
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

DIOGO RAPHAEL CRAVO

Module Integration using Graph
Grammars (MIGRATE)

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Leila Ribeiro

Porto Alegre
August 2021

CIP — CATALOGING-IN-PUBLICATION

Cravo, Diogo Raphael

Module Integration using Graph Grammars (MIGRATE) /
Diogo Raphael Cravo. – Porto Alegre: PPGC da UFRGS, 2021.

112 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2021. Advisor: Leila Ribeiro.

1. Graph grammar. 2. Software integration. 3. Verification
tool. I. Ribeiro, Leila. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Profa. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Take risks. Ask big questions.

Don’t be afraid to make mistakes;

if you don’t make mistakes,

you’re not reaching far enough”

— DAVID PACKARD

AGRADECIMENTOS

Agradeço à Professora Leila por todo o apoio, pelas muitas e longas reuniões de

orientação em que discutimos esta dissertação. Sem sua supervisão este trabalho não seria

possível.

Agradeço também ao Professor Rodrigo, que cedeu seu tempo para explicar con-

ceitos sobre gramáticas de grafos e discutir dificuldades no procedimento de verificação.

Também aos colegas do grupo de pesquisa, ao Arthur pela ajuda com o Verigraph.

Agradeço aos colegas de empresa pelas discussões e também pela compreensão

em todas reuniões de que não pude participar.

Agradeço à Hellena por todo apoio neste último ano. Seus conselhos me ajudaram

a persistir!

Por fim, agradeço especialmente à minha família e a minha companheira Nick por

todo amor, apoio e compreensão.

ABSTRACT

Software, be it desktop, mobile or web, is becoming more and more connected. Software

development is also becoming more connected with ecosystems comprised of networks

of millions of packages. Engineering software today involves writing code that weaves

together libraries, services and applications. Such processes are under constant changes

due to both internal requests (e.g. new features) or external demands (e.g. dependency

updates). Avoiding integration bugs in this scenario can be quite a challenge regardless

of common strategies such as testing and versioning. We studied graph grammars to find

a set of grammars (verification grammars) that represent how software modules integrate

and leveraged existing graph grammar analysis, specifically critical pair analysis, to point

out possible integration problems in such grammars automatically. Furthermore, we cre-

ated a formalism (module nets) to represent how software modules share information and

leveraged graph grammars, by the fact that they can be proven to have functional behavior

(confluence), to translate instances of module nets to verification grammars, enabling de-

velopers to create and modify module nets and then have warnings concerning integration

problems automatically generated. We summarized this process in a framework we call

module integration using graph grammars (MIGRATE), which we illustrate in this work

through a case study with a fictitious search engine for research articles. Our approach

demonstrates how to leverage critical pair analysis of graph grammars to automatically

uncover a few integration bugs. It also serves as a pathway for future research exercising

other graph grammar analyses to full extent.

Keywords: Graph grammar. software integration. verification tool.

Integração de módulos utilizando gramáticas de grafos (MIGRA)

RESUMO

Software, seja desktop, mobile ou web, está se tornando mais e mais conectado. Desen-

volvimento de software também está se tornando mais conectado com ecossistemas feitos

de redes de milhões de pacotes. Construir software hoje corresponde a escrever código

que integra bibliotecas, serviços e aplicações. Essas redes estão sob mudanças constan-

tes devido a necessidades internas (e.g. novas funcionalidades) ou demandas externas

(e.g. atualização de dependências). Evitar defeitos de integração neste cenário pode ser

um grande desafio, apesar de estratégias como teste e versionamento. Nós estudamos

gramáticas de grafos para encontrar um conjunto de gramáticas (gramáticas de verifica-

ção) que representam como módulos de software se integram e aproveitamos análises

de gramáticas de grafos existentes, especificamente análise de pares críticos, para apon-

tar automaticamente possíveis problemas de integração nessas gramáticas. Além disso,

nós criamos um formalismo (redes de módulos) que representa de que forma módulos

compartilham informação e aproveitamos gramáticas de grafos, pelo fato de que pode-

se provar seu comportamento funcional (confluência), para traduzir instâncias de redes

de módulos para gramáticas de verificação, possibilitando que desenvolvedores criem e

modifiquem redes de módulos e então gerem automaticamente avisos que dizem respeito

a problemas de integração. Nós resumimos este processo em um framework que cha-

mamos de integração de módulos utilizando gramáticas de grafos (MIGRATE), o qual

ilustramos neste trabalho através de um estudo de caso com um motor de busca por arti-

gos de pesquisa. Nossa abordagem demonstra como aproveitar análise de pares críticos

de gramáticas de grafos para descobrir automaticamente alguns defeitos de integração.

Ela também serve como caminho para pesquisas futuras exercitando todo o potencial de

análises de gramáticas de grafos.

Palavras-chave: Gramática de Grafos, integração de software, ferramenta de verificação.

LIST OF ABBREVIATIONS AND ACRONYMS

MIGRATE Module Integration using Graph Grammars

TAGG Typed Attributed Graph Grammar

AGG The Attributed Graph Grammar System

NPM Node Package Manager

HTTP Hypertext Transfer Protocol

REST Representational State Transfer

LIST OF FIGURES

Figure 3.1 Example e-graph E1 in mathematical notation where] is the disjoint
union of sets, Nat is the set of natural numbers and Bool is the set of boolean
values ..28

Figure 3.2 Example algebra A1 corresponding to a signature Σ128
Figure 3.3 An e-graph morphism (EHRIG, 2006) ..29
Figure 3.4 Example typed attributed graph TAG1, where the morphism from AG1

to T1 is indicated by using in AG1 the same names as in T1 with indices
(values of Nat are an exception) ...29

Figure 3.5 Definition of graph transformation rule...30
Figure 3.6 Example of a graph transformation rule P1. ..30
Figure 3.7 Application of a graph transformation rule. ..31
Figure 3.8 Example of a graph transformation rule application, which preserves,

deletes and creates nodes and edges. ..31
Figure 3.9 Examples of graph grammar rules and type graph in AGG32
Figure 3.10 Example critical pairs (tP1

O1
, tP1
O1

) and (tP1
O2
, tP1
O2

) ...33
Figure 3.11 Examples of overlapping graphs as seen in AGG, we omit morphisms

from rule graphs to overlapping graphs as there is only one possible morphism
for each case (it maps as many nodes and edges as possible)34

Figure 4.1 Overview of the proposed approach ..37
Figure 4.2 Module Integration using Graph Grammars framework.38

Figure 5.1 Example quadripartite directed graph Q1 ..41
Figure 5.2 Modules MA and MB from Example 3 in visual notation.43
Figure 5.3 Operation from Example 4 in visual notation. ..44
Figure 5.4 Module net from Example 5 in visual notation. Usually a module net

will be drawn next to its modules and operations, but we omit these here
because they are already drawn in Figures 5.2 and 5.3 respectively.......................46

Figure 6.1 Examples of translation rules ..50
Figure 6.2 Translation grammar type graph..50
Figure 6.3 Module net MN1 and corresponding graph encoding...................................52
Figure 6.4 Graph after application of layer 0 - translation of MN153
Figure 6.5 Graph after application of layer 1 - translation of MN153
Figure 6.6 Verification grammar for module net MN1 ...54
Figure 6.7 Module net MN2. ..59
Figure 6.8 Verification grammar for module net MN2 ...60
Figure 6.9 Remaining rules of verification grammar for module net MN2....................61
Figure 6.10 CPA options and termination of translation grammar.62
Figure 6.11 Proof of termination...63
Figure 6.12 Termination layers. ..63

Figure 7.1 Verification procedure..69
Figure 7.2 Possible subgraphs of critical pair overlays and correspondence to Table 7.273
Figure 7.3 Example of required path hint computation ..75
Figure 7.4 Example of attribute or resource not generated by the module net, but

still generated by some operation of the module net ..77

Figure 8.1 Pseudocode for Research Net V1, functions read, find and retrieve are
part of external modules..82

Figure 8.2 Example module net V1 ...83
Figure 8.3 Critical pair analysis graph for research net V1 ...84
Figure 8.4 Example module net V3 ...86
Figure 8.5 Critical pair analysis graph for research net V3 ...87

Figure A.1 Rules TK1 through TK10 of translation grammar......................................105
Figure A.2 Rules TK11 and TR12 through TR20 of translation grammar.106
Figure A.3 Rules TR21 through TR27 of translation grammar.107
Figure A.4 Rules TR28, CL29 through CL33, AD34 and AD35 of translation gram-

mar...108
Figure A.5 Atomic constraints A1 through A8...109
Figure A.6 Atomic constraints A9 through A12...110

LIST OF TABLES

Table 6.1 Translation grammar rule codes. ...49
Table 6.2 Summary of translation grammar rules. For the actual rules, see appendix. ..51
Table 6.3 Node type creation layers as created by AGG...64
Table 6.4 Node type deletion layers as created by AGG...64
Table 6.5 Edge type creation layers as created by AGG. ..65
Table 6.6 Edge type deletion layers as created by AGG. ..66

Table 7.1 Dependencies between hints and warnings ...71
Table 7.2 Information flow in subgraphs of critical pair overlays73
Table 7.3 Time complexity of each step in the verification procedure.80

Table 9.1 Approaches found in related works to evaluate library integration.................90
Table 9.2 Approaches found in related works to evaluate service integration.93
Table 9.3 Related works with graph grammars concerning model extraction (i) and

model transformation (ii) ..94
Table 9.4 Related works with graph grammars concerning verification.........................95

CONTENTS

1 INTRODUCTION...13
1.1 A verification tool for software integration ..15
1.2 Main contribution ...16
1.3 Outline..16
2 PROBLEM ..18
2.1 Compatibility matters...18
2.2 Compatibility often breaks...19
2.3 Why compatibility breaks ..20
2.3.1 Weighing decisions ..22
2.3.2 Ecosystem pressure..22
2.4 How to avoid breaking compatibility ..23
2.4.1 Project tactics ...23
2.4.2 Programming language support ...23
2.4.3 Versioning ..24
2.4.4 Tests ...25
2.4.5 Deprecation ..25
2.5 Our contribution ...25
3 TYPED ATTRIBUTED GRAPH GRAMMARS ...27
3.1 Nodes and Arrows...27
3.2 Grammars..29
3.3 Properties...31
4 MIGRATE FRAMEWORK OVERVIEW ...36
5 MODULE NETS ...40
5.1 Definition..40
5.2 Limitations and final remarks ...46
6 TRANSLATION..48
6.1 Translation...48
6.2 Operation ...52
6.3 Properties...55
6.3.1 Well-definedness ..55
6.3.2 Confluence ...62
6.4 Limitations and final remarks ...67
7 A VERIFICATION METHOD FOR SOFTWARE INTEGRATION69
7.1 Identification..69
7.1.1 Graph identification ...70
7.2 Hints ...71
7.2.1 Critical pairs hint..71
7.2.2 Rule decoration hint...71
7.2.3 Information flow hint ...72
7.2.4 Optional path hint ..74
7.2.5 Required path hint..74
7.2.6 Reachable rule hint ..76
7.2.7 Critical pair explanation hint ...77
7.3 Warnings ..78
7.3.1 Optional attribute, resource, module or operation warning78
7.3.2 Strictly optional attribute warning ...79
7.3.3 Unreachable operation warning ...79
7.3.4 Dangling resource warning ..79

7.3.5 Outdated attribute warning...80
7.4 Complexity...80
7.5 Limitations and final remarks ...81
8 CASE STUDY ...82
8.1 Outdated attribute warnings in research net V1 ..83
8.2 Unreachable operation warnings in research net V2..84
8.3 Optional attribute warnings in research net V3..85
9 RELATED WORK ...88
9.1 Integration of Libraries..88
9.2 Integration of Services..90
9.3 Graph grammar applications ..93
10 CONCLUSION ...96
REFERENCES...98
APPENDIX A — TRANSLATION GRAPH TRANSFORMATION SYSTEM....104
APPENDIX B — RESUMO ESTENDIDO ...111

13

1 INTRODUCTION

Software is becoming more and more connected. Desktop applications, which

used to save data to disk, now synchronize with the cloud and allow simultaneous editing

by different users. Smartphone applications connect to backend services that store data

and carry out requests. Not to mention the web itself, a huge network of sites, which are

connected, by design, to each other and to services bearing all the business logic.

Software development is also becoming more connected. Each programming lan-

guage brings with itself an ecosystem of package managers full of thousands of libraries,

sometimes even millions (DECAN; MENS; GROSJEAN, 2019). Such libraries usually

make use of one another, giving rise to vast networks of dependencies. Engineering soft-

ware today means to write code that weaves together libraries, services and applications.

There are many reasons to leverage software as a dependency rather than develop

software from scratch. The first is to avoid reinventing the wheel: if someone has al-

ready been through the development and testing, there is no reason to make that effort

again. Also, although developers know their software entirely, the development of some

libraries may require domain expertise, which is too different from the project goals, such

as research algorithms, or even database drivers and cloud development kits. Finally, con-

straints such as time and budget shrink how much work a team can perform, forcing teams

to concentrate on their business logic and leverage everything they can.

The inherent limitation on how much work a team can perform also forces orga-

nizations to scale in order to achieve big goals. In such context each team is responsible

for a set of assets, and reuse is strongly encouraged within the organization to save up

resources. An evidence of this approach to developing software is the growing interest

in microsservices by the software engineering community (FOWLER, 2014; SOLDANI;

TAMBURRI; HEUVEL, 2018).

Software can be leveraged in many ways. Control over integration is greatest when

the dependency owner and the consumer are the same, because not only dependency code

is known, but also updates can be controlled to keep integration. As dependencies attract

more consumers, these consumers will have less control over updates, but they may still

have access to code, as it happens with open source software. Integration is harder when

consumers neither own nor have access to dependency code, in which case consumers

have to rely fully on documentation and dependency updates may break the integration to

consumer software.

14

Consumers can choose when they update libraries, but they are rarely given the

chance to choose when to update dependency services. The least control consumers have

over integration is when their dependency is a service they do not develop themselves,

because this service can be updated independently of consumer software, possibly intro-

ducing integration faults.

Integration faults can arise for multiple reasons (AUÉ et al., 2018; MOSTAFA;

RODRIGUEZ; WANG, 2017). One example is when a consumer uses a API that is re-

moved from a dependency in an update. Another common example is changes to method

signatures in dependency updates. More subtle integration faults are related to changes

in how dependencies handle data. Even if an update keeps the APIs of a dependency, it

may change its input/output relation, which can cause all sorts of trouble when it is not

integrated properly.

There are many approaches to preventing integration faults. Semantic version-

ing (PRESTON-WERNER, 2020) aims to signaling when a change to a dependency is

considered "breaking", warning developers that updating a dependency to that version

may require changes to integration code. Automated tests written by developers can also

uncover integration faults (FOWLER, 2018). Additionally, some languages have tool-

ing that prevents compilation and bundling of code when it does not integrate well to its

dependencies (ORACLE, 2020).

Despite all of the approaches in place to prevent integration faults, some of these

faults are still subtle and hard to catch. As an example, let us consider the NodeJS library

axios, a very useful and popular HTTP client. Release 0.19.2 of axios had a configuration,

called maxContentLength, which served both as maximum response length as well as

maximum request length1, the latter was relayed to another library called follow-requests.

The confusion of responsibilities assigned to the same parameter led axios contributors

to create a new parameter, maxBodyLength2, which was relayed to follow-requests, while

maxContentLength retained its original purpose of being the maximum response length.

This change was release in version 0.20.0 of axios.

An unsuspecting developer when updating axios from version 0.19.2 (or older) to

version 0.20.0 (or newer) may overlook this change, which can lead to trouble, because

the newer version will constrain maximum upload sizes to its default maxBodyLength,

which the previous version would not do.

To brake integration faults before they make it into production, many researchers

1https://github.com/axios/axios/issues/2696
2https://github.com/axios/axios/pull/2781

15

are proposing new approaches. This work is dedicated to proposing a method and tool to

automatically uncover some integration faults.

1.1 A verification tool for software integration

We propose a verification method and tool that can automatically uncover faults

arising from the integration of modules. Our method uses a novel formalism, which we

call module net, to model the data flow between and within modules. Module nets are

obtained by code inspection, translating programming language to module net diagrams.

Verification happens by first translating a module net to a graph grammar, which is an

automatic procedure, and then performing a series of analyses over the verification gram-

mar. The outcome of our verification procedure is a set of warnings to users highlighting

which integrations deserve their attention.

As previously mentioned, software is connected and built not only on top of li-

braries, but also on top of services, and software integration happens at both levels. For

this reason, we consider modules as any piece of software that handles data, which can be

anything: application, library or service.

Although we recognize control flow plays an important role in the behavior of

software, such as conditions and loops, our method does not address control flow. Adding

control flow would incur an even bigger problem to solve, whereas our goal in this work

is to show a prototype. Control flow can still be addressed in future work. Additionally,

because the verification is carried out at the level of module nets, we ignore language

specifics, which can be addressed when performing the extraction of module nets from

programming languages, and it is also left for future work.

The verification method we propose can be used in many ways. When given a

module net, it is able to output warnings regarding that specific module net. A developer

can then make changes to the module net and perform the verification again to assess

whether integration faults are resolved. Alternatively, that same developer can choose

to apply changes directly to code and then have this code automatically translated into

module net to perform the verification. Library and service developers can use module

nets to check that the changes they make to their code do not impact consumers.

Moreover the verification can be used to determine the correct version that should

be assigned to a module after it is updated, by checking the integration of the updated

module to a fixture module that uses all of its functionalities. Additionally, such checks

16

could be used to rank libraries according to stability, in terms of how many warnings are

present. Also, because the verification is concerned with how data flows between mod-

ules, it could be used to point out resources which are shared by many services and factor

responsibilities, achieving lower coupling. Versioning, ranking and coupling functionali-

ties are not covered in this work.

1.2 Main contribution

Our goal with this research is to eventually reach a point where we can highlight

integration faults automatically and independently of technology. This work provides the

first steps in this direction. These are the main contributions of this work:

• A formalism to model how data flows between software modules, which we call

module net;

• A method to verify and highlight integration faults arising from the data flow of

module nets;

• A prototype tool that implements the method above and its evaluation in a case

study.

1.3 Outline

Chapter 2 addresses the problem of integrating software modules in different ecosys-

tems.

Chapter 3 is a brief introduction to typed attributes graph grammars, which are used

extensively in this work.

Chapter 4 describes the module integration framework that we want to build, MIGRATE,

with its extraction, translation and verification procedures and all artifacts used in

the process.

Chapter 5 defines module nets, which are a formalism to describe software integration.

Chapter 6 presents a procedure to translate module nets into graph grammars using

graph grammar derivation, and proof of confluence and discussion of well-definedness

of such translation.

Chapter 7 shows how to use critical pairs generation to find integration issues and how

17

to report such issues to developers in the form of warnings.

Chapter 8 condenses the work done until here by showing a case study with three ver-

sions of a fictitious search engine for research articles.

Chapter 9 contains related work and tools to solve this problem for libraries as well as

services.

Chapter 10 provides concluding remarks.

In the appendix we have included the entire graph transformation system used to

translate module nets into verification grammars, which we presented in Chapter 6.

18

2 PROBLEM

Software is built on top of other software. Users integrate to dependencies, which

can be classes, libraries or services. Dependencies are developed either by users them-

selves, by others that belong to the same organization or by third-parties. When a depen-

dency is updated, it may break its integration to some or even all of its users. The problem

of integration is part of software engineering and although many tactics have been devised

to tackle it, there is just no way to compute whether two arbitrary functions are the same,

as observed in (RAEMAEKERS; DEURSEN; VISSER, 2014).

2.1 Compatibility matters

There is a multitude of software ecosystems out there with all kinds of package

managers such as Debian packages for Linux, Chocolatey packages for Windows, plugins

for Eclipse, etc. For programming languages we have1:

• JavaScript/NodeJS and NPM2 with over one million packages

• R and CRAN3 with 17 thousand packages

• Java and Maven with over six million indexed artifacts

• Ruby and RubyGems with more than 164 thousand gems

• Python and PyPI/pip with over 288 thousand projects

• .NET and NuGET with more than 242 thousand packages

• PHP and Packagist with almost 300 thousand packages

• Perl and CPAN4 with almost 200 thousand Perl modules

• Rust and Crago with more than 54 thousand crates

• and many others such as Go, Haskell, Smalltalk, etc. See Libraries.io5 for 37 pack-

age managers and almost four million packages.

Package ecosystems have been extensively studied. One study shows that most

packages in NPM, CRAN and RubyGems directly depend on other packages, and there

are even more transitive dependencies (DECAN; MENS; CLAES, 2017). Additionally

1Data extracted on 2021 from official websites of each package manager.
2Node Package Manager
3The Comprehensive R Archive Network
4The Comprehensive Perl Archive Network
5https://libraries.io/

19

the amount of packages that have the most dependencies seems to grow on NPM, and

these packages have a high impact on the ecosystem being dependencies of up to 30%

of the entire ecosystem (DECAN; MENS; CLAES, 2017). Decan et al. later extended

this study to Cargo, CPAN, NuGET and Packagist on top of the ecosystems previously

mentioned, finding that less than 17% of packages are dependencies of more than 80%

packages (DECAN; MENS; GROSJEAN, 2019). Breaking changes to such fundamental

packages can have catastrophic effects.

