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ABSTRACT

Agrp neurons are a small population of neurons in the arcuate nucleus of the

hypothalamus known to drive feeding behavior. They are sensitive to hormones such

as leptin,  ghrelin,  and insulin,  and play a central  role  in the regulation of  energy

homeostasis. Even still, there is a need to understand how Agrp neurons work at the

transcriptional and translational levels in scenarios of altered energy balance, e.g.

deprivation  of  food  for  long  periods  of  time.  In  this  work,  we  investigated  the

transcriptome of Agrp neurons using public datasets of single-cell RNA-Seq and the

translatome of Agrp neurons using the RiboTag strategy. The latter was coupled with

RNA-Seq  to  obtain  a  read-out  of  Agrp  neuron-specific  mRNAs  bounded  to  the

ribosome  upon  food  deprivation.  We  have  identified  pathways  and  biological

processes enriched in both levels of regulation as well as shared genes and their

function. Our findings suggest that Agrp neurons use distinct strategies to adapt to

food deprivation and dynamically respond to a scenario of negative energy balance. 

Key-words

Next-generation sequencing; Single-cell RNA-Seq; RNA-Seq; Agrp neurons; Food-

deprivaion; Transcriptome; Translatome.
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LIST OF ABBREVIATIONS

ARC Arcuate nucleus of the hypothalamus 

AGRP Agouti-related peptide 

Agrp Agouti-related peptide neurons

CB Cell barcode

cDNA Complementary DNA

CPM Counts per million 

DE Differential expression 

ER Endoplasmic Reticulum

FD Food deprivation

FDR False Discovery Rate 

GEO Gene Expression Omnibus 

HA Hemagglutinin 

IP Immunoprecipitated 

LFC Log Fold Change 

MNN Mutual nearest neighbors 

mRNA Messenger RNA 

NGS Next-generation sequencing 

NPY Neuropeptide Y 

PCA Principal component analysis 

POMC Pro-opiomelanocortin neurons

RNA-Seq RNA sequencing 

sc-RNA-Seq Single-cell RNA sequencing

t-SNE t-distributed stochastic neighbor embedding 

UMI Unique molecular identifiers 

α-MSH α-Melanocyte-stimulating hormone
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INTRODUCTION

1. Agrp neurons and feeding behavior

The arcuate nucleus of the hypothalamus (ARC) is a region adjacent to the

median  eminence  and  the  third  ventricle,  which  integrates  metabolic  and

physiological  signals and is  relevant  for  the control  of  energy homeostasis.  Such

integration can be achieved by particular attributes of this area, like the fenestrated

blood-brain-barrier,  which  facilitates  the  contact  with  molecules  circulating  in  the

blood (Ciofi, 2011).

The ARC contains two neuronal  populations that  are particularly important:

Pro-opiomelanocortin (POMC) neurons and agouti-related peptide (AGRP) neurons

(Chronwall, 1985), herein Agrp neurons, which form the hypothalamic melanocortin

system. The melanocortin system is a central pathway for the energy balance and

regulation  of  feeding  behavior.  POMC  neurons secret  α-Melanocyte-stimulating

hormone (α-MSH), which binds to melanocortin receptors (MC3R) in the Agrp and

leads to decreased food intake. During a negative energy balance, e.g. periods of

starvation, Agrp neurons are active and secrete AGRP and NPY. They partially block

the binding and effect of α-MSH, leading to an increased food intake (Cansell et al.,

2012). Additional  studies  showed  that  activation  of  Agrp  neurons  either  by

optogenetics  (Aponte et al., 2011) or chemogenetics  (Krashes et al., 2011) evokes

voracious feeding within minutes. Likewise, acute ablation of Agrp neurons in adult

animals is enough to stop feeding, leading to starvation (Gropp et al., 2005; Luquet et

al., 2005).

Mechanisms  for Agrp  activation  based  on  peripheral  neuroendocrine

hormones have  been  described  as  well.  In  a  negative  energy  balance,

neuroendocrine responses lead to an inhibition in the insulin secretion, to a reduction

of the leptin levels and an increase in the ghrelin levels (Schwartz and Seeley, 1997).

Agrp neurons have been found to express receptors for such hormones and therefore

are responsive to their levels (Ashford et al., 1997; Havrankova et al., 1978; Van Den

Top et al., 2004; Willesen et al., 1999). Leptin and insulin suppress Agrp neuronal
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activity  (Mizuno, 2004). Upon food deprivation (FD), levels of leptin and insulin are

low, allowing Agrp activation and therefore, promotion of feeding behavior. On this

context, high ghrelin levels also contribute to activation of Agrp neuronal activity and

stimulation of AGRP and NPY secretion (Cowley et al., 2003). The reestablishment of

the energy balance leads to an increase in leptin and insulin levels and decrease in

ghrelin  level,  inhibiting  again  Agrp  neuronal  activity  and,  consequently,  feeding

behavior (Schwartz and Seeley, 1997).

2. Studying Agrp neurons in the genomics era

Many of the findings that placed Agrp neurons as key regulators of energy

balance are being corroborated and further detailed due to advances in sequencing

techniques, such as RNA sequencing (RNA-Seq)  (Henry et al., 2015; Wang et al.,

2009)  and single-cell  sequencing  (Macosko et  al.,  2015;  Ofengeim et  al.,  2017).

Transcriptomic analysis of single or populations of neurons enabled the dissection of

molecular mechanisms important for their specialized functions. For the first time, it

was possible to access the expression profile of a neuron upon some intervention

(diet, age or light cycle), with greater precision to estimate the expression of active

genes in a given moment (Wang et al., 2009) or to analyze messenger RNA (mRNA)

transcripts from thousands of individual cells simultaneously. These types of studies

can reveal new cell-types and tissue diversity at the transcription level  (Macosko et

al., 2015).

Recently,  the  Drop-Seq  strategy  (a  protocol  widely  used  to  analyze  the

transcriptome of single cells in a given tissue) (Macosko et al., 2015) was applied to

the ARC, providing researchers with data on Agrp neuronal transcription at the single

cell level, thus shedding light into the molecular dynamics of Agrp neurons upon food

deprivation  (Campbell  et  al.,  2017).  This study provided the first  evidence on the

existence of transcriptomic subtypes of Agrp neurons based on the presence of cells

co-expressing  both  somatostatin  (Sst)  and  Agrp gene  markers,  as  well  as  cells

expressing solely Agrp across the ARC (Campbell et al., 2017).
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In  addition  to  neuronal  subtypes,  molecular  data  from  next-generation

sequencing  analysis  also  illuminated  the  pathways  and  genes  involved  in  Agrp

function upon food deprivation (Henry et al., 2015). However, there is still a need to

further  investigate  the  molecular  machinery  used  by  Agrp  neurons  upon  food

deprivation, not only at the transcriptional level but also at the translational level. It is

known  that  post-transcriptional  events  regulate  the  activity  of  several  cell  types

(Hossain  et  al.,  2016).  Several  mechanisms of  post-transcription  regulation  have

been  described,  such  as  microRNA  interference  activity  and  polyadenylation

(Schaefke et al., 2018). Thus, changes in gene expression at the transcriptional level

do not necessarily imply changes at the translational level (Tebaldi et al., 2012).

3. Transcriptome and Translatome upon food deprivation

Changes  in  the  environment  and  feeding  conditions  lead  to  intracellular

signaling  through  energy  sensors  and  transcription  factors,  altering  the  transcript

expression profile of a given cell, i.e, the transcriptome (López-Maury et al., 2008).

The expression profile is dynamic and important for the cell to functionally adapt to

changes in the environment and physiological  conditions  (McGettigan, 2013).  The

transcripts, mRNAs, are key components in the translation process, where proteins

are formed  (McHale et al., 2013). From the entirety of mRNAs in a cell in a given

condition,  the ones associated with ribosomes for  protein synthesis constitute the

translatome (King and Gerber, 2016). A variety of methods have been developed to

access the translatome of  a cell  or  cell  population. One of  these methods is  the

ribosome affinity-purification.  This  method allows the study of gene expression of

specific  cell  types  without  major  contamination  from  surrounding  cells.  For  that

purpose, genetically modified animals expressing affinity-tagged ribosomal proteins

that compose the large ribosomal subunit (60S) are used.  After the tissue collection,

these tagged ribosomes can be selected with specific antibodies or ligands and their

associated mRNAs can be quantitatively measured with RNA-Seq (King and Gerber,

2016). The analysis of the transcriptome and translatome of specific cell types allows
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the  identification  of  gene  expression  patterns  and  the  better  understanding  of

important molecular pathways and biological processes.

