

Evento	Salão UFRGS 2020: SIC - XXXII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2020
Local	Virtual
Título	Estudo da dopagem de Nanovaretas de Polipirrol
Autor	DANIELA ELIAS CORRÊA
Orientador	VLADIMIR GONZALO LAVAYEN JIMENEZ

Estudo da dopagem de Nanovaretas de Polipirrol

Daniela Elias Corrêa (IC)*, Vladimir Lavayen (PQ)

Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre – RS, Brasil

*danicorrea19@hotmail.com

O polipirrol é um dos polímeros policonjugados mais utilizado e estudado

devido a sua estabilidade térmica, alta densidade de energia^{1,2} e facilidade de síntese. Em sistemas monodimensionais (1D), ele apresenta uma excelente atividade redox e comportamento de capacitância de alto desempenho; surgindo assim, por exemplo, como um material promissor para sensores de gás e pseudo-capacitores². Para que a condução nos polímeros possa existir, é necessário que elétrons sejam removidos (ou adicionados) da cadeia polimérica por meio de processos de dopagem. Para o polipirrol, a remoção inicial de um elétron da cadeia leva a formação de um estado eletrônico denominado polaron (cátion radical), ao qual está associado a uma distorção da cadeia da forma aromática para a forma quinônica. A remoção de um segundo elétron origina um bipolaron, definido como um par de cargas associadas a uma forte distorção na rede.³ Esse modelo polaron-bipolaron é amplamente utilizado para explicar o comportamento eletrônico e eletroquímico dos polímeros condutores. Neste trabalho, estudaremos o modelo polaron-bipolaron em nanovaretas de polipirrol de 20 nm de diâmetro, usando a espectroscopia Raman junto a espectroscopia de absorção UV-Vísivel. No espectro obtido pela espectroscopia de absorção, houve a

Referências: ¹Xue, M.Q. Li F.W, Chen D. et al, Advanced Material **2016**, 28, 8265–8270. ²Liu Y.-C. Journal of Electroanalytical Chemistry, **2004**, 571, 255-264. ³E. S. Medeiros, J. E. Oliveira, N. Consolin-Filho, L. G. Paterno, L. H. C. Mattoso, Revista Eletrônica de Materiais e Processos, v.7.2, 62 – 77, **2012**.

distribuição de carga do polímero como de seu estado de conjugação.

formação de duas bandas de 692 e 589 nm, que estão diretamente relacionadas com os estados de transição eletrônica do polaron e do bipolaron, respectivamente. Nos espectros Raman, se observou bandas a 966 e 930 cm⁻¹ associadas a presença polarônica. Além disso, as informações fornecidas nos permitirão conhecer sobre a

Agradecimentos. Os autores agradecem pela ajuda financeira ao CNPq, BIC/UFRGS, PPGQ/UFRGS e CNANO/UFRGS.