There not seems to be recent analogous studies of the size and structure of service

ecosystems. Services are agnostic to programming languages and can expose interfaces

of all kinds, including simple remote procedure call (RPC) up to more elaborate repre-

sentational state transfer (REST) architectures. Recent trends in service interfaces are

gRPC and graphQL. Services exchange messages through some protocol, usually HTTP.

A common portal for public access services is ProgrammableWeb6, which lists almost 24

thousand services. Postman API Network7 also contains over 1700 APIs and 21 thousand

Postman collections.

2.2 Compatibility often breaks

Compatibility often breaks. A study with more than 22 thousand Java libraries

released prior to 2011 has shown that roughly 35% of minor releases and 23% of patch re-

leases contained breaking changes (RAEMAEKERS; DEURSEN; VISSER, 2014). This

is in contrast to semantic versioning principles, which restrict patch and minor updates

to non-breaking changes. Perhaps what is more surprising is that breaking changes were

found not to influence the adoption time of new updates (RAEMAEKERS; DEURSEN;

VISSER, 2014). A more recent study with 317 popular Java libraries has shown that

roughly 28% of changes were considered breaking, and the larger a library gets, the more

breaking changes it introduces (XAVIER et al., 2017). The authors also studied 260

thousand clients of those libraries, estimating that in the worst case scenario, on median,

roughly 2.5%, but up to 100% in rare cases, were affected by breaking changes (XAVIER

et al., 2017). Developers are compelled to update their libraries in an effort to escape

vulnerabilities, but the very fixes may also contain breaking changes. Wang et al., when

studying the update risk of Java libraries have found that an impressive 35% of studied

6https://www.programmableweb.com/
7https://www.postman.com/explore

20

libraries, more than 4200 libraries, had more than 300 deleted APIs between a vulnerable

version and its corresponding fix (WANG et al., 2020).

Fear of breaking changes also scares developers away from updates. This is true

in the mobile development environment too, where just 13% of sampled apps update de-

pendencies constantly and 63% never update them (SALZA et al., 2018). The longer

developers take to update, the more they lag behind. This is known as "technical lag"8

and has been studied in the NPM ecosystem showing that out of 120 thousand packages,

almost 1,5 million releases and 8 million dependencies roughly 25% of dependencies and

40% of releases present technical lag, with an average of 7 to 9 months (DECAN; MENS;

CONSTANTINOU, 2018). Decan et al. highlight that patch and minor dependency up-

dates are the most affected by technical lag9, corroborating the findings of Raemarkers

et al., which is that developers are and should be afraid of updates, even though these

studies were carried out in different ecosystems. Wang et al. approach this phenomenon

with various metrics, such as "usage outdatedness", "update intensity" and "update de-

lay". They find that very few projects keep all their libraries up-to-date and more than

50% of projects take longer than 60 days to update dependencies (WANG et al., 2020).

Integration issues are not restricted to libraries, services also suffer a great deal of

compatibility problems. Aué et al. have studied millions of faults logged by a large scale

web service in the payments business and came up with eleven categories for those faults

(AUÉ et al., 2018). While some errors can be attributed to end users, such as providing

a maxed out credit card, others are due to the programming that integrates clients, ser-

vice and third-parties. Even microservices, a relatively new architectural pattern known

for achieving loosely coupled modules, are affected by compatibility problems, and API

versioning and contracts are mentioned in 13 of 51 grey literature papers (SOLDANI;

TAMBURRI; HEUVEL, 2018).

2.3 Why compatibility breaks

As mentioned in the introduction, there are different levels of complexity when

handling module integration. This complexity can be classified in three dimensions:

Users, Influence and Distribution. In the following, we discuss these three dimensions,

8A formal definition can be found in referenced articles.
9Although Decan et al. find that patch and minor are the most affected by technical lag, they judge that

such updates should be automatic, contrary to Raemarkers et al. findings that patch and minor updates are
often not backwards compatible, when they should be.

21

considering easier to more difficult integrations in each one.

i) Users

• Single user, such as a module developed for a single project

• Few users, such as modules shared within an organization across projects

• Many users, such as open source modules that integrate to many modules

With a single or even few users, it is often possible for a module to verify its

integration to users prior to releasing changes, but the more users a module has, the tighter

these users integrate to dependencies, increasing the impact of breaking changes. On the

other end, breaking change aversion encumbers dependency developers more and more

to the point of stagnation. This is what happened to the NPM request module, which

has gone into maintenance mode10 due to the tremendous amount of users, making it

impossible to publish breaking changes without causing huge trouble.

ii) Influence

• Users own code or can propose changes to code

• Users can view code

• Users only have access to documentation or live/compiled software

Integration is a difficult task, which requires insights on how each of the integrated

components work. The ability to see dependency code comes in handy many times and

can make a difference to avoid bugs. Even better is when users can propose/make changes

to code, as it enables development of better interfaces.

iii) Distribution

• Released as single entity, such as a class

• Released coupled with consumer, such as a library

• Released independently for a subset of users, such as backend services

• Released independently, such as a generally available service

We include distribution because it affects the time a user has to adapt to changes.

If the dependency is part of a project, either a class or a library, its update can be coupled

with a project release, thus meeting project schedule. Of course, libraries have their own

release schedule and when security updates are released, users are required to update as

soon as possible. Services are the hardest to integrate because they often are not even

aware of their users’ schedules, and a service release can immediately break users.

10https://github.com/request/request/issues/3142

22

2.3.1 Weighing decisions

When faced with the choice of whether or not to break compatibility, developers

have to weigh the costs of decaying code and the benefits of opting to break. Keeping

compatibility can incur maintenance costs in the form of more code, interfaces, releases

and branches to maintain as well as holding-off new features, whereas opting to break

compatibility can incur costs of providing support for broken clients and communicating

changes to users (BOGART et al., 2016; BRITO et al., 2018b). Keeping compatibility

has the benefit of preventing cascading breaks, but breaking compatibility can have many

benefits such as addressing technical debt in terms of style, deprecation, refactorings,

etc., performance improvements and bug fixes and even add new features (BOGART et

al., 2016; BRITO et al., 2018b).

2.3.2 Ecosystem pressure

Whether breaking compatibility is acceptable or not has a lot to do with the ecosys-

tem the software inhabits. In a survey with 28 developers from three different ecosystems,

researchers have found that Eclipse developers value backwards compatibility, whereas

NPM developers make use of versioning to deliver breaking code due to the pressure of

a fast moving environment and finally CRAN developers have easy installations at the

cost of fast reaction to updates (BOGART et al., 2016). To support these values, Eclipse

platform plans yearly releases and only then are developers compelled to make changes,

NPM allows dependency versions to be pinned and thus dependency updates are decou-

pled from package releases, and R/CRAN requires users to update their dependencies

shortly after new releases and does not allow version pinning as in NPM (BOGART et al.,

2016).

These ecosystem values also have to do with the functionality provided by the

tooling. Whereas NPM is capable of installing various releases of a same package in the

same project, thus enabling package maintainers to delay updates, CRAN require that

only the latest release of a package is installed, forcing timely updates (DECAN; MENS;

CLAES, 2017).

23

2.4 How to avoid breaking compatibility

Integration is a problem pertaining to two actors: dependency users and depen-

dency developers. While users will apply tactics, run tools, implement tests, manage

dependency versions and avoid deprecated interfaces, developers will follow best prac-

tices, apply versioning guidelines and deprecation and run regression tests. All of this to

ensure the healthy integration of dependencies.

2.4.1 Project tactics

A common strategy adopted by users to avoid breaking compatibility is to keep

dependencies to a minimum and select dependencies they trust (BOGART et al., 2016).

Despite this strategy, trivial packages are very popular for example in the NPM ecosystem.

Trivial packages are packages with low cyclomatic complexity and few LOC and should

be considered with care due to lack of tests and high dependency count (ABDALKA-

REEM et al., 2017). They later extended this study and included the PyPI ecosystem with

similar results (ABDALKAREEM et al., 2020).

For services, common advice is to relax the assumptions on data received, ignor-

ing any extra information sent and avoiding any kinds of format enforcing, unless it is

absolutely necessary. By ignoring extra information and avoiding format checks, services

ensure longer compatibility with clients that use old versions of the API. This pattern is

known as the Tolerant Reader (FOWLER, 2011; LüBKE et al., 2019).

2.4.2 Programming language support

From the library developers perspective, language specifications can provide means

to avoid breaking compatibility. Java specification includes the notion of "Binary Com-

patibility", which defines what kinds of changes are compatible, such as adding modifiers,

inserting new types, and many others (ORACLE, 2020).

24

2.4.3 Versioning

Versioning schemes signal to users the degree of changes and enable users to spec-

ify rules for automatic updates of their dependencies. Perhaps the most popular scheme

in practice is Semantic Versioning (PRESTON-WERNER, 2020), which uses the form

"major.minor.patch"11, where major releases increase the major version (and reset minor

and patch versions) and contain breaking changes, while minor and patch releases keep

major versions and do not contain breaking changes. Another kind of versioning scheme

is the Eclipse versioning12, also known as OSGi semantic versioning, which is very much

like semantic versioning, except for the inclusion of a fourth version number to address

builds.

Semantic versioning assigns a special meaning to versions of major 0. Such ver-

sions are considered in "initial development" and are permissive to API changes, being

considered unstable (PRESTON-WERNER, 2020). Despite this meaning, many popular

NPM modules are released with major version 0 and are nonetheless widely adopted by

the community. Axios is one such example, a HTTP client for JavaScript/NPM with al-

most 15 million weekly downloads, that still has a major version 0 and there is no forecast

as to when 1.0.0 will be released13.

The widespread use of major 0 can be a concern precisely because it hinders the

release of security fixes for older versions. Additionally, unstable APIs even prevent

the automatic update of such fixes when affected modules are transitive dependencies,

because minor version increases with major 0 contain breaking changes, which delays

updates even more and exposes the ecosystem to vulnerabilities. As we write this text,

this is the current state of axios14.

Versioning is also used in services, where it can be found in addresses, HTTP

headers or bodies (LüBKE et al., 2019). Applying versioning in services gives clients a

buffer to transition to new APIs, which otherwise would have to be done coupled with

service deploy. This of course comes at the expense of service developers who then need

to maintain multiple versions of an API running. Operational costs constrain the amount

of versions a service can expose and usually only major versions are exposed, with at

most two versions running in parallel (LüBKE et al., 2019).

11Semantic versioning is in fact a little bit more complex making room for prerelease versions and initial
development phase (version 0).

12https://wiki.eclipse.org/Version_Numbering
13https://github.com/axios/axios/issues/1333
14https://github.com/axios/axios/issues/3407

25

In spite of the available schemes, but perhaps by mistake, many projects release

breaking changes without signaling so (RAEMAEKERS; DEURSEN; VISSER, 2014).

2.4.4 Tests

Tests are yet another approach to ensure compatibility for both users and develop-

ers. There are all kinds of tests in the literature, but specifically integration tests address

the problem of compatibility. In his blog, Fowler says that integration tests are meant

to show whether software modules work as expected when brought together (FOWLER,

2018) and splits integration tests into two categories: "narrow integration tests" and "broad

integration tests" (FOWLER, 2018). While the former requires some kind of mock to re-

place the actual module integrated and thus isolate tested code to just a single module, the

latter tests all modules working together. The blog advocates in favor of "narrow integra-

tion tests", which according to Fowler are more effective because it spares the trouble of

building an entire test environment.

The issue with unit tests is that they mock integration points, effectively shadow-

ing precisely what we want to test here. Integration tests can help us find such bugs, but

they are often very expensive to write because they require such test environments as we

have mentioned.

2.4.5 Deprecation

Deprecation is a valid strategy to signal to users that a feature is not to be used

anymore and that it may be removed in the future, however deprecation is seldom used

properly (ZHOU; WALKER, 2016). Deprecation is also practiced in services and coupled

with "aggressive obsolescence", essentially enforcing deprecation with deadlines (LüBKE

et al., 2019).

2.5 Our contribution

Software modules essentially share data. Users send data to dependencies, which

perform computations, carry out side effects and provide back some data. Even side

effects are the exchange of data with third-party modules. When a dependency is updated

26

and it is not compatible anymore to a user, the dependency either still shares the same

kind of data and computations or not. In case it does, then fixing compatibility is just a

matter of rewiring the programming to the user so that the right type or the right method

or the right name, etc., is used.

When the dependency changes the way it handles data, then this change can go un-

noticed and cause trouble when it gets to production. Even worse, sometimes the change

is so fundamental there is no amount of rewiring that will bring back the compatibility

it had before to a user: it just does not perform the same functions that user needs any-

more. This dissertation is concerned with finding those kinds of compatibility issues,

when compatibility breaks due to deeper problems than syntactic changes.

Our work can be divided into three phases: (i) transformation of code into module

nets (model extraction), (ii) translation of module nets into graph grammars with graph

grammars as the translation engine and (iii) verification of module nets as graph gram-

mars.

27

3 TYPED ATTRIBUTED GRAPH GRAMMARS

The formalism of Graph Grammars (or Graph Transformations) is based on defin-

ing states of a system as graphs and state changes as rules that transform these graphs.

In this chapter we review informally the main concepts of the area needed for our work.

Graph grammars have been studied for almost six decades and there are many approaches

backed by various researchers all around the world (EHRIG, 1979; CORRADINI et al.,

1997; EHRIG et al., 1999). We use the algebraic approach to graph grammars, which

bases all definitions on category theory. More concretely, we use the DPO-approach

(EHRIG et al., 1997; EHRIG, 2006) and use typed attributed graph grammars.

Graph-based formal description techniques are a friendly means of explaining

complex situations in a compact and understandable way. Graph grammars are a gen-

eralization of Chomsky grammars from strings to graphs suitable for the specification of

distributed, asynchronous and concurrent systems. The basic notions of this formalism

are: states are represented by graphs and possible state changes are modeled by rules,

where the left- and right-hand sides are graphs. Graph rules are used to capture the dy-

namical aspects of the systems. That is, from the initial state of the system (the initial

graph), the application of rules successively changes the system state.

The definitions presented in this chapter are informational, they are simplified and

presented mostly in terms of examples, as these definitions are classical definitions of

typed attributed graph grammars and can be found in the literature. All of the definitions

in this section come from (EHRIG, 2006). Throughout the chapter, each time we define a

concept, we will mark it in boldface.

3.1 Nodes and Arrows

A graph is a tuple (VG, EG, sG, tG) with sets of graph vertices VG and edges EG,

and functions source sG : EG → VG and target tG : EG → VG. Graphs can be augmented

with data sets, forming tuples (VG, VD, EG, EV D, EED, (si, ti)i∈{G,V D,ED}) which we call

e-graphs1. The set VD contains the values that may be used as attributes of vertices and

edges (this set is potentially infinite, containing, for example all natural numbers, strings,

etc.). Sets EV D and EED denote connections that assign values (of VD) to vertices (of

VG) and edges (of EG), respectively. Figure 3.1 shows an example e-graph E1 and Figure

1"e" is for extended

28

3.4a shows this same graph with visual notation.

An algebra is a mathematical structure containing sets (called carrier sets) and

functions over these sets (called operations). Algebras can be specified using algebraic

specifications, that are composed of a set of sorts (set names), operations (signatures of

functions) and equations (to specify the behaviour of the functions). An attributed graph

is a pair (G,A) of an e-graph and an algebra, where VD is the disjoint union of all carrier

sets of the algebra. The advantage of using algebras to obtain values of VD is that we can

specify which values belong to this set. Moreover, the use of term algebras allows to use

variable and terms as attributes, which is particularly useful to describe general rules.

Figure 3.1: Example e-graph E1 in mathematical notation where] is the disjoint union
of sets, Nat is the set of natural numbers and Bool is the set of boolean values

E1 = (VG, VD, EG, EV D, EED, (si, ti)i∈{G,V D,ED})
VG = {T1, T2}

VD = Nat]Bool
EG = {t1, t2}

EV D = {nt1, nt2}
EED = {}

sG = {t1 7→ T1, t2 7→ T2}, tG = {t1 7→ T2, t2 7→ T2}
sV D = {nt1 7→ T1, nt2 7→ T2}, tV D = {nt1 7→ 1, nt2 7→ 2}

sED = {}, tED = {}

Figure 3.2: Example algebra A1 corresponding to a signature Σ1

Σ1 = (S,OP)
S = {S1, S2}

OP = {op1, op2}
op1 :→ S1

op2 : S1 → S2

A1 = ({Nat,Bool}, {0, iszero})

We can use all graph definitions provided so far to build categories, where graphs,

e-graphs or attributed graphs are the objects and the morphisms are graph morphisms.

A graph morphism m : G1 → G2 is a tuple (mV ,mE) that maps nodes with mV :

VG1 → VG2 and edges with mE : EG1 → EG2 from a graph to another preserving

edge source and target along the morphism. For e-graphs, we have morphisms mi, i ∈

{VG, VD, EG, EV D, EED} as depicted in Figure 3.3. For attributed graphs, morphisms

require morphisms between the algebras of the two attributed graphs as well.

29

Figure 3.3: An e-graph morphism (EHRIG, 2006)

E1
ED V 1

D E1
V D

E1
G V 1

G E2
ED V 2

D E2
V D

E2
G V 2

G

source1ED

target1ED

mEED
mVDsource1V D

target1V D

mEV D

target1G

source1G

mEG
mVG

target2ED

source2ED

target2V D

source2V D

target2G

source2G

Figure 3.4: Example typed attributed graph TAG1, where the morphism from AG1 to T1

is indicated by using in AG1 the same names as in T1 with indices (values of Nat are an
exception)

T1

1
nt

1

T2

2
nt

2

t2

t 1

(a) Attributed graph AG1.

T

Nat
nt

t

(b) Type graph T1

A typed attributed graph is a triple (G,m, T) where G and T are attributed

graphs and m : G→ T is a graph morphism, T is called type graph (because it defines all

types of vertices and edges of a graph grammar). Figure 3.4 shows the typed attributed

graph TAG1 = (AG1,m1, T1). From here on, whenever we refer to graphs, we mean

typed attributed graphs.

3.2 Grammars

A graph transformation rule (or production) p is a pair of graph morphisms l

and r and graphs L, G and R as depicted in Figure 3.5, where G is usually called the

gluing graph. Graph L denotes the items that must be present for the rule to be applied,

graph R the ones that will be present after rule application (including preserved and cre-

ated items), and G represents the preserved items. Morphisms l and r are used to connect

the preserved items from L to R, using the gluing graph G. Figure 3.6 shows an example

graph transformation rule, we omit sets VD, EV D and EED as well as typing for concise-

ness. A graph transformation rule can be applied to a graph if there is a match, that is, a

30

morphism from the left-hand side of the rule L to the graph, such application is usually

called a graph transformation. Figure 3.7 depicts graph transformation Li
p,m⇒ Ri, which

is exemplified by Figure 3.8. A graph transformation rule may additionally have negative

application conditions, which are situations (graphs) that prevent the application of the

rule. A procedure to apply a transformation rule follows (see Figure 3.7 for the names of

graphs):

1. Choose graph Li and production p

2. Choose a morphism m that matches graph L to Li

3. The rule is not applicable if it has a negative application condition n with n : L →

N and there is a morphism mN : N → Li. In this case, application is aborted and

the next steps are not executed.

4. Given match m, construct a gluing graph Gi (also called context graph) such that

PO1 is a pushout. This pushout construction basically deletes from Li all items that

are to be removed by the rule. If this construction is not possible (due to conflicts

between preserving and deleting items or trying to delete vertices without deleting

corresponding edges), rule application is aborted.

5. Finally, pushout PO2 is construted, giving rise to the resulting graph Ri. This

pushout adds to Gi all items created by the rule.

Figure 3.5: Definition of graph transformation rule.
L

l← G
r→ R

Figure 3.6: Example of a graph transformation rule P1.

bb
B

A

ab
bc

BC

D

C
cc

A graph transformation system is a set of graph transformation rules. A graph

grammar is a graph transformation system with an initial graph.

31

Figure 3.7: Application of a graph transformation rule.
L G R

PO1 PO2

Li Gi Ri

m

l r

Figure 3.8: Example of a graph transformation rule application, which preserves, deletes
and creates nodes and edges.

bb
B

A

ab
bc

BC

D

C
cc

22
2

1

12
22

2
2

22

3 3 3

5

3.3 Properties

In this dissertation we are interested in critical pairs, which are used in the verifi-

cation process, and also in the property of confluence, which is fundamental for correct

model transformations. A confluent graph transformation system presents functional be-

havior, in the sense that given an initial graph it will always produce the same final graph

(EHRIG, 2006). In order to define critical pairs and confluence, there are a few properties

of grammars that we will have to review.

An ordered pair of transformations is parallel dependent if the first transforma-

tion disables the second. Similarly, such pair is sequentially dependent if the first trans-

formation enables the second. More formally, given transformations tp1K = K
p1,m1⇒ R1

and tp2K = K
p2,m2⇒ R2, we say (tp1K , tp2K) is parallel dependent if tp1K disables tp2K . Given

transformations tp1K = L1
p1,m1⇒ K and tp2K = K

p2,m2⇒ R2, we say (tp1K , tp2K) is sequentially

dependent if tp1K enables tp2K . In both cases, K is known as context graph.

A pair (tp1K , tp2K) of transformations is a critical pair of conflict if it is parallel

dependent, and (tp1K , tp2K) is a critical pair of dependency if it is sequentially dependent.