4. NGS and the analysis of transcriptomic data

In the past decade, the classic Sanger sequencing has been substituted by

newer sequencing technologies, called next-generation sequencing (NGS) (Heather

and Chain, 2016). NGS comprises a set of strategies and methods that allows higher

throughput of data. These new sequencing platforms allow the sequencing of a whole

genome or transcriptome  (Marguerat and Bähler,  2010) in an unprecedented time

scale with reduced costs (Lister et al., 2009). Briefly, prior to sequencing, samples are

submitted  to  library  construction  where  the  input  DNA or  cDNA is  fragmented,

attached  to  primers  called  adapters  and  amplified  by  polymerase  chain  reaction

(PCR). The sequencing itself  occurs in millions of parallels reactions that result in

short length fragment called reads. The reads are then evaluated by quality, aligned

to a reference genome, and submitted to downstream analysis. The throughput of

data in the order of gigabases revolutionized bioinformatics and brought big data into

biology (Metzker, 2010).

The study of RNA biology and gene expression in large scale, called RNA-

Seq, has become one of the most popular NGS approaches to interrogate genes

expressed in a given context (Mortazavi et al., 2008). Specifically, the development of

differential expression (DE) tests allowed researches to evaluate the effect of different

interventions, e.g. diet, in the gene expression profile having a profound impact on

the way we understand biology (Huang et al., 2009; Zhang et al., 2014). The latest

advances in NGS have also brought sequencing at the individual cell level to reality.

Several  single-cell  sequencing  protocols  have  been  created  to  investigate  the

transcriptome of thousands of individual cells simultaneously  (Tang et al., 2009). In

combination, such technologies have revolutionized the exploration of cell diversity

and gene expression dynamics (Ofengeim et al., 2017). This dissertation leverages

theses powerful techniques to study Agrp neurons in the mouse brain. 
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JUSTIFICATION

Despite  the  knowledge  gathered  on  the  intracellular  functioning  of  Agrp

neurons, there is a need to understand how post-transcriptional regulation impacts

the transcriptome of these neurons upon food deprivation. Our hypothesis is that

such regulation is important for distinct levels of regulation of Agrp neurons. Studying

the translatome of these neurons can help us to better understand the activity of Agrp

neurons during periods of food deprivation. Understanding the differences between

the  transcriptome  and  the  translatome  of  Agrp  neurons  during  such  feeding

conditions can also be valuable for the scientific community, having in mind that this

feeding circuit plays a central in energy homeostasis and in obesity.
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AIMS

1. General Aim:

To analyze the transcriptome and the translatome of Agrp neurons upon food

deprivation.

2. Specific Aims:

2.1 To  evaluate  changes  in  genes  expressed  in  the  transcriptome  and

translatome of Agrp neurons during food deprivation.

2.2  To  characterize  pathways  relevant  for  Agrp  neurons  during  food

deprivation at the transcriptional and translational levels.

2.3  To identify  shared genes in  the transcriptome and translatome of  Agrp

neurons during food deprivation.
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MATERIALS AND METHODS

1 Data obtainment

For  this  study,  public  single-cell  RNA sequencing (sc-RNA-Seq)  data  were

used  to  investigate  the  transcriptome  of  single  Agrp  neurons.  Two  sc-RNA-Seq

datasets were chosen, both available on the NCBI Gene Expression Omnibus (GEO)

database. We used data generated in our laboratory to characterize the translatome

of Agrp neurons. A summary of all  samples used in this study is available in the

supplemental material (Table S1).

1.1  Transcriptome

The first  public dataset was provided by Campbell  (Campbell  et al.,  2017),

identified on GEO by the tag GSE93374. Using Drop-Seq, this study analyzed 20,921

cells from the hypothalamic arcuate–median eminence complex (Arc-ME). To do so,

53 adult (4-12 weeks old) virgin male and female mice with the C57BL6/J genetic

background were randomly assigned to the experimental groups. The experimental

conditions used were: control  (ad libitum chow-fed), 1-week low-fat diet (10%), 1-

week high-fat diet (60%), food deprivation (24h), food deprivation (24h) + 2h re-feed.

The groups were separated over 6 batches (one batch per day), the Arc-ME tissue

was microdissected, pooled by experimental condition and dissociated with a papain-

based  protocol,  having  each  batch  been  sequenced  separately.  Libraries  were

sequenced using  the  Illumina NextSeq500 platform.  The read 1  was 20 bp long

(bases 1–12 cell barcode (CB), bases 13–20 Unique Molecular Identifier (UMI)) and

the read 2 (paired-end) was 60 bp long. We have downloaded the sequencing files in

fastq  format  on  the  Single  Cell  Portal  (https://portals.broadinstitute.org/single_cell)

maintained by the Broad Institute.

The second dataset is comprised by the results of the investigation by Chen

(Chen et al.,  2017), GSE87544. Using Drop-Seq, they analyzed over 14,000 cells

from the arcuate tissue. A total of 7 Young adult female (8 - 10 weeks) B6D2F1 mice

(C57B6 female × DBA2 male) were used, 4 ad libitum fed control mice and 3 food-
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deprived (24h) mice. All the experiments were performed in 5 batches, each animal

was processed separately (cell dissociation, library preparation) and regarded as a

biological replicate. In order to get the arcuate tissue, coronal sections from Bregma -

0.22 to – 3.16 mm were cut and further sliced into 1 mm slices. Hypothalamic tissue

was then dissected from each slice and dissociated with a papain-based protocol.

Sequencing was performed in the Illumina Hiseq 2500 platform using the standard

read  construction  for  Drop-Seq  (Macosko  et  al.,  2015).  We  downloaded  the

sequencing data in the SRA format, available in the GEO database.

1.2 Translatome

In order to obtain the translatome of Agrp neurons, the RiboTag mouse was

used (Sanz et al., 2009). This mouse line carries a Rpl22 allele with a floxed wild-type

C-terminal  exon  followed  by  an  identical  C-terminal  exon  with  three  copies  of  a

hemagglutinin  (HA)  epitope  inserted  before  the  stop  codon.  When  the  RiboTag

mouse is crossed to a cell-type-specific Cre recombinase expressing mouse, the first

exon copy is excised and the ribosomal protein RPL22HA tagged with the HA epitope

is incorporated into actively translating polyribosomes. Using the RiboTag mouse and

an  Agrp-Cre  mouse,  we  can  recover  transcripts  of  Agrp  neurons  that  are  being

translated by active polyribosomes.

A total of 13 samples were used in this study, with 6 being control samples of

ad libitum diet and 7 food deprived samples (food deprivation for 16h). All animals

were 40-45 days old. The animals were kept in boxes (48x26cm), in a room with

stable temperature (22±1oC) and 12h light/dark cycle. Briefly, the ARC was dissected

and  homogenized  in  1  mL  buffer  solution  followed  by  the  immunoprecipitation

protocol utilizing 2 mL of anti-HA antibodies and 4-hour incubation. Then, 200 μL ofL of

magnetic beads were added to the mixture for a 2-hour incubation. The mixture was

washed 3 times in a high-salinity solution, using a magnetic plate. The bead-antibody

relation  was  dismantled  and  the  supernatant  was  collected  for  mRNA extraction

utilizing the RNeasy Micro Plus kit (Qiagen). Before the immunoprecipitation protocol,

a 25 μL ofL aliquot of the whole ARC tissue was taken as an immunoprecipitation control

and  called  “Input  sample”.  The  immunoprecipitated  samples  were  called  “IP
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samples”. Both samples were sequenced in the Yale Center for Genome Analysis

(YCGA) in the Illumina HiSeq 2500 platform, with a length of 75bp and 40 million

reads per sample in a single-end design.

2 Transcriptome data analysis

2.1 Single-cell data pre-processing

2.1.1 Fastq file extraction

We  used  the  fastq-dump function  from SRA  Toolkit  (available  at

https://www.ncbi.nlm.nih.gov/sra/docs/) to convert SRA to fastq files.

2.1.2 Sequencing quality analysis

We  used  the  FastQC  software  (Version  0.11.7)

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to assess the sequencing

quality data prior to any data processing.

2.1.3 Read editing

In  order  to  start  the data processing,  we generated a list  of  accepted cell

barcodes (CB) using all barcodes available in the gene expression tables available as

supplemental  material  for  both  studies. Next, we  extracted  the  CBs+Unique

Molecular Identifiers (UMI) from the read 1 files and added them to the read names of

the read 2 files using the  Umi-tools extract function (Version 0.5.5) (Smith et  al.,

2017). We also filtered out reads which CB did not match with the accepted CB list

created in the previous step. To do so, we used the argument -- filter-cell-barcode and

provided the CB list to the --whitelist argument. The output of this step was a read 2

file with the actual gene sequence and the CB+UMI sequence at the read names.

This file was ready to be mapped.
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2.2 Single-cell data processing

2.2.1 Reference genome

We used the  Mus musculus genome assembly GRCm38.p6. The reference

FASTA and  GTF  files  were  obtained  from Ensembl  release  95,  available  in  the

repository  (ftp://ftp.ensembl.org/pub/release-95/).  The  FASTA  file  contains  the

genome reference sequences without alternate contigs while the GTF file contains

the annotated transcripts in the GTF format.

