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“Take the end of every day,

tie it up to every morning

and sail away.”

— JOHN MAYER
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ABSTRACT

The multimedia content traffic over the Internet is increasingly being represented by

battery-powered devices, such as smartphones, tablets, etc. On the other hand, the in-

crease in the density of components in a chip and, consequently, in the power dissipation,

poses a problem for such devices. Despite the considerable increase in computational ca-

pacity in the last decades, the same growth has not been observed in battery life for such

systems. Due to the fact that the multimedia content represents the most part of the Inter-

net traffic, there is a need for optimizing these kind of applications, in order to compensate

for the short battery life. The research in digital video coding is one of the areas focused

on this kind of optimization, and one of its goals is to find solutions for reducing the dis-

sipated power of the encoders. Motion Estimation is a key component in current video

encoders, as it exploits the temporal redundancies of video sequences, through intensive

searches for similarities in previously encoded blocks. It is one of the most critical and

time-consuming tasks of the latest video coding standard HEVC, being responsible for

more than 60% of the total encoding time on average. This work proposes the design and

implementation of a power-aware hardware architecture for the Integer Motion Estima-

tion stage. The architecture was synthesized for ASIC with 65 nm standard cells library.

Power analysis are performed in some of its components using real input vectors, in order

to decide the best architectural versions of the modules to be optimized. A power-aware

cache memory hierarchy is also proposed, interfacing the off-chip DRAM (containing

data from reference frames) and the Integer Motion Estimation architecture, with hit-rate

results of up to 96.47%. We were able to decrease the off-chip bandwidth from 5.22

GB/s - considering that every access was requested directly to the DRAM - down to 0.18

GB/s, without considering any buffering mechanisms. Considering the whole system, we

obtained an energy reduction of 94.5% when compared to the version without using any

cache mechanisms.

Keywords: Video Coding. HEVC. Integer Motion Estimation. Cache Memory.



Arquitetura Eficiente em Potência da Estimação de Movimento Inteira para

Codificação de Vídeo no padrão HEVC

RESUMO

O tráfego de conteúdo multimídia pela Internet vem cada vez mais sendo representado por

dispositivos alimentados por bateria, como smartphones, tablets, etc. Por outro lado, o au-

mento na densidade de componentes em um chip e, consequentemente, na dissipação de

potência, representa um problema para tais dispositivos. Apesar da capacidade computa-

cional ter crescido consideravelmente nas últimas décadas, o mesmo crescimento não foi

observado no tempo de vida das baterias para tais sistemas. Devido ao fato do conteúdo

multimídia representar a maior parte da taxa do tráfego na Internet, há uma necessidade

de otimizar esses tipos de aplicações, para compensar o curto tempo de vida das baterias.

A pesquisa em codificação de vídeo digital é uma das áreas focadas neste tipo de otimi-

zação, e um dos seus objetivos é a busca de soluções para reduzir a potência dissipada

dos codificadores. A Estimação de Movimento é um componente chave nos codificado-

res de vídeo atuais, devido ao fato de explorar redundâncias temporais de sequências de

vídeo, através de intensas buscas por similaridades em blocos anteriormente codificados.

Consequentemente, esse estágio da codificação é um dos mais críticos e demorados do

último padrão de codificação de vídeo HEVC, sendo responsável por mais de 60% do

tempo total de codificação, em média. Este trabalho propõe o projeto e implementação de

uma arquitetura eficiente em potência para o estágio da Estimação de Movimento Inteira.

A arquitetura foi sintetizada para ASIC, com uma biblioteca de standard cells de 65 nm.

Análises de potência são feitas em alguns dos componentes, para a decisão das melhores

versões arquiteturais dos módulos a serem otimizados. Uma hierarquia de memória cache

focada em eficiência de potência também é proposta, interfaceando a memória DRAM

off-chip (que contém dados relativos aos quadros de referência) e a arquitetura da Estima-

ção de Movimento Inteira, com resultados de hit-rate de até 96.47%. A solução proposta

reduz a banda off-chip de 5.22 GB/s - obtido considerando que todo acesso é requisitado

diretamente para a DRAM - para 0.18 GB/s, sem considerar mecanismos de bufferiza-

ção. Considerando o sistema como um todo, foi obtida uma redução energética de 94.5%

quando comparado com a versão que não utiliza mecanismos de cache.

Palavras-chave: Codificação de Vídeo, HEVC, Estimação de Movimento Inteira, Me-

mória Cache.
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1 INTRODUCTION

In the recent years, advances in technology have allowed for better quality appli-

cations, leading to an increasing demand for more sophisticated services. Digital video

applications are one of the main categories affected by the technology advances, given that

they allowed the requirements for higher resolution video services to be met. Real-time

video content has also benefited from technology improvements, allowing for personal

video broadcasting on a worldwide scale, through streaming services such as Twitch or

Youtube. The growing popularity of these services allied with the need for better quality

content has led to current predictions showing that videos will take a bandwidth share of

82% of the whole Internet traffic by 2021 (Cisco, 2017).

Digital videos are usually not handled in their uncompressed form because this

requires a huge amount of resources to store and transmit this information. To exemplify,

a 10-minute Full High Definition (Full HD) 1920×1080 video, recorded at 30 frames per

second, with each pixel being represented by 3 bytes, would require more than 104GB to

be stored. In order to transmit this video as a real-time service, a bit-rate of more than

177 MB/s would be required. The video size and bandwidth becomes even worse when

higher resolutions are considered, such as the increasingly popular Ultra High-Definition

4K (UHD 4K) (3840×2160 pixels). The International Telecommunication Union Radio-

communication Sector (ITU-R) recommendation for UHD Television (UHDTV) states

that resolution should be increased in both spatial and temporal axes (ITU-R, 2015), so

higher frame rates of up to 120 fps will have to be supported. Table 1.1 shows storage and

bit-rate requirements for a 10-minute sequence with common spatial and temporal reso-

lutions, considering 3 bytes per pixel. The size and bit-rate values are given by equations

1.1 and 1.2, in which W and H respectively refer to the width and height of the video, N

refers to the representation of each pixel, in bytes, F denotes the frame-rate per second,

and t refers to the time duration of the video sequence, in seconds.

Size[bytes] = W ×H ×N × F × t (1.1)

BitRate[bytes/s] = Size/t (1.2)

Table 1.1 shows that the required transmission rates for uncompressed data are

prohibitive on current communication technology, so there is a real need for compressing

(or encoding) this information before transmission.

Video compression is based in the principle of finding redundant information
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Table 1.1: Raw video sizes and required transmission bit-rate for different spatial and
temporal resolutions (sequence length: 10 minutes).

Resolution FPS Storage Requirement (GB) Transm. Bit-rate (MB/s)
832×480 30 20.08 34.27

1920×1080 30 104.28 177.98
3840×2160 30 417.14 711.91
3840×2160 120 1668.55 2847.66
7680×4320 30 1668.55 2847.66
7680×4320 120 6674.19 11390.63

within frames of a video and suppressing most of these redundancies to minimize the

number of bits needed to represent the video sequence and to make the required storage

size and transmission rate more feasible.

While encoding reduces the amount of information used to represent videos, it also

introduces a new problem regarding computation. Modern video encoders perform many

time-consuming operations to compress data efficiently, increasing the time and energy

required for this task. The demands for higher resolutions aggravate this issue because the

amount of operations needed to encode each sequence is proportional to the input size.

Real-time systems are particularly affected because in this case data has to be encoded at

a minimum frame-rate to optimize the user experience (typically more than 25 frames per

second).

The increased computational effort of video encoders leads to an additional issue

on battery-powered devices, such as smartphones and camcorders. Due to limited battery

resources, the encoding task needs to be executed as efficiently as possible. Using general

purpose processors (GPPs) for video applications is inefficient, since the arithmetic units

of these devices are not designed to compute video-coding operations efficiently.

Designing dedicated hardware architectures is one of the main solutions to tackle

the power and energy issues, since they eliminate the overhead of GPPs, given that they

are designed solely for a chosen application. Application Specific Integrated Circuits

(ASICs) are completely designed for specific domains, contrasting with GPPs. How-

ever, cost and manufacturing time become an issue when considering the use of ASICs.

Field-Programmable Gate Arrays (FPGAs) are a good balance between GPPs and ASICs.

FPGAs achieve better performance when compared to GPPs for the same application and,

despite not being as dedicated as an ASIC, their time-to-market is smaller, since no chip

layout and subsequent manufacturing steps are needed. However, when power-efficiency

is the main design restriction to take into account, the dedicated ASIC remains as the best

option.
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High Efficiency Video Coding (HEVC) (ITU-T and ISO/IEC, 2013) is the state-of-

the-art video coding standard, and it was proposed focused on the increasing demands for

higher resolution videos. When compared to its predecessor, the H.264/AVC (ITU-T and

ISO/IEC JCT, 2011), HEVC achieves up to 50% bit savings for the same video quality

(SULLIVAN et al., 2012), by applying more sophisticated techniques and algorithms.

Motion Estimation (ME) is part of the HEVC standard and refers to one of the

most time-consuming processes in video encoding. ME is responsible for finding most of

the redundancies in videos, which is the reason why it is repeatedly executed several times

for each frame of the video sequence. Fig. 1.1 presents an analysis using GProf (GProf,

1997) for three different video sequences and shows that the Integer and Fractional stages

of the ME (IME and FME) are responsible for most of the execution time in the encoding

process.

The proposal of this work consists in analyzing and implementing modules related

to the Integer Motion Estimation while focusing on a power-aware design. Three main

parts are presented in this report. First, a cache memory hierarchy is proposed, interfacing

the IME architecture and an off-chip memory, given that most of the works in the ME lit-

erature tend to abstract the memory communication required. A design space exploration

of the absolute differences operator in the Sum of Absolute Differences (SAD) module,

used by the IME, is also performed in this work. Lastly, a Finite-State Machine (FSM)

for the IME is implemented. The modules are synthesized for ASIC using a commercial

tool (Cadence RTL Compiler), targeting the ST 65 nm CMOS standard cells library.

This document is structured as follows: section 2 gives a background on the main

concepts regarding this work; section 3 presents related works found in the literature that

address similar topics in ME implementation; section 4 details the methodology used, in-

Figure 1.1: Time percentage of each stage in the video encoding process.
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cluding the main design decisions and methods for obtaining the results; section 5 presents

the results regarding power, energy, area and throughput values for the designed architec-

tures; and section 6 presents the conclusions, briefly summarizing the contributions of

this work, highlighting possible future paths for further research.
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2 BACKGROUND

In order to understand the terminology used in the remaining sections, the presen-

tation of some of the basic related concepts is essential. This chapter details the topics

connected to the scope of this work, including terms related to video coding, motion esti-

mation and cache memories.

2.1 Video Coding

The video coding process entails the operation of a video encoder and of a video

decoder. The process starts with the capture of a real-life scene by a filming device, which

generates a set of discrete scenes, i.e. frames, which corresponds to the raw video. The

video encoder is responsible for applying compression techniques and transforming a raw

video in a sequence of bits (video bitstream) according to a given standard. Next, the

video is combined with other syntax elements at the transport layer (to be sent by a trans-

mitter), so that a station can receive it, then extracts the original video source bitstream

from the transport stream, and processes it with a decoder which supports the standard

for which that bitstream was generated. The video can also be stored for future use. This

process is depicted in a simplified way in Fig. 2.1.

Figure 2.1: Simplified scheme of encoding and decoding in video transmission.

Source: The Author
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The state-of-the-art video coding standard is the High Efficiency Video Coding

(HEVC/H.265), which is a more sophisticated version of the previous standard H.264/AVC.

HEVC doubles the compression for the same video quality when compared to H.264, and

it does that by processing more data and applying more sophisticated operations than

its predecessor. However, these video compression gains incurred in 1.2-3.2× increase

in computational effort on the encoder side, in comparison with the previous standard

(SULLIVAN et al., 2012).

The video coding standard defines only the specifications for which the decoder

has to comply. The encoder can be implemented in different ways, with different algo-

rithms and in various hardware platforms, as long as the output bitstream generated by

the encoder complies to the standard, namely the encoded bitstream can be processed by

any standard-compliant decoder. The reference software for the HEVC standard is the

HEVC Test Model (HM) (JCT-VC, 2016), which is freely distributed to document all the

features and tools of the standard. The x265 (x265, 2016) software is also a well-known

encoder compatible with the HEVC standard, with support for executing in multi-cores

with thread-level parallelism. The x265 executes the encoding much faster than the refer-

ence software.

