques to produce different kinds of warnings concerning the system under anal-
ysis. Chapter 7 explains ways to use the results of the verification in defining concrete
warnings.

Translation and verification procedures presented in this dissertation are imple-
mented to provide an illustration of the proposed framework. However, the resulting
verifier is a prototype, as it is not ready to find real faults, but only very simple cases in

controlled environments (see case study in Chapter 8).

40

5 MODULE NETS

A module net describes how information flows in a system. Module nets can be
drawn as diagrams for better visualization. Because of this visualization, module nets
are also suitable for manual editing, enabling software designers to specify systems using
this kind of notation and later verify that their design is correct using a module integration
verifier tool. The semantics of module nets is defined via a translation to graph grammars,

which is described in Chapter 6.

5.1 Definition

First we have to define graphs, which will be used later to define operations and

module networks. This is a classical definition of directed graphs.

Definition 1 (Directed Graph). A directed graph, is a tuple G = (N, E, s,t) where N
and E are sets of nodes and edges, respectively, and s,t : E — N are total functions
assigning a source/target node to each edge. A subgraph of a graph G is a graph which
contains subsets of the sets of nodes and edges of G, while preserving source and target

functions.

Quadripartite graphs are graphs partioned in four subgraphs, but whose set of
nodes is partitioned in two. In this work, we will partition the set of nodes /V in two sets,
denoted N; and N,., representing the nodes in the left-hand side and right-hand side of a
graph, respectively. This induces a partition of the set of edges E in sets £ (representing
edges between nodes of V;), Ej, (representing edges from N; to N,), E,; (representing
edges from N, to V;) and E,,. (representing edges between nodes of /V,.). Considering

these different kinds of edge partitions, we can build four different subgraphs of a graph.
Definition 2 (Quadripartite Directed Graph). A quadripartite graph is a graph () =
(N, E, s,t) such that

e N=N,UN,and NN N, =0

o F = UiE{ll,lr,rlﬂ‘r} E; and (E; N E}); jequirri i} iz; = U are pairwise disjoint

o s =Uicquirrrry S with (sij + Eij = Ni)ijeqir)

o t=Uicquirrirm ti with (tij : Eij = Nj)ijeqir

The graphs (Qi; = (N; U Ny, Eij, sij,tij))i jeqir) are subgraphs of Q.

41

Example 1 (Quadripartite graph @Q),). For a graph Q) = (N, E, s,t) with

N = {La, Lb, Ra, Rb}
E ={la,lara,ralb,rarb}

s = {la > La,lara — La,ralb — Ra,rarb— Ra}

t = {la — La,lara — Ra,ralb — Lb,rarb — Rb})
we can build the following partitions:
o N, = {La, Lb}, N, = {Ra, Rb}
o Ey ={la}, E; = {lara}, E,, = {ralb}, E,. = {rarb}
e sy = {law La}, s, = {lara — La}, s,; = {ralb — Ra}, s,, = {rarb+— Ra}
o ty = {la— La}, t,, = {lara — Ra}, t,; = {ralb — Lb}, t,. = {rarb— Rb}
Finally, the following graphs are subgraphs of ()1:
e Q= ({La, Lb},{la},{la — La},{la— La})
e Qi = ({La, Lb, Ra, Rb}, {lara},{lara — La},{lara — Ra})
e Q). = ({La, Lb, Ra, Rb},{ralb}, {ralb — Ra},{ralb — Lb})
e Q.. = ({Ra, Rb}, {rarb}, {rarb — Ra},{rarb— Rb})

Figure 5.1 shows a visual representation of ()1, where nodes belonging to N; and N, are

depicted in the left and right-hand side rectangles respectively.

Figure 5.1: Example quadripartite directed graph (),

la
N
\ La- lara Ra
Py A\
ralb rarb
Lbe—F+T Rb/

The first module network definition is that of a resource, which is a unit of in-
formation, any kind of data a system may share between its modules, either structured
data or not. Resources can be database entities, API models, HTTP tickets, instances of
classes, files, any information at all. We can either see resources as names independently
of their values or as instances of data types.

To further specify what kind of data a resource contains, we provide attributes,

42

which are pieces of information that comprise a resource. Attributes can represent primi-
tive data types, such as integers or characters, but also complex data types such as entire
objects. It is left for verification tool developers to decide' how to map the data of a
system to resources and attributes.

Resources can either have all their attributes listed, or none at all. Listing all
attributes provides the added value of verifying the information flow of such attributes, at
the cost of having to list them. Omitting such attributes yields a poorer verification, but

still a valid one.

Definition 3 (Resource). A resource is a pair composed of a resource name and a (finite)
set of attributes (i.e., a set of names). Given a resource r = (name, attr) we denote its

name by name” and its attribute set by attr’.

Example 2 (Resources R{', RP). Using the definition of a resource, we define resources
R = (R {a1,as}) and R? = (RP, {by,by}), and we have attr® = {a1,a,} and
attrBY = {b1,bs}. As abuse of notation, we will frequently use the same symbol for a

resource and its name.

Modules are the units of a system. Just like resources represent any kind of data,
modules represent any kind of subsystem: a service, a library, a class, anything. Modules
contain resources, which are the types of information a module of this kind may share
with its peers. Modules contain functions req (for required) and ger (for generated) de-
fined over its resources and their attributes. Required resources/attributes are necessary
to perform some kind of unspecified but essential operation. These can be, for example,
side effects such as data that is written to the screen, or data that is shared with a third-
party module to which we have no access. Generated resources/attributes are generated
by some unspecified operation within a module, such as data that is input by a person or
data received from a third-party module to which we do not have access. Required and
generated resources/attributes can also be used to omit modules obtaining smaller module

networks, if we wish so.

Definition 4 (Module). A module is a tuple M = (name, R, req™, ger™) where
e name is its name

e R\, is a finite set of resources with unique names,

I'See Chapter 4 for more details on the module integration verifier framework and tool development.

43

o reg™, ger™ : Ry W Ay — {T, F'} are total functions, assigning to each at-
tribute/resource a boolean value indicating whether they are required/generated in

this module, where Ay = 4, Ry, QLT
We denote by Resources™ the set of resource names of a module M.

Example 3 (Modules M4, Mp). Using the definition of a module and resources from
Example 2, we define modules My = (M4, {R{!},{R{! = F,a; — T,ay — F},{R! —
T,ay — T,ay — T}) and Mp = (Mp,{RP} {RP — F by — F by — F} {RP —

T,by — T,by — T}). Figure 5.2 shows these modules in visual notation.

Figure 5.2: Modules M4 and Mp from Example 3 in visual notation.

-7 S
R114 al as
MA ————— > generate:T —-—--- > generate:T generate:T
require:F require:T’ require:F
-7 S
RlB bl b2
MB “““ > generate:T ———-- » generate:T generate:T
require:F' require:F require:F

Operations are the bindings from module to module?. Whereas modules are con-
tainers of information, generating and requiring information, operations define how in-
formation flows from a module to another. Even though it is not stated directly in the
definition, operations range over two modules, a source or caller and a target or callee,
just like an edge of a graph.

Operations are quadripartite graphs augmented with an attribute relation. The
nodes of an operation graph are resources of its caller and callee. The operation graph
shows how the information flows from a resource of a module to a resource of another
module. We will often refer to the subset of the edges from resources of the caller as
the request or call, and to the other subset with resources of the callee as source, as the
response or return. Note these two subsets of edges (call and return) comprise the whole
set of edges of an operation graph.

Each edge of an operation graph (from a resource to another) is augmented with a
relation® from the attributes of the first resource to the attributes of the second. Edges of

operation graphs represent the transfer of a value from attribute to attribute.

?Note the actual modules are not part of the definition of an operation, see module network definition
for that part.

3Even though we define it as a relation, we will draw attribute relations the same way we draw graphs
for better visualization.

44

Definition 5 (Operation). Given a set of resources R, an operation op defines how the
operation acts on resources/attributes, where op = (R, E°P, s°P 1P rel°?) is a quadri-
partite graph and rel’” : E°P? — RFEL is a total function that maps each edge e € EP to
a relation REL C attr®”(®) x attrt”(®). We write R = R, U R, the node partitioning of

op and E°P = E7P U E2V its edge partitioning. Note that E7) = EZF = 0.

Example 4 (Operation E}L). Using the definition of operation and modules from Exam-
ple 3, we define operation EYy 53 = ({R{', R?}, { Ecau, Ereturn}, 5, t, 7€l) and
® S= {Ecall — R1147 Eretu'rn — RlB}, t= {Ecall — RlBa E’return — Rfl}

o rel = {Ecall — {(a27 b2)}> Ereturn — {(bh al)7 (b27 a?)}}
RE}&B _ RA RE}A’B _ RB EE.»14,B o E EE_/l‘l,B _ E
® Xp ={R{'}, Re ={R7}, E,"" = {Eean}, By’ = {Ereturn}

Figure 5.3: Operation from Example 4 in visual notation.

Ecall

1 A B
EA,B Rl R1 Ecan ag — by
Y’

Eretu'r‘n

Ereturn bl > Ay

bg—)&g

Theorem 1 (Resource-attribute compatibility of operations). Operations are compatible

with the attributes of their resources as stated below.

Yop = (R, E?, s t?, rel™),e € E.
(s%(e) = r1 — dom(rel®(e)) C attr'™)
and

(t?(e) = r2 — rng(rel®®(e)) C attr™)

Proof. Follows from the definition of operations, we write the proof for s and omit proof

45

for ¢ as it is similar:

op =(R, E,sP 1P rel?), e € E.
= rel®(e) C attr®™© x attrt™© (by Definition 5)
= dom(rel®®(e)) C dom(attr*™® x attr'™®)
= dom(rel®(e)) C attr*™"®

(s%(e) = r1) — (dom(rel®®(e)) C attr™)

A module network, or short module net, is a graph whose nodes are modules
and edges are operations. Additionally, modules of a module network do not share re-
sources, 1.e., resources are unique, and the set of all resources in a module network is the
union of the resources in its modules. Essentially, operations of a module network carry
information between modules.

To be well defined, a module network has to satisfy two properties. Equation 5.1
requires that no two modules of a module network share resources, that is, the only way
for modules to share data is through an operation. Equation 5.2 ensures that operations
have a caller (s (op)) and a callee module (+*'(op)) and that the resources of an operation
(R°F) are subsets of the resources of caller (F2,r(,y,)) and callee modules (F2.r(,y)) in the

module net.

Definition 6 (Module network). A module network is a tuple MN = (M, Op, s, tM)

where

e M is a finite set of modules;
o Op is a finite set of operations over the resources R = 4, v B

® resources are unique:

VYm1l,m2 € M.Resources™ N Resources™* = ()

(5.1

e M N is a graph such that each operation edge is compatible with the modules of

46
the module network:

Vop € Op.R?” = RP URF — RP C Romopy and RP C Ryrm(op)
(5.2)

Example 5 (Module Net M N;). We can use the previously defined modules M o and Mg
and operation E} p to define the module net MN, = ({Mu, M}, {E} g}, {E} 5 —
Ma}, {E} p = Mp}). See Figure 5.4 for its visual notation. To make sure M Ny is well
defined, we need to check a few of its properties. First we check that its resources are

unique according to Equation 5.1:

Ma, Mg € Myn,.Resourcesy;, N Resourcesy,, =)

= MA,MB c MMNl.{Rf}ﬂ {Rl{} :Q)

now we check M Ny is compatible with its modules according to Equation 5.2:

1 1 1 1 1
RPAs = RyM URA = Ry™ C Rowg) and Re™ C Rug,)
= Bl 5 € Oparn, RP48 = (R} U{RP} — {R{} C Rar, and {R?} C Ruy,
= B} 5 € Oparn, RP45 = (R} U{RP}Y — {R{'} C {R{'} and {R} C {R}}

Figure 5.4: Module net from Example 5 in visual notation. Usually a module net will be
drawn next to its modules and operations, but we omit these here because they are already
drawn in Figures 5.2 and 5.3 respectively.

1

A,B
My —— Mp

5.2 Limitations and final remarks

With the current definition of module nets, it is difficult to express every kind of

behaviors a system may have. For example, because operations are simple quadripartite

47

graphs, it is impossible for two different operations to be mapped to different graph gram-
mar structures during a translation, because there is nothing in the module net operation
definition that would tell one operation kind from the other. For that reason, in Chapter 6
we define all operations with a simple retrieval behavior, ignoring other system behaviors
such as delete or create.

A solution to this problem is to define module net operations as typed quadripartite
graphs instead. With this definition, it would be possible to give all kinds of semantics to
module net operations, thus covering much better the different behaviors a system may
exhibit. It is left for future work to define module net operations as typed quadripartite

graphs and implement a verifier tool with this definition.

48

6 TRANSLATION

This chapter presents an implementation of a translation procedure from the lan-
guage of module nets to graph grammars providing a semantics for module nets. We split
this chapter into four sections. First we set a terminology to talk about this translation and
give an overview of the procedure. Section 6.2 shows a small end-to-end example: from
module net to verification grammar. Section 6.3 presents properties of the translation pro-
cedure, such as well-definedness and confluence. Finally, the last section discusses a few

improvements, some of which have been implemented.

6.1 Translation

The translation takes a model in the source language (module net) and produces a
model in the target language (graph grammar). We refer to the source model as just mod-
ule net and to the target model as verification grammar. This translation was defined by
a graph grammar called translation grammar. The translation grammar has an initial
graph, which is a module net encoded as a graph, and after the rule application process
is carried out until termination we obtain a final graph, which is an encoded verification

grammar. To summarize, the translation procedure is comprised of three steps:

e Encoding: takes a module net and encodes it, producing an initial graph
e Derivation: applies translation grammar rules until termination, producing a final
graph

e Extraction: extracts a verification grammar from a final graph

Figure 6.2 shows the type graph used in the translation. This graph has three kinds
of nodes, that can be distinguished by the prefix of their names (and by color):

e nodes whose names start with "MN" (black) are used to describe module net com-

ponents

e nodes whose names start with "TOKEN" (gray) denote auxiliary items used in the

translation process

e nodes whose names start with "GRAGRA" (white) describe components of the re-

sulting verification grammar

Before beginning a translation, the initial graph is expected to have only nodes of

49

"MN" types. During translation, nodes of "TOKEN" type will be created and deleted. At
the end of the procedure, the final graph will contain only nodes of type "GRAGRA".
The translation grammar has 35 rules and for that reason we omit these rules here.
To see the rules, please refer to the corresponding appendix. To keep text concise, we
assign codes to rule names in Table 6.1 and refer to these codes later when necessary.
Each rule belongs to a specific layer. The translation process starts by applying only rules
from layer O, rules from subsequent layers may only be applied once it is not possible to
apply any rule from the current layer. This classification of rules in layers is what guides
the translation termination (as will be discussed later). We present a summary of what

each of these 35 rules does in Table 6.2.

Table 6.1: Translation grammar rule codes.

Codes ‘ Layer ‘ Rule Name

TK1 to TK11 0 token_*
TR12 0 translate_graphTransformationSystem
TR13 0 translate_value
TR14 1 translate_module
TR15 1 translate_resource
TR16 1 translate_attribute
TR17 1 translate_rule_require-resource
TR18 1 translate_rule_generate-resource
TR19 1 translate_rule_mockgenerate-resource
TR20 1 translate_rule_require-attribute
TR21 1 translate_rule_generate-attribute
TR22 1 translate_rule_mockgenerate-attribute
TR23 1 translate_rule_call_modules
TR24 1 translate_rule_call_resources
TR25 1 translate_rule_call_attributes
TR26 1 translate_rule_return_modules
TR27 1 translate_rule_return_resources
TR28 1 translate_rule_return_attributes

CL29 to CL33 2 clean_*

AD34 to AD35 3 adjust_*

50

Figure 6.1: Examples of translation rules

translate_rule_require-res of Verit3

[2.GRAGRA_GraphTransformationsystem

singleToken 4| token_resource_required of T Verif3
3
g 4

GBRAGRA target

(a) Translation rule TK1 (b) Translation rule TR17
adjust_multiple_gragra_nodes of ModuleNetToGraphGrammar-VeéEh
1
clean_operation_of ModuleNet Verif3 P

2:GRAGRA_Graph

JGRAGRA_IN

2:.GRAGRA_Graph

AGRAGRA_In

1:GRAGRA_Mode

ret{4:GRAGRA_RuIe
call 5:GRAGRA Rule

5:GRAGRA_RuUl

1:GRAGRA_MNode

(¢) Translation rule CL29 (d) Translation rule AD34

Figure 6.2: Translation grammar type graph

|GRAGRA_GraphTransform ationSystem ™

return

GRAGRA_rule

.
call =

MM _AttributeEd

GRAGRA_In

GRAGRA_Node *
" string type
string id

51

Table 6.2: Summary of translation grammar rules. For the actual rules, see appendix.

