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Analytic solution of the two-star model with correlated degrees
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Exponential random graphs are important to model the structure of real-world complex networks. Here we
solve the two-star model with degree-degree correlations in the sparse regime. The model constraints the average
correlation between the degrees of adjacent nodes (nearest neighbors) and between the degrees at the end-points
of two-stars (next nearest neighbors). We compute exactly the network free energy and show that this model
undergoes a first-order transition to a condensed phase. For non-negative degree correlations between next
nearest neighbors, the degree distribution inside the condensed phase has a single peak at the largest degree,
while for negative degree correlations between next nearest neighbors the condensed phase is characterized by a
bimodal degree distribution. We calculate the degree assortativities and show they are nonmonotonic functions
of the model parameters, with a discontinuous behavior at the first-order transition. The first-order critical line
terminates at a second-order critical point, whose location in the phase diagram can be accurately determined.
Our results can help to develop more detailed models of complex networks with correlated degrees.
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I. INTRODUCTION

Random graphs constitute the main tool to model the com-
plex behavior of large empirical networks observed in social,
technological, and biological systems [1,2]. In random graph
models a network is typically represented by nodes that inter-
act through edges. Random graph theory leads to important
insights into the structure of networks as well as on the dy-
namical processes occurring on them, such as the spreading
of diseases [3,4], the stability of ecosystems to perturbations
[5,6], and the dynamics of sparsely connected neurons [7,8].

A fruitful approach to network modeling consists of mea-
suring a set of observables in an empirical network and then
building an ensemble of random graphs that matches these
features in an average sense [9,10]. The probability distri-
bution of graph configurations is derived by maximizing the
network entropy subject to the constraints dictated by the
empirical observations [11]. The resulting family of models,
known as exponential random graph (ERG) models, aims
to reproduce a set of empirical patterns while keeping other
network properties entirely random. ERGs were introduced
in the pioneering work of Holland and Leinhardt [12], and
they soon became popular models in social network analysis
[13–17].

*fmetzfmetz@gmail.com
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There are at least two main motivations to study ERGs.
First, they serve as benchmark models to distinguish between
random and nonrandom traits in the structure of real-world
networks [18–20]. Analytic solutions of ERGs give detailed
information on the expected values of structural observables
and their fluctuations, which can be directly compared with
data from real-world networks. Second, ERG models may
exhibit degenerate configurations and phase transitions, i.e,
abrupt changes in the macroscopic properties of the graph
ensemble. Discontinuous phase transitions can be a serious
limitation in the generation of ERGs, since they prevent that
certain configurations, with the desired structural features, are
sampled. Analytic solutions of ERGs predict the existence and
location of phase transitions in the parameter space.

ERG models with specific constraints have been widely
studied through numeric [21–24] and analytic [10,11,25–33]
techniques from statistical mechanics. The two-star model is
probably the simplest of ERGs that undergoes a phase transi-
tion [11,26]. In this model, the graph ensemble is constrained
by the average number of edges and the average number of
two-stars (a two-star is a pair of edges that share a com-
mon node). The two-star model has been originally solved in
the high-connectivity regime [11,26], using mean-field tech-
niques, and more recently in the sparse regime [30], where
each node is adjacent to a finite number of others.

Here we take the theory of ERGs one step further by
solving the two-star model with degree-degree correlations
[34,35], which is an important structural feature of networks.
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In general, the degrees in real-world networks are not inde-
pendent, but they can be positively or negatively correlated
with each other, as quantified by the Pearson correlation
coefficient [34]. Nodes with similar degrees have positive de-
gree correlations, whereas nodes with highly distinct degrees
have negative degree correlations. For instance, the degrees
of adjacent or nearest neighbor nodes in social networks are
positively correlated [34,35], but these correlations become
negative for pairs of nodes connected through paths with more
than one edge [36,37].

Earlier works have focused on nearest neighbor degree
correlations [34,35] and their impact on dynamical processes
on networks, such as the spreading of diseases [38,39] and
the synchronization of coupled oscillators [40–42]. However,
models that only take into account local properties [43,44]
do not reproduce certain global features of networks, such as
their community structure or the distribution of the shortest
path length. In fact, recent works [36,37,45–48] have shown
that long-range degree correlations between nodes separated
by more than one edge are important for the organization of
networks at a global level. For instance, results suggest that
the fractal structure of scale-free networks requires long-range
degree correlations between hubs [44]. Long-range degree
correlations have been also observed in the airport trans-
portation network of the United States [36], transcriptional
regulatory networks [36], coauthorship networks [37], and the
Twitter network [48]. Therefore, the solution of ERG models
that incorporate degree correlations in a systematic way rep-
resents significant progress in network modeling.

In this work we solve the two-star model with degree-
degree correlations between nearest neighbors and between
next nearest neighbors in the sparse regime. The free energy
is exactly calculated thanks to the introduction of an upper
cutoff in the degree sequence. We show that the phase diagram
of the model exhibits a first-order critical line, surrounded by
a metastable region, in which the graph sampling process may
get stuck in a local minimum of the free energy. The first-order
transition separates a phase characterized by an approximate
Poisson degree distribution from a condensed phase, where
the degree distribution strongly depends on the degree cor-
relations. We quantify the degree correlations through the
degree assortativity corresponding to nearest neighbor nodes
[34,35] and to next nearest neighbor nodes, located at the
end-points of two-stars. When the degree assortativity of next
nearest neighbors is non-negative, the degree distribution in
the condensed phase is peaked at the maximum degree; when
the assortativity of next nearest neighbors is negative, the
condensed phase is characterized by a bimodal degree dis-
tribution. Both assortativities are non-monotonic functions of
the model parameters and exhibit a nonanalytic behavior at the
first-order transition. The main theoretical findings are well
corroborated by Monte Carlo simulations.

In the next section we introduce the generic framework of
ERG models. In Sec. III we define the main structural prop-
erties of interest, including the two assortativity coefficients.
Section IV explains how the model is analytically solved using
conventional techniques of statistical mechanics, and how the
structural properties follow from the free energy. The numer-
ical results, obtained from the solutions of the saddle-point
equations, are discussed in Sec. V, while in the last section

we present some final remarks. The Appendix discusses the
symmetry properties of the order-parameter functions.

