
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JHONNY MARCOS ACORDI MERTZ

Adaptive Filtering and Sampling in
Runtime Software Monitoring

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Ingrid Oliveira de Nunes

Porto Alegre
December 2021

CIP — CATALOGING-IN-PUBLICATION

Mertz, Jhonny Marcos Acordi

Adaptive Filtering and Sampling in Runtime Software
Monitoring / Jhonny Marcos Acordi Mertz. – Porto Alegre:
PPGC da UFRGS, 2021.

122 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2021. Advisor: Ingrid Oliveira de Nunes.

1. Execution traces. 2. Monitoring. 3. Sampling. 4. Perfor-
mance. 5. Logging. 6. Adaptation. 7. Self-adaptation. I. Nunes,
Ingrid Oliveira de. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“If I have seen farther than others,

it is because I stood on the shoulders of giants.”

— SIR ISAAC NEWTON

ACKNOWLEDGEMENTS

Countless people supported my effort on this thesis. I would like to express my

deepest gratitude to my advisor, Ingrid Nunes. She was a mentor in every sense of the

word: supporting, challenging, demanding and encouraging me throughout the entire

thesis process. I’m proud of, and grateful for, my time working with Ingrid.

My family deserves endless gratitude. My parents for their guidance, encourage-

ment, and motivation. The sacrifices they’ve made for me are beyond any description. I

hope I made them proud. Above all, I would like to thank my wife, Simone Romero, who

has stood by me through all my travails and absences. Thank you for your unconditional

love, comprehension and constant support, for all the late nights, holidays and long week-

ends, and for keeping me sane over the past few years. But most of all, thank you for

being my best friend. I cannot imagine my life without you.

I want to thank my friends and colleagues from the Federal University of Rio

Grande do Sul (UFRGS) and HP Inc. for their help, support and friendship. A spe-

cial thank you to my colleagues Daniele, Fernando, Frederico, João, Rômulo, Maurício,

Nicole and Vânius, for their suggestions, ideas and our endless conversations.

To those whose names I did not mention, but helped me develop this work in any

way, thank you all. Finally, I must acknowledge that this research would not have been

possible without the partial financial assistance of CNPq and the infrastructure provided

by the Federal University of Rio Grande do Sul.

ABSTRACT

Understanding behavioral aspects of a software system is an essential enabler for many

software engineering activities such as monitoring choke-points, debugging, and self-

adaptation. Despite the usefulness of collecting system data, it may significantly impact

the system execution by delaying response times and competing with system resources.

Thus, runtime monitoring has limited practical use to online analysis or support real-time

changes and adaptations on the program behavior. The typical approach to cope with

this is to filter portions of the system to be monitored and to sample data. However,

the majority of the existing solutions for filtering and sampling are limited to recording

high-level events or based on predefined configurations, which unnecessarily limits the

information available for analysis (i.e. relevance and representativeness of the collected

set of traces). As systems often have varying workloads, some approaches dynamically

change filtering and sampling configurations at runtime. Although these approaches are

a step towards achieving a desired trade-off between the amount of collected information

and the impact on the system performance, they focus on collecting data for a particular

purpose or may capture a sample that may not correspond to the actual system behav-

ior. In this thesis, we increase the practical feasibility of software runtime monitoring by

reducing the monitoring overhead and pursuing the relevance and representativeness of

the collected traces. Therefore, we propose a solution to address the challenges of fil-

tering and sampling of execution traces. In order to filter relevant execution traces, we

propose a domain-independent and low-impact framework, called Tigris, which abstracts

the reasoning related to monitoring from the particularities of each problem addressed

by filtering relevant execution traces according to the goal of monitoring. To tackle the

challenges of collecting a representative sample, we propose an adaptive runtime monitor-

ing process to dynamically adapt the sampling rate while monitoring software systems.

It includes algorithms with statistical foundations to improve the representativeness of

collected samples without compromising the system performance. We evaluated both ap-

proaches with empirical studies to assess different aspects of the proposed solutions. The

results show that our techniques can reduce the overhead of monitoring by filtering and

sampling traces, and pursue relevance and representativeness of collected traces.

Keywords: Execution traces. monitoring. sampling. performance. logging. adaptation.

self-adaptation.

Filtragem e Amostragem Adaptativas para

Monitoração de Software em Tempo de Execução

RESUMO

Compreender o comportamento de um sistema de software é uma tarefa essencial para

muitas atividades de engenharia de software, como identificação de bugs, melhorias de

desempenho, depuração e auto-adaptação. Apesar da utilidade da coleta de traços de exe-

cução, isso pode afetar significativamente a execução do sistema, atrasando os tempos

de resposta e competindo com os recursos. Assim, o monitoramento em tempo de exe-

cução tem uso prático limitado para análise ou suporte a mudanças em tempo real. A

abordagem típica para lidar com tal problema é filtrar partes do sistema a serem moni-

toradas e amostrar traços. No entanto, a maioria das soluções existentes para filtragem

e amostragem são baseadas em configurações predefinidas, o que limita as informações

disponíveis para análise. Como sistemas costumam ter cargas de trabalho variáveis, algu-

mas abordagens mudam dinamicamente as configurações de filtragem e amostragem em

tempo de execução. Embora essas abordagens podem atingir um melhor balanço entre

a quantidade de informações coletadas e o impacto no desempenho do sistema, elas se

concentram na coleta de traços para uma finalidade específica ou podem capturar uma

amostra não correspondente ao comportamento atual do sistema. Nesta tese, aumentamos

a viabilidade prática de monitoramento de tempo de execução de software, reduzindo a

sobrecarga de monitoramento e aumentando a relevância e representatividade dos traços

coletados. Assim, propomos uma solução para enfrentar os desafios de filtragem e amos-

tragem de traços de execução. Para filtrar os traços de execução relevantes, propomos

um framework independente de domínio e de baixo impacto, denominado Tigris, que

abstrai o raciocínio relacionado ao monitoramento das particularidades de cada problema

abordado, filtrando os traços de execução relevantes de acordo com o objetivo do moni-

toramento. Em relação aos desafios de coletar uma amostra representativa, propomos um

processo de monitoramento adaptativo, que altera dinamicamente a taxa de amostragem

de acordo com a carga de trabalho do sistema. Nós avaliamos ambas as abordagens com

estudos empíricos, e os resultados mostram que as técnicas propostas podem reduzir a

sobrecarga de monitoramento por meio da filtragem e amostragem de traços, e aumentar

a relevância e representatividade dos traços coletados.

Palavras-chave: traços de execução, monitoração, adaptação, amostragem, desempenho.

LIST OF ABBREVIATIONS AND ACRONYMS

ADP Adaptive Monitoring Process Sampling

AOP Aspect-oriented Programming

BNF Backus–Naur Form

DSL Domain-specific Language

F1 F-Measure

FUM Full Monitoring

HR Hit Ratio

INV Inversely Proportional Sampling

JVM Java Virtual Machine

LLVM Low Level Virtual Machine

LOC Lines of Code

PADLA Phase-Aware Dynamic Log Level Adapter

RMSE Root-mean Square Error

RpS requests per second

RV Runtime Verification

SAS Self-adaptive Systems

SR Sampling Rate

TR Throughput

TTL Time-to-live

UNI Uniform Sampling

LIST OF FIGURES

Figure 2.1 Monitoring a Running Application and its Challenges.27

Figure 4.1 Overview of the Two-phase Monitoring Approach. It shows the input
provided in the first phase (Coarse-grained Monitoring) and the resulting out-
put of the second phase (Fine-grained Monitoring)..52

Figure 4.2 Fine-grained Monitoring Steps. Illustration of the three steps that com-
prise the fine-grained monitoring: Grouping, Classification and Data Collection. ..55

Figure 4.3 Frequency Groups. Using the frequency relevance criteria as example,
the charts presents the semantics given for the different modifiers of TigrisDSL.
The semantics considers the splitting of the data into groups and the normality
of the data..56

Figure 4.4 RQ1: Throughput by Sampling Rate. Performance of each application
executed with and without APLCache using varying monitoring configuration......65

Figure 4.5 RQ2: Recall by Sampling Rate. Recall obtained for each combination
of filter (Restricted Filter and Expanded Filter) and sampling rate.69

Figure 5.1 Illustration of the Adaptive Sampling Process in Action: The figure
shows how the sampling rate varies (in terms of the number of sampled traces)
according to the current application workload. In peaks, the sampling rate is
reduced to reduce the monitoring overhead..78

Figure 5.2 Overview of our Adaptive Sampling Process. ...78
Figure 5.3 Analysis of the ADP Results with the h2 Application..................................93
Figure 5.4 Analysis of the ADP Results with the h2 Application..................................94

LIST OF TABLES

Table 2.1 Comparison of related work on monitoring. Empty columns mean that
the approach does not offer explicit support to the characteristic.............................33

Table 3.1 Conferences from where papers from the past six years (2014–2019)
were obtained and analyzed. ...36

Table 3.2 Analysis Approach. Questions used in the analysis of monitoring-based
approaches...37

Table 3.3 Analysis Approach. Example of how information from the selected pa-
pers were collected by answering the questions specified in Table 3.2.38

Table 3.4 Relevance Criteria. List of relevance criteria identified in our searched
literature, with their description. The number of occurrences (#) in the ana-
lyzed papers is also detailed..39

Table 3.5 Goals, Relevance Criteria and Metrics. Association between groups of
goals and relevance criteria, along with examples of goals and metrics used by
the surveyed approaches. Cells in gray highlight the three most relevant criteria
of each goal. The given examples are non-exhaustive. ...40

Table 3.6 Relevance Filter Examples. Example of a monitoring-based approaches
specified in TigrisDSL. ...48

Table 4.1 Running Example Collected Metrics. Example of metrics collected and
maintained for each method in the coarse-grained phase. Cells in gray high-
light the more frequent, most expensive and least changeable
according to the Grouping step. ..54

Table 4.2 Sample Execution of an Application. Cells in gray highlight the occur-
rences (#Occ.) of a specific method call in the application execution sequence
(#Seq.) that would be traced at a sampling rate of 50%. ..58

Table 4.3 Tigris Framework Metrics. List of names and descriptions provided by
the Tigris framework, together with how these metrics are estimated......................59

Table 4.4 Research Questions and Metrics. List of the research questions of our
evaluation and the metrics used to answer each of them. ...62

Table 4.5 Target Systems. List of the target web applications used in our evalua-
tion, together with their application domain and size. Size is detailed by the
number of lines of code (LOC) and the number of files. ..63

Table 4.6 Relevance Filter Specification. Specification of the two filters used in
our evaluation, namely Restricted Filter and Expanded Filter..................................64

Table 4.7 Simulation Results. Results of executing each application with full mon-
itoring, restricted filter and expanded filter. Reported metrics (average of all the
ten executions) for the different sampling rates (Sample) are throughput, hit ra-
tio (HR), number of hits (Hits), number of cacheable opportunities (Cacheabil-
ity), precision (Pr.), recall, and F-Measure (F1). Throughput and Cacheability
are shown in absolute and relative (percentage change in comparison with full
monitoring) terms. Cacheability, precision, recall and F-Measure are presented
as the average of all three monitoring cycles. ...67

Table 4.8 Simulation Results. Results in terms of changes in the relevance evalu-
ation and selected methods to monitor for each application with restricted and
expanded filters. After each monitoring cycle a snapshot of the coarse-grained
selection is taken, reporting the amount of selected methods in that cycle (Se-
lected), the overall difference from the last cycle (Difference), including the
specific amount of additions and exclusions...72

Table 5.1 Running example: Frequency distribution of the population and sample
in the sampling decision activity. ..80

Table 5.2 Running example: performanceReference table containing the response
time of each request according to a given workload in requests per second
(RpS). The ME column indicates whether the record was collected when mon-
itoring was enabled. Rows highlighted in gray refer to the median of each
group (ME = true and ME = false). ..83