Codes ‘ Purpose
TK1 to TK11 Insert "TOKEN" nodes to be consumed by TR* rules.
TR12 to TR13 Create "GRAGRA" nodes for GTS and value.
Create "GRAGRA" nodes and edges for modules, resources and
TR14 to TR16 attributes, consuming "TOKEN" nodes.
Create "GRAGRA" rules for required resources (TR17) and for
TR17 to TR19 generated (TR18) or non-generated (TR19) resources, consuming
"TOKEN" nodes.
Create "GRAGRA" rules for required attributes (TR20) and for
TR20 to TR22 generated (TR21) or non-generated (TR22) attributes, consuming
"TOKEN" nodes.
Create "GRAGRA" rules for operations calls (from source to tar-
TR23 to TR25 get), consuming "TOKEN" nodes (TR23), resource edges (TR24)
and attribute edges (TR25).
Create "GRAGRA" rules for operations returns (from target to
TR26 to TR28 source), consuming "TOKEN" nodes (TR26), resource edges
(TR27) and attribute edges (TR28).
Remove "MN" nodes and edges that have been translated already,
CL29 to CL33 operations (CL29), "resourceof” edges (CL30), modules (CL31),
"attributeof” edges (CL32) and resources (CL33).
AD34 to AD35 Remove duplicate "GRAGRA_in" edges for nodes (AD34) and

edges (AD35).

52

Figure 6.3: Module net M N; and corresponding graph encoding.

Ry

JM-A J\JA ******* > generate:T
require:F
AN
Bip
N .
AJB A/fB ******* > generate:F
require:F
Eeant
o
E114,B Rf R{B E{:u,]l =dJ
' —
Ereturn
Eretirn = D
(a) Module net M N;.

MM_ResourceEdge

(b) Encoded module net M Ny

6.2 Operation

Figure 6.3a shows the module net that will be translated in this section. As men-
tioned, the first step to be performed is encoding. In this phase, we encode module net
components into graph components, obtaining the graph illustrated in Figure 6.3b.

We begin the translation with the initial graph and applying rules of layer O until
no more rule can be applied, obtaining the graph from Figure 6.4. Note that layer O is
responsible only for adding TOKEN and two GRAGRA nodes (GTS and value). Figure
6.5 is the result of the application of all layer 1 rules. We can see all tokens have been
consumed and the result is a graph consisting of MN and GRAGRA nodes only, with
some mappings from MN nodes to GRAGRA nodes. We omit the graph resulting from
the application of rules of layer 2 because it looks like the one in Figure 6.5, except that
all MN types have been removed. In this example, rules of layer 3 are not applicable
(because at this point the host graph does not have duplicate GRAGRA_in edges for
nodes or edges), so the result of layer 2 is the final graph. As a result from the extraction

procedure from the final graph, we obtain the verification grammar depicted in Figure 6.6.

53

Figure 6.4: Graph after application of layer O - translation of M N,

Mk_edge

_source

MM_target M

MM_resourcegf

GRAGRA_GraphTransformati

onSystem

GRAGRA_Mode
type="y"

Figure 6.5: Graph after application of layer 1 - translation of M N;

GRAGRA_Rule
GRAGRA_Rule name="generate-AAT"
name="mockgenerate-B.B1" ; \
MH_target
_Source A
\
! N GRAGRA_INS
GRAGRA_Ihs U
/) B GRAGRA_hs
GRAGHA_rhs ;
P
R -7 k MH_resourceof,
resourcesf, ” N —
GRAGRA Granh :I‘ ., \ GRAGRA_Graph
;=X \
GRAGRA_Graph RN v
] S N GRAGRA_Graph
RAGRA - N '
in ~ N
= !
GRAGRA in ; ~ \ AGRA_In
- . S NPhe GRABRA_In
- Ny = ,\\
RAGRA_) -7 kN PRGN RAGRA_in
- / ~ - ~
GRAGRA_farget ~ |GRAGRA Edgel _ -
GRAGRA_Node [*-" o < |lype="E1_AB" GRAGRA_goyjce GRAGRA_in
GRA ~ - GRAGRA_Node
Rﬁ,&ﬁ—f“‘a ~ GRAGRA_sofrag]ype="A"
GRAGRA_Edge jd="A" GRAGRA_target
pe="E1_AB" | ™
- N GRAGRA_Edge
GRAGRA Edge N . type="resource-of'
— /
type="rasource-of' P g \ GR.
_shurce g AORA S AGRAin
GRAGR
= RAGRA_in
GRAZH GRAGRA Node in R A GRAGRA Node AGRA_In N
1?1 GEA I In Atype="AAT" RAGRA_jn — GRAGRA_In
GRAGRA_| oR =AM I\ orAGRAIN
! GR. 7 A GRAGRA/In
g - GRA
in)
- 2 = GRAGRALIN 2
7 A}
, GRAGRA_Graph
GRAGRA_Graph
CRAGRA_Graph GRAGRA_Graph GRAGRA_Graph GRAGRA |hs P CRA_Mhs
GRAGRA_Rat = GRAGRA_Graph .
e GRAGRA_Ths GRAGREThS GRAGRA_NAC
GRAGRA_Rule GRAGRA_tule | ORAGRAMIE ToRacRA_Rule
GRAGRA_GraphTransformationSy mm’-‘-— name="GET return-E1_AB"

name="GET.cal-E1_AB"

54

Figure 6.6: Verification grammar for module net M N,

; generate-A.A1 of tinysize-verifésin : mockgenerate-B.B1 of tinysizess
: 1 g 1
b és "

resoufrce-of

regource-of

resoyirce-of

(a) Type graph (b) generate-A.Al (c) mockgenerate-B.B1

4453ebd5-4b9b-4411-8546-d0... 4| GET.call E1_AB of tinysize-verif3-verification-grammar
L q |
H E1_AB

| sregource-of
: Girespurce-of

(d) GET.call-E1_AB

91c682c2-cdf2-4430-8be... 1| GET.return-E1_AB of tillys\le-verHS-ver'rﬂcatwon-grammar
K

1
?

SE1_AB

Toresoufce-of |
Grregource-of B

(e) GET.return-EI1_AB

55

6.3 Properties

In this section we analyze the translation that was defined in previous sections.
As stated before, this translation gives a semantics to module nets in terms of graph
grammars. Thus, we have to guarantee that the translation procedure generates a valid
graph grammar (well-definedness) and always terminates with an unique resulting gram-
mar (confluence). Confluence can be formally proven, since this is a property of the

translation grammar.

6.3.1 Well-definedness

We begin by laying out the following requirements for a final graph to encode a

well-defined graph grammar:

R1 every edge must have source and target nodes.

R2 for every edge with source and target nodes, and included in a graph, its source and

target nodes must be included in the same graph.

R3 every rule must have left handside and right handside graphs.

Note that requirements R1 and R2 are slightly different, whereas R2 requires
source and target to be in the same graph, it says nothing about edges missing source
or target. R1 covers this case, requiring that all edges have a source and a target.

For each of the requirements above, we argue that they are preserved by the trans-

lation grammar rules:
Preservation of R1 we analyse rules looking for the creation of "GRAGRA _edge" nodes:
e rules TR15, TR16, TR20 through TR23, TR25, TR26 and TR28 create "GRA-
GRA_edge" nodes. All of these rules add source and target nodes.
e no other rule creates "GRAGRA_edge" nodes.
e no rule deletes sources or targets of "GRAGRA_edge" nodes.
Preservation of R2 let us analyse all rules in the translation grammar, looking for rules

that create "GRAGRA_in" edges from "GRAGRA_edge" nodes to "GRAGRA_graph"
nodes (note that no rule removes "GRAGRA_in" edges):

e TK1 through TK11, TR12 through TR14 and CL29 through CL33 do not

56

contain "GRAGRA_edge" nodes.

e TR15 and TR16 create "GRAGRA_edge" nodes, but they neither create nor
remove "GRAGRA_in" edges.

e TR17 through TR23 and TR26 create "GRAGRA_in" edges, in all of those
rules, for every "GRAGRA _edge" node that is included in a graph, its source
and target "GRAGRA _node" nodes are included in the same graph, thus pre-
serving R1.

e TR24 places just the sources of "GRAGRA_edge" nodes (of type "resource-
of") in different graphs, but the targets of these "GRAGRA_edge" nodes are
"GRAGRA_node" modules added by TR23.

e TR27 is analogous to TR24, where TR26 adds the missing targets (modules).

e TR25 places just the sources of "GRAGRA_edge" nodes (of type "attribute-
of") in different graphs, but the targets of these "GRAGRA_edge" nodes are
"GRAGRA_node" resources added by TR24.

e TR28 is analogous to TR25, where TR27 adds the missing targets (resources).

e AD34 and AD35 remove redundant "GRAGRA_in" edges.

Preservation of R3 rules that create "GRAGRA _rule" nodes are TR17 through TR23
and TR26. All such rules add left- and right-handside graphs to rules created. No
rule removes a graph from a "GRAGRA_rule".

Based on the arguments above, we believe that the translation creates well-defined
graph grammars. In addition to being a graph grammar, we also require that the trans-
lation produces a grammar that can be used for the verification procedure. We lay down

following additional requirements for a well-defined verification grammar:

R4 every node has a single role, which is one of the following: a module, a resource, an
attribute or a value.

RS required resources and attributes create rules of type require, which induce critical
pairs of dependencies with rules that create such resources or attributes.

R6 generated resources and attributes create rules of type generate, which induce critical
pairs of dependencies with rules that need such resources or attributes and conflicts
with rules that change their values.

R7 non-generated resources and attributes create rules of type mockgenerate, just as rules

created by S2, the only difference being the rule name.

57

R8 operations create two rules each, call and return, with resource and attribute edges

translated as mappings from left- to right-handside graphs of rules.

For each of the additional requirements above, we argue that they are preserved

by the translation grammar rules:

Preservation of R4 let us analyse each role separately, keeping in mind that no rule adds

source or target to existing edges, in other words, edges are always created with

their sources and targets, as observed before when showing the preservation of R1:

Modules are the targets of "resource-of" edges, which are created by TR15.
This rule ensures the target of "resource-of" is a module due to its mapping
from a "MN_Module".

Resources are the sources of "resource-of" edges, and TR15 ensures the source
of "resource-of" is a resource due to its mapping from a "MN_Resource".
Resources are also the targets of "attribute-of" edges, which are created by
TR16. This rule ensures the target of "attribute-of" is a resource due to its
mapping from a "MN_Resource".

Attributes are the sources of "attribute-of" edges, and TR 16 ensures the source
of "attribute-of" is an attribute due to its mapping from a "MN_Attribute".
Attributes are the targets of "value-of" edges, which are created by TR20,
TR21, TR22, TR25 and TR28. All of these rules ensure the target of "value-
of" is an attribute due to its mapping from a "MN_Attribute".

Values are the sources of "value-of" edges, and TR20, TR21, TR22, TR25
and TR28 ensure the source of "value-of" is a value because they either create

their sources "V" or have the value "V" as source (which is created by TR13)

Preservation of RS rule TR17 creates rules for required resources, and TR20 for re-

quired attributes

Preservation of R6 rule TR18 creates rules for generated resources, and TR21 for gen-

erated attributes

Preservation of R7 rule TR19 creates rules for non-generated resources, and TR22 for

non-generated attributes

Preservation of R8 rule TR23 creates rules for operations calls, and TR26 for operation

returns

With all of the above, we argue that the translation produces well-defined verifi-

58

cation grammars. In the following let us put this into practice with an actual translation.
First we build the following atomic constraints (the actual constraints are available in the

appendix) that can be mapped back to requirements:

e Al (GRAGRA_edge_has_source_target): checks that every edge has source and
target nodes. When this is fulfilled, it shows R1.
o A2 (GRAGRA_edge_source_target_in_graph): checks that for every edge in a graph,

its source and target are in the same graph. When this is fulfilled, it shows R2.

e A3 (GRAGRA_rule_has_lhs_rhs): checks that every rule has left handside and right
handside graphs. When this is fulfilled, it shows R3.

o A4 (MN_module_is_not_just_module): checks that a "GRAGRA" node that is a
module is also a resource, attribute or value. When this is not fulfilled, it shows R4.
e AS (MN_resource_is_not_just_resource): checks that a "GRAGRA" node that is a

resource is also a module, attribute or value. When this is not fulfilled, it shows R4.

o A6 (MN_attribute_is_not_just_attribute): checks that a "GRAGRA" node that is an

attribute is also a module, resource or value. When this is not fulfilled, it shows R4.

o A7 (MN_value_is_not_just_value): checks that a "GRAGRA" node that is a value

is also a module, resource or attribute. When this is not fulfilled, it shows R4.

o A8 (MN_self_resource): check that a "GRAGRA" node is a resource of itself.
When this is not fulfilled, it shows R4.

e A9 (MN_self_attribute): check that a "GRAGRA" node is an attribute of itself.
When this is not fulfilled, it shows R4.

o A10 (MN_self value): check that a "GRAGRA" node is a value of itself. When this
is not fulfilled, it shows R4.

For each of the atomic constraints, we have built test graphs such that a test graph
fulfills an atomic constraint that is not to be fulfilled or, the opposite, it does not fulfill an
atomic that is to be fulfilled. These test graphs are only meant to test each of the atomic
constraints.

Now we build a module net M N, as depicted in Figure 6.7. We use the translation
procedure previously described to obtain the verification grammar depicted in Figures
6.8 and 6.9. The final graph obtained in this translation is omitted because it is huge
with 75 nodes and 248 edges. M N, serves as a good example, because it contains all
combinations of values for generate and require (T and T, T and F, F and T, F and F) for

resources and attributes, and it also contains an operation edge without attribute edges

59

Figure 6.7: Module net M Ns.

A
Ri
generate:T
require:F
R

’ Ry ai az
My My -----3 > generate:F ——---2 s generate:T’ generate:F”
\ require:F require:F require:T

Eyp
\ Ao
]\/{B generate:F

require:T'
R

RY by by
]\/]B ****** > generate:T ———--2 > generate:T generate:F'
require:T require:T require:F

B
1 A call B
Eip R —= Rj En =2

R S RS Eretur by — a
2 eturn 2 return 1 2

bg‘)&l

(Ecqu) and an operation edge with multiple attribute edges (Epeturn)-

With the atomic constraints we build the constraint: (A1) AND (A2) AND (A3)
AND (NOT A4) AND (NOT AS) AND (NOT A6) AND (NOT A7) AND (NOT AS8)
AND (NOT A9) AND (NOT A10). Using AGG (RUNGE; ERMEL; TAENTZER, 2012),
it is possible to see that the final graph for the translation of M N, fulfills this constraint,
thus the verification grammar produced is well-defined in respect to requirements R1
through R4.

Since requirements RS through R8 are not covered by the atomic constrains, we
now analyse the rules produced for M N, to show these requirements are fulfilled. First
we show R5 by noticing the required resources R” and R, and required attributes a, and
b, on Figure 6.7 and the corresponding rules require-B.B1, require-B.B2, require-A.A2.a2
and require-B.B2.b1 from Figure 6.9. We check R6 by comparing generated resources and
attributes R{‘, RQB , a1, by with rules generate-A.Al, generate-B.B2, generate-A.A2.al and
generate-B.B2.b1. R7 is confirmed by non-generated resources and attributes Rg‘, Rf” ,
as and by, with rules mockgenerate-A.A2, mockgenerate-B.B1, mockgenerate-A.A2.a2 and
mockgenerate-B.B2.b2. Finally, we show R8 with E}L p and rules GET.callE1_ADB and
GET.returnE1_AB. Thus the translation of M N, is well-defined.

60

Figure 6.8: Verification grammar for module net M N,

attribyte-of

E1_AB

attriite-of

(a) Type graph

GET.call-E1_AB of midsize-verifi-verification-grammar

?'11aeab2-859T4393-9T1E-GUTUEUSUU...:z

4
¥

(b) GET.call-EI_AB

49f1d621-ed78-4fa2 b571-d5f4d6c6b65h

4| GET.return-E1_AB of midsize-verif3-verification-grammar
=]

9E1_AB

9E1_AB

o

(¢) GET.return-EI1_AB

61

Figure 6.9: Remaining rules of verification grammar for module net M N,

41| generate-B.B2 of verif3-verificatios=) 1| mockgenerate-A.A2 of verif3-verifes
E 4 i ’; q i
4| generate-A.A1 of midsize-verif3-verification-grarisi * i
¥ 9 : 3
(a) generate-A.Al (b) generate-B.B2 (c) mockgenerate-A.A2
4|require-B.B2 of midsize-verif3-verificatash
g . o — 4| require-B.B1 of midsi: 3 1
4| mockgenerate-B.B1 of mnds!ze-venf!i-venl’mtx) (3 ¥

1
E

resofirce-of

1
¥

Fresource-of

(d) mockgenerate-B.B1

(e) require-B.B1

1| generate-A.A2.a1 of midsize verif3-verification-gEE)
[

1
?

ate AA2.a2 of midsize verif3 verificatioy

k]
¥

(f) require-B.B2

L

L
1

generate B.B2.b1 of midsize verif3-verification gesly

(g) generate-A.A2.al

4| mockgenerate-B.B2.b2 of midsize-verilS-veﬁme
¥

i
E

(h) mockgenerate-A.A2.a2

(| require-A.A2.a2 of midsize-verif3-verification-graeshf
[

1
?