II. EXPONENTIAL RANDOM GRAPH MODELS

A graph configuration of a network with N nodes can be
represented by a realization of the N × N adjacency matrix C.
The entries of C fully encode the network topology, i.e., the
matrix element Ci j tells whether there is an edge joining nodes
i and j. We consider undirected and simple random graphs [1],
which means that C is a symmetric matrix with all diagonal
elements equal to zero. If there is an edge connecting nodes
i and j, then we set Ci j = 1, whereas Ci j = 0 otherwise. The
degree Ki of a node i

Ki =
N∑

j=1

Ci j (1)

counts the number of edges attached to i, and the sequence
K1, . . . , KN contains important information about the network
structure. In this work we consider random graph models
in which the maximum degree that may appear in a graph
configuration is kmax. The cutoff kmax is a model parameter,
independent of N , which can be freely adjusted. As we will
see below, the introduction of kmax allows us to compute
exactly the network properties in the limit N → ∞.

The probability PN (C) to observe a certain graph configu-
ration C follows the Boltzmann-like form [11]

PN (C) = e−HN (C)

ZN

N∏
i=1

�(kmax − Ki ), (2)

where �(x) = 1 if x � 1, and �(x) = 0 otherwise. The graph
Hamiltonian HN (C) depends on the network constraints, and
ZN is the graph partition function

ZN =
∑

C

e−HN (C)
N∏

i=1

�(kmax − Ki ). (3)

The sum
∑

C runs over all possible realizations of the adja-
cency matrix. To study the stability of the graph configurations
for N → ∞, we need to compute the free energy density

f = − lim
N→∞

1

N
lnZN , (4)

which plays the role of a generating function for the graph
structural properties.

III. NETWORK OBSERVABLES

The topology of graphs sampled from PN (C) can be char-
acterized by a set of structural observables. In this work we
only consider global observables, which are obtained by aver-
aging a local quantity over the entire network.

An important quantity to probe the network structure is the
empirical degree distribution

pk (C) = 1

N

N∑
i=1

δk,Ki , (5)
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which gives the probability that a randomly chosen node has
degree k. The density of edges �(C) and the density of two-
stars s(C) are given by [11,30]

�(C) = 1

2N

N∑
i j=1

Ci j = 1

2N

N∑
i=1

Ki, (6)

s(C) = 1

2N

N∑
i jn=1

(1 − δin)Ci jCjn = 1

2N

N∑
i=1

(
K2

i − Ki
)
. (7)

A two-star (or path of length two) is a set with three different
nodes {i, j, k} such that Ci jCjk = 1.

Degree correlations are commonly quantified by the degree
assortativity coefficient [34–37]. This is a global observable
defined as the Pearson correlation coefficient between the
degrees of two nodes. Here we characterize the degree-degree
correlations by means of two assortativity parameters: the
standard assortativity A(1)(C) measures the degree correla-
tions between adjacent nodes, while the assortativity A(2)(C)
measures the degree correlations between nodes at the end-
points of two-stars. In other words, A(1) (A(2)) quantifies
degree correlations between nearest neighbors (next nearest
neighbors).

In what follows, the indexes k and l refer to degrees. For a
single graph instance, the assortativities are defined as

A(r)(C) =
∑∞

kl=0 kl W (r)
k,l (C) − [∑∞

k=0 kW (r)
k (C)

]2

∑∞
k=0 k2W (r)

k (C) − [∑∞
k=0 kW (r)

k (C)
]2 , (8)

with r = 1, 2. The quantity

W (1)
k,l (C) =

∑N
i j=1 Ci jδk,Kiδl,Kj∑N

i j=1 Ci j

(9)

is the probability that a randomly chosen edge joins two nodes
with degrees k and l , while

W (2)
k,l (C) =

∑N
i jn=1 (1 − δin)Ci jCjnδk,Kiδl,Kn∑N

i jn=1 (1 − δin)Ci jCjn

(10)

is the probability that a randomly chosen two-star has degrees
k and l at its end-points. The marginal distributions

W (r)
k (C) =

∞∑
l=0

W (r)
k,l (C) (r = 1, 2) (11)

have the explicit forms

W (1)
k (C) = 1

2N �(C)

N∑
i=1

Kiδk,Ki , (12)

W (2)
k (C) = 1

2N s(C)

N∑
i=1

(
N∑

j=1

Ci jKj − Ki

)
δk,Ki , (13)

which can also be written as follows:

W (1)
k (C) = 1

2 �(C)
k pk (C), (14)

W (2)
k (C) = �(C)

s(C)

∞∑
l=0

(l − 1)W (1)
k,l (C). (15)

Equation (12) shows that the contribution of a node to W (1)
k is

weighted according to its degree, while the weight of node
i to the distribution W (2)

k is determined by the number of
edges attached to the neighbors of i, except from the links
coming from i itself. This is intuitive, as a node i with a large
second-order degree

∑N
j=1 Ci jKj − Ki is the end-point of a

large number of two-stars.
The assortativities A(1) and A(2) give the same type of sta-

tistical information. Networks with statistically independent
degrees satisfy

W (r)
k,l (C) = W (r)

k (C)W (r)
l (C), (16)

and, consequently, A(r)(C) = 0. Networks with A(r)(C) > 0
are positively correlated or assortative, which means that
nodes connected through edges or two-stars are likely to
have similar degrees. Finally, networks with A(r)(C) < 0 are
negatively correlated or disassortative, meaning that nodes
with large degrees preferentially connect through edges or
two-stars to nodes with small degrees.

Equation (8) is not practical to calculate A(r). To prepare
the ground for the analytic computation of the assortativities,
let us derive more convenient expressions for A(1) and A(2).
Substituting Eqs. (9), (10), (12), and (13) in Eq. (8), we rewrite
A(1) and A(2) as follows:

A(1)(C) =
�11(C) − (

1
2N�(C)

∑N
i=1 K2

i

)2

1
2N�(C)

∑N
i=1 K3

i − (
1

2N�(C)

∑N
i=1 K2

i

)2 , (17)

A(2)(C) = χ (C) − [�(C)]2

�(C)
s(C) �21(C) − 1

2Ns(C)

∑N
i=1 K3

i − [�(C)]2
, (18)

with

�(C) = �(C)

s(C)
�11(C) − 1

2Ns(C)

N∑
i=1

K2
i . (19)

The object �qr (C) defines higher-order moments of nearest
neighbor degrees

�qr (C) = 1

2N�(C)

N∑
i j=1

Ci jK
q
i Kr

j (q, r � 1), (20)

and χ (C) is the correlation between next nearest neighbor
degrees

χ (C) = 1

2Ns(C)

N∑
i jn=1

(1 − δin)Ci jCjnKiKn. (21)

Equations (17) and (18) hold for a single realization of C and
they show that A(1) and A(2) are ultimately given in terms of
moments of the joint distribution of degrees at different pairs
of nodes.