2.2.2 Genome indexing

For the purpose of optimizing the alignment processing, we built an indexed

reference genome. To do so, we used the STAR tool  (Version 2.6.0)  (Dobin et al.,

2013) with the --runMode genomeGenerate argument, setting --sjdbOverhang to 59.

2.2.3 Read alignment

We aligned the files using  the STAR (Version 2.6.0) software using standard

parameters. We did not allow for multi-mapping reads. The output of this step was a

file in the BAM format (Li et al., 2009).

2.2.4  Alignment quality

We evaluated the quality of the read alignment as a checkpoint step, using the

Piccard tool  (Version  2.18.17) (http://broadinstitute.github.io/picard).  We  used  the

CollectAlignmentSummaryMetrics argument,  which  takes  a  BAM  file  input  and

produces a summary of alignment metrics detailing the quality of the read alignments.
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2.2.5 Assignment of reads to genes

After aligning the reads to the genome, it was necessary to identify the gene

identity of each read. We used the featuresCounts tool (Version 1.6.3)  (Liao et al.,

2014) from the Subread package to assign aligned reads to genes. We sorted the

output BAM file and indexed it using Samtools (Version 1.6) (Li et al., 2009).

2.2.6 Estimative of gene expression

After all  the previous steps, we were able to obtain the number of  distinct

UMIs. To do that, we used the Umi-tools count function (Smith et al., 2017). We set

the arguments  --per-gene and  --per-cell to get the number of distinct UMIs in each

gene and in each cell, respectively. We used the gene tag and assignment status tag

provided by featureCounts to count the number of UMI assigned to each gene. The

output of this step was a count table with the number of UMIs per gene (rows) in each

cell (columns).

2.2.7 Additional quality controls

I. Cell quality control

After generating the UMI count lists for both datasets,  we moved to the R

platform, where we performed additional quality controls and further data analysis.

We performed two quality controls at the cell level: the gene counts and library size.

We filtered cells by the expressed gene count. As a general threshold, we removed

cells with total gene count below 800. After  the  previous  filtering,  we  tested  the

need to also filter cells by library size (total sum of raw counts across the genes). To

do so, we  assessed the presence of outliers: cells with log library-size with 3 median

absolute deviations (MADs) below the respective library-size median values.

II. Cell-cycle effect correction
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We assessed the impact of cell phases in our datasets using the Cyclone tool

from the  Scran package (Version  1.6.9)  (Lun et  al.,  2016) in  order  to  determine

whether additional corrections were necessary to compensate for variability in gene

expression due to distinct cell phases.

III. Removal of low-abundance genes

Low-abundance genes can be as problematic as zero counts since they are

not reliable for statistical  inferences and also increase the computational demand.

Therefore, we removed genes with an average raw count value below a threshold of

0.07323569, which was the lowest average value for the Agrp gene (Chen dataset).

IV. Normalization

We normalized the data in order to correct for distinct capture efficiency and

sequence  depth  between  cells.  We  used  the  Scran  (Lun  et  al.,  2016) functions

Quickcluster,  ComputeSumfactors and  Normalize to  calculate  the  sum factors  to

each library and then normalize the data.

V. Control for confounding factors: MNN correction 

In RNA-Seq data,  part  of  the  variability  in gene expression can be due to

technical  factors.  Such  factors  influencing  the  gene  expression  are  called  batch

effects and their removal is an essential step in gene expression studies. Since we

used two different datasets, each composed by independent biological samples in

different diets,  the batch correction was performed using both datasets through a

method that allows us not only to correct for technical effects but also to make the

distinct samples within each dataset comparable. For that purpose, the mnnCorrect

function in the Scran package was used and, as a software requirement, the samples

were subset to keep only the genes present in all of them. Such function uses the

Mutual  Nearest  Neighbors (MNN) method  (Haghverdi  et  al.,  2018) to  identify  the

14



shared cell populations between two or more batches and to correct the expression

of all cells. 

2.3 Downstream analysis

2.3.1 Clustering

In order to identify the groups of similar cells, specially cells from the same

cells types across the samples in both datasets, we clustered the batch corrected

expression values of all cells using the buildSNNgraph function of the Scran package

(Lun et al., 2016). This method builds a shared nearest-neighbor graph using cells as

nodes  and  the  neighbors  are  identified  based  on  Euclidean  distances  in  their

expression profiles.

2.3.2 Dimensionality reduction

To visualize the data, we plotted a t-distributed stochastic neighbor embedding

(t-SNE) plot on the MNN-corrected data. This is a technique suitable for reducing

high-dimensional  data  for  visualization  in  the  low-dimensional  space  of  two

dimensions  (VAN DER MAATEN et al.,  2008).  We colored the cells in the t-SNE

according to the groups they were assigned to in the previous step.

2.3.3 Agrp cells identification

In order to identify the Agrp neuron cells present in both datasets, we colored

the cells in the t-SNEs according to their corrected expression values for the  Agrp

and Npy gene markers, respectively. We then identified the clusters that had MNN-

corrected  expression  values  >  0.05  for  both  gene  markers.  We  selected  those

clusters based on their position in the t-SNE  and on their cluster identity label. We

subset the cells in those clusters, obtaining Agrp neuronal cells from both single-cell

datasets.
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The Campbell’s dataset had more cells then Chen’s dataset. Therefore, we

expected its number of Agrp cells to be higher. We identified cells that had raw counts

> 0 for  Agrp and  Npy  in this dataset. We considered those cells as Agrp and they

were merged with the ones subset from the clusters, resulting in a greater Agrp cell

dataset. The totatality of Agrp cells identified were subset to keep only their shared

genes  and  then  the  cells  were  used  for  the  transcriptome  obtainment  and

downstream analysis.

2.3.4 Batch correction for differential expression

In order to test the possibility of correcting for technical variability in the data to

perform differential expression, we plotted a principal component analysis (PCA) to

observe sample similarity. We observed the amount of variability explained by each

variable utilizing the  plotExplanatoryVariables function (Scater 1.10.1)  (McCarthy et

al., 2017). We also used the svaseq function (Sva 3.30.1) (Leek, 2014) to try to find

possibly hidden variables accounting for batch effects. 

2.3.5 Gene enrichment in food deprivation

We  merged  all  Agrp  cells  identified  previously  in  an  unique

SingleCellExperiment  R  object.  We  filtered  this  object  in  order  to  remove  lowly

expressed genes, keeping the ones that had at least 5 counts in at least 5 cells. We

then  transformed  the  raw  counts  into  counts  per  million  (CPM)  using  the  CPM

function  from the  SingleCellExperiment  package  (Version  1.4.1)  (Lun  and  Risso,

2019). We calculated the average CPM gene expression in the Agrp cells by feeding

condition and, based on it, we calculated the gene enrichment upon food deprivation

by dividing the Food Deprived (FD) average count by the Fed average count.

FDEnrichment=mean(CPM )Food Deprived /mean(CPM)Fed

2.3.6 Transcriptome definition
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We used the results of the gene enrichment described above in order to define

the transcriptome. We applied a threshold to select genes that were impacted by food

deprivation. We selected genes with enrichment value lower than 0.5 or higher than

1.105. This threshold allowed us to select genes that had a decrease of 50% in their

count values upon food deprivation or had an increase equal/higher than the  Npy

marker  enrichment  which  was  1.105.  The  resulting  genes  were  considered  the

transcriptome of Agrp neurons upon food deprivation.

2.3.7 Transcriptome functional characterization

We  performed  gene  enrichment  analysis  utilizing  the  Ingenuity  Pathway

Analysis (IPA)  software  (Version  v.01-14)  (QIAGEN  Inc.,

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis) to obtain

enriched pathways and the String tool  (Version 11)  (https://string-db.org/),  without

adding gene interactions, to obtain enriched gene ontology terms (Chen et al., 2013;

Kuleshov et al., 2016).

3 Translatome data analysis

3.1 RiboTag data pre-processing

3.1.1 Sequencing quality analysis

We analyzed the sequencing quality through the FastQC software, using the

same considerations aforementioned for the single-cell data analysis (item 2.2).

3.2 RiboTag data processing

3.2.1 Read alignment
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We used the STAR software (Version 2.6.0) to perform gene alignment, using

a genome index built with the same reference files used for the single-cell data and

customized to the RNA-Seq read length (item 3.1).

3.2.2 Estimate gene expression

We used the HTSeq Software (Version 0.11.1) (Anders et al., 2015) to count

the reads aligned to each gene and at this step, a count table was outputted.

3.2.3 Assessment of Agrp neuron ribosome immunoprecipitation

In order to verify the success of the Agrp ribosome  immunoprecipitation, we

analyzed the enrichment of the raw counts for the Agrp and Npy gene markers in the

IP data in relation to the Input data. This analysis worked as a positive control. We

analyzed the enrichment of marker genes for other cell types: Astrocyte, endothelial,

microglia, neuron and oligodendrocyte. This analysis worked as negative control. The

marker genes for such cell types were obtained from PanglaoDB database (Franzén

et al., 2019).