2.1.1 Video Encoder Diagram

The diagram of a general video encoder is shown in Fig. 2.2. The process starts

by splitting each frame of the video sequence in blocks called Coding Tree Units (CTUs).

HEVC defines 64×64 as the default and also the largest CTU size. Each CTU of the

frame to be encoded is applied in the stages of the presented diagram.

CTUs are split into smaller squared blocks, called Coding Units (CUs), in a quad-

tree partitioning scheme, based on heuristic decisions that are taken by the encoder.

HEVC supports CU sizes of 8×8, 16×16, 32×32 or 64×64. The intra and inter-frame

prediction executions are responsible for finding and resolving spatial and temporal re-

dundancies, searching for similar information compared to the block being encoded, so

that only residual information need to be sent to the encoder output, along with additional

coding information for the CU that allows the decoder to recover the original block. In

order to find the best possible redundant blocks, CUs are split into several possible parti-

tions, called Prediction Units (PUs), for which the prediction algorithms are applied. The

PUs can be categorized into Symmetric Motion Partitions (SMP) and Asymmetric Mo-
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Figure 2.2: Video encoder diagram.

Source: The Author

tion Partitions (AMP), for which the inter-frame redundancies are searched for. Fig. 2.3

shows the split from CTU to PU level, highlighting the PUs of type SMP and type AMP

for a 32×32 CU size example.

Ideally, encoders would need to apply intra and inter-frame partitioning algorithms

for every possible PU partition in a given Coding Unit. However, given the intense mem-

ory accesses and the demanding computations that would be required - hence increasing

the decoding time and energy spent per frame to be encoded - encoders usually employ

heuristics for some of the partitions not to be evaluated in some iterations, while still ob-

taining acceptable compression results. These heuristic decisions are left to the encoder

developer, to determine whether the PU will be using an intra or an inter-frame partition,

and of which type and size of CTU partitions, of CUs and PUs will be employed.

After applying algorithms to find the best redundancies (best candidate blocks)

from either intra or inter predictions, a residual block is calculated. Transform and quan-

tization stages are applied to that residual block, allowing for the introduction of lossy

compression in the encoding of these residuals. Before being sent to the bitstream output,

an entropy algorithm is applied to the block, to exploit entropic redundancies in the data.

The coded block also needs to be decoded in this encoding scheme, by applying

inverse quantization and inverse transform functions in the encoder also, so that the en-
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Figure 2.3: CTU partitioning scheme.

Source: The Author

coded frame can be recovered and stored to be used as reference frame for encoding other

frames. These inverse operations are needed because the inter-frame prediction uses in-

formation of previously coded frames to find temporal redundancies in the current frames,

so these previously encoded frames need to be ready to be analyzed.

2.1.2 Motion Estimation

ME is a stage inside the inter-frame prediction in video encoding responsible for

resolving temporal redundancies in a video. ME is applied to each block of the video

frame and finds the most similar block compared to the one being encoded. Thus, the

information needed to be sent to the output of an encoder is just the difference between

both blocks (namely, the block of residuals) and a vector pointing to the best matching

block, so that the decoder has sufficient information, along with the previously decoded
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frames, to recover the original block. The ME is split into two subsequent stages: Integer

Motion Estimation (IME) and Fractional Motion Estimation (FME). These two modules

are briefly explained in the following subsections, focusing on the IME module, given

that this is the main encoding stage which is dealt with in this work.

2.1.2.1 Integer Motion Estimation

IME finds the best matching block between PUs in two different frames, using

only integer-pixel displacement vectors to compare blocks, by applying a search algorithm

for the blocks being encoded in the present frame. This search algorithm defines a pattern

of positions - represented by motion vectors with integer-pixel x- and y-components -

in which the most similar block will be searched in the reference frame. The search

algorithm is applied in a given search area of the frame, which consists of a window

smaller than the frame itself, because image patterns tend to slightly displace from the

area where they were in a previous (past) frame. Fig. 2.4 generically shows the concepts

involved in the IME.

Figure 2.4: Generic search in a previously coded frame.

Source: (Roger Endrigo Carvalho Porto, 2008)
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The following subsections present some of the main search patterns and algorithms

mentioned in the literature.

2.1.2.2 Full Search

The Full Search (FS) is the most basic algorithm found in the literature. FS applies

the search for the most similar block by displacing to every pixel in the search window,

and it always finds the best possible matching block contained in the search window. For

that reason, FS maximizes the temporal redundancy, resulting in a smaller bitstream at

the encoder output.

Due to a large number of candidates being tested, FS requires the highest number

of memory accesses and calculations among all the search algorithms. For that reason,

real-time implementations employ other solutions and search heuristics, so that the search

is performed for a smaller number of motion vector displacement candidates, while still

attempting to find residual blocks very similar to the best possible.

2.1.2.3 Test Zone Search

Test Zone Search (TZS) is the algorithm used in the latest versions of the HEVC

HM reference software. TZS applies more than one search pattern and has a more sophis-

ticated search flow, so that very similar matching blocks can be found with fewer calcu-

lations. The algorithm is divided into four subsequent stages (Cássio Rodrigo Cristani,

2014), each of which is dependent on the previous one. For that reason, pipeline-based

architectural implementations waste a high amount of additional cycles, given that the

pipeline needs to be totally emptied so that all the processing of a previous stage can be

performed before starting the next one. These stages are explained in the following items.

a) Vector Prediction: this stage is responsible for examining resulting motion vec-

tors of the neighboring blocks of the PU being encoded, generated from their previous

ME execution. Then, the block being encoded is compared to each block pointed by

these vectors, and the position of the most similar one is defined as the initial center of

the search.

b) First Search: a diamond-shaped search is performed, starting from the posi-

tion defined by the Vector Prediction. The diamond pattern tests four, eight or sixteen

candidates around the center, depending on the distance between samples, which is in-

cremented after each iteration. If the search finds a block more similar than the one in



21

the current center in an iteration, the center is redefined as the position of that block. The

search stops when the best candidate remains as the center after three iterations. Fig. 2.5

shows the shapes of the first three iterations.

c) Raster Search: this stage searches through the entire search area, starting from

the top-left corner, and skips some neighboring candidates by defining a raster step con-

stant. This stage is illustrated in Fig. 2.5 for a constant of 2.

d) Refinement Search: the last stage works the same way as the First Search. The

main difference is that the default tolerance in the HM software for this level is two instead

of three iterations.

2.1.2.4 Hexagon Search

The Hexagon Search (HS) is the search algorithm implemented by the x265 soft-

ware. HS is split into three main steps, with dependencies between them, just like in the

TZS. The following items detail the HS.

a) Motion Prediction: this stage works similarly to the Vector Prediction in the

TZS algorithm, only differing in the number of candidates evaluated to decide the initial

center of the search.

b) Hexagon: this step performs a six-point search in a hexagon-shaped format

around the center of the search, considering the initial center is defined by the previous

step. Whenever there is a candidate more similar to the block being encoded than the one

Figure 2.5: Search shapes for the TZS.

Source: The Author
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in the center, the new center is set as the vector associated with that new candidate. Then,

the iteration is applied again, starting from the new center of the search. This stage stops

when none of the candidates are better than the current center.

The x265 software applies an optimization to this stage: starting from the second

iteration of the hexagon search, only three candidates need to be evaluated instead of six,

since the three remaining points will always have been evaluated in the previous iteration.

c) Square Refinement: after the Hexagon step defines the best candidate, an 8-

point square refinement is applied around that point. The final vector value is defined by

the best candidate evaluated at this stage. If none of the candidates are better than the

current center, then the center defined by the previous step is the best vector.

Fig. 2.6 illustrates the whole process of the HS algorithm, considering an 8×8

PU, in which four iterations of the Hexagon are performed. In the last one, no candidates

were more similar to the block being encoded than the center, so the square refinement

was applied, resulting in a better block found in one of its eight candidates.

2.1.2.5 Fractional Motion Estimation

Fractional Motion Estimation (FME) is applied after the IME and it is responsible

for finding the best match at the fractional-pixel level, starting from the most similar block

found in the IME. Since the frames are formed only by integer pixels, FME requires the

use of an interpolator to estimate fractional pixels positioned between the integer pixels

of the image. FME is responsible for increasing image quality in video sequences due to

the fact that real-life patterns most frequently move at a rate that is not a good match to

the integer-pixel displacement between two simultaneous video captures.

HEVC defines 48 possible candidates to be compared in the FME: 8 half-precision

and 40 quarter-precision candidates. Fig. 2.7 presents the set of fractional points needed to

gather all the information regarding the 48 fractional blocks. In this figure, green positions

correspond to integer pixels, blue positions correspond to half-precision pixels and white

positions correspond to quarter-precision pixels. Half and quarter-precision pixels are

generated by interpolation using 7-taps and 8-taps FIR filters, depending on the specific

point. The highlighted partition shows the 48 possible points to which comparisons will

be performed.
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Figure 2.6: Search shapes for the HS.

Source: (SILVEIRA et al., 2017)

2.1.3 Metrics for Block Similarity

Several metrics can be applied to determine the degree of similarity between two

blocks. They differ from each other in ease of implementation, efficiency and result ac-

curacy, i.e., how precisely they can define the similarity between the blocks. The main

metrics used to estimate block similarity in video codecs are shown in the next subsec-

tions.
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Figure 2.7: FME fractional pixels window for a 4×4 PU.

Source: The Author

2.1.3.1 Sum of Absolute Differences

Sum of Absolute Differences (SAD) is the simplest metric used in the video en-

coding process and it is applied by calculating the differences between the co-localized

pixels of a current and a candidate block, performing an absolute operation in these dif-

ferences, and then adding the values. SAD is employed in the IME and is also one of

the most used metrics in the video encoding process, representing, on average, 22.4% of

the encoding time in the HM reference software (ABREU et al., 2017). The complete

formula is given by 2.1, in which O and R denote the current and the candidate blocks,

respectively; m and n refer to the width and height of the blocks (which have the shape

of the PU being considered).

SAD =
m−1∑
i=0

n−1∑
j=0

|Oi,j −Ri,j| (2.1)

SAD architectures are mostly implemented using subtractors, absolute operators,

and an adder tree, with an accumulator on the output so that SAD for bigger blocks can

also be calculated. Most architectures use pipeline schemes so that several sum stages can

be done concurrently and the resulting critical path is shortened. An 8×8 SAD architec-

ture is shown in Fig. 2.8, in which the sizes are presented in bits.
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Figure 2.8: 8×8 SAD architecture.

Source: The Author

The presented architecture calculates SAD for an 8×8 block in each cycle after

the pipeline is filled. The 4×4 SAD blocks correspond to simple adder trees, including

the subtractors and absolute operators. The 2-1 multiplexer is used to extend the block

sizes possibilities so that receiving 8×8 blocks several times would allow the architecture

to calculate SAD for larger block sizes. Considering a generic SAD architecture, the

number of cycles required to calculate an H ×W block is given by 2.2. In this formula,

inputW is the input width, in bytes, of all the candidate partitions; H and W refer to the

height and the width of the PU to be calculated, respectively; and Pdepth corresponds to

the number of pipeline levels in the architecture.

cycles = Pdepth + (H ×W )/inputW (bytes) (2.2)

It should be noted that an increase in the minimum block size of the architecture

implies in more area for the dedicated parallel hardware operators, resulting in power

and energy increases. However, small architectures spend more time calculating SAD for
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bigger blocks, since the number of accumulations needed is higher.

2.1.3.2 Sum of Absolute Transformed Differences

The Sum of Absolute Transformed Differences (SATD) is a more complex metric

for similarity evaluation during the inter-prediction process. SATD is calculated by taking

the frequency transform of the differences between pixels of current and candidate blocks.

Equation 2.3 presents the formula to calculate SATD.

SATD =
m−1∑
i=0

n−1∑
j=0

|Ti,j| (2.3)

In HEVC, SATD is the metric used by default during the FME, and Hadamard is

the transform function used for that space-to-frequency transformation. Although SATD

is a more accurate metric to determine the most efficient block match, its hardware archi-

tectures have a more complex implementation when compared to SAD architectures.