In the limit N → ∞, the fluctuations of intensive vari-
ables vanish and a single realization of an intensive quantity
coincides with its ensemble averaged value. Thus, we nat-
urally assume that the assortativities and all other global
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observables of interest display such self-averaging behavior
when N → ∞, and the assortativities become

〈A(1)〉 =
〈�11〉 − ( 〈K2〉

2〈�〉
)2

〈K3〉
2〈�〉 − ( 〈K2〉

2〈�〉
)2 , (22)

〈A(2)〉 =
〈χ〉 − [ 〈�〉

〈s〉 〈�11〉 − 〈K2〉
2〈s〉

]2

〈�〉
〈s〉 〈�21〉 − 〈K3〉

2〈s〉 − [ 〈�〉
〈s〉 〈�11〉 − 〈K2〉

2〈s〉
]2 , (23)

where 〈G〉 denotes the ensemble average of an arbitrary ran-
dom function G(C) for N → ∞

〈G〉 = lim
N→∞

∑
C

G(C)PN (C). (24)

All ensemble averages in Eqs. (22) and (23) can be calculated
from the free energy f , which works as a generating function
for the moments of degrees.

IV. ANALYTIC SOLUTION OF THE TWO-STAR MODEL
WITH CORRELATED DEGREES

In this section we present the Hamiltonian of the two-star
model with correlated degrees and we explain how to calcu-
late, in the limit N → ∞, the free energy f and the structural
observables using standard tools from statistical mechanics.

A. The Hamiltonian of the model

The ERG model is defined by the Hamiltonian

H(C) = −
Q∑

r=1

αr

N∑
i=1

Fr (Ki ) − γ

2

N∑
i j=1

Ci jD(Ki, Kj )

− β

2

N∑
i jk=1

(1 − δik )Ci jCjkKiKk + ln N
∑
i< j

Ci j,

(25)

where D(k, l ) and F1(k), . . . , FQ(k) are arbitrary functions of
the degrees, while β, γ , and α1, . . . , αQ are conjugate param-
eters that enforce the corresponding global constraints. The
function D(k, l ) fulfills D(k, l ) = D(l, k).

From left to right, the first term in Eq. (25) en-
forces Q global constraints involving single-site functions
F1(k), . . . , FQ(k) of the degrees; the second term introduces
a global constraint with D(k, l ) defined at pairs of adjacent
nodes; the third term couples the degrees of the next nearest
neighbor nodes located at the end-points of a two-star; finally,
due to the logarithmic scaling with N , the fourth term in
Eq. (25) ensures that networks sampled from PN (C) are sparse
[11], i.e., the probability of having an edge between two nodes
is proportional to 1/N and the degrees K1, . . . , KN remain
finite in the limit N → ∞.

We obtain the two-star model with correlated degrees by
setting

Fr (k) = δr,1k + δr,2k2, D(k, l ) = kl. (26)

The motivation to solve the ERG model described by the
Hamiltonian of Eq. (25) is twofold. First, the generic form

of Eq. (25) allows to calculate higher-order moments of the
joint distribution of K1, . . . , KN by taking derivatives of f
with respect to the conjugate parameters. Such higher-order
moments are needed to determine the assortativities A(1) and
A(2) of the two-star model [see Eqs. (22) and (23)]. Second, al-
though here we discuss explicit results for the two-star model
with correlated degrees, the flexible Hamiltonian of Eq. (25)
allows to explore a variety of situations by combining the
simultaneous effect of different constraints.

B. The calculation of the free energy

In this subsection we solve the model defined by Eq. (25).
The aim is to calculate the free energy f in the limit N →
∞, from which ensemble averages of the network observables
readily follow.

The graph partition function reads

ZN =
⎛
⎝∏

i< j

∑
Ci j=0,1

⎞
⎠

[
N∏

i=1

�(kmax − Ki )

]
e− ln N

∑
i< j Ci j

× exp

(
Q∑

r=1

αr

∑
i=1

Fr (Ki ) + γ
∑
i< j

Ci jD(Ki, Kj )

)

× exp

⎛
⎝β

2

N∑
i jk=1

(1 − δik )Ci jCjkKiKk

⎞
⎠. (27)

We remind the reader that K1, . . . , KN depend on the matrix
elements {Ci j} according to Eq. (1). With the purpose of lin-
earizing the exponent of Eq. (27) with respect to C, we rewrite
the above expression using Kronecker δ’s

ZN =
⎛
⎝∏

i< j

∑
Ci j=0,1

⎞
⎠

[
N∏

i=1

N−1∑
ki=0

δki,Ki�(kmax − ki )

]

× exp

(
− ln N

∑
i< j

Ci j

)

× exp

(
Q∑

r=1

αr

∑
i=1

Fr (ki ) + γ
∑
i< j

Ci jD(ki, k j )

)

× exp

(
β

2

N∑
i jr=1

(1 − δik )Ci jCjrkikr

)
.

Using the integral representation

δki,Ki =
∫ 2π

0

dui

2π
eiui (ki−Ki ) (28)

and substituting Ki = ∑N
j=1 Ci j , the partition function can be

written as

ZN =
⎛
⎝∏

i< j

∑
Ci j=0,1

⎞
⎠ kmax∑

k1,...,kN =0

∫ 2π

0

(
N∏

i=1

dui

2π

)

× exp

(
i

N∑
i=1

kiui − i
∑
i< j

Ci j (ui + u j ) − ln N
∑
i< j

Ci j

)
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× exp

(
Q∑

r=1

αr

∑
i=1

Fr (ki ) + γ
∑
i< j

Ci jD(ki, k j )

)

× exp

⎡
⎣β

2

N∑
j=1

(
N∑

i=1

Ci jki

)2

− β

2

N∑
i j=1

Ci jki

⎤
⎦. (29)

It is still not possible to sum over the graph configurations, as
the exponent in the above equation contains a quadratic term
in C. We linearize this term via the exact identity

exp

⎡
⎣β

2

N∑
j=1

(
N∑

i=1

Ci jki

)2
⎤
⎦

=
∫ ∞

−∞

(
N∏

j=1

Dxj

)
exp

(√
β

∑
i< j

Ci j (x jki + xik j )

)
, (30)

with the Gaussian measure

Dxj = dx j√
2π

e− 1
2 x2

j . (31)

Equation (30), known as the Hubbard-Stratonovich trans-
formation, simply follows from a Gaussian integral [49].
Substituting Eq. (30) in Eq. (29) and summing over all graph
configurations, we arrive at an expression for N � 1

ZN =
kmax∑

k1,...,kN =0

∫ 2π

0

(
N∏

i=1

dui

2π

) ∫ ∞

−∞

(
N∏

j=1

Dxj

)

× exp

(
i

N∑
i=1

kiui +
Q∑

r=1

αr

N∑
i=1

Fr (ki )

)