Enrichment IP=raw counts IP /rawcounts Input

3.3 Downstream analysis

3.3.1 Differential expression: Fed vs FD

The HTSeq output expression table was used as input in R, to perform gene

differential expression using the DESeq2 package (Version 3.8) (Love et al., 2014).

Our design formula allowed us to compare food deprivation against fed condition.
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Design= Seq . Round+Condition

3.3.2 Translatome definition

We used the results of the differential expression and identified the genes that

were more impacted by the food deprivation based on the False Discovery Rate

(FDR) and Log2 Fold Change (LFC). We selected only the genes that had an FDR <

0.05 and LFC > 0.5 or LFC < -0.5.  The resulting genes were considered as the

translatome of the  Agrp neurons upon food deprivation.

3.3.3 Translatome functional characterization

We characterized the translatome using the same approach we used in the

transcriptome: analyzing the enriched pathways and Gene Ontology terms via the

IPA software and String tool, respectively.

4 Transcriptome vs translatome

We compared the transcriptome of food-deprived Agrp neurons against the

translatome  of  food-deprived  Agrp  neurons  in  order  to  verify  the  gene  similarity

between  both  sets.  We  described  each  gene  shared  by  the  transcriptome  and

translatome using the String database. We also analyzed their related GO terms and

pathways using String and IPA tools respectively.
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RESULTS

1 Transcriptome results

1.1 Single-cell data pre-processing results

1.1.1 Sequencing quality analysis

The sequencing quality analyses demonstrated that both datasets have good

quality and therefore no additional trimming was necessary, as we can see in Figure

1.

1.2 Single-cell data processing results

1.2.1 Read alignment

The  STAR read alignment results were satisfactory for both datasets as we

can see in the amount of uniquely mapped reads in relation to the total amount of

reads (Figure 2). We checked the alignment quality using the  Piccard tool metrics

and they were satisfactory for both datasets as well.
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A)              B)

Figure 1: A) Per base sequence quality of the Fed 1 sample (Campbell dataset) B) Per base sequence quality of 

Fasted 4 sample (Chen dataset).
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A)

             
B)

Figure 2: A) Histogram of raw read count used as input to STAR and uniquely mapped reads 
across the samples for the Campbell dataset. B) Histogram of raw read count used as input 
to STAR and uniquely mapped reads across the samples for the Chen dataset.



1.2.2 Assign reads to genes 

We used the  featureCounts tool to assign our mapped reads to genes. The

samples had a satisfactory  number of  assigned reads (Figure 3).  We then used

these results for the following read-counting steps.
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A)



1.2.3 Estimate gene expression

We obtained the UMI count per-cell and per-gene using the  Umi-tools count

function. In this step, reads without a gene-assignment tag were not counted and

duplicated reads were removed. Although the number of reads counted seem to be

low (Figure 4), it was expected since duplicated reads are common in single-cell data

under  the  Drop-Seq  protocol.  The  raw  expression  tables  per-gene  and  per-cell

generated at this step were used for further quality controls.
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B)

Figure 3: A) Histogram on the input and successfully assigned read count across the samples in the 

Campbell dataset. B) Histogram on the input and successfully assigned read count across the 

samples in the Chen dataset.
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A)       

B)

Figure 4: A) Histogram on the total number of reads inputed in Umi-tools count and the final 
number of counted reads across samples of the Campbell dataset. B) Histogram on the total 
number of reads inputed in Umi-tools count and the final number of counted reads across 
samples of the Chen dataset.



1.2.4 Additional quality controls

A) Cell quality control

We first observed the distribution of the the values for the library-size and the

number of expressed genes in our raw data. We can see in the histograms (Figure 5)

the high presence of zero values, which indicates a high number of cells with zero

gene count and a high number of cells with zero expressed genes. This type of cell is

not informative and therefore need to be removed. This finding was consistent in all

samples for both datasets.
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A)       
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B)       
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We looked on the distribution of the same metrics and its improvement after

applying a filter to remove cells with gene count below 800 (Figure 6). This result

was consistent  across all  the samples in  both datasets.  The filter  applied on the

number of expressed genes was enough to improve the distribution of the library-size

across the samples and therefore no specific filter was necessary.
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D)       

Figure 5: A) Histogram on the library-size for the Fed 1 sample (Campbell dataset) B) Histogram on 

the number of expressed genes for the Fed 1 sample (Campbell dataset) C) Histogram on the library-

size for the Fasted 4 sample (Chen dataset) D) Histogram on the number of expressed genes for the 

Fasted 4 sample (Chen dataset).
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A)                 

 B)
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C)                 

 D)

Figure 6:  Plots after the filtering for number of expressed genes. A) Histogram on the library-

size for the Fed 1 sample (Campbell) B) Histogram on the number of expressed genes for the 

Fed 1 sample (Campbell) C) Histogram on the library-size for the Fasted 4 sample (Chen) D) 

Histogram on the number of expressed genes for the Fasted 4 sample (Chen). 



B) Cell-cycle effect correction

The cell-cycle assignment in our analyzed samples indicated that most of the

cells are in the G1 phase (Figure 7). It is important to have in mind that most of the

tools currently available aim to classify the cells in one of the cell-cycle phases, which

is not suitable for post-mitotic cells that do not belong in any of its phases. That could

be the case of many neuron cell-types, where the classification would be irrelevant.

Also,  the  cell-cycle  effect  would  be  relatively  subtle  compared  to  the  differences

between the cell  types in our samples. Therefore, we decided not to perform any

additional correction.

30

Figure 7: Cell-cycle assignment plot for the Fed 1 sample (Campbell) using the Cyclone 

tool. Each point represents a cell. Cells in the G1 phase have G1 score higher than 0.5 

and G2/M score lower than the G1 one. The majority of the cells were assigned to the G1 

phase.



C) Normalization

In  order  to  access the  normalization  quality,  we plotted  the  relation  of  the

library-size with the size-factors for each sample. Since we pool counts to improve

the size-factor estimation, we would expect a tight relation of library-size and size-

factor  (Figure  8),  which  was  found  in  all  samples  analyzed  in  both  datasets.

Therefore, the normalization processes succeed. 
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A)

B)

Figure 8: A) Correlation of the library-size and size factor for the Fed 1 sample 
(Campbell). B) Correlation of the library-size and size factor for the Fasted 4 sample 
(Chen).



D) Correction via MNN

The cells from both Chen and Campbell’s dataset were used as input for the

MNNCorrect function in order to perform the batch correction. The number of genes

used was 6079, the ones present in all cells. The output of this step was the same

number of cells and genes that were inputted but with corrected values accounting for

technical variables.

1.3 Single-cell data downstream analysis results

1.3.1 Clustering

We performed the clustering analysis in the log counts of the raw data and in

the batch corrected data. In the raw data, 46 clusters were identified while in the

batch corrected data 96 clusters were identified.

1.3.2 Dimensionality reduction

In order to visualize the data, we plotted a t-SNE colored according to the

identified clusters. The t-SNEs for the raw and batch-corrected data can be visualized

in Figure 9 and Figure 10.
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Figure 9: T-SNE plot of the normalized data, colored according to the clusters.



1.3.3 Agrp identification

In order to identify the Agrp cells, we plotted the t-SNE of the batch corrected

data, coloring the cells according to corrected expression value for both  Agrp and

Npy genes. We visually identified 6 clusters that had corrected expression higher

than 0.05 for both genes. We attributed a cell type label identifying all cells in such

clusters as Agrp neurons (Figure 11) and they totalized 1000 cells. The identification

of Agrp cells in the Campbell dataset based on the raw counts resulted in 1110 cells.

The Agrp neurons identified with these two approaches resulted in 1191 cells.
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Figure 10: T-SNE plot of the MNN-corrected data, colored according to the clusters.



1.3.4 Batch correction for differential expression

The PCA on the data (Figure S2) showed that the origin of the dataset and the

feeding condition were not responsible for the differences in the data. The results of

the  plotExplanatoryVariables function  showed  that  the  sub-batch  variable,  which

describes how the batches were structured within each dataset, explains the highest

amount of variation, even though it is considerably small (Figure S3). Observing such

findings, we imagined that this variability could be caused by a hidden batch effect.

However, the results of the svaseq function demonstrated that more than 20 variables

could explain the variability in the data. Therefore, it was not possible to correct for

the  technical  variation  and  perform  differential  expression.  We  performed  gene

enrichment as an alternative strategy.
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A)                 B)

Figure 11: T-SNE plots on the MNN corrected data. The cells are colored according to the expression of 

a gene marker: A) Agrp B) Npy. The warmer the color, the higher the expression value of the given 

gene.



1.3.5  Gene enrichment: food deprivation

The filtering for lowly expressed genes in all Agrp cells resulted in a total of

2591  genes.  The  distribution  of  the  enrichment  values  for  such  genes  can  be

visualized in the histogram in Figure 12. We can observe that the majority of the

genes are distributed for enrichment values between 0.5 and 1.104988.