2.2 Cache Memory

Cache memories are responsible for decreasing the latency of the accesses to main

memories, by taking advantage of temporal and spatial localities and store previously used

data in faster and smaller memory modules, since there is a high possibility that these data

can be reaccessed in the future (PATTERSON; HENNESSY, 2007).

For the most of this work, simulations related to cache memories were performed,

and a caching methodology for the IME was proposed. For that reason, it is essential to

be familiar with the basic concepts regarding such memories, in order to fully understand

the concepts presented in the methodology. The following subsections briefly present the

concepts regarding the three types of classic cache memories: Direct Mapped (DM), Set-

Associative and Fully Associative (FA) cache. Generically speaking, the DM and the FA

caches are a subset of the set-associative cache. For clarity purposes, usually these cache

address mapping cases are explained separately.
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2.2.1 Direct Mapped Cache

The direct mapped cache is the simplest cache model, due to the fact that each one

of the memory blocks can only be mapped to a single cache block. The index and tag bits

used are shown below, in 2.4 and 2.5. In these formulas, nrlines refers to the number

of lines of the cache, addr refers to the address requested by the processing module, and

sizeAddr denotes the size of the address, in bits.

index = addr[(log2 nrlines)− 1 : 0] (2.4)

tag = addr[(sizeAddr − 1) : log2 nrlines] (2.5)

2.2.2 Set-Associative Cache

The set-associative cache is the generic model for cache memories. In this case,

each memory block can be addressed to n cache blocks, where n is the associativity. In

this case, when searching for some data with a given tag, every block of the respective

set must be searched. For that reason, more comparators are needed when compared to

DM caches. In set-associative caches, the replacement policies to be implemented when

writing data to the cache must also be considered. For example, if a First-In-First-Out

(FIFO) replacement policy is used for a 2-way cache, when writing to a given set, the

position that has been written first out of the two positions will be overwritten. In the case

of a Least Recently Used (LRU) policy, as the name suggests, the position that has the

oldest usage out of the possible positions is replaced. The tag and index bits for a set-

associative cache is given by 2.6 and 2.7, where assoc refers to the cache associativity.

index = addr[(log2(nrlines/assoc))− 1 : 0] (2.6)

tag = addr[(sizeAddr − 1) : log2(nrlines/assoc)] (2.7)
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2.2.3 Fully Associative Cache

The fully associative (FA) cache is the extreme or ideal case of a set-associative

cache, in which the number of sets is maximum, i.e. with a size equal to the number of

cache lines. In this case, for a given memory address, every tag of every line of the cache

is compared, as in a table search, in order to determine if the requested address results in

a miss or a hit. FA caches in hardware are generally not used as much, due to the high

number of comparators required (as many as the cache lines) and, consequently, hardware

area usage. However, they are used to determine and estimate an upper level to the hit-

rate. In this FA cache, none of the bits are used as indices, and all the bits of the address

are used as the tag. FA caches are used to store in-processor the most recent memory page

addresses translated from virtual address to physical address in virtual memory support in

hardware; this FA cache is called "translation look-aside buffer" in processor architecture

literature.
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3 RELATED WORK

ME modules can be found in the literature frequently divided into the IME and the

FME, due to the focus of each work in optimizing specific parts of each of these modules.

Sanchez et al. (2015) employ two algorithms and their respective hardware im-

plementations for an IME module. The architectures are based on the use of parallel

instances of a diamond-shaped search. The architectures achieve real-time throughput for

1080p sequences. Even though the architecture presented some quality loss when com-

pared to other solutions, the proposed architecture has fewer data dependencies, more

regular memory accesses and regular cycles to encode a single block. Results show gate

count of 150k with a 42.3MHz frequency and power dissipation of 12.5 mW and 13.5

mW (for each presented architecture), for a 90nm cell library. However, even though

this work considers some generic memory aspects, the analysis does not present specific

power results for the memory hierarchy proposed.

Porto et al. (2011) propose an architecture for the IME and, even though the pro-

posal includes an internal memory, the implementation and power results for that specific

memory module are not presented.

The work by Yuan et al. (2013) also implements an architecture for the IME,

achieving 30fps real-time coding for 1080p video sequences, using 19.7k slice registers

considering a Xilinx Virtex-6 device. However, the architecture considers 32×32 CTUs

instead of 64×64. Moreover, the architecture was synthesized only for FPGA devices, and

power results are not presented. Also, the work does not consider how the data from the

IME will be obtained, abstracting the transfer between the DRAM and the architecture.

In the work by Leon, Cardenas and Castillo (2016), an architecture for the FME using

SAD is implemented. The architecture was synthesized only for FPGA devices, and is

able to achieve 4K@30fps real-time processing considering a frequency of 258MHz, for

Altera Cyclone IV E. Power results are not presented in this work.

Complete ME modules can also be found. Pastuszak and Trochimiuk (2016)

propose an IME+FME algorithm and its respective architecture. It processes real-time

2160p@30fps videos, and results for 90nm technology present 400MHz frequency. The

work implements the TZS algorithm in the IME stage, but it only considers 8×8 blocks -

the bigger squared blocks are considered by reusing results from the 8×8 search, which

makes it lose quality when compared to the default implementation. The implementation

only considers rectangular PUs in the FME. Even though the work considers the memory
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usage of the modules, it uses a dedicated memory module that contains the whole search

window for the search to be done efficiently, implying that more silicon area is needed.

Separate SAD units were also proposed and implemented, aside from the ME

module. A generic SAD architecture focused on low-power is proposed by Silveira et

al. (2016), and an analysis of the use of the architecture with the Hexagon Search is also

provided by Silveira et al. (2017). However, both works do not provide any analysis and

information about how to solve the memory latency issue, and do not consider the inter-

face between their proposed architecture and the gathering of block data. Nalluri, Alves

and Navarro (2014) propose SAD architectures for the ME module. The architectures

compute every possible PU size defined in the HEVC standard, including the AMPs.

Three models were proposed: sequential, 1-stage parallel and 2-stage parallel architec-

ture. The architectures were only synthesized for FPGA, and obtained power results of

91.3, 136.18 and 320.86 mW, respectively.

Sinangil et al. (2012) and Sinangil et al. (2013) present some considerations on

memory projects for the ME, but they do not consider any power or energy estimative and

do not mention any possibility of using cache memories. Jou, Chang and Chang (2015)

propose an architecture for the ME in HEVC, including a memory analysis, but no power

results are given, and there is no exploration of different memory modules configurations.

Even though many works propose and implement hardware architectures for the

IME and SAD, most of them tend to disregard the power dissipation and therefore do

not present any power or energy results, especially regarding the absolute differences

operator of the SAD architectures. Also, a representative portion of the works found in

the literature only present results for FPGA devices, which are not as power-efficient as

ASICs. Moreover, to the best of our knowledge, none of the related works included an

extensive analysis on using cache memories, varying parameters known in the study of

such memories, and including power/energy results.
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4 METHODOLOGY

In order to define the best configurations for both the block-matching algorithm

and the cache model to be used in this work, we made several decisions based on the pa-

rameters that this work is most interested in optimizing. In this study, this is the reduction

of the power/energy of the full architecture, while attempting at the same time to achieve

real-time encoding for acceptable frame-rates. The following subsections detail how the

decisions regarding every part of our design were taken.

4.1 Choice of Search Algorithm

The hexagon search (HS) is used as a case study in this work, due to the fact that

this is one of the most optimized algorithms in terms of throughput. We performed some

simulations in order to analyze the number of block access requests (PU requests in a

reference frame) made by some of the IME algorithms in the literature. Each PU request

may represent a variable number of bytes but, due to the similar sizes of PUs considered

in the encoders, the number of bytes in each request is also similar, on average. We

found that, for 1 second of five Full HD video sequences, the TZS makes an average

of 178.72 × 107 access requests, while the HS makes about 5.92 × 107 of such access

requests. The simulations were performed for the default presets of HM (for the TZS)

and x265 (for the HS). More results for different video sequences are shown in Table 4.1.

This analysis shows that HS is about 30.19× less costly in terms of access requests

than TZS. This difference is due to the fact that the HM software is not focused on achiev-

ing real-time encoding performance, as it just serves as a reference document for the

HEVC standard. On the other hand, the x265 software, from where the HS comes from,

Table 4.1: Access requests for different search algorithms.

# Block (PU) Access Requests (1s)

Video TZS (107) HS (107)
BBDrive 306.7 8.27

BQTerr 165.7 7.44

Cactus 207.7 6.93

Kimono 144.5 4.14

ParkScene 69 2.81

Average 178.72 5.92
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achieves faster encoding, as it applies more sophisticated search heuristics and it supports

parallel execution in multi-threaded multi-core architectures, which prevail nowadays in

general-purpose computing platforms.

Due to the fact that the x265 is a widely used encoder and, given that this work

aims at achieving a real-time frame-rate which would be difficult to achieve with HM, we

decided to use the HS from x265 as a case study.

4.2 Input Data Extraction

In order to obtain results for the cache analysis, we needed to extract the access

requests (vectors) of the HS from the x265 software, to use them as input for the cache

simulator (which will be explained later in this section). To do that, we inserted a new

C++ class in the x265 encoder, responsible for communicating with the inter-prediction

modules and writing the vectors to files. We created the files according to the model

presented in Table 4.2. The values presented are from the BQTerrace (1080p) video,

for illustration purposes only, as they can vary depending on the video and on the frame

considered.

In this model, the current frame whose vector was extracted from is presented in

the first column, the next two columns contain the (x, y) vectors, and the last two columns

contain the current PU size (height and width) that was being analyzed at that moment,

i.e., the PU size that the (x, y) vector was pointing at. For this analysis, we considered that

the video was running with only one reference frame for each inter-prediction execution.

This optimization is due to the fact that a (x, y) vector in a particular frame from two

different lines in the extracted files could be referring to a different reference frame. When

using the cache simulator for these inputs, the reference frame for that data would have to

be stored in the tag as well; otherwise, wrong hits would be counted. Thus, we decided

Table 4.2: Vector model used as input.

Vector PU Size

Frame # x y Height Width
10 0 2 32 32
10 2 2 32 32
10 3 0 32 32
...

...
...

...
...

10 1910 1074 8 8
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that one reference frame would be used.

Table 4.3 shows the coding efficiency loss (BD-Rate) when comparing a default

preset x265 execution, with 3 reference frames, to a preset using only one reference frame,

for different videos. For these results, we used the Bjontegaard model (BJONTEGAARD,

2001) to calculate the percentages. This model is widely used in the video coding com-

munity to calculate quality variances, measuring the bit-rate increase for the same video

quality (using Peak Signal-to-Noise Ratio - PSNR as a quantitative metrics for video

quality). For this metric, higher percentages mean higher losses.

In the input extraction, we decided to gather data from the execution of one frame

of each video. We developed a Python script in order to automatically run all the x265

simulations for five Full HD video sequences. We could not obtain data from frame 0,

due to the fact that there is no inter-prediction occurring in that frame, given that there

are no previously coded frames to get temporal redundancies from. Because of that and

due to any difference of initializations from the first frames, we decided that data from the

tenth frame of every video would be gathered. Moreover, since the simulations were time-

consuming and the number of possible configurations was high, we estimated bandwidths

and hit-rates for one second of the video based on the data gathered from one frame.

It is important to mention that, given that the SMPs and AMPs (defined in the

Background section) are disabled by default in the x265 reference software, none of the

vectors from any of the files contain these PU models; thus, this analysis only uses the

square size of the PUs. Lastly, vectors with negative values were removed, which happens

due to padding (extension of the image in the left and upper side of the frame) performed

by x265, given that not every encoder performs padding techniques, and we wanted to

keep the analysis as generic as possible. Table 4.4 shows the amount of access requests

for the tenth frame of each video, for the tested video sequences.

Table 4.3: Coding efficiency loss of using 1 reference frame.

Coding Efficiency Loss (BD-Rate)

Video 1 ref.
BBDrive 1.49%
BQTerr 18.35%
Cactus 4.7%

Kimono 0%
ParkScene 1.84%
Average 5.28%
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Table 4.4: Amount of access requests for the tenth frame.