(j) mockgenerate-B.B2.b2

(k) require-A.A2.a2

(i) generate-B.B2.b1

4| require-B.B2.b1 of midsize-verif3-verification-gragsh
¥

1

(1) require-B.B2.b1

62

6.3.2 Confluence

As explained previously in Chapter 3, confluence is a combination of two prop-
erties, namely termination and local confluence. Luckily, and differently than we did
for well-definedness, we can show both of these properties automatically using AGG.
We start by showing local confluence, configuring the AGG analysis as shown in Fig-
ure 6.10 (a). We ignore critical pairs of same rules, directly strictly confluent critical
pairs and mark the "essential" option to compute just essential critical pairs. We choose
these options because they do not influence the local confluence result, and because they
greatly improve analysis time. With such configurations, no critical pairs of conflicts are
generated for the translation grammar, and therefore the translation grammar is locally

confluent.

Figure 6.10: CPA options and termination of translation grammar.

¢ Termination of LGTS X
Rule Layer
Rule Layer
oken_resource_required -
oken_module
[#] options X oken_attribute_required r
rans|ate_grapnTr H
B ranslate_value
Layouter r@ Parser ’/ Critical Pairs ‘ oken, operation_zal
General r Transformation ‘ oken_fesource
oken_attribute_generated
oken_resource_generated
Select the Kind of critical pairs & layer to compute oken_attribute_ |
Err—— e :
Creation Layer
Select completeness of critical pairs Type Layer
m— I oz z
TOKEN_Resource—{unnamed E
Select consistency check of critical pairs GRAGRA_Node—~GRAGRA_in-.
TOKEN_Retum
[consistent MN_Module—(unnamed)>GR.
MIN_Operation—MN_s ource->
Select attribute check of critical pairs TOKEN_NotGenerated
[strong GRAGRA_Graph—GRAGRA 1
GRAGRA_Node ~]
Ignore critical pairs
of same rules Deletion Layer
Type Layer
= N MIN_targ -
directly strict confluent TOKEN_Resource—(unnamed =
GRAGRA_N0de—GRAGRA_IN-
[v] directly strict confluent up to isomorphism TOKEN_Retum
MIN_Module—(unnamed)+GR
Critical pairs due to named objects MN_Operation—Hh_source->
TOKEN_NotGenerated
e e s
GRAGRA_Node =
Maximal amount of results per rule pair and conflict kind
Are termination crieria satisfied? g
Compute essential critical pairs
essential [generate rule layer
Creation | Deletion type layer will be generated automatically
Display Settings.
Check | ‘ More Info | ‘ Reset | ‘ Accept
Clase Close Help

To ensure that the translation grammar terminates, we first assign layers to rules
as previously explained in Table 6.1. With this configuration, we run the termination
analysis of AGG, which finds that the grammar terminates according to Figure 6.10 (b).
In the following, we present and explain the results obtained by AGG when analysing
termination. Figure 6.12 shows the layer kinds AGG finds for each rule layer, where

a green box means the layer represented by that row fulfills criteria for the layer kind

63

Figure 6.12: Termination layers.

|£| Termination of LGTS x

Termination Conditions of LGTS
Deletion_1 Deletion_2 Nondeletion

Layer 0
Layer 1

Layer 2

Layer 3

Close

represented by the column (so for example layer O fulfills criteria to be a non-deletion
layer) and a red box means that layer does not fulfill criteria for the layer kind represented
by the column (so again layer O fulfills neither criteria set 1 nor criteria set 2 to be a
deletion layer).

Deletion layers of the first criteria set (Deletion_1 in Figure 6.12) decrease the
amount of nodes or edges in graphs, and are eventually halted for lack of elements to
delete. By looking at the rules in the appendix, note that rules CL29 through CL33 of
layer 3, and AD34 and AD35 of layer 4 decrease the amount of nodes or edges in graphs.

Deletion layers of the second criteria set (Deletion_2 in Figure 6.12) delete ele-
ments previously created, and like the first criteria set are eventually halted for lack of
elements to delete. By looking at the rules in the appendix again, note that all rules of
layer 1, TR14 through TR28, either delete "TOKEN" nodes created by layer O, or delete
"MN" nodes which are not created anywhere. Also note that rules of layer 1 increase
the amount of nodes or edges in graphs, which is why this layer does not fulfill the first
criteria set for deletion layers.

Finally, non-deletion layers are guaranteed to terminate due to Negative Applica-
tion Conditions (NACs). By looking at the rules in the appendix, note that all rules of
layer 0 have NACs, which are TK1 through TK11, TR12 and TR13 rules, so it makes
sense that layer 0 is a non-deletion layer.

Tables 6.3, 6.4, 6.5 and 6.6 show the creation and deletion layers assigned by
AGG to each of the types in the translation grammar. We note that for each type, ei-
ther its creation layer precedes its deletion layer or they are the same. As an example,
"MN_Resource" has a creation layer of 0 and a deletion layer of 2, but the creation and
deletion layers of "TOKEN_Return" are the same layer 1. In other words, no type has a
creation layer greater than its deletion layer, which would imply the translation does not

terminate.

64

Layer

Table 6.3: Node type creation layers as created by AGG.
Types

MN_Operation, MN_Resource, MN_ResourceEdge,
MN_AttributeEdge, MN_Module, MN_ Attribute,

TOKEN_Return, TOKEN_NotGenerated, TOKEN _Attribute,
TOKEN_Call, GRAGRA_GraphTransformationSystem, TOKEN_Module,
TOKEN_Generated, TOKEN_Required, TOKEN_Resource,

Layer

GRAGRA_Node, GRAGRA_Graph, GRAGRA_Edge,
GRAGRA_Rule,

Table 6.4: Node type deletion layers as created by AGG.
Types

TOKEN_Return, TOKEN_NotGenerated, MN_ResourceEdge,
TOKEN_Attribute, TOKEN_Call, GRAGRA_GraphTransformationSystem,
MN_AttributeEdge, TOKEN_Module, TOKEN_Generated,
TOKEN_Required, TOKEN_Resource

GRAGRA_Node, MN_Operation, MN_Resource,
GRAGRA_Graph, GRAGRA_Edge, MN_Module,
GRAGRA_Rule, MN_ Attribute

IGTS abbrv. for GraphTransformationSystem

Table 6.5: Edge type creation layers as created by AGG.

Layer \ Source type Edge type Target Type
0 MN_ResourceEdge MN_target MN_Resource,
MN_Operation MN_source MN_Module,
MN_AttributeEdge MN_edge MN_Operation,
MN_resourceEdge MN_edge MN_Operation,
MN_ AttributeEdge MN_target MN_ Attribute,
MN_Attribute MN_attributeof MN_Resource,
MN_Resource MN _resourceof MN_Module,
MN_AttributeEdge MN_source MN_ Attribute,
MN_Operation MN_target MN_Module,
MN_ResourceEdge MN_source MN_Resource
1 TOKEN_Resource (unnamed) MN_Resource,
TOKEN_Attribute (unnamed) MN_ Attribute
TOKEN_Call (unnamed) MN_Operation,
TOKEN_NotGenerated (unnamed) MN_Resource,
TOKEN_Required (unnamed) MN_ Attribute,
TOKEN_Return (unnamed) MN_Operation,
TOKEN_Required (unnamed) MN_Resource,
TOKEN_Module (unnamed) MN_Module,
TOKEN_NotGenerated (unnamed) MN_ Attribute,
TOKEN_Generated (unnamed) MN_ Attribute,
TOKEN_Generated (unnamed) MN_Resource
2 GRAGRA_Node GRAGRA_in GRAGRA_Graph,
MN_Module (unnamed) GRAGRA_Node,
GRAGRA_Graph GRAGRA _nac GRAGRA_Rule,
GRAGRA_Edge GRAGRA _target GRAGRA_Node,
MN_Operation call GRAGRA_Rule,
MN_Operation return GRAGRA_Rule,
GRAGRA_Graph GRAGRA_lhs GRAGRA_Rule,
MN_Resource (unnamed) GRAGRA_Node,
GRAGRA_Graph GRAGRA _rhs GRAGRA_Rule,
MN_ Attribute (unnamed) GRAGRA_Node,
GRAGRA_Edge GRAGRA_in GRAGRA_Graph,
GRAGRA_Rule GRAGRA _rule GRAGRA_GTS!,
GRAGRA_Edge GRAGRA_source GRAGRA_Node

65

66

Table 6.6: Edge type deletion layers as created by AGG.

Layer \ Source type Edge type Target Type
1 MN_ResourceEdge MN_target MN_Resource,
TOKEN_Resource (unnamed) MN_Resource,
MN_AttributeEdge MN_edge MN_Operation,
MN_resourceEdge MN_edge MN_Operation,
TOKEN_ Attribute (unnamed) MN_ Attribute,
MN_ AttributeEdge MN_target MN_ Attribute,
TOKEN_Call (unnamed) MN_Operation,
TOKEN_NotGenerated (unnamed) MN_Resource,
TOKEN_Required (unnamed) MN_ Attribute,
TOKEN_Return (unnamed) MN_Operation,
MN_AttributeEdge MN_source MN_ Attribute,
MN_ResourceEdge MN_source MN_Resource,
TOKEN_Required (unnamed) MN_Resource,
TOKEN_Module (unnamed) MN_Module,
TOKEN_NotGenerated (unnamed) MN_ Attribute,
TOKEN_Generated (unnamed) MN_ Attribute,
TOKEN_Generated (unnamed) MN_Resource
2 GRAGRA_Node GRAGRA _in GRAGRA_Graph,
MN_Module (unnamed) GRAGRA_Node,
MN_Operation MN_source MN_Module,
GRAGRA_Graph GRAGRA _nac GRAGRA_Rule,

MN_ Attribute
GRAGRA_Edge
MN_Operation
MN_Resource
MN_Operation
MN_Operation
GRAGRA_Graph
MN_Resource
GRAGRA_Graph
MN_ Attribute
GRAGRA_Edge
GRAGRA_Rule
GRAGRA_Edge

MN_ attributeof
GRAGRA _target
call
MN_resourceof
return
MN_target
GRAGRA_lhs
(unnamed)
GRAGRA _rhs
(unnamed)
GRAGRA_in
GRAGRA_rule
GRAGRA_source

MN_Resource,
GRAGRA_Node,
GRAGRA_Rule,

MN_Module,
GRAGRA_Rule,
MN_Module,
GRAGRA_Rule,
GRAGRA_Node,
GRAGRA_Rule,
GRAGRA_Node,
GRAGRA_Graph,
GRAGRA_GTS,
GRAGRA_Node

67

6.4 Limitations and final remarks

We had to face many challenges when implementing the translation. The first chal-

lenge was the node and edge explosion. Considering just the two examples we presented

in this chapter:

M Ny had just two modules, two resources, no attributes and a single operation with

two resource edges, but its final graph had 24 nodes and 69 edges.

M N5 had again two modules, four resources, four attributes and a single operation

with two resource egdes and two attribute edges, but its final graph had 75 nodes

and 248 edges.

It is easy to see that the translation scales badly. Based on translation rules (see appendix)

we can draw the following conclusions:

Each rule created has at least three nodes (GRAGRA_Rule and GRAGRA _Graphs)
and three edges (GRAGRA _rule, GRAGRA_lhs and GRAGRA _rhs).

Require, generate and mockgenerate rules have none / one? additional node (GRA-
GRA_Edge) and 6 / 14 more edges (GRAGRA_in) worst case for resources / at-
tributes respectively. For each resource and attribute, one or two rules are created,
depending on whether it is required or not.

Each operation implies the creation of two rules with an additional node (GRA-
GRA_Edge) and 7 additional edges (GRAGRA_in).

Each resource edge implies the creation of 10 edges (GRAGRA_in).

Each attribute edge implies the creation of three nodes (GRAGRA_Node and GRA-
GRA_Edges) and 21 edges (mostly GRAGRA _in).

Each module implies the creation of one node (GRAGRA_Node).

Each resource and each attribute imply the creation of two nodes (GRAGRA_Node
and GRAGRA_edge) and two edges (GRAGRA_source and GRAGRA _target).

Based on the above, given a module net with M modules, R resources, A attributes, O

operations, RE resource edges and AE attribute edges we can estimate the maximum
number of nodes in the final graph MAX,,,4es = M+ 8%« R+ 10%A +8xOP+ 3« AE and
maximum number of edges MAX j5cs = 20 * R+ 36 * A4+ 20 * OP +- 10 * RE + 21 x AE

Note this is not a precise measure, but an upper bound, because some edges are removed

2for require and generate/mockgenerate respectively, generate and mockgenerate differ only by trigger
condition (value of "mock" attribute) and generated rule name

68

by AD* rules and some rules are not created if resources / attributes are not required. If

we compute this for the examples we have:

o MAX,00es(MN;) = 26 > 24 and MAX .gyes (M N}) = 80 > 69
o MAX,es(MNy) = 88 > 75 and MAX gyes (M N) = 308 > 248

This rapid growth in the number of nodes and even more in the number of edges
led us to consider performance improvements. One improvement we did during devel-
opment was to get rid of type graphs. During initial phases, the translation would create
a GRAGRA_Graph node to represent type graphs, just as it does for rule left- and right-
handside and NAC graphs. This would contribute to the enourmous growth in edges, as
every node would require a GRAGRA_Edge from itself to the type graph. We were able to
improve this by introducing the "type" attribute and then get rid of the type graph GRA-
GRA_Graph node. Another improvement we did during the initial development phase
was to reuse GRAGRA_Node nodes, instead of creating new nodes. Each time one had
to be added to a GRAGRA_Graph, we just created a GRAGRA_in arrow from an existing
node to that GRAGRA _Graph.

Despite these changes, the amount of nodes and edges is still too high. Even
worse is that each additional node and edge makes the translation take longer, because
it increases the amount of matches a rule has to a graph. For module nets just slightly
bigger than M N,, the translation slows down to the point of stagnation. To avoid this
scenario, we use a divide and conquer approach: before translating big module nets, we
split a module net into a series of smaller module nets, each with just one operation. The
module nets are then translated and later they are joined together during the extraction
procedure. From an outside view, the result of the translation is still the same, it takes as

input a module net and produces a verification grammar.

69

7 A VERIFICATION METHOD FOR SOFTWARE INTEGRATION

The verification step takes place after translation. This step takes as input a ver-
ification grammar and produces a set of warnings. In more details, it performs a set of
checks against the verification grammar and a verifier configuration, producing a set of
hints. It also creates an identification that allows the mapping of verification structures
back to module nets. Combining hints and identification, the verification procedure makes

a set of warnings, which are displayed to users. Figure 7.1 illustrates this procedure.

Figure 7.1: Verification procedure

Read
Verification
Grammar

. IGrammar / Verifien
Type Graph Config.
|dentify Check
Hints can be used
—_— by other checks
to generate new hints
Identification Hint
\.._._,_..-’T’_-h\ \.___.&T’ﬁ\ -

Generate
Warnings
Warnings \ |

Provided a verification grammar and verifier configuration, the verification proce-
dure is automatic. The verification procedure presented here is finished, in the sense that
it is ready to use, but it is open, that is, this verification procedure can be easily extended

to support other checks and warnings.

7.1 Identification

The identification maps the structure of a verification grammar back to the module
net that originated it. This procedure is essential to produce meaningful warnings to users.
Although it is similar to translation, identification is not the same as translation.

When translating, we start with a model and end with another model in a different lan-

70

guage, whereas identification produces a dictionary of structures in the source model to
structures of the target model.

Another difference between identifications and translations is that an identification
is partial, that is, it does not produce a full module net. Instead, an identification produces
just enough information to make warnings meaningful to an user. In short, identifications
do not allow the recovery of the original module net that was translated into a verification

grammar.

7.1.1 Graph identification

Graph identification is the only identification procedure currently implemented.
This procedure takes as input the type graph of a verification grammar and walks the
graph producing mappings from node and edge IDs to module net names.

The source of a mapping is a node or edge of the verification grammar type graph
and the target of the mapping is a module net name. Some structures of the source do not

have counterparts in the target. The creation of mappings is straightforward:

e Values are nodes which are the source of an edge named "value-of". Values do not

have a module net counterpart and thus are ignored.

e Attributes are nodes which are the source of an edge named "attribute-of". The

names of such nodes are the names of attributes in a module net.

e Resources are nodes which are the source of an edge named "resource-of". The
names of such nodes are the names of resources in a module net. Additionally, all

"attribute-of" edges with this resource as target assign attributes to this resource.

e Modules are all other nodes. The names of such nodes are the names of modules
in a module net. Additionally, all "resource-of" edges with this module as target

assign resources to this module.

Graph identification can be implemented by a simple loop over graph edges, which
identifies edge targets as modules, resources, attributes or values (based on edge names
as explained above), and edge sources as resources or attributes. Graph identification has

a complexity of O(Er¢) over a type graph with edge set Erq.

