

Evento	Salão UFRGS 2020: SIC - XXXII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2020
Local	Virtual
Título	Funcionalização de dispositivos fotônicos eletroativos
	utilizados como Biossensores
Autor	HIGOR GOMES QUEVEDO
Orientador	KLESTER DOS SANTOS SOUZA

Universidade Federal do Rio Grande do Sul

Autor: Higor Gomes Quevedo Orientador: Dr. Klester S. Souza

Funcionalização de dispositivos fotônicos eletroativos utilizados como Biossensores

Tratamentos antivirais são efetivos se testes de diagnóstico estiverem disponíveis para a rápida detecção e identificação do vírus. Um biossensor específico é solução ideal para a rápida detecção e identificação viral. O presente estudo teve como objetivo testar protocolos de biofuncionalização de dispositivos fotônicos eletroativos (electro-active integrated optical waveguide, EA-IOW) a serem utilizados na detecção do DNA viral relacionado ao vírus da febre amarela utilizando métodos espectroeletroquímicos para a transdução do sinal. A funcionalização da superfície dos dispositivos fotônicos foi caracterizada através de medidas de ângulo de contato (método da gota séssil), transmitância óptica e medidas eletroquímicas. As lâminas foram limpas e inicialmente funcionalizadas com (3-Aminopropil)trietoxisilano, APTES (1% v/v em Metanol, durante a noite à temperatura ambiente) e posteriormente com Glutaraldeído (Glu) (2.5% v/v em 0,1 M PBS pH 7,2 por 1h a 4 °C) perfazendo duas etapas de funcionalização. Esta funcionalização objetiva servir de base para a ancoragem de uma fita simples de DNA (ssDNA) sintetizada com o grupo amina, este ssDNA servirá como âncora para o DNA viral de interesse. Através dos resultados obtidos foi possível observar que após cada funcionalização a superfície tornou-se mais hidrofóbica, com valores de ângulo de contato maiores a cada etapa de funcionalização. Essas funcionalizações também atuaram em modificar transmitância óptica do sistema, que foi medida no intervalo de varredura de 350 a 1500 nm. Quanto aos testes eletroquímicos, utilizando medidas de voltametria cíclica e espectroscopia de impedância eletroquímica utilizando o par Fe³⁺/Fe²⁺ como sonda, os resultados corroboraram com a formação de um filme (sub monocamadas) sobre a superfície do dispositivo.