Video # Access Requests (103)
BBDrive 391.2
Cactus 251.8

Kimono 621.6
BQTerr 269.2

ParkScene 254.3

4.3 Cache Memory Analysis

After obtaining the input vectors, we designed the cache model. The generic

model is shown below. The main aspect to be noticed here is in the formation of the

tag and the index. Since the only information regarding the PU block is the (x, y) vector

coordinates, we decided that the bits of these vectors would be used to form both the tags

and indices. In the case of a Full HD (1920×1080) video, the number of bits required

for each of the coordinates is 11, totaling 22 bits of information for each vector. This

value is obtained from the maximum x and y values that a vector can point at (11 bits for

addressing the values 1920 and 1080). These bits are split into the tag and index for the

cache memory. We decided that we would use the least significant bits (LSBs) of the x

and y coordinates to form the index, and the remaining bits would be used to form the tag.

The formula for obtaining the index is shown below in 4.4, along with other aux-

iliary equations in 4.1 - 4.3, for a generic cache. In these equations, the associativity is

denoted by assoc, and it equals 1 for the DM and equals the total number of lines when

considering an FA cache; nrlines denotes the number of lines in the cache; nBitsX and

nBitsY correspond to the number of bits from each x and y coordinate used to form the

index, such that the sum of these values equals log2 nrlines (4.1). The {} operator used

in the equations corresponds to the concatenation operation.

nBitsX + nBitsY = log2 nrlines (4.1)

splitV ec = {X[nBitsX − 1 : 0], Y [nBitsY − 1 : 0]} (4.2)

cutV ec = log2
nrlines

assoc
(4.3)

index = splitV ec[cutV ec− 1 : 0] (4.4)
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The tag corresponds to the remaining bits, in any given order. The only needed

condition is that the same order is used for the rest of the considerations, so that the

comparison between tags is accurate. The formula used is given by 4.5, in which maxB

is the maximum number of bits and it equals 11.

tag = {X[maxB − 1 : nBitsX ], Y [maxB − 1 : nBitsY ], splitV ec[(nBitsX + nBitsY − 1) : cutV ec]}
(4.5)

As a case of example, using a 2-way associative cache (assoc = 2) of 1024 lines

(nrlines = 1024), for a Full HD video, considering vector (355, 270), the binaries would

be equivalent to (00101100011, 00100001110). Considering an equal distribution of bits

x and y to form the index, nBitsX = 5 and nBitsY = 5. Using 4.2, splitV ec =

0001101110, since this is the concatenation of a certain number of bits (5 for each, in this

case) from each of the x and y coordinates. Considering only what we did so far, we would

already have the index for the DM cache associated to that vector. However, when taking

the associativity into account, 4.3 must be applied to determine the number of bits of

splitV ec that will be removed. Using 4.3, cutV ec = 9, leading to index = 001101110,

since the most significant bit (MSB) was removed. For the tag, the remaining bits are

used in the order determined by 4.5. Therefore, tag = 0010110010000 in this case. An

example applying the equations is also presented in Fig. 4.1, for a 2-way associative cache

of 1024 lines, as well.

After obtaining the access requests files and designing how the tag/index forma-

tion would work, the next step was the implementation of the cache memory simulator.

We decided that a custom cache simulator would be implemented, due to the fact that hav-

ing full control of the development and being familiar with the code was desired, in order

to add more features in the future, e.g., adding support for more replacement policies, etc.

Moreover, the values obtained in the simulator do not depend on high accuracy calcula-

tions - viabilizing the implementation -, since the number of hits and misses depends only

on basic cache parameters and on the data input, which was obtained earlier. Therefore,

implementing our own cache simulator would not be time-consuming.

In order to apply this cache analysis to the IME, the best input width, in bytes, for

the SAD module is for it to be a multiple of 8 (considering only the reference blocks),

since that is divisible by the width and height of every considered PU. This is also ideal

due to the fact that the AMPs, which are the only PUs whose size parameters are not mul-

tiples of 8, are being disregarded. Moreover, in order to use all of the available hardware
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Figure 4.1: Index and tag formation based on the proposed model.

Source: The Author

described in the next steps, we decided that the input width of the SAD architecture would

also not be larger than the word size of the cache.

Initially, we only considered word sizes of 8 bytes for the data array of the cache,

using 8 bytes for the input width of the IME as well. However, in order to make the cache

even more generic, larger word sizes were considered. In these cases, when the size of the

input width is not the same as the word size, we would have to align the data in order to

gather exactly the requested bytes. In the cache level, the only possible word sizes to be

used are when log2(size− n+ 1) results in a natural number, where n is the input width

of the architecture, in bytes (reference blocks only). For the case of an input width of 8

bytes, the possible sizes include 8, 9, 11, 15, etc. This happens because the remaining bits

(starting from 8) have to be a power of two, so that we can address the correct vector by

taking the LSBs of the index. When vector (x, y), for example, is stored in a line of the

cache, and the word size is 9 bytes, we would have bytes (x, y) to (x+ 8, y) in that same

line. In this case, we would be able to gather two possible 8-byte data from this line: from

(x, y) to (x + 7, y) and from (x + 1, y) to (x + 8, y), and the LSB of the index would be

responsible for deciding which one of the possible data we would retrieve. In the circuit

level, the LSB would be used to align the data using a scheme similar to a barrel shifter,

through a sequence of multiplexers to decide whether the 0-7 bytes or the 1-8 bytes would
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be retrieved.

When reading data from the cache in this case, the LSBs of the index would be

filled with zeroes, and the values of the bits before the fill would be used in the aligner.

For example, for a 9-byte word size cache, if the x coordinate of the (x, y) vector is an odd

number, we would request the value (x− 1, y) when reading. However, the multiplexers

used in the barrel shifter would receive a ′1′ signal in the selectors (since the LSB is ′1′

for binary odd numbers), shifting the data so that the architecture receives the correct

sequence of bytes.

The developed cache scripts work by receiving an input file, in the same model

as shown in Table 4.2 from the previous subsection. The following parameters can be

changed in the simulator: word size, number of lines, associativity, replacement policy,

the order of the bits from (x, y) coordinates to form the index and the number of bits

extracted from each of the x and y values in order to form the full address (nBitsX and

nBitsY from 4.1).

For this work, we consider that the data in the main memory is organized in such

a way that each of the PUs have to request each of its lines separately. For example, when

considering an 8×8 PU pointed by vector (x, y), we would have to request 8 bytes eight

times, since the next lines of the same PU would be in other lines of the main memory.

For the mentioned case, we would have to request data for (x, y), (x, y+1), ..., (x, y+7),

each of these requests with 8 bytes. Moreover, if the width of the PU is larger than the

word size considered, we need to perform more than one request for each of the PUs

lines. Considering a 16×16 PU, for a word size of 8 bytes, we would have to request

(x, y), (x+8, y), (x, y+1), (x+8, y+1), ..., (x+8, y+15), each of these with 8 bytes

as well. This is shown in Fig. 4.2. Due to that, the number of requests to the memory is

considerably higher than the number of lines in each of the input files, since the size of

the PUs corresponding to those vectors are, at least, 8×8.

Cache analysis for three different algorithms from the x265 software were per-

formed, in order to decide whether the HS is good enough in terms of cache access. The

HS and two other algorithms supported by the x265 software were analyzed: the Dia-

mond Search (DS) and the Star Search (SS), both of which are used in other presets of

the software. This was only done for checking purposes - i.e., to check if the HS has

reasonable hit-rate values - given that DS runs in a x265 preset that decreases the coding

efficiency significantly (and we had already made decisions that decreased the quality, so

we did not want to decrease it with any other optimizations), and SS runs in a slower x265
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Figure 4.2: Requests for 8×8 and 16×16 PUs considering a word size of 8 bytes.

Source: The Author

preset, so it would be harder to achieve real-time. Input data were gathered from these

algorithms using the Python script previously described, and the cache simulator was run

for these algorithms. The hit-rate values were similar for the search algorithms tested. For

that reason, and due also to the fact that the HS is our main case study, we only present

the results for the HS in the results section.

After obtaining cache hit/miss-rates, on-chip and off-chip bandwidth for every

configuration (using the approximations performed by applying the values found for one

frame and extending it to the desired frame-rate, in order to estimate the values for one

second of the video), we decided to estimate the leakage/dynamic power and energy for

each of the cache models. To do that, we used Cacti-P (LI et al., 2011), which is a tool

that analyzes cache configurations, generating power/energy values based on the cache

parameters. The parameters include associativity, block size, cache size, and some others.

A better analysis on which parameters were used for this simulations is presented in the

results section.

We also estimated the energy read of an LPDDR2 memory in order to perform

comparisons between our model using the cache memory and a model without the use of

any cache mechanisms. The energy values considering the off-chip DRAM and the cache

memory are shown in the results section.

4.4 Absolute Differences Operator and SAD Architecture

After the analysis of the cache memory, the next step was to develop an SAD ar-

chitecture that would receive the data from the memory hierarchy (either from the cache
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or the main memory) and calculate the SAD, with the values from reference and current

blocks. SAD performs an absolute differences operation before applying the sum of these

values. For that reason, we focused on the hardware model of that specific absolute dif-

ferences operator, focusing on obtaining low-power. We decided to perform this analysis

due to the fact that none of the works in the literature made a research on finding the best

absolute differences operator in terms of power in the context of SAD (most works use

the abs operator from the synthesis tool).

Ten different absolute differences architectures are considered in this work in or-

der to analyze the best configuration for a power-efficient module. The architectures are

shown in Fig. 4.3. The architectures (a-f) consist of independent absolute difference cal-

culation, i.e. do not require the adder tree to work, which means they can be used in

a wider variety of applications. The remaining proposals (g-i) work by propagating the

MSB of the subtraction operation to the rest of the adder tree. These signals will be con-

nected to the carry-in inputs of each of the tree adders, including the accumulation adder.

It is worth mentioning that the (g-i) architectures cannot be coupled with every SAD unit,

since they require the tree to be composed by an adder implementation with enough carry-

in inputs for the operation to work properly. In other words, the total number of carry-ins

must be equal to the number of extra bits sent to the adder tree.

Architectures (a) and (b) differ from each other in the decision of using the ’+1’

bit in the normal input of an adder or in the carry-in of the same adder. Architecture (c)

uses two subtractors to calculate Oi,j − Ri,j and Ri,j − Oi,j in parallel, using the MSB

of one of them to decide the selected result. The pairs (e-f) and (h-i) vary by implement-

ing an Exclusive-Or (XOR) or an Exclusive-Nor (XNOR) with a NOT gate, because the

synthesis may achieve better results by optimizing the XNOR gate, compensating the ad-

ditional use of an inverter. Both pairs differ because (h-i) use the MSB as the carry-in of

the adder tree, without needing an additional adder. On the other hand, (d) and (g) dif-

fer from each other for the same reason, but using a multiplexer instead of XOR/XNOR

gates.

The best version was chosen based on the power results. The results for the abso-

lute differences operator will be presented in the next section.

We used the results of the best absolute differences operator in order to choose

which of the models we would use when implementing the rest of the SAD architecture.

The SAD architecture was modeled just like presented in the background section: as a

tree of adders. The adder tree has a number of levels equal to log2 inputBW . In the last
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Figure 4.3: Absolute differences operation architectures.
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level of the tree, an accumulator is needed, to store the partial values of SAD, in case the

SAD input width is not large enough for its adder tree to calculate the full SAD in only

one requisition.

In the worst case scenario, we would need to calculate SAD for the largest possible

PU, which is 64×64. For an accumulator not to be needed in this case, the input width

would have to be of 8192B (4096B from each current and reference blocks). This size,

however, would require an absurd amount of adders in the adder tree. For that reason, we

decided to use a smaller input width size, and, in order to save hardware area and power,

we decided to use an amount that allows it to properly work with the smallest cache line

without having unused hardware (8 bytes). In other words, the SAD architecture has an

input size of 16 bytes, 8 of them from the reference blocks (by using the cache model

proposed) and 8 for the current block to be encoded.
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The full SAD architecture is presented in Fig. 4.4. The architecture was developed

with and without pipelines between each level. Near the output, the accumulator has three

possible operations: adding its current value to the new value coming from the adder tree,

in the case that the PU is still being calculated in blocks bigger than the input width;

setting the value of the accumulator to the value coming from the adder tree, in case that

is the first accumulation of a given PU; and maintaining the same value as before, in case

no new values have arrived in a given cycle. The last case would happen when a cache

miss occurs and the architecture needs to wait a certain number of cycles for the data to

arrive.