7.2 Hints

Hints are produced by the verification algorithm when it analyses a graph gram-
mar. A hint is a piece of information that can lead to another hint or to a warning. By

itself, a hint is not useful to the user. Here is a brief description of dependencies between

hints:

Table 7.1: Dependencies between hints and warnings

Hint

Used in Hint

Used in Warning

Critical pairs

Rule decoration

Information flow
Optional path

Required path
Reachable rule

Critical pair explanation

7.2.1 Critical pairs hint

This hint takes a verification grammar and applies a critical pair analysis, yielding

pairs of dependencies and conflicts, as well as a set of overlays for each critical pair. This

all hints except rule dec-
oration

all hints except critical
pairs

Required path

hint is used by several other hints described shortly.

7.2.2 Rule decoration hint

Rule decoration takes a verification grammar, extracts its set of rules, and deco-
rates each rule with a set of properties based on rule pattern. The exact decoration for each

pattern is determined by the verifier configuration. These are the decoration properties:

e Rule pattern (string): determined based on verifier configuration and rule name, this

Unreachable operation

Optional operation,
module, resource and
attribute

Strictly optional attribute
Unreachable operation
Dangling resource and
outdated attribute

is used when computing critical pair explanation hints.

e Mock (boolean): indicates whether this rule represents a mock or a real property of

the module net when computing reachable rules hints.

72

e Maps to operation (boolean): this decorator is used to filter out auxiliary rules when
computing unreachable operation warnings.
e Required by default (boolean): indicates whether a rule is required when computing

optional and required path hints.

e Modules, resources, attributes (arrays): these arrays contain the names of module

net structures in this rule and are used throughout the verification.

Rule decoration hint can be implemented with a loop over the rules of the verifi-
cation grammar. The values of each decorator are determined by the rule pattern, which
in turn is determined by a regular expression applied on rule name. Finding modules, re-
sources and attributes in rules is O(/Ng) with Ng being the number of nodes in all graphs
of a rule, provided we already have a graph identification, which saves the time of going
through edges.

Rule decoration has a complexity of O(R % Ng) over a verification grammar rule

set with R rules with names that have a fixed amount of characters.

7.2.3 Information flow hint

Information flow takes the produce-use dependency critical pairs of a verification
grammar and attaches pairs of attributes to these dependencies, such that the information
flows from the first to the second component of the pair. For example, supposing the we

have an information flow pair X; and X5, this means that:

e Source rule of the dependency pair sets the value of X, to the value of X; (or a

combination of this and values of other attributes).

e Target rule of the dependency requires the value of Xs.

Information flow pairs are then useful later when computing required paths, where
we will use information flow pairs to check which attributes carry important information
to required attributes.

Figure 7.2 shows possible subgraphs of critical pair overlays. Nodes X; and X5
represent attributes, while node V' is a value node. Attributes marked in dark grey are
critical objects, that is, they belong both to source as well as to target rule, and attributes
marked in light grey belong either to source or to target rule. Codes S1 to S8 are references

to Table 7.2, which shows how to process each of the subgraphs from Figure 7.2. We

73

denote X; — X, if there is information flow from X; to X5.

Figure 7.2: Possible subgraphs of critical pair overlays and correspondence to Table 7.2
S$1,58 S$2,83 S5 S6 S7

S4
L0 &
1

A O/INO

A \ \Y

Note that critical pairs are potential dependencies, which means that the informa-
tion flows shown here are potential, but they may not happen, depending on how each
of the rules matches the host graph. Nevertheless, we can still use this information be-
cause we are looking for attributes which are never used to carry information, these are
the attributes that are not part of any information flow pairs.

Table 7.2: Information flow in subgraphs of critical pair overlays
Code Source rule Targetrule Information flow

S1 X3 Xo There is no information flow.

S2 X; X1, Xs It is possible that X; — X5

S3 X1, X, X, It is possible that Xy — X,

S4 X1, X, X1, X5 It is possible that both X; — X5 and Xy — X

S5 X, X, There is no information flow.

S6 %} %} There is no information flow.

g7 X, > There is no information flow, the same swapping
source/target.

38 X1, X, o There is no information flow, the same swapping
source/target.

Information flow can be implemented with a loop of overlays. For each overlay,
we find all its subgraphs from Figure 7.2, by first looping over the nodes of the overlay to
find value nodes and then looping over nodes connected to value nodes. So far this is the
same complexity for traversing V' graphs, which is O(V x (Ny + Ey)) with V' overlays
of Ny nodes and Fy, edges.

Once we have the list of all attributes connected to a specific value, we then take
all pairs of attributes in that list. In general this is O((?) for a list of size [. This adds to
our complexity so far making O(V * (Ey + NZ)) (note we have removed the Ny addend).

Now for each component of a pair, we determine whether or not it is in source and
target rules, which is O(Ngs + Ng;), but we simplify to O(Ng) with Ny the greatest of
the two, and we use this information to compute the information flow according to table

above. This makes O(V * (Ey + NZ x Ng)).

74

In addition to the complexity of finding critical pairs, finding information flows
has a complexity of O(V x (Ey + N2 * Ng)) with V overlays of Ny nodes and Ey- edges,

between rules of Ng nodes.

7.2.4 Optional path hint

Optional path takes the produce-use dependency critical pairs as well as decorated
rules and produces lists of nodes and rules which are not necessary. This list of optional
nodes and rules can later be identified back to module net structures with the help of an
identification. Such nodes and rules are later presented as warnings to the user, so that
they can decide whether or not it makes sense to keep these structures in their modules.

Optional paths could be for instance operations which have been used in the past
but now are deprecated. As soon as a deprecated operation is not used anymore, it can be
removed.

Optional path is implemented with a traversal of the produce-use critical pairs
graph. Rules are considered required when they have the required by default decorator.
Rules which are the source of produce-use critical pairs with required rules as target, are
considered required as well. Nodes which are not part of any required rules are optional.

Cycles are handled as follows:

e An isolated cycle without required rules is optional.

e An isolated cycle with required rules is not optional.

e A cycle with rules that are not part of a path taking to a required rule is optional.

e A cycle with a rule that is part of a path that takes to a required rule is not optional.

Optional path is a simple graph traversal of Ncp + Ecp = O(R?) for critical pair
graphs with N¢p nodes and E¢p edges.

7.2.5 Required path hint

Required path takes information flows as well as decorated rules and produces
a list of attributes considered to be required. The goal of this hint is to find attributes
which carry information to required attributes. Note that the set of required attributes

is not necessarily the complement of optional attributes over the universe of attributes.

75

The attributes of required rules which do not carry information to required attributes are
named strictly optional attributes.

Required path is implemented with a loop over all decorated rules of a verification
grammar, filtering those rules which are required by default. Then, we perform a traversal
of the produce-use critical pairs graph starting from each of the required rules and going
backwards. That is, in the first traversal iteration we will look for critical pairs with rules
required by default as a target. The second iteration will look for rules whose target is the
result of the first iteration and so on. If we take Figure 7.3 as an example, we would start
by looking at rule E, which is required by default, then go backwards to rule D and stop
this iteration. The next iteration will start at rule D and work backwards to rule A and

stop, as there is nowhere else to go.

Figure 7.3: Example of required path hint computation

— A —
a3 -> bl al > di
ad = b2 a2 =2
v ¥
=5 L JL° | F
bi-=cl f— s
¥ Y
— | C ‘ ‘ E (required) ‘ —

During each iteration of the traversal, for each critical pair that is found, we will
look for the information flow pairs of that critical pair and start building a path that takes to
arequired rule. Only attributes in the path that takes to a required attribute are considered
required. Going back to Figure 7.3 example, in the first iteration we will note down
attribute d1, in the second iteration we note down attribute al. Attributes belonging to
information flow pairs which are not part of any such paths are not considered required.
This is the case of a2, a3, a4 and d2 in the path to E, as well all attributes of B and C.

To summarize the example presented in Figure 7.3, we have a produce-use critical
pair graph with five rules. The only rule decorated with required by default is rule E. The
brackets indicate pairs of information flows between attributes belonging to each rule. We
can see that rules B and C, as well as attributes b1, b2 and c1 are optional, because they
are not in any required path. Rules A and D are required, as they lead to a required rule
(E). Attributes al and d1 are also required, because they belong to an information flow
path leading to attribute el, which is required. Attributes a2 and d2 are neither required

nor optional, they are strictly optional attributes.

76

In the worst case scenario, we will traverse the entire critical pairs graph!, which is
Ncp+ Ecp = O(R?), with Ncp and Ecp nodes and edges in the critical pairs graph and
R rules. In addition to that, we will search information flow list, which makes O(R2 + P)

with P information flow pairs.

7.2.6 Reachable rule hint

Reachable rule takes the produce-use and produce-forbid critical pairs of a veri-
fication grammar, as well as its set of decorated rules, and produces a set of rules whose
left handside requirements can be met, that is, a set of reachable rules. This hint operates

on a few assumptions:

e For each attribute and resource in the module net, verification grammar will have a

rule that produces it. We will name these rules as generators for convenience.

e [f a resource/attribute is generated in the module net, its generator will be decorated

"mock: false", otherwise it will be decorated "mock: true".

e Rules are built in such a way that they create produce-use dependencies for each

attribute/resource they require, with generator rules as source.

e Rules are built in such a way that they create produce-forbid conflicts for each

attribute/resource they produce, with generator rules as source.

Reachable rule hint can be implemented with a loop over all rules, running the
whole algorithm for each single rule. When trying to determine if a rule is reachable, it
will traverse the critical pairs graph and look for produce-use dependencies with genera-
tors as source and the analysed rule as a target. If there is no such dependency, then the

rule is assumed to be reachable. If there is such a dependency, then either:

e The generator is not a mock. This is the trivial case, the rule requires a resource or
attribute which is generated, everything is fine.
e The generator is a mock. In this case, we need to find some other rule that produces

the resource or attribute this rule needs. If we cannot find a producer rule, then the

rule under analysis is not reachable.

If the rule we are analysing is the target of a produce-use dependency from a mock gen-

erator, we will have to find some rule that produces the resource/attribute this rule needs.

Note that here we mean there is at most one edge between nodes of critical pairs graph, we use overlay
count to distinguish between critical pairs of same rules

77

This is achieved by looking for produce-forbid conflicts with that same mock generator
as source. Figure 7.4 illustrates this situation. In general, if we can find that produce-
forbid conflict, its target will be such a rule that a produce-use dependency from this rule
to the rule currently under analysis exists. The reasoning is simple: that rule produces an

attribute/resource the rule currently under analysis needs.

Figure 7.4: Example of attribute or resource not generated by the module net, but still
generated by some operation of the module net

prnduce-hrbidg[mock generator]

{ producer J produce-use

produce-use
rule under analysis

Reachable rule hint has a complexity of 2 * (Ngp + Ecp) = O(R?) with R rules

in the verification grammar and N¢cp and E¢op nodes and edges in the critical pairs graph.

7.2.7 Critical pair explanation hint

A critical pair explanation takes the critical pairs of a verification grammar and
the verifier configuration and produces a list of hints. Some of the possible verifier con-

figurations for this hint are:

e Critical pairs of delete-use conflicts between rules with pattern operation can be
explained by dangling resources. The dangling resource is the critical object in the

delete-use conflict.

e Critical pairs of produce-use dependencies between rules with pattern operation or
between a generator and an operation can be explained by outdated attributes. The

outdated attribute is the critical object in the produce-use dependency.

Additionally, critical pair explanations can also be extended to neighbor rules in
the critical pairs graph. For example, if a resource is considered dangling due to a delete-
use conflict between rules R1 and R2, and rule R3 reads that same resource, then a new
dangling resource hint is created also for R3, even though there is no delete-use conflict

between R1 and R3.

78

Critical pair explanation can be implemented by a traversal of the critical pairs
graph. Matching critical pairs to a configuration is simple, provided we already have the
rule pattern (from rule decoration hint) and critical objects from the critical pair analysis.
Checking whether the critical object is a resource or attribute is also a simple operation
using the identification we have already computed. The complexity of critical pair expla-
nation is a simple graph traversal of Nop + Ecp = O(R?) with Nop and Ecp nodes and

edges in the critical pairs graph and R rules in the verification grammar.

7.3 Warnings

Warnings are the result of the verification and contain valuable information to
users. As such, when creating warnings, we must combine hints with identifications to
produce meaningful messages. There are different kinds of warnings and the following

subsections explain each one of them.

7.3.1 Optional attribute, resource, module or operation warning

This warning is given when the verification is able to demonstrate that there is no
scenario where this structure enables a required feature of the module net. To name a few

of such scenarios:

e A trivial example of optional attribute is an attribute which is never read and also

not required by the module net.

e A more elaborate optional attribute example is one such that its value is passed on

to another attribute, but that attribute is a trivial optional attribute.

e An example of optional operation is one that does not contribute to reaching a re-

quired structure.

e Figure 7.3 shows optional operations B and C, optional modules B and C, optional

resources B.B1 and C.C1 and optional attributes B.B1.b1, B.B1.b2 and C.C1.cl.

An optional structure is potentially a structure that was important historically, but
now it is deprecated and can be removed without affecting the required information flow
of the network. In that sense, this warning helps users identify which structures they may

want to remove from their module interfaces.

79

Optional structures warning is derived from optional path hints. Optional path
hints related to rules give rise to optional operation warnings, and optional path hints
related to nodes may create optional attribute, resource or module warnings, depending

on the identification of the node.

7.3.2 Strictly optional attribute warning

Strictly optional attribute warnings point out attributes which are in the path of
required attributes, but do not contribute directly to the information flow. Just as optional
attributes, strictly optional attributes are also structures that can be deprecated and eventu-
ally removed. An example of strictly optional attributes is depicted on Figure 7.3, where
attributes A.A1.a2 and D.D1.d2 are strictly optional. Strictly optional attribute warnings

are derived from required path hints.

7.3.3 Unreachable operation warning

Unreachable operation warnings are shown when it is impossible for an operation
to be executed due to missing resources or attributes. This is not just the case that in a
given situation the operation becomes impossible, but rather that it is never going to get

executed. Examples of unreachable operations are:

e An operation that requires resource X.X1, but that resource is not generated.

e An operation that requires attribute X.X1.x1, which is not generated, but still it is

created by another operation, which in turn is unreachable due to some other reason.

Unreachable operation warnings provide useful information for developers to de-
tect issues in the information flow, which can be due to typos in resource or attribute
names or even other kinds of failures in the specification. This kind of warning is derived

from reachable rule hints.

7.3.4 Dangling resource warning

Dangling resource warnings are shown when a resource copied from module X

to module Y is deleted from module X, leaving the Y copy of that resource dangling.

80

A dangling resource is not necessarily an issue, it is left for users to read and check
whether each dangling resource can lead to issues in their specification. Dangling resource

warnings are derived from critical pair explanation hints.

7.3.5 Outdated attribute warning

Outdated attribute warnings highlight attributes copied from module X to module
Y and then changed in module X, leaving the Y copy of that attribute with an outdated
value. An outdated attribute is not necessarily an issue, users must read and check whether
each outdated attribute can lead to issues in their specification. Outdated attribute warn-

ings are derived from critical pair explanation hints.

7.4 Complexity

Table 7.3 summarizes the complexity of the verification procedure. In particular,
the time complexity of all warnings is the same: they follow straight from hints. Here are
the meanings of each variable used:

e Ny, Ex: node and edge set of X

R: set of rules

P: set of information flow pairs

V1 set of overlays of a critical pair

H': set of hints

e T'G: type graph

Table 7.3: Time complexity of each step in the verification procedure.

Step Type Time complexity
Graph Identification ~ Identification O(|Ercl)
Rule Decoration Hint O(|R| = |Ng|)
Information Flow Hint O(|V| = (|Ev| + |Nv|* * |Ng]|))
Optional Path Hint O(|R|?)
Required Path Hint O(|R|* + |P|)
Reachable Rule Hint O(|R|?)
Critical Pair Explanation Hint O(|R|?)
Warning Generation Warning O(1)

Most of our hints are simple graph traversals, which are processed in linear time.

81

This complexity is good, considering that this is not a time critical application, and users
may tolerate to wait a little longer. The biggest concern is with critical pairs computation,
which we believe to be non-polynomial time, and on top of that is required for all of our

hints and warnings.

7.5 Limitations and final remarks

Warnings available today are very limited and some are very easy to spot, such
as an optional attribute or resource, which is just an attribute or resource that is not seen
in any operations neither is it required. As mentioned in Chapter 5, we could expand the
supported warnings by augmenting module nets with types, providing the information we
need to better analyse module nets.

There is also a concern with the dangling resource warnings, which are just not
possible with the current translation procedure, as dangling resource requires deletion
of resources, which the current translation procedure does not support. Also outdated
attribute warnings will always show when an attribute is generated or set by an operation
and then read by an operation. We believe in most of the cases this will not be useful
information, and it would be much more useful if we could couple this with some control
flow information to infer whether or not the kinds of concurrency issues we want to avoid
really can happen.

Another limitation is complexity. All of our hints and warnings are based on
critical pairs computation, and this analysis can take a lot of time and memory, when we
analyse large grammars, in terms of quantity of rules and graph sizes of those rules. There
are two ways we can approach this: we could first try to reduce rule size by improving
our translation procedure, or we could adapt verification to base it on faster critical pair

analysis configurations, such as essential critical pairs computation.

