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ABSTRACT

The Nurse Rostering Problem (NRP) is a classic optimization problem that has been ex-

tensively studied due to its practical and theoretical importance. It consists of assigning a

given set of nurses to work shifts distributed into a planning horizon of multiple weeks. In

addition to building a feasible schedule, a solution for the NRP needs to consider several

requirements, such as skill-tailored assignments, labor laws, institutional norms and em-

ployee preferences. The high number of requirements associated with the combinatorial

nature of the problem results in a process that could take several days to solve manually,

even to produce a low-quality schedule. This work studies the static problem defined

in the Second International Nurse Rostering Competition (INRC-II). Several techniques

have been developed in the scientific literature to tackle the INRC-II problem, however,

some issues are not explored yet. In this research, we investigate the limitations of MIP

approaches, including how different requirements impact the resolution of the problem

and how this approach could perform when inserted in a matheuristic procedure.

Keywords: INRC-II. integer programming. nurse rostering problem. matheuristics. fix-

and-optimize.



Modelos Matemáticos e uma Matheuristic Late Acceptance Fix-and-Otimize para

um problema de escalonamento de enfermeiros

RESUMO

O Problema de Escalonamento de Enfermeiros (PEE) é um problema clássico de otimi-

zação que tem sido extensivamente estudado devido à sua importância prática e teórica.

O PEE consiste em alocar um determinado conjunto de enfermeiros em turnos de tra-

balho distribuídos em um horizonte de planejamento de várias semanas. Uma escala de

trabalho viável para o PEE precisa considerar diversos requisitos como leis trabalhistas,

normas institucionais e preferências dos funcionários. O alto número de requisitos as-

sociados à natureza combinatória do problema resulta em um processo que pode levar

vários dias para ser resolvido manualmente, e ainda produzir uma escala de baixa qua-

lidade. Este trabalho estuda o problema estático definido na Second International Nurse

Rostering Competition (INRC-II). Diversas técnicas têm sido desenvolvidas na literatura

científica com objetivo de resolver o problema da INRC-II, entretanto, algumas questões

ainda não foram exploradas. Nesta pesquisa, investigamos as limitações das abordagens

MIP, incluindo como diferentes requisitos impactam na resolução do problema e como

essa abordagem poderia funcionar quando inserida em um procedimento matemático.

Palavras-chave: INRC-II, Programação inteira, Problema de escalonamento de enfer-

meiros, Matheuristics, fix-and-optimize.
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1 INTRODUCTION

The construction of work schedules for nurses is an operational process found in

any hospital sector that provides a nursing service. This process, hereafter referred to as

the Nurse Rostering Problem (NRP), consists of assigning a given set of nurses to work

shifts distributed into a planning horizon of multiple weeks. In addition to building a

feasible schedule, a solution for the NRP needs to consider several requirements, such as

skill-tailored assignments, labor laws, institutional norms and employee preferences. The

high number of requirements associated with the combinatorial nature of the problem

results in a process that could take several days to solve manually, even to produce a

low-quality schedule.

The construction of a schedule is critical because it directly influences the quality

of nursing care service. A deficient schedule can result in several negative consequences

such as: (i) overwork, (ii) unjustified absences, (iii) illness, (iv) internal conflicts among

team members, and (v) errors in nursing care that endangers the patient lives. Hence, the

automation of this task by software is becoming essential to ensure the quality of the nurs-

ing services, specially in medium and large hospitals (COSTA; MORITA; MARTINEZ,

2000; ARENDT, 2010).

In addition, for being considered an NP-Hard optimization problem (OSOGAMI;

IMAI, 2000), the research on the NRP is still challenging due to several problem variants

proposed in the literature with a distinct set of objectives and requirements. In fact, this

problem diversity makes it difficult to compare the performance of different resolution

methods. In order to soften this issue, programming competitions have been organized

comparing techniques and stimulating the publication of results on standardized versions

of the NRP. The most recent problem version was formalized in the Second International

Nurse Rostering Competition (INRC-II) (CESCHIA et al., 2019). In this competition,

a multi-stage problem was proposed, where solutions for single weeks should be pro-

duced sequentially by the solver, without prior information about the requirements in the

following weeks. While the multi-stage version is useful in a practical application, the

researchers used the so called static version of the INRC-II problem to produce optimal

solutions and evaluate the quality of the forecasting approaches. In the static version,

instead of solving each week sequentially, they are solved at once.
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For the static version of the INRC-II, advanced solving techniques were devel-

oped, including Integer Programming (IP) and metaheuristics (WICKERT; SARTORI;

BURIOL, 2016; GOMES; TOFFOLO; SANTOS, 2017; LEGRAIN; OMER; ROSAT,

2019; CESCHIA; GUIDO; SCHAERF, 2020). It is important to highlight that, although

there is a common understanding among researchers regarding the difficulty of solving

the static version exactly through a MIP approach, to the best of our knowledge, there

is no publication with numerical results to support this assertion. This gap motivates the

investigation of the limitations of MIP approaches, including how different requirements

impact the resolution of the problem and how this approach could perform when inserted

in a matheuristic procedure.

In this work, we focus on the static version of the INRC-II problem. Our main

contribution to this problem is two-fold. (i) We evaluate the performance of a state-of-

the-art MIP solver when handling three different mathematical programming formulations

proposed to the problem. Also, we carried out an experimental evaluation with relaxed

versions of the problem that revealed the consecutive requirements are the most challeng-

ing ones to be handled by a MIP approach. Finally, we propose a novel formulation that

exploits the non-uniform distribution of consecutive requirements in a dataset. (ii) We

propose a matheuristic approach that combines a Late Acceptance criteria as a diversi-

fication strategy into a fix-and-optimize heuristic. Since this heuristic works by solving

subproblems, we also propose a decomposition procedure that optimizes only a subset

of nurses and weeks in each iteration. One of the main characteristics of the fix-and-

optimize is that it can significantly improve the performance of an underlying MIP solver

by achieving solutions of better quality at early stages. As we further detail in Section

4, such a procedure easily maintains and accommodates novel requirements. Finally, we

present a comprehensive comparison of our results against the ones reported by state-of-

the-art methods.

The remaining of this work is organized as follows: Chapter 2 provides a literature

review on exact and heuristic approaches designed to solve the nurse rostering problem

with the focus on the INRC-II. A formal definition of the problem tackled in this study

is presented in Chapter 3 along with mathematical formulations. Chapter 4 presents a

description of the Late Acceptance Fix-and-Optimize approach. In Chapter 5 we present

an extensive set of experiments to evaluate and compare the performance of different

approaches and models on instances of the INRC-II. Finally, Chapter presents 6 our major

conclusions of this research and directions for future work.
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2 LITERATURE REVIEW

The Nurse Rostering Problem (NRP) has several variants defined in the context of

different countries. In this chapter, we first present a brief literature review comprising the

main optimization methods proposed to the NRP. Next, we focus on solution approaches

specifically designed to solve NRP variants proposed in the first two editions of the Inter-

national Nurse Rostering Competition.

2.1 Solution approaches

The Nurse Rostering Problem (NRP) is part of a wide class of problems called

Personnel Scheduling. Problems in this class have been studied for decades and focus on

different approaches that have been resolved. A literature review on Personnel Scheduling

problems published by Bergh et al. (2013) classified 291 publications according to solu-

tion methods and application areas in which the NRP appears the most common problem.

For more details in the NRP, we refer the reader to the work of Burke et al. (2004).

Due to its complexity and relevance in practice, since the 1960s, papers have been

published on various aspects of healthcare personnel scheduling (WOLFE; YOUNG,

1965a; WOLFE; YOUNG, 1965b). In the beginning, researchers attempted to develop

mathematical models for the problem, such as the Mixed Integer Programming (MIP)

formulation presented in Warner and Prawda (1972). However, they were not able to find

solutions to solve real-world problems due to their complexity. In fact, most MIP ap-

proaches successfully applied for solving the NRP were designed to solve basic variants

of the problem that do not consider real-world constraints as, for example, consecutive

assignments. As shown by Smet (2018), adding consecutive assignments into a compact

MIP model could increase the running time by 98%.

Hence, many heuristics methods have been proposed to solve NRP, such as Simu-

lated Annealing (ISKEN; HANCOCK, 1991) and Tabu Search (BERRADA; FERLAND;

MICHELON, 1996). Since then, several other algorithms have been used to solve the

NRP, such as heuristics (OSOGAMI; IMAI, 2000), hyper-heuristics (ASTA; ÖZCAN;

CURTOIS, 2016) and integer programming formulations (MASON; SMITH, 1998). More

recently, Matheuristic approaches, which combine heuristics with mathematical program-

ming, have been proposed quite frequently as a promising research direction. An example

is a work of Burke, Li and Qu (2010), which aims to solve real-world instances provided
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by a Dutch hospital. The authors use integer programming to find a feasible initial solu-

tion that is further refined with a VNS.

Besides the large number of variants existing in the NRP, the comparison of dif-

ferent resolution methods has become one of the main challenges of the research area.

In order to soften this problem, two editions of the International Nurse Rostering Com-

petition were proposed, hereafter referred as (INRC-I) (HASPESLAGH et al., 2010) and

(INRC-II) (CESCHIA et al., 2019). The main difference between them is that the INRC-I

proposed a static problem, while in the INRC-II a multi-stage problem was tackled. In

a static problem, the planning horizon is solved at once, i.e., the solution is obtained in

a single stage. By contrast, in a multi-stage problem, the planning horizon is split into

multiple stages, in which each stage must be solved separately. Hence, the final solution

is a combination of the solutions produced in each stage.

Both competitions are detailed in the following sections, focusing on the second

edition, whose problem is the subject of study in this work.

2.2 First International Nurse Rostering Competition (INRC-I)

The static problem defined in the INRC-I was sponsored by the International Con-

ference on the Practice and Theory of Automated Timetabling (PATAT). Competitors were

allowed to submit a solution approach for three tracks: sprint, medium, and long. Each

track comprises a set of instances and allows the maximum computation time of 10 sec-

onds, 10 minutes, and 10 hours. The winner was chosen based on the effectiveness of a

particular technique in a specified time.

The INRC-I winner method, proposed by Valouxis et al. (2012), used a two-stage

approach to decompose each instance into sub-problems, which can be solved using inte-

ger mathematical programming. Also, local search techniques were applied to test differ-

ent combinations of nurse assignments.

The second-placed (BURKE; CURTOIS, 2010) developed two different algorithms.

The first one is an ejection chain based method that was applied to the sprint instances.

The second algorithm, a branch and price method, was applied to the medium and long in-

stances. The computational experiments showed that the branch and price algorithm often

solved these instances and provided novel results for the benchmark (BURKE; CURTOIS,

2014).

The third-placed method also includes heuristics. Bilgin et al. (2010) proposed a
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hyper-heuristic approach combined with a greedy shuffle heuristic. The solutions for the

sprint instances were close to optimal.

After the end of the competition, Santos et al. (2014) proposed a MIP model

and employed heuristic techniques to decompose the problem. Starting from a compact

formulation of the problem, they applied improved cut generation strategies and primal

heuristics, combining an aggressive clique separation process with a MIP heuristic. The

experimental results showed they improved several best-known solutions by using this

approach.

2.3 Second International Nurse Rostering Competition (INRC-II)

Building on the success of the INRC-I, in 2014, the same organizers announced

the INRC-II. As the main difference, this second edition introduced a multi-stage problem

in which each stage corresponds to a week in the planning horizon. According to the rules,

it was mandatory to solve each stage separately. Consequently, the solving method should

deal with the uncertainty of future data while solving consecutive weeks. The complete

solution is composed and evaluated exactly only after the last week had been solved.