× exp

(
1

2N

N∑
i j=1

e−i(ui+u j )+Wγ ,β (ki,xi ;k j ,x j )

)
, (32)

where

Wγ ,β (k, x; l, x′) = γ D(k, l ) − β

2
(k2 + l2)

+
√

βx′k +
√

βxl. (33)

The last step is to decouple sites and reduce Eq. (32) to a
single-site problem. This is achieved by introducing kmax + 1
functional order-parameters

ρk (x) = 1

N

N∑
i=1

δk,kiδ(x − xi )e
−iui , k = 0, . . . , kmax, (34)

through the following identity:

1 =
∫ (

kmax∏
k=0

DρkDρ̂k

)
exp

(
i

kmax∑
k=0

∫
dxρk (x)ρ̂k (x)

)

× exp

(
− i

N

N∑
i=1

ρ̂ki (xi )e
−iui

)
, (35)

where the functional integration measure is formally de-
fined as DρkDρ̂k = lim|X |→∞

∏
x∈X dρk (x)dρ̂k (x)/2π , with

X representing the set of all possible values of x obtained

after discretization (|X | is the size of X ). Inserting Eq. (35)
in Eq. (32), we obtain

ZN =
∫ (

kmax∏
k=0

DρkDρ̂k

)
exp

(
i

kmax∑
k=0

∫
dxρk (x)ρ̂k (x)

)

× exp

(
N

2

kmax∑
k,l=0

∫
dxdx′ρk (x)ρl (x

′)eWγ ,β (k,x;l,x′ )

)

×
(

kmax∑
k=0

∫ 2π

0

du

2π

∫ ∞

−∞
Dxeiku+∑Q

r=1 αr Fr (k)− i
N ρ̂k (x)e−iu

)N

.

(36)

By rescaling the conjugate order parameters as ρ̂k (x) →
iN ρ̂k (x) and integrating over u, we find a compact expression
for ZN when N � 1

ZN =
∫ (

kmax∏
k=0

DρkDρ̂k

)
exp (−NF[ρk, ρ̂k]), (37)

in which

F[ρk, ρ̂k] =
kmax∑
k=0

∫
dxρk (x)ρ̂k (x)

− 1

2

kmax∑
k,l=0

∫
dxdx′ρk (x)ρl (x

′)eWγ ,β (k,x;l,x′ )

− ln

(
kmax∑
k=0

1

k!

∫ ∞

−∞
Dx[ρ̂k (x)]ke

∑Q
r=1 αr Fr (k)

)
. (38)

We have neglected the factor appearing in the integration mea-
sure of Eq. (37) due to the rescaling ρ̂k (x) → iN ρ̂k (x), since
this factor yields a subleading contribution to the free-energy
for large N . Equations (37) and (38) determine the leading
contribution to lnZN in the limit N → ∞.

Since we introduced the finite cutoff kmax in the degree
sequence, F[ρk, ρ̂k] is independent of N and, in the limit
N → ∞, the integral in Eq. (37) can be solved through the
saddle-point method, according to which ZN is dominated by
the set of functions {ρ∗

k (x), ρ̂∗
k (x)} that minimize F[ρk, ρ̂k].

The fact the degrees are bounded in the present model is a
crucial difference with respect to Ref. [30], which ensures the
application of the saddle-point method and the convergence of
the partition function for N → ∞. Thus, combining Eqs. (37)
and (4), the free energy f is directly given by

f = F[ρ∗
k , ρ̂∗

k ], (39)

where {ρ∗
k (x), ρ̂∗

k (x)} fulfills the saddle-point equations

ρ̂∗
k (x) =

kmax∑
l=0

∫
dx′ρ∗

l (x′)eWγ ,β (k,x;l,x′ ), (40)

ρ∗
k (x) =

1
k! k[ρ̂∗

k (x)]k−1e− 1
2 x2+∑Q

r=1 αr Fr (k)∑kmax
l=0

1
l!

∫ ∞
−∞ dx[ρ̂∗

l (x)]l e− 1
2 x2+∑Q

r=1 αr Fr (l )
, (41)

with k = 0, . . . , kmax. The solutions of the self-consistent
Eqs. (40) and (41), together with the free energy, Eq. (39),
fully characterize the stability and the structural properties
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of infinitely large ERGs defined by Eq. (25). We remark that
Eqs. (39), (40), and (41) are exact in the limit N → ∞.

C. The equations for the structural observables

In the limit N → ∞, the ensemble averages of the network
observables, defined in section III, follow from the derivatives
of f with respect to the model parameters. Let us illustrate
this fact by deriving the analytic expression for the degree
distribution. If we set F1(l ) = δk,l for arbitrary integers 0 �
k, l � kmax, then the ensemble average degree distribution
〈pk〉 is determined from

〈pk〉 = − ∂ f

∂α1
, (42)

which follows from Eqs. (2) and (4). From the explicit form
of f , Eqs. (38) and (39), we get

〈pk〉 =
1
k!

∫ ∞
−∞ Dx[ρ̂∗

k (x)]ke
∑Q

r=1 αr Fr (k)∑kmax
l=0

1
l!

∫ ∞
−∞ Dx[ρ̂∗

l (x)]l e
∑Q

r=1 αr Fr (l )
. (43)

This is a common strategy to calculate ensemble averages in
statistical mechanics, namely, one performs the derivative of
the free energy with respect to a parameter that is coupled
to a certain observable in the Hamiltonian. Note that F1(k)
in Eq. (43) is not necessarily given by F1(k) = δk,l . In other
words, after the choice F1(k) = δk,l has served the purpose to
obtain an expression for 〈pk〉, we are free to choose F1(k) as
we please.

Following an analogous procedure, the equations for the
ensemble averages of all other observables introduced in
Sec. III are obtained in the limit N → ∞. The density of links
and the density of two-stars read

〈�〉 = 〈K〉
2

, (44)

〈s〉 = 1

2
(〈K2〉 − 〈K〉), (45)

where the moments 〈Kn〉 (n = 1, 2, . . . ) of 〈pk〉 are deter-
mined from

〈Kn〉 =
kmax∑
k=0

kn〈pk〉. (46)

The moments 〈�qr〉 of the joint degree distribution at adjacent
nodes read

〈�qr〉 = 1

2〈�〉
kmax∑
kl=0

kqlr
∫

dxdx′ρ∗
k (x)ρ∗

l (x′)eWγ ,β (k,x;l,x′ ),

(47)

and the average degree correlation 〈χ〉 at the end-points of
two-stars is given by

〈χ〉 = 1

2〈s〉
kmax∑
kl=0

∫
dxdx′ρ∗

k (x)ρ∗
l (x′)

×
(

1√
β

xl − k2

)
eWγ ,β (k,x;l,x′ ). (48)

Once we determine {ρ∗
k (x), ρ̂∗

k (x)} from the solutions of the
saddle-point Eqs. (40) and (41), Eqs. (43)–(48) allow us to

compute the assortativities and characterize the network struc-
ture in the limit N → ∞. In case Eqs. (40) and (41) have more
than a single solution, the structural observables are calculated
from the solution that corresponds to the global minimum of
F[ρk, ρ̂k].