82

8 CASE STUDY

In this chapter, we review the concepts presented so far in a case study that serves
as an end-to-end example, showing that our framework can be implemented. We do not
approach the subject of scalability in this chapter.

In this case study, let us consider the example of a search engine to find research
articles and let us call this engine Research Net. Our engine is responsible for searching
for scientific articles, but it does not contain the actual research articles, which are stored
in an Inventory Service. When visiting the Research Net website, researchers can look for
scientific articles by providing their Digital Object Identifier (DOI) and clicking a "sub-
mit" button. This button sends the provided DOI to Research Net, which then computes
the ID of the article using the DOI provided and relays the request to its Inventory Service
to find its Location. An example of a source code for Research Net is depicted in Figure
8.1.

Figure 8.2 shows module net V7, which stands for the version one of our example
Research Net system. This V; contains three modules that cascade information. Attribute
DOI is generated in resource Search of module Website, and cascaded to attribute ID in
resource Article of module ResearchNet, and then again to attribute Location in resource
Document of module InventoryService. With this module net we mean that the DOI
provided by the user is sent from the Website to Research Net, which then uses the DOI
to compute an ID. The ID is then relayed to the inventory service, which possesses the
actual article.

In V; we have marked DOI with generate : T, because this input is provided

by the user, who is an entity external to our module net. Differently than DOI, ID is

Figure 8.1: Pseudocode for Research Net V7, functions read, find and retrieve are part
of external modules

function readSearch() { function FindArticle (doi) {
DOI := read(); id := find(doi);
FindArticle (DOI); FindDocument (id) ;
} }
(a) Website module (b) Research Net module

function FindDocument (id) {
location := "res/" + id;
retrieve (location);

(c) Inventory Service module

83

Figure 8.2: Example module net V;

Search DOI
Website Website —————--— s generate:T ————- y generate:T
\ require: F' require: F'
FindArticle
Article 1D
Ref\(;,arch RS‘JQ\?‘”C"‘ 7777777 > generate:T ————-- » generate: I’
/ et et require:F' require:F'
FindDocument
Invent I f Document Location
nventory nventory ______ 5> generate:T ————— > generate:F
Service Service require:F require:T
. . ll .
FindArticle Search —~— Article call DOl ——— ID
. . 1 .
FindDocument Article —““ Document call 1D —— Location

generate : F', because it requires DOI to be computed, and the same goes for Location,
which requires ID to be computed. We mark all resources generate : T', as we assume
they are always available.

In this module net, we have not modeled the return path, where the article is re-
turned back to the user, and for that reason we mark the Location attribute with required :
T, meaning that this attribute is passed to some other operation external to our module

net.

8.1 Outdated attribute warnings in research net

When translated with our MIGRATE prototype, module net V; turns into a graph
grammar with eleven rules, all of which are in the critical pairs analysis (CPA) graph in
Figure 8.3. Looking at the graph we notice the produce-use dependency from generate-
Website.Search.DOI to GET.call-FindArticle, and because we know DOI is generated by
the first rule (based on the name of that rule), we can conclude! DOI is the product of
first rule that is used by the second rule. In addition to that, because this is a produce-use
dependency between a rule of type generator and a rule of type operation, we have found
a critical pair explanation hint and DOI is an outdated attribute.

If we run the verification procedure it will find just three warnings:

o Attribute Website.Search.DOI is an outdated-attribute because of rules generate-

Website.Search.DOI and GET.call-FindArticle, meaning that generate-Website.Search.DOI

IThis reasoning is not valid for graph grammars in general, but it works for verification grammars due
to how we have built and named rules of such grammars.

84

Figure 8.3: Critical pair analysis graph for research net 1

[gene rate—Website.Search]

[generate—Website.Search.DOI] _____________________
1 GET.call-FindArticle] [GET.return—FindArticIe]
e T

[generate-ResearchNet.Article]

[mockge nerate—ResearchNet.ArticIe.ID]

GET.call-Find Document] [GET.return-Find Document]

[generate-InventorySe rvice.Document]

v 4

[mockgenerate-InventoryService.Document.Location] ------------------ P[require-InventoryService.Document.Location]

can change the value of Website.Search.DOI after it has been read by GET.call-
FindArticle

e Rules GET.return-FindArticle and GET.return-FindDocument are optional-rules,

because they do not contribute to reaching any required attributes or resources

The interpretation we give to the warnings above is that a user may decide to look
for DOI 00.0000/fizz and submit this search, but shortly after that, user changes their mind
and sends a new search for 00.0000/buzz, all that while ResearchNet is still trying to find
00.0000/fizz.

8.2 Unreachable operation warnings in research net 15

If we were to change V; and create a new module net for version two, V5, where
everything is the same, except that attribute Website.Search.DOI is not generated, then
we would get a CPA graph very similar to that of Figure 8.3, except that in place of rule
generate-Website.Search.DOI, we now have mockgenerate-Website.Search.DOI. With such,
we note that we now have a situation with a produce-use dependency from a mock rule
M (mockgenerate-Website.Search.DOI) to some other rule R (GET.call-FindArticle) and
we must find a rule P such that M —pr P — py R. We note that there is no such P and

thus rule GET.call-FindArticle is unreachable. This causes a cascade effect on rules that

85

depend on GET.call-FindArticle using the same reasoning we just did. This time we have

a few different warnings:

e Operation F'indArticle is a unreachable-operation, because it needs attribute Web-

site.Search.DOI to execute, but that attribute is not obtainable anywhere in 5

e Operation FindDocument is a unreachable-operation, because it needs attribute
ResearchNet.Article.ID to execute, but that attribute is not obtainable anywhere,
attribute ResearchNet.Article.ID used to be obtained by FindArticle, but that op-

eration is not reachable in V5

e Rule require-InventoryService.Document.Location is a unreachable-operation, be-

cause this attribute is not obtainable anywhere

e Just as before, rules GET.return-FindArticle and GET. return-FindDocument are
optional-rules, because they do not contribute to reaching any required attributes

Or resources

This means that Research net cannot work without users, because the entire search
engine is triggered by user demand. If we were to remove user input, as we did in V5,
then MIGRATE prototype warns us that we lack the user input necessary to perform our
operations. In addition to that, we are not able to send articles to users anymore (require-

InventoryService.Document.Location is a unreachable-operation).

8.3 Optional attribute warnings in research net

Figure 8.4 shows module net V3, which is a modified version of V; where we
have added two new attributes to module Website, Website.Search.Title (meaning the title
of article that users want to search) and Website.Search.Region (meaning the geograph-
ical place where users are), and one new attribute to module ResearchNet, Research-
Net.Article.History (meaning a history of regions of users that have accessed this article).

If we look at the CPA graph for V3 in Figure 8.5, we notice that rule mockgenerate-
Website.Search.Title is not source of any dependencies or conflicts, meaning this attribute
is completely isolated, therefore it must be optional, since it does not contribute to any-
thing. Now for the other attributes, we notice in particular that Region and History are
in a path to reaching rule require-InventoryService. Document.Location, so they could be

necessary. For that reason, we analyse the information flow hint for this CPA graph:

Figure 8.4: Example module net V3

DOI Title
generate:T generate:F'
require: F' _y require:F
T -7
Search -~~~ i Region
Website Website ————-—--- ¥ generate:]’ ————— > generate:T
\ require:F’ require:F’
FindArticle emTTTTTTTT =<
R o
Article ID History
Rﬁ?\?”‘[ch Ref\?”{ﬂh 7777777 s generate:T ————— s generate:F' generate:F'
/ € € require: F' require:F' require: F'
FindDocument
Ini I ¢ Document Location
nventory nventory ______ 5 generate:T ————- » generate:F'
Service Service require:F' require:T'
. . call .
FindArticle Search ——— Article call DOl ——— ID
Region —— History
. . call ;
FindDocument Article ——— Document call ID ——— Location

e Information flows from DOI to ID due to produce-use dependency from GET.call-

FindArticle to GET.call-FindDocument

e Information flows from ID to Location due to produce-use dependency from GET.call-

FindDocument to require-InventoryService.Document.Location

Looking at information flow hints, we realize neither Region nor History is neces-

sary, thus these attributes are strictly-optional-attributes.

This time we have ten warnings:

Attribute Website.Search.Title is both optional-attribute and strict-optional-attribute,
because it is neither required nor used anywhere

Attribute Website.Search.Region is a strict-optional-attribute, because although it is
used in a operation that contributes to a required attribute (InventoryService. Document.
Location), attribute Region is not necessary to reach that attribute neither is it re-
quired

Attribute ResearchNet.Article.History is a strict-optional-attribute, for the same

reasons as Website.Search.Region

Like in V7, attribute Website.Search.DOI is a outdated-attribute because of rules
generate-Website.Search.DOI and GET.call-FindArticle, meaning that generate-Web
site.Search.DOI can change the value of Website.Search.DOI after it has been read
by GET.call-FindArticle

87

Figure 8.5: Critical pair analysis graph for research net V3

[generate-Website Search]

| -[mockgenerate-Website.Search.TitIe]

[generate—Website.SearchRegion]

[generate-Wehsite. Search.DOI]

I e

GET.return-FindArticle

—

4 —

',/"'
[generate-lnventowSer\fice.Document] /--"/ ;
--/"
-
e
-
o
o
y -
[mockgenerate-lnventowSewice.Document.Location]"""""""“"""""""""’[require-lnventoryService.Document.Location]

e Rules mockgenerate-Website.Search.Title and mockgenerate-ResearchNet.Article.
History are optional-rules, because they do not contribute to reaching any required

attributes or resources

e Just as before, rules GET. return-FindArticle and GET.return-FindDocument are
optional-rules, because they do not contribute to reaching any required attributes

Or resources

By looking at warnings above, we realize that although we have declared attribute
Title, we have not used it anywhere, so it really is not necessary. In addition to that, we
have added attributes Region and History, and we have used Region to compute the value
of History, but we have not used History in any way (it is not required), thus although we
compute this information, it is also not necessary.

In V3, we saw optional attributes. The difference between them and non-optional
attributes is that optional attributes were neither required nor did they contribute directly
to reach some required attribute. To prevent optional attribute warnings, we could have
simply marked these attributes as required, but what makes an attribute required? In this
example, we choose to set required : 'I" for those attributes that are handed over to some

function, which does not have a counterpart in the module net.

88

9 RELATED WORK

Unlike other approaches, this work tackles the problem of integration from a per-
spective of modules, independently of whether a module is a library, service or something
else. Because related work aims strictly to either library integration or service integra-
tion, we separate these two in different sections here. We also have a third section for
the applications of graph grammars, which are used extensively in this work. Through-
out this section we distinguish static from dynamic approaches, where by static we mean
approaches that do not require code execution and by dynamic we mean approaches that

do.

9.1 Integration of Libraries

Dynamic checks with tests: don’t-break is a JavaScript module that uses auto-
mated tests of dependencies to determine whether an update to a library breaks its depen-
dencies (BAHMUTOV, 2018). In (MUJAHID et al., 2020) the authors applied this same
approach to ten faulty versions of different JavaScript modules and successfully identified
the breaking changes in six of ten. Automated tests can be used either by dependency de-
velopers to find out if their changes to a module break dependencies or by consumers of
a dependency who want to update a dependency, while making sure that it does not break
their software. Developers often commit code that breaks tests and thus it can be difficult
to find dependency tests on which to rely (MUJAHID et al., 2020).

NOREGRETS and its successor NOREGRETS+ (MgLLER; TORP, 2019) use
consumer tests to create models of data flow together with type information between
a library and its consumers. The models can then be used to check that each call to
an updated library function still returns the same type and that the updated library still
uses the same subset of arguments it used before the update. NOREGRETS+ can output
false positives, for example, when a library introduces a new configuration argument and
reads this new argument, thus changing the subset of arguments it used before the update
(MgLLER; TORP, 2019).

A drawback of test-based approaches is the requirement of having tests. Tests can
have low code coverage and reach only a few functions of dependencies, which imposes
a requirement for a huge number of consumers and consumer tests in order to have mean-

ingful results. In other words, the approach of using tests is better advised for libraries

89

which are widely used and whose clients have many tests and use the whole interface of
their dependencies. Even when code coverage is high, unit tests tend to mock dependen-
cies, which makes these tests less useful for the kinds of integration issues we want to
find. Another drawback of approaches based purely on tests is that, although tests may
indicate that something is broken, they usually do not point out exactly the cause.

Static checks with diffs: Veracode is a verification tool that statically checks
software to determine which dependencies can be updated to fix vulnerabilities. In (FOO
et al., 2018) the authors present the Veracode algorithm to determine if the update of a
dependency is safe to apply. The algorithm first computes the diff between current and
target dependency version, consisting of inserted, deleted or changed methods. A few
other types of changes are used to combine version updates and produce a diff between
arbitrary versions, not just single updates. Next, Veracode computes the call graph of
consumer code and matches it to the computed diff to determine whether the changes
in the target version break consumer code. A major drawback of this approach is that
it needs two versions to compute a diff, which gets worse when we consider transitive
dependencies (FOO et al., 2018). Additionally, due to hashes used to determine whether
a function was changed, simple syntactic changes can give rise to false positives (FOO et
al., 2018).

APIDIFF (BRITO et al., 2018a) is another static check tool that looks for syn-
tactic changes to library interfaces. Specifically, APIDIFF lays out three elements that
can suffer changes, namely types, methods and fields, and for each element APIDIFF can
detect a series of breaking and non-breaking changes, such as adding final modifier to a
type or removing a method or field. In opposition to Veracode, APIDIFF does not address
changes to the implementation of libraries (BRITO et al., 2018a). Additionally, APID-
IFF can present false positives if the breaking changes are found in internal or external
elements that are not used by clients (BRITO et al., 2018a).

Static checks with symbolic execution: (MORA et al., 2018) presents a tool
called CLEVER with a new concept of "client-specific equivalence", which disregards
changes to signatures and concentrates on behavior equivalence. This approach takes
consumer code and two library versions to determine whether the updated version keeps
the behavior the previous version had, when consumed by the client provided. CLEVER
works by applying symbolic execution to both pairs of (client, previous lib version)
and (client, new lib version) and determining whether code activated by client has been

changed in the new lib version considering input constraints provided by the symbolic

90

execution. If code has been changed, CLEVER tries to find counterexamples where the
behavior of the new lib version is different from the previous lib version. CLEVER re-
quires library interfaces to remain unchanged between versions compared (MORA et al.,
2018). Moreover, due to the symbolic execution engines underneath, CLEVER only sup-
ports variables of integer types (MORA et al., 2018). There are many symbolic execution
tools available for use. The authors of CLEVER claim that their approach is better than
others to solve integration issues because CLEVER only considers paths of integration be-
tween consumer and library, whereas other tools take all paths into consideration, solving
a much larger problem than needed (MORA et al., 2018).

Table 9.1 summarizes the approaches listed so far. Approaches based on diffs
determine whether or not a change was made to the implementation. Whereas diff checks
cannot handle the behavior of functions, testing approaches are able to verify that the
behavior is the same, but only for those cases covered by tests. In contrast, symbolic
execution can cover every possible path by computing constraints on inputs imposed by
client code. In comparison, our approach does not require automated tests and we suggest
extracting module nets from source code directly. Unlike other approaches, we do not
reason about the behavior of functions such as control flow, but rather we concentrate on
data flow to find issues such as whether or not a module finds the data it needs in order to

call an operation of another module.

Table 9.1: Approaches found in related works to evaluate library integration.

Execution Analysis Languages Name Reference

Dynamic Testing JavaScript - (MUJAHID et al., 2020)

Dynamic Models JavaScript NOREGRETS+ (MgLLER; TORP, 2019)
Static Diffs Java, Python, Ruby Veracode (FOOQO et al., 2018)
Static Diffs Java APIDIFF (BRITO et al., 2018a)
Static Symbolic Execution Python CLEVER (MORA et al., 2018)
Static Graph Grammar / CPA None so far MIGRATE this work

9.2 Integration of Services

Perhaps the most similar work to ours is (HAUSMANN; HECKEL; LOHMANN,
2004), which couples class diagrams (representations of ontologies) with graph gram-

mars! that specify the behavior of services. With such specifications:

! Graph grammars in that approach are linked to operations that have names, arguments and return values.
Arguments of such operations can be referenced in graph grammar rules. One key difference of the graph
grammar formalism used in the cited work is that they have two kinds of negative application conditions:
pre-conditions, which apply before rule application and post-conditions, which apply after rule application.

