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INTRODUCTION 

Soil heat flux (G) is one of the main components of the surface energy balance (SEB) and 

accounts for the energy transferred to and from the land surface and deeper layers of the ground 

[Kustas & Norman (1999)]. Despite its small magnitude, G plays an important role in the 

determination of available energy for hydrological processes, such as evapotranspiration (ET) [Purdy 

et al. (2016)]. Many models integrated remote sensing data with meteorological monitoring to 

calculate SEB fluxes, of which G was determined empirically [Jackson et al. (1987); Kalma & Jupp 

(1990); Menenti & Choudhury (1993); Norman et al. (1995); Anderson et al. (1997); Bastiaanssen 

(1995); Roerink et al. (2000); Su (2002); Allen et al. (2007); Anderson et al. (2007)]. However, the 

wide spatio-temporal variability of G and the developed empirical models limited sampling usually 

implicates that their application to conditions other than the ones for which they were developed can 

lead to regional biases of G predictions, which may result in large uncertainties in SEB closure [Purdy 

et al. (2016)]. Therefore, a reduction in the biases in G estimation may lead to more accurate available 

energy prediction and improvements in ET estimates. 

To overcome the issue of regional biases when developing a model for G prediction, we built a 

network of flux towers from regional initiatives to represent the wide-ranging climate and ecosystem 

diversity of South America [Villarreal & Vargas (2021)]. In addition to the most used flux tower 

network data compilation [Saleska et al. (2013)] from the large-scale biosphere-atmosphere 

experiment in the Amazon (LBA-ECO) [Davidson & Artaxo, 2004)], we also included data from the 

SULFLUX (South Brazilian network of surface fluxes and climate change), ONDACBC (National 

Observatory of Water and Carbon Dynamics in the Caatinga Biome) [Borges et al. (2020)], and the 

PELD Pantanal (long-term ecological research in Pantanal) [Tabarelli et al. (2013)], in conjunction 

with flux measurements supported by Brazilian universities, including the UFMT (Federal University 

of Mato Grosso) [Biudes et al. (2015)] and the USP (University of Sao Paulo) [Da Rocha et al., 

(2009)], funded by national and regional research agencies. This network encompasses most land 
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covers in South America, corresponding to over 80% of its area (except for urban, barren, and high-

altitude forest land covers) [Eva et al. (2004)], and has been used as validation data for SEB flux 

estimations via remote sensing [Ruhoff et al. (2012); Laipelt et al. (2020), Danelichen et al. (2014)]. 

An alternative to the existing methods of modeling G is the use of artificial neural networks 

(ANNs), which are universal approximators [Hornik et al. (1989)] and have shown better 

performance than existing conceptual and empirical models [Silverman & Dracup (2000); Zanetti et 

al. (2007); Tabari et al. (2010); Canelón & Chávez (2011); Jimeno-Sáez et al. (2018); Käfer et al. 

(2020)]. ANNs are computational models analogous to the brain’s biological behavior, simulating 

its capabilities of learning and memorizing. The ANN relates input data to specified outputs through 

a series of intertwined layers of neurons. The neurons connect and transform input variables via 

activation functions. An ANN can be trained by pairing historical data and calibrating the 

connections’ synaptic weights to obtain the best relationship between inputs and outputs [Hornik et 

al. (1989)]. 

Therefore, given the diversity of G estimation methods and their limited application conditions, 

this study focused on assessing the ability of ANNs to predict G over a wide range of ecosystems in 

South America, using long-term remote sensing and meteorological time series, and comparing the 

ANNs’ performance to that of commonly used G models. With this study, we hope to assist future 

SEB closure studies. 

MATERIAL AND METHODS 

23 flux towers located in South America were used to calibrate and validate the ANNs. Figure 

1 displays the location and land cover of the study sites, and the scheme of the ANNs that were built, 

with (Gc) and without (Gnc) land cover data. Surface temperature (Ts), albedo (α), and enhanced 

vegetation index (EVI), obtained from the moderate resolution imaging spectroradiometer (MODIS), 

and net radiation (Rn) from the global land data assimilation system 2.1 (GLDAS 2.1) product, were 

used as inputs, both available at the Google Earth Engine platform (https://earthengine.google.com/ 

[Accessed date: June 30, 2020]). The land cover information was acquired from flux towers data files 

and, for simplification, were grouped into one of five types and replaced by a number, as follows: (1) 

cropland; (2) irrigated cropland; (3) forest; (4) grassland; (5) savanna. 
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Figure 1 – Study sites location and land cover (left). Gc (top right) and Gnc (bottom right) ANNs’ structure. 

 

ANN training was performed on the randomized series, partitioned into calibration and 

validation sets. Priorly, one third of the data was reserved for verification and comparison with the 

Jackson et al. (1987) and Bastiaanssen (1995) equations. The existing models were adjusted for 

minimization of the quadratic error in the verification set. 

In order to avoid preferential treatment of inputs with different magnitudes, input and output 

data were scaled using a normalization procedure, shown by Equation (1): 

 X′ =
(X − Xbottom)

Xtop − Xbottom
 (1)  

where X’ is the scaled variable; X is the raw variable; and Xbottom and Xtop are the data bottom 

and top limits, respectively. The top and bottom limits were chosen based on observations of the 23 

study sites’ available series and are shown in Table 1. These values also represent the valid range for 

applications of the trained ANNs. 

Table 1 – Performance metrics of the Gc and Gnc ANNs, and the Jackson et al. (1987) and Bastiaanssen 

(1995) models, grouped by land cover. 