The barrel shifter was also designed and implemented, to serve as an interface

between the cache and the SAD input, for when the cache size is larger than the input

width. This circuit was designed as a sequence of parallel multiplexers, and the choice of

how many bytes it shifts depends on the last bits of the vector requested. For example,

for a 9-byte word size cache, if vector (x, y) - with x having an LSB of ′1′ - is requested

(whose size is 8 bytes), and the cache contains the vector (x − 1, y), we would need to

Figure 4.4: SAD Architecture; (a) Absolute Difference and (b) Adder Tree with accumu-
lation; and the possible pipeline levels in red.

Source: The Author
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shift one byte of the cache line, so that the output of the barrel shifter contains exactly the

data we want. Therefore, we use the LSBs of the x coordinate of the requested vector as

a selector for the multiplexers in order to decide the number of shifts.

4.5 Hexagon Search Control Unit

After the design of the barrel shifter, we designed the Control Unit that would

request the vectors and control the accumulations in the SAD, set the best SAD registers,

current center registers, etc, based on the HS algorithm. The Control Unit consists of

an FSM, described in VHDL. The operation basically begins by setting the center of the

search, received as input, to the center registers (x and y), since the decision of the center

is part of a previous stage out of the scope of this module. Also, the operation receives data

regarding the size of the current PU for which the HS will be applied, in order to determine

the number of accumulations needed to be done in each of the SAD calculations. The

vector blocks are requested by the FSM based on the current center of the search. This

center is updated when one iteration of the Hexagon Search is performed, and it looks for

the other candidates around the new center, until none of the candidates are better than

the current one. The last iteration performs the square search, just like described in the

Background section. Fig. 4.5 shows a brief version of the FSM implemented for this

work, focusing on the access requests (vectors) generation for the memory. Many of the

auxiliary signals were omitted, for simplicity.

In Fig. 4.5, the init_params state sets the registers mentioned before with their

initial values; the Iter_x and Iter_y variables calculate the current position inside the PU

to be requested, so that the requested vector coordinates are given by the sum between the

respective Iter value, the current center and the displacement of the current candidate.

The logic of the incrementation of the current vector (which is a function dependent on

Iter_x and Iter_y) to be requested was simplified for illustration purposes, since we have

to check if the end of the width (for Iter_x) has finished before incrementing Iter_y.

Therefore, both variables are not added in the same cycle. The next state changes the

candidate and checks whether the number of checked candidates is equal to six, in which

case it checks if the current center has changed from the initial center, in the next state. If

this is the case, the algorithm performs the eight-point search around the current center in

the square search, ending the algorithm. Otherwise, the six-point step is performed once

again.
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Figure 4.5: Brief version of the HS Control Unit.
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Lastly, we estimated the throughput required for the IME architecture to work in

real-time. We obtained the number of 8-byte requests from the x265, for the same 5 Full

HD videos of the previous analysis, for 30 frames of each of the videos (equivalent to 1s

of a 30fps video). In our analysis, the number of 8-byte requests of the SAD operation in

the HS is equivalent to the frequency required for the architecture to work in real-time for

that fps. Table 4.5 shows the requests for the 5 videos, as well as the average case, which

corresponds to our frequency goal.

With the cache memory analysis, the absolute differences operator power eval-

uation, the SAD architectural decisions and the FSM designed, a complete system was

developed. This system is presented in Fig. 4.6.

The system consists of the memory part (external + cache), which sends data for

Table 4.5: Frequency estimation (for 1080p@30fps) for different video sequences.

Video Estimated Frequency (MHz)
BBDrive 561.61
BQTerr 402.926
Cactus 441.188

Kimono 641.613
ParkScene 388.072
Average 487
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Figure 4.6: Top level IME system.
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the barrel shifter - whose size is decided from the best results in the next section -, respon-

sible for aligning the data of the reference block for the SAD to be calculated correctly.

The output of the SAD kernel consists of an Accumulator register, to calculate the SAD

for bigger blocks. A best SAD register is also defined, which updates based on signals

sent by the Control Unit. Other auxiliary signals are sent by the Control Unit for the

accumulations to work, and to request data from the cache/external memory.
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5 RESULTS

5.1 Cache Memory

Several parameters were varied in the cache simulations: five Full HD videos

(BasketballDrive, BQTerrace, Cactus, Kimono and Park Scene), four associativities (DM,

2-way, 4-way and 8-way), three word sizes (8, 9 and 11 bytes), five number of lines

(512, 1024, 2048, 4096 and 8192) and two replacement policies (FIFO and LRU). A

random replacement policy was also implemented in the simulator, but not used due to

the difficulty in applying that random logic in a future hardware model. We also varied

the number of bits retrieved from the x and y coordinates, testing every possible sequence

such that the sum of these values equals log2 nLines (4.1) (the bits removed because of

higher associativities were taken out after that division).

We found out that we generally obtain better hit-rate values when we equally split

the weights of the x and y coordinates to form the address. Moreover, when the number

of lines is an odd power of 2 - for lines 512, 2048 and 8192, which are equal to 29, 211

and 213, respectively -, the best hit-rate results are usually in the most balanced division

(when using the extra bit for the x or the y coordinates). For example, for a cache of 8192

lines, the best hit-rate values, for one given configuration of associativities, replacement

policies and word size, were usually obtained when taking 7 bits from the x coordinate

and 6 bits from the y coordinate to form the index.

Table 5.1 shows, for a 8192 lines cache with 8-byte word size, that the best hit-rate

values were, in fact, obtained in balanced cases. For this analysis, LRU was used as the

replacement policy, and it was simulated for 1 Full HD video (BasketballDrive).

The values were usually the highest when considering the preference for the x

coordinate for gathering the "extra" bit of the balanced division. Therefore, due to that

behavior, and due to the fact that the executions were time-consuming, we only tested that

distribution when testing for number of lines which are odd powers of 2, for the rest of

the simulations. For the even cases, we equally divided the bits.

Due to the high number of requests, our goal was to obtain a hit-rate of more than

90%, given that even relatively high hit-rates would lead to a high off-chip BW. Based on

these results, we did not achieve that threshold for 512 and 1024 lines cache, for any of

the word sizes. Therefore, they are not presented.

We also did not achieve that hit-rate threshold for caches with 8 bytes as the word
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Table 5.1: Hit-rate values when varying the index formation.

Hit-rate
(x, y) distrib. DM 2-way 4-way 8-way

(0,13) 1.15% 4.97% 14.91% 32.55%
(1,12) 2.04% 4.97% 14.91% 32.55%
(2,11) 4.57% 8.76% 14.91% 32.55%
(3,10) 5.4% 14.06% 23.73% 32.55%
(4,9) 17.19% 16.14% 36.27% 47.39%
(5,8) 45.04% 43.56% 42.42% 65.5%
(6,7) 78.8% 77.75% 76.12% 75.03%
(7,6) 85.33% 85.63% 85.23% 84.64%
(8,5) 47.06% 84.22% 85.01% 84.87%
(9,4) 18.14% 44.82% 82.39% 84.49%

(10,3) 5.61% 15.89% 42.34% 79.22%
(11,2) 1.12% 3.74% 13.98% 38.13%
(12,1) 0.15% 0.48% 3.28% 13.09%
(13,0) 0.04% 0.13% 0.45% 2.65%

size, which indicates that, for our method of forming addresses, we need to use the barrel

shifter to align the data, considering our decision to use an input width of 8 bytes in the

SAD architecture.

Figs. 5.1, 5.2 and 5.3 show the final hit-rate results for the configurations tested,

for 8, 9 and 11 bytes of word size, respectively, for the HS algorithm. The results represent

the average of the 5 Full HD videos.

Figure 5.1: Hit-Rate results for different associativities (8-byte word size).
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Figure 5.2: Hit-Rate results for different associativities (9-byte word size).
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Figure 5.3: Hit-Rate results for different associativities (11-byte word size).
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Some of the results presented higher hit-rate values for smaller associativity caches.

The reasons for that may be challenging to notice at first, but debugging the access orders

for cases that this actually happened made it clear. The reason is that a higher associativity

cache may remove, due to the replacement policy, data that would not be removed when

using a smaller associativity cache, since the address for the data that removed the cache

would not point to the same set in the smaller associativity. Due to the HS algorithm,

this pattern was quite frequent, enough for it to be noticed in slightly higher hit-rates for

smaller associativity caches. For these cases, there is no trade-off between both caches,
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as a smaller associativity, for the same size, will also have a smaller dissipated power, due

to the use of less comparators to search in the set.

We obtained hit-rate results of up to 96.47% and an off-chip bandwidth of 0.18

GB/s, for a cache of 8192 lines, 11-byte word size, 2-way associative, for both FIFO

and LRU replacement policies. Without our cache solution, the off-chip BW would be

of about 5.22 GB/s, by taking the sum of the average on-chip and off-chip BW from the

videos.

The variation of the replacement policy did not lead to a significant change in the

results: LRU was slightly better, but in most cases the hit-rate increase was insignificant.

Due to that reason, we only present the energy analysis below for the LRU, as the analysis

for the FIFO is similar, for this dataset.

The cache energy results were simulated with Cacti-P, using a 65nm technology.

We simulated data considering one exclusive read port - due to the fact that this is a read-

only cache -, with one bank, and an operating temperature of 360K. Moreover, the design

was set to equally focus on weight delay, dynamic power, leakage power, cycle time and

area. The parameters for cell and peripheral types for the data and tag arrays were all set

to types focused on low-power.

In order to estimate the energy from reading in the off-chip memory, we used a

calculator obtained from Micron, for LPDDR2 memories (Micron, 2013). We chose a

4Gb LPDDR2-S4 to be used as a case study in this work. This off-chip analysis was

made only to estimate how much energy is saved when using our cache memory proposal

and when using no cache at all (only the off-chip); therefore, the off-chip values, as stated

by the Micron calculator, may not be exact. We considered the memory frequency to be

set as 533 MHz (obtained as the inverse of the CK cycle rate of 1.875 ns for a Speed

Grade of -18, in the Micron calculator). We also considered that 32 cycles are needed to

perform one read, with 2 bursts of 8 bytes each (since 16 bytes are the minimum multiple

of 8 bytes large enough to gather the 11 bytes for the cache, which is the maximum width

we were analyzing). The energy for a single read in the off-chip memory is determined

by 5.1.

EnergyRead = PowerRead × nrCycles× timeCK (5.1)

According to Micron reports (Micron, 2013) (Micron, 2005), we found out that the

Power of a read for the LPDDR2 used is 53.8 mW. Applying 5.1, considering nrCycles =

32 and timeCK = 1.875ns, we obtain an energy value of 3.23 nJ for each of the reads.
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In order to calculate the energy of the memory system without cache mechanisms -

considering a miss-rate of 100% in the cache -, we consider that every access is requested

to the off-chip. Therefore, we take the product between the total number of requests and

the energy per read (EDRAM ) of the LPDDR2 analyzed. This formula is shown in 5.2.

TotalEnergy = nRequestsTotal × EDRAM (5.2)

When using our cache solution, we calculate the total energy based on 5.3, which

is a function of the read energy cost of the DRAM (obtained from Micron), read and

write energy cost of the respective cache configuration (obtained from Cacti-P), leakage

energy (product between the leakage power - also obtained from Cacti-P - and the time

considered), and the number of requests from both the cache and the DRAM, which were

obtained from the cache simulator implemented.

TotalEnergy = ELeak+nRequestsDRAM×(ECacheW +EDRAM )+nRequestsCache×ECacheR (5.3)

The energy result without the cache was calculated as presented in 5.2. We ob-

tained an average value of 509079840 requests, for the 5 videos. Therefore, by applying

5.2, TotalEnergy = 509079840 × 3.23 × 10−9J , which equals 1.64 J. It is important

to notice that the high energy value was due to the million of requests performed by the

videos.

Figs. 5.4, 5.5 and 5.6 show the energy results with and without the cache mod-

ule considering the average number of requests performed in 1 second of the 5 Full HD

videos, for the word sizes of 8, 9 and 11 bytes, considering the LRU replacement policy.