91

1. clients can leverage ontologies to generate type graphs, then specify requirements
as graph grammar rules and match these requirements to service specifications to
check if a service does what clients want (HAUSMANN; HECKEL; LOHMANN,
2004)

2. service registries can take service specifications in the form of graph grammars and
generate and execute tests, for single operations as well as sequences of operations
generated with critical pair analysis (CPA), ensuring service correctness prior to

making that service available (HECKEL; MARIANI, 2005)

3. visual contracts, essentially graph grammars, which they define with a UML meta-
model, are used as input to a tool that generates annotations containing java model-
ing language (JML) contracts to be evaluated during runtime, essentially monitoring

that the application / service conforms to its specification (ENGELS et al., 2006)

All of the above was consolidated in (LOHMANN; MARIANI; HECKEL, 2007).
In (KHAN; HECKEL, 2011) this approach was extended reducing the set of tests that
need to run to find regression issues when evolving services. The key is to lay out
traces, sequences of operations, and keep track of changes in critical pairs graph (KHAN;
HECKEL, 2011). The approach was also further extended to generate test coverage cri-
teria based on critical pair analysis (CPA) (KHAN; RUNGE; HECKEL, 2012).

The work mentioned above has many similarities to our work, such as the goal
of checking the integration of services and achieving that goal using graph grammars, as
well as pairing operations with graph grammar rules and even using AGG. Because the

work above is so similar to ours, we list the following points of divergence:

e In their solution, models come first, which means that instead of spending time
writing integration code, developers will specify intended behavior through graph
grammar rules that can be translated back to ontologies. Our work puts models in
background. First, developers write integration code and then we generate models
automatically from code. Additionally, their work requires knowledge of graph
grammars, while we provide tools to automate the verification process.

e Their solution uses a single graph grammar rule as representation for an operation,
whereas we use two rules.

e They concentrate on services, while we created the notion of module nets, enabling
verification of not only services but also libraries and anything else that can be

considered a module.

92

e They use data flow for example in (HECKEL; MARIANI, 2005) to generate cover-
age criteria, interpreting def-use pairs based on graph grammar rules. We consider

def-use pairs to extract models from source code.

e Whereas their goals are to match and test specifications, we generate a set of warn-
ings.

e Perhaps most important is that even though the work above abstracts service im-
plementation and handles it at the interface level, it still considers the behavior of
service operations, including expressions to compute attribute values and control

flow conditions. We only consider data flow, abstracting away everything else.

Dynamic checks: "Differential Regression Testing" for REST services is pre-
sented in (GODEFROID; LEHMANN; POLISHCHUK, 2020), where they compare the
outputs of two tests with the same inputs looking for regressions. The authors suggest
interacting with services through automatically generated clients (SDKs?) and thus they
test the client/service integration. Furthermore, they describe two kinds of tests: (i) one
that keeps the client version and varies the service version and (ii) one where client ver-
sion varies. Whilst (i) looks for regressions on the service side, (ii) looks for regressions
in the generated clients and specifications (GODEFROID; LEHMANN; POLISHCHUK,
2020). The authors highlight that in comparison to static diff approaches, testing ensures
that faults are actually present and not just issues in the documentation (GODEFROID;
LEHMANN; POLISHCHUK, 2020). An issue with this approach is that it is not a fully
automatic solution, but instead, provides experts with diff files that need to be manually
inspected. In general, an issue with testing approaches is shadowing, where a bug in a
request prevents testing other requests that depend on the first one.

Static preventive approaches: Besides graph grammars, there are many other ap-
proaches to service integration problems. Relaxing signatures is suggested in (BOROVSKIY
et al., 2009), where authors suggest that service designers keep their interfaces as generic
as possible, thus preventing integration faults.

Static checks: In (GUINEA; SPOLETINI, 2011) the authors suggest a new lan-
guage they call ISC (Interaction Sequence Charts) and provide an algorithm to evaluate
the degree of compatibility of candidate services to replace another service. Like in our
approach, they do not include expressions to calculate attribute values, but differently than

we do, they do consider control flow and operation order.

%software development kits, usually automatically generated from service specifications such as Ope-
nAPI / Swagger.

93

A diff approach has been proposed in (BECKER et al., 2008), where authors split
service interfaces in types (operations and attributes) and models (classes and associa-
tions). They provide an algorithm for computing whether a new service version is back-
wards compatible or incompatible® based on a set of allowed diffs such as adding new
methods or classes. Any diff that is not in that set causes the changes to be regarded

incompatible (BECKER et al., 2008).

Table 9.2: Approaches found in related works to evaluate service integration.

Execution Analysis Languages Reference
Dynamic Test generation and execution REST/HTTP (GODEFROID; LEHMANN; POLISHCHUK, 2020)
Dynamic Test generation and execution Visual contracts (HECKEL; MARIANI, 2005)
Dynamic JML generation and monitoring Visual contracts (ENGELS et al., 2006)
Static Specification matching Visual contracts (HAUSMANN; HECKEL; LOHMANN, 2004)
Static Specification matching ISC (GUINEA; SPOLETINI, 2011)
Static Diffs any (BECKER et al., 2008)
Static Sign. relaxing (preventive) any (BOROVSKIY et al., 2009)
Static Graph Grammar / CPA Module nets this work

9.3 Graph grammar applications

Our work can be divided into three phases: (i) transformation of code into module
nets (model extraction); (i1) translation of module nets into graph grammars with graph
grammars as the translation engine; and (iii) verification of module nets as graph gram-
mars.

The model extraction (i) is concerned with the extraction of models from source
code, where the output models may be graph grammars (in our case the output is a module
net). Extraction of graph grammars from a Java code was first seen in (CORRADINI et
al., 2004), although they used hypergraphs and only covered a fragment of the language,
excluding features such as loops and arrays. They also highlight the existence of "control
garbage", code paths that are never activated (CORRADINI et al., 2004). One of our
goals in this work is to uncover some kinds of "control garbage".

In (DUARTE; RIBEIRO, 2017) the authors have translated Java code into graph
grammars using code annotations to generate traces, and then using a tool previously built
to generate context information out of traces. With this approach, they are able to extract
dynamic information from traces, ensuring that paths analysed can actually occur, but
possibly missing behaviors that do not occur in tests. The main drawback is that they

included control flow in the translation, which increases largely the amount of rules. The

3The algorithm has also a third output value, undetermined, in case the version under analysis is lower
than the previous version, which contradicts the backwards compatibility analysis goal.

94

authors suggest algorithms to merge rules (DUARTE; RIBEIRO, 2017). Our work does
not include control flow.

The model transformation (ii) is concerned with the transformation of models
from one language to another using graph grammars as the transformation engine. A de-
sirable property for model transformation is functional behavior. Graph grammars can ex-
hibit functional behavior as long as they are terminating and confluent, which is illustrated
in (HECKEL; KiSTER; TAENTZER, 2002) with the transformation from statecharts
to Communicating Sequential Processes (CSP). Graph grammars have also been used
to transform class diagrams encoded in XMI format (XML metadata interchange) into
entity-relationship diagrams in WebML format (Web Modeling Language) (TAENTZER;
CARUGHI, 2006). An advantage of this approach is that it produces reversible transfor-
mations. The authors highlight as main disadvantage the fact that matching a rule to a
graph is a NP-complete problem (TAENTZER; CARUGH]I, 2006).

Triple graph grammars (TGG) are the more standard approach to model transfor-
mation, because they allow forward and backward transformations. Although TGGs exist
since 1994, it was only in (EHRIG et al., 2007) that they were defined in terms of cate-
gory theory, enabling their use in AGG. This same article is illustrated with an example
transformation from class diagrams to entity-relation diagrams.

Graph grammars have been used to transform models of REST* services, from
conversation based into interaction based models (HAUPT; LEYMANN; PAUTASSO,
2015). With the automatic transformation, the authors intend to allow easy specification
on simple conversation models and code synthesis from more detailed interaction based
models (HAUPT; LEYMANN; PAUTASSO, 2015). Because they want to enable code
synthesis, they concentrate on REST implementation features, such as HTTP protocol
and HATEOAS (hypermedia as the engine of application state), whereas our approach

abstracts these features away into a module net which keeps just the information flow.

Table 9.3: Related works with graph grammars concerning model extraction (i) and model
transformation (ii)

Purpose Approach Source Target Reference
@) Source code parsing Java (fragment) AGG (CORRADINI et al., 2004)
@) Traces from tests Java AGG (DUARTE; RIBEIRO, 2017)
1) Source code parsing JavaScript Module net this work
(ii) Derivation (AGG) Statecharts CSP (HECKEL; KiSTER; TAENTZER, 2002)
(>ii) Derivation (AGG) XMI WebML (TAENTZER; CARUGHI, 2006)
(i) Derivation (AGG, TGG) class diagrams ER diagrams (EHRIG et al., 2007)
(ii) Derivation (AGG) REST/HTTP REST/HTTP (HAUPT; LEYMANN; PAUTASSO, 2015)
(i) Derivation (AGG) Module net Graph Grammar this work

“representational state transfer (FIELDING, 2000)

95

The verification (iii) is concerned with the verification of systems specified us-
ing graph grammars, in particular such grammars model how a system behaves, with its
rules representing state transitions in the system. We do not propose new verification
methods for graph grammars, but instead we leverage existing methods to create our own
verification algorithms.

AGG 2.0 is a full graph grammar engine and graphical user interface one of the
few supporting critical pair analysis (CPA) (RUNGE; ERMEL; TAENTZER, 2012) along
with Verigraph (COSTA et al., 2016). Many other tools exist which handle graph gram-
mars differently, such as GROOVE.

Table 9.4: Related works with graph grammars concerning verification.

Approach Name Reference
Critical Pair Generation AGG 2.0 (RUNGE; ERMEL; TAENTZER, 2012)
Critical Pair Generation VeriGraph (COSTA et al., 2016)

Critical Pair Interpretation MIGRATE this work

96

10 CONCLUSION

In this work we set out to address the problem of module integration using graph
grammars. We have created a verification framework that allows us to generate warnings
telling developers which integrations need their attention. We have provided a prototype
that implements the translation and verification procedures of MIGRATE framework and
we demonstrated these procedures in a case study.

MIGRATE framework imposes certain requirements on graph grammars it anal-
yses, such as having specific rule names and rule patterns, as well as nodes and edges
that can be interpreted back to operations, modules, resources, attributes and values. We
needed a way to ensure graph grammars that we analyse meet such requirements, while at
the same time providing developers with the ability to make changes to models directly.
For those reasons, we have created module nets, which are a formalism to express how
modules integrate to each other. However, we have not defined a semantics of module
nets, instead we have created a translation procedure that assigns a (verification) graph
grammar as semantics of a module net. This enabled us to leverage existing critical pairs
analysis theory, and also will enable us to leverage all different analysis techniques that
have been developed for graph grammars in future work. We have demonstrated how to
translate module nets into verification grammars using graph grammars and proven that
our translation procedure terminates, as well as argued that it creates well-defined veri-
fication grammars. We have leveraged critical pairs analysis of verification grammars to
build a verification procedure that points out different kinds of warnings related to the
structures in module nets.

We have many limitations to address in the future:

Extraction lacks an algorithm to extract module nets from source code

Module nets operations are interpreted as simple read operations, we cannot specify cre-
ations or deletions, and operation graphs do not allow edges between resources of
the same module, which also constrains the warnings we support

Translation is difficult for small module nets, and unfeasible for bigger module nets,
because the host graph grows with each application of a translation rule, which
makes it harder and harder to find matches

Verification is built on top of critical pairs analysis, which is very costly

Warnings concentrate on simple flow of information and, in general, are not very useful

97

There are two major areas that will need our attention when extending the proto-
type and building a verifier tool using the concepts of this work: support of larger module
nets in terms of memory and time, and meaning of warnings.

Larger module nets are specially difficult to handle during the derivation proce-
dure applied in translation and the critical pairs computation. Considering our translation
grammar is confluent, we could improve derivation by avoiding match randomization and
always applying the first match we find. Critical pairs could be improved if we restricted
it to the generation of essential (LAMBERS; EHRIG; OREJAS, 2008) or even initial
(AZZ1; CORRADINI; RIBEIRO, 2019) critical pairs, thus greatly reducing the amount
of pairs generated. Another improvement would be to stop the search once we have found
meaningful critical pairs, avoiding generation of redundant pairs that would lead to the
same warnings in the end.

In order to improve the warnings we support, we will have to improve each of the
procedures we have presented, extending module nets to support more operation types,
and changing MIGRATE procedures accordingly. Also we have concentrated in finding
issues due to information flow, such as a attribute which is not necessary because it does
not carry information to required attributes. However, we completely disregard control
flow issues, which can lead to all sorts of bugs when changed, even if the flow of in-
formation is unchanged. Expanding the types of warnings we support is left for future

work.

98

REFERENCES

ABDALKAREEM, R. et al. Why do developers use trivial packages? an empirical
case study on npm. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2017. Paderborn, Germany:
ACM Press, 2017. p. 385-395. ISBN 978-1-4503-5105-8. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=3106237.3106267>.

ABDALKAREEM, R. et al. On the impact of using trivial packages: an empirical
case study on npm and PyPl. Empirical Software Engineering, v. 25, n. 2, p.
1168-1204, mar. 2020. ISSN 1382-3256, 1573-7616. Available from Internet:
<http://link.springer.com/10.1007/s10664-019-09792-9>.

AUE, J. et al. An exploratory study on faults in web API integration in a large-scale
payment company. In: Proceedings of the 40th International Conference on Software
Engineering Software Engineering in Practice - ICSE-SEIP ’18. Gothenburg,
Sweden: ACM Press, 2018. p. 13-22. ISBN 978-1-4503-5659-6. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=3183519.3183537>.

AZZI1, G. G.; CORRADINI, A.; RIBEIRO, L. On the essence and initiality of conflicts
in M-adhesive transformation systems. Journal of Logical and Algebraic Methods in
Programming, v. 109, p. 100482, dec. 2019. ISSN 2352-2208. Available from Internet:
<https://www.sciencedirect.com/science/article/pii/S2352220818301639>.

BAHMUTOV, G. dont-break. 2018. Available from Internet: <https://www.npmjs.com/
package/dont-break>.

BECKER, K. et al. Automatically Determining Compatibility of Evolving Services. In:
2008 IEEE International Conference on Web Services. Beijing, China: IEEE, 2008.
p. 161-168. Available from Internet: <http://ieeexplore.ieee.org/document/4670172/>.

BOGART, C. et al. How to break an API: cost negotiation and community values in three
software ecosystems. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering - FSE 2016. Seattle, WA, USA:
ACM Press, 2016. p. 109-120. ISBN 978-1-4503-4218-6. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=2950290.2950325>.

BOROVSKIY, V. et al. Ensuring service backwards compatibility with Generic Web
Services. In: 2009 ICSE Workshop on Principles of Engineering Service Oriented
Systems. Vancouver, BC, Canada: IEEE, 2009. p. 95-98. ISBN 978-1-4244-3716-0.
Available from Internet: <http://ieeexplore.ieee.org/document/5068827/>.

BRITO, A. et al. APIDiff: Detecting API breaking changes. In: 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering
(SANER). Campobasso: IEEE, 2018. p. 507-511. ISBN 978-1-5386-4969-5. Available
from Internet: <http://ieeexplore.ieee.org/document/8330249/>.

BRITO, A. et al. Why and How Java Developers Break APIs. 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering
(SANER), p. 255-265, mar. 2018. ArXiv: 1801.05198. Available from Internet:
<http://arxiv.org/abs/1801.05198>.

http://dl.acm.org/citation.cfm?doid=3106237.3106267
http://link.springer.com/10.1007/s10664-019-09792-9
http://dl.acm.org/citation.cfm?doid=3183519.3183537
https://www.sciencedirect.com/science/article/pii/S2352220818301639
https://www.npmjs.com/package/dont-break
https://www.npmjs.com/package/dont-break
http://ieeexplore.ieee.org/document/4670172/
http://dl.acm.org/citation.cfm?doid=2950290.2950325
http://ieeexplore.ieee.org/document/5068827/
http://ieeexplore.ieee.org/document/8330249/
http://arxiv.org/abs/1801.05198

99

CORRADINI, A. et al. Translating Java Code to Graph Transformation Systems. In:
EHRIG, H. et al. (Ed.). Graph Transformations. Berlin, Heidelberg: Springer, 2004.
(Lecture Notes in Computer Science), p. 383—-398. ISBN 978-3-540-30203-2.

CORRADINI, A. et al. ALGEBRAIC APPROACHES TO GRAPH TRANS-
FORMATION - PART I: BASIC CONCEPTS AND DOUBLE PUSHOUT
APPROACH. In: Handbook of Graph Grammars and Computing

by Graph Transformation. WORLD SCIENTIFIC, 1997. p. 163-245.
ISBN 978-981-02-2884-2 978-981-238-472-0. Available from Internet:
<http://www.worldscientific.com/doi/abs/10.1142/9789812384720_0003>.

COSTA, A. et al. Verigraph: A System for Specification and Analysis of Graph
Grammars. In: RIBEIRO, L.; LECOMTE, T. (Ed.). Formal Methods: Foundations
and Applications. Cham: Springer International Publishing, 2016. (Lecture Notes in
Computer Science), p. 78-94. ISBN 978-3-319-49815-7.