Table 5.3 Simulation Results: Comparison of the values obtained for the metrics
Throughput (TR), Sampling Rate (SR), and Root-mean Square Error (RMSE).91

CONTENTS

1 INTRODUCTION...19
1.1 Problem Statement and Limitations of Existing Work21
1.2 Proposed Solution and Contributions Overview..22
1.3 Outline..24
2 BACKGROUND AND RELATED WORK..25
2.1 Introduction to Runtime Software Monitoring..25
2.2 Filtering..28
2.2.1 Domain-specific Runtime Monitoring ...28
2.2.2 Domain-neutral Runtime Monitoring ..29
2.3 Sampling ..30
2.3.1 Fixed Configuration ...31
2.3.2 Adaptive Configuration..31
2.4 Final Remarks ...32
3 RELEVANCE CRITERIA AND TIGRISDSL ..35
3.1 Method ...35
3.2 Analysis and Results ...37
3.2.1 Goals, Criteria, and Metrics ...37
3.2.2 Generality...41
3.2.3 Scalability ..42
3.2.4 Adaptability..44
3.2.5 Discussion ..45
3.3 TigrisDSL: a Generic Way to Specify Relevance Criteria46
3.4 Final Remarks ...48
4 ADAPTIVE FILTERING...51
4.1 Running Example: Application-level Caching...51
4.2 Coarse-grained Monitoring..52
4.3 Fine-grained Monitoring ..55
4.4 Tigris Framework ...57
4.5 Evaluation: Adaptive Monitoring for APLCache..60
4.5.1 Study Settings ..61
4.5.2 Results..63
4.5.2.1 RQ1. What performance gain does Tigris provide? ...64
4.5.2.2 RQ2. What is the effectiveness achieved with execution traces collected by

Tigris? ...68
4.5.2.3 RQ3. How does Tigris cope with workload variations over time?71
4.5.2.4 Threats to Validity...72
4.6 Limitations...73
4.7 Final Remarks ...75
5 ADAPTIVE SAMPLING ...77
5.1 Process Overview ..77
5.1.1 Activity 1: Sampling Decision...79
5.1.2 Activity 2: Sampling Rate Adaptation...81
5.1.3 Activity 3: Sample Evaluation...85
5.2 Evaluation..87
5.2.1 Evaluation Settings ..87
5.2.1.1 Research Questions and Metrics...87
5.2.1.2 Compared Approaches..88
5.2.1.3 Target Applications ...88

5.2.1.4 Procedure ..89
5.2.2 Results..90
5.2.2.1 Detailed Analysis ..92
5.2.2.2 Threats to Validity...96
5.3 Limitations...97
5.4 Final Remarks ...97
6 CONCLUSION ...99
6.1 Contributions...100
6.2 Future Work ..102
REFERENCES...105
7 RESUMO ESTENDIDO ..117

19

1 INTRODUCTION

As modern software systems become increasingly large and complex, effective

analysis methods to understand the dynamic behavior of a software system are becom-

ing essential to ensure software quality by supporting fundamental software engineer-

ing tasks such as runtime verification, debugging, program comprehension, and self-

adaptation (KANG, 2018; FENG et al., 2018). The understanding of the system be-

havior can be achieved by monitoring runtime information (GAO et al., 2017) (i.e. dy-

namic system’s executions), which are typically represented in the form of execution

traces (PIRZADEH et al., 2011; YUAN; ESFAHANI; MALEK, 2014; REGER; HAVELUND,

2016). Execution traces are log events from rules, components, functions, or tasks exe-

cuted during a program run. An execution trace can be composed of basic information

about the execution like event name, program location, and a timestamp. In addition to ba-

sic information, more complex and detailed data about the event can also be recorded. In-

puts, outputs, the complete call trace, software execution states, message communication,

and resource usage are examples of additional data that can be recorded to represent an

execution trace. Therefore, analyzing and comparing program execution traces is useful

for various purposes, such as the validation of quality requirements (FINOCCHI, 2013),

identifying security vulnerabilities (YUAN; ESFAHANI; MALEK, 2014) or model in-

consistencies (BARTOCCI et al., 2018), performance engineering (DELLA TOFFOLA;

PRADEL; GROSS, 2015; MERTZ; NUNES, 2018), and optimization (FENG et al.,

2018). AWS X-Ray1, for example, is a tool that uses tracing execution to provide an

end-to-end view of request paths in software applications, including a map of the applica-

tion’s underlying components. When an exception occurs while the application is serving

an instrumented request, AWS X-Ray records details about the exception, including the

stack trace. This helps, e.g., identify and troubleshoot the root cause of performance

issues and errors.

A widely used form of collecting execution traces is intercepting particular points

in the execution to record information, e.g. intercepting methods to record their input

and output data. The act of monitoring a system to collect trace information is called

instrumentation and it works by hooking additional code instructions into the different

layers and locations of the software system. These code instructions are responsible for

collecting and storing runtime information from specific components of a system or its

1<https://aws.amazon.com/xray/>

https://aws.amazon.com/xray/

20

execution environment while the software is running, depending on the monitoring goal.

Despite the usefulness of execution traces, collecting them at runtime consumes resources

and may cause performance decays (BARTOCCI et al., 2018), mainly when they include

detailed information, such as method parameters.

To address this, execution traces can be filtered or sampled. Filtering techniques

usually consist of focusing the monitoring on relevant executions (KOUAME; EZZATI-

JIVAN; DAGENAIS, 2015; EICHELBERGER; SCHMID, 2014), i.e. the collected subset

of traces is focused on target software locations or execution patterns that are more im-

portant according to a specific set of criteria to achieve a particular goal with monitoring.

In trace sampling, the aim is to collect a representative subset of traces based on a sam-

pling rate or strategy (HAMOU-LHADJ; LETHBRIDGE, 2004; PIRZADEH et al., 2011;

PIRZADEH et al., 2013; LAS-CASAS et al., 2018), where representativeness means that

the characteristics of the collected subset of traces should closely match the complete set

of target execution traces, by following the same distribution. The key advantage of filter-

ing and sampling techniques is the bounded overhead, which linearly decreases with the

filtering configuration, sampling period or size.

Filtering and sampling execution traces have been commonly adopted with pre-

defined and fixed configurations, which specify certain software locations to be monitored

and/or a sampling rate. These configurations may be unsuitable to cope with software us-

age peaks and unable to handle unforeseen scenarios. AWS X-Ray, for instance, applies a

conservative sampling strategy and records only the first request of each second and five

percent of any additional requests. Any different strategy must be manually managed,

considering the performance impact it may cause to the application. These limitations

are addressed by adaptive approaches (ZAVALA; FRANCH; MARCO, 2019). However,

existing work either focuses only on collecting traces for a particular purpose (FEI; MID-

KIFF, 2006; LAS-CASAS et al., 2018) or uses a strategy that cannot guarantee that the

collected traces are a representative sample of the population (HAUSWIRTH; CHILIMBI,

2004; BRÖNINK; ROSENBLUM, 2016). This can potentially cause wrong decision

making based on the sample or missing information.

These limitations of existing work call for reusable and configurable approaches

that make software monitoring practically feasible by maintaining the overhead to ac-

ceptable levels to preserve the normal software behavior and increasing the relevance and

representativeness of the monitored traces. In the next section, we detail the problem

we are looking at in this thesis and the limitations of existing work. In Section 1.1, we

21

introduce the proposed solution and give an overview of the contributions of this work.

Finally, Section 1.3 presents the structure of the remainder of the thesis.

1.1 Problem Statement and Limitations of Existing Work

As previously introduced, there are two main strategies, namely filtering and sam-

pling, that may help address the monitoring overhead imposed by the runtime collection

of execution traces. Both strategies have inherent limitations. Filtering lacks reuse across

different systems and application domains, being customized to particular cases, e.g., by

limiting the tracing only to high-level events or a pre-defined set of executions. Sampling

usually focuses on collecting traces for a particular purpose or relies on a technique that

cannot guarantee that the collected traces are representative of the population. Based on

these problems, the research question considered in this thesis is stated as follows.

How to monitor software systems to collect execution traces at runtime that are

relevant and representative with an acceptable performance impact?

Research Question

The limitations of existing work related to this research question are presented as

follows.

Limited scalability. Runtime monitoring often leads to an overhead in the observed pro-

gram, being mostly used within offline analysis tools (post-mortem manner) and having

a limited practical use to change or adapt program behavior at runtime (KANG, 2018).

Thus, the monitoring task in such approaches is often limited to high-level events or pre-

defined executions because collecting detailed measurements (e.g. method-level tracing)

and arbitrary executions may disrupt execution. This may reduce the accuracy of the anal-

ysis when finding and solving issues at the code level (HORKÝ et al., 2016). Although

some techniques such as sampling and filtering have been demonstrated as a practical so-

lution to reduce the trace size and enable faster trace analysis, it is necessary to pursue a

representative and relevant set of collected traces, in order to generalize the results of the

analysis.

Limited adaptability. The majority of the approaches require manual tuning of several

parameters, such as the definition of custom filtering behavior patterns or fixed sampling

22

configurations (ZAVALA; FRANCH; MARCO, 2019). Finding adequate parameters can

be difficult and effective only for specific sets of traces (even within a single system). In

addition, these configurations may be unsuitable to cope with software usage peaks and

unable to handle unforeseen scenarios. Thus, there is a need for finding ways to adapt the

monitoring to deal with the trade-off between effectiveness and overhead of monitoring.

Lack of generality. Most existing solutions that rely on monitoring are application-

specific, i.e. while they carefully collect selected data at runtime for a particular purpose,

they are not designed and implemented in a more general, reusable way. The lack of

reusable approaches to support the development of monitoring-based approaches requires

them to be implemented from scratch. In addition, low-overhead runtime monitoring

strategies serve specific purposes and, consequently, are not generalizable. The develop-

ment of reusable monitoring approaches that abstract and encapsulate these functionalities

would reduce both the effort to develop new systems implementing these strategies and

the probability of bugs in newly implemented solutions. In addition, it would promote

software reuse across different goals and application domains.

1.2 Proposed Solution and Contributions Overview

Because software monitoring consists of the execution of additional instructions,

it necessarily implies an overhead (BARTOCCI et al., 2018). Although it can be reduced

to an acceptable level by leveraging filtering and sampling techniques, existing work ei-

ther focuses only on collecting traces for a particular purpose (FEI; MIDKIFF, 2006;

LAS-CASAS et al., 2018), are adopted with pre-defined and fixed configurations, or uses

a strategy that cannot guarantee that the collected traces are relevant and representative

of the population (HAUSWIRTH; CHILIMBI, 2004; BRÖNINK; ROSENBLUM, 2016).

By addressing these issues, it is possible to provide a solution able to comprise an ade-

quate trade-off between monitoring overhead and relevance or representativeness of the

collected information.

As filtering and sampling are essentially different problems in which solutions can

be combined to address the existing monitoring issues and compose an effective monitor-

ing solution, we individually tackle them. To address the issues around filtering and pro-

vide a solution that can be reused across different systems and application domains, we

propose a two-phase monitoring approach for filtering execution traces at runtime. In its

23

first phase, lightweight and coarse-grained monitoring are performed to identify relevant

parts of the software execution. As relevance is essentially a domain-specific concept, this

process is informed by the goal of monitoring in the form of high-level relevance criteria

expressed in a proposed domain-specific language, called TigrisDSL. In practice, the cri-

teria are translated into software metrics, which are collected and analyzed at runtime to

guide an in-depth and fine-grained monitoring in the second phase of the approach. Both

relevance criteria and software metrics are derived from a systematic literature review.

Our approach is implemented as a framework, named Tigris, which seamlessly integrates

the proposed solution to existing software systems to support monitoring-based activities.