V. RESULTS

The exact equations derived in the previous section de-
scribe ERGs with the generic Hamiltonian of Eq. (25) in the
limit N → ∞. In this section we solve these equations and
study the effect of degree correlations in the phase diagram of
the two-star model.

A. The two-star model without degree correlations

In this section we present results for the two-star model
in the absence of degree correlations [9–11,26,30], where the
average density of edges and the average density of two-stars
are the only constraints. The model undergoes a discontinuous
transition as a function of the control parameters both in the
dense regime [11,26] and in the more realistic case of sparse
networks [30]. In the latter case, Ref. [30] reports a discontin-
uous behavior in the structural parameters, but the stability of
the macroscopic states and the corresponding phase diagram
remain elusive. We complement the work of Ref. [30] by
constructing the full phase diagram of the two-star model in
the sparse regime.

The Hamiltonian of the two-star model

H(C) = −α1

N∑
i=1

Ki − α2

N∑
i=1

K2
i + ln N

∑
i< j

Ci j (49)

is recovered from Eq. (25) by setting β = γ = 0, Q = 2,
and Fr (k) = δr,1k + δr,2k2. In this case, ρ̂∗

k (x) becomes inde-
pendent of k and x, and we set ρ̂∗

k (x) ≡ μ. The fixed-point
equation for μ follows from Eq. (41)

μ =
∑kmax−1

k=0
1
k!μ

keα1(k+1)+α2(k+1)2

∑kmax
k=0

1
k!μ

keα1k+α2k2
, (50)

and the free energy assumes the form

f = F (ν)|ν=μ∗ , (51)

where μ∗ is the global minimum of the function F (ν)

F (ν) = 1

2
ν2 − ln

(
kmax∑
k=0

1

k!
νkeα1k+α2k2

)
. (52)

The degree distribution is obtained from Eq. (43)

〈pk〉 =
1
k!μ

k
∗eα1k+α2k2

∑kmax
l=0

1
l!μ

l∗eα1l+α2l2
. (53)

In the limit kmax → ∞, Eqs. (50) and (53) are equivalent to the
main equations in Ref. [30]. However, in contrast to Ref. [30],
the series in Eqs. (50)–(53) contain a finite number of terms.
After μ∗ is determined from the solutions of Eqs. (50) and
(51), f and 〈pk〉 can be evaluated for any α1 and α2.

Figure 1 shows the functional behavior of F (ν). For the
combinations of α1 and α2 shown in Fig. 1, F (ν) exhibits two
minima, which reflects the existence of a metastable region
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FIG. 1. The function F (ν ) [see Eqs. (37) and (38)] for the two-
star model [see Eq. (49)] with maximum degree kmax = 80, α1 = 0.5,
and different α2. The values of ν that minimize F (ν ) are solutions of
Eq. (50). The global minimum determines the free energy and the
structural parameters.

in the phase diagram. Each minimum corresponds to a stable
fixed-point solution of Eq. (50) and, consequently, to a certain
macroscopic state of the two-star model. The global minimum
yields the leading contribution to the partition function for
N → ∞, from which one determines the graph structural
properties. The values of (α1, α2) along which the depths of
the minima become equal identify a first-order critical line.
For fixed α1, F (ν) has a single minimum if α2 is either suffi-
ciently large or small. This particular situation is not shown in
Fig. 1.

The free energy allows us to characterize the stability of
the different phases and construct the phase diagram in the
plane (α1, α2). The phase diagram for kmax = 80, shown in
Fig. 2(a), exhibits a metastable region enclosing a first-order
critical line, which terminates at a critical point. The inset in
Fig. 2(a) shows the continuous phase transition of μ along
the first-order critical line. Figures 2(b) and 2(c) illustrate the
typical profile of the degree distribution 〈pk〉 in each phase.
Clearly, the first-order transition corresponds to an abrupt
condensation of 〈pk〉 onto the maximum degree k = kmax.
Below the first-order critical line, 〈pk〉 is closer to a Poisson
distribution, whereas above the critical line 〈pk〉 has a peak at
k = kmax and the graph samples are approximately regular.

The behavior of the structural properties across the phase
transition is a subject of practical interest. Figure 3 shows the
density of links and the density of two-stars as a function
of α2 for different α1. Both quantities are discontinuous at
the first-order transition. The discontinuity becomes gradually
smaller as we increase α1, until it finally disappears at the
critical point, i.e., 〈�〉 and 〈s〉 are continuous and monotonic
functions of α2 provided α1 � 1.42. Since β = γ = 0, both
assortativities are zero in this model. The theoretical results
of Fig. 3 are well corroborated by data obtained from Monte
Carlo simulations that sample graphs from the distribution
of Eq. (2). Monte Carlo methods to generate ERGs are thor-
oughly discussed in Ref. [9].

B. Degree correlations between nearest neighbors

In this subsection we analyze the role of nearest neigh-
bor degree correlations on the phase diagram of the two-star
model. We consider an ERG model that allows us to tune

FIG. 2. (a) Phase diagram of the two-star model with maximum
degree kmax = 80 [see Eq. (49)]. The dashed black curve is the first-
order critical line and the solid red curves delimit the metastable
region, within which the free energy has two minima. The inset
shows the two stable solutions of Eq. (50) as a function of α1 along
the dashed curve. The two solutions for μ merge continuously at
a critical point, identified by the black dot in (a). (b) and (c) show
the degree distribution (green squares) for fixed α1 = 0.5, kmax = 80,
and a value of α2 inside each phase. The blue crosses in (b) denote a
Poisson distribution with the same mean degree.

the density of links, the density of two-stars, and the degree
correlations between adjacent nodes. The model is defined by
the Hamiltonian

H(C) = −α1

N∑
i=1

Ki − α2

N∑
i=1

K2
i

− γ

N∑
i< j

Ci jKiKj + ln N
∑
i< j

Ci j, (54)

which is recovered from Eq. (25) by setting β = 0, Q = 2,
Fr (k) = δr,1k + δr,2k2, and D(k, l ) = kl . Most of the results