32

Figure 3.9: Examples of graph grammar rules and type graph in AGG

(a) Type Graph
(b) Rule mockgenerate-ResearchNet.Ar-
ticle.ID

(c) Rule GET.call-FindArticle

(d) Rule GET.call-FindDocument

(e) Rule require-InventoryService.Document.Location

In order to compute critical pairs arising from any pair of productions (p1, p2), it is

necessary to compute every single context graph K for which we have (tp1K , tp2K). Because

there can be infinite such graphs, usually the set of context graphs is reduced by allowing

only graphs which are not subgraphs of other graphs in such set. To compute this set,

provided p1 = L1 ← G1 → R1 and p2 = L2 ← G2 → R2, we can compute the finite

set of overlaps between L1 and L2 for critical pairs of conflict, or the finite set of overlaps

between R1 and L2 for critical pairs of dependency, provided L1, L2 and R1 are finite

graphs. The elements of such set are known as overlapping graphs. In summary, we

say (tp1O , tp2O) is a critical pair between transformations of rules p1 and p2 with overlapping

graph O. As just explained, there can be many such pairs for two rules p1 and p2 with

33

Figure 3.10: Example critical pairs (tP1
O1
, tP1
O1

) and (tP1
O2
, tP1
O2

)

1 : A

3 : B

2:ab

4:bb

3 : B

D

4:bb

(a) Rule P1 which is both left and right compo-
nent of (tP1

O1
, tP1
O1

)

1 : A 3 : B2:ab

4:bb

(b) Overlapping graph O1 of (tP1
O1

, tP1
O1

)

1 : A

3 : B

2:ab

4:bb

3 : B

D

4:bb

(c) Rule P1 left component of (tP1
O2

, tP1
O2

)

1 : A

3 : B

2:ab

5:bb

3 : B

D

5:bb

(d) Rule P1 right component of (tP1
O2

, tP1
O2

)

1 : A 3 : B2:ab

4:bb

5:bb

(e) Overlapping graph O2 of (tP1
O2

, tP1
O2

)

different O. Figure 3.10 shows two critical pairs of conflict between rule P1 and itself. In

this example, we can see that rule P1 on the left hand side deletes node A and edge ab,

which are needed to trigger rule P1 on the right hand side of both critical pairs. This is

captured by the overlapping graphs O1 and O2 and morphisms from the graphs of rules to

O1 and O2.

There are different kinds of critical pairs, depending on how its productions relate

to each other. For critical pairs of conflict we have delete-use, produce-forbid, change-use

and change-forbid. For critical pairs of dependency we have produce-use, delete-forbid,

change-use and change-forbid. All of these kinds of critical pairs can be found in more

detail in the AGG Manual2.

Finally, if an initial graph is large enough, it may be that both rules of a critical

pair of conflict are applicable to different subgraphs. Similarly, it may be that after some

transformations, a context graph never arises which would induce a pair of transforma-

tions that comprise a specific critical pair. Also, even if such context graph is found, it

may be a third transformation is applied which again disables one or both transformations

of that specific critical pair. In these regards, we say that critical pairs are potential.

2https://www.user.tu-berlin.de/o.runge/agg/AGG-ShortManual/node36.html

34

Figure 3.11: Examples of overlapping graphs as seen in AGG, we omit morphisms from
rule graphs to overlapping graphs as there is only one possible morphism for each case (it
maps as many nodes and edges as possible)

(a) Overlapping graphs of two different produce-forbid critical pairs
of conflict between rules mockgenerate-ResearchNet.Article.ID and
GET.call-FindArticle

(b) Overlapping graph of produce-use
critical pair of dependency between
rules GET.call-FindArticle and GET.call-
FindDocument

(c) Overlapping graph of produce-use
critical pair of dependency between rules
GET.call-FindDocument and require-
InventoryService.Document.Location

If we can show that for a critical pair of conflict (tp1O , tp2O) there are transformations

(or a series of transformations) tpiX = R1
pi,mi⇒ X and t

pj
X = R2

pj ,mj⇒ X , then we say

this critical pair is confluent (EHRIG, 2006). In other words, if we can get around the

critical pair by applying other transformations such that we arrive at a common graph

X , then the critical pair is confluent. Furthermore, we say this critical pair is strictly

confluent if this series of transformations preserves a subgraph of O (EHRIG, 2006).

A graph transformation system is locally confluent if all its critical pairs of conflict are

strictly confluent.

To define termination criteria for graph transformation systems, we may use the

concept of production layers. Intuitively, we classify the productions of a grammar in

35

layers, such that elements of some type are only created by productions of the same layer,

and may be deleted only by productions of subsequent layers. This ensures that if an

element of a type is created by a transformation, some other transformation will delete

it using rules of the same or subsequent layers only, when creation is no longer possible.

To guarantee termination we additionally have to prove that each layer terminates before

the grammar moves to the next layer of productions. For deletion layers, i.e., layers which

contain only deleting rules, layer termination is shown by arguing that there is only a

finite number of items that can be deleted in this layer and that these items are the ones

that have been created by previous layers, but which are not created in the current layer

(or else this deletion layer would not terminate). Layer termination of creation layers,

i.e., layers that have rules that create items of some type, is shown by arguing that at

some point creation will be halted by negative application conditions. The procedure

assigning productions to deletion and creation layers, and thus showing whether a graph

transformation system terminates, can be automated (EHRIG, 2006).

A graph transformation system is confluent if it is locally confluent and termi-

nates. Confluence is relevant when we expect a system to exhibit a deterministc behavior,

i. e. to produce unique final graph (up to isomorphism) for a given initial graph. In this

work, we will use graph grammars in two different ways: (i) verification grammar: to

express the semantics of a module net, and (ii) translation grammar: to associate a seman-

tics to a module net. A verification grammar is a grammar that describes the integration

behavior of the underlying module net, whereas a translation grammar basically defines

a model transformation, generating the verification grammar that corresponds to a mod-

ule net. Verification grammars may be non-deterministic (since they express behavior

of possibly non-deterministic systems), but the translation grammar must be confluent to

associate a unique meaning (verification grammar) to each module net.

36

4 MIGRATE FRAMEWORK OVERVIEW

Module Integration using Graph Grammars (MIGRATE) is a framework that aims

to help developers in the process of integrating software modules. MIGRATE takes as

input software artifacts, such as source code, and automatically produces a set of warnings

informing developers what needs their attention.

This chapter presents the general framework for MIGRATE. It is a framework,

because it is not usable out of the box. In order to use this framework, each of its abstract

procedures has to be instantiated with a concrete procedure. In fact, the next few chapters

of this dissertation are dedicated to explaining in detail a few of such concrete procedures.

As previously mentioned, this framework can be instantiated to verify many kinds of

modules, be it a class, library or service. If framework procedures are instantiated, we

call the resulting procedure comprised of concrete procedures a verification tool.

The goal of our framework is to provide developers with useful information (warn-

ings) concerning the integration of modules that compose their software. To produce such

warnings, we start with software artifacts, from which we extract a single module net (see

next section for its definition). We use a confluent graph grammar, which we call the

translation grammar, to translate this module net into another graph grammar, which we

call verification grammar. We generate critical pairs of rules of verification grammars and

analyse these pairs to produce warnings, which we then report to users. Figure 4.1 shows

an overview of the approach (figures are just meant to give an overview, each step will be

explained better in next sections).

Many integration bugs are related to how information is passed from a module to

another. For example, if a service asks for more data than it uses, then we can suggest

that excess attributes should be deprecated. On the other hand, if a client fails to provide

information required by a service, then we can tell developers we have likely found a

bug. In order to uncover such bugs, we have to analyse how information is used by each

module and what are the actual dependencies that emerge from data.

Our verification procedure consists of interpreting the critical pairs of rules gen-

erated for a verification grammar. This verification grammar does not mirror the exact

behavior of the software that originated it, but rather it reflects how information flows

in this software. In that regard, we can say the verification grammar describes a kind of

software integration semantics and it is not suitable for simulation.

37

Figure 4.1: Overview of the proposed approach
ReadSearch() { FindArticle(doi) { FindDocument(id) {

DOI := read(); id := find(doi); location := "res/" + id;
FindArticle(DOI); FindDocument(id); retrieve(location);

} } }

(a) Software artifacts are taken as input

(b) Module net is extracted from software artifacts

(c) Module net is translated into verification grammar using AGG

(d) Verification grammar resulting from translation (some rules have been omitted)

(e) Critical pairs generated for verification grammar using Verigraph

Website.Search.DOI can become outdated (generated and FindArticle)
The return of operation FindArticle is not used
The return of operation FindDocument is not used

(f) Warnings are generated based on critical pairs

38

Figure 4.2 depicts the module integration verifier framework. Dark squares with

snipped corner represent artifacts, while squares with rounded corners and no fill are

procedures that have to be instantiated. We will explain each of those squares in detail

shortly.

Figure 4.2: Module Integration using Graph Grammars framework.

Translation

Verification

ExtractionSoftware Artifacts

Module Net

Graph Grammar

Warnings

The framework is given as input a set of software artifacts. These artifacts can

be anything that is machine readable and provides insight into how information flows in

a system. For services, these can be OpenAPI documents. For libraries and classes, the

actual code and interfaces. Models (such as UML) can also be used as software artifacts

for all kinds of modules. Further kinds of artifacts can be used such as dynamic data of

real payload exchanges and logs for services, and execution traces and automated tests

for libraries and classes. In Chapter 8 we illustrate the framework using pseudocode as

software artifacts.

The extraction procedure takes software artifacts and produces a module net. Ex-

traction strategy can vary depending on what we choose as software artifacts. If a verifica-

tion tool implements extraction procedures for different kinds of artifacts, these extraction

procedures can be applied over all artifacts and the resulting module nets can be joined

together to obtain a single output module net that provides a system wide view. Because

different kinds of artifacts provide different insights into a system, this strategy allows

building richer module nets. At the time of writing we do not have an implemented ex-

traction procedure yet.

Chapter 5 introduces the idea of a module net. This structure is used to present

39

how modules of a system exchange data. It is language agnostic and thus enables a ver-

ification procedure that is independent of language. Furthermore, module nets are visual

models that can be edited by developers who wish to design and verify such design, skip-

ping the extraction procedure partially or entirely.

Module nets are solely a syntactic structure and their semantics is defined via a

translation procedure that translates a module net into a single graph grammar, which,

in turn, can be verified later. Chapter 6 is dedicated to showing one translation procedure.

Finally, the verification procedure builds upon existing graph grammar verifica-

tion techniques to produce different kinds of warnings concerning the system under anal-

ysis. Chapter 7 explains ways to use the results of the verification in defining concrete

warnings.

Translation and verification procedures presented in this dissertation are imple-

mented to provide an illustration of the proposed framework. However, the resulting

verifier is a prototype, as it is not ready to find real faults, but only very simple cases in

controlled environments (see case study in Chapter 8).

40

5 MODULE NETS

A module net describes how information flows in a system. Module nets can be

drawn as diagrams for better visualization. Because of this visualization, module nets

are also suitable for manual editing, enabling software designers to specify systems using

this kind of notation and later verify that their design is correct using a module integration

verifier tool. The semantics of module nets is defined via a translation to graph grammars,

which is described in Chapter 6.

5.1 Definition

First we have to define graphs, which will be used later to define operations and

module networks. This is a classical definition of directed graphs.

Definition 1 (Directed Graph). A directed graph, is a tuple G = (N,E, s, t) where N

and E are sets of nodes and edges, respectively, and s, t : E → N are total functions

assigning a source/target node to each edge. A subgraph of a graph G is a graph which

contains subsets of the sets of nodes and edges of G, while preserving source and target

functions.

Quadripartite graphs are graphs partioned in four subgraphs, but whose set of

nodes is partitioned in two. In this work, we will partition the set of nodes N in two sets,

denoted Nl and Nr, representing the nodes in the left-hand side and right-hand side of a

graph, respectively. This induces a partition of the set of edges E in sets Ell (representing

edges between nodes of Nl), Elr (representing edges from Nl to Nr), Erl (representing

edges from Nr to Nl) and Err (representing edges between nodes of Nr). Considering

these different kinds of edge partitions, we can build four different subgraphs of a graph.

Definition 2 (Quadripartite Directed Graph). A quadripartite graph is a graph Q =

(N,E, s, t) such that

• N = Nl ∪Nr and Nl ∩Nr = ∅

• E =
⋃
i∈{ll,lr,rl,rr}Ei and (Ei ∩ Ej)i,j∈{ll,lr,rl,rr},i 6=j = ∅ are pairwise disjoint

• s =
⋃
i∈{ll,lr,rl,rr} si with (sij : Eij → Ni)i,j∈{l,r}

• t =
⋃
i∈{ll,lr,rl,rr} ti with (tij : Eij → Nj)i,j∈{l,r}

The graphs (Qij = (Ni ∪Nj, Eij, sij, tij))i,j∈{l,r} are subgraphs of Q.

41

Example 1 (Quadripartite graph Q1). For a graph Q1 = (N,E, s, t) with

• N = {La, Lb,Ra,Rb}

• E = {la, lara, ralb, rarb}

• s = {la 7→ La, lara 7→ La, ralb 7→ Ra, rarb 7→ Ra}

• t = {la 7→ La, lara 7→ Ra, ralb 7→ Lb, rarb 7→ Rb})

we can build the following partitions:

• Nl = {La, Lb}, Nr = {Ra,Rb}

• Ell = {la}, Elr = {lara}, Erl = {ralb}, Err = {rarb}

• sll = {la 7→ La}, slr = {lara 7→ La}, srl = {ralb 7→ Ra}, srr = {rarb 7→ Ra}

• tll = {la 7→ La}, tlr = {lara 7→ Ra}, trl = {ralb 7→ Lb}, trr = {rarb 7→ Rb}

Finally, the following graphs are subgraphs of Q1:

• Qll = ({La, Lb}, {la}, {la 7→ La}, {la 7→ La})

• Qlr = ({La, Lb,Ra,Rb}, {lara}, {lara 7→ La}, {lara 7→ Ra})

• Qrl = ({La, Lb,Ra,Rb}, {ralb}, {ralb 7→ Ra}, {ralb 7→ Lb})

• Qrr = ({Ra,Rb}, {rarb}, {rarb 7→ Ra}, {rarb 7→ Rb})

Figure 5.1 shows a visual representation of Q1, where nodes belonging to Nl and Nr are

depicted in the left and right-hand side rectangles respectively.

Figure 5.1: Example quadripartite directed graph Q1

La

Lb

Ra

Rb

la
lara

ralb rarb

The first module network definition is that of a resource, which is a unit of in-

formation, any kind of data a system may share between its modules, either structured

data or not. Resources can be database entities, API models, HTTP tickets, instances of

classes, files, any information at all. We can either see resources as names independently

of their values or as instances of data types.

To further specify what kind of data a resource contains, we provide attributes,

42

which are pieces of information that comprise a resource. Attributes can represent primi-

tive data types, such as integers or characters, but also complex data types such as entire

objects. It is left for verification tool developers to decide1 how to map the data of a

system to resources and attributes.

Resources can either have all their attributes listed, or none at all. Listing all

attributes provides the added value of verifying the information flow of such attributes, at

the cost of having to list them. Omitting such attributes yields a poorer verification, but

still a valid one.

Definition 3 (Resource). A resource is a pair composed of a resource name and a (finite)

set of attributes (i.e., a set of names). Given a resource r = (name, attr) we denote its

name by namer and its attribute set by attrr.

Example 2 (Resources RA
1 , RB

1). Using the definition of a resource, we define resources

RA
1 = (RA

1 , {a1, a2}) and RB
1 = (RB

1 , {b1, b2}), and we have attrR
A
1 = {a1, a2} and

attrR
B
1 = {b1, b2}. As abuse of notation, we will frequently use the same symbol for a

resource and its name.

Modules are the units of a system. Just like resources represent any kind of data,

modules represent any kind of subsystem: a service, a library, a class, anything. Modules

contain resources, which are the types of information a module of this kind may share

with its peers. Modules contain functions req (for required) and ger (for generated) de-

fined over its resources and their attributes. Required resources/attributes are necessary

to perform some kind of unspecified but essential operation. These can be, for example,

side effects such as data that is written to the screen, or data that is shared with a third-

party module to which we have no access. Generated resources/attributes are generated

by some unspecified operation within a module, such as data that is input by a person or

data received from a third-party module to which we do not have access. Required and

generated resources/attributes can also be used to omit modules obtaining smaller module

networks, if we wish so.

Definition 4 (Module). A module is a tupleM = (name,RM, reqM, gerM) where

• name is its name

• RM is a finite set of resources with unique names,

1See Chapter 4 for more details on the module integration verifier framework and tool development.

43

• reqM, gerM : RM] AM → {T, F} are total functions, assigning to each at-

tribute/resource a boolean value indicating whether they are required/generated in

this module, where AM =
⊎
r∈RM

attrr.

We denote by ResourcesM the set of resource names of a moduleM.

Example 3 (Modules MA, MB). Using the definition of a module and resources from

Example 2, we define modules MA = (MA, {RA
1 }, {RA

1 7→ F, a1 7→ T, a2 7→ F}, {RA
1 7→

T, a1 7→ T, a2 7→ T}) and MB = (MB, {RB
1 }, {RB

1 7→ F, b1 7→ F, b2 7→ F}, {RB
1 7→

T, b1 7→ T, b2 7→ T}). Figure 5.2 shows these modules in visual notation.

Figure 5.2: Modules MA and MB from Example 3 in visual notation.

MA

RA
1

generate:T
require:F

a1
generate:T
require:T

a2
generate:T
require:F

MB

RB
1

generate:T
require:F

b1
generate:T
require:F

b2
generate:T
require:F

Operations are the bindings from module to module2. Whereas modules are con-

tainers of information, generating and requiring information, operations define how in-

formation flows from a module to another. Even though it is not stated directly in the

definition, operations range over two modules, a source or caller and a target or callee,

just like an edge of a graph.

Operations are quadripartite graphs augmented with an attribute relation. The

nodes of an operation graph are resources of its caller and callee. The operation graph

shows how the information flows from a resource of a module to a resource of another

module. We will often refer to the subset of the edges from resources of the caller as

the request or call, and to the other subset with resources of the callee as source, as the

response or return. Note these two subsets of edges (call and return) comprise the whole

set of edges of an operation graph.

Each edge of an operation graph (from a resource to another) is augmented with a

relation3 from the attributes of the first resource to the attributes of the second. Edges of

operation graphs represent the transfer of a value from attribute to attribute.
2Note the actual modules are not part of the definition of an operation, see module network definition

for that part.
3Even though we define it as a relation, we will draw attribute relations the same way we draw graphs

for better visualization.

44

Definition 5 (Operation). Given a set of resources R, an operation op defines how the

operation acts on resources/attributes, where op = (R, Eop, sop, top, relop) is a quadri-

partite graph and relop : Eop → REL is a total function that maps each edge e ∈ Eop to

a relation REL ⊆ attrs
op(e)× attrt

op(e). We writeR = Rρ ∪Rε the node partitioning of

op and Eop = Eop
ρε ∪ Eop

ερ its edge partitioning. Note that Eop
ρρ = Eop

εε = ∅.

Example 4 (Operation E1
A,B). Using the definition of operation and modules from Exam-

ple 3, we define operation E1
A,B = ({RA

1 , R
B
1 }, {Ecall, Ereturn}, s, t, rel) and

• s = {Ecall 7→ RA
1 , Ereturn 7→ RB

1 }, t = {Ecall 7→ RB
1 , Ereturn 7→ RA

1 }

• rel = {Ecall 7→ {(a2, b2)}, Ereturn 7→ {(b1, a1), (b2, a2)}}

• RE1
A,B

ρ = {RA
1 },R

E1
A,B

ε = {RB
1 }, E

E1
A,B

ρε = {Ecall}, E
E1

A,B
ερ = {Ereturn}

Figure 5.3: Operation from Example 4 in visual notation.

E1
A,B RA

1 RB
1 Ecall a2 b2

Ereturn b1 a1

b2 a2

Ecall

Ereturn

Theorem 1 (Resource-attribute compatibility of operations). Operations are compatible

with the attributes of their resources as stated below.

∀op = (R, Eop, sop, top, relop), e ∈ Eop.

(sop(e) = r1→ dom(relop(e)) ⊆ attrr1)

and

(top(e) = r2→ rng(relop(e)) ⊆ attrr2)

Proof. Follows from the definition of operations, we write the proof for s and omit proof

45

for t as it is similar:

op =(R, Eop, sop, top, relop), e ∈ Eop.

⇒ relop(e) ⊆ attrs
op(e) × attrt

op(e) (by Definition 5)

⇒ dom(relop(e)) ⊆ dom(attrs
op(e) × attrt

op(e))

⇒ dom(relop(e)) ⊆ attrs
op(e)

(sop(e) = r1)→ (dom(relop(e)) ⊆ attrr1)

�

A module network, or short module net, is a graph whose nodes are modules

and edges are operations. Additionally, modules of a module network do not share re-

sources, i.e., resources are unique, and the set of all resources in a module network is the

union of the resources in its modules. Essentially, operations of a module network carry

information between modules.

To be well defined, a module network has to satisfy two properties. Equation 5.1

requires that no two modules of a module network share resources, that is, the only way

for modules to share data is through an operation. Equation 5.2 ensures that operations

have a caller (sM(op)) and a callee module (tM(op)) and that the resources of an operation

(Rop) are subsets of the resources of caller (RsM(op)) and callee modules (RtM(op)) in the

module net.