1.3.6 Transcriptome definition

The threshold applied to select the genes most impacted by food deprivation

resulted in 1005 genes. Those genes were considered as the transcriptome of Agrp

neurons upon food deprivation and were used for further downstream analyses.
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Figure 12: Histogram on the enrichment value upon FD in 2591 genes in the Agrp cells.



1.3.7 Transcriptome functional characterization

The gene ontology enrichment analysis in String associated the transcriptome

of Agrp neurons to several process. We analyzed the ones which -log10(FDR) > 2,

that is equivalent to a False Discovery Rate < 0.01. Then, we filtered all GO terms

according to their  hierarchy to obtain the most  relevant terms.  The most relevant

biological  processes  associated  to  the  transcriptome of  Agrp  neurons  upon  food

deprivation  can  be  seen  in  Figure  13.  We  observed  a  prevalence  of  processes

associated to  neuronal  function, specially  synapses and their  regulation.  We also

observed  processes  associated  to  vesicle  exocytosis  and  endoplasmic  reticulum

regulation.

For the pathway analysis, we also filtered the processes using a threshold of -

log10(FDR) > 2. We noticed the presence of pathways related to synaptic signaling,

synaptic  regulation and protein  metabolism;  similar  to  what  we have seen in  the

biological  processes  analysis.  The  pathways  associated  to  the  Agrp  neuron

transcriptome upon food deprivation can be visualized in the bar plot in Figure 14.
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Figure 13: Bar plot on the main biological processes associated to the transcriptome in String.



2 Translatome results

2.1 RiboTag data pre-processing results

2.1.1 Sequencing quality analysis

The  sequencing  of  the  samples  generated  under  the  RiboTag  technique

presented a good quality, which can be seen in the per base sequence quality plot for

one of the samples (Figure 15). Importantly, similar quality result was observed for all
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Figure 14: Bar plot on the pathways associated to the transcriptome upon food deprivation in IPA.



samples used in this study. Since the metrics for sequencing quality indicated the

sequencing was good enough in our samples, no base trimming was performed.

2.2 RiboTag data processing results

2.2.1 Alignment results

The  alignment  results  were  satisfactory  for  all  the  samples,  with  high

proportions of uniquely mapped reads, as observed in Figure 16. It was valid for the

input samples as well (Figure S1). The BAM file generated at this step was used for

the counting step, which generated the expression tables used in the downstream

analysis.
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Figure 15: Per base sequence quality plot performed with FastQC for the Fed 4 sample.



2.2.2 Assessment of Agrp neuron ribosome immunoprecipitation

We observed in our negative control that the enrichment values for markers of

distinct  cell  types  present  in  the  ARC  was  very  low. This  shows  that  the

immunoprecipitation protocol  was able to deplete transcripts from cells other than

Agrp neurons (Figure 17). The positive control demonstrated that we were able to

select the Agrp neuronal transcripts, since there is an enrichment of more than 100-

fold in  Agrp and  Npy markers in the IP data (Figure 18).  Based on these control

experiments,  the data correspond to a highly enriched pool  of  actively translating

transcripts from Agrp neurons.
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Figure 16: Histogram on the amount of input and uniquely mapped reads across all the IP 

samples generated under the RiboTag technique.
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Figure 17: Negative control: Violin plot for the enrichment values of different cell-type gene 

markers.

Figure 18: Positive control: Violin plot for the enrichment values of the Agrp and Npy gene 
markers.



2.3 RiboTag data downstream results

2.3.1 Differential expression: Fed vs FD

The expression data was successfully fitted to the generalized linear model

used by the algorithm of  DESeq2. This can be verified in the plot of the dispersion

estimates in Figure 19.

The differential expression of Fed against Food Deprived generated a list of

1022 DE genes. We can see that the majority of the DE genes presented a log fold

change varying from -4 to +4 (Figure 20).
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Figure 19:  DESeq2 dispersion plot indicating that the dispersion decreases according to the mean of 
normalized counts increase, as expected. We can also observe that the model fit trend, the red curve, 
suits the data.



2.3.2 Translatome definition

The filter applied on the DE list, based on FDR and LFC, resulted in a total of

529 genes. Such genes were considered the translatome of Agrp neurons upon food

deprivation.

2.3.3 Translatome functional characterization

The gene ontology enrichment analysis in  String associated the translatome

upon food deprivation of Agrp neurons to several process. We filtered them using -

log10(FDR)  >  2  here  as  well.  Then,  we  filtered  all  GO terms according  to  their

hierarchy to obtain the most relevant terms. The most relevant biological processes

associated to the translatome of Agrp neurons upon food deprivation can be seen in

Figure 21.
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Figure 20: Mean of normalized counts vs log fold change. Each point stands for a gene, points in 
red represent significant DE genes (adjPvalue < 0.05).



We  observed  the  presence  of  processes  associated  to  gene  expression

regulation  related  to  the  biological  clock  and  also  processes  associated  to

metabolism and endoplasmic reticulum protein folding. For the pathway analysis, we

used the threshold of -log(FDR) = 2. We noticed the presence of pathways related to

protein folding and gene regulation by the circadian clock, just like observed in the

biological  processes.  We  observed  some  general  processes  associated  to

metabolism and signaling. The pathways associated to the Agrp neuron translatome

upon food deprivation can be visualized in the bar plot in Figure 22.
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Figure 21: Bar plot on the main biological processes associated to the translatome in String.
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Figure 22: Bar plot on the pathways associated to the translatome upon food deprivation in IPA.



3 Transcriptome vs translatome

We compared the transcriptome and translatome of Agrp neurons via a Venn

diagram (Figure 23) to see how many genes are shared by them. We observed that

from  the  1005  genes  in  the  transcriptome,  946  are  exclusive  from  it.  In  the

translatome, in which we identified 529 genes, 470 genes are exclusive from it. 59

genes are  shared between transcriptome and translatome,  they are  described in

Table S2 according to the  String database. We analyzed the shared genes using

String in order to see the type of biological process they are associated to. We filtered

them  using  -log10(FDR)  >  2.  Then,  we  filtered  all  GO  terms  according  to  their

hierarchy to obtain the most relevant terms. The most relevant biological processes

associated  to  the  genes  shared  by  the  transcriptome  and  translatome  of  Agrp

neurons upon food deprivation can be seen in Figure 24. We observed the presence

of  many  processes  associated  to  endoplasmic  reticulum  regulations,  specially

associated to  cellular  stress.  We performed a pathway analysis  in  IPA using the

threshold of -log(FDR) = 2. The results are available in Figure 25. We can note the

presence of processes already seen in the biological processes: the ones associated

to the endoplasmic reticulum and stress. 

 

46

Figure 23: Venn diagram showing the differences in the genes that were found in the Transcriptome 

and Translatome.



We see the presence of leptin and other signaling pathways as well.
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Figure 24: Bar plot on the main biological processes associated to the shared genes between transcriptome 
and translatome in String.
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Figure 25: Bar plot on the pathways associated to the shared genes between transcriptome and 

translatome upon food deprivation in IPA.



DISCUSSION

In this work, we have analyzed the transcriptional and translational profile of

Agrp neurons utilizing both public datasets of sc-RNA-Seq and the RiboTag strategy

coupled with RNA-Seq. We designed a processing pipeline suitable to analyze and

identify genes and pathways functionally relevant for Agrp neurons in a scenario of

food deprivation at the transcriptome and translatome levels. The results obtained

after the data processing were enough to answer the general and the three specific

goals we have initially proposed.

Our first aim (specific aim 2.1) was to evaluate changes in genes expressed in

the transcriptome and translatome of Agrp neurons during food deprivation. For the

transcriptome, we found a total of 1005 genes impacted by food deprivation (Figure

12). The majority of them changed within a magnitude of 0.5 to 1.5 with maximum

values of increase around 3. For the translatome, we found a total  of 529 genes

(Figure 20)  that  changed their  expression  within  the  range of  LFC -4 to  4,  with

majority ranging from -2 to 2. 

