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RESUMO

Este é um estudo empírico dividido em duas partes com o objetivo de explicar e prever a volatili-
dade realizada da carteira e realizar a otimização da carteira no mercado financeiro brasileiro
usando semicovariâncias que usam dados de alta frequência. Na primeira parte do artigo, pre-
tendemos prever a volatilidade realizada de uma carteira igualmente ponderada formada pelos
retornos dos ativos da Bovespa brasileira, enquanto na segunda parte do artigo buscamos e
encontramos uma carteira ótima. Em ambas as partes, utilizamos dados de alta frequência de dez
ativos em diferentes segmentos e entre os mais negociados no mercado financeiro da Bovespa
de julho de 2018 a janeiro de 2021. Os resultados mostram que os semicovariâncias ajudam a
explicar melhor a variância da carteira de ações realizada e sob diferentes regimes, a relação
entre eles pode mudar. Além disso, mostramos que usando todos semicovariâncias realizadas
dentro de um modelo HAR podem levar a um "overfitting"e sob períodos de rebalanceamento de
maior frequência, elas trazem melhorias no desempenho do portfólio ótimo de variância mínima.

Palavras-chave: Data de alta frequência. Previsão de volatilidade. Semivariâncias realizadas.
Otimização de portfólio. Markov switching. LASSO. Performance econômica.



ABSTRACT

This is an empirical study split in two parts aimed to explain and forecast realized portfolio
volatility and perform portfolio optimization in the Brazilian financial market using realized
semicovariances that use high-frequency data. In the first part of the paper, we aim to forecast
the realized volatility of an equally weighted portfolio formed by Brazilian Bovespa asset
returns, whereas in the second part of the paper we search and find an optimum portfolio. In
both parts, we use high-frequency data of ten assets from different segments and among the
most negotiated in Bovespa financial market from July 2018 to January 2021. The results show
that the realized semicovariances help to explain better the realized stock portfolio variance
and under different regimes the relation among them can change. Also, we show that using
all realized semicovariances within a HAR Model can lead to "overfitting"and under higher
frequency rebalancing periods, they bring improvements on the minimum variance portfolio
performance.

Keywords: High-frequency data. Volatility forecasting. Realized semicovariances. Portfolio
optimization. Markov switching. LASSO. Economic performance.
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1 INTRODUÇÃO

O artigo incluído nesta dissertação consiste em um estudo empírico das medidas de
semicovariância realizadas descritas no artigo do Bollerslev et al. (2020). A volatilidade é uma
medida do grau de variação dos retornos de um ativo financeiro. Modelar e prever a volatilidade
dos ativos financeiros é de grande interesse para muitos profissionais de finanças devido ao seu
uso na gestão de risco, alocação de ativos, precificação de opções, entre outros. Muitos modelos
têm sido usados para prever a variância dos retornos dos ativos, como GARCH em Bollerslev
(1986) e suas derivações, que prevê a variância condicional dos retornos.

O advento dos dados de alta frequência permitiu a introdução de estimadores empíricos da
variação quadrática para medir a variação ex-post dos preços dos ativos, ver Andersen e Bollerslev
(1998), Andersen et al. (2001) e Barndorff-Nielsen e Shephard (2002). Hansen e Lunde (2010)
lista seis maneiras pelas quais os dados de alta frequência melhoraram a previsão de volatilidade:
i) os dados de alta frequência melhoram nossa compreensão das propriedades dinâmicas da
volatilidade, que é a chave para previsão; ii) as medidas realizadas são preditores valiosos da
volatilidade futura em modelos de forma reduzida; iii) as medidas realizadas permitiram o
desenvolvimento de novos modelos de volatilidade que fornecem previsões mais precisas; iv)
os dados de alta frequência melhoraram a avaliação das previsões de volatilidade de maneiras
importantes; v) as medidas realizadas podem facilitar e melhorar a estimativa de modelos
complexos de volatilidade, como modelos de volatilidade em tempo contínuo e vi) os dados
de alta frequência melhoraram nossa compreensão das forças motrizes da volatilidade e sua
importância relativa. Por exemplo, os dados de alta frequência permitiram uma análise detalhada
dos anúncios de notícias e seus efeitos nos mercados financeiros.

Nesse contexto, Hansen et al. (2012) apresenta o GARCH realizado, um modelo GARCH
que incorpora medidas realizadas como covariáveis. Patton e Sheppard (2015), através de um
arcabouço empírico, mostra que a volatilidade futura está mais fortemente relacionada para a
volatilidade dos retornos negativos anteriores do que para os retornos positivos e que o impacto
de um salto de preço na volatilidade depende do sinal do salto, com saltos negativos (positivos)
levando a uma maior (menor) volatilidade futura.

De acordo com Bollerslev et al. (2020), no contexto multivariado, um recente crescimento
a literatura tem defendido vigorosamente o uso de dados intradiários de alta frequência para
estimar de forma mais confiável matrizes de covariância de retorno de baixa frequência como em
Andersen et al. (2003), Barndorff-Nielsen e Shephard (2004) e Barndorff-Nielsen et al. (2011).

Partindo do pressuposto de que os investidores se preocupam mais com a perda do que
com o ganho, Barndorff-Nielsen et al. (2010) introduz a semivariância realizada, uma medida
de risco que leva em conta o sinal de retorno e motiva Bollerslev et al. (2020) a propor uma
decomposição da covariância realizada matriz em três componentes da matriz de semicovariância
realizada ditada pelos sinais do retornos de alta frequência subjacentes. Segundo os autores, as
matrizes de semicovariância realizadas podem ser vistas como uma extensão multivariada de
alta frequência das semivariâncias originalmente propostas em Harry M Markowitz (1959), Mao
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(1970), Hogan e Warren (1972) e Fishburn (1977).
Usando dados de alta frequência para uma grande seção transversal de ações dos EUA,

Bollerslev et al. (2020) descobre que os modelos que incorporam as medidas de semicovariância
realizada têm um desempenho de previsão superior a modelos que empregam as medidas de
semivariância realizada ou apenas a matriz de covariância realizada.

No artigo que compõe o Capítulo 2 propomos um estudo empírico em duas partes apli-
cando as medidas de semicovariâncias realizadas descritas em Bollerslev et al. (2020)1. Na
primeira parte do artigo, pretendemos prever a volatilidade realizada de uma carteira igual-
mente ponderada formada por ativos da Bolsa brasileira, enquanto na segunda parte do artigo,
procuramos e encontramos um portfólio ideal usando as medidas realizadas descritas acima.