Definition 6 (Module network). A module network is a tuple MN = (M, Op, sM, tM)

where

• M is a finite set of modules;

• Op is a finite set of operations over the resourcesR =
⊎
m∈M Rm;

• resources are unique:

∀m1,m2 ∈M.Resourcesm1 ∩Resourcesm2 = ∅

(5.1)

• MN is a graph such that each operation edge is compatible with the modules of

46

the module network:

∀op ∈ Op.Rop = Rop
ρ ∪Rop

ε → Rop
ρ ⊆ RsM(op) andRop

ε ⊆ RtM(op)

(5.2)

Example 5 (Module Net MN1). We can use the previously defined modules MA and MB

and operation E1
A,B to define the module net MN1 = ({MA,MB}, {E1

A,B}, {E1
A,B 7→

MA}, {E1
A,B 7→ MB}). See Figure 5.4 for its visual notation. To make sure MN1 is well

defined, we need to check a few of its properties. First we check that its resources are

unique according to Equation 5.1:

MA,MB ∈MMN1 .ResourcesMA
∩ResourcesMB

= ∅

⇒MA,MB ∈MMN1 .{RA
1 } ∩ {Rb

1} = ∅

now we check MN1 is compatible with its modules according to Equation 5.2:

E1
A,B ∈ OpMN1 .

RE1
A,B = RE1

A,B
ρ ∪RE1

A,B
ε → RE1

A,B
ρ ⊆ RsM(E1

A,B) andR
E1

A,B
ε ⊆ RtM(E1

A,B)

⇒ E1
A,B ∈ OpMN1 .RE1

A,B = {RA
1 } ∪ {RB

1 } → {RA
1 } ⊆ RMA

and {RB
1 } ⊆ RMB

⇒ E1
A,B ∈ OpMN1 .RE1

A,B = {RA
1 } ∪ {RB

1 } → {RA
1 } ⊆ {RA

1 } and {RB
1 } ⊆ {RB

1 }

Figure 5.4: Module net from Example 5 in visual notation. Usually a module net will be
drawn next to its modules and operations, but we omit these here because they are already
drawn in Figures 5.2 and 5.3 respectively.

MA MB

E1
A,B

5.2 Limitations and final remarks

With the current definition of module nets, it is difficult to express every kind of

behaviors a system may have. For example, because operations are simple quadripartite

47

graphs, it is impossible for two different operations to be mapped to different graph gram-

mar structures during a translation, because there is nothing in the module net operation

definition that would tell one operation kind from the other. For that reason, in Chapter 6

we define all operations with a simple retrieval behavior, ignoring other system behaviors

such as delete or create.

A solution to this problem is to define module net operations as typed quadripartite

graphs instead. With this definition, it would be possible to give all kinds of semantics to

module net operations, thus covering much better the different behaviors a system may

exhibit. It is left for future work to define module net operations as typed quadripartite

graphs and implement a verifier tool with this definition.

48

6 TRANSLATION

This chapter presents an implementation of a translation procedure from the lan-

guage of module nets to graph grammars providing a semantics for module nets. We split

this chapter into four sections. First we set a terminology to talk about this translation and

give an overview of the procedure. Section 6.2 shows a small end-to-end example: from

module net to verification grammar. Section 6.3 presents properties of the translation pro-

cedure, such as well-definedness and confluence. Finally, the last section discusses a few

improvements, some of which have been implemented.

6.1 Translation

The translation takes a model in the source language (module net) and produces a

model in the target language (graph grammar). We refer to the source model as just mod-

ule net and to the target model as verification grammar. This translation was defined by

a graph grammar called translation grammar. The translation grammar has an initial

graph, which is a module net encoded as a graph, and after the rule application process

is carried out until termination we obtain a final graph, which is an encoded verification

grammar. To summarize, the translation procedure is comprised of three steps:

• Encoding: takes a module net and encodes it, producing an initial graph

• Derivation: applies translation grammar rules until termination, producing a final

graph

• Extraction: extracts a verification grammar from a final graph

Figure 6.2 shows the type graph used in the translation. This graph has three kinds

of nodes, that can be distinguished by the prefix of their names (and by color):

• nodes whose names start with "MN" (black) are used to describe module net com-

ponents

• nodes whose names start with "TOKEN" (gray) denote auxiliary items used in the

translation process

• nodes whose names start with "GRAGRA" (white) describe components of the re-

sulting verification grammar

Before beginning a translation, the initial graph is expected to have only nodes of

49

"MN" types. During translation, nodes of "TOKEN" type will be created and deleted. At

the end of the procedure, the final graph will contain only nodes of type "GRAGRA".

The translation grammar has 35 rules and for that reason we omit these rules here.

To see the rules, please refer to the corresponding appendix. To keep text concise, we

assign codes to rule names in Table 6.1 and refer to these codes later when necessary.

Each rule belongs to a specific layer. The translation process starts by applying only rules

from layer 0, rules from subsequent layers may only be applied once it is not possible to

apply any rule from the current layer. This classification of rules in layers is what guides

the translation termination (as will be discussed later). We present a summary of what

each of these 35 rules does in Table 6.2.

Table 6.1: Translation grammar rule codes.
Codes Layer Rule Name

TK1 to TK11 0 token_*
TR12 0 translate_graphTransformationSystem
TR13 0 translate_value
TR14 1 translate_module
TR15 1 translate_resource
TR16 1 translate_attribute
TR17 1 translate_rule_require-resource
TR18 1 translate_rule_generate-resource
TR19 1 translate_rule_mockgenerate-resource
TR20 1 translate_rule_require-attribute
TR21 1 translate_rule_generate-attribute
TR22 1 translate_rule_mockgenerate-attribute
TR23 1 translate_rule_call_modules
TR24 1 translate_rule_call_resources
TR25 1 translate_rule_call_attributes
TR26 1 translate_rule_return_modules
TR27 1 translate_rule_return_resources
TR28 1 translate_rule_return_attributes

CL29 to CL33 2 clean_*
AD34 to AD35 3 adjust_*

50

Figure 6.1: Examples of translation rules

(a) Translation rule TK1 (b) Translation rule TR17

(c) Translation rule CL29 (d) Translation rule AD34

Figure 6.2: Translation grammar type graph

51

Table 6.2: Summary of translation grammar rules. For the actual rules, see appendix.
Codes Purpose
TK1 to TK11 Insert "TOKEN" nodes to be consumed by TR* rules.
TR12 to TR13 Create "GRAGRA" nodes for GTS and value.

TR14 to TR16
Create "GRAGRA" nodes and edges for modules, resources and
attributes, consuming "TOKEN" nodes.

TR17 to TR19
Create "GRAGRA" rules for required resources (TR17) and for
generated (TR18) or non-generated (TR19) resources, consuming
"TOKEN" nodes.

TR20 to TR22
Create "GRAGRA" rules for required attributes (TR20) and for
generated (TR21) or non-generated (TR22) attributes, consuming
"TOKEN" nodes.

TR23 to TR25
Create "GRAGRA" rules for operations calls (from source to tar-
get), consuming "TOKEN" nodes (TR23), resource edges (TR24)
and attribute edges (TR25).

TR26 to TR28
Create "GRAGRA" rules for operations returns (from target to
source), consuming "TOKEN" nodes (TR26), resource edges
(TR27) and attribute edges (TR28).

CL29 to CL33
Remove "MN" nodes and edges that have been translated already,
operations (CL29), "resourceof" edges (CL30), modules (CL31),
"attributeof" edges (CL32) and resources (CL33).

AD34 to AD35
Remove duplicate "GRAGRA_in" edges for nodes (AD34) and
edges (AD35).

52

Figure 6.3: Module net MN1 and corresponding graph encoding.

MA MA

RA
1

generate:T
require:F

MB MB

RA
1

generate:F
require:F

E1
A,B RA

1 RB
1 Ecall = ∅

Ereturn = ∅

E1
A,B

Ecall

Ereturn

(a) Module net MN1.

(b) Encoded module net MN1

6.2 Operation

Figure 6.3a shows the module net that will be translated in this section. As men-

tioned, the first step to be performed is encoding. In this phase, we encode module net

components into graph components, obtaining the graph illustrated in Figure 6.3b.

We begin the translation with the initial graph and applying rules of layer 0 until

no more rule can be applied, obtaining the graph from Figure 6.4. Note that layer 0 is

responsible only for adding TOKEN and two GRAGRA nodes (GTS and value). Figure

6.5 is the result of the application of all layer 1 rules. We can see all tokens have been

consumed and the result is a graph consisting of MN and GRAGRA nodes only, with

some mappings from MN nodes to GRAGRA nodes. We omit the graph resulting from

the application of rules of layer 2 because it looks like the one in Figure 6.5, except that

all MN types have been removed. In this example, rules of layer 3 are not applicable

(because at this point the host graph does not have duplicate GRAGRA_in edges for

nodes or edges), so the result of layer 2 is the final graph. As a result from the extraction

procedure from the final graph, we obtain the verification grammar depicted in Figure 6.6.

53

Figure 6.4: Graph after application of layer 0 - translation of MN1

Figure 6.5: Graph after application of layer 1 - translation of MN1

54

Figure 6.6: Verification grammar for module net MN1

(a) Type graph (b) generate-A.A1 (c) mockgenerate-B.B1

(d) GET.call-E1_AB

(e) GET.return-E1_AB

55

6.3 Properties

In this section we analyze the translation that was defined in previous sections.

As stated before, this translation gives a semantics to module nets in terms of graph

grammars. Thus, we have to guarantee that the translation procedure generates a valid

graph grammar (well-definedness) and always terminates with an unique resulting gram-

mar (confluence). Confluence can be formally proven, since this is a property of the

translation grammar.

6.3.1 Well-definedness

We begin by laying out the following requirements for a final graph to encode a

well-defined graph grammar:

R1 every edge must have source and target nodes.

R2 for every edge with source and target nodes, and included in a graph, its source and

target nodes must be included in the same graph.

R3 every rule must have left handside and right handside graphs.

Note that requirements R1 and R2 are slightly different, whereas R2 requires

source and target to be in the same graph, it says nothing about edges missing source

or target. R1 covers this case, requiring that all edges have a source and a target.

For each of the requirements above, we argue that they are preserved by the trans-

lation grammar rules:

Preservation of R1 we analyse rules looking for the creation of "GRAGRA_edge" nodes:

• rules TR15, TR16, TR20 through TR23, TR25, TR26 and TR28 create "GRA-

GRA_edge" nodes. All of these rules add source and target nodes.

• no other rule creates "GRAGRA_edge" nodes.

• no rule deletes sources or targets of "GRAGRA_edge" nodes.

Preservation of R2 let us analyse all rules in the translation grammar, looking for rules

that create "GRAGRA_in" edges from "GRAGRA_edge" nodes to "GRAGRA_graph"

nodes (note that no rule removes "GRAGRA_in" edges):

• TK1 through TK11, TR12 through TR14 and CL29 through CL33 do not

56

contain "GRAGRA_edge" nodes.

• TR15 and TR16 create "GRAGRA_edge" nodes, but they neither create nor

remove "GRAGRA_in" edges.

• TR17 through TR23 and TR26 create "GRAGRA_in" edges, in all of those

rules, for every "GRAGRA_edge" node that is included in a graph, its source

and target "GRAGRA_node" nodes are included in the same graph, thus pre-

serving R1.

• TR24 places just the sources of "GRAGRA_edge" nodes (of type "resource-

of") in different graphs, but the targets of these "GRAGRA_edge" nodes are

"GRAGRA_node" modules added by TR23.

• TR27 is analogous to TR24, where TR26 adds the missing targets (modules).

• TR25 places just the sources of "GRAGRA_edge" nodes (of type "attribute-

of") in different graphs, but the targets of these "GRAGRA_edge" nodes are

"GRAGRA_node" resources added by TR24.

• TR28 is analogous to TR25, where TR27 adds the missing targets (resources).

• AD34 and AD35 remove redundant "GRAGRA_in" edges.

Preservation of R3 rules that create "GRAGRA_rule" nodes are TR17 through TR23

and TR26. All such rules add left- and right-handside graphs to rules created. No

rule removes a graph from a "GRAGRA_rule".

Based on the arguments above, we believe that the translation creates well-defined

graph grammars. In addition to being a graph grammar, we also require that the trans-

lation produces a grammar that can be used for the verification procedure. We lay down

following additional requirements for a well-defined verification grammar:

R4 every node has a single role, which is one of the following: a module, a resource, an

attribute or a value.

R5 required resources and attributes create rules of type require, which induce critical

pairs of dependencies with rules that create such resources or attributes.

R6 generated resources and attributes create rules of type generate, which induce critical

pairs of dependencies with rules that need such resources or attributes and conflicts

with rules that change their values.

R7 non-generated resources and attributes create rules of type mockgenerate, just as rules

created by S2, the only difference being the rule name.

57

R8 operations create two rules each, call and return, with resource and attribute edges

translated as mappings from left- to right-handside graphs of rules.

For each of the additional requirements above, we argue that they are preserved

by the translation grammar rules:

Preservation of R4 let us analyse each role separately, keeping in mind that no rule adds

source or target to existing edges, in other words, edges are always created with

their sources and targets, as observed before when showing the preservation of R1:

• Modules are the targets of "resource-of" edges, which are created by TR15.

This rule ensures the target of "resource-of" is a module due to its mapping

from a "MN_Module".

• Resources are the sources of "resource-of" edges, and TR15 ensures the source

of "resource-of" is a resource due to its mapping from a "MN_Resource".

• Resources are also the targets of "attribute-of" edges, which are created by

TR16. This rule ensures the target of "attribute-of" is a resource due to its

mapping from a "MN_Resource".

• Attributes are the sources of "attribute-of" edges, and TR16 ensures the source

of "attribute-of" is an attribute due to its mapping from a "MN_Attribute".

• Attributes are the targets of "value-of" edges, which are created by TR20,

TR21, TR22, TR25 and TR28. All of these rules ensure the target of "value-

of" is an attribute due to its mapping from a "MN_Attribute".

• Values are the sources of "value-of" edges, and TR20, TR21, TR22, TR25

and TR28 ensure the source of "value-of" is a value because they either create

their sources "V" or have the value "V" as source (which is created by TR13)

Preservation of R5 rule TR17 creates rules for required resources, and TR20 for re-

quired attributes

Preservation of R6 rule TR18 creates rules for generated resources, and TR21 for gen-

erated attributes

Preservation of R7 rule TR19 creates rules for non-generated resources, and TR22 for

non-generated attributes

Preservation of R8 rule TR23 creates rules for operations calls, and TR26 for operation

returns

With all of the above, we argue that the translation produces well-defined verifi-

58

cation grammars. In the following let us put this into practice with an actual translation.

First we build the following atomic constraints (the actual constraints are available in the

appendix) that can be mapped back to requirements:

• A1 (GRAGRA_edge_has_source_target): checks that every edge has source and

target nodes. When this is fulfilled, it shows R1.

• A2 (GRAGRA_edge_source_target_in_graph): checks that for every edge in a graph,

its source and target are in the same graph. When this is fulfilled, it shows R2.

• A3 (GRAGRA_rule_has_lhs_rhs): checks that every rule has left handside and right

handside graphs. When this is fulfilled, it shows R3.

• A4 (MN_module_is_not_just_module): checks that a "GRAGRA" node that is a

module is also a resource, attribute or value. When this is not fulfilled, it shows R4.

• A5 (MN_resource_is_not_just_resource): checks that a "GRAGRA" node that is a

resource is also a module, attribute or value. When this is not fulfilled, it shows R4.

• A6 (MN_attribute_is_not_just_attribute): checks that a "GRAGRA" node that is an

attribute is also a module, resource or value. When this is not fulfilled, it shows R4.

• A7 (MN_value_is_not_just_value): checks that a "GRAGRA" node that is a value

is also a module, resource or attribute. When this is not fulfilled, it shows R4.

• A8 (MN_self_resource): check that a "GRAGRA" node is a resource of itself.

When this is not fulfilled, it shows R4.

• A9 (MN_self_attribute): check that a "GRAGRA" node is an attribute of itself.

When this is not fulfilled, it shows R4.

• A10 (MN_self_value): check that a "GRAGRA" node is a value of itself. When this

is not fulfilled, it shows R4.

For each of the atomic constraints, we have built test graphs such that a test graph

fulfills an atomic constraint that is not to be fulfilled or, the opposite, it does not fulfill an

atomic that is to be fulfilled. These test graphs are only meant to test each of the atomic

constraints.

Now we build a module net MN2 as depicted in Figure 6.7. We use the translation

procedure previously described to obtain the verification grammar depicted in Figures

6.8 and 6.9. The final graph obtained in this translation is omitted because it is huge

with 75 nodes and 248 edges. MN2 serves as a good example, because it contains all

combinations of values for generate and require (T and T, T and F, F and T, F and F) for

resources and attributes, and it also contains an operation edge without attribute edges

59

Figure 6.7: Module net MN2.
RA

1
generate:T
require:F

MA MA

RA
2

generate:F
require:F

a1
generate:T
require:F

a2
generate:F
require:T

MB

RB
1

generate:F
require:T

MB

RB
2

generate:T
require:T

b1
generate:T
require:T

b2
generate:F
require:F

E1
A,B RA

1 RB
1 Ecall = ∅

RA
2 RB

2 Ereturn b1 a2

b2 a1

E1
A,B

Ecall

Ereturn

(Ecall) and an operation edge with multiple attribute edges (Ereturn).

With the atomic constraints we build the constraint: (A1) AND (A2) AND (A3)

AND (NOT A4) AND (NOT A5) AND (NOT A6) AND (NOT A7) AND (NOT A8)

AND (NOT A9) AND (NOT A10). Using AGG (RUNGE; ERMEL; TAENTZER, 2012),

it is possible to see that the final graph for the translation of MN2 fulfills this constraint,

thus the verification grammar produced is well-defined in respect to requirements R1

through R4.

Since requirements R5 through R8 are not covered by the atomic constrains, we

now analyse the rules produced for MN2 to show these requirements are fulfilled. First

we show R5 by noticing the required resources RB
1 and RB

2 , and required attributes a2 and

b1 on Figure 6.7 and the corresponding rules require-B.B1, require-B.B2, require-A.A2.a2

and require-B.B2.b1 from Figure 6.9. We check R6 by comparing generated resources and

attributes RA
1 , RB

2 , a1, b1 with rules generate-A.A1, generate-B.B2, generate-A.A2.a1 and

generate-B.B2.b1. R7 is confirmed by non-generated resources and attributes RA
2 , RB

1 ,

a2 and b2 with rules mockgenerate-A.A2, mockgenerate-B.B1, mockgenerate-A.A2.a2 and

mockgenerate-B.B2.b2. Finally, we show R8 with E1
A,B and rules GET.callE1_AB and

GET.returnE1_AB. Thus the translation of MN2 is well-defined.

60

Figure 6.8: Verification grammar for module net MN2

(a) Type graph

(b) GET.call-E1_AB

(c) GET.return-E1_AB

61

Figure 6.9: Remaining rules of verification grammar for module net MN2

(a) generate-A.A1 (b) generate-B.B2 (c) mockgenerate-A.A2

(d) mockgenerate-B.B1 (e) require-B.B1 (f) require-B.B2

(g) generate-A.A2.a1 (h) mockgenerate-A.A2.a2 (i) generate-B.B2.b1

(j) mockgenerate-B.B2.b2 (k) require-A.A2.a2 (l) require-B.B2.b1

62

6.3.2 Confluence

As explained previously in Chapter 3, confluence is a combination of two prop-

erties, namely termination and local confluence. Luckily, and differently than we did

for well-definedness, we can show both of these properties automatically using AGG.

We start by showing local confluence, configuring the AGG analysis as shown in Fig-

ure 6.10 (a). We ignore critical pairs of same rules, directly strictly confluent critical

pairs and mark the "essential" option to compute just essential critical pairs. We choose

these options because they do not influence the local confluence result, and because they

greatly improve analysis time. With such configurations, no critical pairs of conflicts are

generated for the translation grammar, and therefore the translation grammar is locally

confluent.

Figure 6.10: CPA options and termination of translation grammar.

(a) Critical pairs analysis configuration (b) Proof of termination

To ensure that the translation grammar terminates, we first assign layers to rules

as previously explained in Table 6.1. With this configuration, we run the termination

analysis of AGG, which finds that the grammar terminates according to Figure 6.10 (b).

In the following, we present and explain the results obtained by AGG when analysing

termination. Figure 6.12 shows the layer kinds AGG finds for each rule layer, where

a green box means the layer represented by that row fulfills criteria for the layer kind

63

Figure 6.12: Termination layers.

represented by the column (so for example layer 0 fulfills criteria to be a non-deletion

layer) and a red box means that layer does not fulfill criteria for the layer kind represented

by the column (so again layer 0 fulfills neither criteria set 1 nor criteria set 2 to be a

deletion layer).

Deletion layers of the first criteria set (Deletion_1 in Figure 6.12) decrease the

amount of nodes or edges in graphs, and are eventually halted for lack of elements to

delete. By looking at the rules in the appendix, note that rules CL29 through CL33 of

layer 3, and AD34 and AD35 of layer 4 decrease the amount of nodes or edges in graphs.