Our  second  aim (specific  aim 2.2)  regarded  the  identification  of  pathways

relevant  upon  food  deprivation  at  the  transcriptome  and  translatome  levels.  The

pathways identified in the transcriptome (Figure 13 and 14) and in the translatome

(Figure 21 and 22) revealed a slight distinction of both levels. In the transcriptome,

the most relevant pathways were associated to synaptogenesis, neuroinflammation,

long-term  synaptic  regulation  and  glutamate  signaling.  Synaptic  plasticity  in  the

hypothalamus (Frankfurt et al., 1990), and in the Agrp neurons specifically, has been

described (Dietrich and Horvath, 2013). Literature findings indicate that a negative

energy balance is capable of inducing an increase in the excitatory synaptic inputs to

Agrp neurons (Yang et al., 2011) and an increase in the number of dendritic spines in

Agrp neurons  (Liu et al., 2012), demonstrating the importance of the glutamatergic

signaling and synaptic plasticity induced by food deprivation in these neurons (Liu et

al.,  2012).  These  findings  correlate  with  our  transcriptome  results  where  several

processes for synapse regulation and glutamatergic signaling were observed. In the

translatome,  we  observed  a  prevalence  of  pathways  and  biological  processes

associated to endoplasmic reticulum (ER) stress, leptin signaling and regulation of
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circadian rhythms. Our translatome results correlated with findings in literature that

have shown the relationship of food deprivation and neuroendocrine signaling with

circadian  clock  regulation  (Bechtold  and  Loudon,  2013); the  connection  of  the

circadian clock with energy levels via cAMP signaling (Lee and Kim, 2013) and, more

recently, the association of circadian clock and Agrp neuron regulation of the feeding

behavior  (Cedernaes et al., 2019; Chen, 2019). Interestingly, there are evidence in

the literature showing that stress (i.e. food deprivation) can lead to protein unfolding

and ER stress, as well as a connection between both ER stress and leptin signaling

pathways  (Ramírez  and  Claret,  2015).  In  line  with  these  findings,  it  has  been

demonstrated  that  ER  stress  in  the  hypothalamus  of  lean  mice  leads  to  leptin

resistance and increase in the Agrp/Npy levels (Ozcan et al., 2009).

Our third aim (specific aim 2.3) was to identify possible genes shared by the

transcriptome and translatome of Agrp neurons during food deprivation. We have

described 59 genes (Table S2) and analyzed their biological roles. We observed that

the  majority  of  them relate  to  ER  stress  (protein  unfolding  response)  and  leptin

signaling. Together with the findings described for aim 2.2, it is feasible to believe that

food deprivation impacts the sensibility to leptin in Agrp neurons at both transcriptome

and translatome levels, since protein unfolding process is identified in both instances

and genes involved in leptin signaling were identified at the translatome and shared

transcriptome-translatome levels.

Importantly, challenges in the data processing of sc-RNA-Seq datasets were

found and we proposed alternative strategies to analyze the transcriptome of Agrp

neurons at the single cell level. First, datasets created using the Drop-Seq protocol

are ideal for identification of cell-type diversity at the cost of yield of mRNA captured

per cell (Dal Molin and Di Camillo, 2018). Considering that both sc-RNA-Seq datasets

used  the  ARC  as  input  for  tissue  dissociation  and  the  size  of  Agrp  neuronal

population in the ARC, we obtained a limited number of single Agrp neurons for the

transcriptome  definition.  Nevertheless,  we  took  advantage  of  the  MNN  method

(Haghverdi et al., 2018) to identify Agrp neurons shared between the two analyzed

datasets in order to maximize the number of single neurons analyzed in this study.

Second, we were unable to perform a differential expression test in the isolated set of

Agrp neurons in the transcriptome data. Upon characterization of the variables driving
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the expression variability of our data (Figure S1), neither the origin of the dataset nor

the feeding condition were sufficient  to  explain the differences observed between

cells. In differential expression tests, the desired biological variable needs to drive the

variability present in the dataset. When this is not the case, it is important to account

for a possible technical variable (also called batch effect), known or unknown, that

might be driving the variability of the dataset. Once the  origin dataset variable was

not sufficient to explain the technical variability of our data, we sought to investigate

hidden batch effects with the Scater R package (Figure S2) and the SVA package.

However, both methods were not able to identify a variable responsible for driving the

observed batch effect and we decided to perform an enrichment-based strategy to

identify genes affected by food deprivation in the transcriptome.

Altogether, our observations of the transcriptional and translational profile of

Agrp neurons could indicate that these cells efficiently respond to a negative energy

balance caused by food deprivation at both transcriptome and translatome levels.

The transcriptome would lead to a response to the lack of food via an increase in the

formation  of  synapse  inputs,  in  a  way  to  facilitate  and  sustain  Agrp  neuronal

activation. On the other hand, the translatome would lead to direct changes at the

protein level in genes known to regulate cellular stress and also in circadian clock

regulation and its downstream genes, i.e. transcription factors associated to synaptic

plasticity  (Hannou et al.,  2018). These distinct changes in Agrp neurons would be

important to regulate the organism’s response  to food deprivation.
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CONCLUSIONS

We  have  successfully  processed  Drop-Seq  and  RiboTag  data  and

characterized  the  transcriptome  and  translatome  of  Agrp  neurons  upon  food

deprivation. A clear separation of biological processes and pathways to each level

(Transcription/Translation) was observed, whereas specific processes at both levels

were  also  present.  We  observed  the  prevalence  of  synaptic  plasticity  changes

associated  to  the  transcriptome and the  prevalence of  circadian clock  processes

associated  to  the  translatome.  The  genes  shared  by  the  transcriptome  and

translatome were associated to ER stress and leptin response.  For future analysis, it

would be important to solve the data variability issue in a way that DE analysis could

be performed.
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SUPPLEMENTAL MATERIAL
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Figure S1: Histogram on the amount of input and uniquely mapped reads across all the Input samples 

generated under the RiboTag technique.

Figure S2: PCA on the raw data after variance stabilizing transformation showing that there is no 

clear separation of the cells according to their origin datasets or feeding conditions.
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Figure S3: Plot showing the variables that explain the variability in the data, created with the 

plotExplanatoryVariables function (Scater 1.10.1) in R. The plot shows that although the Batch inside each 

dataset (Batch_sub) is the variable that explains most of the variance, a very small percentage of the variability is 

explained by the described variable. This means that there is a hidden batch effect we were not able to find.



Table S1: List of all samples used by dataset and protocol.

Sample Condition
Sample Accession 
Number (GSM)

Study 
Accession 
Number 
(GSE)

Dataset
RNA-Seq 
Protocol

Fed1

Fed 
(ad libtum)

Not public Not public Dietrich Lab
RiboTag+ RNA-
Seq

Fed2
Fed3
Fed4
Fed5
Fed6
Fed1_Input
Fed2_Input
Fed3_Input
Fed4_Input
Fed5_Input
Fed6_Input
Fasted1

Food deprivation 
(16h)

Fasted2
Fasted3
Fasted4
Fasted5
Fasted6
Fasted1_Input
Fasted2_Input
Fasted3_Input
Fasted4_Input
Fasted5_Input
Fasted6_Input
Fed1

Fed 
(ad libtum)

GSM2452122

GSE93374 Campbell
Single-Cell (Drop-

Seq)

Fed2 GSM2452123
Fed3 GSM2452124
Fed4 GSM2452129
Fed5 GSM2452131
Fasted1

Food deprivation 
(24h)

GSM2452127
Fasted2 GSM2452130

Fasted3 GSM2452132

Fed6

Fed 
(ad libtum)

GSM2333583

GSM2333584

GSM2333585

GSE87544 Chen
Single-Cell (Drop-

Seq)

Fed7
GSM2333586

GSM2333587

Fed8
GSM2333591

GSM2333592

Fasted4

Food deprivation 
(24h)

GSM2333579 
GSM2333580 
GSM2333581 
GSM2333582 

Fasted5

GSM2333588

GSM2333589

GSM2333590

Fasted6 GSM2333593
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Table S2: Description based on the String database of the 59 genes shared by the transcriptome and

translatome.

Gene Name Term Description

Hlf Hepatic leukemia factor; Belongs to the bZIP family. PAR subfamily (295 aa)

Agrp

Agouti-related protein; Plays a role in weight homeostasis. Involved in the control of 
feeding behavior through the central melanocortin system. Acts as alpha melanocyte-
stimulating hormone antagonist by inhibiting cAMP production mediated by stimulation 
of melanocortin receptors within the hypothalamus and adrenal gland. Has very low 
activity with MC5R. Is an inverse agonist for MC3R and MC4R being able to suppress 
their constitutive activity (By similarity). It promotes MC3R and MC4R endocytosis in an 
arrestin-dependent manner (By similarity) (131 aa)

Dnajb9
DnaJ homolog subfamily B member 9; Involved in endoplasmic reticulum-associated 
degradation (ERAD) of misfolded proteins. Acts as a co-chaperone with an Hsp70 
protein (222 aa)

N4bp2l1 NEDD4 binding protein 2-like 1 (238 aa)

Hist1h2bc Histone cluster 1, H2bc (126 aa)

Btg2

Protein BTG2; Anti-proliferative protein; the function is mediated by association with 
deadenylase subunits of the CCR4-NOT complex. Activates mRNA deadenylation in a 
CNOT6 and CNOT7-dependent manner. In vitro can inhibit deadenylase activity of 
CNOT7 and CNOT8. Involved in cell cycle regulation. Could be involved in the growth 
arrest and differentiation of the neuronal precursors. Modulates transcription regulation 
mediated by ESR1. Involved in mitochondrial depolarization and neurite outgrowth (By 
similarity); Belongs to the BTG family (158 aa)

Slc35b1
Solute carrier family 35 member B1; Probable sugar transporter; Belongs to the 
nucleotide-sugar transporter family. SLC35B subfamily (322 aa)