Consequently, our approach and framework can be used as a monitoring component to ef-

fectively monitor a software system and provide information for different purposes, e.g. to

identify security vulnerabilities (YUAN; ESFAHANI; MALEK, 2014), model inconsis-

tencies (BARTOCCI et al., 2018) or performance bugs (DELLA TOFFOLA; PRADEL;

GROSS, 2015; MERTZ; NUNES, 2018). To validate our proposal, we instantiate Tigris as

the monitoring component of an approach that improves the performance of applications

using caching. Our evaluation shows that our proposal can maintain the effectiveness of

the caching approach while reducing the monitoring overhead.

To address the limitations associated with sampling, we propose an adaptive sam-

pling process to collect execution traces with detailed information in environments where

the performance impact is critical, such as production environments. Our goal is to guar-

antee the representativeness of the samples of execution traces while adjusting the sam-

pling rate used to monitor a software system to cope with increases in its workload. The

process decides whether the operations executed to respond to each incoming request

should be recorded as execution traces. Our process is composed of three activities: (1)

sampling decision, which decides whether a request (with associated execution traces)

should be recorded and included in a sample; (2) sampling rate adaptation, which adjusts

the sampling rate at runtime; and (3) sample evaluation, which assesses the representa-

tiveness of the sample to identify the end of a monitoring cycle. These activities include

algorithms with statistical foundations to pursue that, by the end of each monitoring cycle,

the collected sample is representative of the population. Our evaluation targets five ap-

plications of the well-known DaCapo benchmark and the results show that it can achieve

higher representativeness and lower performance impact than existing solutions.

Therefore, both proposed solutions increase the practical feasibility of software

monitoring by reducing the monitoring overhead and pursuing the relevance and repre-

24

sentativeness of collected traces. The proposed solutions can be used individually or

combined to effectively monitor software applications to provide information for ap-

proaches with different purposes, such as identifying security vulnerabilities (YUAN;

ESFAHANI; MALEK, 2014), model inconsistencies (BARTOCCI et al., 2018) or per-

formance bugs (DELLA TOFFOLA; PRADEL; GROSS, 2015; MERTZ; NUNES, 2018)

and, eventually, adapt the system.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents a theo-

retical background that serves as the foundations needed for this thesis. It also discusses

related work that addresses challenges on filtering and sampling as a way to reduce the

monitoring overhead. In Chapter 3, we present a foundational study to identify the rel-

evance criteria associated with each monitoring goal and its results, which includes the

derivation of a domain-specific language, named TigrisDSL. Chapter 4 presents the two-

phase monitoring approach for filtering execution traces at runtime, as well as its im-

plementation as a framework, called Tigris. The adaptive sampling process is presented

in Chapter 5. Finally, Chapter 6 concludes this thesis and outlines directions for future

work.

25

2 BACKGROUND AND RELATED WORK

Software runtime monitoring is the ability to record log events with metadata

about executions of a program run. This ability is usually mentioned as a required fea-

ture to support several software engineering tasks focused on the analysis of the system

behavior or automation of a software system (KANG, 2018; FENG et al., 2018). In Sec-

tion 2.1, we explore applications of monitoring in a broader sense and highlight the main

challenges faced by approaches that rely on monitoring. Then, in Sections 2.2 and 2.3,

we present the limitations of the two main existing techniques, respectively, to minimize

the monitoring impact. By monitoring, we refer solely to the activity of collecting data at

application runtime, rather than this activity combined with data analysis, which together

are sometimes considered a monitoring system (ZAVALA; FRANCH; MARCO, 2019).

2.1 Introduction to Runtime Software Monitoring

Runtime monitoring has been applied to different purposes to systematically col-

lect, analyze, and use information to gain insights or solve problems in software engi-

neering tasks. Typical applications of runtime monitoring are the validation of quality

requirements with runtime verification, analysis and improvement of non-functional re-

quirements such as performance and security engineering or adaptive software systems.

Examples of these applications of monitoring and its research areas are discussed as fol-

lows.

Runtime Verification (RV) is a popular field that is entirely based on runtime mon-

itoring. It is a lightweight, yet rigorous, formal method that complements classical ex-

haustive verification techniques (such as model checking and theorem proving) with a

more practical approach towards ensuring correctness (BARTOCCI et al., 2018). RV thus

employs techniques for observing the internal operations of a software system and its in-

teractions with other external entities to determine whether the system satisfies or violates

a correctness specification (CASSAR et al., 2017). RV is widely employed in academia

and industry before system deployment, for testing, verification, and debugging purposes,

and after deployment to ensure reliability, safety, robustness, and security (BARTOCCI

et al., 2018). Runtime monitoring has also been used to acquire information that guides

decisions on non-functional requirements, such as security (e.g. detection of anomalous

or malicious behavior (TUN et al., 2018a; BAILEY et al., 2014)), and performance (e.g.

26

finding performance bottlenecks and optimization opportunities (SHEN et al., 2015; TOF-

FOLA; PRADEL; GROSS, 2018; MERTZ; NUNES, 2018)). For example, based on

monitoring small code executions such as method calls or functions, some approaches

extract metrics that can be used to identify caching opportunities and manage caching

systems (HOLMQVIST; NILSFORS; LEITNER, 2019; MERTZ; NUNES, 2017b).

When used to support Self-adaptive Systems (SAS), monitoring and tracing have

been used as a source of information to find adaptation opportunities. The idea is that

the system can collect information about itself and act proactively to configure, heal,

optimize, and protect itself without human intervention (YUAN; ESFAHANI; MALEK,

2014; HUEBSCHER; MCCANN, 2008; LALANDA; MCCANN; DIACONESCU, 2013).

Runtime monitoring has been performed based on different techniques, but func-

tion call interception (or instrumentation) has traditionally been a major approach used

to monitor system behaviors, because a function is considered the most basic element

comprising a program module (KANG, 2018).

Instrumentation can be applied at the program source or its binary level, but it

is usually performed through dynamic techniques by binary instrumentation at load time

or at runtime to a program loaded in memory (KANG, 2018). One of the popular tech-

niques for runtime monitoring is aspect-oriented programming (AOP) (KICZALES et al.,

1997; KANG, 2018), which was initially conceived to address cross-cutting concerns that

cannot be easily moduralized in an application, such as logging, security, and caching.

By using AOP, these cross-cutting concerns can be centralized in one location, thus en-

couraging modularity and maintainability in the software design process. Rabiser et al.

(2017) provided a comparison framework for runtime monitoring approaches, which is

based on an analysis of the literature and existing taxonomies for monitoring languages

and patterns. They evaluated 32 existing monitoring approaches, concluding that the most

popular and suitable to different scenarios are those based on AOP. Listing 2.1 gives an

example of how AOP is adopted in practice. In the example, business logic is being

intercepted for logging purposes.

Regardless of the goal of monitoring or the technique being used, two major prob-

lems must be addressed, as presented in Figure 2.1: (1) the overhead caused by instru-

menting an execution of the running systems; and (2) analyzing a large amount of execu-

tion traces that can be generated.

The overhead becomes a significant issue mainly in real-time applications, which

are time-sensitive and must often meet deadlines in resource-constrained environments (MI-

27

Listing 2.1 – A code snippet of the business logic from a system that is intercepted via AOP with
an AspectJ annotation. The logBefore() method is executed before the execution of the

doSomething() method of the BusinessLogic class.
1 public class BusinessLogic {
2 public void doSomething() { ... }
3 }
4

5 @Aspect
6 public class LoggingAspect {
7 // pointcut at the beginning of the method execution
8 @Before("execution(* BusinessLogic.doSomething(..))")
9 public void logBefore(JoinPoint joinPoint) {

10 System.out.println(joinPoint.getSignature().getName() + " is running!");
11 }
12 }

Application Runtime
Analysis

Workload

Large Set of
Execution Traces

Monitoring Overhead
Figure 2.1 – Monitoring a Running Application and its Challenges.

RANSKYY et al., 2016). The runtime overhead is most critical because this is what the

users of the system will instantly experience. The large sets of collected traces, in turn,

frequently imply high storage space and analysis time demands, resulting in a limited

analysis of a subset of traces (PIRZADEH et al., 2011). The main issue in this context is

how to adequately monitor and acquire information from the application and its environ-

ment without compromising its performance. Such monitoring should be as non-intrusive

as possible to avoid significantly affecting the performance of the application, which is

not always possible (KANG, 2018; RABISER et al., 2017).

Filtering and sampling have been demonstrated as a practical solution to reduce

the monitoring overhead and enable faster trace analysis (BARTOCCI et al., 2018). While

filtering focuses the monitoring only on particular executions or software locations that

are supposed to be relevant for the goal of monitoring, sampling involves establishing a

sampling rate to monitor a subset of execution traces, assuming that it is a representa-

tive sample of the population of traces. The key idea behind these solutions is that only

a small subset of traces is typically significant and enough to the analysis (HAMOU-

LHADJ; LETHBRIDGE, 2004; PIRZADEH et al., 2013; MIRANSKYY et al., 2016).

28

In addition, these two approaches can be combined to keep the monitoring overhead at

acceptable levels. There is existing work to support the specification of filtering and sam-

pling configurations, which give the scope of monitoring (i.e. locations to monitor) and

the sampling rate, respectively. In the following sections, we analyze solutions that sup-

port the development of monitoring-based approaches based on filtering and sampling.

2.2 Filtering

Filtering approaches have been proposed to cope with the monitoring impact by

selecting a subset of traces based on event type, time, description, spatial location, or

even the priority or importance (PIRZADEH et al., 2013; KOUAME; EZZATI-JIVAN;

DAGENAIS, 2015). Consequently, only traces that match a particular pattern are se-

lected (ZAIDMAN; DEMEYER, 2004; REISS, 2005; HAMOU-LHADJ; LETHBRIDGE,

2006; CORNELISSEN et al., 2008; MIRANSKYY et al., 2008; PIRZADEH et al., 2013),

such as being of a certain program region (FEI; MIDKIFF, 2006; NARAYANAPPA;

BANSAL; RAJAN, 2010). They can be classified into two groups: (i) domain-specific

solutions that address the filtering challenges on particular applications or goals of mon-

itoring (Section 2.2.1); and (ii) approaches that provide generic filtering capabilities, de-

signed to be applied to different domains and purposes (Section 2.2.2). Approaches in

these groups are discussed as follows.

2.2.1 Domain-specific Runtime Monitoring

Domain-specific runtime monitoring approaches have been proposed to address

filtering on individual systems, particular architectural styles, or technologies (VIER-

HAUSER; RABISER; GRÜNBACHER, 2016). Although these approaches address mon-

itoring scalability challenges in a domain-specific way, it is not always trivial to specify

monitoring patterns and triggers to obtain traces of interest (RABISER et al., 2017). The

selection of monitoring targets may be guided by a prior and possibly static analysis of the

code (CHEN et al., 2014; KIM et al., 2016a). Focusing on memory, Daoud, Ezzati-Jivan

and Dagenais (2017) proposed a dynamic tracing approach that monitors memory usage

to decide whether to collect a trace based on pre-defined conditions and thresholds such

as the time elapsed since the last trace or the amount of memory allocation calls. Further-

29

more, these specifications are usually fixed, which limits the flexibility and adaptability of

the monitoring and couples the tracing strategy with the analysis, resulting in a possibly

hidden relevant behavior that remains undetected (HORKÝ et al., 2016).