The multi-stage problem is supposed to fit a real-world scenario in which changes in

the schedule often happen, such as relocation of nurses due to absences or demand from

other sectors (CAUSMAECKER et al., 2004). Besides that, the competition evaluated

each team approach by using datasets with multi-skilled nurses and planning horizons of

4 and 8 weeks.

At the end of the competition, several papers were published with the aim of pro-

ducing optimal solutions for INRC-II problems. In order to achieve that, instead of solv-

ing each stage of a problem instance separately, these studies have been solving all stages

at once. That approach defined a static version of the INRC-II problem. Thus, in this sec-

tion, we present the related work proposed to solve the INRC-II classified in multi-stage

and static approaches.

2.3.1 Multi-stage Approaches

The first and second-placed teams employed methods based on mathematical pro-

gramming. The winners, Römer and Mellouli (2016a), formulated the problem as a multi-
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commodity flow Mixed Integer Linear Programming (MILP) based on state-expanded

networks. Also, to handle the multi-stage characteristic, the authors used a deterministic

lookahead approach using artificially generated demand data. The authors further studied

in Römer and Mellouli (2016b) the future demand uncertainty in personnel scheduling,

investigating deterministic lookahead policies using optimization and simulation.

The second-placed team was occupied by Legrain, Omer and Rosat (2018). The

authors proposed an algorithm that embeds a primal-dual algorithm within a sample av-

erage approximation. The primal-dual procedure generates candidate schedules for the

current week, and the average sample approximation allows evaluating each of them re-

taining the best one. The stochastic algorithm performed very well over a wide range of

instances of the competition, although it was not able to find the best objective value or

optimal solutions in most cases.

Kheiri et al. (2016) proposed a selection hyper-heuristic framework that mixes

and controls a set of nine low-level heuristics to solve the INRC-II problem. The method

was ranked third, and it is reliable in terms of producing feasible solutions. The Ortec

company (Netherlands), (JIN; POST; VEEN, 2016), added some artificial soft constraints

in the optimization commercial solver to steer a good connection between two consecutive

weeks and achieve high-quality solutions.

Mischek and Musliu (2019) proposed and evaluated several original extensions

of basic IP formulations for the INRC-II problem in order to deal with multi-stage set-

tings. They showed that the extensions improved upon the results of the basic model and

achieved competitive results compared to the finalists in the competition.

2.3.2 Static Approaches

In Wickert, Sartori and Buriol (2016), the authors focused on the static version of

the INRC-II problem. They presented a MILP model and a fix-and-optimize matheuris-

tic combined with a VNS method. The developed approach uses four different decom-

positions: week, nurse, day, and shift. The method generates feasible solutions for all

instances within the time limits of the competition. Also, the average results were bet-

ter than the ranked second, which runs a multi-stage version of the problem. The au-

thors further studied different strategies for the Nurse Re-Rostering Problem (WICKERT;

SMET; BERGHE, 2019). The research is based on relaxing some soft constraints and the

rescheduling periods. They proposed a general IP formulation and a Variable Neighbor-
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hood Descent heuristic. The solution methods were tested on the instances adapted from

the INRC-II.

Legrain, Omer and Rosat (2019) modeled the INRC-II problem as an integer pro-

gram solved using a branch-and-price algorithm based on rotations. To achieve good

results on large instances, they developed an ALNS behaving as a primal heuristic in

interaction with the branch-and-price. Initial solutions of the ALSN were found by a

rolling-horizon algorithm well-suited to the rotation model. The approach was tested on

some instances of the INRC-II, and when compared with the best solutions found in the

multi-stage version, they achieved an overall 15.2% improvement.

The static version also was studied by Gomes, Toffolo and Santos (2017). They

presented a VNS accelerated column generation procedure for the INRC-II problem in

addition to a relax-and-fix heuristic for obtaining feasible solutions. The authors showed

that combining the method with heuristics significantly accelerates the method’s conver-

gence, thereby improving 29 hidden INRC-II instances with 4-week scheduling horizons.

More recently, Ceschia, Guido and Schaerf (2020) proposed a Simulated Anneal-

ing (SA) method based on a composition of large neighborhoods for the static version

of the INRC-II problem. The search method uses a combination of neighborhoods that

either move swaps the shifts of two nurses, or changes the shift and/or the skill assigned

to a nurse for multiple consecutive days. Computational results showed that they obtained

results that improve on all previous approaches on some data sets for the longer time limit.

When a shorter time limit was used, the method provided better results than the literature

on most instances.
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3 NURSE ROSTERING PROBLEM

In this chapter, we introduce the Nurse Rostering Problem (NRP) that was pre-

viously defined in the second version of the International Nurse Rostering Competi-

tion (INRC-II). Section 3.1 presents an overview of the NRP, as well as the requirements

considered in the problem. In Section 3.2, the NRP is formally defined using three math-

ematical models proposed in this work.

3.1 Problem definition

The goal of the problem is to build a schedule for a set of nurses N considering

a planning horizon composed of a set of days D, in which each day is split into a set

of shifts S. Each nurse n ∈ N has one or more skills from a set K. In order to fulfill

a schedule, one needs to assign, for each nurse, a shift and a skill, for all days in the

planning horizon, by taking into account a given set of requirements.

For each nurse schedule, we introduce a set of definitions related to its assignments

in the planning horizon. We call as a work shift the shift in which a nurse is assigned in

a given day d ∈ D. A given day d in the schedule of a nurse is a work day if it has an

associated work shift, otherwise the day d is called a day off. A work weekend occurs

when a nurse has at least one work day in a weekend. In other words, it occurs when it

has a work day on Saturday or Sunday, or both. Particularly, when a work weekend has

two work days, we call it a complete weekend.

As a matter of example, Figure 3.1 displays a toy instance of the NRP composed by

a short planning horizon with only three days (Friday, Saturday, Sunday), six nurses (N1,

N2, N3, N4, N5, N6), four shifts (Early, Day, Late, Night), and three skills (Head Nurse (H),

Nurse (N), Trainee (T)). Each cell in this table represents a working assignment. The

symbol “–” indicates a day off. In this instance, we can observe that, for example, the

nurse N1 is assigned to the Late shift on Friday as a HeadNurse and the Night shift on

Saturday as a Nurse. On Sunday, this same nurse has a day off. All nurses have two

work days, except N4 that has a single one with a Night work shift and N5 that has three

work days. Finally, we also note that while the nurse N4 is the only one without a work

weekend, the nurses N2, N5, and N6 are the only ones with a complete weekend.



19

Figure 3.1: Example of a toy instance with three days, six nurses, four shifts and three
skills.

Nurse Friday Saturday Sunday

N1 Late [H] Night [N] –

N2 – Early [T] Early [T]

N3 Day [N] – Day [H]

N4 Night [N] – –

N5 Early [T] Day [T] Night [T]

N6 – Late [H] Late [H]

Source: created by author.

The main requirements of a schedule are determined by two parameters: mini-

mum coverage and optimal coverage. While the minimum coverage defines the number

of nurses of each skill required for the minimum operation of the health care service, the

optimal coverage defines the number of nurses required to operate the service under opti-

mal conditions. Usually, both parameters are statistically set for each day and shift by the

hospital staff based on historical demands.

In fact, for solving the NRP, one needs to consider several more requirements, split

into two categories: hard requirements and soft requirements. While hard requirements

must be satisfied in order to produce a feasible solution, soft requirements should be

satisfied as much as possible since they directly influence the solution quality. For each

violation of soft requirements, a weighted cost is penalized in the objective function.

Both types of requirements of the INRC-II problem are shown as following and a detailed

description can be found in Ceschia et al. (2019).

Hard requirements:

H1 Single assignment per day: each nurse can only work in a single shift per day by

using a single skill.

H2 Insufficient staffing for minimum coverage: the number of nurses of a given skill,

assigned to a given shift on a day, must respect the minimum coverage.

H3 Shift type successions: a shift type succession must belong to a valid succession

(e.g., a night shift cannot be followed by a morning shift).
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H4 Missing required skill: nurses cannot be assigned to work with a skill they do not

have.

Soft requirements:

S1 Insufficient staffing for optimal coverage: the number of nurses of a given skill,

assigned to a given shift on a day should attend the optimal coverage. For each

nurse missing to reach the optimal coverage value, there is a cost. The amount of

nurses exceeding the optimal coverage are not penalized.

S2 Consecutive assignments: the following limits should be attended for each nurse:

a) Minimum number of consecutive work days.

b) Maximum number of consecutive work days.

c) Minimum number of consecutive assignments by shift.

d) Maximum number of consecutive assignments by shift.

S3 Consecutive days off: the following limits should be attended for each nurse:

a) Minimum number of consecutive days off.

b) Maximum number of consecutive days off.

S4 Assignment preferences: a nurse should not be assigned to:

a) An undesired work shift.

b) An undesired work day.

S5 Complete weekend: a nurse should work on both days of a weekend, or none.

S6 Total assignments: the following limits should be satisfied for each nurse consid-

ering the whole planning horizon:

a) Maximum number of work days.

b) Minimum number of work days.

S7 Total work weekends: to each nurse is associated a maximum number of work

weekends that should be respected.

Note that the requirements H3, S2, and S3 need the information of a previous

schedule to be evaluated in the static problem. This data is provided in the history file.
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3.2 Integer Programming Formulation

In this section, we present three integer programming formulations for the NRP,

hereafter referred as models M1, M2, M3, by extending a base model denoted as M0. The

mathematical notation used in all models is presented in detail in Tables 3.1, 3.2 and 3.3.

Table 3.1: Sets used in the mathematical formulations.

Sets Definition

n ∈ N set of nurses. N = {1, ..., |N|}

d ∈ D set of days. D = {1, ..., |D|}

d ∈ D−i set of days d ∈ D such as d ≤ |D|− i

(i, j) ∈W set of weekends such that i, j ∈ D.

s ∈ S set of shifts. S = {1, ..., |S|}. We refer to a day off as a last shift s = |S|.

s ∈ S′ set of shifts without day off. S′ = {1, ..., |S|−1}

k ∈ K set of skills. K = {1, ..., |K|}

(s1,s2) ∈ F set of pairs with invalid shift successions. A pair (s1,s2) means that the

shift s2 ∈ S′ cannot be followed by the shift s1 ∈ S′.

(u,v) ∈ B set of block assignments. Each pair (u,v) represents a possible consecutive

assignment starting on day u∈D and ending on day v∈D, such that u≤ v.
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Table 3.2: Parameters used in the mathematical formulations.

Parameters Definition

Tnk ∈ {0,1} 1 if nurse n has skill k, 0 otherwise.

Pnds ∈ {0,1} 1 if nurse n does not prefer to work in the shift s on day d, 0 otherwise.

Pnd ∈ {0,1} 1 if nurse n prefers a day off on day d, 0 otherwise.

V−dsk ∈ N∗ minimum coverage value for day d, shift s and skill k.

V ∗dsk ∈ N∗ optimal coverage value for day d, shift s and skill k.

L+
n ∈ N∗ maximum number of consecutive work days for nurse n.

L−n ∈ N∗ minimum number of consecutive work days for nurse n.

L+
ns ∈ N∗ maximum number of consecutive assignments for shift s ∈ S and

nurse n.

L−ns ∈ N∗ minimum number of consecutive assignments for shift s ∈ S and

nurse n.

Vn ∈ {0,1} 1 if the nurse n prefers to complete weekends.

Q+
n ∈ N∗ maximum number of work days for nurse n.

Q−n ∈ N∗ minimum number of work days for nurse n.

R+
n ∈ N∗ maximum number of work weekends for nurse n.

W S1..W S7 ∈ N∗ requirement weights specified by INRC-II: W S1=30; W S2ab=30;

W S4=10; W S5=30; W S6=20; W S7=30;

W S2S3
s ∈ N∗ weights of the requirements S2cd and S3ab according to shift s ∈ S

specified by INRC-II: W S2S3
s =15 if s ∈ S′, and W S2S3

s =30 if s=|S|.