The results are presented for 2048, 4096 and 8192 cache lines.

Table 5.2 presents the energy decrease percentage of each cache configuration

when compared to the model which only uses the DRAM, for the LRU replacement pol-

icy.

We chose the best configuration as the one with the best energy decrease among

the configurations tested. Therefore, the best cache model using this heuristic is the 4096

2-way cache, with 11 bytes per line, which has a total energy result (cache + DRAM) of

83.22 mJ, corresponding to an energy decrease of 94.94% when compared to the energy

value of 1.64 J which does not consider the use of the cache.
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Figure 5.4: Energy results of the memory hierarchy (8-byte word size).
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Figure 5.5: Energy results of the memory hierarchy (9-byte word size).
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5.2 Absolute Differences Operator and SAD

Table 5.3 presents the power results for an 8-input SAD (8-byte original pixels and

8-byte reference pixels), using real input vectors (from BQTerrace 1080p) in the netlist

level simulation, considering gate and interconnection delays. These results include leak-
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Figure 5.6: Energy results of the memory hierarchy (11-byte word size).
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Table 5.2: Energy Reduction.

Energy Reduction
#Lines Assoc 8B 9B 11B

DM 50.16% 55.43% 58.01%
2-way 50.9% 88.54% 93.71%
4-way 50.05% 87.52% 94.22%

2048

8-way 48.6% 85.7% 92.9%
DM 82.84% 91.32% 94.5%

2-way 81.65% 91.62% 94.94%
4-way 80.1% 90.88% 94.39%

4096

8-way 77.95% 89.35% 92.98%
DM 85.25% 90.97% 93.87%

2-way 85.19% 91.28% 93.95%
4-way 83.81% 89.95% 92.79%

8192

8-way 81.05% 87.26% 90.05%

age and dynamic power, as well as glitching power percentage in the dynamic power,

and total power reduction with respect to the baseline circuit (with "abs" macrofunction

from Cadence synthesis tool), for full pipeline and no pipeline implementations. Table

5.4 shows the results in terms of absolute circuit area, the relative gate count (2-input

NANDX1), and the total area reduction. The frequency used for the synthesis in this

analysis was based on throughput estimations of Silveira et al. (2017). We estimated that

we would have similar best results of absolute differences operators in the frequency of
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the full IME architecture, whose results are shown in the next subsection; therefore, we

decided the absolute differences operator to be used based on these results.

Table 5.3: Power Dissipation Synthesis Results @ 133MHz (µW )

No Pipeline
Version Leakage Dynamic Glitching Total Total Reduction
Baseline 3.42 3340.2 55.7% 3343.6 -

a,b 3.11 3038.4 56.9% 3041.5 9.0%
c 2.90 2658.0 55.2% 2660.9 20.4%

d,e 4.74 5574.8 52.0% 5579.5 -66.9%
f 4.73 5575.8 54.4% 5580.5 -66.9%

g,h 3.13 3706.5 52.5% 3709.7 -10.9%
i 3.50 4030.9 52.6% 4034.4 -20.7%

Full Pipeline
Baseline 1.73 557.1 16.8% 558.8 -

a,b 1.74 559.2 16.9% 560.9 -0.38%
c 1.84 505.1 14.7% 507.0 9.28%

d,e 1.83 566.2 15.7% 568.0 -1.65%
f 1.86 639.2 11.2% 641.1 -14.72%

g,h 1.77 488.9 12.6% 490.6 12.20%
i 1.77 486.5 12.6% 488.3 12.62%

Table 5.4: Circuit area, Gate Count Results

No Pipeline Full Pipeline
Version (µm2) kGates Red. (µm2) kGates Red.
Baseline 4143 1.99 - 3642 1.75 -

a,b 3980 1.91 4.0% 3662 1.76 -0.6%
c 3820 1.84 7.8% 3879 1.86 -6.5%

d,e 5184 2.49 -25% 3845 1.85 -5.6%
f 5145 2.47 -24% 3899 1.87 -7.1%

g,h 3865 1.86 6.7% 3673 1.77 -0.9%
i 4085 1.96 1.4% 3665 1.76 -0.6%

As shown in Table 5.3, the architectures are organized in pairs, i.e. (a,b), (d,e) and

(g,h), since they have achieved the same results between each pair, due to the optimiza-

tions performed by the synthesis tool. In the pair (a,b), the difference in using the ’1’ logic

value in the normal input or in the carry-in was ignored by the tool. In the pairs (d,e) and

(g,h), the difference between using a 2-1 multiplexer and an XOR gate with a NOT gate

in one of its inputs has been optimized by the tool to be implemented in the same way.
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According to Tables 5.3 and 5.4, architecture (c) has achieved a power reduction of

20.4% and 9.28% for the versions without and with full pipeline, respectively, and an area

reduction of 7.8% in the version without pipeline, when compared to that of the synthesis

tool for the target frequency. The pair (a,b) has also achieved power and area reductions

when compared to the implementation of the synthesis tool, without pipeline. Versions

(g,h,i) have achieved the highest power reductions when using full pipeline, while having

only a slight increase in area.

The low-power behavior of architecture (c) without pipeline stands out because

the propagation in the data-path was more balanced, reducing power dissipation due to

glitching in its adder tree. The results show that the pipeline reduce the glitching power

since the changes in the input of each adder tree level occurs almost at the same time,

reducing the dynamic power considerably. On the other hand, the full pipeline circuit

architectures also reduce the drive strength of the cells (and the size of transistors), as

it can observed in the circuit area and leakage power reduction even with the inclusion

of registers in the circuits. With the glitching reduced in the pipeline versions, the best

architectures are the (g,h,i), since they do not require the "+1" adder, as they propagate

the MSB into the carry-in inputs of the adders in the tree.

5.3 IME Architecture

The architecture for IME was implemented with the 11-byte shift barrel, based on

the favorable cache energy results, and without pipeline, using the best respective absolute

differences operator (alternative c) from the previous section. The decision for not using

pipeline was based on the fact that, just like the TZS - described in the Background section

-, the HS contains several data dependencies between each of the Hexagon iterations,

which would generate pipeline bubbles, since the whole SAD of the last candidate has to

be entirely calculated before deciding whether the center would be changed in the next

iteration. The FSM was implemented according to the model shown in the methodology

section.

The results for the full architecture of the SAD, including the FSM control, is

shown below. To obtain these values, we have synthesized the developed architecture for

ASIC, with ST 65 nm CMOS standard cells library. The architecture was synthesized for

the maximum frequency of 555 MHz. Due to the fact that none of the architectures found

in the literature implement the HS algorithm, no fair comparisons could be performed.
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The power and area results are presented in Table 5.5.

Table 5.5: Results for the IME architecture @ 555 MHz

Circuit Area Power (µW )
(µm2) kGates Leakage Dynamic Total

20367.9 11.25 15.936 6950.626 6966.562

This power analysis was also performed applying real input vectors extracted from

the SAD operation in the x265 software, similar to the data used in the absolute differ-

ences operator analysis, to estimate the dynamic power more accurately. Considering the

previous cache and off-chip analysis, we obtained a best energy configuration of 80.31

mJ, for one second of access requests. In the IME architecture, for one second of op-

eration, we obtained an energy value of 6966.562 µJ , which is equivalent to about 6.97

mJ. Therefore, the total energy of the whole system for that number of access requests

(considering the off-chip, the cache and the IME architecture) is 90.19 mJ, showing that

the IME module represents a small percentage of the total energy spent, and that the most

part of energy is consumed in memory accesses, which include off-chip memory com-

munication. The system without the cache would require for the same video duration an

energy of 1.65 J. Therefore, our solution decreases the total energy of the IME by 94.5%,

namely by a factor of 18.3×.

Based on the design methodology used in this work, considering the maximum

clock frequency of 555 MHz achieved by this architecture, and considering that a through-

put analysis estimated 487 MHz as the target frequency needed, our architecture is able

to achieve real-time throughput for 1080p videos at 30fps.
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6 CONCLUSIONS

This work presented several analysis of components related to one of the most

time and energy-consuming tasks in the HEVC video coding process: the Integer Motion

Estimation. In this work, a cache analysis interfacing the IME and the off-chip DRAM

was performed, due to the fact that this is one of the communication bottlenecks of the

video encoders. Input vectors were extracted from the x265 encoder software, in order to

determine the access order for a selection of search algorithms. The motivations given in

this work and the analysis presented have resulted in the decision of using the Hexagon

Search as a case study for this work.

A Python cache simulator script was implemented, in order to obtain hit-rate and

off-chip BW demand values for different cache configurations. In this cache analysis and

exploration, this work explored five different number of lines, four associativities, three

word size, and two replacement algorithms for the caches considered. The execution was

simulated for 5 full HD video sequences. We obtained hit-rate results of up to 96.47%,

and a minimum off-chip BW of 0.18 GB/s, for a particular cache configuration, which

represents an improvement when compared to the off-chip required BW of 5.22 GB/s,

without our dedicated cache solution.

Power analysis for the same configurations were performed, obtaining the cache

read power values using Cacti-P. Also, a power comparison using cache memories and

using only the off-chip DRAM was performed, obtaining power parameters from Micron

power calculator, for a LPDDR2. In this comparison, we obtained an improvement of up

to 94.94% when using our cache mechanism.

This work also presented an analysis for the logic design of absolute differences

operators in SAD architectures, to be used later on the final IME architecture. Ten dif-

ferent versions of the architecture were synthesized in 65nm CMOS standard cell tech-

nology, with an input width of 8 bytes per clock cycle. The results show the relevance of

the absolute differences operator in the overall SAD power dissipation, and demonstrate

that a small circuit can interfere in the adder tree behavior. In the main results of these

designs, without using pipeline and for the technology used in this analysis, the version

with two parallel operators performingA−B andB−A achieved the best power and area

results among the tested versions, including the baseline version from the synthesis tool.

The fully pipelined versions (g,h,i) have achieved the best power results, with a power re-

duction of up to 12.62% when compared to the baseline version. The best design without
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pipeline achieved a reduction of 20.4% in total power and a 7.8% reduction in area.

Lastly, we developed the FSM for the Hexagon Search algorithm control, in order

to obtain power results for the SAD + FSM system. A power analysis was performed

using 65nm standard cell technology, for the maximum frequency of 555 MHz. The

power analysis was performed using real input vectors, and we obtained a total power

of 6.97 mW. For 1 second of operation, including our cache analysis, the total energy of

90.19 mJ for the whole hardware system was estimated.

As possible future works, we will extend the analysis of this module, implement-

ing versions with varying number of pipeline levels as well, to verify the power and energy

behavior, and to check whether the data dependencies of the search algorithms - leading

to pipeline bubbles - can be alleviated by the higher frequency we may achieve.

Moreover, for future work is left the implementation of the FME, leading to a full

ME architecture, attempting to achieve real-time throughput for even higher resolution

videos and higher fps. We also plan on including approximate operations in these mod-

ules, to verify if the balance between the coding efficiency decrease, the higher throughput

and the lower power are viable. A more accurate off-chip analysis may also be performed,

by considering other power parameters for the DRAM, considering other genres of off-

chip memory standards, like DDR4, wide-I/O, and others.
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Abstract. Motion Estimation is one of the most critical and time-consuming
tasks of the latest video coding standard HEVC, consuming more than 60% of
the total encoding time on average. This research proposes the design and im-
plementation of a power-efficient architecture for Motion Estimation, as well as
a memory module to reduce the off-chip DRAM bandwidth. Different architec-
tural versions with varying input bandwidth and throughput will be implemented
and assessed in terms of power, clock frequency, and latency, aiming at finding
the best trade-off between computation, memory and energy performance.

1. Introduction
In the recent years, advances in technology have allowed for better quality applications,
leading to an increasing demand for more sophisticated services. Digital video appli-
cations are one of the main categories affected by the technology advances, given that
they allowed the requirements for higher resolution video services to be met. Real-time
video content have also benefited from the technology improvement, allowing for per-
sonal video broadcasting in a worldwide scale, through streaming services such as Twitch
or Youtube. The growing popularity of these services allied with the need for better qual-
ity content has resulted in predictions showing that videos will take a bandwidth share of
82% of the whole Internet traffic by 2021 [Cisco 2017].