FIG. 3. Theoretical results (different line styles) for the average
density of edges 〈�〉 and the average density of two-stars 〈s〉 as a
function of α2 for the two-star model [see Eq. (49)] with maximum
degree kmax = 80 and different α1. The symbols are obtained from
the average over 105 graph samples generated through Monte Carlo
simulations with α1 = 1.2 and two system sizes: N = 200 (squares)
and N = 800 (circles).
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FIG. 4. The main panel shows the free energy as a function of γ

for an exponential random graph model with nearest neighbor degree
correlations [see Eq. (54)], maximum degree kmax = 30, α1 = 0.6,
and α2 = 0. The nonanalytic point of the free energy marks the
first-order critical point. The inset displays the two branches of the
function f calculated from Eq. (58). The red solid line and the black
solid line in the inset represent the function f corresponding to each
one of the two stable solutions of Eq. (57). The metastable region,
where Eq. (57) has two stable solutions, is delimited by the dotted
vertical lines.

in this section examine the effect of nearest neighbor degree
correlations when α2 = 0, since the results for α2 �= 0 are
qualitatively similar. Equation (54) for α2 = 0 is the Hamil-
tonian of the Erdös-Rényi model [1] with degree correlations
between adjacent nodes. We show below that degree correla-
tions induce a first-order condensation transition in the simple
case of Erdös-Rényi random graphs.

The function ρ̂∗
k (x) is independent of x for β = 0. By

writing ∫
dxρ∗

k (x) ≡ ρ∗
k , ρ̂∗

k (x) ≡ ρ̂∗
k , (55)

the quantities {ρ∗
k , ρ̂∗

k }k=0,...,kmax solve

ρ̂∗
k =

kmax∑
l=0

ρ∗
l eγ kl , (56)

ρ∗
k =

1
k! k(ρ̂∗

k )k−1eα1k+α2k2

∑kmax
l=0

1
l! (ρ̂∗

l )l eα1l+α2l2
, (57)

while the free energy follows from

f = 1

2

kmax∑
k=0

ρ∗
k ρ̂∗

k − ln

(
kmax∑
k=0

1

k!
(ρ̂∗

k )keα1k+α2k2

)
. (58)

Equation (57) represents a system of kmax + 1 coupled fixed-
point equations that can be solved by iteration.

The free energy is obtained from the global minimum
of the kmax + 1-dimensional surface F (ρ0, . . . , ρkmax ) [see
Eq. (38)], which follows from the solutions of Eq. (57). Fig-
ure 4 depicts f as a function of γ for α2 = 0 and fixed α1. The
free energy exhibits a nonanalytic point, marking a first-order
transition, at which the derivative of f with respect to γ is dis-
continuous. The inset in Fig. 4 shows the two branches of f ,

FIG. 5. Phase diagram of the two-star model with nearest neigh-
bor correlated degrees [see Eq. (54)], maximum degree kmax = 30,
and different values of α2. The dashed curve for each α2 marks the
first-order critical line and the solid curves delimit the metastable
region, within which the free energy has two minima. For each value
of α2, the dashed curve and the two solid curves terminate at the
critical point identified by the corresponding symbol. The critical
points are approximately given by (α1, γ ) = (1.56, 1.2 × 10−3) for
α2 = −0.02, (α1, γ ) = (1.13, 6.1 × 10−4) for α2 = 0, and (α1, γ ) =
(0.746, −6 × 10−5) for α2 = 0.02.

each one corresponding to a minimum of F or a stable fixed-
point of Eq. (57). In the metastable region, F (ρ0, . . . , ρkmax )
has two minima, one of them is local (metastable), while the
other is global (stable). The structural properties of the graph
are evaluated from the solution {ρ∗

k }kmax
k=0 at the global minimum

of F .
The phase diagram (α1, γ ) of the ERG model defined by

Eq. (54), and obtained from the analysis of f , is shown in
Fig. 5. For each value of α2, the phase diagram has a first-order
critical line, surrounded by a metastable region, which ends at
a critical point. The first-order critical line marks anew the
condensation transition, above which the degree distribution
〈pk〉 has a peak at k = kmax. The profile of 〈pk〉 below and
above each dashed line in Fig. 5 is qualitatively similar to,
respectively, Figs. 2(b) and 2(c). For γ > 0, adjacent nodes
tend to have similar degrees, which strongly favors the forma-
tion of a regular random graph, driving the ERG model to the
condensed phase even in the case of α2 = 0.

The nearest neighbor assortativity 〈A(1)〉 is discontinuous at
the first-order transition. Figure 6 shows 〈A(1)〉 as a function
of γ for different α1 and α2 = 0. The discontinuity of 〈A(1)〉
becomes smaller as α1 increases, until it vanishes continu-
ously at the critical point. In fact, the two solutions for 〈A(1)〉
corresponding to each phase merge into a single value as we
approach the critical point along the corresponding dashed
curve in Fig. 5. The assortativity 〈A(1)〉 is a nonmonotonic
function of γ that vanishes when |γ | → ∞. The latter prop-
erty can be understood from the ground state configurations
of the Hamiltonian. For γ → −∞, the minimum of Eq. (54)
is attained when all degrees are zero; for γ → ∞, Eq. (54) is
minimized for all degrees equal to kmax. Since β = 0, nodes
at the end-points of two-stars are uncorrelated and 〈A(2)〉 = 0.
Figure 6 also shows results generated through Monte Carlo
simulations of finite random graphs, which confirms our the-
oretical findings for N → ∞.
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FIG. 6. Theoretical results (different line styles) for the degree
assortativity 〈A(1)〉 of adjacent nodes as a function of γ for an expo-
nential random graph model with nearest neighbor correlated degrees
[see Eq. (54)], maximum degree kmax = 30, and α2 = 0. The symbols
are obtained from the average over 104 graph samples generated
through Monte Carlo simulations with α2 = 0, α1 = 1.2, N = 1500
(circles), and N = 5000 (squares).

C. Degree correlations between next nearest neighbors

In this subsection we focus on the competition between
nearest neighbor degree correlations and next nearest neigh-
bor degree correlations. We consider the Hamiltonian

H(C) = ln N
∑
i< j

Ci j − γ

N∑
i< j

Ci jKiKj

− β

2

N∑
i jk=1

(1 − δik )Ci jCjkKiKk, (59)

that results from Eq. (25) by setting αr = 0 for r = 1, . . . , Q.
We will not present explicit results for nonzero values of α1

and α2 [see Eq. (49)], since changing the density of links
or two-stars does not modify the overall qualitative picture
discussed below.