Constant

M constant with value 10.

Table 3.3: Variables used in the mathematical formulations.

Variables Definition

Decision Variable

xndsk ∈ {0,1} 1 if nurse n is assigned to shift s∈ S with skill k on day d, 0 otherwise.

Aux. Variables

rni j ∈ {0,1} 1 if a nurse n has a work weekend (i, j) ∈W .

bnuv ∈ {0,1} 1 if a nurse n starts a block of consecutive assignments beginning on

day u and ending on day v.
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bnuvs ∈ {0,1} 1 if a nurse n starts a block of consecutive assignments with shift s be-

ginning on day u and ending on day v.

gnd ∈ {0,1} 1 if the number of consecutive work days exceeds L+
n for nurse n on day

d.

gnds ∈ {0,1} 1 if the number of consecutive work shifts s exceeds L+
ns for nurse n on

day d.

mD
ndt ∈ {0,1} t ∈ {1,2,3,4}, 1 if the number of consecutive work days (d..d + t) is a

sequence that penalize the minimum L−n . Ex: Minimum of 3 consecutive

work days (L−n = 3), mdnd3 = 1 for the sequence (110).

mS
ndst ∈ {0,1}t ∈ {1,2,3,4}, 1 if the number of consecutive shifts days (d..d + t) is a

sequence that penalize the minimum L−ns. Similar md.

tnd ∈ {0,1} 1 if nurse n starts a block with consecutive assignments beginning on

day d.

tnds ∈ {0,1} 1 if nurse n starts a block with consecutive assignments with shift s be-

ginning on day d.

CS1
dsk ∈ N∗ missing nurses to reach the optimal coverage V ∗dsk.

andt ∈ N0 number of consecutive work days for nurse n starting on day d and pattern

t. Ex: Minimum of 3 consecutive work days. When t = 1 the pattern is

(010), and when t = 2 the pattern is (0110). If there is a pattern, andt = t.

andst ∈ N0 number of consecutive shift days s for nurse n starting on day d and

pattern t. Similar to andt .

cndt ∈ N0 number of missing days to reach the minimum consecutive work days for

nurse n starting on day d and pattern t.

cndst ∈ N0 number of missing shifts s to reach the minimum consecutive shifts day

for nurse n starting on day d and pattern t.

CS2a
ni j ∈ N∗ missing days to reach L−n in the block (i, j) ∈ B for nurse n.

CS2cS3a
ni js ∈ N∗ missing shifts to reach L−ns in the block (i, j) ∈ B for nurse n and shift s.

CS5
ni j ∈ {0,1} 1 if a nurse n has exactly a single work day in the weekend (i, j) ∈W

violating complete weekend requirement Vn.

CS6a
n ∈ N∗ number of work days of nurse n that exceeds Q+

n .

CS6b
n ∈ N∗ missing days for nurse n to reach Q−n .

CS7
n ∈ N∗ number of work weekends of nurse n that exceeds R+

n .
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3.2.1 Base Model M0

In this section, we present an IP formulation for the NRP considering all the hard

and soft requirements mentioned in Section 3.1 except those concerning consecutive min-

imums (S2a, S2c, and S3a). This model, denoted as M0, is similar to proposed by Wickert,

Sartori and Buriol (2016). M0 is further extended in the models M1, M2 and M3.

Minimize (3.1)

Z0 =W S1
∑

d∈D
∑
s∈S′

∑
k∈K

CS1
dsk +W S2ab ∑

n∈N
∑

d∈D
gnd+

∑
s∈S

W S2S3
s ∑

n∈N
∑

d∈D
gnds +W S4

∑
n∈N

∑
d∈D

∑
s∈S′

∑
k∈K

(xndskPnds + xndskPnd)+

W S5
∑
n∈N

∑
(i, j)∈W

CS5
ni j +W S6

∑
n∈N

(CS6a
n +CS6b

n )+W S7
∑
n∈N

CS7
n

Subject to

∑
s∈S

∑
k∈K

xndsk = 1 ∀n ∈ N,d ∈ D (3.2)

∑
n∈N

xndsk ≥V−dsk ∀d ∈ D,s ∈ S′,k ∈ K (3.3)

∑
k∈K

(xn,d−1,s1,k + xn,d,s2,k)≤ 1 ∀n ∈ N,d ∈ D\{1},(s1,s2) ∈ F (3.4)

∑
s∈S′

xndsk ≤ Tnk ∀n ∈ N,d ∈ D,k ∈ K (3.5)

CS1
dsk ≥V ∗dsk− ∑

n∈N
xndsk ∀d ∈ D,s ∈ S′,k ∈ K (3.6)

∑
k∈K

∑
i∈d..d+L+

ns

xnisk ≤ L+
ns +gnds ∀n ∈ N,d ∈ D,s ∈ S:d≤|D|-L+

ns (3.7)

∑
s∈S′

∑
k∈K

∑
i∈d..d+L+

n

xnisk ≤ L+
n +gnd ∀n ∈ N,d ∈ D : d ≤ |D|−L+

n (3.8)

2rni j ≥ ∑
s∈S′

∑
k∈K

(xnisk + xn jsk) ∀n ∈ N,(i, j) ∈W (3.9)

CS7
n ≥ ∑

(i, j)∈W
rni j−R+

n ∀n ∈ N (3.10)

CS5
ni j = (2rni j−∑

s∈S′
∑
k∈K

(xnisk + xn jsk))Vn ∀n ∈ N,(i, j) ∈W (3.11)

CS6a
n ≥ ∑

d∈D
∑
s∈S′

∑
k∈K

xndsk−Q+
n ∀n ∈ N (3.12)
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CS6b
n ≥ Q−n − ∑

d∈D
∑
s∈S′

∑
k∈K

xndsk ∀n ∈ N (3.13)

xndsk,gnd ,gnds,rni j,C
S5
ni j ∈ {0,1} ∀n ∈ N,d ∈ D,s ∈ S,k ∈ K,(i, j) ∈W

CS6a
n ,CS6b

n ,CS7
n ,CS1

dsk ∈ N∗ ∀n ∈ N,s ∈ S,k ∈ K

The objective function of the model is composed of several weighted parts pre-

sented by Equation (3.1). While requirement S4 is computed directly by variable in the

objective function, the remaining soft requirements also require the inclusion of con-

straints sets in the formulation.

Constraint set (3.2) ensures that a nurse is assigned to one work shift or a day

off for each day. Constraint set (3.3) ensures that minimum coverage is respected. Con-

straint set (3.4) guarantee that shift successions are valid, according to requirement H3.

Constraint set (3.5) ensures that a nurse has a work shift assigned among its skillset. Con-

straint set (3.6) computes the cost variable CS1
dsk, the number of missing nurses for optimal

coverage, regarding the requirement S1. Constraints sets (3.7)-(3.8) store on g variables

the number of consecutive assignments, concerning work shifts, work days, and days off,

that exceeds the limit established by the corresponding parameter L+.

Constraint set (3.9) enforces the variable rni j to be equal to one when a nurse

works at least one day of the weekend (i, j) ∈W . This variable is used in the constraint

set (3.10) to determine the cost variable CS7
n , i.e., how many work weekends are exceeding

the limit R+
n for each nurse. The variable rni j is also used in the constraint set (3.11) that

sets the variables CS5
ni j related to the requirement S5. It ensures that the variable CS5

ni j will

be activated only when the nurse n has exactly a single work day in the weekend (i, j)∈W

and it violates complete weekend requirement Vn.

Constraints sets (3.12) and (3.13) concern the maximum and minimum limits

of work days for each nurse regarding the whole schedule. While constraint set (3.12)

computes the cost variable CS6a
n as the number of workdays that exceeds Q+

n , constraint

set (3.13) computes the cost variable CS6b
n as the number of workdays below Q−n .

For the sake of simplicity, all constraints related to a previous schedule (H3, S2

and S3) are not explicitly described here. Note that this could be handled by prepending

a week where all allocations are fixed according to the history file.
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3.2.2 Model M1

In this section, we present an IP formulation denoted as M1 that extends the base

model M0 by adding the soft requirements S2a, S2c, and S3a. These additional require-

ments are formulated by using the same approach presented in the work of Dorneles,

Araújo and Buriol (2012) in which consecutive assignments are identified as blocks. The

model M1 is described below.

Minimize (3.14)

Z = Z0 +W S2ab ∑
n∈N

∑
(i, j)∈B

CS2a
ni j +∑

s∈S
W S2S3

s ∑
n∈N

∑
(i, j)∈B

CS2cS3a
ni js

Subject to

Constraints sets (3.2)-(3.10)

bnuv ≤ ∑
s∈S′,k∈K

xnisk ∀n ∈ N,(u,v) ∈ B, i ∈ u..v (3.15)

bnuv + ∑
s∈S′,k∈K

xn,u−1,s,k ≤ 1 ∀n ∈ N,(u,v) ∈ B : u > 1 (3.16)

bnuv + ∑
s∈S′,k∈K

xn,v+1,s,k ≤ 1 ∀n ∈ N,(u,v) ∈ B : v < |D| (3.17)

∑
d∈D,s∈S′,k∈K

xndsk= ∑
(u,v)∈B

(v-u+1)bnuv ∀n ∈ N (3.18)

bnuvs ≤ ∑
k∈K

xnisk ∀n ∈ N,s ∈ S,(u,v) ∈ B, i ∈ u..v (3.19)

bnuvs + ∑
k∈K

xn,u−1,s,k ≤ 1 ∀n ∈ N,s ∈ S,(u,v) ∈ B : u > 1 (3.20)

bnuvs + ∑
k∈K

xn,v+1,s,k ≤ 1 ∀n ∈ N,s ∈ S,(u,v) ∈ B : v<|D| (3.21)

∑
d∈D,k∈K

xndsk= ∑
(u,v)∈B

(v-u+1)bnuvs ∀n ∈ N,s ∈ S (3.22)

CS2a
nuv ≥ L−n bnuv-(v-u+1)bnuv ∀n ∈ N,(u,v) ∈ B : u > 1 (3.23)

CS2cS3a
nuvs ≥ L−nsbnuvs-(v-u+1)bnuvs ∀n ∈ N,(u,v) ∈ B,s ∈ S : v<|D|,u > 1 (3.24)

xndsk,bni j,bni js ∈ {0,1} ∀n ∈ N,(i, j) ∈ B,s ∈ S,k ∈ K

CS2a
ni j ,C

S2c,S3a
ni js ∈ N∗ ∀n ∈ N,s ∈ S,(i, j) ∈ B

Constraints sets (3.15)-(3.18) ensure that the variable bnuv will only be activated
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when the nurse n has a block (u,v) of consecutive work days. This auxiliary variable

is used to compute the soft requirements S2a, S2c and S3a. Similarly, the constraints

sets (3.19)-(3.22) ensure that the variable bnuvs will only be activated when the nurse n

has a block (u,v) composed by consecutive assignments of the shift s.

Constraint set (3.23) determines the number of missing days to reach the mini-

mum number of consecutive work days (requirement S2a). Similarly, constraint set (3.24)

determines the number of missing shifts to reach the minimum number of consecutive

assignments by shift (requirements S2c and S3a).

3.2.3 Model M2

The model M2 extends the model M0 3.2.1 by adding the soft requirements S2a,

S2c and S3a with the same formulation proposed by Wickert, Sartori and Buriol (2016)

and further detailed in Wickert (2019). This model identifies patterns according to the

number of minimum consecutive requirements. For example, considering four as the

minimum number of consecutive working days, 1 as a work day, and 0 as a day off, the

search patterns are 010, 0110, 01110. If found, these patterns represent three, two and

one violations, since they are less than four consecutive working days. The model M2 is

described below.