1 o leitor interessado em se aprofundar nos conceitos teóricos pode consultar o Apêndice A onde extraímos os
principais resultados obtidos em Bollerslev et al. (2020)
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2 REALIZED SEMICOVARIANCES: EMPIRICAL APPLICATIONS TO VOLATIL-
ITY FORECASTING AND PORTFOLIO OPTIMIZATION

Rafael Ricco1 and Flavio A. Ziegelmann 2

September, 2021

Abstract. We propose a two-fold empirical study applying the concept of realized semicovari-
ances as introduced by Bollerslev et al. (2020): in the first part of the paper we aim to forecast
the realized volatility of an equally weighted portfolio formed by Brazilian Bovespa asset returns,
whereas in the second part of the paper we search and find an optimum portfolio. In both parts
we use high frequency data of ten assets from different segments and among the most negotiated
in Bovespa financial market from July 2018 to January 2021. In addition, we investigate whether
a Markov Switching strategy fits well to our modeling approach considering that our observed
data starts some time before the Covid-19 pandemic and spans well into the pandemic period.
The results suggest that the realized semicovariances help to explain better the realized stock
portfolio variance and under different regimes the relation among them can change. Also, we
show that using all realized semicovariances within a HAR Model can lead to “overfitting" and
under higher frequency rebalancing periods, they bring improvements on the minimum variance
portfolio performance.

Keywords. High-frequency data. Volatility forecasting. Realized semicovariances. Portfolio
optimization. Markov switching. LASSO. Economic performance.

JEL Classifications. C53, E37
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2.1 INTRODUCTION

Volatility is a measure of the degree of variation of the returns of a financial asset.
Modeling and forecasting the volatility of financial assets is of great interest to many practitioners
in finance due to their usage in risk management, asset allocation, option pricing, among others.
Many models have been used to predict the variance of the assets’ returns such as GARCH in
Bollerslev (1986) and its derivations, that predicts the conditional variance of the returns.

The advent of high-frequency data has permitted the introduction of empirical estimators
of the quadratic variation to measure the ex-post variation of asset prices, see Andersen and
Bollerslev (1998), Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002). Hansen
and Lunde (2010) list six ways that high-frequency data has improved volatility forecasting: i)
high-frequency data improve our understanding of the dynamic properties of volatility which is
key for forecasting; ii) realized measures are valuable predictors of future volatility in reduced-
form models; iii) realized measures have enabled the development of new volatility models that
provide more accurate forecasts; iv) high-frequency data has improved the evaluation of volatility
forecasts in important ways; v) realized measures can facilitate and improve the estimation of
complex volatility models, such as continuous-time volatility models and vi) high-frequency data
has improved our understanding of the driving forces of volatility and their relative importance.
For instance, high-frequency data have enabled a detailed analysis of news announcements and
their effect on the financial markets.

The realized variance is the most commonly used realized measure constructed by adding
up squared intraday returns. There is an extensive statistical theory for this subject that is derived
in papers by Barndorff-Nielsen and Shephard (2002), Meddahi (2002), Andersen et al. (2003)
and Mykland and Zhang (2009), among others.

In this context, Hansen et al. (2012) introduce the Realized GARCH, a GARCH model
that incorporates realized measures as covariates. Patton and Sheppard (2015), through an
empirical framework, show that future volatility is more strongly related to the volatility of past
negative returns than to that of positive returns and that the impact of a price jump on volatility
depends on the sign of the jump, with negative (positive) jumps leading to higher (lower) future
volatility.

According to Bollerslev et al. (2020), in the multivariate context, a rapidly-growing
recent literature has forcefully advocated the use of high-frequency intraday data to more reliably
estimate lower-frequency return covariance matrices as in Andersen et al. (2003), Barndorff-
Nielsen and Shephard (2004) and Barndorff-Nielsen et al. (2011).

Noureldin et al. (2012) propose the HEAVY models, a new class of multivariate volatility
models that utilizes high-frequency data. Their empirical results suggest that the HEAVY model
outperforms the multivariate GARCH model in an out-of-sample analysis, with the gains being
particularly significant at shorter forecast horizons. Borges et al. (2015) show that covariance
matrices based on higher frequency data lead to better performance indicators for a Brazilian
stock portfolio. Aıt-Sahalia and Xiu (2016) analyze that the crisis period of 2007-2010 did indeed



10

result in an increase in quadratic variation in all the assets considered by them, however, it did
not cause a significant change in the breakdown between their respective Brownian and jump
contributions, with both moving consistently with one another. Bollerslev et al. (2018) depict
through an empirical framework the relationship between volume, volatility and public news
announcements.

Under the assumption that investors care more about loss than gain, Barndorff-Nielsen
et al. (2010) introduce the realized semivariance, a measure of risk that takes the return sign
into account, and motivate Bollerslev et al. (2020) to propose a decomposition of the realized
covariance matrix into three realized semicovariance matrix components dictated by the signs of
the underlying high-frequency returns. According to the authors, the realized semicovariance
matrices may be seen as a high-frequency multivariate extension of the semivariances originally
proposed in Harry M Markowitz (1959), Mao (1970), Hogan and Warren (1972) and Fishburn
(1977).

Using high-frequency data for a large cross-section of U.S. equities, Bollerslev et al.

(2020) find that models that incorporate the realized semicovariance measures have a superior
forecast performance than models that employ the realized semivariance measures or just the
realized covariance matrix.

Set against this background and given the importance of the covariance matrix of asset
returns for portfolio management, this paper is aimed to use the realized semicovariance measures
described in Bollerslev et al. (2020). In section 2.2 we describe the variance components of
asset returns in the univariate and multivariate contexts. In section 2.3, we describe the statistical
models used in the present work in order to analyze the relationship between the portfolio realized
variance and its components and in section 2.4 we apply these models to evaluate how much
the realized semicovariances help to explain and predict an equally weighted stock portfolio
variance in the Brazilian financial market. In section 2.5, we present the portfolio optimization
theoretical framework and in section 2.6 we apply the realized measures presented in Bollerslev
et al. (2020) to evaluate if their use brings improvements in the economic performance for stock
portfolios. Finally, we make conclusion remarks in section 2.7.