Deletion layers of the second criteria set (Deletion_2 in Figure 6.12) delete ele-

ments previously created, and like the first criteria set are eventually halted for lack of

elements to delete. By looking at the rules in the appendix again, note that all rules of

layer 1, TR14 through TR28, either delete "TOKEN" nodes created by layer 0, or delete

"MN" nodes which are not created anywhere. Also note that rules of layer 1 increase

the amount of nodes or edges in graphs, which is why this layer does not fulfill the first

criteria set for deletion layers.

Finally, non-deletion layers are guaranteed to terminate due to Negative Applica-

tion Conditions (NACs). By looking at the rules in the appendix, note that all rules of

layer 0 have NACs, which are TK1 through TK11, TR12 and TR13 rules, so it makes

sense that layer 0 is a non-deletion layer.

Tables 6.3, 6.4, 6.5 and 6.6 show the creation and deletion layers assigned by

AGG to each of the types in the translation grammar. We note that for each type, ei-

ther its creation layer precedes its deletion layer or they are the same. As an example,

"MN_Resource" has a creation layer of 0 and a deletion layer of 2, but the creation and

deletion layers of "TOKEN_Return" are the same layer 1. In other words, no type has a

creation layer greater than its deletion layer, which would imply the translation does not

terminate.

64

Table 6.3: Node type creation layers as created by AGG.
Layer Types

0 MN_Operation, MN_Resource, MN_ResourceEdge,
MN_AttributeEdge, MN_Module, MN_Attribute,

1 TOKEN_Return, TOKEN_NotGenerated, TOKEN_Attribute,
TOKEN_Call, GRAGRA_GraphTransformationSystem, TOKEN_Module,

TOKEN_Generated, TOKEN_Required, TOKEN_Resource,
2 GRAGRA_Node, GRAGRA_Graph, GRAGRA_Edge,

GRAGRA_Rule,

Table 6.4: Node type deletion layers as created by AGG.
Layer Types

1 TOKEN_Return, TOKEN_NotGenerated, MN_ResourceEdge,
TOKEN_Attribute, TOKEN_Call, GRAGRA_GraphTransformationSystem,

MN_AttributeEdge, TOKEN_Module, TOKEN_Generated,
TOKEN_Required, TOKEN_Resource

2 GRAGRA_Node, MN_Operation, MN_Resource,
GRAGRA_Graph, GRAGRA_Edge, MN_Module,

GRAGRA_Rule, MN_Attribute

1GTS abbrv. for GraphTransformationSystem

65

Table 6.5: Edge type creation layers as created by AGG.
Layer Source type Edge type Target Type

0 MN_ResourceEdge MN_target MN_Resource,
MN_Operation MN_source MN_Module,

MN_AttributeEdge MN_edge MN_Operation,
MN_resourceEdge MN_edge MN_Operation,
MN_AttributeEdge MN_target MN_Attribute,

MN_Attribute MN_attributeof MN_Resource,
MN_Resource MN_resourceof MN_Module,

MN_AttributeEdge MN_source MN_Attribute,
MN_Operation MN_target MN_Module,

MN_ResourceEdge MN_source MN_Resource
1 TOKEN_Resource (unnamed) MN_Resource,

TOKEN_Attribute (unnamed) MN_Attribute
TOKEN_Call (unnamed) MN_Operation,

TOKEN_NotGenerated (unnamed) MN_Resource,
TOKEN_Required (unnamed) MN_Attribute,
TOKEN_Return (unnamed) MN_Operation,

TOKEN_Required (unnamed) MN_Resource,
TOKEN_Module (unnamed) MN_Module,

TOKEN_NotGenerated (unnamed) MN_Attribute,
TOKEN_Generated (unnamed) MN_Attribute,
TOKEN_Generated (unnamed) MN_Resource

2 GRAGRA_Node GRAGRA_in GRAGRA_Graph,
MN_Module (unnamed) GRAGRA_Node,

GRAGRA_Graph GRAGRA_nac GRAGRA_Rule,
GRAGRA_Edge GRAGRA_target GRAGRA_Node,
MN_Operation call GRAGRA_Rule,
MN_Operation return GRAGRA_Rule,

GRAGRA_Graph GRAGRA_lhs GRAGRA_Rule,
MN_Resource (unnamed) GRAGRA_Node,

GRAGRA_Graph GRAGRA_rhs GRAGRA_Rule,
MN_Attribute (unnamed) GRAGRA_Node,

GRAGRA_Edge GRAGRA_in GRAGRA_Graph,
GRAGRA_Rule GRAGRA_rule GRAGRA_GTS1,
GRAGRA_Edge GRAGRA_source GRAGRA_Node

66

Table 6.6: Edge type deletion layers as created by AGG.
Layer Source type Edge type Target Type

1 MN_ResourceEdge MN_target MN_Resource,
TOKEN_Resource (unnamed) MN_Resource,
MN_AttributeEdge MN_edge MN_Operation,
MN_resourceEdge MN_edge MN_Operation,
TOKEN_Attribute (unnamed) MN_Attribute,
MN_AttributeEdge MN_target MN_Attribute,

TOKEN_Call (unnamed) MN_Operation,
TOKEN_NotGenerated (unnamed) MN_Resource,

TOKEN_Required (unnamed) MN_Attribute,
TOKEN_Return (unnamed) MN_Operation,

MN_AttributeEdge MN_source MN_Attribute,
MN_ResourceEdge MN_source MN_Resource,
TOKEN_Required (unnamed) MN_Resource,
TOKEN_Module (unnamed) MN_Module,

TOKEN_NotGenerated (unnamed) MN_Attribute,
TOKEN_Generated (unnamed) MN_Attribute,
TOKEN_Generated (unnamed) MN_Resource

2 GRAGRA_Node GRAGRA_in GRAGRA_Graph,
MN_Module (unnamed) GRAGRA_Node,

MN_Operation MN_source MN_Module,
GRAGRA_Graph GRAGRA_nac GRAGRA_Rule,

MN_Attribute MN_attributeof MN_Resource,
GRAGRA_Edge GRAGRA_target GRAGRA_Node,
MN_Operation call GRAGRA_Rule,
MN_Resource MN_resourceof MN_Module,
MN_Operation return GRAGRA_Rule,
MN_Operation MN_target MN_Module,

GRAGRA_Graph GRAGRA_lhs GRAGRA_Rule,
MN_Resource (unnamed) GRAGRA_Node,

GRAGRA_Graph GRAGRA_rhs GRAGRA_Rule,
MN_Attribute (unnamed) GRAGRA_Node,

GRAGRA_Edge GRAGRA_in GRAGRA_Graph,
GRAGRA_Rule GRAGRA_rule GRAGRA_GTS,
GRAGRA_Edge GRAGRA_source GRAGRA_Node

67

6.4 Limitations and final remarks

We had to face many challenges when implementing the translation. The first chal-

lenge was the node and edge explosion. Considering just the two examples we presented

in this chapter:

• MN1 had just two modules, two resources, no attributes and a single operation with

two resource edges, but its final graph had 24 nodes and 69 edges.

• MN2 had again two modules, four resources, four attributes and a single operation

with two resource egdes and two attribute edges, but its final graph had 75 nodes

and 248 edges.

It is easy to see that the translation scales badly. Based on translation rules (see appendix)

we can draw the following conclusions:

• Each rule created has at least three nodes (GRAGRA_Rule and GRAGRA_Graphs)

and three edges (GRAGRA_rule, GRAGRA_lhs and GRAGRA_rhs).

• Require, generate and mockgenerate rules have none / one2 additional node (GRA-

GRA_Edge) and 6 / 14 more edges (GRAGRA_in) worst case for resources / at-

tributes respectively. For each resource and attribute, one or two rules are created,

depending on whether it is required or not.

• Each operation implies the creation of two rules with an additional node (GRA-

GRA_Edge) and 7 additional edges (GRAGRA_in).

• Each resource edge implies the creation of 10 edges (GRAGRA_in).

• Each attribute edge implies the creation of three nodes (GRAGRA_Node and GRA-

GRA_Edges) and 21 edges (mostly GRAGRA_in).

• Each module implies the creation of one node (GRAGRA_Node).

• Each resource and each attribute imply the creation of two nodes (GRAGRA_Node

and GRAGRA_edge) and two edges (GRAGRA_source and GRAGRA_target).

Based on the above, given a module net with M modules, R resources, A attributes, O

operations, RE resource edges and AE attribute edges we can estimate the maximum

number of nodes in the final graph MAXnodes = M+8∗R+10∗A+8∗OP+3∗AE and

maximum number of edges MAXedges = 20 ∗R + 36 ∗A + 20 ∗OP + 10 ∗RE + 21 ∗AE

Note this is not a precise measure, but an upper bound, because some edges are removed

2for require and generate/mockgenerate respectively, generate and mockgenerate differ only by trigger
condition (value of "mock" attribute) and generated rule name

68

by AD* rules and some rules are not created if resources / attributes are not required. If

we compute this for the examples we have:

• MAXnodes(MN1) = 26 > 24 and MAXedges(MN1) = 80 > 69

• MAXnodes(MN2) = 88 > 75 and MAXedges(MN2) = 308 > 248

This rapid growth in the number of nodes and even more in the number of edges

led us to consider performance improvements. One improvement we did during devel-

opment was to get rid of type graphs. During initial phases, the translation would create

a GRAGRA_Graph node to represent type graphs, just as it does for rule left- and right-

handside and NAC graphs. This would contribute to the enourmous growth in edges, as

every node would require a GRAGRA_Edge from itself to the type graph. We were able to

improve this by introducing the "type" attribute and then get rid of the type graph GRA-

GRA_Graph node. Another improvement we did during the initial development phase

was to reuse GRAGRA_Node nodes, instead of creating new nodes. Each time one had

to be added to a GRAGRA_Graph, we just created a GRAGRA_in arrow from an existing

node to that GRAGRA_Graph.

Despite these changes, the amount of nodes and edges is still too high. Even

worse is that each additional node and edge makes the translation take longer, because

it increases the amount of matches a rule has to a graph. For module nets just slightly

bigger than MN2, the translation slows down to the point of stagnation. To avoid this

scenario, we use a divide and conquer approach: before translating big module nets, we

split a module net into a series of smaller module nets, each with just one operation. The

module nets are then translated and later they are joined together during the extraction

procedure. From an outside view, the result of the translation is still the same, it takes as

input a module net and produces a verification grammar.

69

7 A VERIFICATION METHOD FOR SOFTWARE INTEGRATION

The verification step takes place after translation. This step takes as input a ver-

ification grammar and produces a set of warnings. In more details, it performs a set of

checks against the verification grammar and a verifier configuration, producing a set of

hints. It also creates an identification that allows the mapping of verification structures

back to module nets. Combining hints and identification, the verification procedure makes

a set of warnings, which are displayed to users. Figure 7.1 illustrates this procedure.

Figure 7.1: Verification procedure

Provided a verification grammar and verifier configuration, the verification proce-

dure is automatic. The verification procedure presented here is finished, in the sense that

it is ready to use, but it is open, that is, this verification procedure can be easily extended

to support other checks and warnings.

7.1 Identification

The identification maps the structure of a verification grammar back to the module

net that originated it. This procedure is essential to produce meaningful warnings to users.

Although it is similar to translation, identification is not the same as translation.

When translating, we start with a model and end with another model in a different lan-

70

guage, whereas identification produces a dictionary of structures in the source model to

structures of the target model.

Another difference between identifications and translations is that an identification

is partial, that is, it does not produce a full module net. Instead, an identification produces

just enough information to make warnings meaningful to an user. In short, identifications

do not allow the recovery of the original module net that was translated into a verification

grammar.

7.1.1 Graph identification

Graph identification is the only identification procedure currently implemented.

This procedure takes as input the type graph of a verification grammar and walks the

graph producing mappings from node and edge IDs to module net names.

The source of a mapping is a node or edge of the verification grammar type graph

and the target of the mapping is a module net name. Some structures of the source do not

have counterparts in the target. The creation of mappings is straightforward:

• Values are nodes which are the source of an edge named "value-of". Values do not

have a module net counterpart and thus are ignored.

• Attributes are nodes which are the source of an edge named "attribute-of". The

names of such nodes are the names of attributes in a module net.

• Resources are nodes which are the source of an edge named "resource-of". The

names of such nodes are the names of resources in a module net. Additionally, all

"attribute-of" edges with this resource as target assign attributes to this resource.

• Modules are all other nodes. The names of such nodes are the names of modules

in a module net. Additionally, all "resource-of" edges with this module as target

assign resources to this module.

Graph identification can be implemented by a simple loop over graph edges, which

identifies edge targets as modules, resources, attributes or values (based on edge names

as explained above), and edge sources as resources or attributes. Graph identification has

a complexity of O(ETG) over a type graph with edge set ETG.

71

7.2 Hints

Hints are produced by the verification algorithm when it analyses a graph gram-

mar. A hint is a piece of information that can lead to another hint or to a warning. By

itself, a hint is not useful to the user. Here is a brief description of dependencies between

hints:

Table 7.1: Dependencies between hints and warnings
Hint Used in Hint Used in Warning

Critical pairs
all hints except rule dec-
oration

-

Rule decoration
all hints except critical
pairs

Unreachable operation

Information flow Required path -

Optional path -
Optional operation,
module, resource and
attribute

Required path - Strictly optional attribute
Reachable rule - Unreachable operation

Critical pair explanation -
Dangling resource and
outdated attribute

7.2.1 Critical pairs hint

This hint takes a verification grammar and applies a critical pair analysis, yielding

pairs of dependencies and conflicts, as well as a set of overlays for each critical pair. This

hint is used by several other hints described shortly.

7.2.2 Rule decoration hint

Rule decoration takes a verification grammar, extracts its set of rules, and deco-

rates each rule with a set of properties based on rule pattern. The exact decoration for each

pattern is determined by the verifier configuration. These are the decoration properties:

• Rule pattern (string): determined based on verifier configuration and rule name, this

is used when computing critical pair explanation hints.

• Mock (boolean): indicates whether this rule represents a mock or a real property of

the module net when computing reachable rules hints.

72

• Maps to operation (boolean): this decorator is used to filter out auxiliary rules when

computing unreachable operation warnings.

• Required by default (boolean): indicates whether a rule is required when computing

optional and required path hints.

• Modules, resources, attributes (arrays): these arrays contain the names of module

net structures in this rule and are used throughout the verification.

Rule decoration hint can be implemented with a loop over the rules of the verifi-

cation grammar. The values of each decorator are determined by the rule pattern, which

in turn is determined by a regular expression applied on rule name. Finding modules, re-

sources and attributes in rules is O(NR) with NR being the number of nodes in all graphs

of a rule, provided we already have a graph identification, which saves the time of going

through edges.

Rule decoration has a complexity of O(R ∗NR) over a verification grammar rule

set with R rules with names that have a fixed amount of characters.

7.2.3 Information flow hint

Information flow takes the produce-use dependency critical pairs of a verification

grammar and attaches pairs of attributes to these dependencies, such that the information

flows from the first to the second component of the pair. For example, supposing the we

have an information flow pair X1 and X2, this means that:

• Source rule of the dependency pair sets the value of X2 to the value of X1 (or a

combination of this and values of other attributes).

• Target rule of the dependency requires the value of X2.

Information flow pairs are then useful later when computing required paths, where

we will use information flow pairs to check which attributes carry important information

to required attributes.

Figure 7.2 shows possible subgraphs of critical pair overlays. Nodes X1 and X2

represent attributes, while node V is a value node. Attributes marked in dark grey are

critical objects, that is, they belong both to source as well as to target rule, and attributes

marked in light grey belong either to source or to target rule. Codes S1 to S8 are references

to Table 7.2, which shows how to process each of the subgraphs from Figure 7.2. We

73

denote X1 → X2 if there is information flow from X1 to X2.

Figure 7.2: Possible subgraphs of critical pair overlays and correspondence to Table 7.2

Note that critical pairs are potential dependencies, which means that the informa-

tion flows shown here are potential, but they may not happen, depending on how each

of the rules matches the host graph. Nevertheless, we can still use this information be-

cause we are looking for attributes which are never used to carry information, these are

the attributes that are not part of any information flow pairs.

Table 7.2: Information flow in subgraphs of critical pair overlays
Code Source rule Target rule Information flow

S1 X1 X2 There is no information flow.
S2 X1 X1, X2 It is possible that X1 → X2

S3 X1, X2 X1 It is possible that X2 → X1

S4 X1, X2 X1, X2 It is possible that both X1 → X2 and X2 → X1

S5 X1 X1 There is no information flow.
S6 ∅ ∅ There is no information flow.

S7 X1 ∅ There is no information flow, the same swapping
source/target.

S8 X1, X2 ∅ There is no information flow, the same swapping
source/target.

Information flow can be implemented with a loop of overlays. For each overlay,

we find all its subgraphs from Figure 7.2, by first looping over the nodes of the overlay to

find value nodes and then looping over nodes connected to value nodes. So far this is the

same complexity for traversing V graphs, which is O(V ∗ (NV + EV)) with V overlays

of NV nodes and EV edges.

Once we have the list of all attributes connected to a specific value, we then take

all pairs of attributes in that list. In general this is O(l2) for a list of size l. This adds to

our complexity so far making O(V ∗(EV +N2
V)) (note we have removed the NV addend).

Now for each component of a pair, we determine whether or not it is in source and

target rules, which is O(NRs + NRt), but we simplify to O(NR) with NR the greatest of

the two, and we use this information to compute the information flow according to table

above. This makes O(V ∗ (EV + N2
V ∗NR)).

74

In addition to the complexity of finding critical pairs, finding information flows

has a complexity of O(V ∗ (EV +N2
V ∗NR)) with V overlays of NV nodes and EV edges,

between rules of NR nodes.

7.2.4 Optional path hint

Optional path takes the produce-use dependency critical pairs as well as decorated

rules and produces lists of nodes and rules which are not necessary. This list of optional

nodes and rules can later be identified back to module net structures with the help of an

identification. Such nodes and rules are later presented as warnings to the user, so that

they can decide whether or not it makes sense to keep these structures in their modules.

Optional paths could be for instance operations which have been used in the past

but now are deprecated. As soon as a deprecated operation is not used anymore, it can be

removed.

Optional path is implemented with a traversal of the produce-use critical pairs

graph. Rules are considered required when they have the required by default decorator.

Rules which are the source of produce-use critical pairs with required rules as target, are

considered required as well. Nodes which are not part of any required rules are optional.

Cycles are handled as follows:

• An isolated cycle without required rules is optional.

• An isolated cycle with required rules is not optional.

• A cycle with rules that are not part of a path taking to a required rule is optional.

• A cycle with a rule that is part of a path that takes to a required rule is not optional.

Optional path is a simple graph traversal of NCP +ECP = O(R2) for critical pair

graphs with NCP nodes and ECP edges.

7.2.5 Required path hint

Required path takes information flows as well as decorated rules and produces

a list of attributes considered to be required. The goal of this hint is to find attributes

which carry information to required attributes. Note that the set of required attributes

is not necessarily the complement of optional attributes over the universe of attributes.

75

The attributes of required rules which do not carry information to required attributes are

named strictly optional attributes.

Required path is implemented with a loop over all decorated rules of a verification

grammar, filtering those rules which are required by default. Then, we perform a traversal

of the produce-use critical pairs graph starting from each of the required rules and going

backwards. That is, in the first traversal iteration we will look for critical pairs with rules

required by default as a target. The second iteration will look for rules whose target is the

result of the first iteration and so on. If we take Figure 7.3 as an example, we would start

by looking at rule E, which is required by default, then go backwards to rule D and stop

this iteration. The next iteration will start at rule D and work backwards to rule A and

stop, as there is nowhere else to go.

Figure 7.3: Example of required path hint computation

During each iteration of the traversal, for each critical pair that is found, we will

look for the information flow pairs of that critical pair and start building a path that takes to

a required rule. Only attributes in the path that takes to a required attribute are considered

required. Going back to Figure 7.3 example, in the first iteration we will note down

attribute d1, in the second iteration we note down attribute a1. Attributes belonging to

information flow pairs which are not part of any such paths are not considered required.

This is the case of a2, a3, a4 and d2 in the path to E, as well all attributes of B and C.

To summarize the example presented in Figure 7.3, we have a produce-use critical

pair graph with five rules. The only rule decorated with required by default is rule E. The

brackets indicate pairs of information flows between attributes belonging to each rule. We

can see that rules B and C, as well as attributes b1, b2 and c1 are optional, because they

are not in any required path. Rules A and D are required, as they lead to a required rule

(E). Attributes a1 and d1 are also required, because they belong to an information flow

path leading to attribute e1, which is required. Attributes a2 and d2 are neither required

nor optional, they are strictly optional attributes.

76

In the worst case scenario, we will traverse the entire critical pairs graph1, which is

NCP +ECP = O(R2), with NCP and ECP nodes and edges in the critical pairs graph and

R rules. In addition to that, we will search information flow list, which makes O(R2 +P)

with P information flow pairs.

7.2.6 Reachable rule hint

Reachable rule takes the produce-use and produce-forbid critical pairs of a veri-

fication grammar, as well as its set of decorated rules, and produces a set of rules whose

left handside requirements can be met, that is, a set of reachable rules. This hint operates

on a few assumptions:

• For each attribute and resource in the module net, verification grammar will have a

rule that produces it. We will name these rules as generators for convenience.

• If a resource/attribute is generated in the module net, its generator will be decorated

"mock: false", otherwise it will be decorated "mock: true".