DECAN, A.; MENS, T.; CLAES, M. An empirical comparison of dependency issues
in OSS packaging ecosystems. In: 2017 IEEE 24th International Conference

on Software Analysis, Evolution and Reengineering (SANER). Klagenfurt,
Austria: IEEE, 2017. p. 2-12. ISBN 978-1-5090-5501-2. Available from Internet:
<http://ieeexplore.ieee.org/document/7884604/>.

DECAN, A.; MENS, T.; CONSTANTINOU, E. On the Evolution of Technical
Lag in the npm Package Dependency Network. In: 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). Madrid:
IEEE, 2018. p. 404—414. ISBN 978-1-5386-7870-1. Available from Internet:
<https://ieeexplore.ieee.org/document/8530047/>.

DECAN, A.; MENS, T.; GROSJEAN, P. An empirical comparison of dependency
network evolution in seven software packaging ecosystems. Empirical Software
Engineering, v. 24, n. 1, p. 381416, feb. 2019. ISSN 1382-3256, 1573-7616. Available
from Internet: <http://link.springer.com/10.1007/s10664-017-9589-y>.

DUARTE, L. M.; RIBEIRO, L. Graph Grammar Extraction from Source Code.
In: CAVALHEIRO, S.; FIADEIRO, J. (Ed.). Formal Methods: Foundations
and Applications. Cham: Springer International Publishing, 2017. v. 10623, p.
52-69. ISBN 978-3-319-70847-8 978-3-319-70848-5. Series Title: Lecture Notes
in Computer Science. Available from Internet: <http://link.springer.com/10.1007/
078-3-319-70848-5_5>.

EHRIG, H. Introduction to the algebraic theory of graph grammars (a survey). In:
CLAUS, V.; EHRIG, H.; ROZENBERG, G. (Ed.). Graph-Grammars and Their
Application to Computer Science and Biology. Berlin, Heidelberg: Springer, 1979.
(Lecture Notes in Computer Science), p. 1-69. ISBN 978-3-540-35091-0.

EHRIG, H. (Ed.). Fundamentals of algebraic graph transformation. Berlin ;
New York: Springer, 2006. (Monographs in theoretical computer science). OCLC:
ocm69242087. ISBN 978-3-540-31187-4.

EHRIG, H. et al. Information Preserving Bidirectional Model Transformations.
In: DWYER, M. B.; LOPES, A. (Ed.). Fundamental Approaches to Software

http://www.worldscientific.com/doi/abs/10.1142/9789812384720_0003
http://ieeexplore.ieee.org/document/7884604/
https://ieeexplore.ieee.org/document/8530047/
http://link.springer.com/10.1007/s10664-017-9589-y
http://link.springer.com/10.1007/978-3-319-70848-5_5
http://link.springer.com/10.1007/978-3-319-70848-5_5

100

Engineering. Berlin, Heidelberg: Springer, 2007. (Lecture Notes in Computer Science),
p. 72-86. ISBN 978-3-540-71289-3.

EHRIG, H. et al. (Ed.). Handbook of graph grammars and computing by graph
transformation: vol. 2: applications, languages, and tools. USA: World Scientific
Publishing Co., Inc., 1999. ISBN 978-981-02-4020-2.

EHRIG, H. et al. Algebraic approaches to graph transformation - part ii: Single pushout
approach and comparison with double pushout approach. In: _ . Handbook of
Graph Grammars and Computing by Graph Transformation. [s.n.], 1997. p.
247-312. Available from Internet: <https://www.worldscientific.com/doi/abs/10.1142/
9789812384720_0004>.

ENGELS, G. et al. Model-Driven Monitoring: An Application of Graph Transformation
for Design by Contract. In: CORRADINI, A. et al. (Ed.). Graph Transformations.
Berlin, Heidelberg: Springer, 2006. (Lecture Notes in Computer Science), p. 336-350.
ISBN 978-3-540-38872-2.

FIELDING, T. Architectural Styles and the Design of Network-based Software
Architectures. Thesis (PhD) — University of California, 2000.

FOO, D. et al. Efficient static checking of library updates. In: Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering - ESEC/FSE 2018.
Lake Buena Vista, FL, USA: ACM Press, 2018. p. 791-796. ISBN 978-1-4503-5573-5.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=3236024.3275535>.

FOWLER, M. TolerantReader. 2011. Available from Internet: <https://martinfowler.
com/bliki/TolerantReader.html>.

FOWLER, M. Microservices. 2014. Available from Internet: <https://martinfowler.com/
articles/microservices.html>.

FOWLER, M. IntegrationTest. 2018. Available from Internet: <https://martinfowler.
com/bliki/IntegrationTest.html>.

GODEFROID, P.; LEHMANN, D.; POLISHCHUK, M. Differential regression
testing for REST APIs. In: Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. Virtual Event USA: ACM,

2020. p. 312-323. ISBN 978-1-4503-8008-9. Available from Internet: <https:
//dl.acm.org/doi/10.1145/3395363.3397374>.

GUINEA, S.; SPOLETINI, P. Evaluating the compatibility of conversational service
interactions. In: Proceeding of the 3rd international workshop on Principles of
engineering service-oriented systems - PESOS ’11. Waikiki, Honolulu, HI, USA:
ACM Press, 2011. p. 29-35. ISBN 978-1-4503-0591-4. Available from Internet:
<http://portal.acm.org/citation.cfm?doid=1985394.1985399>.

HAUPT, F.; LEYMANN, F.; PAUTASSO, C. A Conversation Based Approach for
Modeling REST APIs. In: 2015 12th Working IEEE/IFIP Conference on Software
Architecture. Montreal, QC, Canada: IEEE, 2015. p. 165-174. ISBN 978-1-4799-1922-
2. Available from Internet: <http://ieeexplore.ieee.org/document/7158518/>.

https://www.worldscientific.com/doi/abs/10.1142/9789812384720_0004
https://www.worldscientific.com/doi/abs/10.1142/9789812384720_0004
http://dl.acm.org/citation.cfm?doid=3236024.3275535
https://martinfowler.com/bliki/TolerantReader.html
https://martinfowler.com/bliki/TolerantReader.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/IntegrationTest.html
https://martinfowler.com/bliki/IntegrationTest.html
https://dl.acm.org/doi/10.1145/3395363.3397374
https://dl.acm.org/doi/10.1145/3395363.3397374
http://portal.acm.org/citation.cfm?doid=1985394.1985399
http://ieeexplore.ieee.org/document/7158518/

101

HAUSMANN, J. H.; HECKEL, R.; LOHMANN, M. Model-based Discovery of Web
Services. In: Proceedings of the IEEE International Conference on Web Services.
USA: IEEE Computer Society, 2004. (ICWS *04), p. 324. ISBN 978-0-7695-2167-1.

HECKEL, R.; KiSTER, J. M.; TAENTZER, G. Confluence of Typed Attributed Graph
Transformation Systems. In: CORRADINI, A. et al. (Ed.). Graph Transformation.
Berlin, Heidelberg: Springer, 2002. (Lecture Notes in Computer Science), p. 161-176.
ISBN 978-3-540-45832-6.

HECKEL, R.; MARIANI, L. Automatic Conformance Testing of Web Services. In:
CERIOLI, M. (Ed.). Fundamental Approaches to Software Engineering. Berlin,
Heidelberg: Springer, 2005. (Lecture Notes in Computer Science), p. 34—48. ISBN
978-3-540-31984-9.

KHAN, T. A.; HECKEL, R. On Model-Based Regression Testing of Web-Services
Using Dependency Analysis of Visual Contracts. In: GIANNAKOPOULOU, D.;
OREJAS, F. (Ed.). Fundamental Approaches to Software Engineering. Berlin,
Heidelberg: Springer, 2011. (Lecture Notes in Computer Science), p. 341-355. ISBN
978-3-642-19811-3.

KHAN, T. A.; RUNGE, O.; HECKEL, R. Testing against Visual Contracts: Model-
Based Coverage. In: EHRIG, H. et al. (Ed.). Graph Transformations. Berlin,
Heidelberg: Springer, 2012. (Lecture Notes in Computer Science), p. 279-293. ISBN
978-3-642-33654-6.

LAMBERS, L.; EHRIG, H.; OREJAS, F. Efficient Conflict Detection in Graph
Transformation Systems by Essential Critical Pairs. Electronic Notes in Theoretical
Computer Science, v. 211, p. 17-26, abr. 2008. ISSN 1571-0661. Available from
Internet: <https://www.sciencedirect.com/science/article/pii/S1571066108002417>.

LOHMANN, M.; MARIANI, L.; HECKEL, R. A Model-Driven Approach to Discovery,
Testing and Monitoring of Web Services. In: BARESI, L.; NITTO, E. D. (Ed.). Test and
Analysis of Web Services. Berlin, Heidelberg: Springer, 2007. p. 173-204. ISBN 978-3-
540-72912-9. Available from Internet: <https://doi.org/10.1007/978-3-540-72912-9_7>.

LiBKE, D. et al. Interface evolution patterns: balancing compatibility and
extensibility across service life cycles. In: Proceedings of the 24th European
Conference on Pattern Languages of Programs - EuroPLop ’19. Irsee, Germany:
ACM Press, 2019. p. 1-24. ISBN 978-1-4503-6206-1. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=3361149.3361164>.

MORA, F. et al. Client-specific equivalence checking. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering - ASE
2018. Montpellier, France: ACM Press, 2018. p. 441-451. ISBN 978-1-4503-5937-5.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=3238147.3238178>.

MOSTAFA, S.; RODRIGUEZ, R.; WANG, X. Experience paper: a study on behavioral
backward incompatibilities of Java software libraries. In: Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis - ISSTA 2017.
Santa Barbara, CA, USA: ACM Press, 2017. p. 215-225. ISBN 978-1-4503-5076-1.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=3092703.3092721>.

https://www.sciencedirect.com/science/article/pii/S1571066108002417
https://doi.org/10.1007/978-3-540-72912-9_7
http://dl.acm.org/citation.cfm?doid=3361149.3361164
http://dl.acm.org/citation.cfm?doid=3238147.3238178
http://dl.acm.org/citation.cfm?doid=3092703.3092721

102

MUIJAHID, S. et al. Using Others’ Tests to Identify Breaking Updates. In: Proceedings
of the 17th International Conference on Mining Software Repositories. Seoul
Republic of Korea: ACM, 2020. p. 466—476. ISBN 978-1-4503-7517-7. Available from
Internet: <https://dl.acm.org/doi/10.1145/3379597.3387476>.

MgLLER, A.; TORP, M. T. Model-based testing of breaking changes in Node.js
libraries. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations

of Software Engineering - ESEC/FSE 2019. Tallinn, Estonia: ACM Press,
2019. p. 409-419. ISBN 978-1-4503-5572-8. Available from Internet: <http:
//dl.acm.org/citation.cfm?doid=3338906.3338940>.

ORACLE. Chapter 13. Binary Compatibility. 2020. Available from Internet:
<https://docs.oracle.com/javase/specs/jls/se15/html/jls-13.html>.

PRESTON-WERNER, T. Semantic Versioning 2.0.0. 2020. Available from Internet:
<https://semver.org/>.

RAEMAEKERS, S.; DEURSEN, A. van; VISSER, J. Semantic Versioning versus
Breaking Changes: A Study of the Maven Repository. In: 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manipulation. Victoria, BC,
Canada: IEEE, 2014. p. 215-224. ISBN 978-1-4799-6148-1. Available from Internet:
<http://ieeexplore.ieee.org/document/6975655/>.

RUNGE, O.; ERMEL, C.; TAENTZER, G. AGG 2.0 — New Features for Specifying and
Analyzing Algebraic Graph Transformations. In: SCHiiRR, A.; VARRG, D.; VARRG,
G. (Ed.). Applications of Graph Transformations with Industrial Relevance. Berlin,
Heidelberg: Springer, 2012. (Lecture Notes in Computer Science), p. 81-88. ISBN
078-3-642-34176-2.

SALZA, P. et al. Do developers update third-party libraries in mobile apps? In:

Proceedings of the 26th Conference on Program Comprehension - ICPC ’18.
Gothenburg, Sweden: ACM Press, 2018. p. 255-265. ISBN 978-1-4503-5714-2.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=3196321.3196341>.

SOLDANI, J.; TAMBURRI, D. A.; HEUVEL, W.-J. V. D. The pains and gains
of microservices: A Systematic grey literature review. Journal of Systems and
Software, v. 146, p. 215-232, dec. 2018. ISSN 01641212. Available from Internet:
<https://linkinghub.elsevier.com/retrieve/pi1/S0164121218302139>.

TAENTZER, G.; CARUGHI, G. T. A Graph-Based Approach to Transform XML
Documents. In: BARESI, L.; HECKEL, R. (Ed.). Fundamental Approaches to
Software Engineering. Berlin, Heidelberg: Springer, 2006. (Lecture Notes in Computer
Science), p. 48—62. ISBN 978-3-540-33094-3.

WANG, Y. et al. An Empirical Study of Usages, Updates and Risks of Third-
Party Libraries in Java Projects. In: 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). Adelaide, Australia:
IEEE, 2020. p. 35-45. ISBN 978-1-72815-619-4. Available from Internet:
<https://ieeexplore.ieee.org/document/9240619/>.

https://dl.acm.org/doi/10.1145/3379597.3387476
http://dl.acm.org/citation.cfm?doid=3338906.3338940
http://dl.acm.org/citation.cfm?doid=3338906.3338940
https://docs.oracle.com/javase/specs/jls/se15/html/jls-13.html
https://semver.org/
http://ieeexplore.ieee.org/document/6975655/
http://dl.acm.org/citation.cfm?doid=3196321.3196341
https://linkinghub.elsevier.com/retrieve/pii/S0164121218302139
https://ieeexplore.ieee.org/document/9240619/

103

XAVIER, L. et al. Historical and impact analysis of API breaking changes: A
large-scale study. In: 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). Klagenfurt, Austria: IEEE,
2017. p. 138-147. ISBN 978-1-5090-5501-2. Available from Internet: <http:
/lieeexplore.ieee.org/document/7884616/>.

ZHOU, J.; WALKER, R. J. API deprecation: a retrospective analysis and detection
method for code examples on the web. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering - FSE
2016. Seattle, WA, USA: ACM Press, 2016. p. 266-277. ISBN 978-1-4503-4218-6.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=2950290.2950298>.

http://ieeexplore.ieee.org/document/7884616/
http://ieeexplore.ieee.org/document/7884616/
http://dl.acm.org/citation.cfm?doid=2950290.2950298

104

APPENDIX A — TRANSLATION GRAPH TRANSFORMATION SYSTEM

This appendix presents the entire translation Graph Transformation System (GTS)
which has been explained in chapter 6. We omit here the type graph, which has already
been presented in that chapter. Figures A.1, A.2, A.3 and A.4 present all rules in the
GTS and Figures A.5 and A.6 present the atomic constraints used to show correctness of
translations. We label each rule and atomic with codes. These codes are listed in chapter

6.

105

Figure A.1: Rules TK1 through TK10 of translation grammar.

singleToken 4| token_resource_required of ModuleNetToGraphGrammar-Verif3
k 4 singleToken :loken_resonroe_qenemled of ModuleNetToGraphGrammar-Verif3[&|
3 e e

(a) TK1 (b) TK2

singleToken 4| token_attribute_required of [T Verif3
¢ q

singleToken : token_resource_notGenerated of ModuleNetToGraphGrammar-Verif3|

i
¥

(c) TK3 (d) TK4

singleToken 4[token_attribute_notGenerated of ModuleNetToGraphGrammar-Verif
H AN RN DG PRGN IATVO TS

q

[¥

singleToken : token_attribute_generated of ModuleNetToGraphGrammar-Verif3
9

(e) TKS (f) TK6

singleToken : token_operation_return of ModuleNetToGraphGrammar-Verif3

s — — —————
| I

|

1

singleToken 4|token_operation_call of ModuleNetToGraphGrammar-Verif3
¥
1

.
o

(g) TK7 (h) TK8

|| token_resource of ModuleNetToGraphGrammar-Verif3
1

singleToken

singleToken token_module of ModuleNetToGraphGrammar-Verif3
.4 q

K

(1) TK9 (j) TK10

106

Figure A.2: Rules TK11 and TR12 through TR20 of translation grammar.

singleToken

1/ token_attribute of ModuleNetToGraphGrammar-Verif3
¥

4
¥
[
|
1
teOnce translate_graphTi of ModuleNet Veri3
(a) TK11 (b) TR12
4|translate_module of ModuleNetToGraphGrammar-Veriis|
: ‘
4
| ¥
GRAGRA_Mode
tr: Once || translate_value of ModuleNetToGraphGrammar-Verif 'NDE module
[id=madule

(c) TR13

(d) TR14

translate_resource of ModuleNetToGraphGrammar-Verit3
4

type=module
id=module

3:0RAGRA_Node

translate_attribute of ModuleNetT: Verif3

type=resource
id=resource

3.6RAGRA_Node
iype=resource
o= resource

GRAGRA_target

translate_rule_

re-resource of ModuleNetToG

2:GRAGRA_GraphTransformationSystem

4[translate_rule_generate-resource of ModuleNetT Verif3

2:6RAGRA_GraphT!

translate_rule_mockgenerate-resource of Modul

NetT Verif3

4.GRAGRA_GraphTransformationSystem

A_Rule
ame="mockgenerate-+1

GRAGRA,_ths

TORAGRA_target

(i) TR19

{transite o roquio-atibuts of]

[FGRAGRA GraprTransiomatonsyson] B

@‘/

g

(i) TR20

¢[transiate_uig of

'

6 GRAGRA_GrapiTranstomationsystem|

(6 GRAGRA_GraphTransiomationsystem|

ORAGRAInS

[LORAGRA Edge
[bpe="atmite-or

| wansiate_ruie_cail moduies of

[6GRAGRA_GraphTransformationsystem

GRAGRA_nac

MN_Iodul

\

R
\
oo

[RAGRA Graph|

transiate_rule_call_resources of Jerits

{7}

MIN_target

21:6RAGRA_source

22:6RAGRA_source

16:6RAGRA_INS 25:6RAGRA_nac

12:GRAGRA_Graph

107

Figure A.3: Rules TR21 through TR27 of translation grammar.