2.2 REALIZED VOLATILITY MEASURES

The importance of measuring correlations between assets of a portfolio goes back to the
early 1950s with H. Markowitz (1952). Since then, many works have studied the estimation and
prediction of asset returns covariance matrices as in Kendall and Hill (1953), Elton and Gruber
(1973) and Bauwens et al. (2006) due to their importance to risk and pricing evaluation.

As in Barndorff-Nielsen et al. (2010), a number of researchers have been interested in
measuring downside risk, the risk of observing returns in the left tail of their probability density
function, using specific information based on negative returns. This has been made by quantities
such as value at risk, expected shortfall, and semivariance, which were typically estimated using
daily returns.
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Within the high-frequency data context and following Barndorff-Nielsen et al. (2010),
the Realized Variance (RV), defined as

RV =
n

∑
j=1

(Yt j −Yt j−1)
2 , (2.1)

where 0 = t0 < t1 < · · · < tn = 1 are the times (ticks) at which prices are available, estimates
consistently the quadratic variation of log asset prices Yt over a fixed time period, suppose [0,1],
that is,

p-limn→∞

n

∑
j=1

(Yt j −Yt j−1)
2 = [Y ]1 , with [Y ]t =

∫ t

0
σ

2
s ds ,

when Yt is a Brownian semimartingale, for instance. Note that the signs of the returns are
irrelevant in the limit.

Furthermore, if there are jumps in the underlying generating process, the second term
that shows up in the quadratic variation below, representing the source of quadratic variation due
to those jumps, takes no information from the signs of returns:

[Y ]t =
∫ t

0
σ

2
s +∑

s≤t
(∆Ys)

2 . (2.2)

Motivated by the previous reasoning, Barndorff-Nielsen et al. (2010) introduce the
downside realized semivariance (RS−), given by

RS− =
t j≤1

∑
j=1

(Yt j −Yt j−1)
2IYt j−Yt j−1≤0 , (2.3)

and

RS+ =
t j≤1

∑
j=1

(Yt j −Yt j−1)
2IYt j−Yt j−1≥0 , (2.4)

where RV = RS−+RS+.

They prove that under in-fill asymptotics

RS−
p−→ 1

2

∫ 1

0
σ

2
s ds+ ∑

s≤1
(∆Ys)

2I∆Ys≤0 (2.5)

and
RS+

p−→ 1
2

∫ 1

0
σ

2
s ds+ ∑

s≤1
(∆Ys)

2I∆Ys≥0 . (2.6)

Inspired by Barndorff-Nielsen et al. (2010), Bollerslev et al. (2020) extend their work
to the multivariate context. Let XXX t = (X1,t , . . . ,Xd,t)

> denote a d-dimensional log-price process,
sampled on a regular time grid 0 = t0 < t1 < · · ·< tn = T over some fixed time span T > 0 and
let the ith return be denoted by ∆∆∆iXXX = XXX ti−XXX ti−1 . The realized covariance matrix is defined as

R̂C =
n

∑
i=1

(∆∆∆iXXX)(∆∆∆iXXX)>. (2.7)
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Letting p(x) =max{x,0} and n(x) =min{x,0} denote the component-wise positive and negative
elements of the real vector x, the corresponding “positive", “negative" and “mixed" realized
semicovariance matrices are then simply defined as

R̂SCp =
n

∑
i=1

p(∆∆∆iXXX)p(∆∆∆iXXX)>,

R̂SCn =
n

∑
i=1

n(∆∆∆iXXX)n(∆∆∆iXXX)>,

R̂SCm =
n

∑
i=1

[p(∆∆∆iXXX)n(∆∆∆iXXX)>+n(∆∆∆iXXX)p(∆∆∆iXXX)>] .

(2.8)

Note that R̂C = R̂SCp + R̂SCn + R̂SCm and R̂SCp, R̂SCn are defined as sums of vector outer-
products and thus are positive semidefinite, whereas R̂SCm is indefinite.

Motivated by empirical observations from each of the 30 Dow Jones Industrial Average
(DJIA) stocks returns on two different days, Bollerslev et al. (2020) note that estimates of R̂SCp

and R̂SCn can diverge in response to the content of the news/event. The reader can find the
theoretical framework that illustrate the distinction between the information carried on by the
positive semicovariance and the negative semicovariance matrices in Bollerslev et al. (2020).

2.3 VOLATILITY FORECASTING

Many models have been developed to forecast the realized variance of a portfolio and we
describe some of them below. The realized variance of a portfolio with portfolio weights www may
be expressed as

R̂V
port

= www>R̂Cwww , (2.9)

where R̂C is defined in (2.7). Since R̂C = R̂SCp + R̂SCn + R̂SCm, we have

R̂V
port

= www>R̂Cwww

= www>R̂SCpwww+www>R̂SCnwww+www>R̂SCmwww

= P̂port + N̂ port + M̂port .

(2.10)

A widely used model to forecast the realized variance is the HAR model of Corsi (2009),
defined by

R̂V
port
t+1|t = α0 +αdR̂V

port
t +αwR̂V

port
t−1:t−4 +αmR̂V

port
t−5:t−21 , (2.11)

where R̂V
port
t−l:t−k = 1

k−l+1 ∑
k
s=l R̂V

port
t−s . As in Bollerslev et al. (2020), we consider it as our

benchmark model to evaluate forecast performance.
In addition to HAR, borrowing the idea from Patton and Sheppard (2015), we consider

a HAR extension, the Semivariance HAR (SHAR), which includes the semivariances to the
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explanatory variables set as below:

P̂SV =
n

∑
i=1

[p(www>∆∆∆iXXX)]2

N̂SV =
n

∑
i=1

[n(www>∆∆∆iXXX)]2 ,

where www represents the portfolio weights, ∆∆∆iXXX = XXX ti −XXX ti−1 is the i-th intraday return of a
d-dimensional log-price process XXX t and p(x) = max{x,0} and n(x) = min{x,0} denote the
component-wise positive and negative elements of the real vector x. The forecasting scheme
results in

R̂V
port
t+1|t = α0 +αd,pP̂SV t +αd,nN̂SV t +αwR̂V

port
t−1:t−4 +αmR̂V

port
t−5:t−21 . (2.12)

The model above allows us to verify whether the semivariances bring additional informa-
tion to forecasting the portfolio realized variance.