In addition, new applications of monitoring have created dependence between the

goal of monitoring and the monitoring itself, by embedding the monitoring logic into the

logic related to the analysis of the behavior or the action being automated (ALONSO

et al., 2009). These solutions are limited in terms of reuse because they are devel-

oped in an ad-hoc manner and require re-engineering work in order to adapt applications

to obtaining tracing features. To support specifying a filtering configuration, some ap-

proaches perform an automated offline analysis of the program to define relevant applica-

tion regions or paths (APIWATTANAPONG; HARROLD, 2003; SANTELICES; SINHA;

HARROLD, 2006; SRIDHARAN; FINK; BODIK, 2007; NARAYANAPPA; BANSAL;

RAJAN, 2010). Although helpful, these solutions are not suitable when the areas of

interest vary at runtime. In these cases, the approaches should re-executed to tune the

monitoring configuration.

2.2.2 Domain-neutral Runtime Monitoring

There are proposals to increase the generality of filtering in different directions

to achieve independence of the purposes for which the monitoring is performed, requir-

ing a reduced amount of development effort. Alonso et al. (2009) proposed a monitoring

framework based on Aspect-Oriented Programming (AOP) with a flexible architecture,

which can collect a large set of internal and external metrics and change the level of mon-

itoring when it is needed to obtain more fine-grained data from the system. Similarly,

Eichelberger and Schmid (2014) described SPASS-meter, a resource monitoring approach

for Java and Android Apps. It is able to monitor the resource consumption of individ-

ual semantic units of the observed program, such as components or services, based on

a specification provided by the user. However, although the proposal aims to achieve

generic monitoring, SPASS-meter focuses on countable resources such as CPU time, re-

sponse time, memory allocation, network, and file usage. These are useful for traditional

performance engineering but less applicable to other monitoring goals, such as enhanced

bug finding or anomaly detection approaches, which demand details of the data being

processed.

Adaptive filtering proposals can change the metrics being collected or target lo-

30

cations oriented by the domain-specific analysis and occurrence of an event of interest.

Work in this direction has recently been investigated in a systematic mapping (ZAVALA;

FRANCH; MARCO, 2019) that reveals that most of the proposed adaptations focus on

improving the monitoring results for a specific purpose. Fei and Midkiff (2006), for ex-

ample, observed that executing a (region of an) application with the same context tends

to produce the same outcome. Therefore, repeated executions do not need to be moni-

tored when the goal is to identify where bugs are likely to occur. Similarly, Brand and

Giese (2019) proposed an approach in which runtime models that represent properties of

the system that can be monitored are used to derive different monitoring configurations.

Then, this information is provided, at runtime, to other mechanisms that can access the

monitored data through search queries. The adaptation is put in place by constantly ob-

serving how the monitored data is queried and used by other mechanisms. Based on such

observations, the approach can change the monitoring configuration to avoid unnecessary

monitoring effort, i.e. monitored properties that are not being used are disabled. There-

fore, the monitored data, which describes the relevant information to the specific current

needs, influences the monitoring configuration.

Recently, Mizouchi et al. (2019) proposed PADLA (Phase-Aware Dynamic Log

Level Adapter), which is an extension of a popular logging library that enables the dy-

namic change of the log level that should be captured. PADLA employs an online phase-

detection that splits a program execution into phases, and based on instrumentation, it

collects metadata about these phases, such as the execution time. Despite being only

focused on pre-defined log instructions, PADLA allows the system to dynamically in-

crease and decrease the log level of specific execution phases dynamically in the face of

relevant events, such as performance anomalies. By doing so, it is possible to automati-

cally record relevant events in detail while recording regular events concisely. Although

there are approaches that support to achieve adaptation on monitoring, generic adaptation

goals, such as increasing the relevance of the collected traces or dynamically managing

the monitoring overhead, remain unaddressed and should be achieved by other means.

2.3 Sampling

Sampling-based approaches involve establishing a sampling rate to monitor a sub-

set of execution traces, assuming that it is a representative sample of the population of

traces. The key advantage is the bounded overhead, which linearly decreases with the

31

reduction of the sampling period and size. Proposed approaches can be classified into

two groups: (i) fixed configuration, which keeps the same configuration throughout the

software execution until it is manually updated; (ii) adaptive configuration, which dy-

namically adjusts the configuration based on constraints and lightweight monitored data.

These groups are discussed as follows.

2.3.1 Fixed Configuration

A straightforward way to cope with the monitoring overhead is to use random or

systematic sampling (CHAN et al., 2003; DUGERDIL, 2007; JUNG et al., 2014; ZHOU

et al., 2016; SONG; LU, 2017), which is used in various commercial and open-source

tools (VAN HOORN; WALLER; HASSELBRING, 2012; HORKÝ et al., 2016). How-

ever, as there are traces that are not recorded, important traces may be missed. Thus,

choosing a sampling rate is a challenge (LAS-CASAS et al., 2018; MIRANSKYY et al.,

2016) because of the trade-off between the representativeness of the sample and the per-

formance overhead. A suitable solution to the monitoring scalability challenges in some

scenarios is the use of a fixed (higher) sampling rate but targeting particular executions or

regions of an application (i.e. combining filtering and sampling). Nevertheless, when the

population of traces is not homogeneous, focusing on statically defined regions may lead

to reduced coverage and thus an unrepresentative sample (PIRZADEH et al., 2013).

2.3.2 Adaptive Configuration

Adaptive sampling approaches change, at runtime, the sampling configuration,

and even collected metrics. However, the proposed adaptations are mostly focused on

improving the monitoring results for a specific purpose and limited to changing config-

urations based on pre-defined setups or assumptions like that by reducing the sampling

rate it implies the performance overhead is also reduced (ZAVALA; FRANCH; MARCO,

2019). For example, Las-Casas et al. (2019) aim to maximize the diversity of execution

traces in the sample with infrequent patterns in order to capture outliers and anomalous

traces in the sample. Their proposal computes the distance among traces and pursues the

diversity in the set of traces, given a fixed budget. Targeting performance, Ding et al.

(2015) proposed a cost-aware logging mechanism that decides whether to keep log mes-

32

sages based on (1) a dynamic measurement of the performance of the code snippet that

generated the log and (2) an allowed maximum volume of logs in a time interval. The

goal is to keep logs related to code snippets that execute slower than in the past.

These aforementioned adaptive approaches focus on dynamic filtering and adopt

a fixed sampling rate—some (FEI; MIDKIFF, 2006) allow it to be given as a parameter.

Targeting the application workload, three approaches (GONG; PRADEL; SEN, 2015;

HAUSWIRTH; CHILIMBI, 2004; BRÖNINK; ROSENBLUM, 2016) propose to use a

sampling rate that is inversely proportional to the frequency of execution, which gives the

application throughput. Although this strategy can reduce the monitoring overhead when

the application is overloaded, the collected sample may not correspond to the population

of execution traces. In usage peaks, the proportion of collected execution traces is smaller

than in typical workloads. As result, collected samples are likely not representative con-

sidering the population.

2.4 Final Remarks

Runtime monitoring often leads to an overhead in the observed program, being

mostly used within program analysis tools and having limited practical use to change or

adapt program behavior at runtime (KANG, 2018). In the latter case, the monitoring is

often limited to logging high-level events. Detailed measurements, e.g. method-level trac-

ing, tend to be avoided because their overhead can disrupt execution. This limits the infor-

mation available for analysis when finding and solving issues at the code level (HORKÝ

et al., 2016).

Filtering and sampling have been demonstrated as practical solutions to reduce the

monitoring impact. However, the existing solutions have limitations in terms of generality,

adaptability, and scalability, and achieving an effective solution requires manually dealing

with these limitations. Table 2.1 presents the identified related work, with the approaches

that address the different challenges on monitoring and how it is done.

Thus, there is a need for monitoring techniques that (1) make an adequate trade-

off between the monitoring overhead, by not compromising the system operation and still

collecting relevant and representative execution traces; and (2) can be used for differ-

ent purposes, such as detecting failure points or performance issues. The next chapters

present alternatives to address the challenges of monitoring, reducing the limitations im-

posed by existing solutions.

33

Table 2.1 – Comparison of related work on monitoring. Empty columns mean that the approach does not offer explicit support to the characteristic.
Monitoring Characteristic

Approach Generality Adaptability Scalability

Chen et al. (2014), Kim et al. (2016a), Api-
wattanapong and Harrold (2003), Santelices,
Sinha and Harrold (2006), Sridharan, Fink
and Bodik (2007)

— — Selects a subset of executions to mon-
itor

Fi
lte

ri
ng Zaidman and Demeyer (2004), Daoud,

Ezzati-Jivan and Dagenais (2017), Miran-
skyy et al. (2008), Pirzadeh et al. (2013)

— — Filters traces that match a particular
pattern or constraint

Eichelberger and Schmid (2014) Filters different target locations based on
custom definition

— —

Fei and Midkiff (2006), Narayanappa,
Bansal and Rajan (2010)

— — Sampling applied to a predefined sub-
set of executions

Alonso et al. (2009) Addresses different levels of granularity — —

Brand and Giese (2019), Brand and Giese
(2018)

Captures different properties according
to a monitoring configuration

Changes results based on access history —

B
ot

h Mizouchi et al. (2019) Extension of a popular logging library Changes the log level dynamically in face
of relevant events

—

Approaches reported by Zavala, Franch and
Marco (2019)

— Changes the metrics collected, sampling
configurations or target locations ori-
ented by a suspected problem

—

Ding et al. (2015) — — Keeps traces according to a pre-
defined budget

Las-Casas et al. (2018), Las-Casas et al.
(2019)

— — Maximizes the diversity of execution
traces

Sa
m

pl
in

g Dugerdil (2007), Chan et al. (2003), Jung et
al. (2014), Zhou et al. (2016), Song and Lu
(2017)

— — Sampling applied to all executions

Fischmeister and Ba (2010), Thomas, Fis-
chmeister and Kumar (2011)

— — Changes sampling rate based on pre-
defined scenarios

Gong, Pradel and Sen (2015), Hauswirth and
Chilimbi (2004), and Brönink and Rosen-
blum (2016)

— — Sampling rate is inversely propor-
tional to the frequency of execution

34

35

3 RELEVANCE CRITERIA AND TIGRISDSL

A complete set of execution traces captures the execution of every operation of

a software system. However, not every trace is equally relevant given a particular goal

when monitoring the system, because only a subset of the traces contains the information

needed to diagnose a target system symptom. These traces may be concentrated in parts

of the code with specific characteristics. For example, if the goal of the monitoring is

runtime verification (HAMOU-LHADJ; LETHBRIDGE, 2004; REGER; HAVELUND,

2016), methods that handle many exceptions or include type castings may be the primary

source of relevant traces, as such methods are error-prone. Alternatively, if the purpose

of monitoring is performance optimization, methods that are more frequently invoked

might be those to be tracked (CHEN et al., 2018). The relevance of an execution trace

for analysis depends on the purpose of the analysis, i.e. the monitoring goal. A sample

of collected execution traces is said relevant if the portions of the source code being

monitored satisfy a set of relevance criteria. A relevance criterion is defined as follows.

Relevance Criterion. A relevance criterion is the specification of a property of

system events (e.g. the execution of a method or a function) that characterizes the types of

events that are more likely to be useful than others, according to a particular monitoring

goal.

To identify the relevance criteria associated with each monitoring goal, we sur-

veyed monitoring-based approaches from the literature, identifying their goals as well as

adopted criteria and metrics to analyze execution traces to understand the system behav-

ior. Next, we first describe the method used to select and analyze research work in this

context and then present obtained results. Founded on them, we introduce the TigrisDSL,

which is a domain-specific language (DSL) to specify relevance criteria.

3.1 Method

We surveyed full papers published in the Computer Science conferences presented

in Table 3.1. These conferences have on their scope of interest research related to the anal-

ysis of execution traces for profiling, adaptation or code understanding. We selected the

two most highly ranked conferences in software engineering (ICSE and ESEC/FSE), and

five other conferences where system monitoring is a core concern due to its importance

to the software adaptation area (ICAC, SASO, and SEAMS) and code analysis and un-

36

Table 3.1 – Conferences from where papers from the past six years (2014–2019) were obtained
and analyzed.