Fos

Proto-oncogene c-Fos; Nuclear phosphoprotein which forms a tight but non- covalently 
linked complex with the JUN/AP-1 transcription factor. On TGF-beta activation, forms a 
multimeric SMAD3/SMAD4/JUN/FOS complex, at the AP1/SMAD-binding site to 
regulate TGF-beta- mediated signaling (By similarity). Has a critical function in 
regulating the development of cells destined to form and maintain the skeleton. It is 
thought to have an important role in signal transduction, cell proliferation and 
differentiation. In growing cells, activates phospholipid synthesis, possibly by activating 
CDS1 an [...] (380 aa)

Pcsk1

Serine/threonine-protein kinase PLK2; Tumor suppressor serine/threonine-protein 
kinase involved in synaptic plasticity, centriole duplication and G1/S phase transition. 
Polo-like kinases act by binding and phosphorylating proteins are that already 
phosphorylated on a specific motif recognized by the POLO box domains. 
Phosphorylates CENPJ, NPM1, RAPGEF2, RASGRF1, SNCA, SIPA1L1 and 
SYNGAP1. Plays a key role in synaptic plasticity and memory by regulating the Ras and
Rap protein signaling- required for overactivity-dependent spine remodeling by 
phosphorylating the Ras activator RASGRF1 an [...] (682 aa)

Dnajc3

DnaJ homolog subfamily C member 3; Involved in the unfolded protein response (UPR) 
during endoplasmic reticulum (ER) stress. Acts as a negative regulator of the EIF2AK4/
GCN2 kinase activity by preventing the phosphorylation of eIF-2-alpha at ’Ser-52’ and 
hence attenuating general protein synthesis under ER stress, hypothermic and amino 
acid starving stress conditions. Co-chaperone of HSPA8/HSC70, it stimulates its ATPase
activity. May inhibit both the autophosphorylation of EIF2AK2/PKR and the ability of 
EIF2AK2 to catalyze phosphorylation of the EIF2A. May inhibit EIF2AK3/PERK activit 
[...] (504 aa)
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Ifitm3

Interferon-induced transmembrane protein 3; IFN-induced antiviral protein which inhibits 
the entry of viruses to the host cell cytoplasm, permitting endocytosis, but preventing 
subsequent viral fusion and release of viral contents into the cytosol. Active against 
multiple viruses, including influenza A virus, SARS coronavirus (SARS-CoV), Marburg 
virus (MARV) and Ebola virus (EBOV), Dengue virus (DNV), West Nile virus (WNV) and 
human immunodeficiency virus type 1 (HIV-1). Can inhibit- influenza virus hemagglutinin
protein-mediated viral entry, MARV and EBOV GP1,2-mediated viral entry an [...] (137 
aa)

Tram1
Translocating chain-associated membrane protein 1; Stimulatory or required for the 
translocation of secretory proteins across the ER membrane (374 aa)

Ogfrl1 Opioid growth factor receptor-like 1 (464 aa)

Ptprn

Receptor-type tyrosine-protein phosphatase-like N; Plays a role in vesicle-mediated 
secretory processes. Required for normal accumulation of secretory vesicles in 
hippocampus, pituitary and pancreatic islets. Required for the accumulation of normal 
levels of insulin-containing vesicles and preventing their degradation. Plays a role in 
insulin secretion in response to glucose stimuli. Required for normal accumulation of the
neurotransmitters norepinephrine, dopamine and serotonin in the brain. In females, but 
not in males, required for normal accumulation and secretion of pituitary horm [...] (981 
aa)

Rgs4

Regulator of G-protein signaling 4; Inhibits signal transduction by increasing the GTPase
activity of G protein alpha subunits thereby driving them into their inactive GDP-bound 
form. Activity on G(z)-alpha is inhibited by phosphorylation of the G-protein. Activity on 
G(z)-alpha and G(i)-alpha-1 is inhibited by palmitoylation of the G-protein (By similarity) 
(205 aa)

Hsd17b12

Very-long-chain 3-oxoacyl-CoA reductase; Catalyzes the second of the four reactions of 
the long- chain fatty acids elongation cycle. This endoplasmic reticulum- bound 
enzymatic process, allows the addition of two carbons to the chain of long- and very 
long-chain fatty acids/VLCFAs per cycle. This enzyme has a 3-ketoacyl-CoA reductase 
activity, reducing 3- ketoacyl-CoA to 3-hydroxyacyl-CoA, within each cycle of fatty acid 
elongation. Thereby, it may participate in the production of VLCFAs of different chain 
lengths that are involved in multiple biological processes as precursors of memb [...] 
(312 aa)

Pdia3
Protein disulfide-isomerase A3; Protein disulfide isomerase associated 3 (505 aa)

Npy
Pro-neuropeptide Y; NPY is implicated in the control of feeding and in secretion of 
gonadotrophin-release hormone; Belongs to the NPY family (97 aa)

Rpn1

Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1; Essential 
subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer 
of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an 
asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide 
chains; Belongs to the OST1 family (608 aa)

Nucb2
Nucleobindin-2; Calcium-binding protein. May have a role in calcium homeostasis; 
Belongs to the nucleobindin family (420 aa)

Pcsk1n ProSAAS; May function in the control of the neuroendocrine secretory pathway. 
Proposed be a specific endogenous inhibitor of PCSK1. ProSAAS and Big PEN-LEN, 
both containing the C-terminal inhibitory domain, but not the processed peptides reduce 
PCSK1 activity in the endoplasmic reticulum and Golgi. It reduces the activity of the 87 
kDa form but not the autocatalytically derived 66 kDa form of PCSK1. Subsequent 
processing of proSAAS may eliminate the inhibition. Slows down convertase-mediated 
processing of proopiomelanocortin and proenkephalin. May control the intracellular 
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timing of PC [...] (258 aa)

Lrrn3
Leucine rich repeat protein 3, neuronal (707 aa)

Herc1
HECT and RLD domain-containing E3 ubiquitin protein ligase family member 1; Hect 
(homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHC1)-like 
domain (RLD) 1 (4859 aa)

Ptplad1

Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3; Catalyzes the third of the four 
reactions of the long- chain fatty acids elongation cycle. This endoplasmic reticulum- 
bound enzymatic process, allows the addition of two carbons to the chain of long- and 
very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of 
the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty 
acid elongation. Thereby, it participates in the production of VLCFAs of different chain 
lengths that are involved in multiple biological processes as precurs [...] (362 aa)

Fam107a Family with sequence similarity 107, member A (144 aa)

Ostc

Oligosaccharyltransferase complex subunit OSTC; May act as substrate-specific 
component of the N- oligosaccharyl transferase (OST) complex which catalyzes the 
transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to 
an asparagine residue within an Asn-X- Ser/Thr consensus motif in nascent polypeptide 
chains. May be involved in N-glycosylation of APP (amyloid-beta precursor protein). Can
modulate gamma-secretase cleavage of APP by enhancing endoprotelysis of PSEN1; 
Belongs to the OSTC family (149 aa)

Abca5
ATP-binding cassette sub-family A member 5; May play a role in the processing of 
autolysosomes (1642 aa)

Ppp1r15a

Protein phosphatase 1 regulatory subunit 15A; Recruits the serine/threonine-protein 
phosphatase PP1 to dephosphorylate the translation initiation factor eIF-2A/EIF2S1, 
thereby reversing the shut-off of protein synthesis initiated by stress-inducible kinases 
and facilitating recovery of cells from stress. Down-regulates the TGF-beta signaling 
pathway by promoting dephosphorylation of TGFB1 by PP1. May promote apoptosis by 
inducing TP53 phosphorylation on ’Ser-15’. In case of infection with vesicular stomatitis 
virus (VSV), impairs viral replication; Belongs to the PPP1R15 family (657 aa)

Pdia6

Protein disulfide-isomerase A6; May function as a chaperone that inhibits aggregation of
misfolded proteins. Negatively regulates the unfolded protein response (UPR) through 
binding to UPR sensors such as ERN1, which in turn inactivates ERN1 signaling (By 
similarity). May also regulate the UPR via the EIF2AK3 UPR sensor (By similarity). 
Plays a role in platelet aggregation and activation by agonists such as convulxin, 
collagen and thrombin (By similarity); Belongs to the protein disulfide isomerase family 
(445 aa)

Xbp1

X-box-binding protein 1; Functions as a transcription factor during endoplasmic 
reticulum stress by regulating the unfolded protein response (UPR). Required for cardiac
myogenesis and hepatogenesis during embryonic development and the development of 
secretory tissues such as exocrine pancreas and salivary gland. Involved in 
differentiation of B lymphocytes to plasma cells and production of immunoglobulins. 
Modulates the cellular response to ER stress in a PIK3R-dependent manner. Binds to 
the cis-acting X box present in the promoter regions of major histocompatibility complex 
class II g [...] (267 aa)