Minimize (3.25)

Z = Z0 +W S2ab ∑
n∈N

∑
d∈D

∑
t∈1..L−d −1

cndt +∑
s∈S

W S2S3
s ∑

n∈N
∑

d∈D
∑

t∈1..L−d −1

cndst

Subject to

Constraints sets (3.2)-(3.10)

andt + cndt ≥ L−n ∀n ∈ N, t ∈ 1..L−n −1,d ∈ 1..|D|− (t +1) (3.26)

andt = ∑
i∈d..(t+d+1),s∈S,k∈K

xnisk+ ∀n ∈ N, t ∈ 1..L−n −1,d ∈ 1..|D|− (t +1) (3.27)

∑
s∈S′,k∈K

(xndsk + xn,t+d+1,sk)M+

∑
j∈(d+1)..(t+d)

(1− ∑
s∈S′,k∈K

xn jsk)M
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andst + cndst ≥ L−ns ∀n ∈ N,s ∈ S, t ∈ 1..L−ns−1,d ∈ 1..|D|− (t +1) (3.28)

andst = ∑
i∈d..(t+d+1),k∈K

xnisk+ ∀n ∈ N,s ∈ S, t ∈ 1..L−ns−1,d ∈ 1..|D|− (t +1) (3.29)

∑
k∈K

(xndsk + xn,t+d+1,sk)M+

∑
j∈(d+1)..(t+d)

(1−∑
k∈K

xn jsk)M

xndsk ∈ {0,1} ∀n ∈ N,d ∈ D,s ∈ S,k ∈ K

andt ,cndt ∈ N0 ∀n ∈ N,d ∈ D, t ∈ 1..L−n −1

andts,cndts ∈ N0 ∀n ∈ N,d ∈ D,s ∈ S, t ∈ 1..L−ns−1

Constraint sets (3.26) and (3.27) compute the minimum consecutive assignments

of working days violations and store the result in the variable cndt . The right side of

the constraint set (3.27) has three components that are used to match a pattern. The first

component calculates the sum of the working days, the second one verifies two border

bits multiplied by M, and finally, the last component is the complement of middle bits

multiplied by M. For example, if the minimum are 4 consecutive working days (L−n = 4)

and in the scheduling we have found the pattern 0110, it means that there are 2 violations.

The number of violations is calculated as 2+(0 ∗M)+ (0 ∗M)+ cnd2 ≥ 4 and, as result

cnd2 will assume value 2. Similarly, constraints sets (3.28) and (3.29) calculate the mini-

mum number of consecutive assignments that occurs in the same shift, as well as days off

violations. Recall that the M in this formulation is a big-M.

3.2.4 Model M3

Although the models M1 and M2 described in the previous section are able to

model the NRP properly, empirical experiments demonstrated they have low performance

when solving instances of NRP. In order to investigate this issue, we carried out a deeper

analysis of individual requirements. In a separate experiment, we find out that by dis-

regarding the requirements S2a,S2c and S3a, i.e., requirements concerning a minimum

number of consecutive assignments, most instances could be solved in a few seconds.

In order to improve on this issue, we analyzed the occurrences of consecutive min-

imum requirements in the dataset of hidden instances of the INRC-II that are presented in

detail in Section 5.1. These requirements, namely, the minimum consecutive work days

(S2a), days off (S3a), and work shifts (S2c) are defined for each nurse, and their amounts
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vary according to three different scenarios, as shown in Table 3.4. In this table the col-

umn requirement presents the requirements with the identifier names S2a, S3a, and S2c.

Column Min shows the possible minimum values, 2, 3, 4, and 5, that were observed in

the dataset for each requirement. Finally, columns Scenario 1, Scenario 2 and Scenario

3 corresponding to scenarios with 35, 70, and 110 nurses, respectively, and present the

percentage of nurses for each requirement and each minimum value that occur in the data.

Table 3.4: Percentage of nurses that are constrained with each value of the minimum
requirement parameter.

Requirement Min Scenario 1
(35 nurses)

Scenario 2
(70 nurses)

Scenario 3
(110 nurses)

2 75% 75% 75%
Minimum consecutive work shifts (S2c) 3 0% 0% 0%

4,5 25% 25% 25%

2 0% 0% 22%
Minimum consecutive work days (S2a) 3 100% 72% 50%

4,5 0% 28% 28%

2 60% 72% 44%
Minimum consecutive days off (S3a) 3 40% 0% 56%

4,5 0% 28% 0%

Source: created by author.

According to Table 3.4, we observed that the sum of occurrences of values of

minimum parameters 2 and 3 are greater than 72% in all scenarios. While the percentages

of minimum≥ 4 have a maximum usage of 28%. This data suggests that we could explore

a specialized formulation for handling each minimum value separately with a focus on

providing a lightweight formulation for the parameters with values 2 and 3. This model,

denoted as M3, extends the base model M0, and it is presented below.

Minimize (3.30)

Z = Z0 +W S2ab ∑
t∈1..4

∑
n∈N:L−n >t

∑
d∈D:

mD
ndt ∗ (L

−
n − t)+

∑
s∈S

W S2S3
s ∑

t∈1..4
∑

n∈N:L−ns>t
∑

d∈D:
mS

ndt ∗ (L
−
ns− t)

Subject to

Constraints sets (3.2)-(3.10)

∑
s∈S′

∑
k∈K

(xndsk− xn,d−1,s,k)≤ tnd ∀n ∈ N,d ∈ D : d > 1 (3.31)
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∑
k∈K

(xndsk− xn,d−1,s,k)≤ tnds ∀n ∈ N,s ∈ S,d ∈ D : d > 1 (3.32)

tnd− ∑
s∈S′,k∈K

xn,d+1,s,k ≤ mD
nd1 ∀n ∈ N,d ∈ D−1: L−n ≥ 2 (3.33)

tnd + ∑
s∈S′,k∈K

(xn,d+1,s,k− xn,d+2,s,k)−1≤ mD
nd2 ∀n ∈ N,d ∈ D−2: L−n ≥ 3 (3.34)

tnd− tn,d+2 + ∑
s∈S′,k∈K

(xn,d+2,s,k− xn,d+3,s,k)−1≤ mD
nd3 ∀n ∈ N,d ∈ D−3: L−n ≥ 4 (3.35)

tnd-tn,d+2-tn,d+3+tn,d+4+∑
s∈S′,k∈K

(xn,d+3,sk-xn,d+4,sk)-1≤ mD
nd4 ∀n ∈ N,d ∈ D−4: L−n ≥ 5 (3.36)

tnds− ∑
k∈K

xn,d+1,s,k ≤ mS
nds1 ∀n ∈ N,s ∈ S,d ∈ D−1: L−ns ≥ 2 (3.37)

tnds + ∑
k∈K

(xn,d+1,s,k− xn,d+2,s,k)−1≤ mS
nds2 ∀n ∈ N,s ∈ S,d ∈ D−2: L−ns ≥ 3 (3.38)

tnds− tn,d+2,s + ∑
k∈K

(xn,d+2,s,k− xn,d+3,s,k)−1≤ mS
nds3 ∀n ∈ N,s ∈ S,d ∈ D−3: L−ns ≥ 4 (3.39)

tnds-tn,d+2,s-tn,d+3,s+tn,d+4,s+ ∑
k∈K

(xn,d+3,sk-xn,d+4,sk)-1≤ mS
nds4 ∀n ∈ N,s ∈ S,d ∈ D−4: L−ns ≥ 5 (3.40)

mD
ndt ,m

S
ndst , tnd , tnds ∈ {0,1} ∀t ∈ 1..4,n ∈ N,d ∈ D,s ∈ S (3.41)

The objective function Z (3.30) is composed of Z0 from model M0 and the cost of

penalization of minimum consecutive requirements.

Constraint set (3.31) ensures that the variable tnd will only be activated when the

nurse n has a block of consecutive work days assignments starting on day d. Similarly,

constraint set (3.32) ensures that the variable tnds will only be activated when the nurse n

has a block of consecutive work shifts assignments s starting on day d.

Constraint set (3.33) ensures that the variable mD
nd1 is one when the pattern (10)

is found, that is, the nurse n is working on the day d and the next day is a day off. In

other words, when the minimum consecutive days (L−n ) is 2, 3, 4 or 5 and the pattern (10)

is found, mD
nd1 is penalized in the objective function. Similarly, constraints sets (3.34),

(3.35) and (3.36) ensure that the variables mD
nd2, mD

nd3 and mD
nd4 are one when the patterns

(110), (1110) and (11110) are found, respectively. Similarly, constraints sets (3.37)-(3.40)

ensure that the variables mD
nds are one when the analogous patterns are found to shifts.
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4 A LATE ACCEPTANCE FIX-AND-OPTIMIZE APPROACH

In this chapter, we propose a matheuristic approach hereafter defined as LAFO.

This approach combines Late Acceptance criteria into a fix-and-optimize heuristic for

solving instances of the INRC-II. Section 4.1 and 4.2 present, respectively, an overview

of the LAFO heuristic and a detailed description of the proposed algorithm.

4.1 Approach overview

The base method of our approach is the fix-and-optimize heuristic that was pro-

posed independently by Gintner, Kliewer and Suhl (2005) and by Pochet and Wolsey

(2006). In the latter, the method was called exchange, designed to improve the relax-and-

fix heuristic (WOLSEY, 1998). The main goal of the fix-and-optimize is to solve a series

of subproblems that can be optimized relatively fast by a MIP solver when compared with

a full problem. In each iteration of the algorithm, a decomposition process is applied to fix

most of the decision variables at their value in a current solution generating a lightweight

subproblem. At next, a standard MIP solver is used to solve the subproblem. The ob-

tained solution of the subproblem becomes the current solution in case it improves the

objective value. In further iterations of the algorithm new subproblems are created by fix-

ing a different subset of variables. This process is repeated until a termination condition

is satisfied. In order to improve the performance of the algorithm, usually, a time limit is

imposed for the resolution of each subproblem.

In the standard F&O approach, in each iteration, the current solution is accepted

only when it improves the objective value. Instead, in this work, we use the Late Accep-

tance criteria (LA) mechanism in order to introduce a diversification strategy into F&O.

The LA criteria compares a candidate solution with a solution that was generated a given

number of iterations before. If the cost of the candidate solution is better than this old

solution, it will be accepted as the current one. This approach helps the algorithm es-

cape from local optimum values by accepting temporarily worse solutions than the best

found so far. This acceptance strategy is also used in the Late Acceptance Hill Climbing

metaheuristic (BURKE; BYKOV, 2008).

Another critical decision in a F&O heuristic is the way decompositions are imple-

mented. In this work, we propose a hybrid decomposition that selects a given set of nurses

and weeks to be optimized in each subproblem. Specifically, a subproblem is created by
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choosing a set of nursesN that are free to be optimized within a set of weeksW . A nurse

that is “free to be optimized” has all variables of shifts and skills unfixed.

In order to explain the selection policy for the elements of N , we first introduce

the concepts of block and partition. A block is a group composed by b consecutive nurses

in an instance. So, b is the block size. A partition Pb is a set of blocks of a given

size b such that each n ∈ N appears exactly in one block. For instance, suppose a toy

instance with N = {1,2,3,4,5,6}, a partition composed by blocks of size 2 (b= 2) is P2 =

{{1,2},{3,4},{5,6}}. In the same fashion, if b = 3 we have P3 = {{1,2,3},{4,5,6}}.

Thus, in a given iteration, N is defined as a sample of nurses that appears in an element

of the sequence of all 2-combinations of Pb. Similarly, W is defined according to the

all k-combinations of the week set W . Since a week have 7 days, W = {1, ..., |D|7 }. The

algorithm starts with a small block size that is increased each time all possibilities ofW

are explored. This process is detailed in the next section.