• Rules are built in such a way that they create produce-use dependencies for each

attribute/resource they require, with generator rules as source.

• Rules are built in such a way that they create produce-forbid conflicts for each

attribute/resource they produce, with generator rules as source.

Reachable rule hint can be implemented with a loop over all rules, running the

whole algorithm for each single rule. When trying to determine if a rule is reachable, it

will traverse the critical pairs graph and look for produce-use dependencies with genera-

tors as source and the analysed rule as a target. If there is no such dependency, then the

rule is assumed to be reachable. If there is such a dependency, then either:

• The generator is not a mock. This is the trivial case, the rule requires a resource or

attribute which is generated, everything is fine.

• The generator is a mock. In this case, we need to find some other rule that produces

the resource or attribute this rule needs. If we cannot find a producer rule, then the

rule under analysis is not reachable.

If the rule we are analysing is the target of a produce-use dependency from a mock gen-

erator, we will have to find some rule that produces the resource/attribute this rule needs.
1Note that here we mean there is at most one edge between nodes of critical pairs graph, we use overlay

count to distinguish between critical pairs of same rules

77

This is achieved by looking for produce-forbid conflicts with that same mock generator

as source. Figure 7.4 illustrates this situation. In general, if we can find that produce-

forbid conflict, its target will be such a rule that a produce-use dependency from this rule

to the rule currently under analysis exists. The reasoning is simple: that rule produces an

attribute/resource the rule currently under analysis needs.

Figure 7.4: Example of attribute or resource not generated by the module net, but still
generated by some operation of the module net

Reachable rule hint has a complexity of 2 ∗ (NCP + ECP) = O(R2) with R rules

in the verification grammar and NCP and ECP nodes and edges in the critical pairs graph.

7.2.7 Critical pair explanation hint

A critical pair explanation takes the critical pairs of a verification grammar and

the verifier configuration and produces a list of hints. Some of the possible verifier con-

figurations for this hint are:

• Critical pairs of delete-use conflicts between rules with pattern operation can be

explained by dangling resources. The dangling resource is the critical object in the

delete-use conflict.

• Critical pairs of produce-use dependencies between rules with pattern operation or

between a generator and an operation can be explained by outdated attributes. The

outdated attribute is the critical object in the produce-use dependency.

Additionally, critical pair explanations can also be extended to neighbor rules in

the critical pairs graph. For example, if a resource is considered dangling due to a delete-

use conflict between rules R1 and R2, and rule R3 reads that same resource, then a new

dangling resource hint is created also for R3, even though there is no delete-use conflict

between R1 and R3.

78

Critical pair explanation can be implemented by a traversal of the critical pairs

graph. Matching critical pairs to a configuration is simple, provided we already have the

rule pattern (from rule decoration hint) and critical objects from the critical pair analysis.

Checking whether the critical object is a resource or attribute is also a simple operation

using the identification we have already computed. The complexity of critical pair expla-

nation is a simple graph traversal of NCP +ECP = O(R2) with NCP and ECP nodes and

edges in the critical pairs graph and R rules in the verification grammar.

7.3 Warnings

Warnings are the result of the verification and contain valuable information to

users. As such, when creating warnings, we must combine hints with identifications to

produce meaningful messages. There are different kinds of warnings and the following

subsections explain each one of them.

7.3.1 Optional attribute, resource, module or operation warning

This warning is given when the verification is able to demonstrate that there is no

scenario where this structure enables a required feature of the module net. To name a few

of such scenarios:

• A trivial example of optional attribute is an attribute which is never read and also

not required by the module net.

• A more elaborate optional attribute example is one such that its value is passed on

to another attribute, but that attribute is a trivial optional attribute.

• An example of optional operation is one that does not contribute to reaching a re-

quired structure.

• Figure 7.3 shows optional operations B and C, optional modules B and C, optional

resources B.B1 and C.C1 and optional attributes B.B1.b1, B.B1.b2 and C.C1.c1.

An optional structure is potentially a structure that was important historically, but

now it is deprecated and can be removed without affecting the required information flow

of the network. In that sense, this warning helps users identify which structures they may

want to remove from their module interfaces.

79

Optional structures warning is derived from optional path hints. Optional path

hints related to rules give rise to optional operation warnings, and optional path hints

related to nodes may create optional attribute, resource or module warnings, depending

on the identification of the node.

7.3.2 Strictly optional attribute warning

Strictly optional attribute warnings point out attributes which are in the path of

required attributes, but do not contribute directly to the information flow. Just as optional

attributes, strictly optional attributes are also structures that can be deprecated and eventu-

ally removed. An example of strictly optional attributes is depicted on Figure 7.3, where

attributes A.A1.a2 and D.D1.d2 are strictly optional. Strictly optional attribute warnings

are derived from required path hints.

7.3.3 Unreachable operation warning

Unreachable operation warnings are shown when it is impossible for an operation

to be executed due to missing resources or attributes. This is not just the case that in a

given situation the operation becomes impossible, but rather that it is never going to get

executed. Examples of unreachable operations are:

• An operation that requires resource X.X1, but that resource is not generated.

• An operation that requires attribute X.X1.x1, which is not generated, but still it is

created by another operation, which in turn is unreachable due to some other reason.

Unreachable operation warnings provide useful information for developers to de-

tect issues in the information flow, which can be due to typos in resource or attribute

names or even other kinds of failures in the specification. This kind of warning is derived

from reachable rule hints.

7.3.4 Dangling resource warning

Dangling resource warnings are shown when a resource copied from module X

to module Y is deleted from module X, leaving the Y copy of that resource dangling.

80

A dangling resource is not necessarily an issue, it is left for users to read and check

whether each dangling resource can lead to issues in their specification. Dangling resource

warnings are derived from critical pair explanation hints.

7.3.5 Outdated attribute warning

Outdated attribute warnings highlight attributes copied from module X to module

Y and then changed in module X, leaving the Y copy of that attribute with an outdated

value. An outdated attribute is not necessarily an issue, users must read and check whether

each outdated attribute can lead to issues in their specification. Outdated attribute warn-

ings are derived from critical pair explanation hints.

7.4 Complexity

Table 7.3 summarizes the complexity of the verification procedure. In particular,

the time complexity of all warnings is the same: they follow straight from hints. Here are

the meanings of each variable used:

• NX , EX : node and edge set of X

• R: set of rules

• P : set of information flow pairs

• V : set of overlays of a critical pair

• H: set of hints

• TG: type graph

Table 7.3: Time complexity of each step in the verification procedure.
Step Type Time complexity

Graph Identification Identification O(|ETG|)
Rule Decoration Hint O(|R| ∗ |NR|)
Information Flow Hint O(|V | ∗ (|EV |+ |NV |2 ∗ |NR|))

Optional Path Hint O(|R|2)
Required Path Hint O(|R|2 + |P |)

Reachable Rule Hint O(|R|2)
Critical Pair Explanation Hint O(|R|2)

Warning Generation Warning O(1)

Most of our hints are simple graph traversals, which are processed in linear time.

81

This complexity is good, considering that this is not a time critical application, and users

may tolerate to wait a little longer. The biggest concern is with critical pairs computation,

which we believe to be non-polynomial time, and on top of that is required for all of our

hints and warnings.

7.5 Limitations and final remarks

Warnings available today are very limited and some are very easy to spot, such

as an optional attribute or resource, which is just an attribute or resource that is not seen

in any operations neither is it required. As mentioned in Chapter 5, we could expand the

supported warnings by augmenting module nets with types, providing the information we

need to better analyse module nets.

There is also a concern with the dangling resource warnings, which are just not

possible with the current translation procedure, as dangling resource requires deletion

of resources, which the current translation procedure does not support. Also outdated

attribute warnings will always show when an attribute is generated or set by an operation

and then read by an operation. We believe in most of the cases this will not be useful

information, and it would be much more useful if we could couple this with some control

flow information to infer whether or not the kinds of concurrency issues we want to avoid

really can happen.

Another limitation is complexity. All of our hints and warnings are based on

critical pairs computation, and this analysis can take a lot of time and memory, when we

analyse large grammars, in terms of quantity of rules and graph sizes of those rules. There

are two ways we can approach this: we could first try to reduce rule size by improving

our translation procedure, or we could adapt verification to base it on faster critical pair

analysis configurations, such as essential critical pairs computation.

82

8 CASE STUDY

In this chapter, we review the concepts presented so far in a case study that serves

as an end-to-end example, showing that our framework can be implemented. We do not

approach the subject of scalability in this chapter.

In this case study, let us consider the example of a search engine to find research

articles and let us call this engine Research Net. Our engine is responsible for searching

for scientific articles, but it does not contain the actual research articles, which are stored

in an Inventory Service. When visiting the Research Net website, researchers can look for

scientific articles by providing their Digital Object Identifier (DOI) and clicking a "sub-

mit" button. This button sends the provided DOI to Research Net, which then computes

the ID of the article using the DOI provided and relays the request to its Inventory Service

to find its Location. An example of a source code for Research Net is depicted in Figure

8.1.

Figure 8.2 shows module net V1, which stands for the version one of our example

Research Net system. This V1 contains three modules that cascade information. Attribute

DOI is generated in resource Search of module Website, and cascaded to attribute ID in

resource Article of module ResearchNet, and then again to attribute Location in resource

Document of module InventoryService. With this module net we mean that the DOI

provided by the user is sent from the Website to Research Net, which then uses the DOI

to compute an ID. The ID is then relayed to the inventory service, which possesses the

actual article.

In V1 we have marked DOI with generate : T , because this input is provided

by the user, who is an entity external to our module net. Differently than DOI, ID is

Figure 8.1: Pseudocode for Research Net V1, functions read, find and retrieve are part
of external modules
function readSearch() {

DOI := read();
FindArticle(DOI);

}

(a) Website module

function FindArticle(doi) {
id := find(doi);
FindDocument(id);

}

(b) Research Net module

function FindDocument(id) {
location := "res/" + id;
retrieve(location);

}

(c) Inventory Service module

83

Figure 8.2: Example module net V1

Website Website
Search

generate:T
require:F

DOI
generate:T
require:F

Research
Net

Research
Net

Article
generate:T
require:F

ID
generate:F
require:F

Inventory
Service

Inventory
Service

Document
generate:T
require:F

Location
generate:F
require:T

FindArticle Search Article call DOI ID

FindDocument Article Document call ID Location

FindArticle

F indDocument

call

call

generate : F , because it requires DOI to be computed, and the same goes for Location,

which requires ID to be computed. We mark all resources generate : T , as we assume

they are always available.

In this module net, we have not modeled the return path, where the article is re-

turned back to the user, and for that reason we mark the Location attribute with required :

T , meaning that this attribute is passed to some other operation external to our module

net.

8.1 Outdated attribute warnings in research net V1

When translated with our MIGRATE prototype, module net V1 turns into a graph

grammar with eleven rules, all of which are in the critical pairs analysis (CPA) graph in

Figure 8.3. Looking at the graph we notice the produce-use dependency from generate-

Website.Search.DOI to GET.call-FindArticle, and because we know DOI is generated by

the first rule (based on the name of that rule), we can conclude1 DOI is the product of

first rule that is used by the second rule. In addition to that, because this is a produce-use

dependency between a rule of type generator and a rule of type operation, we have found

a critical pair explanation hint and DOI is an outdated attribute.

If we run the verification procedure it will find just three warnings:

• Attribute Website.Search.DOI is an outdated-attribute because of rules generate-

Website.Search.DOI and GET.call-FindArticle, meaning that generate-Website.Search.DOI

1This reasoning is not valid for graph grammars in general, but it works for verification grammars due
to how we have built and named rules of such grammars.

84

Figure 8.3: Critical pair analysis graph for research net V1

can change the value of Website.Search.DOI after it has been read by GET.call-

FindArticle

• Rules GET.return-FindArticle and GET.return-FindDocument are optional-rules,

because they do not contribute to reaching any required attributes or resources

The interpretation we give to the warnings above is that a user may decide to look

for DOI 00.0000/fizz and submit this search, but shortly after that, user changes their mind

and sends a new search for 00.0000/buzz, all that while ResearchNet is still trying to find

00.0000/fizz.

8.2 Unreachable operation warnings in research net V2

If we were to change V1 and create a new module net for version two, V2, where

everything is the same, except that attribute Website.Search.DOI is not generated, then

we would get a CPA graph very similar to that of Figure 8.3, except that in place of rule

generate-Website.Search.DOI, we now have mockgenerate-Website.Search.DOI. With such,

we note that we now have a situation with a produce-use dependency from a mock rule

M (mockgenerate-Website.Search.DOI) to some other rule R (GET.call-FindArticle) and

we must find a rule P such that M →PF P →PU R. We note that there is no such P and

thus rule GET.call-FindArticle is unreachable. This causes a cascade effect on rules that

85

depend on GET.call-FindArticle using the same reasoning we just did. This time we have

a few different warnings:

• Operation FindArticle is a unreachable-operation, because it needs attribute Web-

site.Search.DOI to execute, but that attribute is not obtainable anywhere in V2

• Operation FindDocument is a unreachable-operation, because it needs attribute

ResearchNet.Article.ID to execute, but that attribute is not obtainable anywhere,

attribute ResearchNet.Article.ID used to be obtained by FindArticle, but that op-

eration is not reachable in V2

• Rule require-InventoryService.Document.Location is a unreachable-operation, be-

cause this attribute is not obtainable anywhere

• Just as before, rules GET.return-FindArticle and GET.return-FindDocument are

optional-rules, because they do not contribute to reaching any required attributes

or resources

This means that Research net cannot work without users, because the entire search

engine is triggered by user demand. If we were to remove user input, as we did in V2,

then MIGRATE prototype warns us that we lack the user input necessary to perform our

operations. In addition to that, we are not able to send articles to users anymore (require-

InventoryService.Document.Location is a unreachable-operation).

8.3 Optional attribute warnings in research net V3

Figure 8.4 shows module net V3, which is a modified version of V1 where we

have added two new attributes to module Website, Website.Search.Title (meaning the title

of article that users want to search) and Website.Search.Region (meaning the geograph-

ical place where users are), and one new attribute to module ResearchNet, Research-

Net.Article.History (meaning a history of regions of users that have accessed this article).

If we look at the CPA graph for V3 in Figure 8.5, we notice that rule mockgenerate-

Website.Search.Title is not source of any dependencies or conflicts, meaning this attribute

is completely isolated, therefore it must be optional, since it does not contribute to any-

thing. Now for the other attributes, we notice in particular that Region and History are

in a path to reaching rule require-InventoryService.Document.Location, so they could be

necessary. For that reason, we analyse the information flow hint for this CPA graph:

86

Figure 8.4: Example module net V3

DOI
generate:T
require:F

Title
generate:F
require:F

Website Website
Search

generate:T
require:F

Region
generate:T
require:F

Research
Net

Research
Net

Article
generate:T
require:F

ID
generate:F
require:F

History
generate:F
require:F

Inventory
Service

Inventory
Service

Document
generate:T
require:F

Location
generate:F
require:T

FindArticle Search Article call DOI ID

Region History

F indDocument Article Document call ID Location

FindArticle

F indDocument

call

call

• Information flows from DOI to ID due to produce-use dependency from GET.call-

FindArticle to GET.call-FindDocument

• Information flows from ID to Location due to produce-use dependency from GET.call-

FindDocument to require-InventoryService.Document.Location

Looking at information flow hints, we realize neither Region nor History is neces-

sary, thus these attributes are strictly-optional-attributes.

This time we have ten warnings:

• Attribute Website.Search.Title is both optional-attribute and strict-optional-attribute,

because it is neither required nor used anywhere

• Attribute Website.Search.Region is a strict-optional-attribute, because although it is

used in a operation that contributes to a required attribute (InventoryService.Document.

Location), attribute Region is not necessary to reach that attribute neither is it re-

quired

• Attribute ResearchNet.Article.History is a strict-optional-attribute, for the same

reasons as Website.Search.Region

• Like in V1, attribute Website.Search.DOI is a outdated-attribute because of rules

generate-Website.Search.DOI and GET.call-FindArticle, meaning that generate-Web

site.Search.DOI can change the value of Website.Search.DOI after it has been read

by GET.call-FindArticle

87

Figure 8.5: Critical pair analysis graph for research net V3

• Rules mockgenerate-Website.Search.Title and mockgenerate-ResearchNet.Article.

History are optional-rules, because they do not contribute to reaching any required

attributes or resources

• Just as before, rules GET.return-FindArticle and GET.return-FindDocument are

optional-rules, because they do not contribute to reaching any required attributes

or resources

By looking at warnings above, we realize that although we have declared attribute

Title, we have not used it anywhere, so it really is not necessary. In addition to that, we

have added attributes Region and History, and we have used Region to compute the value

of History, but we have not used History in any way (it is not required), thus although we

compute this information, it is also not necessary.

In V3, we saw optional attributes. The difference between them and non-optional

attributes is that optional attributes were neither required nor did they contribute directly

to reach some required attribute. To prevent optional attribute warnings, we could have

simply marked these attributes as required, but what makes an attribute required? In this

example, we choose to set required : T for those attributes that are handed over to some

function, which does not have a counterpart in the module net.

88

9 RELATED WORK

Unlike other approaches, this work tackles the problem of integration from a per-

spective of modules, independently of whether a module is a library, service or something

else. Because related work aims strictly to either library integration or service integra-

tion, we separate these two in different sections here. We also have a third section for

the applications of graph grammars, which are used extensively in this work. Through-

out this section we distinguish static from dynamic approaches, where by static we mean

approaches that do not require code execution and by dynamic we mean approaches that

do.

9.1 Integration of Libraries

Dynamic checks with tests: don’t-break is a JavaScript module that uses auto-

mated tests of dependencies to determine whether an update to a library breaks its depen-

dencies (BAHMUTOV, 2018). In (MUJAHID et al., 2020) the authors applied this same

approach to ten faulty versions of different JavaScript modules and successfully identified

the breaking changes in six of ten. Automated tests can be used either by dependency de-

velopers to find out if their changes to a module break dependencies or by consumers of

a dependency who want to update a dependency, while making sure that it does not break

their software. Developers often commit code that breaks tests and thus it can be difficult

to find dependency tests on which to rely (MUJAHID et al., 2020).

NOREGRETS and its successor NOREGRETS+ (MøLLER; TORP, 2019) use

consumer tests to create models of data flow together with type information between

a library and its consumers. The models can then be used to check that each call to

an updated library function still returns the same type and that the updated library still

uses the same subset of arguments it used before the update. NOREGRETS+ can output

false positives, for example, when a library introduces a new configuration argument and

reads this new argument, thus changing the subset of arguments it used before the update

(MøLLER; TORP, 2019).

A drawback of test-based approaches is the requirement of having tests. Tests can

have low code coverage and reach only a few functions of dependencies, which imposes

a requirement for a huge number of consumers and consumer tests in order to have mean-

ingful results. In other words, the approach of using tests is better advised for libraries

89

which are widely used and whose clients have many tests and use the whole interface of

their dependencies. Even when code coverage is high, unit tests tend to mock dependen-

cies, which makes these tests less useful for the kinds of integration issues we want to

find. Another drawback of approaches based purely on tests is that, although tests may

indicate that something is broken, they usually do not point out exactly the cause.

Static checks with diffs: Veracode is a verification tool that statically checks

software to determine which dependencies can be updated to fix vulnerabilities. In (FOO

et al., 2018) the authors present the Veracode algorithm to determine if the update of a

dependency is safe to apply. The algorithm first computes the diff between current and

target dependency version, consisting of inserted, deleted or changed methods. A few

other types of changes are used to combine version updates and produce a diff between

arbitrary versions, not just single updates. Next, Veracode computes the call graph of

consumer code and matches it to the computed diff to determine whether the changes

in the target version break consumer code. A major drawback of this approach is that

it needs two versions to compute a diff, which gets worse when we consider transitive

dependencies (FOO et al., 2018). Additionally, due to hashes used to determine whether

a function was changed, simple syntactic changes can give rise to false positives (FOO et

al., 2018).

APIDIFF (BRITO et al., 2018a) is another static check tool that looks for syn-

tactic changes to library interfaces. Specifically, APIDIFF lays out three elements that

can suffer changes, namely types, methods and fields, and for each element APIDIFF can

detect a series of breaking and non-breaking changes, such as adding final modifier to a

type or removing a method or field. In opposition to Veracode, APIDIFF does not address

changes to the implementation of libraries (BRITO et al., 2018a). Additionally, APID-

IFF can present false positives if the breaking changes are found in internal or external

elements that are not used by clients (BRITO et al., 2018a).

Static checks with symbolic execution: (MORA et al., 2018) presents a tool

called CLEVER with a new concept of "client-specific equivalence", which disregards

changes to signatures and concentrates on behavior equivalence. This approach takes

consumer code and two library versions to determine whether the updated version keeps

the behavior the previous version had, when consumed by the client provided. CLEVER

works by applying symbolic execution to both pairs of (client, previous lib version)

and (client, new lib version) and determining whether code activated by client has been

changed in the new lib version considering input constraints provided by the symbolic

90

execution. If code has been changed, CLEVER tries to find counterexamples where the

behavior of the new lib version is different from the previous lib version. CLEVER re-

quires library interfaces to remain unchanged between versions compared (MORA et al.,

2018). Moreover, due to the symbolic execution engines underneath, CLEVER only sup-

ports variables of integer types (MORA et al., 2018). There are many symbolic execution

tools available for use. The authors of CLEVER claim that their approach is better than

others to solve integration issues because CLEVER only considers paths of integration be-

tween consumer and library, whereas other tools take all paths into consideration, solving

a much larger problem than needed (MORA et al., 2018).