Within the context of HAR extensions, following Bollerslev et al. (2020), we consider
another one, the SemiCovariance HAR (SCHAR) that includes the semicovariance components
depicted in (2.10). The one-step ahead forecast for the portfolio realized variance results in

R̂V
port
t+1|t = α0 +αd,pP̂port

t +αw,pP̂port
t−1:t−4 +αm,pP̂port

t−5:t−21

+αd,nN̂ port
t +αw,nN̂ port

t−1:t−4 +αm,nN̂ port
t−5:t−21

+αd,mM̂port
t +αw,mM̂port

t−1:t−4 +αm,mM̂port
t−5:t−21.

(2.13)

Additionally, in order to select the best predictors while avoiding over-fitting, we apply
the Least Absolute Shrinkage and Selection Operator (LASSO) of Tibshirani (1996) in (2.13),
obtaining what we name as SCHAR-lasso-in. Our LASSO estimator, considering α0 as pre-
estimated and R̂V

port
t corrected by its mean, is given by the solution of

α̂αα = arg min

[
RSS(α1, . . . ,α9)+λ

9

∑
j=1
|α j|

]
, (2.14)

where ααα = (α1, ...,α9) = (αd,p, . . . ,αm.m), RSS(α1, ...,α9) = ∑
T
t=22(R̂V

port
t −α1P̂port

t−1 − ·· · −
α9M̂port

t−6:t−22)
2. The tuning parameter λ is usually chosen by data-driven techniques such as

cross-validation3 or information criteria.
As a final model specification, we introduce a two-regime Markov-Switching (MS)

SCHAR model. The state variable St is an unobservable Markov chain and the estimation process
is based on Kim’s filter as described in Kim and Nelson (1999). Given the probability of the
realized volatility is far away from the normal distribution the coefficients are estimated by the
quasi-maximum likelihood estimate introduced in Lindsay (1988). Mathematically,

`=
T

∑
t=1

log

(
1

∑
St=0

f (R̂V
port
t |St ,ψt−1)Pr[St |ψt−1]

)
. (2.15)

3 In the present work, we use a 10-fold cross-validation.
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where f (R̂V
port
t |St ,ψt−1)=

1√
2πσ2

St

exp(− (R̂V
port
t −α0,St−αd,p,St P̂port

t−1 −···−αm,m,St M̂port
t−6:t−22)

2

2σ2
St

). As the regimes

St are unobservable, to evaluate the log-likelihood in (2.15) we need to calculate the weights
Pr[St |ψt−1] for St = 0 and St = 1 (two states). We do so here via Kim’s filter (see Kim and
Nelson (1999)).

2.4 EMPIRICAL EXERCISE 1

In this section we forecast the realized volatility of an equally weighted stock portfolio
using the models described in Section 2.3. Our portfolio is composed of 10 BOVESPA index
stocks depicted in Table 1, chosen to represent a high level of negotiation volume as well as to
ensure heterogeneity among the different sectors of the economy.

Company’s Name Ticker Symbol Sector

Ambev S.A. ABEV3 Consumer Staples
B3 B3SA3 Financials

Bradesco S.A. BBDC4 Financials
Intermedica S.A. GNDI3 Health Care

Itaú S.A. ITUB4 Financials
JBS S.A. JBSS3 Consumer Staples

Magazine Luiza S.A. MGLU3 Consumer Discretionary/Information Technology
Petrobras S.A. PETR4 Oil & Gas
Suzano S.A. SUZB3 Industrials

Vale S.A. VALE3 Industrials Materials

Table 1 – Stocks included in the portfolio.

We consider a sample period from July 2018 to January 2021, comprising a total of 624
trading days. Besides, we use 5-minute intra-day returns to construct the realized measures,
excluding the overnight returns4.

2.4.1 In-sample Analysis

To generate the in-sample analysis, we first estimate the following three variations of
HAR Models seen previously: HAR itself, SHAR and SCHAR.

Table 2 shows us the estimation results for each model aforementioned. We can observe
that all coefficients are statistically significant at the 5% level in the first model. In the second
model we can see that the daily positive semivariance (P̂SV t−1) and both weekly and monthly
realized covariances (R̂V

port
t−2:t−5, R̂V

port
t−6:t−22) are the main drivers of the realized portfolio vari-

ance (R̂V t). Lastly, in the third model , we can notice that all coefficients, but monthly negative
semicovariance and monthly positive semicovariance (N̂ port

t−6:t−22 and P̂port
t−6:t−22), are statistically

significant at 5%, which contrasts with the analysis in Bollerslev et al. (2020), where all negative
4 The dataset can be fetched on https://github.com/rricco/realvol/tree/master/data

https://github.com/rricco/realvol/tree/master/data
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semicovariances are significant at 5% level. Looking at the Adjusted R2 measures for each model
(0.703 for the first model against 0.761 and 0.807 for the second and third model respectively),
our findings imply that both realized semivariance and realized semicovariance components
bring improvements for the explanation of the realized portfolio variance.

Dependent variable:

R̂V
port
t

HAR SHAR SCHAR

R̂V
port
t−1 0.612∗∗∗ (0.040)

P̂SV t−1 6.639∗∗∗ (0.509)
N̂SV t−1 0.601∗∗∗ (0.455)

R̂V
port
t−2:t−5 0.306∗∗∗ (0.047) 0.210∗∗∗ (0.041)

R̂V
port
t−6:t−22 −0.069∗∗ (0.034) −0.096∗∗∗ (0.030)

P̂port
t−1 1.232∗∗∗ (0.093)

P̂port
t−2:t−5 1.726∗∗∗ (0.252)

P̂port
t−6:t−22 -0.561 (0.860)

N̂ port
t−1 −0.509∗∗∗ (0.074)

N̂ port
t−2:t−5 −1.408∗∗∗ (0.212)

N̂ port
t−6:t−22 1.228 (0.772)

M̂port
t−1 −0.937∗∗∗ (0.222)

M̂port
t−2:t−5 −1.249∗∗ (0.573)

M̂port
t−6:t−22 2.655∗∗∗ (0.796)

Observations 602 602 602
R2 0.704 0.763 0.809

Adjusted R2 0.703 0.761 0.807
Residual Std. Error 0.0003 (df = 598) 0.0002 (df = 597) 0.0002 (df = 592)

F Statistic 474.398∗∗∗ (df = 3; 598) 479.963∗∗∗ (df = 4; 597) 279.366∗∗∗ (df = 9; 592)

Table 2 – Parameter estimates and their respective standard errors in brackets for each model in (2.11), (2.12) and
(2.13), respectively. The first column shows us the covariates used across models. ∗∗∗, ∗∗ and ∗ represent

whether a coefficient is significant at 1%, 5% or 10% levels, respectively.