Digital videos are usually not handled in their uncompressed form, because this
requires a huge amount of resources to store and transmit this information. To exemplify,
a 10-minute Full High Definition (Full-HD) 1920×1080 video, recorded at 30 frames per
second, with each pixel being represented by 3 bytes, would require more than 104GB to
be stored. In order to transmit this video as a real-time service, a bit-rate of more than 177
MB/s would be required. This becomes even worse when higher resolutions are consid-
ered, such as the increasingly popular Ultra High Definition 4k (UHD-4k) (3840×2160
pixels). The ITU-R recommendation for UHD Television (UHDTV) states that resolution
should be increased in both spatial and temporal axes [ITU-R 2015], so higher frame rates
of up to 120 fps will have to be supported. Table 1 shows storage and bit-rate require-
ments for a 10-minute sequence with common spatial and temporal resolutions. The size
and bit-rate values are given by equations 1 and 2, in which W and H respectively refer to
the width and height of the video, N refers to the representation of each pixel, in bytes, F
denotes the frame-rate per second, and t refers to the time duration of the video sequence,
in seconds.

Size(bytes) = W ×H ×N × F × t (1)



Table 1. Raw video sizes and required transmission bit-rate for different spatial
and temporal resolutions (sequence length: 10 minutes).

Resolution FPS Storage Requirement (GB) Transm. Bit-rate (MB/s)
832×480 30 20.08 34.27

1920×1080 30 104.28 177.97
3840×2160 30 417.13 711.91
3840×2160 120 1668.54 2847.65
7680×4320 30 1668.54 2847.65
7680×4320 120 6674.19 11390.62

BitRate(Bytes/s) = Size/t (2)

As seen in Table 1, the required transmission rates for uncompressed data is pro-
hibitive on current communication technology, so there is a real need for compressing (or
encoding) this information before transmission.

Video compression is based in the principle of finding redundant information
within frames of a video and suppressing most of these redundancies in order to mini-
mize the number of bits needed to represent the video sequence, and to make the required
storage size and transmission rate more feasible.

While encoding reduces the amount of information used to represent videos, it
also introduces a new problem in terms of computation. Modern video encoders perform
many time-consuming operations to compress data efficiently, increasing the time and
energy required for this task. The demands for higher resolutions aggravate this issue,
because the amount of operations needed to encode each sequence is proportional to the
input size. Real-time systems are particularly affected, because in this case data has to be
encoded at a minimum frame-rate to optimize the user experience (typically more than 25
frames per second).

The increased computational effort of video encoders leads to an additional issue
on battery-powered devices, such as smart-phones and camcorders. Due to limited battery
resources, the encoding task needs to be executed as efficiently as possible. The use
of general purpose processors (GPPs) for video applications is inefficient, because the
arithmetic units of these devices are not designed to compute video-coding operations
efficiently. For instance, many encoding steps involve performing the same operation on
several pixels. In GPPs, this is usually translated to many lines of assembly code that
must undergo the execution pipeline, wasting time and energy with unnecessary fetch and
decode cycles.

Designing dedicated hardware architectures is one of the main solutions to tackle
the power and energy issues, since they eliminate the overhead of GPPs, given that they
are designed solely for a chosen application. Application Specific Integrated Circuits
(ASICs) are completely designed for specific domains, contrasting with GPPs. However,
cost and manufacturing time become an issue when considering the use of ASICs.

Field-Programmable Gate Arrays (FPGAs) are a good balance between GPPs and
ASICs. FPGAs achieve better performance when compared to GPPs for the same applica-



tion and, despite not being as dedicated as an ASIC, their time-to-market is smaller, since
no layouts and other manufacturing stages are needed. However, when power-efficiency
is highly taken into account, ASIC still remains as the best option.

High Efficiency Video Coding (HEVC) [ITU-T and ISO/IEC 2013] is the state-
of-the-art video coding standard, and it was proposed focused on the increasing de-
mands for higher resolution videos. When compared to its predecessor, the H.264/AVC
[ITU-T and ISO/IEC JCT 2011], HEVC achieves up to 50% bit savings for the same
video quality [Sullivan et al. 2012], by applying more sophisticated techniques and al-
gorithms.

Motion Estimation (ME) is part of the HEVC standard and refers to one of the
most time-consuming processes in video encoding. ME is responsible for finding most
of the redundancies in videos, which is the reason why it is called several times for each
frame of the sequence. Fig. 1 presents an analysis using GProf [GProf 1998] for three
different video sequences, and shows that the Integer and Fractional stages of the ME
(IME and FME) are responsible for most of the time in the encoding process.
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SOURCE: [Grellert et al. 2016].

Figure 1. Time percentage of each stage in the video encoding process.

The proposal of this work consists in implementing a dedicated hardware architec-
ture targeting the ME module, focusing on a power-efficient implementation and aiming
to achieve a sufficient frame-rate for high resolution video sequences. Moreover, memory
analysis will be performed, showing that an on-chip cache memory (SRAM) is needed in
order for the ME to work when the context of the rest of the video encoder is considered.
The memory studies are planned to become part of the implementation of the ME, given
that most of the works in the literature tend to abstract the memory communication.

The rest of this document is presented as follows. Section 2 gives a general
overview of concepts regarding video coding and points state-of-the-art proposals for
modules related to the ME. Section 3 presents the proposal of this work, which will be
implemented in a later stage, and the methodology that will be applied. Section IV con-
cludes this work, encapsulating the topics discussed and highlighting the importance of
the proposed work.



2. Overview

2.1. Video Coding

The video coding process is formed by a video encoder and a decoder. The process start
with the capture of a real-life scene by a filming device, which generates a set of discrete
scenes, i.e. frames, which correspond to the raw video. The video encoder is responsible
for transforming a raw video in a sequence of bits according to a given standard, by
applying compression techniques. Next, the video is sent by a transmitter, e.g. an antenna,
so that it can be received by a station with a decoder which supports the standard of that
bitstream. The video can also be stored for future uses. This process is simplistically
shown in Fig. 2.

Figure 2. Simple scheme of encoding and decoding in video transmission.

The state-of-the-art video coding standard is the High Efficiency Video Cod-
ing (HEVC/H.265), which is a more sophisticated version of the previous standard
H.264/AVC. HEVC doubles the compression for the same video quality when compared
to H.264, and it does that by processing more data and applying more sophisticated so-
lutions than its predecessor. However, these compression gains incurred in 1.2-3.2× in-
crease in computational effort in the encoder side in comparison with the previous stan-
dard [Sullivan et al. 2012].

The video coding standard only defines specifications for the decoder. The en-
coder can be freely implemented, as long as the output bitstream conforms to the standard
that can be processed by the decoder. The reference software for the HEVC standard is
the HEVC Test Model (HM) [JCT-VC 2016]. x265 [x265 2016] is also a well-known
encoder software compatible with the HEVC standard.

2.2. Video Encoder Diagram

The diagram of a general video encoder is shown in Fig. 3. The process starts by splitting
each frame of the video sequence in blocks called Coding Tree Units (CTUs). HEVC
defines 64×64 as the default CTU size. Each CTU of the frame to be encoded is applied
in the stages of the presented diagram.

CTUs are split into smaller squared blocks, called Coding Units (CUs), in a quad-
tree partitioning scheme, based on heuristic decisions. HEVC supports CU sizes of 8×8,
16×16, 32×32 or 64×64. The intra and inter-frame are responsible for resolving spatial
and temporal redundancies, searching for similar information compared to the block being
encoded, so that only residual information need to be sent to the encoder output. In order
to find optimal redundant blocks, CUs are split into several possible partitions, called
Prediction Units (PUs), for which the prediction algorithms are applied. The PUs can
be categorized in Symmetric Motion Partitions (SMP) and Asymmetric Motion Partitions



Figure 3. Video encoder diagram.

(AMP). Fig. 4 shows the split from CTU to PU level, highlighting the PUs for a 32×32
CU.

Figure 4. CTU partitioning scheme.

After generating the best candidate from either intra or inter-frame prediction, a
residual block is calculated. Transform and quantization stages are applied to that block,
allowing for the introduction of lossy compression. Before being sent to the bitstream
output, an entropy algorithm is applied to the block, to exploit entropic redundancies.

The coded block also needs to be decoded in this encoding scheme, by applying
inverse quantization and inverse transform functions so that it can be recovered. This is
needed because the inter-frame prediction uses information of previously coded frames



to find temporal redundancies in the current frames, so these previous frames need to be
ready to be analyzed.

2.3. Motion Estimation

ME is a stage inside the inter-frame prediction in video encoding responsible for resolv-
ing temporal redundancy in a video. ME is applied for each block of the video frame and
finds the most similar block compared to the one being encoded. Thus, the only informa-
tion needed to be sent to the output of an encoder is the difference between both blocks
(residual block) and a vector pointing to the best matching block, so that the decoder can
use as much information from previously decoded frames and their blocks, to obtain the
original block to be decoded. ME is split into two subsequent stages: Integer Motion
Estimation (IME) and Fractional Motion Estimation (FME).

2.3.1. Integer Motion Estimation

IME finds the best matching block in an integer-pixel level, by applying a search algorithm
in the blocks being encoded. This search algorithm defines a pattern of positions in which
the most similar block will be searched. The search algorithm is applied in a given search
window of the frame, which consists of an area smaller than the frame itself, due to the
fact that image patterns tend to slightly move from the area where they were in a previous
frame. Fig. 5 generically shows the concepts involved in the IME.

SOURCE: [Roger Endrigo Carvalho Porto 2008].

Figure 5. Generic search in a previously coded frame.

Some of the main search patterns and algorithms known in the literature are pre-
sented in the following subsections.

2.3.2. Full Search

The Full Search (FS) is the most basic algorithm found in the literature. FS applies the
search of the most similar block in every pixel in the search window, always finding the
best possible matching block, as long as it is contained in the window. For that reason, FS



maximizes the temporal redundancy found, resulting in a smaller bitstream in the encoder
output.

Due to the large number of candidates being tested, FS requires the highest number
of memory accesses and calculations, among all the other search algorithms. For that
reason, real-time implementations apply other solutions so that the search is performed
for a smaller number of candidates, while still attempting to find residual blocks very
similar to the best possible.

2.3.3. Test Zone Search

Test Zone Search (TZSearch) is the algorithm used in the latest versions of the HM ref-
erence software. TZSearch applies more than one search pattern and has a more sophis-
ticated flow, so that very similar matching blocks can be found with less calculations.
The algorithm is divided in 4 subsequent stages, each of which are dependent from the
previous one. For that reason, pipeline-based architectural implementations waste a good
amount of unnecessary cycles, given that the pipeline needs to be totally emptied so that
all the processing of a previous stage can be done before starting the next one. These
stages are explained in the following subsections.

a) Vector Prediction: this stage is responsible for examining resulting vectors of
the neighbor blocks of the PU being encoded, generated from their previous ME execu-
tion. Then, the block being encoded is compared to each block pointed by these vectors,
and the position of the most similar one is defined as the initial center of the search.

b) First Search: a diamond-shaped search is performed, starting from the position
defined by the VP. The diamond pattern tests four, eight or sixteen candidates around
the center, depending on the distance between samples, which is incremented after each
iteration. If the search finds a block more similar than the one in the current center in an
iteration, the center is redefined as the position of that block. The search stops when the
best candidate remains being the center after three iterations. Fig. 6 shows the shapes of
the first three iterations.

c) Raster Search: this stage searches through the entire search area, starting from
the top-left corner, and skips some neighboring candidates by defining a raster step con-
stant. This is illustrated in Fig. 6 for a constant of 2.

d) Refinement Search: the last stage works the same way as the First Search. The
main difference is that the default tolerance in the HM software for this level is two instead
of three iterations.

2.3.4. Hexagon Search

This is the search algorithm implemented by the x265 software. Hexagon Search is split
into three main step, and the dependencies between them also makes it important to ana-
lyze the number of pipeline levels to be used in an architecture, just like in the TZSearch.
The following items detail the Hexagon Search.

a) Motion Prediction: this stage works similarly to the VP in the TZSearch algo-



Figure 6. Search shapes for the TZSearch.

rithm, only differing in the number of candidates evaluated to decide the initial center of
the search.

b) Hexagon: this step performs a six-point search in a hexagon-shaped format
around the center of the search, considering the initial center is defined by the previous
step. Whenever there is a candidate more similar to the block being encoded than the
one in the center, the new center is defined as the vector associated to that new candidate.
Then, the hexagon search is applied again, starting from the new center of the search.
This stage stops when none of the candidates are better than the current center.