Table 9.1 summarizes the approaches listed so far. Approaches based on diffs

determine whether or not a change was made to the implementation. Whereas diff checks

cannot handle the behavior of functions, testing approaches are able to verify that the

behavior is the same, but only for those cases covered by tests. In contrast, symbolic

execution can cover every possible path by computing constraints on inputs imposed by

client code. In comparison, our approach does not require automated tests and we suggest

extracting module nets from source code directly. Unlike other approaches, we do not

reason about the behavior of functions such as control flow, but rather we concentrate on

data flow to find issues such as whether or not a module finds the data it needs in order to

call an operation of another module.

Table 9.1: Approaches found in related works to evaluate library integration.
Execution Analysis Languages Name Reference
Dynamic Testing JavaScript - (MUJAHID et al., 2020)
Dynamic Models JavaScript NOREGRETS+ (MøLLER; TORP, 2019)

Static Diffs Java, Python, Ruby Veracode (FOO et al., 2018)
Static Diffs Java APIDIFF (BRITO et al., 2018a)
Static Symbolic Execution Python CLEVER (MORA et al., 2018)
Static Graph Grammar / CPA None so far MIGRATE this work

9.2 Integration of Services

Perhaps the most similar work to ours is (HAUSMANN; HECKEL; LOHMANN,

2004), which couples class diagrams (representations of ontologies) with graph gram-

mars1 that specify the behavior of services. With such specifications:

1Graph grammars in that approach are linked to operations that have names, arguments and return values.
Arguments of such operations can be referenced in graph grammar rules. One key difference of the graph
grammar formalism used in the cited work is that they have two kinds of negative application conditions:
pre-conditions, which apply before rule application and post-conditions, which apply after rule application.

91

1. clients can leverage ontologies to generate type graphs, then specify requirements

as graph grammar rules and match these requirements to service specifications to

check if a service does what clients want (HAUSMANN; HECKEL; LOHMANN,

2004)

2. service registries can take service specifications in the form of graph grammars and

generate and execute tests, for single operations as well as sequences of operations

generated with critical pair analysis (CPA), ensuring service correctness prior to

making that service available (HECKEL; MARIANI, 2005)

3. visual contracts, essentially graph grammars, which they define with a UML meta-

model, are used as input to a tool that generates annotations containing java model-

ing language (JML) contracts to be evaluated during runtime, essentially monitoring

that the application / service conforms to its specification (ENGELS et al., 2006)

All of the above was consolidated in (LOHMANN; MARIANI; HECKEL, 2007).

In (KHAN; HECKEL, 2011) this approach was extended reducing the set of tests that

need to run to find regression issues when evolving services. The key is to lay out

traces, sequences of operations, and keep track of changes in critical pairs graph (KHAN;

HECKEL, 2011). The approach was also further extended to generate test coverage cri-

teria based on critical pair analysis (CPA) (KHAN; RUNGE; HECKEL, 2012).

The work mentioned above has many similarities to our work, such as the goal

of checking the integration of services and achieving that goal using graph grammars, as

well as pairing operations with graph grammar rules and even using AGG. Because the

work above is so similar to ours, we list the following points of divergence:

• In their solution, models come first, which means that instead of spending time

writing integration code, developers will specify intended behavior through graph

grammar rules that can be translated back to ontologies. Our work puts models in

background. First, developers write integration code and then we generate models

automatically from code. Additionally, their work requires knowledge of graph

grammars, while we provide tools to automate the verification process.

• Their solution uses a single graph grammar rule as representation for an operation,

whereas we use two rules.

• They concentrate on services, while we created the notion of module nets, enabling

verification of not only services but also libraries and anything else that can be

considered a module.

92

• They use data flow for example in (HECKEL; MARIANI, 2005) to generate cover-

age criteria, interpreting def-use pairs based on graph grammar rules. We consider

def-use pairs to extract models from source code.

• Whereas their goals are to match and test specifications, we generate a set of warn-

ings.

• Perhaps most important is that even though the work above abstracts service im-

plementation and handles it at the interface level, it still considers the behavior of

service operations, including expressions to compute attribute values and control

flow conditions. We only consider data flow, abstracting away everything else.

Dynamic checks: "Differential Regression Testing" for REST services is pre-

sented in (GODEFROID; LEHMANN; POLISHCHUK, 2020), where they compare the

outputs of two tests with the same inputs looking for regressions. The authors suggest

interacting with services through automatically generated clients (SDKs2) and thus they

test the client/service integration. Furthermore, they describe two kinds of tests: (i) one

that keeps the client version and varies the service version and (ii) one where client ver-

sion varies. Whilst (i) looks for regressions on the service side, (ii) looks for regressions

in the generated clients and specifications (GODEFROID; LEHMANN; POLISHCHUK,

2020). The authors highlight that in comparison to static diff approaches, testing ensures

that faults are actually present and not just issues in the documentation (GODEFROID;

LEHMANN; POLISHCHUK, 2020). An issue with this approach is that it is not a fully

automatic solution, but instead, provides experts with diff files that need to be manually

inspected. In general, an issue with testing approaches is shadowing, where a bug in a

request prevents testing other requests that depend on the first one.

Static preventive approaches: Besides graph grammars, there are many other ap-

proaches to service integration problems. Relaxing signatures is suggested in (BOROVSKIY

et al., 2009), where authors suggest that service designers keep their interfaces as generic

as possible, thus preventing integration faults.

Static checks: In (GUINEA; SPOLETINI, 2011) the authors suggest a new lan-

guage they call ISC (Interaction Sequence Charts) and provide an algorithm to evaluate

the degree of compatibility of candidate services to replace another service. Like in our

approach, they do not include expressions to calculate attribute values, but differently than

we do, they do consider control flow and operation order.

2software development kits, usually automatically generated from service specifications such as Ope-
nAPI / Swagger.

93

A diff approach has been proposed in (BECKER et al., 2008), where authors split

service interfaces in types (operations and attributes) and models (classes and associa-

tions). They provide an algorithm for computing whether a new service version is back-

wards compatible or incompatible3 based on a set of allowed diffs such as adding new

methods or classes. Any diff that is not in that set causes the changes to be regarded

incompatible (BECKER et al., 2008).

Table 9.2: Approaches found in related works to evaluate service integration.
Execution Analysis Languages Reference
Dynamic Test generation and execution REST / HTTP (GODEFROID; LEHMANN; POLISHCHUK, 2020)
Dynamic Test generation and execution Visual contracts (HECKEL; MARIANI, 2005)
Dynamic JML generation and monitoring Visual contracts (ENGELS et al., 2006)

Static Specification matching Visual contracts (HAUSMANN; HECKEL; LOHMANN, 2004)
Static Specification matching ISC (GUINEA; SPOLETINI, 2011)
Static Diffs any (BECKER et al., 2008)
Static Sign. relaxing (preventive) any (BOROVSKIY et al., 2009)
Static Graph Grammar / CPA Module nets this work

9.3 Graph grammar applications

Our work can be divided into three phases: (i) transformation of code into module

nets (model extraction); (ii) translation of module nets into graph grammars with graph

grammars as the translation engine; and (iii) verification of module nets as graph gram-

mars.

The model extraction (i) is concerned with the extraction of models from source

code, where the output models may be graph grammars (in our case the output is a module

net). Extraction of graph grammars from a Java code was first seen in (CORRADINI et

al., 2004), although they used hypergraphs and only covered a fragment of the language,

excluding features such as loops and arrays. They also highlight the existence of "control

garbage", code paths that are never activated (CORRADINI et al., 2004). One of our

goals in this work is to uncover some kinds of "control garbage".

In (DUARTE; RIBEIRO, 2017) the authors have translated Java code into graph

grammars using code annotations to generate traces, and then using a tool previously built

to generate context information out of traces. With this approach, they are able to extract

dynamic information from traces, ensuring that paths analysed can actually occur, but

possibly missing behaviors that do not occur in tests. The main drawback is that they

included control flow in the translation, which increases largely the amount of rules. The
3The algorithm has also a third output value, undetermined, in case the version under analysis is lower

than the previous version, which contradicts the backwards compatibility analysis goal.

94

authors suggest algorithms to merge rules (DUARTE; RIBEIRO, 2017). Our work does

not include control flow.

The model transformation (ii) is concerned with the transformation of models

from one language to another using graph grammars as the transformation engine. A de-

sirable property for model transformation is functional behavior. Graph grammars can ex-

hibit functional behavior as long as they are terminating and confluent, which is illustrated

in (HECKEL; KüSTER; TAENTZER, 2002) with the transformation from statecharts

to Communicating Sequential Processes (CSP). Graph grammars have also been used

to transform class diagrams encoded in XMI format (XML metadata interchange) into

entity-relationship diagrams in WebML format (Web Modeling Language) (TAENTZER;

CARUGHI, 2006). An advantage of this approach is that it produces reversible transfor-

mations. The authors highlight as main disadvantage the fact that matching a rule to a

graph is a NP-complete problem (TAENTZER; CARUGHI, 2006).

Triple graph grammars (TGG) are the more standard approach to model transfor-

mation, because they allow forward and backward transformations. Although TGGs exist

since 1994, it was only in (EHRIG et al., 2007) that they were defined in terms of cate-

gory theory, enabling their use in AGG. This same article is illustrated with an example

transformation from class diagrams to entity-relation diagrams.

Graph grammars have been used to transform models of REST4 services, from

conversation based into interaction based models (HAUPT; LEYMANN; PAUTASSO,

2015). With the automatic transformation, the authors intend to allow easy specification

on simple conversation models and code synthesis from more detailed interaction based

models (HAUPT; LEYMANN; PAUTASSO, 2015). Because they want to enable code

synthesis, they concentrate on REST implementation features, such as HTTP protocol

and HATEOAS (hypermedia as the engine of application state), whereas our approach

abstracts these features away into a module net which keeps just the information flow.

Table 9.3: Related works with graph grammars concerning model extraction (i) and model
transformation (ii)

Purpose Approach Source Target Reference
(i) Source code parsing Java (fragment) AGG (CORRADINI et al., 2004)
(i) Traces from tests Java AGG (DUARTE; RIBEIRO, 2017)
(i) Source code parsing JavaScript Module net this work
(ii) Derivation (AGG) Statecharts CSP (HECKEL; KüSTER; TAENTZER, 2002)
(ii) Derivation (AGG) XMI WebML (TAENTZER; CARUGHI, 2006)
(ii) Derivation (AGG, TGG) class diagrams ER diagrams (EHRIG et al., 2007)
(ii) Derivation (AGG) REST / HTTP REST / HTTP (HAUPT; LEYMANN; PAUTASSO, 2015)
(ii) Derivation (AGG) Module net Graph Grammar this work

4representational state transfer (FIELDING, 2000)

95

The verification (iii) is concerned with the verification of systems specified us-

ing graph grammars, in particular such grammars model how a system behaves, with its

rules representing state transitions in the system. We do not propose new verification

methods for graph grammars, but instead we leverage existing methods to create our own

verification algorithms.

AGG 2.0 is a full graph grammar engine and graphical user interface one of the

few supporting critical pair analysis (CPA) (RUNGE; ERMEL; TAENTZER, 2012) along

with Verigraph (COSTA et al., 2016). Many other tools exist which handle graph gram-

mars differently, such as GROOVE.

Table 9.4: Related works with graph grammars concerning verification.
Approach Name Reference

Critical Pair Generation AGG 2.0 (RUNGE; ERMEL; TAENTZER, 2012)
Critical Pair Generation VeriGraph (COSTA et al., 2016)

Critical Pair Interpretation MIGRATE this work

96

10 CONCLUSION

In this work we set out to address the problem of module integration using graph

grammars. We have created a verification framework that allows us to generate warnings

telling developers which integrations need their attention. We have provided a prototype

that implements the translation and verification procedures of MIGRATE framework and

we demonstrated these procedures in a case study.

MIGRATE framework imposes certain requirements on graph grammars it anal-

yses, such as having specific rule names and rule patterns, as well as nodes and edges

that can be interpreted back to operations, modules, resources, attributes and values. We

needed a way to ensure graph grammars that we analyse meet such requirements, while at

the same time providing developers with the ability to make changes to models directly.

For those reasons, we have created module nets, which are a formalism to express how

modules integrate to each other. However, we have not defined a semantics of module

nets, instead we have created a translation procedure that assigns a (verification) graph

grammar as semantics of a module net. This enabled us to leverage existing critical pairs

analysis theory, and also will enable us to leverage all different analysis techniques that

have been developed for graph grammars in future work. We have demonstrated how to

translate module nets into verification grammars using graph grammars and proven that

our translation procedure terminates, as well as argued that it creates well-defined veri-

fication grammars. We have leveraged critical pairs analysis of verification grammars to

build a verification procedure that points out different kinds of warnings related to the

structures in module nets.

We have many limitations to address in the future:

Extraction lacks an algorithm to extract module nets from source code

Module nets operations are interpreted as simple read operations, we cannot specify cre-

ations or deletions, and operation graphs do not allow edges between resources of

the same module, which also constrains the warnings we support

Translation is difficult for small module nets, and unfeasible for bigger module nets,

because the host graph grows with each application of a translation rule, which

makes it harder and harder to find matches

Verification is built on top of critical pairs analysis, which is very costly

Warnings concentrate on simple flow of information and, in general, are not very useful

97

There are two major areas that will need our attention when extending the proto-

type and building a verifier tool using the concepts of this work: support of larger module

nets in terms of memory and time, and meaning of warnings.

Larger module nets are specially difficult to handle during the derivation proce-

dure applied in translation and the critical pairs computation. Considering our translation

grammar is confluent, we could improve derivation by avoiding match randomization and

always applying the first match we find. Critical pairs could be improved if we restricted

it to the generation of essential (LAMBERS; EHRIG; OREJAS, 2008) or even initial

(AZZI; CORRADINI; RIBEIRO, 2019) critical pairs, thus greatly reducing the amount

of pairs generated. Another improvement would be to stop the search once we have found

meaningful critical pairs, avoiding generation of redundant pairs that would lead to the

same warnings in the end.

In order to improve the warnings we support, we will have to improve each of the

procedures we have presented, extending module nets to support more operation types,

and changing MIGRATE procedures accordingly. Also we have concentrated in finding

issues due to information flow, such as a attribute which is not necessary because it does

not carry information to required attributes. However, we completely disregard control

flow issues, which can lead to all sorts of bugs when changed, even if the flow of in-

formation is unchanged. Expanding the types of warnings we support is left for future

work.

98

REFERENCES

ABDALKAREEM, R. et al. Why do developers use trivial packages? an empirical
case study on npm. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2017. Paderborn, Germany:
ACM Press, 2017. p. 385–395. ISBN 978-1-4503-5105-8. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=3106237.3106267>.

ABDALKAREEM, R. et al. On the impact of using trivial packages: an empirical
case study on npm and PyPI. Empirical Software Engineering, v. 25, n. 2, p.
1168–1204, mar. 2020. ISSN 1382-3256, 1573-7616. Available from Internet:
<http://link.springer.com/10.1007/s10664-019-09792-9>.

AUÉ, J. et al. An exploratory study on faults in web API integration in a large-scale
payment company. In: Proceedings of the 40th International Conference on Software
Engineering Software Engineering in Practice - ICSE-SEIP ’18. Gothenburg,
Sweden: ACM Press, 2018. p. 13–22. ISBN 978-1-4503-5659-6. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=3183519.3183537>.

AZZI, G. G.; CORRADINI, A.; RIBEIRO, L. On the essence and initiality of conflicts
in M-adhesive transformation systems. Journal of Logical and Algebraic Methods in
Programming, v. 109, p. 100482, dec. 2019. ISSN 2352-2208. Available from Internet:
<https://www.sciencedirect.com/science/article/pii/S2352220818301639>.

BAHMUTOV, G. dont-break. 2018. Available from Internet: <https://www.npmjs.com/
package/dont-break>.

BECKER, K. et al. Automatically Determining Compatibility of Evolving Services. In:
2008 IEEE International Conference on Web Services. Beijing, China: IEEE, 2008.
p. 161–168. Available from Internet: <http://ieeexplore.ieee.org/document/4670172/>.

BOGART, C. et al. How to break an API: cost negotiation and community values in three
software ecosystems. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering - FSE 2016. Seattle, WA, USA:
ACM Press, 2016. p. 109–120. ISBN 978-1-4503-4218-6. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=2950290.2950325>.

BOROVSKIY, V. et al. Ensuring service backwards compatibility with Generic Web
Services. In: 2009 ICSE Workshop on Principles of Engineering Service Oriented
Systems. Vancouver, BC, Canada: IEEE, 2009. p. 95–98. ISBN 978-1-4244-3716-0.
Available from Internet: <http://ieeexplore.ieee.org/document/5068827/>.

BRITO, A. et al. APIDiff: Detecting API breaking changes. In: 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering
(SANER). Campobasso: IEEE, 2018. p. 507–511. ISBN 978-1-5386-4969-5. Available
from Internet: <http://ieeexplore.ieee.org/document/8330249/>.

BRITO, A. et al. Why and How Java Developers Break APIs. 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering
(SANER), p. 255–265, mar. 2018. ArXiv: 1801.05198. Available from Internet:
<http://arxiv.org/abs/1801.05198>.

http://dl.acm.org/citation.cfm?doid=3106237.3106267
http://link.springer.com/10.1007/s10664-019-09792-9
http://dl.acm.org/citation.cfm?doid=3183519.3183537
https://www.sciencedirect.com/science/article/pii/S2352220818301639
https://www.npmjs.com/package/dont-break
https://www.npmjs.com/package/dont-break
http://ieeexplore.ieee.org/document/4670172/
http://dl.acm.org/citation.cfm?doid=2950290.2950325
http://ieeexplore.ieee.org/document/5068827/
http://ieeexplore.ieee.org/document/8330249/
http://arxiv.org/abs/1801.05198

99

CORRADINI, A. et al. Translating Java Code to Graph Transformation Systems. In:
EHRIG, H. et al. (Ed.). Graph Transformations. Berlin, Heidelberg: Springer, 2004.
(Lecture Notes in Computer Science), p. 383–398. ISBN 978-3-540-30203-2.

CORRADINI, A. et al. ALGEBRAIC APPROACHES TO GRAPH TRANS-
FORMATION – PART I: BASIC CONCEPTS AND DOUBLE PUSHOUT
APPROACH. In: Handbook of Graph Grammars and Computing
by Graph Transformation. WORLD SCIENTIFIC, 1997. p. 163–245.
ISBN 978-981-02-2884-2 978-981-238-472-0. Available from Internet:
<http://www.worldscientific.com/doi/abs/10.1142/9789812384720_0003>.

COSTA, A. et al. Verigraph: A System for Specification and Analysis of Graph
Grammars. In: RIBEIRO, L.; LECOMTE, T. (Ed.). Formal Methods: Foundations
and Applications. Cham: Springer International Publishing, 2016. (Lecture Notes in
Computer Science), p. 78–94. ISBN 978-3-319-49815-7.

DECAN, A.; MENS, T.; CLAES, M. An empirical comparison of dependency issues
in OSS packaging ecosystems. In: 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER). Klagenfurt,
Austria: IEEE, 2017. p. 2–12. ISBN 978-1-5090-5501-2. Available from Internet:
<http://ieeexplore.ieee.org/document/7884604/>.

DECAN, A.; MENS, T.; CONSTANTINOU, E. On the Evolution of Technical
Lag in the npm Package Dependency Network. In: 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). Madrid:
IEEE, 2018. p. 404–414. ISBN 978-1-5386-7870-1. Available from Internet:
<https://ieeexplore.ieee.org/document/8530047/>.

DECAN, A.; MENS, T.; GROSJEAN, P. An empirical comparison of dependency
network evolution in seven software packaging ecosystems. Empirical Software
Engineering, v. 24, n. 1, p. 381–416, feb. 2019. ISSN 1382-3256, 1573-7616. Available
from Internet: <http://link.springer.com/10.1007/s10664-017-9589-y>.

DUARTE, L. M.; RIBEIRO, L. Graph Grammar Extraction from Source Code.
In: CAVALHEIRO, S.; FIADEIRO, J. (Ed.). Formal Methods: Foundations
and Applications. Cham: Springer International Publishing, 2017. v. 10623, p.
52–69. ISBN 978-3-319-70847-8 978-3-319-70848-5. Series Title: Lecture Notes
in Computer Science. Available from Internet: <http://link.springer.com/10.1007/
978-3-319-70848-5_5>.

EHRIG, H. Introduction to the algebraic theory of graph grammars (a survey). In:
CLAUS, V.; EHRIG, H.; ROZENBERG, G. (Ed.). Graph-Grammars and Their
Application to Computer Science and Biology. Berlin, Heidelberg: Springer, 1979.
(Lecture Notes in Computer Science), p. 1–69. ISBN 978-3-540-35091-0.

EHRIG, H. (Ed.). Fundamentals of algebraic graph transformation. Berlin ;
New York: Springer, 2006. (Monographs in theoretical computer science). OCLC:
ocm69242087. ISBN 978-3-540-31187-4.