In addition, Table 3 shows us the coefficients selected by the Least Absolute Shrinkage
and Selection Operator (LASSO) from the SCHAR Model. As we can see, the shrinkage method
chooses four covariates (P̂port

t−1 , P̂port
t−2:t−5, M̂port

t−1 , M̂port
t−6:t−22) as best predictors of the portfolio

realized variance.

2.4.2 In-sample Analysis under different regimes

Our sample spans from 2 July 2018 to 8 January 2021, that is, it enters well the COVID-19
pandemic, which sharply increases volatility in the financial markets. To overcome this situation,
we firstly split our dataset into a pre-pandemic period (from 2 July 2018 to 28 February 2020)
with 388 observations and a post-pandemic period (from 2 March 2020 to 8 January 2021) with
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Dependent variable:

R̂V
port
t

P̂port
t−1 0.9933

P̂port
t−2:t−5 0.370

P̂port
t−6:t−22 0

N̂ port
t−1 0

N̂ port
t−2:t−5 0

N̂ port
t−6:t−22 0

M̂port
t−1 -0.5523

M̂port
t−2:t−5 0

M̂port
t−6:t−22 0.1529

Table 3 – Lasso parameter estimates for model (2.13). The covariates chosen by lasso are P̂port
t−1 , P̂port

t−2:t−5, M̂port
t−1 ,

M̂port
t−6:t−22 .

214 observations. Then we apply the Least Absolute Shrinkage and Selection Operator (LASSO)
in the SCHAR Model for each sub-period. Table 4 shows us the results for each period.

Dependent variable:
R̂V

port
t

SCHAR-lasso-in-pre SCHAR-lasso-in-post

P̂port
t−1 0.3258 0.9780

P̂port
t−2:t−5 0 0.3763

P̂port
t−6:t−22 0 0

N̂ port
t−1 0.4056 0

N̂ port
t−2:t−5 0.1538 0

N̂ port
t−6:t−22 0 0

M̂port
t−1 0 -0.6121

M̂port
t−2:t−5 0 0

M̂port
t−6:t−22 -0.3422 0.2565

Table 4 – Lasso parameter estimates for model (2.13) for each sub-period. The covariates chosen by lasso for the
pre-pandemic period are P̂port

t−1 , N̂ port
t−1 , N̂ port

t−2:t−5, M̂port
t−6:t−22. On the other hand, the covariates chosen by

lasso for the post-pandemic period are P̂port
t−1 , P̂port

t−2:t−5, M̂port
t−1 , M̂port

t−6:t−22

Selecting those variables with non-zero coefficients in Table 4 for either of the two
sub-periods (P̂port

t−1 ,P̂port
t−2:t−5, N̂ port

t−1 , N̂ port
t−2:t−5, M̂port

t−1 and M̂port
t−6:t−22), we run a Markov Switching

model for the full sample. Based on the results of this analysis, in a next step we set to vary only
those coefficients that were statistically significant for both regimes (P̂port

t−1 and P̂port
t−2:t−5). Table 5
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shows us the estimates MS-SCHAR Model. It is worth noticing that only the first two coefficients
( P̂port

t−1 , P̂port
t−2:t−5) vary according to the state variable (St) and that all covariates coefficients are

statistically significant.
Looking at Figures 1 and 2 we can see a prominent regime change from February 2020

to July 2020 which coincides with the COVID-19 pandemic outbreak over the world, suggesting
that in stressed scenarios the relation between the portfolio realized variance and its daily
positive realized semicovariance component (P̂port

t−1 ) gets stronger as depicted in Table 5 where
the coefficient of the daily positive semicovariance under regime 1 (P̂port

t−1,1) is greater than the
coefficient of the daily positive semicovariance under regime 0 (P̂port

t−1,0). Finally, the reader can
see the transition probabilities from the Markov Switching Model in Table 6. Under a first-order
Markov chain with two possible states (regimes), the smoothed probabilities indicate a state
(St = 0) that is characterized by a low portfolio’s volatility and another state (St = 1) presenting
a high portfolio’s volatility (stressed scenario) caused by the COVID-19 pandemic.

Dependent variable:

R̂V
port
t

P̂port
t−1,0 0.5848∗∗∗ (0.0974)

P̂port
t−1,1 1.2234∗∗∗ (0.1730)

P̂port
t−2:t−5,0 1.4123∗∗∗ (0.1213)

P̂port
t−2:t−5,1 2.0681∗∗∗ (0.1719)

N̂ port
t−1 −0.5286∗∗∗ (0.0595)

N̂ port
t−2:t−5 −1.3821∗∗∗ (0.1755)
M̂port

t−1 −0.9829∗∗∗ (0.2029)
M̂port

t−6:t−22 0.6257∗∗∗ (0.1230)

Table 5 – Parameter estimates and their respective standard errors in brackets. ∗∗∗, ∗∗ and ∗ represent whether a
coefficient is significant at t 1%, 5% or 10% levels, respectively.

0 1

0 0.9908 0.0931

1 0.0092 0.9069

Table 6 – Estimated transition probabilities for St = 0,1.
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ago 02 2018 fev 01 2019 ago 01 2019 fev 03 2020 ago 03 2020 jan 08 2021

Portfolio Realized Volatility 2018−08−02 / 2021−01−08
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Figure 1 – Realized variance of the equally-weighted portfolio from April 2018 to January 2021
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Smoothed probabilities Regime 0 2018−08−02 / 2021−01−08
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Figure 2 – Smoothed probabilities for regime 0 (St = 0) from the Markov Switching SCHAR Model.