Acronym Conference

ESEC/FSE Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering

ICSE International Conference on Software Engineering
OOPSLA Conference on Object-Oriented Programming Systems, Languages, and

Applications
ICAC International Conference on Autonomic Computing
SASO International Conference on Self-Adaptive and Self-Organizing Systems
SEAMS International Symposium on Software Engineering for Adaptive and Self-

Managing Systems
ICPC International Conference on Program Comprehension

derstanding (OOPSLA and ICPC). We focused only on conferences to pursue face-paced

publications considering that they have faster review and publication processes than jour-

nals. Moreover, papers published in journals are often extensions of conference papers.

In addition, we also covered journal-first publications of relevant journals in the area, as

these papers can be presented at selected conferences. We restricted our search to the past

six years (2014–2019). To filter relevant papers, we searched the databases where the

proceedings of these conferences were published using the following query string.

(runtime OR dynamic) AND (monitor OR instrument OR record OR track OR profile)

AND (trace OR execution)

As result, we obtained 147 papers, from which 64—based on the title and abstract—

fit the criterion of including a monitoring-based approach. They were analyzed according

to four dimensions:

1. identification of the monitoring goal, the criteria adopted to analyze execution

traces and the used metrics;

2. assessment of the generality of the monitoring approach in terms of its use for

different application domains and purposes;

3. examination of scalability aspects, such as the overhead and size of traces; and

4. inspection of the adaptability of the monitoring approach, that is, the runtime changes

in the monitoring strategy to address a particular issue, such as the reliability of col-

lected traces or overhead reduction.

37

Table 3.2 – Analysis Approach. Questions used in the analysis of monitoring-based approaches.

#Q Question

1 What is monitored?
2 What are the metrics used?
3 What are the criteria related to the metrics?
4 What is the goal of monitoring?
5 How are traces collected?
6 What is the granularity of the collected traces?
7 What is the amount of the collected traces?
8 How were the traces generated for evaluation?
9 Is the monitoring automatically integrated?
10 Is the monitoring adaptive? What is the goal of adaptation?
11 How is adaptation achieved? What is the adaptation trigger?
12 Is there monitoring overhead? How is the overhead dealt with?
13 Is representativeness considered when collecting traces?
14 How is representativeness ensured?
15 Is relevance considered when collecting traces?
16 How is relevance ensured?
17 How specific is the monitoring approach in terms of technology or domain/pur-

pose?

To guide the analysis of the selected papers, we used pre-specified questions, pre-

sented in Table 3.2, which served as a checklist while analyzing the papers. The analysis

was performed manually by reading the selected papers and answering the questions. Ta-

ble 3.3 provides examples of such analytical processes and illustrates how we reached the

results of our study1.

The combined analysis of the four dimensions based on information gathered from

the selected papers provided us with the foundation needed to elaborate a solution that

can effectively support the development of monitoring-based approaches. The results are

presented as follows.

3.2 Analysis and Results

3.2.1 Goals, Criteria, and Metrics

Based on the analysis of our selected papers, we identified the criteria presented in

Table 3.4. This table also shows the number of papers in which each criterion appears. As

1The detailed analysis of each paper is available at <http://www.inf.ufrgs.br/prosoft/resources/2020/
jss-effective-tracing>

http://www.inf.ufrgs.br/prosoft/resources/2020/jss-effective-tracing
http://www.inf.ufrgs.br/prosoft/resources/2020/jss-effective-tracing

38

Table 3.3 – Analysis Approach. Example of how information from the selected papers were
collected by answering the questions specified in Table 3.2.

Sample Quote from Selected Papers Gathered Information #Q

(BARNA et al., 2017): The proposed monitoring mod-
ule gathers CPU utilization for all the back-end tiers
of the applications (Web, Spark and Cassandra) on
the container level, CPU utilization of the host VMs,
as well as response time and throughput from the en-
tire system.

Target of monitoring 1

(DELLA TOFFOLA; PRADEL; GROSS, 2015): [...]
uses state of the art CPU time profiling to identify the
set of initial memoization candidates. We record, for
each executed method m, the time tm spent in m (in-
cluding time spent in callees) and the number cm of
calls. Furthermore, we also measure the total execu-
tion time tprgm of the program.

Metrics 2

(KANG et al., 2016): Based on the profiling data,
DiagDroid detects performance issues and analyzes
their causes. A report can finally be generated with an
aim to direct the debugging process.

Goal of monitoring 4

(SU et al., 2016b): There are several factors that can
contribute to the runtime overhead of HitoshiIO [...]
The most dominant factor for execution time in our ex-
periments was the clone identification time: applica-
tion analysis was relative quick (order of seconds), and
the input-output recorder added only a roughly 10x
overhead

Scalability 12

can be seen, the frequency of an execution event is the most adopted criterion to classify

relevant traces, followed by maintainability.

Although the order in this table may give evidence of the importance of the criteria,

note that each criterion has a different purpose. Consequently, the number of occurrences

is also associated with the most common goals of monitoring. We thus, in addition to the

identification of criteria, investigated the goal of monitoring in the selected papers. The

identified goals are clustered into five groups, as presented in Table 3.5. For each group,

we show examples of specific goals that appeared in the papers. We also highlight the

most used criteria for each goal. To assess whether execution events match the relevance

criteria of a specific goal, various metrics are used to make an objective evaluation. Cells

of Table 3.5 indicate the most relevant metrics associated with each pair of goal and

criterion that appeared in our surveyed literature.

39

Table 3.4 – Relevance Criteria. List of relevance criteria identified in our searched literature, with
their description. The number of occurrences (#) in the analyzed papers is also detailed.

Criterion Description #

Frequency Amount of times that an event occurs during a period of time 30
Maintainability Complexity of the operations associated with an event 20
Expensiveness Consumption of computational resources associated with an

event
16

Changeability Analysis of divergences among the result of multiple occur-
rences of a same event

14

Error-proneness Likelihood of an event to cause errors when they occur 13
Usage pattern Characteristics of an event that tracks or deals with user re-

quests
12

State variation Amount of changes in the system state caused by an event 9
Concurrency Amount of execution threads that are executed in parallel and

share resources
8

Latency The delay of the occurrence of an event 8

40

Table 3.5 – Goals, Relevance Criteria and Metrics. Association between groups of goals and relevance criteria, along with examples of goals and metrics used by the surveyed
approaches. Cells in gray highlight the three most relevant criteria of each goal. The given examples are non-exhaustive.

Goal Group Efficiency Maintainability Reliability Security Testability
Goal Examples performance, energy sav-

ing, caching, improving
resource consumption

bug finding, understand-
ing, reuse, documenta-
tion, troubleshooting

health checking, fault tol-
erance, disaster recovery,
adaptation, configuration
fix

anomaly detection, data
protection, malicious at-
tack detection

testing (generation, vali-
dation, selection), report-
ing, verification

Frequency Number of occurrences
in a period

Number of references
and dependencies

Inter-arrival times Changes in occurrence
history

Number of occurrences
in test case

Maintainability Number of operations in-
volved

Static source code met-
rics

— Contextual information
of objects/classes

Fail test coverage

C
ri

te
ri

on

Expensiveness Execution time Source code locations of
expensive methods

CPU and heap utilization,
processing times

Transaction duration Depth of call stack

Changeability Number of repeated com-
putations

Similarity between call
graphs

Number of operations
with cached results

Changes in contextual in-
formation

—

Error-proneness Number of failures of a
component

Number of handled ex-
ceptions

Number of failures per-
ceived by users

Increase of failures in a
specific component

Number of failure
assertions or exception-
throwing statements

Usage pattern Changes in user naviga-
tional activity

— Number of active users
and idle/active intervals

Variations in the request
payload for same opera-
tions

—

State variation I/O consumption per op-
eration

Changes in the system
state

Number of write opera-
tions performed

— —

Concurrency Number of active users
and threads

Number of references
and dependencies

Number of race condi-
tions

— Number of locks per test
case

Latency Processing and band-
width consumption

— Throughput — —

41

3.2.2 Generality

All the surveyed approaches have been proposed for a specific goal, such as iden-

tifying performance bottlenecks or bugs. Despite their sheer number and heterogeneity,

49 papers (76.5%) are limited to specific purposes, individual systems, particular archi-

tectural styles, or technologies, which couples the monitoring phase of these approaches

to the analysis they perform (i.e. the goal of monitoring). These solutions are limited in

terms of reuse because they are developed in an ad-hoc manner and require re-engineering

work in order to adapt applications to obtaining tracing features.

From the surveyed approaches, 15 papers (23.5%) are flexible in terms of config-

uration. It means that they can be customized in terms of constraints, rules, and properties

of the approach to better fit the user-specific needs. This flexibility is achieved by offer-

ing lower-level interfaces, functions, and probes that can be manually implemented and

customized by users, such as in (JUNG et al., 2014; LEE; FORTES, 2016; DEVRIES;

CHENG, 2018). However, only 5 papers (7.8%) increase the generality of monitoring

by providing higher-level support so that users can achieve a domain-specific specifica-

tion of the goal of monitoring, which is automatically implemented by the monitoring

proposal. This is offered in the form of annotations, parameterization or domain-specific

languages, e.g. in (GHEZZI et al., 2014; ANGELOPOULOS et al., 2016; CHRISTAKIS

et al., 2017).

In addition to analyzing whether the monitoring can be customized, we also in-

spected if it relies on the particularities of specific technologies, programming languages,

or execution environments. From the 64 papers, only 17 (26.5%) are technology-independent.

The remaining 47 surveyed approaches (73.5%) rely on traces and events with prop-

erties and format tight to specific programming languages such as JavaScript (GONG;

PRADEL; SEN, 2015) or Java (HUANG; LUO; ROSU, 2015). The same applies to

approaches focused on software platforms such as Android (KANG et al., 2016) and

Linux (SONG; LU, 2017). In these scenarios, traces are usually collected by instrument-

ing or profiling the execution platforms at a lower-level, and thus the monitoring approach

becomes dependent on the platform specificities.

This means that most of the existing solutions that rely on monitoring are application-

specific, i.e. while they carefully collect selected data at runtime for a particular purpose,

the principles used to monitor data are not generalizable. However, the rationale behind

the criteria used to filter traces is shared by the approaches.

42

3.2.3 Scalability

Monitoring and collecting information from a managed system impact on its per-

formance. From all approaches, 31 papers (48.5%) explicitly mention that their solution

implies an overhead to the observed system, such as in (SU et al., 2019; BRÖNINK;

ROSENBLUM, 2016; MADSEN et al., 2016; ZHANG; ERNST, 2014; BIELIK; RAY-

CHEV; VECHEV, 2015; KANTERT et al., 2014). The overhead implied may vary ac-

cording to the amount of information required to the analysis and the monitoring tech-

nique used to collect the execution traces. For example, Su et al. (SU et al., 2016b) report

an overhead of 10× compared to running a Java-based application without the profiling

technique used to detect functional clones, which relies on collecting detailed inputs and

outputs of function calls. A different monitoring technique adopted by Hu et al. (HE; DAI;

GU, 2018), which relies on collecting occurrences of operational system calls based on a

Linux kernel (low-level) extension, reports an overhead of less than 1%. The remaining

33 surveyed approaches (51.5%), e.g. (CÁMARA; MORENO; GARLAN, 2014; TUN et

al., 2018b; BASTANI; ANAND; AIKEN, 2015; LARSSON et al., 2019; CHEN et al.,

2016; DENARO et al., 2015), do not even mention the impact of monitoring and gather-

ing data from the managed system. This could raise questions of their practical feasibility

because even in cases where a small amount of data is collected during system monitor-

ing, like execution time and identification of the event (HE; DAI; GU, 2018; YANG et al.,

2019), there is an impact on the memory consumption and processing time of the system.