Data Bottom Limit Top Limit 

Soil heat flux (G) −20.0 W/m2 200.0 W/m2 

Net radiation (Rn) 150.0 W/m2 1000.0 W/m2 

Land surface temperature (Ts) 275.0 K 325.0 K 

Albedo (α) 0.1 0.5 
Enhanced vegetation index (EVI) −0.1 1.0 

Land cover 0.0 6.0 
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The developed ANNs are generically represented by Equation (2): 

 O′ = fo {∑wo,ifh [∑(wh,i,jX′j) +

n

j=1

bh,i] + bo

m

i=1

} (2)  

where O’ is the ANN’s output, equivalent to G in its scaled form; n is the number of input 

datasets; m is the number of neurons in the hidden layer; wh, bh, fh, wo, bo, and fo are the synaptic 

weights (w), biases (b), and activation functions (f) of the hidden (h) and output (o) layers, 

respectively. The unipolar sigmoid function was used as the activation function for both the hidden 

and output layers. 

RESULTS 

The complexity analysis of the ANNs indicated that its performance improves initially with 

higher complexity but is stable for complexities greater than four neurons. Therefore, for security 

reasons, seven neurons for Gc and five neurons for Gnc were chosen. 

After assessing the ANN’s complexity, the optimal dataset training/validation split ratio was 

verified, resulting in 748 samples for the training series, 1,745 samples for the validation series, and 

1,285 samples for the verification series, for both the Gc and the Gnc ANNs. 

Table 2 displays the Nash-Sutcliffe coefficient (NS), the mean absolute error (MAE) and the 

correlation coefficient (r) of the existing models (after adjustment) and of the developed ANNs, 

grouped by land cover.  

Table 2 – Performance metrics of the Gc and Gnc ANNs, and the Jackson et al. (1987) and Bastiaanssen 

(1995) models (denoted as Jack. And Bast., respectively), grouped by land cover, and summarized for all 23 

flux towers (general). 

Land Cover 
NS MAE (W/m²) r 

Gc Gnc Jack. Bast. Gc Gnc Jack. Bast. Gc Gnc Jack. Bast. 

Forest -0.16 0.70 -8.32 -4.79 4.60 11.43 14.77 11.90 0.22 0.57 0.15 -0.13 

Irrigated Cropland 0.08 -0.58 -0.77 -0.89 19.90 28.70 33.41 30.87 0.36 0.68 -0.14 -0.38 

Cropland 0.22 0.11 -0.05 0.05 23.03 24.80 24.61 25.46 0.48 0.51 0.30 0.29 
Grassland 0.19 0.41 -0.05 -0.06 19.08 20.29 21.41 23.97 0.49 0.51 0.16 -0.02 

Savanna 0.72 -0.10 -0.33 -0.01 15.12 18.09 42.12 31.75 0.86 0.48 -0.28 0.38 

General 0.53 0.27 -0.17 0.02 14.04 18.06 24.43 21.78 0.73 0.53 0.02 0.21 

Based on Table 2, both ANNs and models yielded low NS values, with exceptions for Gc over 

savanna (NS = 0.72) and Gnc over forest (NS = 0.70). The ANNs yielded lower MAE values and 

higher r values consistently over the different land covers. Overall, The ANNs performed better than 

the existing models, with great improvement in NS and r values, and between 17.1% and 42.5% 

reduction of MAE. 

Figure 2 compares the seasonal G in each land cover, given by the flux tower observations and 

by the Gc and Gnc ANNs, and the Jackson et al. (1987) and Bastiaanssen (1995) adjusted models. 

While forest land cover displays a relatively constant observed G throughout the year, other land 

covers present a broader seasonal range and larger monthly standard deviations (given by shaded 

areas). Overall, the Gc ANN yielded the best adherence to the observed G series, showing similar 

seasonal patterns and standard deviations, especially in the savanna land cover. On the other hand, 

the Gnc ANN and the adjusted models yielded a smaller seasonal range and standard deviation, not 

adhering to the observed G series as well as the Gc ANN. 
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Figure 2 – Observed (black, continuous) and predicted (red, dashed) seasonal monthly values of G, for each 

land cover. Shaded areas represent each series monthly standard deviations, while the lines represent the 

monthly averages. 

 

CONCLUSIONS 

In this study, ANNs were developed to calculate G via the integration of satellite remote sensing 

and meteorological reanalysis data. Compared to that of existing models, the performance of the 

generated ANNs was better overall, yielding lower errors and higher correlation values. This indicates 

that the ANN’s structure can better approximate the behavior of G over various land covers and 

climate conditions. 

The inclusion of land cover information into the ANNs as an input improved the accuracy of 

the G predictions. The superior performance of the ANNs with land cover as an input indicates that 

the commonly used remote sensing data may be insufficient to fully capture the differences among 

the surfaces and appropriately predict G. However, it is recommended to include additional remote 

sensing datasets in such models, especially those used in image land cover classification, instead of 

land cover data. This would remedy possible issues with the lack of standardization of land cover 

classification systems. On the other hand, the addition of input data sets increases the complexity of 

the ANNs and may even reduce accuracy. Thus, parsimony is recommended when selecting predictor 

data sets. 

These findings demonstrate that the developed ANNs can predict G spatiotemporal variability 

more accurately than existing models. Despite the limitation of the distribution of the available flux 

towers, the wide variety of land covers considered, encompassing most of South America, and the 

length of the time series used in the ANN’s training mean that the developed ANNs also yielded a 

higher generalization ability than the existing models. However, the ANN’s accuracy over high 

altitude and meridional land covers should also be assessed for greater reliability. 

For future studies, we suggest the mapping of G over the whole South America using the ANNs 

and a comparison of this to existing global products. The investigation of the effects of ANN-based 
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G estimates on error reduction of surface energy balance fluxes and evapotranspiration modelling is 

also recommended.   
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