2.4.3 Out-of-sample Analysis

Our out-of-sample analysis makes use of the four models described previously, namely,
HAR, SHAR, SCHAR and SCHAR-lasso-in, using the same equally-weighted portfolio as used
in the in-sample analysis. We construct rolling out-of-sample one-step ahead forecasts based on
each of the different models, with model parameters re-estimated daily using the most recent
542 observations5. Given that in Bollerslev et al. (2020) the out-of-sample analysis suggests
that the SCHAR model is “over-parameterized", we also include the SCHAR-lasso-out model in
addition to the SCHAR-lasso-in model, that applies LASSO on each rolling window estimation.
5 The code that runs the rolling window analysis can be reached at https://github.com/rricco/realvol

 https://github.com/rricco/realvol
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In order to evaluate the forecast performance of the models, we rely on the model
confidence set (MCS) procedure introduced by Hansen et al. (2011). The objective of the MCS is
to determine the set of models containing the best models with a given probability based on a loss
function such as MSE (mean squared error). The procedure employs a bootstrap implementation
in order to compute the p-values for all models.

Table 7 shows us the forecast accuracy for each model measured by both MSE (mean-
squared-error) and MAE (mean-absolute-error). The smallest MSE and MAE are indicated in
bold. The cells with ∗ indicate the models that were chosen by the MCS procedure. As we
can see, the simple HAR Model is the most accurate model, although in the previous section
it was the one that least explained the dependent variable variance. It is worth noticing that
SHAR, SCHAR-lasso-in and SCHAR-lasso-out were included in the MCS procedure. Moreover,
considering that the sample size and the portfolio’s dimension are not very large in the current
work as in Bollerslev et al. (2020), our results are consistent with their work because:

• In Bollerslev et al. (2020), the difference among the models in the forecast accuracy is
greater for large dimensional portfolios;

• The authors suggest that the SCHAR Model may be “over-parameterized" and as such
it is likely to perform poorly in out-of-sample analysis. However, when we calibrate the
“overfitting" from SCHAR Model through the LASSO method we reach out better results
as depicted in Table 7.

Model MSE MAE
HAR 1.00∗ 1.00∗
SHAR 1.02∗ 1.17∗

SCHAR 1.38 1.59
SCHAR-lasso-in 1.01∗ 1.19∗

SCHAR-lasso-out 1.02∗ 1.21∗

Table 7 – Mean squared errors (MSE) and mean absolute errors (MAE) for the forecasts relative to the HAR Model.
The values in bold indicate the method with lowest values of MSE and MAE. Cells with ∗ indicate that
the method is included in the MCS constructed based on the Tmax statistic using the squared/absolute

errors with 5% of significance.

We also analyze which covariates are chosen at each rolling window estimation in
SCHAR-lasso-out Model. Figure 3 shows us that the covariate with the highest frequency of
choices by lasso is P̂port

t 60 times out of 60, followed by P̂port
t−1:t−4 27 times out of 60 and finally

M̂port
t 3 times out of 60.

Figure 4 shows us the sample mean estimate for each covariate and its sample confidence
interval using two sample standard deviations in the rolling window analysis. P̂port

t has a sample
mean estimate of 0.8185, P̂port

t−1:t−4 has a sample mean estimate of 0.0525 and M̂port
t has a sample

mean estimate of -0.0595.
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Figure 3 – Number of times each covariate is chosen by lasso from SCHAR-lasso-out Model. (Pd = P̂port
t ,

Pm = P̂port
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Figure 4 – Mean estimate for each covariate (dots on the plot) and its sample confidence interval using two sample
standard deviations (vertical black line). (Pd = P̂port

t , Pm = P̂port
t−5:t−21, Pw = P̂port

t−1:t−4, Nd = N̂ port
t ,

Nm = N̂ port
t−5:t−21, Nw = N̂ port

t−1:t−4, Md = M̂port
t , Mm = M̂port

t−5:t−21, Mw = M̂port
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2.5 PORTFOLIO OPTIMIZATION

The covariance matrix plays a key role in portfolio optimization theory. In the seminal
work by H. Markowitz (1952), the problem becomes either minimizing the risk (variance) of the
portfolio for a fixed mean return of it or maximizing the mean return for a fixed risk. Formally
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we can find the optimum portfolio as the solution of the following problem:

minwww wwwᵀCt|t−1www− 1
λ

wwwᵀ
µt|t−1,

where www is the vector of portfolio weights, Ct|t−1 is the conditional covariance matrix, µt|t−1 is
the vector of the conditional mean and λ is the investor’s risk aversion coefficient.

To circumvent issues related to estimation errors associated with estimating conditional
return means, we focus on minimum variance portfolios as in Engle and Sheppard (2008) and
Borges et al. (2015), among many others. Mathematically our problem becomes the following:

minwww wwwᵀCt|t−1www

subject to

wwwᵀ1 = 1 ,

(2.16)

where 1 is the vector of ones.
One of the pioneering works in empirical applications of portfolio allocation using

intraday data is the paper by Fleming et al. (2003). The authors indicate that covariance matrices
estimated by intradaily returns can generate gains in portfolio performance compared to those
estimated by daily returns.

Another work in this topic is the paper by Liu (2009). His findings are that the gains
generated by intradaily returns depend on the rebalancing frequency and the prediction horizon.
According to the author, if an investor rebalances his portfolio monthly with at least the previous
12 months of data, daily and intradaily returns have similar performance results, however it is
worth using intradaily data when the portfolio is rebalanced daily. Hautsch et al. (2013) show that
large-scale portfolio covariance matrices based on high-frequency data generate a significantly
lower portfolio volatility than methods employing daily returns.

In this context, Borges et al. (2015) compare different covariance matrix estimators based
on intradaily or daily data for the Brazilian market. Their analysis suggests that conditional
covariance estimates perform better than unconditional estimators and that the covariance matrix
forecasts based on high-frequency data present lower portfolio volatility compared to using daily
returns.

Given this scenario, here we evaluate the performance of a Brazilian stock portfolio
comprised by 10 stocks from Ibovespa index, using the realized semicovariance measures of
Bollerslev et al. (2020) and comparing them to using the standard realized covariance matrix.