Sampling and filtering have been demonstrated as the most used solution to re-

duce the trace size and enable faster trace analysis, adopted by 26 approaches (40.5%).

However, the reduction of the amount of traces may lead to an unrepresentative sample

and, consequently, inadequate to achieve the goal of monitoring. None of the surveyed

approaches ensured the representativeness of the sample collected.

In terms of overhead evaluation, only 16 papers (25%) assessed the extent of the

overhead. The reported overhead varies from negligible (0.8%–5%) (JUNG et al., 2014;

KIM et al., 2016b; KANG et al., 2016; HAWKINS; DEMSKY, 2017; LEE; JUNG;

PANDE, 2014; HE; DAI; GU, 2018; LIU; CURTSINGER; BERGER, 2016) to high im-

pact (such as +16% or 41.7× the original execution) (SU et al., 2019; ALIABADI et al.,

2017; BRÖNINK; ROSENBLUM, 2016; JENSEN et al., 2015; GONG; PRADEL; SEN,

2015; MADSEN et al., 2016; ZHANG; ERNST, 2014; BIELIK; RAYCHEV; VECHEV,

2015; SU et al., 2016b), which compromises the practical feasibility of the approach in

43

real-time scenarios. These high impact approaches are typically not supposed to be used

at runtime because they demand detailed monitoring of the system and are usually focused

on testing scenarios, possibly with production workloads. The results can be manually an-

alyzed and applied by developers at design time to benefit the system in future executions.

Towards addressing the observed monitoring overhead, 16 of the approaches (25%)

explored alternatives to reduce the impact of the monitoring activity. From these, six (JENSEN

et al., 2015; MADSEN et al., 2016; HUANG; LUO; ROSU, 2015; SAMAK; TRIPP; RA-

MANATHAN, 2016; BIELIK; RAYCHEV; VECHEV, 2015; XIAO et al., 2014) apply

specific tuning and optimization in the proposed algorithms to reduce the overhead, which

is not possible to generalize to other approaches. For example, Madsen et al. (MAD-

SEN et al., 2016), who focused on providing developers with detailed information about

crashes at execution time, iteratively increase the instrumentation level on regions of

code in which crashes are detected. In addition, Huang et al. (HUANG; LUO; ROSU,

2015), which monitors thread-related operations in Java-based applications, do not col-

lect global traces but instead focus on the events of each thread separately. The remaining

ten approaches (SU et al., 2019; KIM et al., 2016b; BRÖNINK; ROSENBLUM, 2016;

GONG; PRADEL; SEN, 2015; SONG; LU, 2017; CHEN et al., 2014; JUNG et al., 2014;

LEE; JUNG; PANDE, 2014; DELLA TOFFOLA; PRADEL; GROSS, 2015; ZHOU et

al., 2016) make use of generic solutions such as sampling (simple systematic or random)

and static analysis to filter out locations and avoid collecting the so-called useless traces.

The granularity level of the monitoring may play an important role in the over-

head. In this regard, 40 of the surveyed approaches (62.5%) rely on monitoring func-

tion or method calls, which implies a considerable overhead given the high number of

traces and the detailed information usually collected from method calls such as the in-

put parameters and return. In 36 approaches (56%), the trace collection is performed

based on low-level profiling and instrumentation, according to the programming language

in which the approach is implemented such as based on Low Level Virtual Machine2

(LLVM) (SONG; LU, 2017; KIM et al., 2016c) for C++ applications, Jalangi frame-

work3 (GONG; PRADEL; SEN, 2015; JENSEN et al., 2015) for Javascript-based appli-

cations, or ASM-based4 instrumentation (DELLA TOFFOLA; PRADEL; GROSS, 2015;

ZHANG; ERNST, 2014; CHEN et al., 2018; SU et al., 2016b) for Java applications. In

addition, eight approaches (12.5%) either demand manual implementation of the tracing

2<https://llvm.org/>
3<https://jacksongl.github.io/files/demo/jalangiff/index.html>
4<https://asm.ow2.io/>

https://llvm.org/
https://jacksongl.github.io/files/demo/jalangiff/index.html
https://asm.ow2.io/

44

collection code (ANGELOPOULOS et al., 2016; GHEZZI et al., 2014; YANDRAPALLY;

SRIDHARA; SINHA, 2015; XU et al., 2016; SU et al., 2016a) or provide ways of gener-

ating the implementation automatically (LEE; JUNG; PANDE, 2014; XIAO et al., 2014;

DEVRIES; CHENG, 2018). However, code-level changes imply maintenance issues and

increase the complexity of the software system base code.

For practical reasons, sometimes the monitoring is limited to high-level events (CÁ-

MARA; MORENO; GARLAN, 2014; CLARK; BEAL; PAL, 2015; BARNA et al., 2017;

YUAN; ESFAHANI; MALEK, 2014; BROCANELLI; WANG, 2017; DONG et al., 2018;

ZHOU et al., 2019). Examples of this type of event are requests to a web server (CÁ-

MARA; MORENO; GARLAN, 2014) or occurrences of failures in software compo-

nents (ZHOU et al., 2019). This is the case of 15 of the surveyed approaches (23.5%)

that rely on system or module-level monitoring. However, this may reduce the power of

the analysis, given the lower amount of collected information.

3.2.4 Adaptability

The way that the monitoring is performed can change at runtime, either to focus

on relevant traces or to reduce the overhead. Examples of changes are the metrics be-

ing collected, sampling configurations, or target locations oriented by a domain-specific

analysis and occurrence of an event of interest. These are forms of adaptive monitoring.

Only seven of all surveyed approaches (11%) employ adaptive mechanisms to im-

prove the monitoring efficiency (BRÖNINK; ROSENBLUM, 2016; GONG; PRADEL;

SEN, 2015; MADSEN et al., 2016; SAMAK; TRIPP; RAMANATHAN, 2016; DELLA

TOFFOLA; PRADEL; GROSS, 2015; BARNA et al., 2015; CASANOVA et al., 2014).

In all cases, the adaptation is triggered based on a set of specific constraints or hard-coded

rules and are thus not flexible to be modified. For example, Bronik et al. (BRÖNINK;

ROSENBLUM, 2016) increase the reliability of collected data by dynamically placing

probes in component connections according to fault detection. As its goal is fault local-

ization, it changes the trace rate to have more information about which components are

more susceptible to faults. It triggers the adaptation based on rules such as if a prob-

lem has been diagnosed in a component, probes are deployed to obtain a more accurate

diagnosis.

Another example is the evaluation of the health of a managed resource (GONG;

PRADEL; SEN, 2015). Because the instances in a distributed system can come and go

45

dynamically, when a new component appears or leaves the system, the monitoring com-

ponent is capable of reflecting changes in the topology and keeping the reliability of the

collected data. Adaptation is also used to dynamically reduce the level of the overhead.

Barna et al. (BARNA et al., 2015), e.g., adapt the sampling technique to focus on specific

code locations depending on the computational resources available for monitoring.

In addition, all the proposed adaptations are focused on controlling the moni-

toring overhead (BARNA et al., 2015; MADSEN et al., 2016; SAMAK; TRIPP; RA-

MANATHAN, 2016), or increasing the trace reliability for a specific purpose (BRÖNINK;

ROSENBLUM, 2016; GONG; PRADEL; SEN, 2015; CASANOVA et al., 2014; DELLA

TOFFOLA; PRADEL; GROSS, 2015). All of them are limited to changing configura-

tions based on pre-defined setups or ad hoc assumptions, without considering the trade-

off involved in the process. An example of such an assumption is that the performance

overhead is reduced by merely reducing the target locations (BARNA et al., 2015), which

may not be valid if the majority of the system executions are concentrated on the filtered

locations. Thus, generic adaptation goals, such as maximizing the representativeness of

the collected traces or dynamically managing the monitoring overhead, are not addressed

by any of the surveyed approaches.

3.2.5 Discussion

Although runtime monitoring approaches have been employed to different goals

and purposes, there are still limitations in terms of generality, scalability, and adaptability

that should be addressed in order to achieve an effective monitoring approach. Thus, there

is a need for a monitoring technique that:

1. can be applied generically and flexibly for different types of software systems and

purposes, such as detecting and dealing with performance issues or energy bottle-

necks, considering different levels of monitoring granularity;

2. can deal with the trade-off between the impact caused by the monitoring and its

effectiveness in terms of data representativeness, relevance and location coverage;

and

3. is able to respond to changing requirements and constraints in the monitoring com-

ponent in order to maintain the monitoring effectiveness.

46

In addition, the development of reusable monitoring approaches that abstract and

encapsulate monitoring functionality would reduce both the effort to develop new systems

implementing these strategies as well as the probability of bugs in newly implemented so-

lutions. Moreover, it would promote software reuse across different goals and domains.

Based on the findings of our survey of monitoring-based approaches, we derived Tigris-

DSL, a domain-specific language (DSL) designed to provide users with a standardized

and comprehensive way to specify monitoring goals in terms of metrics and relevance

criteria. TigrisDSL is founded on the relevance criteria presented in Tables 3.4 and 3.5

and is the basis of our monitoring solution (introduced in Section 4).

3.3 TigrisDSL: a Generic Way to Specify Relevance Criteria

TigrisDSL allows users to write monitoring filters by means of high-level rele-

vance criteria. These relevance filters can be used to guide monitoring components to

collect a set of relevant traces that are analyzed to achieve the goal of monitoring. It can

be incorporated into any monitoring approach to specify monitoring requirements.

The Backus–Naur Form (BNF) grammar of TigrisDSL is presented in Listing 3.1.

TigrisDSL is based on the recursive definition of a filter, which can be composed

of multiple definitions (filterdef). Filter definitions are the main structure to al-

low users to inform which group of data from the relevance criteria should be considered

(modifier) and the relevance criteria from the set of pre-defined criteria (criterion).

It is important to highlight that these pre-defined criteria are based on our systematic lit-

erature review. Nevertheless, future versions of our DSL can include extended criteria or

modifiers if those derived from our systematic analysis are considered not enough for the

specifications of filters.

The semantics of the modifier should be specified by an approach employing

our DSL. For example, frequent can be events that are executed in a frequency above

the average, while most frequent can be the top 5% of the most frequent execution

events (e.g. invoked methods or called functions).

In addition, filters can be combined to form a complex filter using operators,

which are based on basic set operations, namely union, intersection, and subtrac-

tion. With these operations, it is possible to specify how the data from different groups

of the relevance criteria can be combined to identify and filter a set of relevant events. To

illustrate, we give examples of expressions written in TigrisDSL as follows.

47

Listing 3.1 – TigrisDSL Syntax Grammar. Presentation of the BNF grammar of the TigrisDSL
language.

〈filter〉 ::= 〈filterdef 〉 | (〈filter〉) | 〈filter〉 〈operator〉 〈filter〉

〈filterdef 〉 ::= 〈modifier〉 〈criterion〉 | 〈criterion〉

〈operator〉 ::= ∪ | ∩ | \

〈modifier〉 ::= more | less | most | least

〈criterion〉 ::= frequent | maintainable | expensive | changeable | error-prone | usage-

pattern | state-variation | concurrent | latent

• least frequent, which indicates that in terms of frequency, only the least fre-

quent events of the system execution should be traced.

• more frequent ∪ most expensive, which indicates that the monitoring

should be focused on methods that are more frequent or most expensive, consider-

ing all the system events.

• most changeable ∩ (most concurrent ∪ more error-prone),

which indicates that only the most changeable events, which also have higher

levels of concurrency or tend to cause errors, should be traced.

Depending on the semantics of modifiers, increasingly complex expressions

can be specified as needed. Examples are presented as follows.