4.2 The proposed algorithm

The overall algorithm is described in the pseudo-code of Figure 4.1. Function

LAFO receives as input a time limit (TL) for the algorithm, the time limit for each sub-

problem (STL), a percentage limit to explore the neighborhood (α) and a list size (γ). The

algorithm begins by creating an initial feasible solution s (line 1). We solve the instance

considering only the hard constraints of the problem. This approach allows to find an

initial feasible solution quickly. If the problem is infeasible, it terminates returning no

solution. Line 2 initialize the best solution (s∗).

In lines (3–5) a diversification strategy is introduced by a circular list Li, where

i ∈ 1...γ are initialized with the objective function value of the initial solution (Z(s)). The

variables iter and b (lines 6–7) count the number of iterations of the main loop and the

initial size of blocks, respectively. Line 8 initializes the week set W . The outer loop (lines

9–30) iterates until the time limit (TL) is reached.

The loop of lines (10–25) iterates over the week set with k being the number o

weeks. The next loop iterates over the random sequence of all k-combinations of weeks

(lines 11–24) by definingW . Thus, for eachW , in the loop of lines 12-23, we select N

by iterating in α percent sample of a sequence with all 2-combinations of Pb. As a matter

of example, suppose we start with 28 days, 4 nurses, and α=50%. Thus, we have b =

1, W = {1,2,3,4}, k = 1 and P1 = {{1},{2},{3},{4}}. In the first iteration we could
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randomly selectW = {3} andN = {2,4}. In other words, in the subproblem we free the

nurses 2 and 4 on all days of the week 3. Since there are six combinations as a result of 2-

combinations of P1 and α=50%, we iterate more twice in the nurses before changingW .

Continuing with the example above, we could randomly select on the second iteration

N = {1,2} and in the third iteration N = {1,2}, after that we changeW .

In line 14 of the algorithm, the implementation of access to the list indexes occurs

with the module operators, where i is the list index calculated as iteration iter module of

the list size γ .

In line 13 the subproblem is solved by a MIP model through function solve()

which receives four parameters: the current solution (s), the time limit of the subproblem

(ST L) and the set of variables of nurses and weeks to be optimized (N and W). This

function fixes all x variables to their values in the current solution s and unfixes all vari-

ables such as xnds j∀n∈N ,d ∈D : d corresponds to a week in W, s∈ S, j ∈K. After, the

MIP solver is invoked and, if it is able to find a feasible solution within the time limit, it

is returned. Otherwise, it returns the previous current solution s. Solution s is then stored

as the candidate solution s′ after the function solve().

In lines 14–21, candidate solution s′ is evaluated by the acceptance criterion. A

candidate solution is accepted if it is better than the cost of previous iterations kept in Li.

When s′ is accepted, list Li and s are updated (lines 16–17). The update of the best

solution s∗ found is performed only if Z(s) < Z(s∗) (line 18). If so, the new incumbent

solution is saved (line 19). After that, the number of iterations is increased (line 22). In

line 26, the size of block b is increased. If b is greater than half of the number of nurses,

b gets the value 1 (lines 27–29).

Note that since LAFO relies on an existing input MIP model, it also brings the ad-

vantages of being easy to maintain and accommodate novel requirements that often arise

in a real-world context. Using high-level languages to represent the input MIP Model, as

AMPL or MathProg, one could even update the problem requirements without recompil-

ing or retesting the code. Hence, besides keeping the maintenance costs low compared to

a standalone heuristic method, our approach provides a more natural and readable way to

maintain complex models that evolve with the problem requirements.
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Figure 4.1: Pseudocode of the proposed algorithm.
Algorithm LAFO (TL, STL, α , γ)

1: Generate initial feasible solution s
2: s∗← s
3: for i ∈ 1..γ do
4: Li← Z(s)
5: end for
6: iter← 0
7: b← 1
8: W ←{1, ..., |D|7 }
9: repeat

10: for k ∈ 1...|W | do
11: forW ∈ random sequence of all k-combinations of W do
12: for N ∈ α percent sample of all 2-combinations of Pb do
13: s′← solve(s, STL,W , N )
14: i← iter mod γ

15: if Z(s′)< Li then
16: Li← Z(s′)
17: s← s′

18: if Z(s)< Z(s∗) then
19: s∗← s
20: end if
21: end if
22: iter← iter +1
23: end for
24: end for
25: end for
26: b← b+1
27: if b > |N|

2 then
28: b← 1
29: end if
30: until TL
31: return s∗

Source: created by author.
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5 EXPERIMENTAL RESULTS

In this chapter, we present a set of computational experiments designed to help us

answer the following questions regarding the NRP problem:

• What requirements make the INRC-II problem difficult to solve with a MIP solver?

• How do the different models M1, M2 and M3 compare to each other?

• What are the best parameters values for the LAFO approach?

• Does the LAFO approach performs better than previous fix-and-optimize methods?

• How does the LAFO approach compares to the state-of-the-art methods?

5.1 Experimental setup and data sets

The experimental results were computed in a Desktop-PC equipped with an In-

tel(R) Xeon(R) CPU E5-2697 (2.70GHz), 64GB of RAM, 24 cores over 64 bits Linux

Ubuntu 18.04 operating system. A single core was dedicated to each experiment. All

experiments requiring a mathematical model resolution were solved by CPLEX 12.6.0

(IBM, 2015) with default settings using a single core. The algorithms were implemented

in C++ using the compiler g++1 (version 7.5.0) with the flags --std=c++11 and

-O3. For experiments with LAFO approach we used a seed with value of 1 and the algo-

rithm Mersenne Twister to generate random numbers (MATSUMOTO; NISHIMURA,

1998). All results of the experiments were certified by the INRC-II validator 2 that

checks the solution feasibility and also computes the solution value. We have published

a repository containing our solutions available at <http://github.com/victoriasimonetti/

NurseRostering-INRCII>.

The data sets used in the experiments were the hidden instances. This set com-

prises all instances with four weeks scheduling horizons provided by the organizers of

the INRC-II 3. These instances are composed of 35, 70 and 110 nurses, four shift types

(Early, Day, Late and Night), four skill types (Head Nurse, Nurse, Caretaker and Trainee),

and four contract types (FullTime, PartTime, HalfTime and 20Percent).

1<https://gcc.gnu.org/>
2<http://mobiz.vives.be/inrc2/?page_id=245>
3<http://mobiz.vives.be/inrc2/?page_id=20>

http://github.com/victoriasimonetti/NurseRostering-INRCII
http://github.com/victoriasimonetti/NurseRostering-INRCII
https://gcc.gnu.org/
http://mobiz.vives.be/inrc2/?page_id=245
http://mobiz.vives.be/inrc2/?page_id=20
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Table 5.1 presents the hidden instances tested in this work. The column Id identi-

fies an instance of column Instance. Also, instances are split into three groups according

to the number of nurses, small (35 nurses), medium (70 nurses) and large (110 nurses).

The instance names are composed by the number of nurses and weeks, for example, id 1

is the instance n035w4_2_8-8-7-5 that has 35 nurses and 4 weeks.

Table 5.1: Characteristics of the dataset.

Id Instance (small) Id Instance (medium) Id Instance (large)

1 n035w4_2_8-8-7-5 11 n070w4_0_3-6-5-1 21 n110w4_0_1-4-2-8

2 n035w4_0_1-7-1-8 12 n070w4_0_4-9-6-7 22 n110w4_0_1-9-3-5

3 n035w4_0_4-2-1-6 13 n070w4_0_4-9-7-6 23 n110w4_1_0-1-6-4

4 n035w4_0_5-9-5-6 14 n070w4_0_8-6-0-8 24 n110w4_1_0-5-8-8

5 n035w4_0_9-8-7-7 15 n070w4_0_9-1-7-5 25 n110w4_1_2-9-2-0

6 n035w4_1_0-6-9-2 16 n070w4_1_1-3-8-8 26 n110w4_1_4-8-7-2

7 n035w4_2_8-6-7-1 17 n070w4_2_0-5-6-8 27 n110w4_2_0-2-7-0

8 n035w4_2_9-2-2-6 18 n070w4_2_3-5-8-2 28 n110w4_2_5-1-3-0

9 n035w4_2_9-7-2-2 19 n070w4_2_5-8-2-5 29 n110w4_2_8-9-9-2

10 n035w4_2_9-9-2-1 20 n070w4_2_9-5-6-5 30 n110w4_2_9-8-4-9

Source: created by author.

5.2 Experiments with relaxed versions of the NRP

This section aims to answer which requirements make the INRC-II problem dif-

ficult to solve with a MIP solver. This research question was first addressed by Smet

(2018) for a correlated nurse rostering problem, and the authors concluded that consec-

utive requirements influence the most in the computational complexity. To investigate

if this conclusion could be supported for the NRP, we evaluate three relaxed problems

presented below:

• Relaxed Problem 1 (RP1): NRP without minimum and maximum consecutive re-

quirements. In this experiment, the model M0 was used without S2b, S2d and S3b.

• Relaxed Problem 2 (RP2): NRP without minimum consecutive requirements. In

this experiment, the model M0 was used.

• Relaxed Problem 3 (RP3): NRP without maximum consecutive requirements. In
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this experiment, the model M3 was used without S2b, S2d and S3b.

Table 5.2 reports three different relaxations of the NRP, RP1, RP2 and RP3. The

column Id identifies the instance and the columns Time display the time in seconds. Cells

marked with “t.l.” indicate the time limit of 24 hours was reached without proof of opti-

mality. The objective value of the solution and optimality gap are shown in the columns

Obj and Gap, respectively. The columns Variables and Constraints present the number

of variables and constraints of each model, respectively, after the presolver phase. The

last row (Avg∗) displays the average values for all instances. Additionally, we also display

average values corresponding to small (Avgs), medium (Avgm) and large (Avgl) instances.

Analyzing the results, we can see that RP3 presented the worst performance among

the relaxed models. We can note that RP3 was not able to produce optimal results for any

instance within the time limit. These results suggest that tackling minimum consecutive

requirements significantly affects the performance of the MIP solver. In contrast, in RP1

and RP2, all instances were solved to optimality with an average time of 35 and 181 sec-

onds, respectively. The only exception was the instance 25 in RP1 that reached the time

limit with a gap of 2,33%.

If we focus our analysis on RP1 and RP2 according to instance size, we can see that

the average time spent on RP2 doubles on small instances compared to RP1. In contrast,

this difference is six times greater in medium instances. In general, the time increases

when constraints are added, but some instances become particularly hard to solve. For

example, instance 15 takes 37.5 seconds to prove optimality in RP1 and approximately

36 minutes on RP2.

As expected, the number of variables and constraints increase according to the

size of instances. Also, the difference between the relaxed models affects the number of

variables and constraints. When we add maximum constraints (RP2), the average avg∗ of

variables increases compared with RP1, from ∼14 thousand to ∼23 thousand. Similarly,

this occurs with constraints, from∼7 thousand to∼15 thousand. Moreover, when we add

minimum constraints (RP3), the number of variables triples, from ∼14 thousand to ∼44

thousand, and the number of constraints is five times greater, from ∼7 thousand to ∼37

thousand.

The results presented here show that minimum consecutive requirements have the

most significant impact on the problem computational hardness. Hence, reformulating

these constraints could be relevant to produce better results by a MIP model, as shown in

the next section.
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RP1: NRP without min. and max. consec. RP2: NRP without min. consec. RP3: NRP without max. consec.