Our portfolio analyzes are based on the realized covariance matrix, the positive semi-
covariance matrix and the negative semicovariance matrix measures defined in (2.7) and (2.8)
respectively. We estimate the conditional realized measure (RM) for a single period as

R̂Mt|t−1 =
1
`

`

∑
i=1

RMi,t−1 , (2.17)

where ` is the length (in days) of the rebalancing period t−1 and RMi,t−1 is the realized measure
(R̂C, R̂SCp or R̂SCn as defined in section 2.2) for day i within the rebalancing period t−1.
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The data used to run the analyzes is the same as that used in section 2.4. For each period
we compute R̂Mt|t−1 in (2.16) to generate the minimum variance portfolio. In the sequence we
evaluate the portfolio performance in a daily basis in terms of the Sharpe ratio (Sa), Sortino
ratio (So) and turnover (To), for each realized measure and rebalancing period (daily, weekly or
monthly). Assuming the risk free rate as zero, these statistics are calculated as follows:

Sa =
µ̂

σ̂
, So =

µ̂

σ̂−
, To =

1
T

T

∑
t=1
|(wwwt+1−wwwt)|ᵀ111

where T is the length of the out-of-sample period, N is the number of stocks, wwwt is the (1×N)

vector of the portfolio weights at day t, rrrt is the (1×N) vector of the assets’ returns at day t, 111 is
the (1×N) vector of ones and

µ̂ =
1
T

T

∑
t=1

wwwᵀ
t rrrt

σ̂
2 =

1
T

T

∑
t=1

(wwwᵀ
t rrrt− µ̂)2

σ̂
2
− =

1
T

T

∑
t=1

[(wwwᵀ
t rrrt− µ̂)Iwwwᵀ

t rrrt<µ̂
]2 (Downside Semivariance)

2.6 EMPIRICAL EXERCISE 2

In this section we compare the out-of-sample portfolio performance using different
realized measures (R̂C, R̂SCp or R̂SCn) for the covariance matrix, based on high-frequency data.
The portfolios are rebalanced daily, weekly and monthly, and are analyzed according to their
performance in terms of Sharpe ratio, Sortino ratio and turnover.

Tables 8 to 10 show the performances of the indicators mentioned above for daily, weekly
and monthly rebalancing, respectively.

Average Standard Sharpe Sortino Turnover
return deviation ratio ratio

R̂SCn 0.001 0.020 0.045∗ 0.060∗ 1.093
R̂SCp 0.0005 0.020 0.024 0.033 1.109
R̂C 0.001 0.019 0.040 0.053 0.829∗

Table 8 – Out-of-sample performance of the minimum variance portfolio using 10 assets traded at B3 stock
exchange based on daily returns. The best results for Sharpe, Sortino and Turnover are with ∗.

The results in Table 8 indicate that, when the investor rebalances the portfolio daily,
the R̂C measure results in a portfolio with lower standard deviation. However, in terms of
risk-adjusted returns, the R̂SCn measure presents the highest sharpe and sortino ratios.

In terms of transaction costs, the R̂C measure presents the best performance (lowest
turnover). Table 9 shows us the results when the investor rebalances the portfolio weekly. Again,
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Average Standard Sharpe Sortino Turnover
return deviation ratio ratio

R̂SCn 0.001 0.019 0.051 0.069 0.164
R̂SCp 0.001 0.020 0.063 0.086∗ 0.166
R̂C 0.001 0.018 0.064∗ 0.085 0.112∗

Table 9 – Out-of-sample performance of the minimum variance portfolio using 10 assets traded at B3 stock
exchange based on daily returns. The best results for Sharpe, Sortino and Turnover are with ∗.

Average Standard Sharpe Sortino Turnover
return deviation ratio ratio

R̂SCn 0.001 0.019 0.037 0.051 0.030
R̂SCp 0.0005 0.020 0.024 0.032 0.029
R̂C 0.001 0.019 0.045∗ 0.060∗ 0.019∗

Table 10 – Out-of-sample performance of the minimum variance portfolio using 10 assets traded at B3 stock
exchange based on daily returns. The best results for Sharpe, Sortino and Turnover are with ∗.

the R̂C measure presents the lowest standard deviation. In terms of risk-adjusted returns, the R̂C

measure presents the highest Sharpe ratio, whereas the R̂SCp has the highest Sortino ratio. In
terms of transaction costs, the R̂C measure, again, presents the lowest turnover.

Finally, Table 10 shows us the results when the investor rebalances the portfolio monthly.
Alike the two previous rebalancing periods, the R̂C measure presents the lowest standard deviation
and in terms of risk-adjusted returns the R̂C measure presents the highest Sharpe and Sortino
ratios and the lowest turnover.

These results suggest that the realized components of the covariance matrix suit better
with higher frequency rebalancing periods in terms of economic performance. Following the
literature, the aforementioned results are consistent with Bollerslev et al. (2020) that find that
realized semicovariance matrices (R̂SCp, R̂SCn) generally respond to new information faster
than the realized covariance matrix (R̂C). Moreover, such feature helps us to justify the higher
turnover presented by the semicovariance measures (R̂SCp, R̂SCn).

2.7 CONCLUSION

The scope of the present work is to propose the use of realized measures developed by
Bollerslev et al. (2020) in volatility forecasting and portfolio optimization. We are particularly
interested in addressing these issues for the Brazilian stock market.

In terms of volatility forecasting we draw the following lines. In our in-sample analysis,
we come to the conclusion that the inclusion of semicovariance components in the model brings
extra goodness of fit for the realized portfolio variance model. Moreover, we show that a Markov
Switching Model makes sense for our comprised period of analysis, indicating that the beginning
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of Covid-19 pandemic is related to a higher volatility period and also that the relation between
the realized portfolio variance and its semicovariance components can change under different
regimes. Our out-of-sample analysis demonstrates that the SCHAR-lasso-in and SCHAR-lasso-
out are part of the Model Confidence Set (MCS) whereas the SCHAR is not, which suggests that
the SCHAR Model can suffer from “overfitting".

Finally, we see in the portfolio optimization analysis that under higher frequency rebal-
ancing periods, minimum variance portfolios using the negative semicovariance matrices present
better performances in terms of risk-adjusted returns compared to those that use the standard
realized covariance matrices, which corroborates the analysis in Bollerslev et al. (2020) that
suggests the semicovariance components respond faster to new information.
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3 CONSIDERAÇÕES FINAIS

No artigo que integra esta dissertação propomos o uso de medidas realizadas descritas
por Bollerslev et al. (2020) na previsão de volatilidade e otimização de portfólio voltados para o
mercado de ações brasileiro.

Na análise “In-sample", nossos resultados sugerem que a inclusão de componentes de
semicovariância traz uma qualidade extra de ajuste para o modelo explicativo da variância de
portfólio realizado. Além disso, usando um modelo de “Markov switching" vemos que durante
um período de alta volatilidade que caracterizou o início da pandemia de Covid-19 a relação
entre a variância realizada do portfólio e seus componentes de semicovariância pode mudar sob
diferentes regimes. Na análise “Out-of-sample" nossos resultados demonstram que os modelos
SCHAR-lasso-in e o SCHAR-lasso-out entram do Model Confidence Set (MCS), enquanto o
SCHAR não, o que sugere que o modelo SCHAR pode sofrer de “ overfitting ".