• less changeable ∩ more frequent ∩ (more usage-pattern

∪ (more expensive ∩ less usage-pattern))

• (least changeable ∪ most changeable) ∩ more frequent ∩

(most usage-pattern \ less expensive)

In order to demonstrate how relevance criteria can be used to abstract the desired

behavior and filter execution traces for a specific purpose, we take a monitoring-based

approach as an example (DELLA TOFFOLA; PRADEL; GROSS, 2015). This approach

was identified in our literature survey. Della Toffola et al. (DELLA TOFFOLA; PRADEL;

GROSS, 2015) proposed a method to identify memoization opportunities based on pro-

filing method executions of applications. During this analysis, all the method calls are

48

Table 3.6 – Relevance Filter Examples. Example of a monitoring-based approaches specified in
TigrisDSL.

Specification made by Della Toffola et
al. (DELLA TOFFOLA; PRADEL;
GROSS, 2015)

Relevance TigrisDSL-based

Criterion Filter

The program spends a non-negligible
amount of time to process a method.

Expensiveness more expensive

The program repeatedly provides equiv-
alent inputs to a method, and this
method repeatedly produces the same
outputs for these inputs.

Changeability ∩ least changeable

The number of times that a result can be
reused over the total number of cache
lookups is at least 50%.

Frequency ∩ more frequent

filtered by processing three specifications, which are presented in the first column of Ta-

ble 3.6. These specifications are informal and presented in a non-standardized way. The

other two columns of this table show with which relevance criterion each specification

is associated and a filter that represents it. The filters shown in the third column of Ta-

ble 3.6 are less ambiguous and more concise than natural language. In addition, they are

a generic and explicit way to express what sort of monitoring events of interest.

3.4 Final Remarks

The proposed language TigrisDSL is generic and abstract in the sense that it does

not define the semantics of criteria such as frequency or expensiveness, as well as the

meaning of more or less error-prone when comparing execution traces. Essentially, Tigris-

DSL captures the most representative concerns about the monitoring observed in the pa-

pers in our systematic literature review (criteria) and provides a syntactic construction to

express a comparison among elements within a criterion in quality or degree (modifiers),

along with a way to correlate and operate on top of different criteria to create relevance

filters (operators). The filter expressions made using TigrisDSL can be used as input of

any monitoring approach. To use TigrisDSL to create event filters, it is necessary to em-

ploy a mechanism that can interpret and translate these criteria, modifiers, and operators

into quantitative and comparable metrics. We, in particular, propose a two-phase monitor-

ing approach, which is guided by user-made specifications using TigrisDSL and provides

49

semantics to the language criteria, modifiers and operators. Our proposal, which is pre-

sented in the next chapter, is a step towards achieving an effective monitoring approach

and provides a way to define and customize monitoring components.

50

51

4 ADAPTIVE FILTERING

As discussed, monitoring all execution traces in detail comes at the cost of ex-

tensive and detailed instrumentation, which causes a high overhead in software applica-

tions (MERTZ; NUNES, 2017b). Moreover, there are situations when it is infeasible to

select software locations or executions that should be monitored a priori in detail (i.e.

design-time), or such locations frequently change overtime. It thus becomes necessary

to rely on an automated and adaptive process that can identify such executions of in-

terest (e.g. the most frequent or more error-prone executions) with reduced performance

overhead. Available monitoring approaches in this direction lack generality and fail in

enabling software reuse across different domains with varying goals.

To address this, we propose a two-phase monitoring approach for collecting exe-

cution traces, which is a generic and customizable solution for monitoring. As presented

in Figure 4.1, our approach is driven by user definitions supported by the proposed Tigris-

DSL, and thus provides semantics to all the terms of the TigrisDSL, such as criteria,

modifiers, and operators. The first monitoring phase (described in Section 4.2) is coarse

grained, focused on computing low-overhead metrics of event executions according to

the specification of relevance criteria. The second phase (detailed in Section 4.3) takes as

input the data collected in the coarse-grained phase. It processes the computed metrics

from the previous phase and dynamically identifies the relevant events that are assumed to

generate traces that are relevant for a given goal. These traces are collected in detail by a

monitoring process that relies on a sampling strategy to control the overhead of monitor-

ing. We implemented our proposed approach as a framework, namely Tigris (presented in

Section 4.4), which serves as basis for conducting empirical studies (Section 4.5) with the

aim of assessing different aspects of the proposed solution. Before detailing the phases of

our monitoring approach, we next present a running example that is used throughout this

section to illustrate details on how the proposed approach works.

4.1 Running Example: Application-level Caching

Previous work (MERTZ; NUNES, 2018) proposed an automated caching approach,

which chooses and manages cacheable content according to the Cacheability Pattern (MERTZ;

NUNES, 2017a). It targets the caching of method-level content. The automatically se-

lected cache configuration is based on observations made by monitoring web applications

52

Fine-grained
Monitoring

Execution
Traces

TigrisDSL-based
Specification of Relevance

Criteria and Metrics

Measurement

Metrics

Sampling

Coarse-grained
Monitoring

Figure 4.1 – Overview of the Two-phase Monitoring Approach. It shows the input provided in
the first phase (Coarse-grained Monitoring) and the resulting output of the second phase

(Fine-grained Monitoring).

at runtime, that is, a monitored application workload. This approach was conceived and

implemented in the form of a caching framework, named APLCache, which seamlessly

integrates the proposed solution to web applications.

One of the limitations of APLCache is that the overhead of the data tracking activ-

ity may significantly impact the application execution because it is necessary to monitor

method inputs and outputs to make caching decisions. This was addressed by disabling

the monitoring in situations when it is not possible to keep an acceptable overhead. Thus,

the caching approach may lack information and provide outdated decisions.

We use APLCache as a running example to explain the details of our proposed

approach in the following sections. Thus, the target type of event execution, in this case,

are methods. APLCache is also used as a baseline for our evaluation, where we investi-

gate the benefits of the two-phase monitoring to APLCache in terms of the overhead and

relevance of the provided execution traces. Details about the evaluation are presented in

Section 4.5.

4.2 Coarse-grained Monitoring

In its first phase, our proposed approach monitors the application in a way that

it is possible to capture data that enables the identification of relevant traces with low

overhead. First, it is necessary to instantiate the solution by providing domain-specific

information in terms of relevance criteria and metrics. Based on such information, the

53

coarse-grained phase can collect data to identify the most relevant subset of events of the

application. We next detail the manual input required by the coarse-grained phase and

how it is used to monitor events.

The coarse-grained phase of the proposed monitoring approach relies on two in-

puts from the user: (a) the definition of high-level relevance filters using the TigrisDSL

language; and (b) the selection of metrics to be used as a quantitative measurement of each

relevance criterion referred in filters. To provide such information, users are provided with

the guidance derived from our systematic literature review. Based on the user’s goal, a

set of suitable criteria from those presented in Table 3.4 must be selected to be used in

relevance filters, and corresponding metrics should be indicated. The metrics presented

in Table 3.5 are the most frequently used metrics in the literature, and can be used to

represent the desired relevance criteria.

Considering that our running example is focused on identifying suitable method

calls for caching, according to Table 3.5, its goal of monitoring is related to efficiency.

Thus, the relevance criteria to achieve this goal should include the most popular criteria

of this goal group, which are frequency and expensiveness. In addition, to find caching

opportunities, method calls that always provide the same output given a specific input

are well-suited for caching due to reuse opportunity (MERTZ; NUNES, 2018). Thus,

changeability is also a criterion considered. As result, we specify the following relevance

criteria.

(more frequent ∪ most expensive) ∩ least changeable

The TigrisDSL specification presented above contains different modifiers and op-

erators. We are interested in filtering the more frequent method calls, i.e. the subset of

method calls that ranks higher according to a specified metric for frequency, because

caching methods that are frequently executed usually leads to performance improve-

ments (MERTZ et al., 2020). In addition to the frequent method calls, we select the most

expensive method calls, as caching a result that takes more time to be processed would

lead to major performance benefits. However, managing cache consistency is a major

challenge in the area (MERTZ et al., 2020). Thus, we only include method calls that are

the least changeable because it would allow us to use a simple consistency strategy, such

as an expiration time, and reduce the chances of caching stale content for longer periods.

The detailed semantics of the modifiers (more, most, and least) and operators (∪ and ∩),

as defined by our proposed approach, are presented in Section 4.3.

54

Table 4.1 – Running Example Collected Metrics. Example of metrics collected and maintained
for each method in the coarse-grained phase. Cells in gray highlight the more frequent,

most expensive and least changeable according to the Grouping step.

Method Frequency Expensiveness Changeability

ClinicService.findOwner(args) 12 (less) 180 (least) 6 (more)
ClinicService.updateOwner(args) 2 (least) 500 (most) 0 (most)
VisitController.newVisit(args) 50 (frequent) 250 (more) 12 (change-

able)
ClinicService.findVets() 200 (most) 300 (expen-

sive)
200 (least)

OwnerRepository.findAll() 100 (more) 200 (less) 90 (less)

For each criterion presented in the TigrisDSL specification, it is necessary to use

of a quantitative metric so that the approach is able to track and give an objective inter-

pretation to the criteria. As mentioned, this metric can be any of the metrics presented in

Table 3.5, primarily those that match the selected criteria and the intended goal of moni-

toring. By taking into account the goal of our running example, possible metrics for fre-

quency, expensiveness and changeability are, respectively, the absolute number of times

a method occurs, the average time taken to execute a method and the absolute number of

times that each pair of input and output of method occurs.

With a quantitative way of measuring the relevance criteria, the coarse-grained

phase starts collecting these metrics from events at runtime. The coarse-grained moni-

toring results in a summary of the application in terms of statistics about all the event

executions of the system. Collected metrics about the execution events are maintained

in memory. Consequently, these estimations of the metrics are computationally cheaper

than the metrics and do not demand recording individual traces.

These metrics are used as a reference to assess how expensive, frequent, and

changeable methods are. For example, considering the computation pattern (changeabil-

ity), methods with higher standard deviation are less changeable than others because it

might indicate that there are equal outputs that are (much) more frequent than others,

causing the standard deviation to be high. In our running example, by monitoring events

in a coarse-grained manner, our approach gives as result the information presented in Ta-

ble 4.1, where a single metric value represents each relevance criterion for each method.

55

Relevant Events

A

BExpensiveness

Frequency Normality
Test

A

Metrics
Grouping Classification

B
∪

A B
\

Data Collection

Fine-grained Monitoring

true

false

Figure 4.2 – Fine-grained Monitoring Steps. Illustration of the three steps that comprise the
fine-grained monitoring: Grouping, Classification and Data Collection.

4.3 Fine-grained Monitoring

By having a summary of the application in terms of statistics about all the event

executions of the system and the relevance criteria, it is possible to identify relevant events

that should be monitored at runtime in the fine-grained phase. In this phase, our approach

uses the data collected in the previous phase to determine which parts of the monitored

software system are relevant to the goal of monitoring and thus should be inspected in

detail. Figure 4.2 presents an overview of the steps performed during the fine-grained

monitoring. The identification of relevant parts happens periodically and consists of pro-

cessing the calculated metrics to group the values collected in partitions (Grouping step)

and using such partitions and relevance filters to classify which types of event executions

are relevant (Classification step). This process generates or updates a list of relevant types

of event, which are monitored at a fine-grained level (Data Collection step).

Grouping The relevance filters specified using TigrisDSL refer to types of events that

satisfy a set of criteria, with each criterion possibly having a modifier (least, less, more

and most). A criterion with a modifier is used to indicate if events of interest are those

that have an associated metric value that is very low, low, average, high, or very high.

This way of referring to execution events and their metric values is subjective, and the

Grouping step uses the distribution (average and spread) of the values of each metric to

give an objective meaning.