{[iransiate ot o
b

[FGRAGRA_GraphTranstomatonsysten

[FoRAGRA_GraprTranstamatinsystery
GRAGRA_ s

(b) TR22

«[iransiate_ru_return_moduies of =

i [£:GRAGRA GraphTransformationsystem]
[FGRAGRA GraphTranstormatonsystem]
GRAGRA_GrapTanstarmatonstem o) 2

i

anslate_rule_call_resources of i

4[ir
"le
)

21:6RAGRA_saurce

22:6RAGRA_source

GRAGRA_i

10.6RAGRA_Edoe
[type="resource-of"

ORAGRA.H#RAGRA _Ihs

12:6RAGRA_Graph

(e) TR24 left-handside

(f) TR24 right-handside

nsiate_rule_cal atrbutes of =

[transiate_rue_cal aftrbutes of

MN_target
MIN_AtributeEdgs

23.GRAGRA_source

TN _Atribute,
IIMN_attributeof

WN_Rssource

25 30MN_resourc-ERUINMIEEIL

24.6RAGRA_source.

[5.GRAGRA_Eap:
[hpe="atibu:

translate_rule_return_resources of i

JIN_source

6:6RAGRA_Graph

. 5.GRAGRA_fhs

16:0RAGRA Ihs ™ ~

7.GRAGRA_Graph

25:6RAGRA_nac

2:GRAGRA_Graph

(1) TR27 left-handside

SQUIN_atriuizor ~ ~
23GRAGRA source

151_Res

(h) TR25 right-handside

translate_rule_return_resources of

3MN_Resourcs.

GRAGRA_in

GRAGRA_IN

‘GRAGRA_Graph

(j) TR27 right-handside

108

Figure A .4:

[transtate_rule_return_attributes of =
B
MN_source
2
10N _esourceof
33MN_atiibuteat
REMN_soue,
[& MN_Resource ~
by .~
! 30MN_resourc: RTINS . 2retum
) N
4 GRAGRA_source
BORAGRA Edge
[ype="atiibite-or 27/GRAGRA_Nac
noResourceEdge clean_operation of ModuleNetToGraphGrammar-Verif3
retu[3 GRAGRA_Ruls 4:6RAGRA_Rule
call 5.6RAGRA_Rule

WN_target 5.GRAGRA_Rule

IMN_Module

3:MN_Module

Rules TR28, CL29 through CL33, AD34 and AD35 of translation grammar.

nsiate_rule_retum_atiibuies of a

i

[GRAGRA Eoge|
[bps=vaida-or

35U sttt

(b) TR28 right-handside

noOperationSource :

clean_module_resources of ModuleNetToGraphGrammar-Verif3

1:MN_Module

MM_resourceof

1:MN_Module

(c) CL29

noOperation Source 4| clean_module of ModuleNetToGraphGrammar-Verif3
¥

(d) CL30

1
E

\ 2:GRAGRA_MNode

2:GRAGRA_Mode

1:MN_Module

4| clean_resource_attributes of ModuleNetToGraphGrammar-Verif3
¥ !

1
14

1:MN_Resource

N_attributeo
GRAGRA_Mode

MM_resourceof

3.GRAGRA_Node

MN_Attribute

(e) CL31

noModule 4| clean_resource of ModuleNetToGraphGrammar-Verif3
¥ 4

¥

MN_rgsourceof : [

2:GRAGRA_Mode
h
2:GRAGRA_Node

|| adjust_multiple_gragra_nodes
E

(f) CL32

of ModuleNetToGraphGrammar-Vé&s

fl
K

2:GRAGRA_Graph

3GRAGRA_IN

2.GRAGRA_Graph

1.GRAGRA_MNode 1:GRAGRA_Mode

() CL33

| |adjust_multiple_gragra_edges of ModuleNeiToGraphGrammar-Verif3
4

1:GRAGRA_Graph 1.GRAGRA_Graph

3:GRAGRA_In

2.GRACGRA_Edge 2.GRACRA_Edge

(1) AD35

(h) AD34

109

Figure A.5: Atomic constraints A1l through AS.

GRAGRA_edg:

ource_target > conclusion

1:6RAGRA_Edge
1.GRAGRA_Edge

GRAG

A _target

GRAGRA_Node

4[GRAGRA_edge_source_target_in_graph > conclusion =’}

[RAGRA_Grann]

1.GRAGRA_Rulz

(a) Al

(b) A2

(c) A3

MN_module_resource_in_graph > conclusion MN_resource_attribute_in_graph > conclusion
[FoRAoRA Gramn] [ToRAGRAGEN] oracRain T [N oo jus_mociie > concusion source_iibuet
4 G%\Gwn GRAGRA_Node
[1:6RAGRA_Node] [1:GRAGRA_Node] GRAGRA_source
GRAGRA_Edge
50RAGRA_source g HGRAGRA targst SCRAGRA targst [p o]
3:GRAGRA_Edge [2zcrAGRA Edge | [2:0RAGRA Edge |
p [bpe="resource-of | |be=rresource-of|
MN_module_is_not_just module > conclusion_target_value-of MN_module_is_not_just_module > conclusion_source_value-of MN_module_is_not_just_module > conclusion_target_attribute-of

[Forsorarion] [TorAorAo®

3.6RAGRA_target 3:0RAGRA _targst

[2.0RAGRA Edgs | [2oRAGRA_Eage |
[fvpe="resource-of | [bre="resource-of |

[TorAomA o]

[ForAGRA o

36RAGRA targat

3.6RABRA_targat

[ZorAoRAFae |

[ZoRAoRA Eue |

v

resource-of | e

Tesource-of |

36RAGRA targat IGRAGRA_target

[2GRAGRA Eigs | [zoRAoRAEdge |
[bpe="resource-of | |ee="resource-of'|

(g) A6 conclusion II

MN_module_is_not_just_mod:

> conclusion_source_resource-of

3.6RAGRA_target

[2:6RAGRA Edge |
[tvpe="resource-of |

(h) A6 conclusion III

MN_resource_is_not_just_resource > conclusion_target_resource-of

[2GRAGRA_Edae |

[2:6RAGRA Edge |

resource-of | [pe="resource-of'|

(i) A6 conclusion IV

MN_resource_is_not_just_resource > conclusion_source_attribute-of

1:GRAGRA_Nods

(j) A6 conclusion V

(k) A7 conclusion I

(1) A7 conclusion II

MN_resource_is_not_just_resource > conclusion_target_value-of WN_resource_is_not_just_resource > conclusion_source_value-of WN_aftribute_is_not_just_aftribute > conclusion_targe_resource-of
GRAGRA fiode TGRAGRA Iiods TGRAGRA_Nods], GRAGRA_target
3GRAGRA_source 3GRAGRAsource 36RRORAsourcs
JGRAGRA_Edgs JGRAGRA Edgs JGRAGRA Edge
WN_attribute_is_not just_afiribute > conclusion_source_resource-of WN_attrbute_is_not just_afiribute > conclusion target_aftribute-of WN_attrbute_is_not_just_afiribute > conclusion_source value-of

(p) A8 conclusion 11

(q) A8 conclusion III

(r) A8 conclusion IV

110

Figure A.6: Atomic constraints A9 through A12.

§[MN_value_is_not just value > conclusion_target_resource-of [MN_value_is_not just value > conclusion_source_resource-of §[MN_value_is_not just vaiue > conclusion_target_attriute-of
[1.GRAGRA_Node
3GRABRA_source 3GRAGRA_source 3GRAGRA_source

2.GRAGRA_E
[bwe="value-or

2GRAGRA Edge 2.GRAGRA Edge
fhpe="value-or” fpe="valus-o

(a) A9 conclusion I (b) A9 conclusion II (c) A9 conclusion III

: MN_self_resource > conclusi
1

¥

[W_vae s o jus_vaue > concusion_source_afirbute-o [BN value_is_not_just_value > conclusion_arget_valve of g [1:6RAGRA_Node] [1:6RAGRA_Node|

1:GRAGRA_Node
3.GRABRA_sourcs

[2.GRAGRA_Edge
[bwe="value-or

IGRAGRA_source

LGRAGRA Edge
fipe="vatussor

2.GRAGRA_Edge
[twe="value-or

(d) A9 conclusion IV (e) A9 conclusion V) A10

W e

MMN_self_attribute = conclusion @ ; MN_self_value = conclusion

1
k

1:GRAGRA_Mode

1:GRAGRA_Mode 1:GRAGRA_Mode

~A_target B . 1
‘GRAGRA_source | - J:GRAGRA_source

2:.GRAGRA_Edyge 2.GRAGRA_Edge
type="attribute-of" type="value-of’

3GRAQRA_source

2:GRAGRA_Edge
type="attribute-of'

2.GRAGRA_Edge
type="value-of'

(h) A12

111

APPENDIX B — RESUMO ESTENDIDO

Neste trabalho planejamos resolver o problema de integracdo de modulos uti-
lizando gramaéticas de grafos. N6s criamos um framework de verificacdo que nos permite
gerar avisos dizendo a desenvolvedores quais integracdes necessitam de sua atengdo. O
framework, que chamamos de MIGRATE, ¢ composto por quatro artefatos e trés proces-
sos, que grifamos a seguir. Inicialmente, artefatos de software sio fornecidos para um
procedimento de extrac¢ao, o qual produz uma rede de médulos. Redes de médulos sao
um formalismo que também definimos nesta disserta¢ao, o qual captura como médulos de
software se integram. Em seguida, a rede de médulos € fornecida para um procedimento
de traducdo, que utiliza uma gramatica de grafos e produz uma gramaética de grafos, a
qual chamamos de gramatica de verificacdo. Esta dltima é fornecida para o procedi-
mento de verificacido, que finalmente produz avisos tteis aos desenvolvedores interessa-
dos em encontrar falhas de integracdo de software. Estes avisos sdo: atributo, recurso, moé-
dulo ou operagao opcional, atributo estritamente opcional, operac¢ao inalcangdvel, recurso
perdido e atributo desatualizado. Nos fornecemos um protdtipo com implementagdes para
os procedimentos de traducdo e verificacao do framework MIGRATE e demonstramos em
um estudo de caso.

O framewok MIGRATE impde alguns requisitos sobre as gramadticas de grafos
que analisa, as gramdticas de verificacdo, como ter nomes e padrdes de regras especi-
ficos, além de nds e arestas que podem ser interpretados de volta para operacdes, moé-
dulos, recursos, atributos e valores. NOs precisivamos de uma maneira de garantir que
as gramaticas de grafos que analisamos estivessem dentro desses requisitos, € a0 mesmo
tempo fornecer a desenvolvedores a possibilidade de fazerem mudancas diretamente nos
modelos. Por estes motivos, nés criamos redes de médulos, que sdo um formalismo para
expressar como moédulos integram uns com os outros. No entanto, nés nio definimos a
semantica de redes de mddulos, ao invés disso nds criamos um procedimento de traducao
que encontra uma gramdtica de grafos (de verificagdo) que € semantica de uma rede de
modulos. Isto nos proporcionou o reuso da teoria de andlise de pares criticos, e tam-
bém ird nos proporcionar o reuso em trabalhos futuros de todas as diferentes técnicas
de andlises que ja foram desenvolvidas para gramdticas de grafos. N6s demonstramos
como traduzir redes de médulos para graméticas de verificacdo usando graméticas de
grafos. NoOs provamos que nosso procedimento de traducao termina e argumentamos que

ele gera gramaticas de verificacdo bem definidas. N6s reusamos andlise de pares criticos

112

de gramadticas de verificagdo para construir um procedimento de verificacdo que indica
diferentes tipos de avisos relacionados as estruturas de redes de médulos.

No6s temos muitas limitagdes para enderegar no futuro. N6s fomos desafiados a ex-
pressar todos os diferentes tipos de operacdes que podem ser feitas sobre dados, enquanto
nossas redes de médulos sdo limitadas nas operacdes que suportam. NOs ndo apresen-
tamos nenhum algoritmo de extragdo de redes de modulos, visto que este trabalho ainda
estd em andamento. Nosso procedimento de tradu¢@o ndo pode lidar com transferéncia
de informacao dentro de mddulos e ele exige que redes de médulos sejam tdo pequenas
quanto possivel, para evitar problemas de memoria e falta de tempo. NOs usamos um
algoritmo de extracdo de pares criticos, que sabidamente leva muito tempo e consome
muita memoria. Finalmente, nosso procedimento de verificagdo produz poucos tipos de
avisos, alguns dos quais ndo sdo uteis de forma alguma. H4 duas grandes areas que irdo
necessitar de nossa atengdo ao estender o protétipo e construir uma ferramenta de verifi-
cacdo usando os conceitos deste trabaho: suporte a redes de médulos maiores em termos
de memoria e tempo, e significado de avisos.

Redes de mddulos maiores sdo especialmente dificeis durante o procedimento de
derivacdo aplicado na traducdo e na computagdo de pares criticos. Considerando que
nossa gramdtica de traducdo € confluente, poderiamos melhorar a derivacdo evitando
aleatorizacdo de casamentos entre regra e grafo e sempre aplicando o primeiro casamento
que encontrarmos. Pares criticos podem ser melhorados se restringirmos a geracao de
pares criticos essenciais ou iniciais, reduzindo muito a quantidade de pares gerados. Outra
melhoria seria parar a busca assim que encontrarmos pares criticos que fagcam sentido,
evitando geracao de pares criticos redundantes que levariam aos mesmos avisos.

Para melhorar os avisos que suportamos, devemos melhorar cada um dos procedi-
mentos apresentados, estendendo redes de médulos para suportar mais tipos de operagdes,
e modificando os procedimentos do framework da mesma maneira. N6s também nos con-
centramos em encontrar problemas devido ao fluxo de informacdo, como atributos que
nao sdo necessdrios porque nio carregam informacgdo para atributos necessarios. No en-
tanto, ndés desconsideramos problemas de fluxo de controle, que podem levar a todo tipo
de defeitos quando modificados, mesmo que o fluxo de informacdo ndo mude. Expandi-

remos tipos de avisos em trabalhos futuros.

	Agradecimentos
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 A verification tool for software integration
	1.2 Main contribution
	1.3 Outline

	2 Problem
	2.1 Compatibility matters
	2.2 Compatibility often breaks
	2.3 Why compatibility breaks
	2.3.1 Weighing decisions
	2.3.2 Ecosystem pressure

	2.4 How to avoid breaking compatibility
	2.4.1 Project tactics
	2.4.2 Programming language support
	2.4.3 Versioning
	2.4.4 Tests
	2.4.5 Deprecation

	2.5 Our contribution

	3 Typed Attributed Graph Grammars
	3.1 Nodes and Arrows
	3.2 Grammars
	3.3 Properties

	4 MIGRATE Framework Overview
	5 Module nets
	5.1 Definition
	5.2 Limitations and final remarks

	6 Translation
	6.1 Translation
	6.2 Operation
	6.3 Properties
	6.3.1 Well-definedness
	6.3.2 Confluence

	6.4 Limitations and final remarks

	7 A verification method for software integration
	7.1 Identification
	7.1.1 Graph identification

	7.2 Hints
	7.2.1 Critical pairs hint
	7.2.2 Rule decoration hint
	7.2.3 Information flow hint
	7.2.4 Optional path hint
	7.2.5 Required path hint
	7.2.6 Reachable rule hint
	7.2.7 Critical pair explanation hint

	7.3 Warnings
	7.3.1 Optional attribute, resource, module or operation warning
	7.3.2 Strictly optional attribute warning
	7.3.3 Unreachable operation warning
	7.3.4 Dangling resource warning
	7.3.5 Outdated attribute warning

	7.4 Complexity
	7.5 Limitations and final remarks

	8 Case study
	8.1 Outdated attribute warnings in research net V1
	8.2 Unreachable operation warnings in research net V2
	8.3 Optional attribute warnings in research net V3

	9 Related Work
	9.1 Integration of Libraries
	9.2 Integration of Services
	9.3 Graph grammar applications

	10 Conclusion
	References
	Appendix A — Translation Graph Transformation System
	Appendix B — Resumo estendido