Id Time (s) Obj Gap Variables Constraints Time (s) Obj Gap Variables Constraints Time (s) Obj Gap Variables Constraints

1 117.6 70 0.0 7,218 3,532 14.4 180 0.0 11,280 7,567 t.l. 300 26.7 21,469 17,920
2 3.0 250 0.0 7,232 3,528 82.6 360 0.0 11,324 7,573 t.l. 380 4.0 21,493 17,903
3 2.7 340 0.0 7,265 3,531 33.5 490 0.0 11,308 7,539 t.l. 635 5.5 21,534 17,907
4 2.8 280 0.0 7,114 3,519 25.6 400 0.0 10,967 7,331 t.l. 660 2.8 21,428 17,892
5 12.3 210 0.0 7,245 3,531 17.5 330 0.0 11,253 7,521 t.l. 395 3.8 21,482 17,901
6 11.7 200 0.0 7,249 3,533 56.2 330 0.0 11,217 7,458 t.l. 470 6.2 21,541 17,921
7 2.9 220 0.0 7,257 3,537 38.7 330 0.0 11,295 7,532 t.l. 430 9.7 21,526 17,925
8 2.9 260 0.0 7,295 3,534 18.3 360 0.0 11,296 7,507 t.l. 670 13.0 21,577 17,924
9 11.3 260 0.0 7,308 3,541 29.6 390 0.0 11,324 7,533 t.l. 590 7.4 21,571 17,925

10 5.6 280 0.0 7,252 3,536 30.9 390 0.0 11,228 7,463 t.l. 565 8.4 21,551 17,920
Avgs 17.3 237.0 0.0 7,243.5 3,532.2 34.7 356.0 0.0 11,249.2 7,502.4 t.l. 509.5 8.7 21,517.2 17,913.8

11 9.1 180 0.0 14,756 6,810 146.2 490 0.0 22,919 14,962 t.l. 570 40.3 44,380 37,022
12 56.0 30 0.0 14,762 6,799 109.7 280 0.0 22,955 14,972 t.l. 620 75.6 44,380 37,015
13 224.6 30 0.0 14,772 6,809 123.3 240 0.0 23,005 15,022 t.l. 835 81.2 44,380 37,015
14 27.6 200 0.0 14,766 6,816 72.9 460 0.0 22,947 14,957 t.l. 445 17.1 44,400 37,018
15 37.5 30 0.0 14,783 6,824 2,149.8 150 0.0 23,051 15,061 t.l. 275 55.7 44,376 37,025
16 22.7 270 0.0 14,778 6,825 93.0 500 0.0 22,876 14,902 t.l. 535 17.3 44,421 37,046
17 31.4 130 0.0 14,783 6,822 81.8 390 0.0 23,016 15,015 t.l. 520 47.6 44,419 37,036
18 27.5 210 0.0 14,808 6,826 306.4 450 0.0 23,002 14,990 t.l. 655 50.6 44,446 37,052
19 53.5 120 0.0 14,836 6,843 113.0 400 0.0 23,099 15,066 t.l. 660 53.7 44,461 37,066
20 31.5 30 0.0 14,787 6,823 116.0 300 0.0 23,030 15,036 t.l. 720 68.3 44,403 37,037

Avgm 52.1 123.0 0.0 14,783.1 6,819.7 331.2 366.0 0.0 22,990.0 14,998.3 t.l. 583.5 50.7 44,406.6 37,033.2

21 24.2 720 0.0 21,055 10,521 144.4 1,010 0.0 33,977 23,443 t.l. 865 13.3 66,162 56,468
22 21.2 600 0.0 20,938 10,498 167.2 1,030 0.0 33,860 23,420 t.l. 815 21.5 66,045 56,445
23 13.8 740 0.0 21,078 10,514 148.1 1,070 0.0 34,005 23,441 t.l. 800 3.8 66,167 56,443
24 11.0 670 0.0 21,032 10,504 161.7 1,020 0.0 33,959 23,431 t.l. 740 5.4 66,121 56,433
25 t.l. 860 2.3 21,045 10,519 255.5 1,280 0.0 33,972 23,446 t.l. 1,030 5.8 66,131 56,445
26 34.0 660 0.0 21,037 10,512 190.4 1,020 0.0 33,964 23,439 t.l. 740 8.1 66,126 56,441
27 118.8 820 0.0 21,082 10,515 162.6 1,190 0.0 34,009 23,442 t.l. 920 4.4 66,171 56,444
28 17.3 640 0.0 20,985 10,495 164.8 1,000 0.0 33,912 23,422 t.l. 780 10.3 66,071 56,421
29 42.6 790 0.0 20,979 10,513 188.0 1,210 0.0 33,906 23,440 t.l. 955 12.6 66,068 56,442
30 37.2 680 0.0 21,009 10,505 187.8 1,090 0.0 33,936 23,432 t.l. 875 15.8 66,095 56,431

Avgl 35.5 718.0 0.2 21,024.0 10,509.6 177.0 1,092.0 0.0 33,950.0 23,435.6 t.l. 852.0 10.1 66,115.7 56,441.3

Avg∗ 35.0 359.3 0.1 14,350.2 6,953.8 181.0 604.7 0.0 22,729.7 15,312.1 t.l. 648.3 23.2 44,013.2 37,129.4
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5.3 Experiments with models M1, M2 and M3

In Section 5.2 we have seen that minimum consecutive requirements seem to be

responsible for making the NRP difficult to solve. In this section we evaluate models M1,

M2 and M3 that were previously defined in sections 3.2.2, 3.2.3 and 3.2.4. These three

models only differ in the way minimum consecutive requirements are formulated.

Table 5.3 displays the comparison results for the models M1, M2 and M3 with a

time limit of 24 hours. The column Id identifies the instance. Columns labeled Obj, Gap

and LB show, respectively, the objective value of the solution, the optimality gap, and the

lower bound obtained by the MIP solver to each model. Cells marked with a "-" means

that the MIP solver does not found an integer solution. The last row (Avg∗) displays the

average values for the whole instance group. Additionally, we also display average values

corresponding to small (Avgs), medium (Avgm) and, large (Avgl) instances. Best results

are shown in bold and running times are suppressed since all runs reached the time limit.

From Table 5.3 we can observe that the model M1 found an integer solution only

to the instance 1. For the remaining ones, the MIP solver was not even able to solve the

root node due to the high number of variables and constraints required by the consecutive

assignment constraints. On the other hand, models M2 and M3 performed better since

they found integer solutions for all instances.

When comparing the average results of models M1 and M2 according to the in-

stance size, one can note that while model M2 performed better in large instances, model

M3 performed better small and medium instances. On small instances, although the re-

sults were very close, with a difference of 4% of the average gap, the model M3 produced

the best solutions to 7 out of 10 instances. Concerning medium instances, model M3

also achieved best results than M2 for 8 out of 10 instances with an average gap differ-

ence of approximately 22%. In contrast, on large instances, model M2 has achieved the

best results for 6 out of 10 instances with an average gap of 8.5% less than model M3.

Particularly in large instances, model M2 produced better lower bounds than M3.

These results show empirically how different constraint formulations to the min-

imum consecutive requirements lead to significant performance differences between the

models. While M1 performed poorly, M2 and M3 were able to find feasible solutions to

all instances with distinct performance according to the instance size. Since the model

M3 presented the best average results we choose it for handling the experiments in the

Section 5.2 and with the LAFO approach in the Sections 5.4 and 5.5.
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Table 5.3: Comparison between model M1, M2 and M3 with a time limit of 24h.

M1 M2 M3

Id Obj Gap LB Obj Gap LB Obj Gap LB

1 30,905 99.9 35 1,450 49.7 730 1,355 46.0 735
2 - - - 2,100 52.7 995 2,300 57.3 985
3 - - - 2,140 43.8 1,205 2,110 41.8 1,230
4 - - - 1,770 33.8 1,175 1,800 33.0 1,190
5 - - - 1,790 45.1 985 1,520 34.0 1,005
6 - - - 1,925 52.0 925 1,630 42.6 935
7 - - - 1,540 38.9 945 1,465 38.0 910
8 - - - 2,005 44.2 1,120 2,130 46.4 1,145
9 - - - 1,865 41.9 1,085 1,665 33.9 1,100

10 - - - 1,885 44.8 1,040 1,640 33.0 1,100
Avgs 30,905.0 99.9 35.0 1,847.0 44.7 1,020.5 1,761.5 40.7 1,033.5

11 - - - 4,330 63.2 1,595 3,245 42.0 1,885
12 - - - 3,340 59.0 1,370 3,710 54.8 1,675
13 - - - 5,725 75.5 1,405 3,400 51.3 1,660
14 - - - 2,970 44.7 1,645 3,025 37.2 1,900
15 - - - 12,635 89.1 1,375 2,955 45.8 1,600
16 - - - 6,330 72.7 1,730 3,550 44.6 1,970
17 - - - 5,870 73.4 1,560 2,870 38.4 1,770
18 - - - 3,180 46.6 1,700 3,090 40.9 1,830
19 - - - 3,020 46.7 1,610 2,725 32.4 1,845
20 - - - 10,275 84.6 1,580 3,775 52.0 1,810

Avgm - - - 5,767.5 65.6 1,557.0 3,234.5 44.0 1,794.5

21 - - - 3,660 41.4 2,150 7,515 73.8 1,965
22 - - - 6,545 68.7 2,050 8,105 76.6 1,895
23 - - - 4,955 55.9 2,185 5,285 63.3 1,940
24 - - - 5,100 57.1 2,190 3,330 40.4 1,985
25 - - - 4,045 37.5 2,530 5,875 60.8 2,305
26 - - - 3,080 28.8 2,195 6,820 71.3 1,960
27 - - - 3,710 37.2 2,330 3,595 37.9 2,230
28 - - - 10,305 77.8 2,290 3,555 42.7 2,040
29 - - - 4,250 43.5 2,405 8,770 73.9 2,290
30 - - - 7,575 69.0 2,350 5,700 61.6 2,190

Avgl - - - 5,322.5 51.7 2,267.5 5,855.0 60.2 2,080.0

Avg∗ 30,905.0 99.9 35.0 4,312.3 54.0 1,615.0 3,617.0 48.3 1,636.0

Source: created by author.
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5.4 Tuning the parameters of the LAFO algorithm

This section describes the approach we used to set the three main parameters of

the LAFO heuristic, namely, the list size (γ), the subproblem time limit (STL) and the

percentage limit to explore the neighborhood (α).

Analyzing the performance of the LAFO approach in ad hoc experiments, we

identify that the parameter α leads to better results when it is defined as a function of

the number of nurses (n). Therefore, we set α = b8−0.06nc in such a way that the per-

centage limit to explore the neighborhood decreases for larger instances. The remaining

parameters, γ and STL were set using the irace package in the GNU R software (LÓPEZ-

IBÁÑEZ et al., 2016). The irace implements an iterated running procedure that automati-

cally configures application parameters, given an execution budget, a set of instances and

a range of suitable values for each parameter. The execution budget is a value that defines

the maximum number of executions irace can use to find the best parameters of the input

algorithm (LÓPEZ-IBÁNEZ et al., 2016).

For the adjustment experiment, we configured the irace to use instances 1, 4, 8,

11, 14, 18, 21, 24, and 28 as the training set and the remaining ones as the test set.

Table 5.4 presents the range of values we used for each parameter. Note that we included

a list of size 1 in order to simulate the acceptance criteria of the classical F&O heuristic.

Finally, we used a budget of 1,000 with each execution being an average of two runs

limited to 5,160 seconds. This time limit was chosen to be in line with the experiments of

Section 5.5.

Table 5.4: Parameter ranges evaluated in the irace adjustment procedure.

Parameter Range of values

List size (γ) [1,20,50,100,150,200,250,300,500,700]
Subproblem time limite (STL) [1, 5, 8, 10, 15, 30, 60, 120]

Source: created by author.