Pik3r1 Phosphatidylinositol 3-kinase regulatory subunit alpha; Binds to activated 
(phosphorylated) protein-Tyr kinases, through its SH2 domain, and acts as an adapter, 
mediating the association of the p110 catalytic unit to the plasma membrane. Necessary
for the insulin-stimulated increase in glucose uptake and glycogen synthesis in insulin-
sensitive tissues. Plays an important role in signaling in response to FGFR1, FGFR2, 
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FGFR3, FGFR4, KITLG/SCF, KIT, PDGFRA and PDGFRB. Likewise, plays a role in 
ITGB2 signaling (By similarity). Modulates the cellular response to ER stress by 
promoting nucle [...] (724 aa)

Pam

Peptidyl-glycine alpha-amidating monooxygenase; Bifunctional enzyme that catalyzes 2 
sequential steps in C-terminal alpha-amidation of peptides. The monooxygenase part 
produces an unstable peptidyl(2-hydroxyglycine) intermediate that is dismutated to 
glyoxylate and the corresponding desglycine peptide amide by the lyase part. C-terminal
amidation of peptides such as neuropeptides is essential for full biological activity (By 
similarity); In the N-terminal section; belongs to the copper type II ascorbate-dependent 
monooxygenase family (979 aa)

Cd24a

Signal transducer CD24; May have a pivotal role in cell differentiation of different cell 
types. May have a specific role in early thymocyte development. Signaling could be 
triggered by the binding of a lectin-like ligand to the CD24 carbohydrates, and 
transduced by the release of second messengers derived from the GPI-anchor. 
Modulates B-cell activation responses (By similarity). In association with SIGLEC10 may
be involved in the selective suppression of the immune response to danger-associated 
molecular patterns (DAMPs) such as HMGB1, HSP70 and HSP90. Plays a role in the 
control of [...] (76 aa)

Ier2

Immediate early response gene 2 protein; DNA-binding protein that seems to act as a 
transcription factor (By similarity). Involved in the regulation of neuronal differentiation, 
acts upon JNK-signaling pathway activation and plays a role in neurite outgrowth in 
hippocampal cells (By similarity). May mediate with FIBP FGF-signaling in the 
establishment of laterality in the embryo (By similarity). Promotes cell motility, seems to 
stimulate tumor metastasis (By similarity) (221 aa)

Lxn
Latexin; Hardly reversible, non-competitive, and potent inhibitor of CPA1, CPA2 and 
CPA4 (By similarity). May play a role in inflammation; Belongs to the protease inhibitor 
I47 (latexin) family (222 aa)

Scg2
Secretogranin-2; Secretogranin-2 is a neuroendocrine secretory granule protein, which 
may be the precursor for other biologically active peptides (617 aa)

Ezr

Ezrin; Probably involved in connections of major cytoskeletal structures to the plasma 
membrane. In epithelial cells, required for the formation of microvilli and membrane 
ruffles on the apical pole. Along with PLEKHG6, required for normal macropinocytosis 
(By similarity) (586 aa)

Junb
Transcription factor jun-B; Transcription factor involved in regulating gene activity 
following the primary growth factor response. Binds to the DNA sequence 5’-
TGA[CG]TCA-3’; Belongs to the bZIP family. Jun subfamily (344 aa)

Cthrc1
Collagen triple helix repeat-containing protein 1; May act as a negative regulator of 
collagen matrix deposition (245 aa)

Erlec1
Endoplasmic reticulum lectin 1; Probable lectin that binds selectively to improperly 
folded lumenal proteins. May function in endoplasmic reticulum quality control and 
endoplasmic reticulum-associated degradation (ERAD) of both non-glycosylated 
proteins and glycoproteins (By similarity) (483 aa)

Herc2

E3 ubiquitin-protein ligase HERC2; E3 ubiquitin-protein ligase that regulates ubiquitin- 
dependent retention of repair proteins on damaged chromosomes. Recruited to sites of 
DNA damage in response to ionizing radiation (IR) and facilitates the assembly of 
UBE2N and RNF8 promoting DNA damage-induced formation of ’Lys-63’-linked ubiquitin
chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in 
the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the 
ubiquitination and proteasomal degradation of XPA which influences the circadian oscill 
[...] (4836 aa)
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Sez6l Seizure 6-like protein; Candidate tumor suppressor gene. May contribute to specialized 
endoplasmic reticulum functions in neurons (963 aa)

Gda
Guanine deaminase; Catalyzes the hydrolytic deamination of guanine, producing 
xanthine and ammonia; Belongs to the metallo-dependent hydrolases superfamily. ATZ/
TRZ family (454 aa)

H13

Minor histocompatibility antigen H13; Catalyzes intramembrane proteolysis of some 
signal peptides after they have been cleaved from a preprotein, resulting in the release 
of the fragment from the ER membrane into the cytoplasm. Required to generate 
lymphocyte cell surface (HLA-E) epitopes derived from MHC class I signal peptides. 
Involved in the intramembrane cleavage of the integral membrane protein PSEN1. 
Cleaves the integral membrane protein XBP1 isoform 1 in a DERL1/RNF139-dependent
manner (By similarity). May play a role in graft rejection; Belongs to the peptidase A22B 
family (394 aa)

Rasgrf2

Ras-specific guanine nucleotide-releasing factor 2; Functions as a calcium-regulated 
nucleotide exchange factor activating both Ras and RAC1 through the exchange of 
bound GDP for GTP. Preferentially activates HRAS in vivo compared to RRAS based on
their different types of prenylation. Functions in synaptic plasticity by contributing to the 
induction of long term potentiation (1188 aa)

Rprm
Protein reprimo; May be involved in the regulation of p53-dependent G2 arrest of the cell
cycle. Seems to induce cell cycle arrest by inhibiting CDK1 activity and nuclear 
translocation of the CDC2 cyclin B1 complex; Belongs to the reprimo family (109 aa)

Hspa5

78 kDa glucose-regulated protein; Plays a role in facilitating the assembly of multimeric 
protein complexes inside the endoplasmic reticulum. Involved in the correct folding of 
proteins and degradation of misfolded proteins via its interaction with DNAJC10, 
probably to facilitate the release of DNAJC10 from its substrate; Belongs to the heat 
shock protein 70 family (655 aa)

Bmyc Protein B-Myc; Seems to act as an inhibitor of cellular proliferation (170 aa)

Ufl1

E3 UFM1-protein ligase 1; E3 protein ligase that mediates ufmylation, the covalent 
attachment of the ubiquitin-like modifier UFM1 to substrate proteins, a post-translational 
modification on lysine residues of proteins that may play a crucial role in a number of 
cellular processes. Mediates DDRGK1 ufmylation and may regulate the proteasomal 
degradation of DDRGK1 and CDK5RAP3 thereby modulating NF-kappa-B signaling. 
May also through TRIP4 ufmylation play a role in nuclear receptors-mediated 
transcription. May play a role in the unfolded protein response, mediating the ufmylation 
of multi [...] (793 aa)

Nudt11

Diphosphoinositol polyphosphate phosphohydrolase 3-alpha; Cleaves a beta-phosphate
from the diphosphate groups in PP-InsP5 (diphosphoinositol pentakisphosphate), 
suggesting that it may play a role in signal transduction. Also able to catalyze the 
hydrolysis of dinucleoside oligophosphates, with Ap6A and Ap5A being the preferred 
substrates. The major reaction products are ADP and p4a from Ap6A and ADP and ATP 
from Ap5A. Also able to hydrolyze 5-phosphoribose 1-diphosphate; however, the 
relevance of such activity in vivo remains unclear; Belongs to the Nudix hydrolase 
family. DIPP subfamily (164 aa)

Rab3b
Ras-related protein Rab-3B; Protein transport. Probably involved in vesicular traffic (By 
similarity) (219 aa)

Gem

GTP-binding protein GEM; Could be a regulatory protein, possibly participating in 
receptor-mediated signal transduction at the plasma membrane. Has guanine 
nucleotide-binding activity but undetectable intrinsic GTPase activity; Belongs to the 
small GTPase superfamily. RGK family (295 aa)

Dpp10 Inactive dipeptidyl peptidase 10; Promotes cell surface expression of the potassium 
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channel KCND2. Modulates the activity and gating characteristics of the potassium 
channel KCND2. Has no dipeptidyl aminopeptidase activity (Probable) (800 aa)

Manf

Mesencephalic astrocyte-derived neurotrophic factor; Selectively promotes the survival 
of dopaminergic neurons of the ventral mid-brain. Modulates GABAergic transmission to
the dopaminergic neurons of the substantia nigra. Enhances spontaneous, as well as 
evoked, GABAergic inhibitory postsynaptic currents in dopaminergic neurons. Inhibits 
cell proliferation and endoplasmic reticulum (ER) stress-induced cell death (By similarity)
(179 aa)

Vgf VGF nerve growth factor inducible (617 aa)

Fam46a Family with sequence similarity 46, member A 
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