In comparison to β = 0, it is far more challenging to
solve the saddle-point Eqs. (40) and (41) and determine the
functions ρ∗

0 (x), . . . , ρ∗
kmax

(x) for β �= 0, due to the exponen-
tial or oscillatory behavior of the integrands. We calculate
numerically the integrals in Eqs. (40) and (41) by discretiz-
ing ρ∗

0 (x), . . . , ρ∗
kmax

(x) over x ∈ R. The discretized version
of the saddle-point equations is iterated until each func-
tion ρ∗

k (x) converges to a stationary functional form. In the
Appendix, we discuss some useful symmetry properties of
ρ∗

0 (x), . . . , ρ∗
kmax

(x) for β < 0. We set kmax = 10 throughout
this subsection.

First, we consider the ERG model of Eq. (59) for β > 0. In
this regime the order-parameters ρ∗

0 (x), . . . , ρ∗
kmax

(x) are real-

FIG. 7. Degree assortativities 〈A(1)〉 and 〈A(2)〉 corresponding,
respectively, to nearest neighbor nodes and next nearest neighbors
nodes of an exponential random graph model with degree-degree
correlations [see Eq. (59)], β > 0, and maximum degree kmax = 10.

valued functions. Figure 7 shows that the degree assortativities
〈A(1)〉 and 〈A(2)〉 have a discontinuous behavior as a function
of γ , and the model undergoes once more a first-order tran-
sition at γ = γc(β ). For γ < γc(β ), 〈pk〉 is approximately
given by a Poisson distribution, while for γ > γc(β ) the
degree distribution has a single peak at k = kmax. Figure 8
illustrates the behavior of 〈pk〉 and ρ∗

0 (x), . . . , ρ∗
kmax

(x) inside
the condensed phase. For γ → ∞ or β → ∞, the degree
distribution converges to 〈pk〉 = δk,kmax and both assortativities
are zero. Overall, Figs. 7 and 8 show that positive next nearest
neighbor degree correlations do not change the phase diagram
qualitatively.

Let us now present results for β < 0, where
ρ∗

0 (x), . . . , ρ∗
kmax

(x) are complex-valued functions of x ∈ R.
In the Appendix, we demonstrate that Reρ∗

k (x) is an even
function and Imρ∗

k (x) is an odd function in the regime β < 0.
It is interesting to note that, for β < 0, we impose conflicting

FIG. 8. Degree distribution 〈pk〉 and the order-parameter func-
tions {ρ∗

k (x)} of an exponential random graph model with degree-
degree correlations [see Eq. (59)], β = 0.003, maximum degree
kmax = 10, and different values of γ in the condensed phase.
(b) shows the functional behavior of ρ∗

10(x) (black solid line), ρ∗
9 (x)

(red dashed line), and ρ∗
8 (x) (blue dot-dashed line) for γ = −0.004.

The other components ρ∗
0 (x), . . . , ρ∗

7 (x) are approximately zero.
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FIG. 9. Degree assortativities 〈A(1)〉 and 〈A(2)〉 corresponding,
respectively, to nearest neighbor nodes and next nearest neighbors
nodes of an exponential random graph model with degree-degree
correlations [see Eq. (59)], β < 0, and maximum degree kmax = 10.

constraints in the generation of graph samples, since negative
values of β favor dissimilar degrees at the end-points of
two-stars, leaving the degrees at the central nodes of two-stars
in a frustrating situation. The appearance of these frustrated
configurations should influence the graph structure.

In Fig. 9 we present 〈A(1)〉 and 〈A(2)〉 as a function of γ

for β < 0. The ERG model undergoes a first-order transition
at the critical point γ = γc(β ). For γ < γc(β ), the degree
correlations do not considerably affect 〈pk〉, which is closer
to a Poisson distribution, similar to Fig. 2(b). For γ > γc(β ),
negative degree correlations between next nearest neighbors
have an important effect in the graph structure and 〈pk〉 can
exhibit a bimodal shape, as illustrated in Fig. 10. For increas-

FIG. 10. Degree distribution 〈pk〉 and the order-parameter func-
tions {ρ∗

k (x)} of an exponential random graph model with degree-
degree correlations [see Eq. (59)], β = −0.002, maximum degree
kmax = 10, and different values of γ above the first-order transition.
(b) and (c) show, respectively, the functional behavior of Imρ∗

k (x) and
Reρ∗

k (x) for γ = 0.0324 and three values of k: k = 10 (black solid
lines), k = 9 (red dashed lines), and k = 8 (blue dot-dashed lines).
The other components ρ∗

0 (x), . . . , ρ∗
7 (x) are approximately zero.

FIG. 11. Phase diagram of an exponential random graph model
with degree-degree correlations [see Eq. (59)] and maximum degree
kmax = 10. The symbols are theoretical results obtained from the
solutions of Eqs. (39)–(41), and the solid lines are just a guide to the
eye. The phase diagram has a first-order critical line surrounded by a
metastable region, where the free energy has two minima. Above the
first-order critical line, the degree distribution is bimodal for β < 0,
and it has a single peak at the largest degree for β > 0. The degree
distribution approaches 〈pk〉 = δk,kmax as γ → ∞.

ing γ > γc(β ), the weight 〈pkmax〉 gradually increases until
we attain 〈pk〉 = δk,kmax for γ → ∞. Nevertheless, the graph
structure in the condensed phase for β < 0 is qualitatively
distinct from the regime β > 0, which is also attested by
the functional behavior of the order parameters, presented in
Figs. 10(b) and 10(c) [as a comparison, see Fig. 8(b)]. As
shown by Fig. 9, the first-order transition disappears for β

smaller than a certain threshold, which marks the terminating
point of the first-order critical line in the plane (β, γ ).

The competition between nearest neighbor and next nearest
neighbor degree correlations is summarized in Fig. 11, which
depicts the phase diagram of the model defined by Eq. (59).
The phase diagram exhibits a metastable region around a
first-order critical line γc(β ) that terminates at a negative value
of β. For γ < γc(β ), 〈pk〉 is closer to a Poisson distribution.
For γ > γc(β ) and β > 0, we have 〈A(2)〉 > 0 and the degree
distribution has a single peak at k = kmax. For γ > γc(β ) and
β < 0, we have 〈A(2)〉 < 0 and 〈pk〉 can exhibit two peaks,
one of them located at k = kmax, and an additional peak at a
smaller degree.

VI. FINAL REMARKS

In this paper we have solved the two-star model with
degree-degree correlations in the sparse regime. The model
allows us to generate random graphs with prescribed degree
correlations between adjacent nodes and between nodes at the
end-points of two-stars. By introducing an upper cutoff in the
degree sequence, we have exactly calculated the network free
energy, from which we derived complete phase diagrams and
characterized the graph structure in the different phases.