Finalmente, dentro do contexto de otimização de Portfólios, nossos resultados sugerem
que em períodos de rebalanceamento de maior frequência, carteiras ótimas de variância mínima
usando as matrizes de semicovariância negativas apresentam melhores desempenhos em termos
de retornos ajustados ao risco em comparação com aquelas carteiras ótimas que usam as matrizes
de covariância realizada padrão, o que corrobora a análise em Bollerslev et al. (2020) que sugere
que os componentes de semicovariância respondem mais rápido a novas informações.
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APPENDIX A – THEORETICAL FRAMEWORK

The material of this appendix is extracted from Bollerslev et al. (2020). Suppose that the
log-price vector Xt is an Itô semimartingale as

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σsdWs + Jt , (A.1)

where b is the Rd-valued drift process, W is a d-dimensional standard Brownian motion, σ is the
d×d dimensional stochastic volatility matrix and J is a finitely active pure-jump process. We
denote the spot covariance matrix of X by ct = σtσ

>
t and further set

v j,t =
√

c j j,t , ρ jk,t =
c jk,t

v j,tvk,t
. (A.2)

where v j,t and ρ jk,t denote the spot volatility of asset j and the spot correlation coefficient between
assets j and k, respectively. Moreover, Bollerslev et al. (2020) consider the following assumption,

Assumption 1. The process X is an Itô semimartingale defined on a filtered probability space
(Ω,F,(Ft),P) of the form (A.1) with Jt =

∫ t
0
∫
R δ (s,u)µ(ds,du), where the process b is locally

bounded, the process σ is càdlàg and takes value in Rd×d , δ is a predictable function and µ is
a Poisson random measure defined on R+×R with compensator ν(dt,du) = dt

⊗
λ (du) for

some finite measure λ on R.

Consider the realized semicovariance estimators defined by equation (2.8) and let ∆Xs
denote the price jump occurring at time s, if a jump occurred and set it to zero if no jump occurred
at time s. Further define

RSCJ
p = ∑

s≤T
p(∆Xs)p(∆Xs)

>

RSCJ
n = ∑

s≤T
n(∆Xs)n(∆Xs)

>

RSCJ
m = ∑

s≤T
[p(∆Xs)n(∆Xs)

>+n(∆Xs)p(∆Xs)
>]

These measures characterize the discontinuous parts of the semicovariance measures. Bollerslev
et al. (2020) demonstrate that

Theorem A.0.1. Under Assumption 1, (R̂SCp, R̂SCn, R̂SCm)
P−→ (RSCp,RSCn,RSCm) where RSCp,

RSCn and RSCm are d×d matrices with their (j,k) elements given by

[RSCp] jk =
∫ T

0
v j,svk,sψ(ρ jk,s)ds+[RSCJ

p] jk,

[RSCn] jk =
∫ T

0
v j,svk,sψ(ρ jk,s)ds+[RSCJ

n] jk,

[RSCm] jk =−2
∫ T

0
v j,svk,sψ(−ρ jk,s)ds+[RSCJ

m] jk,

and ψ(.) is defined as

ψ(ρ) = (2π)−1
(

ρarccos(−ρ)+
√

1−ρ2
)
, (A.3)
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Note that each semicovariance matrix contains both diffusive and jump covariation
components. Moreover, the limiting variables RSCp and RSCn share exactly the same diffusive
component, but their jump components differ,

R̂SCp− R̂SCn
P−→ RSCp−RSCn = RSCJ

p−RSCJ
n.

In this context, the first-order asymptotic behavior of the concordant semicovariance differential
(CSD) is fully characterized by the "directional co-jumps". Then, when there are no jumps, one
can not distinguish the information conveyed by R̂SCp and R̂SCn. Hence, in order to reveal the
differential information inherent in the realized measures, Bollerslev et al. (2020) derive a more
refined second-order asymptotic analysis.

Following Bollerslev et al. (2020), we consider a bivariate setting to present the second-
order asymptotic analysis for [R̂SCp]12 = [R̂SCp]21 and [R̂SCn]12 = [R̂SCn]21.

Consider that the stochastic volatility σt is also an Itô semimartingale as

σt = σ0 +
∫ t

0
b̃sds+

∫ t

0
σ̃sdWs + M̃t +∑

s≤t
∆σsI{‖∆σs‖>σ∗}, (A.4)

where b̃ is the drift, σ̃ is a d× d× d tensor-valued process, M̃ is a local martingale that is
orthogonal to the Brownian motion W. According to Bollerslev et al. (2020), the process σ̃

collects the loadings of the stochastic volatility matrix σ on the price Brownian shocks dW, and
hence is considered as a "leverage effect" and M̃ collects "small" volatility jumps in the form
of a purely discontinuous local martingale. Meanwhile, the term ∑s≤t ∆σsI{‖∆σs‖>σ∗} collects
the "large" volatility jumps, which often occur in response to major news announcements as
described in Bollerslev et al. (2018). Moreover, Bollerslev et al. (2020) consider the following
assumption

Assumption 2. Assuming the Assumption 1 is satisfied, the process σ in (A.4) satisfies (1) σt is
non-singular almost surely for all t; (2) b̃ is locally bounded; (3) σ̃ is a d×d×d càdlàg process;
(4) the process M̃ is a local martingale that is orthogonal to W with ‖∆M̃‖≤ σ∗ for some constant
σ∗ > 0 and its predictable quadratic covariation process has the form 〈M̃,M̃〉=

∫ t
0 q̃sds for some

locally bounded process q̃; (5) the compensator of the pure-jump process ∑s≤t ∆σsI{‖∆σs‖>σ∗}
has the form

∫ t
0 qsds for some locally bounded process q.

Bollerslev et al. (2020) demonstrate that

Theorem A.0.2. Under Assumption 2,

∆
− 1

2
n

[
[R̂SCp]12

[R̂SCn]12

]
L−s−−→

[
B
−B

]
+

[
L
−L

]
+

[
ζ

−ζ

]
+

[
ζ̃p

ζ̃n

]
+

[
ξ̃p

ξ̃n

]
.
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