The x265 software applies an optimization to this stage: starting from the second
iteration of the hexagon search, only three candidates need to be evaluated instead of six,
since the three remaining points will always have been evaluated in the previous iteration.
This is illustrated in Fig. 7.

c) Square Refinement: after the Hexagon step defines a best candidate, an 8-point
square refinement is applied around that point. The final vector value is defined by the
best candidate evaluated in this stage. If none of the candidates are better than the current
center, then the center defined by the previous step is the best vector.

Fig. 7 illustrates the whole process of the Hexagon Search algorithm, consider-
ing an 8×8 PU, in which four iterations of the Hexagon are made. In the last one, no
candidates were more similar to the block being encoded than the center, so the square
refinement was applied, resulting in a better block found in one of its eight candidates.

2.3.5. Fractional Motion Estimation

Fractional Motion Estimation (FME) is applied after the IME and is responsible for find-
ing the best match at the fractional-pixel level, starting from the most similar block found
in the IME. Due to the fact that frames are formed only by integer pixels, FME requires
the use of an interpolator to estimate fractional pixels positioned between the integer pix-
els of the image. FME is responsible for increasing quality in video sequences due to
the fact that real-life patterns frequently move at a rate that is not a good match to the
integer-pixel displacement between two simultaneous video captures.



Figure 7. Search shapes for the Hexagon Search.

HEVC defines 48 possible candidates to be compared in the FME: 8 half-precision
and 40 quarter-precision candidates. Fig. 8 presents the set of fractional points needed
to gather all the information regarding the 48 fractional blocks. In this figure, green
positions correspond to integer pixels, blue positions correspond to half-precision pixels
and white positions correspond to quarter-precision pixels. Half and quarter-precision
pixels are generated through interpolation using 7-taps and 8-taps FIR filters, depending
on the specific point. The highlighted partition shows the 48 possible points to which
comparisons will be performed.

Figure 8. FME fractional pixels window for a 4×4 PU.



2.4. Metrics for Block Similarity

Several metrics can be applied to determine the degree of similarity between two blocks.
They differ from each other in ease of implementation, efficiency and result accuracy, i.e.
how precisely they can define the similarity between the blocks. The main metrics used
in video codecs are shown in the next subsections.

2.4.1. Sum of Absolute Differences

Sum of Absolute Differences (SAD) is the simplest metric used in the video encoding
process, and is applied by calculating the differences between the co-localized pixels of a
current and a candidate block, performing an absolute operation in these differences and
then adding the values. The complete formula is given by 3, in which O and R denote the
current and the candidate blocks, respectively.

SAD =
m∑
i=0

n∑
j=0

|Om,n −Rm,n| (3)

SAD architectures are mostly implemented using subtractors, absolute operators
and an adder tree, with an accumulator on the output so that SAD for bigger blocks can
also be calculated. Most architectures use pipeline schemes, so that several sum stages can
be done concurrently and the resulting critical path is shortened. A 8×8 SAD architecture
is shown in Fig. 9, in which the sizes are presented in bits.

Figure 9. 8×8 SAD architecture.

The presented architecture calculates SAD for an 8×8 block in each cycle, after
the pipeline is filled. The 4×4 SAD blocks correspond to simple adder trees, including the
subtractors and absolute operators. The 2-1 multiplexer is used to extend the block sizes
possibilities, so that receiving 4×4 blocks several times would allow the architecture to
calculate SAD for larger block sizes. Considering a generic SAD architecture, the number
of cycles required to calculate a N×N block is given by 4. In this formula, BW is the
bandwidth of all the candidate partitions; H and W refer to the height and the width of



the PU to be calculated, respectively; and Pdepth corresponds to the number of pipeline
levels in the architecture.

cycles = Pdepth +BW (bytes)/(H ∗W ) (4)
It should be noted that an increase in the minimum block size of the architecture

implies in more hardware area, resulting in power and energy increases. However, small
architectures spend more time calculating bigger blocks, since the number of accumula-
tions needed is higher.

2.4.2. Sum of Absolute Transformed Differences

The Sum of Absolute Transformed Differences (SATD) is a more complex metric for
video compression. SATD is calculated by taking the frequency transform of the differ-
ences between pixels of current and candidate blocks, and the formula is given by equation
5.

SATD =
m∑
i=0

n∑
j=0

T (Om,n −Rm,n) (5)

In HEVC, this is the metric used by default during the FME, and Hadamard is
the transform function used for that matter. Although SATD is a more accurate metric to
determine the most efficient block match, hardware architectures have a more complex
implementation when compared to SAD architectures.

2.5. Related Work

ME modules can be found in the literature frequently divided into the IME and the FME,
due to the focus of each work in optimizing specific parts of each of these modules.
[Sanchez et al. 2015] employs two algorithm and their respective hardware implementa-
tions for an IME module. The architectures are based in the use of parallel instances
of a diamond-shaped search. The architectures achieve real-time throughput for 1080p
sequences. Even though the architecture presented some quality loss when compared to
other solutions, the proposed architecture has less data dependencies, more regular mem-
ory accesses and regular cycles to encode a single block. Results show gate count of
150k with a 42.3MHz frequency and power dissipation of 12.5 and 13.5 mW (for each
presented architecture), for a 90nm cell library.

[Yuan et al. 2013] also implements an architecture for the IME, achieving 30fps
real-time coding for 1080p video sequences, using 19.7k slice registers considering a Xil-
inx Virtex-6 device. However, the architecture considers 32×32 CTUs instead of 64×64.
Moreover, the architecture was synthesized only for FPGA devices, and power results
are not presented. In [Leon et al. 2016], an architecture for the FME using SAD is im-
plemented, including the interpolation and the decision units for fractional pixels. The
architecture was synthesized only for FPGA devices, and is able to achieve 4K@30fps
real-time processing considering a frequency of 258MHz, for Altera Cyclone IV E. Power
results are not presented in this work.

Complete ME modules can also be found. [Pastuszak and Trochimiuk 2016] pro-
poses an IME+FME algorithm and its respective architecture. It processes real-time



2160p@30fps videos, and results for 90nm technology present 400MHz frequencies. The
work implements the TZSearch algorithm in the IME stage, but it only considers 8×8
blocks - the bigger squared blocks are considered by reusing results from the 8×8 search,
which makes it to loose quality when compared to the default implementation. The imple-
mentation only considers rectangular PUs in the FME. Even though the work considers
the memory usage of the modules, it uses a dedicated memory module that contains the
whole search window for the search to be done efficiently, implying that more silicon area
is needed.

Separate SAD units have also been proposed and implemented, aside from the
ME module. [Silveira et al. 2016] presented a power-efficient SAD architecture using
adder compressor structures. These adder compressors are used based in the principle that
SAD architecture can easily disregard partial sum values, so a normal SAD tree would
be unnecessary. Therefore, the use of adder compressors for that matter is an efficient
solution for architectures focused on power results. The architecture achieves an average
of 60.8% of power reduction when compared to an architecture using the adder from the
synthesis tool. [Nalluri et al. 2014] proposes SAD architectures for the ME module. The
architectures compute every possible PU size defined in the HEVC standard, including
the AMPs. Three models were proposed: sequential, 1-stage parallel and 2-stage parallel
architecture. The architectures were synthesized for FPGA only, and obtained power
results of 91.3, 136.18 and 320.86 mW, respectively.

Even though many works propose and implement hardware architectures for the
IME, FME and SAD, most of them tend to disregard the power dissipation and therefore
do not present any power or energy results. Also, a representative portion of the works
found in the literature only present results for FPGA devices, which are not as power-
efficient as ASICs.

3. Work Proposal

This work proposes the design and implementation of a dedicated hardware architecture
for the ME stage of the video coding process, aiming to achieve power-efficient results.
The work intends to include cache memory evaluations for the implementation of a spe-
cific search algorithm, and generic analysis to be used by the video coding community in
other search algorithms. All the architectures will be described in VHDL, and the scripts
and parsers needed to make simulators and analyze data will be mostly made with Python
language. C++ will also be used to gather data from the encoder softwares, due to the fact
that both the HM and x265 are written in that same language.

Vector data from the search algorithm will be gathered directly from the en-
coder software for benchmark video sequences, so that they can be used as input for
a cache memory script simulator. This script will simulate the behavior of several
cache memory configurations, by varying line size, cache size, associativity, number
of banks, etc, and hit-ratio values will be gathered for each of these configurations,
based on the input data extracted from the encoder software. Next, power and en-
ergy analysis of each cache configuration will be gathered using the CACTI software
[N. Muralimanohar and R. Balasubramonian and N. P. Jouppi ]. The cache memory will
also have to take into consideration the limitations of the off-chip memory that will be
connected to it, making certain cache line sizes unfeasible.



Considerations also will be made to estimate the average number of cycles that
will be wasted whenever a miss happens in the cache memory, given the difference in the
frequencies of the off-chip and the on-chip memory, write latency, memory bus, difference
in line sizes, etc.

After hit-ratio and power/energy values are obtained for these configurations, an
SAD module will be proposed, similar to the one presented in the SAD section. The
bandwidth size will be decided based on the smallest size that can achieve real-time pro-
cessing for high resolution videos, and such that the cache line size is large enough to fill
the whole bandwidth of the module in a single cycle.

A script that generates generic SAD modules of various sizes and several pipeline
configurations in VHDL language has already been developed. The script also generates
the SAD module using different absolute operators. The chosen implementation of this
operator will be decided based on power/energy results, to be gathered using the Cadence
RTL Compiler (RC) [Cadence ].

The IME control, which defines the search algorithm, will be implemented on top
of the SAD module, so it can decide the best block using that metric. Further optimiza-
tions for that algorithm will possibly be made if higher frame-rate results are required.
These optimizations will also be implemented in the corresponding software (HM or
x265), in order to measure the quality loss compared to the standard configurations of
these softwares. Fig. 10 shows the expected top-level module of the architecture, includ-
ing the memory modules for the current and the candidate partition.

Figure 10. Top-Level module.

Initially, off-chip data will be requested for the current partition to be obtained, to
which the search will be performed. Next, the search algorithm module, which defines
the search pattern in the reference frame, will request a block through a vector value from
the candidate partition on-chip memory. The cache module will be responsible to analyze
whether the data is already in it (hit) or if it requires an off-chip request (miss) for the data
to be delivered to the SAD core. The SAD module will calculate the similarity between
both blocks and compare with the best previous SAD value. The shared datapath will
contain registers to maintain the best SAD value, the best vectors related to the block that
generated that best SAD, along with other auxiliary components. In the end of the search
algorithm, the best vector value from the vector register will be assigned to the output.

Block data will be gathered from the software to be used in a testbench to deter-



mine the correctness of the architectures. The data and the architectures will also be used
in RC in order to extract static and dynamic power, frequency and area results for 45 nm
standard cell flux.

Table 2 shows a schedule of the activities planned for this work.

Table 2. Activities schedule
Jul Aug Sep Oct Nov Dec

Development of the
cache memory simulator

Extraction of best
configuration results

Implementation of the
IME architecture

Implementation of the
cache memory interface

Extraction of power/energy,
area and throughput results

Writing of the
term paper

4. Conclusions
This document presented a general overview of concepts related to video coding, focused
on the state-of-the-art HEVC standard. The main stages of a video encoder were briefly
reviewed, and stages like the ME, which will be targeted in this work, have been de-
tailed more precisely, regarding some of the search algorithms implemented by encoder
softwares, and some metrics used by these algorithms.

The research plan herein proposed targets the implementation of a power-efficient
architecture for the ME module considering a specific search algorithm. Due to the very
intensive memory accessing required by the most important ME algorithms, cache mem-
ory analysis will be made in order to decrease the bottleneck between the ME module and
the off-chip DRAM memory.

The results gathered from this research will be useful for the video coding commu-
nity given that the architecture and the memory analysis will be generically implemented.
For that reason, it will become much simpler to extend solutions for any other search
algorithms, as our findings will also consider the memory communication requirement.
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