In terms of the degree distribution 〈pk〉, the phase diagram
of the model is characterized by three distinct regions. There is
a phase where 〈pk〉 is approximately given by a Poisson distri-
bution, reminiscent from the structure of Erdös-Rényi random
graphs [1]. The phase diagram also exhibits a condensed
phase, where the shape of 〈pk〉 strongly depends on the degree
correlations. If the degree assortativities are non-negative in-
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side the condensed phase, then 〈pk〉 has a single peak at the
maximum degree and the graph is approximately regular. If
the degree assortativity of next nearest neighbors is negative
inside the condensed phase, then 〈pk〉 is given by a bimodal
distribution, with one maximum at the largest degree and an
additional maximum at a smaller degree. While the Poisson
and standard condensed phases appear even in the absence of
degree-degree correlations, the existence of a bimodal degree
distribution is a genuine effect of negative degree correlations
between next nearest neighbor nodes. This result reveals the
importance of long-range degree correlations, beyond nearest
neighbor nodes, in shaping the network structure.

We have shown that the model undergoes a first-order tran-
sition between the Poisson phase and the condensed phase.
The first-order critical line is surrounded by a metastable
region, where the free energy has two minima, each one
corresponding to a phase. For combinations of model pa-
rameters inside the metastable region, algorithms to sample
finite graphs from this ERG model may get stuck in a local
minimum of the free energy [9]. In addition, the jump of
the structural observables across the first-order critical line
prevents us from generating graph samples with structural
parameters in a certain range. Taken together, these features
represent serious limitations of the present ERG model as
an effective tool to model real-world networks. The analytic
solution of the model for N → ∞ and the construction of its
phase diagrams have practical relevance, as these results allow
us to estimate the metastable regions in the parameter space of
finite graphs.

The present paper constitutes a first step towards control-
ling the generation of ERGs with correlated degrees. Overall,
the results for the assortativities, the degree distribution, and
the phase diagrams allow us to identify the regime of pa-
rameters where the model can be useful to reproduce certain
properties of empirical networks. A drawback of the present
model is that the degree distribution in each phase does not
bear any resemblance to the broad degree distributions found
in real-world networks. With the purpose of improving the
model, it would be interesting to solve it with a hard con-
straint in the degree sequence or with a prescribed degree
distribution [10]. This work also opens the perspective to
explore systematically the role of short-range and long-range
degree correlations in dynamical processes occurring on tree-
like networks, since in this case the equations for the dynamics
are typically determined only by the degree distribution [50].
Finally, we point out that the free energy of ERG models
can be mapped in the cumulant generating function of cer-
tain structural observables of Erdös-Rényi random graphs
[51–53]. Therefore, the results of the present paper can be
readily applied to study analytically the large deviations of
higher-order topological properties of Erdös-Rényi random
graphs in the limit N → ∞ [54].
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APPENDIX: SYMMETRY PROPERTIES OF THE
ORDER-PARAMETER FUNCTIONS FOR β < 0

In this Appendix we obtain the symmetry properties of the
order parameters ρ∗

0 (x), . . . , ρ∗
kmax

(x) under the transformation
x → −x. These properties allow us to simplify the saddle-
point Eqs. (40) and (41) and the computation of the structural
observables introduced in Sec. III.

For β < 0, {ρ∗
k (x), ρ̂∗

k (x)} are complex-valued functions of
x ∈ R. This can be seen from Eq. (40), which can be written
for β < 0 as

ρ̂∗
k (x) =

kmax∑
l=0

Ukl e
i
√|β|xl

∫ ∞

−∞
dx′ρ∗

l (x′)ei
√|β|x′k, (A1)

where

Ukl = eγ D(k,l )+ |β|
2 (k2+l2 ). (A2)

If we take the complex-conjugate (. . . ) of Eq. (41) and make
the transformation x → −x, then we get

ρ∗
k (−x) = 1

T
k

k!
[ρ̂∗

k (−x)]k−1e− 1
2 x2+∑Q

r=1 αr Fr (k), (A3)

with T

T =
kmax∑
k=0

1

k!

∫ ∞

−∞
dx[ρ̂∗

k (−x)]ke− 1
2 x2+∑Q

r=1 αr Fr (k). (A4)

By taking the complex-conjugate of Eq. (A1), the function
ρ̂∗

k (−x) fulfills

ρ̂∗
k (−x) =

kmax∑
l=0

Ukle
i
√|β|xl

∫ ∞

−∞
dx′ ρ∗

l (−x′)ei
√|β|x′k. (A5)

Since Eqs. (40) and (41) for {ρ∗
k (x), ρ̂∗

k (x)} are the same as
Eqs. (A3) and (A5) for {ρ∗

k (−x), ρ̂∗
k (−x)}, we conclude that

ρ∗
k (x) = ρ∗

k (−x) (A6)

and

ρ̂∗
k (x) = ρ̂∗

k (−x) (A7)

for arbitrary x. This implies that {Reρ∗
k (x), Reρ̂∗

k (x)} and
{Imρ∗

k (x), Imρ̂∗
k (x)} are, respectively, even and odd functions

of x.
Let us use the above symmetry properties to simplify the

order-parameter equations. By setting ρ̂∗
k (x) in polar form

ρ̂∗
k (x) = rk (x)eiϕk (x), (A8)

with ϕk (x) ∈ (−π, π ], and noting that

rk (−x) = rk (x) (A9)

and

ϕk (−x) = −ϕk (x), (A10)

we readily obtain ImT = 0 from Eq. (A4). Hence Eq. (41)
can be written as

Reρ∗
k (x) = 1

ReT
k

k!
[rk (x)]k−1 cos [(k − 1)ϕk (x)]

× e− 1
2 x2+∑Q

r=1 αr Fr (k), (A11)
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Imρ∗
k (x) = 1

ReT
k

k!
[rk (x)]k−1 sin [(k − 1)ϕk (x)]

× e− 1
2 x2+∑Q

r=1 αr Fr (k). (A12)

The above equations are coupled to Eq. (40), which can be
simplified for β < 0 using Eqs. (A6) and (A7)

Reρ̂∗
k (x) = 2

kmax∑
l=0

Ukl cos (
√

|β|xl )
∫ ∞

0
dx′Ykl (x

′), (A13)

Imρ̂∗
k (x) = 2

kmax∑
l=0

Ukl sin (
√

|β|xl )
∫ ∞

0
dx′Ykl (x

′), (A14)

where

Ykl (x) = Reρ∗
l (x′) cos (

√
|β|x′k)

− Imρ∗
l (x′) sin (

√
|β|x′k). (A15)

The fixed-point functions {ρ∗
k (x)} that solve Eqs. (A11)–(A14)

determine the free energy f and all the structural parameters
for β < 0. Using the symmetry properties of Eqs. (A6) and
(A7), it is straightforward to verify from Eq. (38) that f ∈ R
for β < 0.
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