The results of irace reported γ = 150 and ST L = 8 as the best parameter configura-

tion. Note that, since ST L = 8 was the same setting found in the work of Wickert, Sartori

and Buriol (2016), suggesting it could be an all-rounded value for this parameter. We also

can highlight that γ = 1 was not ranked by irace as a proper setting, this supports the im-

portance of the late acceptance criteria proposed as a diversification mechanism into the

fix-and-optimize framework. The LAFO diversification mechanism could be seen in ac-

tion in Figure 5.1, that present the convergence curve for the current solution gap against
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time for three instances of different sizes with γ = 150. One can note that, before achiev-

ing convergence, there are significant oscillations in the gap values at the beginning of

the search procedure, especially in the first 30 minutes. This behavior was observed in all

instances.

The best parameter values reported in this section are used in the LAFO approach

in the following experiments.

Figure 5.1: Graphical of a small, medium and large instance with the median result of 10
runs.
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5.5 Experiments with LAFO approach and previous F&O methods

In this section, we present the results of the LAFO approach in comparison with

the fix-and-optimize (F&O) approach proposed by Wickert, Sartori and Buriol (2016).

Our goal is to compare which fix-and-optimize variant performs better to solve the NRP.

In Table 5.5, column id identifies the instance. Column BKS present the best-

known solution values reproduced from different sources. Values marked with a “�” were

obtained by Gomes, Toffolo and Santos (2017), values obtained by Ceschia, Guido and

Schaerf (2020) are represented by “§”, and “†” indicates the values obtained by Legrain,

Omer and Rosat (2019). Moreover, results marked with “‡” were obtained by Ceschia,

Guido and Schaerf (2020) by rerunning some missing experiments of Legrain, Omer and

Rosat (2019). While the columns under the label “F&O” show average results for the fix-

and-optimize heuristic proposed by Wickert, Sartori and Buriol (2016) with a time limit of
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7200 seconds, the columns under the label “LAFO” show average results of our approach

evaluated with the model M3. Since the computing facility used by Wickert, Sartori and

Buriol (2016)) is slower than ours by a factor of 0.72, we set the time limit of LAFO to be

5160 seconds. This normalization is supported by data from <http://www.cpubenchmark.

net/>. For each method, the average objective value(Obj) for 10 runs is presented with the

corresponding average gap (Gap) that is calculated as 100∗(Ob j−BKS
BKS ). For the LAFO, we

report the objective values (Obj∗ and gap Gap∗) of the best run, as well as the coefficient

of variation (CV ). The row (Avg∗) displays the average values for the whole instance

group. We also display average values corresponding to small (Avgs), medium (Avgm)

and, large (Avgl) instances. The results highlighted in boldface indicate the lowest costs.

Figure 5.2: Graphical comparison between LAFO and F&O.
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From Table 5.5 we can observe that the proposed algorithm found better solutions

to 25 out of 30 instances, as well as an average gap 4.3% better than F&O. If we focus our

analysis according to the instance sizes, the LAFO approach achieved the majority of best

results in all group sizes, with an average gap difference of 1.5% in small instances, 5.3%

in medium instances, and 6.4% in large instances. One can note that the difference be-

tween the average gaps obtained by the LAFO and F&O approaches increases along with

the instance size. Particularly in large instances, the difference between gaps reached up

to ≈ 26% for instance 28. Finally, as the average coefficient of variation reported for the

LAFO approach is 2%, we consider it a robust algorithm that is able to reproduce solu-

tions with a small deviation among each run. Figure 5.2 presents a graphical comparison

between LAFO and F&O.

http://www.cpubenchmark.net/
http://www.cpubenchmark.net/
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Table 5.5: Matheuristc LAFO compared with F&O of Wickert, Sartori and Buriol (2016).

F&O LAFO

Id BKS Obj Gap Ob j Gap Obj∗ Gap∗ CV

1 1,085� 1,210.0 11.5 1,237.0 14.0 1,170 7.8 3.3
2 1,415† 1,580.1 11.7 1,565.9 10.7 1,515 7.1 1.7
3 1,615� 1,780.1 10.2 1,760.5 9.0 1,705 5.6 1.1
4 1,530∗ 1,740.2 13.7 1,628.3 6.4 1,595 4.2 0.9
5 1,365� 1,565.0 14.6 1,500.0 9.9 1,435 5.1 3.4
6 1,360∗ 1,510.1 11.0 1,487.0 9.3 1,465 7.7 0.6
7 1,315∗ 1,485.0 12.9 1,455.5 10.7 1,400 6.5 2.9
8 1,525� 1,695.0 11.1 1,696.5 11.2 1,640 7.5 0.3
9 1,480� 1,610.1 8.8 1,624.0 9.7 1,570 6.1 3.0

10 1,485∗ 1,655.0 11.4 1,651.5 11.2 1,600 7.7 1.0
Avgs 1,417.5 1,583.0 11.7 1,560.6 10.2 1,509.5 6.5 1.8

11 2,415∗ 2,985.1 23.6 2,842.5 17.7 2,750 13.9 1.1
12 2,125† 2,719.9 28.0 2,535.5 19.3 2,410 13.4 4.5
13 2,195∗ 2,725.0 24.1 2,587.0 17.9 2,515 14.6 0.6
14 2,315∗ 2,675.1 15.6 2,668.5 15.3 2,605 12.5 2.3
15 2,100‡ 2,660.1 26.7 2,448.3 16.6 2,334 11.1 1.7
16 2,530‡ 2,930.0 15.8 2,915.4 15.2 2,840 12.3 3.6
17 2,340∗ 2,815.1 20.3 2,688.4 14.9 2,589 10.6 1.4
18 2,380‡ 2,839.9 19.3 2,690.0 13.0 2,580 8.4 1.4
19 2,335∗ 2,825.0 21.0 2,653.4 13.6 2,565 9.9 1.0
20 2,395∗ 2,825.0 18.0 2,764.5 15.4 2,630 9.8 1.4

Avgm 2,313.0 2,800.0 21.2 2,679.4 15.9 2,581.8 11.6 1.9

21 2,345∗ 3,105.1 32.4 3,020.0 28.8 2,905 23.9 4.7
22 2,525† 3,550.1 40.6 3,205.5 27.0 3,060 21.2 3.2
23 2,570∗ 3,435.1 33.7 3,241.0 26.1 3,115 21.2 3.0
24 2,555∗ 3,285.0 28.6 3,254.0 27.4 3,130 22.5 2.0
25 2,975‡ 3,419.9 15.0 3,646.0 22.6 3,435 15.5 1.3
26 2,495∗ 3,539.9 41.9 3,217.5 29.0 3,105 24.4 3.0
27 2,730∗ 3,414.9 25.1 3,388.5 24.1 3,260 19.4 0.9
28 2,685∗ 3,995.0 48.8 3,285.5 22.4 3,190 18.8 1.1
29 2,980‡ 3,575.2 20.0 3,720.9 24.9 3,620 21.5 2.8
30 2,775‡ 3,724.4 34.2 3,449.0 24.3 3,335 20.2 0.5

Avgl 2,663.5 3,504.5 32.0 3,342.8 25.6 3,215.5 20.9 2.2

Avg∗ 2,131.3 2,629.2 21.7 2,527.6 17.3 2,435.6 13.0 2.0

Source: created by author.
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5.6 Comparison between LAFO and the state-of-the-art results from the literature

Table 5.6 presents a comparison between our approach and the the state-of-the-

art methods for the NRP. Column BKS reproduces the best known solutions presented

in Table 5.5. The following columns displays, for each method, a objective value (Obj),

a gap (Gap), that is calculated using the equation gap = 100 ∗ (Ob j−BKS
BKS ). The time in

seconds (Time (s)) was normalized to machine used in the paper of Wickert, Sartori and

Buriol (2016) (see Section 5.5), except the work of Gomes et al. (2017) because the

algorithm was executed in parallel. Results of Ceschia, Guido and Schaerf (2020), and

the LAFO approach were reported as an average of 10 runs. The results highlighted in

boldface indicate the lowest costs.

From Table 5.6 we can observe that the best solutions were found in different

instances by Legrain, Omer and Rosat (2019), Gomes, Toffolo and Santos (2017), and

Ceschia, Guido and Schaerf (2020). However, the time limit used by Gomes et al. (2017)

is significantly greater when compared with the others methods, even not normalized. The

best average gap in small instances was obtained by Gomes et al. (2017) with 0.5%, and

Legrain et al. (2019) achieved the best average gap on medium and large instances with

0.6%, and 1.4%, respectively. The LAFO approach obtained gaps significantly greater

than the others methods, specially in medium and large instances. This result suggests

that the fix-and-optimize, overall, still has issues that need to be tackled to be competitive

with state-of-the-art methods. Figure 5.3 presents a graphical comparison between LAFO

and the state-of-the-art results from the literature.



46Table 5.6: Comparison between LAFO and the state-of-the-art results from the literature.
Legrain et al. (2019) Gomes et al. (2017) Ceschia et al. (2020) LAFO

Id BKS Obj Gap Time (s) Obj Gap Time (s)∗ Obj Gap Time (s) Obj Gap Time (s)

1 1,085 1,145 5.5 1,803 1,085 0.0 5,586 1,151.0 6.1 1,317 1,237.0 14.0 5,160
2 1,415 1,415 0.0 1,803 1,425 0.7 3,269 1,455.0 2.8 1,317 1,565.9 10.7 5,160
3 1,615 1,705 5.6 1,803 1,615 0.0 5,124 1,663.0 3.0 1,317 1,760.5 9.0 5,160
4 1,530 1,575 2.9 1,803 1,540 0.7 6,872 1,544.5 0.9 1,317 1,628.3 6.4 5,160
5 1,365 1,430 4.8 1,803 1,365 0.0 4,475 1,421.5 4.1 1,317 1,500.0 9.9 5,160
6 1,360 1,375 1.1 1,803 1,385 1.8 5,359 1,391.5 2.3 1,317 1,487.0 9.3 5,160
7 1,315 1,425 8.4 1,803 1,335 1.5 6,453 1,340.5 1.9 1,317 1,455.5 10.7 5,160
8 1,525 1,595 4.6 1,803 1,525 0.0 6,204 1,577.5 3.4 1,317 1,696.5 11.2 5,160
9 1,480 1,550 4.7 1,803 1,480 0.0 12,340 1,539.5 4.0 1,317 1,624.0 9.7 5,160

10 1,485 1,540 3.7 1,803 – – – 1,509.0 1.6 1,317 1,651.5 11.2 5,160
Avgs 1,417.5 1,475.5 4.1 1,803.0 1,417 0.5 6,186.9 1,459.3 3.0 1,317.0 1,560.6 10.2 5,160.0

11 2,415 2,430 0.6 3,206 2,460 1.9 3,640 2,455.0 1.7 2,342 2,842.5 17.7 5,160
12 2,125 2,125 0.0 3,206 2,330 9.6 4,943 2,190.0 3.1 2,342 2,535.5 19.3 5,160
13 2,195 2,210 0.7 3,206 2,315 5.5 9,465 2,229.0 1.5 2,342 2,587.0 17.9 5,160
14 2,315 2,320 0.2 3,206 2,400 3.7 1,795 2,345.5 1.3 2,342 2,668.5 15.3 5,160
15 2,100 2,100 0.0 2,342 2,225 6.0 3,395 2,147.0 2.2 2,342 2,448.3 16.6 5,160
16 2,530 2,530 0.0 2,342 2,615 3.4 3,457 2,582.5 2.1 2,342 2,915.4 15.2 5,160
17 2,340 2,360 0.9 3,206 2,415 3.2 2,990 2,365.0 1.1 2,342 2,688.4 14.9 5,160
18 2,380 2,380 0.0 2,342 2,405 1.1 5,032 2,424.5 1.9 2,342 2,690.0 13.0 5,160
19 2,335 2,345 0.4 3,206 2,390 2.4 7,580 2,366.5 1.3 2,342 2,653.4 13.6 5,160
20 2,395 2,465 2.9 3,206 2,480 3.5 2,495 2,416.0 0.9 2,342 2,764.5 15.4 5,160