EHRIG, H. et al. Information Preserving Bidirectional Model Transformations.
In: DWYER, M. B.; LOPES, A. (Ed.). Fundamental Approaches to Software

http://www.worldscientific.com/doi/abs/10.1142/9789812384720_0003
http://ieeexplore.ieee.org/document/7884604/
https://ieeexplore.ieee.org/document/8530047/
http://link.springer.com/10.1007/s10664-017-9589-y
http://link.springer.com/10.1007/978-3-319-70848-5_5
http://link.springer.com/10.1007/978-3-319-70848-5_5

100

Engineering. Berlin, Heidelberg: Springer, 2007. (Lecture Notes in Computer Science),
p. 72–86. ISBN 978-3-540-71289-3.

EHRIG, H. et al. (Ed.). Handbook of graph grammars and computing by graph
transformation: vol. 2: applications, languages, and tools. USA: World Scientific
Publishing Co., Inc., 1999. ISBN 978-981-02-4020-2.

EHRIG, H. et al. Algebraic approaches to graph transformation - part ii: Single pushout
approach and comparison with double pushout approach. In: . Handbook of
Graph Grammars and Computing by Graph Transformation. [s.n.], 1997. p.
247–312. Available from Internet: <https://www.worldscientific.com/doi/abs/10.1142/
9789812384720_0004>.

ENGELS, G. et al. Model-Driven Monitoring: An Application of Graph Transformation
for Design by Contract. In: CORRADINI, A. et al. (Ed.). Graph Transformations.
Berlin, Heidelberg: Springer, 2006. (Lecture Notes in Computer Science), p. 336–350.
ISBN 978-3-540-38872-2.

FIELDING, T. Architectural Styles and the Design of Network-based Software
Architectures. Thesis (PhD) — University of California, 2000.

FOO, D. et al. Efficient static checking of library updates. In: Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering - ESEC/FSE 2018.
Lake Buena Vista, FL, USA: ACM Press, 2018. p. 791–796. ISBN 978-1-4503-5573-5.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=3236024.3275535>.

FOWLER, M. TolerantReader. 2011. Available from Internet: <https://martinfowler.
com/bliki/TolerantReader.html>.

FOWLER, M. Microservices. 2014. Available from Internet: <https://martinfowler.com/
articles/microservices.html>.

FOWLER, M. IntegrationTest. 2018. Available from Internet: <https://martinfowler.
com/bliki/IntegrationTest.html>.

GODEFROID, P.; LEHMANN, D.; POLISHCHUK, M. Differential regression
testing for REST APIs. In: Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. Virtual Event USA: ACM,
2020. p. 312–323. ISBN 978-1-4503-8008-9. Available from Internet: <https:
//dl.acm.org/doi/10.1145/3395363.3397374>.

GUINEA, S.; SPOLETINI, P. Evaluating the compatibility of conversational service
interactions. In: Proceeding of the 3rd international workshop on Principles of
engineering service-oriented systems - PESOS ’11. Waikiki, Honolulu, HI, USA:
ACM Press, 2011. p. 29–35. ISBN 978-1-4503-0591-4. Available from Internet:
<http://portal.acm.org/citation.cfm?doid=1985394.1985399>.

HAUPT, F.; LEYMANN, F.; PAUTASSO, C. A Conversation Based Approach for
Modeling REST APIs. In: 2015 12th Working IEEE/IFIP Conference on Software
Architecture. Montreal, QC, Canada: IEEE, 2015. p. 165–174. ISBN 978-1-4799-1922-
2. Available from Internet: <http://ieeexplore.ieee.org/document/7158518/>.

https://www.worldscientific.com/doi/abs/10.1142/9789812384720_0004
https://www.worldscientific.com/doi/abs/10.1142/9789812384720_0004
http://dl.acm.org/citation.cfm?doid=3236024.3275535
https://martinfowler.com/bliki/TolerantReader.html
https://martinfowler.com/bliki/TolerantReader.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/IntegrationTest.html
https://martinfowler.com/bliki/IntegrationTest.html
https://dl.acm.org/doi/10.1145/3395363.3397374
https://dl.acm.org/doi/10.1145/3395363.3397374
http://portal.acm.org/citation.cfm?doid=1985394.1985399
http://ieeexplore.ieee.org/document/7158518/

101

HAUSMANN, J. H.; HECKEL, R.; LOHMANN, M. Model-based Discovery of Web
Services. In: Proceedings of the IEEE International Conference on Web Services.
USA: IEEE Computer Society, 2004. (ICWS ’04), p. 324. ISBN 978-0-7695-2167-1.

HECKEL, R.; KüSTER, J. M.; TAENTZER, G. Confluence of Typed Attributed Graph
Transformation Systems. In: CORRADINI, A. et al. (Ed.). Graph Transformation.
Berlin, Heidelberg: Springer, 2002. (Lecture Notes in Computer Science), p. 161–176.
ISBN 978-3-540-45832-6.

HECKEL, R.; MARIANI, L. Automatic Conformance Testing of Web Services. In:
CERIOLI, M. (Ed.). Fundamental Approaches to Software Engineering. Berlin,
Heidelberg: Springer, 2005. (Lecture Notes in Computer Science), p. 34–48. ISBN
978-3-540-31984-9.

KHAN, T. A.; HECKEL, R. On Model-Based Regression Testing of Web-Services
Using Dependency Analysis of Visual Contracts. In: GIANNAKOPOULOU, D.;
OREJAS, F. (Ed.). Fundamental Approaches to Software Engineering. Berlin,
Heidelberg: Springer, 2011. (Lecture Notes in Computer Science), p. 341–355. ISBN
978-3-642-19811-3.

KHAN, T. A.; RUNGE, O.; HECKEL, R. Testing against Visual Contracts: Model-
Based Coverage. In: EHRIG, H. et al. (Ed.). Graph Transformations. Berlin,
Heidelberg: Springer, 2012. (Lecture Notes in Computer Science), p. 279–293. ISBN
978-3-642-33654-6.

LAMBERS, L.; EHRIG, H.; OREJAS, F. Efficient Conflict Detection in Graph
Transformation Systems by Essential Critical Pairs. Electronic Notes in Theoretical
Computer Science, v. 211, p. 17–26, abr. 2008. ISSN 1571-0661. Available from
Internet: <https://www.sciencedirect.com/science/article/pii/S1571066108002417>.

LOHMANN, M.; MARIANI, L.; HECKEL, R. A Model-Driven Approach to Discovery,
Testing and Monitoring of Web Services. In: BARESI, L.; NITTO, E. D. (Ed.). Test and
Analysis of Web Services. Berlin, Heidelberg: Springer, 2007. p. 173–204. ISBN 978-3-
540-72912-9. Available from Internet: <https://doi.org/10.1007/978-3-540-72912-9_7>.

LüBKE, D. et al. Interface evolution patterns: balancing compatibility and
extensibility across service life cycles. In: Proceedings of the 24th European
Conference on Pattern Languages of Programs - EuroPLop ’19. Irsee, Germany:
ACM Press, 2019. p. 1–24. ISBN 978-1-4503-6206-1. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=3361149.3361164>.

MORA, F. et al. Client-specific equivalence checking. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering - ASE
2018. Montpellier, France: ACM Press, 2018. p. 441–451. ISBN 978-1-4503-5937-5.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=3238147.3238178>.

MOSTAFA, S.; RODRIGUEZ, R.; WANG, X. Experience paper: a study on behavioral
backward incompatibilities of Java software libraries. In: Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis - ISSTA 2017.
Santa Barbara, CA, USA: ACM Press, 2017. p. 215–225. ISBN 978-1-4503-5076-1.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=3092703.3092721>.

https://www.sciencedirect.com/science/article/pii/S1571066108002417
https://doi.org/10.1007/978-3-540-72912-9_7
http://dl.acm.org/citation.cfm?doid=3361149.3361164
http://dl.acm.org/citation.cfm?doid=3238147.3238178
http://dl.acm.org/citation.cfm?doid=3092703.3092721

102

MUJAHID, S. et al. Using Others’ Tests to Identify Breaking Updates. In: Proceedings
of the 17th International Conference on Mining Software Repositories. Seoul
Republic of Korea: ACM, 2020. p. 466–476. ISBN 978-1-4503-7517-7. Available from
Internet: <https://dl.acm.org/doi/10.1145/3379597.3387476>.

MøLLER, A.; TORP, M. T. Model-based testing of breaking changes in Node.js
libraries. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering - ESEC/FSE 2019. Tallinn, Estonia: ACM Press,
2019. p. 409–419. ISBN 978-1-4503-5572-8. Available from Internet: <http:
//dl.acm.org/citation.cfm?doid=3338906.3338940>.

ORACLE. Chapter 13. Binary Compatibility. 2020. Available from Internet:
<https://docs.oracle.com/javase/specs/jls/se15/html/jls-13.html>.

PRESTON-WERNER, T. Semantic Versioning 2.0.0. 2020. Available from Internet:
<https://semver.org/>.

RAEMAEKERS, S.; DEURSEN, A. van; VISSER, J. Semantic Versioning versus
Breaking Changes: A Study of the Maven Repository. In: 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manipulation. Victoria, BC,
Canada: IEEE, 2014. p. 215–224. ISBN 978-1-4799-6148-1. Available from Internet:
<http://ieeexplore.ieee.org/document/6975655/>.

RUNGE, O.; ERMEL, C.; TAENTZER, G. AGG 2.0 – New Features for Specifying and
Analyzing Algebraic Graph Transformations. In: SCHüRR, A.; VARRó, D.; VARRó,
G. (Ed.). Applications of Graph Transformations with Industrial Relevance. Berlin,
Heidelberg: Springer, 2012. (Lecture Notes in Computer Science), p. 81–88. ISBN
978-3-642-34176-2.

SALZA, P. et al. Do developers update third-party libraries in mobile apps? In:
Proceedings of the 26th Conference on Program Comprehension - ICPC ’18.
Gothenburg, Sweden: ACM Press, 2018. p. 255–265. ISBN 978-1-4503-5714-2.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=3196321.3196341>.

SOLDANI, J.; TAMBURRI, D. A.; HEUVEL, W.-J. V. D. The pains and gains
of microservices: A Systematic grey literature review. Journal of Systems and
Software, v. 146, p. 215–232, dec. 2018. ISSN 01641212. Available from Internet:
<https://linkinghub.elsevier.com/retrieve/pii/S0164121218302139>.

TAENTZER, G.; CARUGHI, G. T. A Graph-Based Approach to Transform XML
Documents. In: BARESI, L.; HECKEL, R. (Ed.). Fundamental Approaches to
Software Engineering. Berlin, Heidelberg: Springer, 2006. (Lecture Notes in Computer
Science), p. 48–62. ISBN 978-3-540-33094-3.

WANG, Y. et al. An Empirical Study of Usages, Updates and Risks of Third-
Party Libraries in Java Projects. In: 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). Adelaide, Australia:
IEEE, 2020. p. 35–45. ISBN 978-1-72815-619-4. Available from Internet:
<https://ieeexplore.ieee.org/document/9240619/>.

https://dl.acm.org/doi/10.1145/3379597.3387476
http://dl.acm.org/citation.cfm?doid=3338906.3338940
http://dl.acm.org/citation.cfm?doid=3338906.3338940
https://docs.oracle.com/javase/specs/jls/se15/html/jls-13.html
https://semver.org/
http://ieeexplore.ieee.org/document/6975655/
http://dl.acm.org/citation.cfm?doid=3196321.3196341
https://linkinghub.elsevier.com/retrieve/pii/S0164121218302139
https://ieeexplore.ieee.org/document/9240619/

103

XAVIER, L. et al. Historical and impact analysis of API breaking changes: A
large-scale study. In: 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). Klagenfurt, Austria: IEEE,
2017. p. 138–147. ISBN 978-1-5090-5501-2. Available from Internet: <http:
//ieeexplore.ieee.org/document/7884616/>.

ZHOU, J.; WALKER, R. J. API deprecation: a retrospective analysis and detection
method for code examples on the web. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering - FSE
2016. Seattle, WA, USA: ACM Press, 2016. p. 266–277. ISBN 978-1-4503-4218-6.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=2950290.2950298>.

http://ieeexplore.ieee.org/document/7884616/
http://ieeexplore.ieee.org/document/7884616/
http://dl.acm.org/citation.cfm?doid=2950290.2950298

104

APPENDIX A — TRANSLATION GRAPH TRANSFORMATION SYSTEM

This appendix presents the entire translation Graph Transformation System (GTS)

which has been explained in chapter 6. We omit here the type graph, which has already

been presented in that chapter. Figures A.1, A.2, A.3 and A.4 present all rules in the

GTS and Figures A.5 and A.6 present the atomic constraints used to show correctness of

translations. We label each rule and atomic with codes. These codes are listed in chapter

6.

105

Figure A.1: Rules TK1 through TK10 of translation grammar.

(a) TK1 (b) TK2

(c) TK3 (d) TK4

(e) TK5 (f) TK6

(g) TK7 (h) TK8

(i) TK9 (j) TK10

106

Figure A.2: Rules TK11 and TR12 through TR20 of translation grammar.

(a) TK11 (b) TR12

(c) TR13 (d) TR14

(e) TR15 (f) TR16

(g) TR17 (h) TR18

(i) TR19 (j) TR20

107

Figure A.3: Rules TR21 through TR27 of translation grammar.

(a) TR21 (b) TR22

(c) TR23 (d) TR26

(e) TR24 left-handside (f) TR24 right-handside

(g) TR25 left-handside (h) TR25 right-handside

(i) TR27 left-handside (j) TR27 right-handside

108

Figure A.4: Rules TR28, CL29 through CL33, AD34 and AD35 of translation grammar.

(a) TR28 left-handside (b) TR28 right-handside

(c) CL29 (d) CL30

(e) CL31 (f) CL32

(g) CL33 (h) AD34

(i) AD35

109

Figure A.5: Atomic constraints A1 through A8.

(a) A1 (b) A2 (c) A3

(d) A4 (e) A5 (f) A6 conclusion I

(g) A6 conclusion II (h) A6 conclusion III (i) A6 conclusion IV

(j) A6 conclusion V (k) A7 conclusion I (l) A7 conclusion II

(m) A7 conclusion III (n) A7 conclusion IV (o) A8 conclusion I

(p) A8 conclusion II (q) A8 conclusion III (r) A8 conclusion IV

110

Figure A.6: Atomic constraints A9 through A12.

(a) A9 conclusion I (b) A9 conclusion II (c) A9 conclusion III

(d) A9 conclusion IV (e) A9 conclusion V (f) A10

(g) A11 (h) A12

111

APPENDIX B — RESUMO ESTENDIDO

Neste trabalho planejamos resolver o problema de integração de módulos uti-

lizando gramáticas de grafos. Nós criamos um framework de verificação que nos permite

gerar avisos dizendo a desenvolvedores quais integrações necessitam de sua atenção. O

framework, que chamamos de MIGRATE, é composto por quatro artefatos e três proces-

sos, que grifamos a seguir. Inicialmente, artefatos de software são fornecidos para um

procedimento de extração, o qual produz uma rede de módulos. Redes de módulos são

um formalismo que também definimos nesta dissertação, o qual captura como módulos de

software se integram. Em seguida, a rede de módulos é fornecida para um procedimento

de tradução, que utiliza uma gramática de grafos e produz uma gramática de grafos, à

qual chamamos de gramática de verificação. Esta última é fornecida para o procedi-

mento de verificação, que finalmente produz avisos úteis aos desenvolvedores interessa-

dos em encontrar falhas de integração de software. Estes avisos são: atributo, recurso, mó-

dulo ou operação opcional, atributo estritamente opcional, operação inalcançável, recurso

perdido e atributo desatualizado. Nós fornecemos um protótipo com implementações para

os procedimentos de tradução e verificação do framework MIGRATE e demonstramos em

um estudo de caso.

O framewok MIGRATE impõe alguns requisitos sobre as gramáticas de grafos

que analisa, as gramáticas de verificação, como ter nomes e padrões de regras especí-

ficos, além de nós e arestas que podem ser interpretados de volta para operações, mó-

dulos, recursos, atributos e valores. Nós precisávamos de uma maneira de garantir que

as gramáticas de grafos que analisamos estivessem dentro desses requisitos, e ao mesmo

tempo fornecer a desenvolvedores a possibilidade de fazerem mudanças diretamente nos

modelos. Por estes motivos, nós criamos redes de módulos, que são um formalismo para

expressar como módulos integram uns com os outros. No entanto, nós não definimos a

semântica de redes de módulos, ao invés disso nós criamos um procedimento de tradução

que encontra uma gramática de grafos (de verificação) que é semântica de uma rede de

módulos. Isto nos proporcionou o reuso da teoria de análise de pares críticos, e tam-

bém irá nos proporcionar o reuso em trabalhos futuros de todas as diferentes técnicas

de análises que já foram desenvolvidas para gramáticas de grafos. Nós demonstramos

como traduzir redes de módulos para gramáticas de verificação usando gramáticas de

grafos. Nós provamos que nosso procedimento de tradução termina e argumentamos que

ele gera gramáticas de verificação bem definidas. Nós reusamos análise de pares críticos

112

de gramáticas de verificação para construir um procedimento de verificação que indica

diferentes tipos de avisos relacionados às estruturas de redes de módulos.

Nós temos muitas limitações para endereçar no futuro. Nós fomos desafiados a ex-

pressar todos os diferentes tipos de operações que podem ser feitas sobre dados, enquanto

nossas redes de módulos são limitadas nas operações que suportam. Nós não apresen-

tamos nenhum algoritmo de extração de redes de módulos, visto que este trabalho ainda

está em andamento. Nosso procedimento de tradução não pode lidar com transferência

de informação dentro de módulos e ele exige que redes de módulos sejam tão pequenas

quanto possível, para evitar problemas de memória e falta de tempo. Nós usamos um

algoritmo de extração de pares críticos, que sabidamente leva muito tempo e consome

muita memória. Finalmente, nosso procedimento de verificação produz poucos tipos de

avisos, alguns dos quais não são úteis de forma alguma. Há duas grandes áreas que irão

necessitar de nossa atenção ao estender o protótipo e construir uma ferramenta de verifi-

cação usando os conceitos deste trabaho: suporte a redes de módulos maiores em termos

de memória e tempo, e significado de avisos.

Redes de módulos maiores são especialmente difíceis durante o procedimento de

derivação aplicado na tradução e na computação de pares críticos. Considerando que

nossa gramática de tradução é confluente, poderíamos melhorar a derivação evitando

aleatorização de casamentos entre regra e grafo e sempre aplicando o primeiro casamento

que encontrarmos. Pares críticos podem ser melhorados se restringirmos à geração de

pares críticos essenciais ou iniciais, reduzindo muito a quantidade de pares gerados. Outra

melhoria seria parar a busca assim que encontrarmos pares críticos que façam sentido,

evitando geração de pares críticos redundantes que levariam aos mesmos avisos.

Para melhorar os avisos que suportamos, devemos melhorar cada um dos procedi-

mentos apresentados, estendendo redes de módulos para suportar mais tipos de operações,

e modificando os procedimentos do framework da mesma maneira. Nós também nos con-

centramos em encontrar problemas devido ao fluxo de informação, como atributos que

não são necessários porque não carregam informação para atributos necessários. No en-

tanto, nós desconsideramos problemas de fluxo de controle, que podem levar a todo tipo

de defeitos quando modificados, mesmo que o fluxo de informação não mude. Expandi-

remos tipos de avisos em trabalhos futuros.

	Agradecimentos
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 A verification tool for software integration
	1.2 Main contribution
	1.3 Outline

	2 Problem
	2.1 Compatibility matters
	2.2 Compatibility often breaks
	2.3 Why compatibility breaks
	2.3.1 Weighing decisions
	2.3.2 Ecosystem pressure

	2.4 How to avoid breaking compatibility
	2.4.1 Project tactics
	2.4.2 Programming language support
	2.4.3 Versioning
	2.4.4 Tests
	2.4.5 Deprecation

	2.5 Our contribution

	3 Typed Attributed Graph Grammars
	3.1 Nodes and Arrows
	3.2 Grammars
	3.3 Properties

	4 MIGRATE Framework Overview
	5 Module nets
	5.1 Definition
	5.2 Limitations and final remarks

	6 Translation
	6.1 Translation
	6.2 Operation
	6.3 Properties
	6.3.1 Well-definedness
	6.3.2 Confluence

	6.4 Limitations and final remarks

	7 A verification method for software integration
	7.1 Identification
	7.1.1 Graph identification

	7.2 Hints
	7.2.1 Critical pairs hint
	7.2.2 Rule decoration hint
	7.2.3 Information flow hint
	7.2.4 Optional path hint
	7.2.5 Required path hint
	7.2.6 Reachable rule hint
	7.2.7 Critical pair explanation hint

	7.3 Warnings
	7.3.1 Optional attribute, resource, module or operation warning
	7.3.2 Strictly optional attribute warning
	7.3.3 Unreachable operation warning
	7.3.4 Dangling resource warning
	7.3.5 Outdated attribute warning

	7.4 Complexity
	7.5 Limitations and final remarks

	8 Case study
	8.1 Outdated attribute warnings in research net V1
	8.2 Unreachable operation warnings in research net V2
	8.3 Optional attribute warnings in research net V3

	9 Related Work
	9.1 Integration of Libraries
	9.2 Integration of Services
	9.3 Graph grammar applications

	10 Conclusion
	References
	Appendix A — Translation Graph Transformation System
	Appendix B — Resumo estendido