Avgm 2,313.0 2,326.5 0.6 2,946.0 2,404 4.0 4,479.2 2,352.1 1.7 2,342.0 2,679.4 15.9 5,160.0

21 2,345 2,390 1.9 4,809 2,560 9.2 13,084 2,387.5 1.8 3,513 3,020.0 28.8 5,160
22 2,525 2,525 0.0 4,809 2,640 4.6 9,624 2,566.5 1.6 3,513 3,205.5 27.0 5,160
23 2,570 2,680 4.3 4,809 2,690 4.7 24,585 2,609.0 1.5 3,513 3,241.0 26.1 5,160
24 2,555 2,625 2.7 4,809 2,705 5.9 12,838 2,596.0 1.6 3,513 3,254.0 27.4 5,160
25 2,975 2,975 0.0 3,513 3,170 6.6 11,570 3,032.0 1.9 3,513 3,646.0 22.6 5,160
26 2,495 2,570 3.0 4,809 2,630 5.4 8,350 2,545.5 2.0 3,513 3,217.5 29.0 5,160
27 2,730 2,780 1.8 4,809 2,960 8.4 10,882 2,763.5 1.2 3,513 3,388.5 24.1 5,160
28 2,685 2,700 0.6 4,809 2,770 3.2 9,079 2,719.0 1.3 3,513 3,285.5 22.4 5,160
29 2,980 2,980 0.0 3,513 3,140 5.4 15,184 3,049.0 2.3 3,513 3,720.9 24.9 5,160
30 2,775 2,775 0.0 3,513 3,005 8.3 11,311 2,834.0 2.1 3,513 3,449.0 24.3 5,160

Avgl 2663.5 2700.0 1.4 4,420.0 2,827.0 6.1 12650.7 2,710.2 1.7 3,513.0 3,342.8 25.6 5160.0

Avg∗ 2,131.3 2,167.3 2.0 3,056.0 2,215.9 3.6 7,772.3 2,173.9 2.2 2,390.0 2,527.6 17.3 5,160.0

Source: created by author.
∗ Time limit of Gomes et al. (2017) are not normalized because the algorithm was executed in parallel.
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Figure 5.3: Graphical comparison between LAFO and the state-of-the-art results.
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6 CONCLUSIONS

The research carried out in this work presents a study about the static version of

the INRC-II problem. Different from the majority of the works proposed in the related

literature, in this research, we investigated the limitations of MIP approaches, including

how different requirements impact the resolution of the problem and how this approach

could perform when inserted in a matheuristic procedure.

In addition to defining the NRP, MIP models were proposed to study the problem

and evaluate its performance. The experimental results revealed that minimum consecu-

tive requirements have the most significant impact on the problem in the resolution time.

When added to the model, it was not able to produce optimal results for any instance

within the time limit of 24 hours. For this purpose, we reformulated these requirements

that resulted in three different models. The model M1 has a formulation that consecutive

assignments are identified as blocks. The model M2 identify patterns for all sizes of mini-

mum consecutive requirements with one set of constraint and using a Big-M. In the model

M3, each constraint identifies one pattern without using a Big-M. The experimental results

performed on INRC-II instances revealed that model M3 produces better solutions than

the other ones when solved by a MIP solver. However, the obtained results demonstrated

that solving the NRP problem with a MIP model is still inefficient even when a time limit

of 24 hours is available.

In addition to mathematical models, a novel approach was proposed for solving

the NRP by exploring weeks and nurses decompositions into blocks through a fix-and-

optimize heuristic combined with Late Acceptance criteria. An initial experimental in-

vestigation for setting the parameters of the LAFO approach demonstrated that, while

the α parameter led to better results when it was defined as a function of the number of

nurses, the remaining parameters were better when adjusted by irace. One of these values

reported by irace was ST L with 8 seconds, the same setting found in the work of Wickert,

Sartori and Buriol (2016), suggesting it could be an all-rounded value for this parameter.

Also, the value defined to γ = 150 supports the importance of the LA criteria proposed

as a diversification mechanism into the F&O. When compared with a previously reported

fix-and-optimize approach proposed by Wickert, Sartori and Buriol (2016), the results

demonstrated that the LAFO approach performs, on average, 4.4% better for solving the

NRP.

When compared with state-of-the-art approaches, the LAFO approach provides
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solutions that are about 15% far from the best method, proposed by Legrain, Omer and

Rosat (2018) in terms of quality. Although, a proper time comparison between methods

was not possible because the approach of Gomes, Toffolo and Santos (2017) was executed

in parallel. Finally, the LAFO approach is easy to maintain and accommodate novel

requirements by only changing the corresponding MIP models, i.e., it could provide an

interesting trade-off between solution quality and software maintenance, at the same time

that allows scaling large instances better than a general purpose MIP solver.

As future work, there are several directions in which the research conducted in this

work can be extended: (i) explore different strategies for selecting partitions in the fix-

and-optimize heuristic (ii) investigate algorithms to generate initial solutions (iii) network

flow model with attention to the consecutiveness constraints.
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APPENDIX A — RESUMO EXPANDIDO

Modelos Matemáticos e uma Matheuristic Late Acceptance Fix-and-Otimize

para um problema de escalonamento de enfermeiros

A construção de escalas de trabalho de enfermeiros é um processo operacional

presente em setores hospitalares que prestam serviços de enfermagem 24 horas por dia

e 7 dias por semana. Esse processo, denominado Problema de Escalonamento de Enfer-

meiros (PEE), consiste em designar um determinado conjunto de enfermeiros para turnos

de trabalho distribuídos em um horizonte de planejamento de várias semanas. Além de

construir uma escala viável, uma solução para o PEE precisa considerar diversos requisi-

tos, como leis trabalhistas, normas institucionais e preferências dos funcionários. O alto

número de requisitos associados à natureza combinatória do problema resulta em um pro-

cesso que pode levar vários dias para ser resolvido manualmente, e ainda assim produzir

uma escala de baixa qualidade.

A construção de uma escala influencia diretamente na qualidade da assistência do

serviço de enfermagem. Uma escala ruim pode resultar em várias consequências negati-

vas, tais como: (i) excesso de trabalho, (ii) ausências injustificadas, (iii) doença, (iv) con-

flitos internos entre os membros da equipe, e (v) erros nos procedimentos de cuidados

de enfermagem que põe em perigo a vida do paciente. Assim, a automatização dessa

tarefa por softwares torna-se imprescindível para garantir a qualidade do serviço, princi-

palmente em hospitais de médio e grande porte (COSTA; MORITA; MARTINEZ, 2000;

ARENDT, 2010).

Além de ser um problema de otimização NP-Hard (OSOGAMI; IMAI, 2000),

a pesquisa sobre o PEE ainda é desafiadora devido às diversas variações do problema

propostas na literatura que possuem diferentes objetivos e requisitos. Por esse motivo

torna-se difícil a comparação do desempenho de diferentes métodos de resolução. Para

solucionar essa questão foram organizadas competições com o objetivo de comparar téc-

nicas e estimular a publicação de resultados em versões padronizadas do PEE. A versão

mais recente do problema foi formalizada na Second International Nurse Rostering Com-

petition (INRC-II) (CESCHIA et al., 2019). Nesta competição, foi proposto um problema

multi-estágio, onde soluções para uma semana deveriam ser produzidas sequencialmente,

sem informação prévia sobre os requisitos nas semanas seguintes. Enquanto a versão de

múltiplos estágios é útil em uma aplicação prática para produzir soluções ótimas para

o INRC-II e avaliar a qualidade das abordagens de previsão, os pesquisadores usaram a
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chamada versão estática do problema INRC-II. Na versão estática, em vez de resolver

cada semana sequencialmente, todas são resolvidas de uma só vez.

Para a versão estática do INRC-II, técnicas avançadas de resolução foram desen-

volvidas, incluindo Programação Inteira (IP) e metaheurísticas (WICKERT; SARTORI;

BURIOL, 2016; GOMES; TOFFOLO; SANTOS, 2017; LEGRAIN; OMER; ROSAT,

2019; CESCHIA; GUIDO; SCHAERF, 2020). É importante ressaltar que, embora haja

um entendimento comum entre os pesquisadores de que é difícil resolver a versão es-

tática por meio de uma abordagem MIP, até onde sabemos, não há publicação com re-

sultados numéricos que apoiem essa afirmação. Essa lacuna motiva a investigação das

limitações das abordagens MIP, incluindo como diferentes requisitos impactam na res-

olução do problema e como essa abordagem poderia funcionar quando inserida em um

procedimento matemático.

Neste trabalho, focamos na versão estática do problema INRC-II. Além da definição

do PEE, foram propostos modelos MIP para estudar o problema e avaliar seu desempenho.

Os resultados experimentais revelaram que os requisitos mínimos consecutivos têm o im-

pacto mais significativo no tempo de resolução. Quando adicionados ao modelo, o MIP

não foi capaz de produzir resultados ótimos para nenhuma instância dentro do limite de

tempo de 24 horas. Dessa forma, reformulamos esses requisitos que resultaram em três

modelos distintos. O modelo M1 tem uma formulação em que atribuições consecutivas

são identificadas como blocos. O modelo M2 identifica padrões para todos os tamanhos

de requisitos mínimos consecutivos com um conjunto de restrições e usando um Big-M.

No modelo M3, cada restrição identifica um padrão sem usar um Big-M. Os resultados

experimentais realizados nas instâncias da INRC-II revelaram que o modelo M3 produz

soluções melhores do que os outros quando resolvido por um solver MIP. No entanto, os

resultados obtidos demonstraram que resolver o problema de PEE com um modelo MIP

ainda é ineficiente mesmo quando o limite de tempo de 24 horas está disponível.

Além dos modelos matemáticos, uma nova abordagem foi proposta para resolver

o PEE, explorando semanas e decomposições de enfermeiros em blocos por meio de

uma heurística fix-and-optimize combinada com critérios de Aceitação Tardia, do inglês

Late Acceptance Fix-and-Optimize (LAFO). Uma investigação experimental inicial para

definir os parâmetros da abordagem LAFO demonstrou que, enquanto o parâmetro al pha

levou a melhores resultados quando foi definido em função do número de enfermeiros, os

demais parâmetros foram melhores quando ajustados pelo irace. Um desses valores repor-

tados pela irace foi ST L com 8 segundos, a mesma configuração encontrada no trabalho
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de Wickert, Sartori and Buriol (2016), sugerindo que poderia ser um valor ideal para este

parâmetro. Além disso, o valor definido para γ = 150 apoia a importância dos critérios de

aceitação tardia propostos como um mecanismo de diversificação para o fix-and-optimize.

Quando comparado com uma abordagem de fix-and-optimize estudada anteriormente por

Wickert, Sartori and Buriol (2016), os resultados demonstraram que a abordagem LAFO

tem desempenho, em média, 4,4% melhor para resolver o PEE.

Quando comparada ao estado da arte, a abordagem LAFO fornece soluções que

estão cerca de 15% longe do melhor método proposto por Legrain, Omer and Rosat (2018)

em termos de qualidade. Porém, uma comparação adequada de tempos entre os métodos

não foi possível porque a abordagem da Gomes, Toffolo and Santos (2017) foi executada

em paralelo. Finalmente, a abordagem LAFO é fácil de manter e adicionar novos requisi-

tos, alterando apenas os modelos de MIP correspondentes, ou seja, pode fornecer um equi-

líbrio interessante entre qualidade da solução e manutenção de software, ao mesmo tempo

que permite escalar melhor grandes instâncias quando comparado ao modelo matemático

proposto.
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