First, to understand how metric values are distributed, we apply a normality test

to the data set (the set of collected metrics for each event execution) to verify whether

56

all (criterion is ignored)

more frequent

most frequentleast frequent

less frequent

frequent

(a) Grouping based on Normally Distributed Data

first half second half

Q1 Q3 Upper Q2Lower Q2 Q2

all (criterion is ignored)

more frequent

most frequentleast frequent

less frequent

frequent

(b) Grouping based on Quantiles
Figure 4.3 – Frequency Groups. Using the frequency relevance criteria as example, the charts
presents the semantics given for the different modifiers of TigrisDSL. The semantics considers

the splitting of the data into groups and the normality of the data.

the observed values of a criterion follow a normal distribution. This process can be per-

formed based on different statistical tests. We adopt the non-parametric statistical test

Kolmogorov-Smirnov (p > 0.05), which is widely used and performs better with large

sample sizes—generally the case when dealing with execution traces. If the Kolmogorov-

Smirnov significance value is higher than the alpha value (0.05), then the data follows a

normal distribution.

Based on the shape of the distribution, we have two different strategies to classify

data into five partitions. In the case of a normal distribution, we group the data based on

K standard deviations below or above the mean to create five groups of data. In case the

data do not follow a normal distribution, we apply the quantiles strategy by calculating

the Q1, Q2, and Q3 of the sample to obtain three groups of data: the lower quarter (below

Q1), the interquartile range (between Q1 and Q3) and the upper quarter (above Q3). Then,

we calculate the median of the upper and lower quarter and split each of them according

to that value, leading to five groups of data. These strategies to group values are presented

in Figure 4.3.

In our running example, we must group methods to identify those that are more

frequent, most expensive, and least changeable. The normality test has

shown that all distributions are not normal (this is expected as our running example con-

siders a small set of methods). Then, using quantiles to classify the data, we obtain the

groups presented in Table 4.1. In this table, we also highlight the group of interest.

Classification The Grouping step evaluates each criterion individually and creates groups

of events. The Classification step relies on these groups to evaluate the filters specified in

57

TigrisDSL. This is done by evaluating the provided filter expressions that contain set op-

erations (union, intersection, and subtraction). The filter specified in our running example

is (more frequent ∪ most expensive) ∩ least changeable. Consid-

ering the groups presented in Table 4.1, the only method that is relevant considering our

goal is ClinicService.findVets(), which satisfies the informed filter. This is the

method that should be monitored in detail, in the last step of this phase.

Data Collection The list of relevant types of event is updated periodically by the previous

steps. It is used in the Data Collection step to perform in-depth monitoring of the relevant

event types, obtaining details of their execution, such as returned objects and parameters

provided as input. Although filtering a subset of relevant methods reduces the overhead

of monitoring, it may still impact the application performance if the traffic is concen-

trated in those methods supposed to be relevant. Thus, in addition to filtering, traces are

collected according to a specified sampling rate, which bounds the cost of monitoring.

Consequently, our proposal allows the user to achieve an efficient trade-off between sam-

ple relevance and monitoring overhead. Considering our running example and a sampling

rate of 50%, the method calls that are traced are those highlighted in Table 4.2, that is,

50% of the calls to the ClinicService.findVets() method.

4.4 Tigris Framework

The conceptual approach described above provides a generic means for monitor-

ing software systems and can be instantiated to particular technologies. However, to pro-

vide concrete support to this activity and evaluate our approach, it has been implemented

as a framework, namely Tigris1, using particular technologies. Tigris is implemented

in Java and thus can be instantiated and integrated into monitoring-based approaches to

leverage the monitoring results of Java-based approaches and applications. This choice

is due to our previous programming experience and available tools that were adopted as

part of our implementation. To collect data during the coarse-grained and fine-grained

monitoring phases, we intercept method executions with AspectJ2, which allows Tigris to

acquire lightweight and dynamic software metrics without changing the base code. Met-

rics available in the framework are the most frequently used metrics in the literature, listed

1<http://prosoft.inf.ufrgs.br/git/Repository/Tree/d32a32bf-1a9e-45e1-8117-b4d2adf3c106>
2<https://eclipse.org/aspectj/>

http://prosoft.inf.ufrgs.br/git/Repository/Tree/d32a32bf-1a9e-45e1-8117-b4d2adf3c106
https://eclipse.org/aspectj/

58

Table 4.2 – Sample Execution of an Application. Cells in gray highlight the occurrences (#Occ.)
of a specific method call in the application execution sequence (#Seq.) that would be traced at a

sampling rate of 50%.

#Seq. Method Call #Occ.

1 VisitController.newVisit("X") 1
2 OwnerRepository.findAll() 1
3 ClinicService.findVets() 1
4 ClinicService.findVets() 2
5 ClinicService.findVets() 3
6 ClinicService.updateOwner("X") 1
7 OwnerRepository.findAll() 2
8 ClinicService.findVets() 4
9 VisitController.newVisit("X") 2
10 ClinicService.updateOwner("X") 2
11 ClinicService.findVets() 5
12 ClinicService.findVets() 6
13 ClinicService.findVets() 7
14 ClinicService.updateOwner("X") 3
15 ClinicService.findVets() 8
16 OwnerRepository.findAll() 3
...
n− 1 ClinicService.findVets() n− 1
n ClinicService.findVets() n

in Table 4.3.

The metrics used to assess relevance criteria might be costly to be collected, be-

cause they may require “heavy” information to be calculated, such as parameter and return

values of event executions. However, as the first phase monitors all system events, this

monitoring is coarse grained and collects lightweight versions of the metrics to avoid dis-

rupting the application execution. Therefore, although these metrics have some impact

on the application execution, it is much lower than collecting fine-grained (and heavy)

information and recording execution traces.

The coarse-grained monitoring phase is thus limited to the computation of estima-

tions of the metrics—listed in the third column of Table 4.3—which are kept as a single

in-memory number, continuously updated whenever a new event is intercepted at runtime.

For example, for execution time and invocation frequency, the estimations are the mean

execution time and the absolute number of all the calls of a method, respectively. This is

opposed to the complete distribution of these metrics with traces giving information such

as which inputs lead to high execution times.

Computation pattern, in turn, consists of the analysis of common computations of

59

Table 4.3 – Tigris Framework Metrics. List of names and descriptions provided by the Tigris
framework, together with how these metrics are estimated.

Metric Description Estimation

Concurrency Level the number of times a method
is executed concurrently

mean number of active
threads during all calls of the
method

Computation Pattern the number of times that each
pair of input and output of
method occurs

standard deviation of the re-
turn size of all calls of a
method

Energy Consumption the amount of energy de-
manded by a method

mean estimate of energy con-
sumption of all calls of the
method

Error level the number of times the ex-
ecution of a method thrown
exceptions

absolute number of excep-
tions raised by all calls of the
method

Execution Time the time taken to execute a
method

mean execution time of all
calls of the method

Inter-Arrival Time the time taken between exe-
cutions of a method

mean time between each call
of a method and the next

Invocation Frequency the number of times a method
occurs

absolute number of calls of a
method

Memory Consumption the amount of memory de-
manded by a method

mean estimate memory con-
sumption of all calls of the
method

User Behavior the number of times a method
is shared among different
users

absolute number of user ses-
sions that lead to calls of a
method

a method, that is, the identification of frequent pairs of inputs and output of a method.

This is expensive to be computed as it requires tracing and comparing each method call

accompanied by the parameter values and the method return value. Because the goal of

this metric is to identify repeated computations and the output of a method is usually

highly dependent on its input, our estimation relies on observing the return values of

different calls of a method in terms of allocation size in memory and then computing the

standard deviation of these values. Thus, for example, if the standard deviation is low, it

means that most of the returns of the method calls are the same, thus less changing.

For estimations that would demand to store the list of observed values such as

those based on standard deviation and average, to keep a single in-memory number up-

dated on-the-fly, we compute mean and standard deviation based on online and incre-

mental algorithms (KNUTH, 1997). The TigrisDSL specification, as well as metrics to

be used while assessing execution events can be configured through property files and

annotations. An example of such configuration is presented in Listing 4.1.

60

Listing 4.1 – Tigris annotation-based configuration example.
1 @TigrisConfiguration(
2 logRepository = RepositoryType.MEMORY,
3 staticMetricFile = "petclinic.csv",
4 samplingPercentage = 0.5,
5 analysisFixedDelay = 120)
6 @TigrisCriteria(
7 criteria = "more frequent U more expensive",
8 granularity = GranularityType.METHOD,
9 frequencyMetric = Metrics.INVOCATION_FREQUENCY,

10 expensivenessMetric = Metrics.EXECUTION_TIME,
11 changeabilityMetric = Metrics.COMPUTATION_PATTERN)
12 @ComponentScan(allowed = "org.springframework.samples.petclinic.*",
13 denied = "org.springframework.samples.petclinic.model.*")
14 public class Configuration {...}

The sampling rate can be controlled and adjusted at runtime (using a function

provided by our implementation), varying from 0% (no monitoring) to 100% (complete

monitoring of selected methods). This function can be used to adapt the sampling ac-

cording to the overhead tolerance and monitoring coverage requirement. In addition, the

amount of time in which the framework should keep collecting lightweight metrics (first

monitoring phase) of the event executions until triggering the process to select methods

to monitor in detail (second monitoring phase) can be controlled and adjusted at runtime

through an input parameter.

New criteria and metrics can be included by extending and implementing inter-

faces provided by the framework. The same interfaces are used to customize and define

how metrics should be calculated. In addition to the usage of TigrisDSL filters to identify

relevant event executions based on the goal of monitoring, Tigris also offers customiza-

tions. For example, it is possible to set up the framework to focus on specific monitoring

locations, which can improve the set of events to be evaluated as relevant as well as ex-

clude events that must not be monitored, thus reducing the time overhead for tracking

them. Tigris also supports loading output metrics from Understand3, to evaluate criteria

that are based on static metrics.

Next, we describe our evaluation procedure and then discuss the obtained results.

4.5 Evaluation: Adaptive Monitoring for APLCache

In order to evaluate our proposed solution for monitoring, we perform an empirical

evaluation by instantiating Tigris as monitoring support for APLCache, the application-

3<https://scitools.com/>

https://scitools.com/

61

level caching approach that was used to illustrate the phases of our framework.

4.5.1 Study Settings

APLCache (MERTZ; NUNES, 2018) is used to monitor web applications to iden-

tify cacheable methods with the goal of improving application performance. The monitor-

ing of APLCache captures execution traces of each method call with its input parameters

and return. Monitoring the application has a performance cost, so we aim with Tigris to re-

duce the monitoring cost without compromising its effectiveness of identifying cacheable

methods. Therefore, the original version of APLCache is used as a baseline.

Our evaluation aims to answer three research questions, presented in Table 4.4.

In this table, we also detail the metrics used to answer each research question. In RQ1,

we assess how Tigris reduces the cost of monitoring. However, as the application perfor-

mance is influenced not only by the monitoring but also by the identified cacheable spots

that are discovered based on the collected traces, we also compare the performance of our

target web applications using APLCache with full monitoring and with Tigris. In RQ2,

we compare the effectiveness of the cacheable spots identified using the traces collected

using the two alternatives under evaluation. Improved effectiveness to identify cacheable

methods is desirable. Nevertheless, our ultimate goal is to monitor the application with

lower costs, without compromising the results of the analysis, that is, we aim to collect a

subset of execution traces that would lead to the same results as if we had collected the

complete set of traces. Thus, we also assess the effectiveness (precision and recall) of

APLCache with Tigris using as ground-truth the cacheable spots identified by APLCache

with full monitoring. Finally, in RQ3 we assess how Tigris copes with workload varia-

tions over time in terms of changes in the relevance evaluation performed by its first phase

(coarse-grained monitoring) and, consequently, in the selection of execution traces to be

collected in detail by its second phase (fine-grained monitoring).

To assess both versions of APLCache, we must select target web applications,

simulation parameters, and workloads. To avoid bias, we follow the design choices of

the study previously performed to evaluate the original version of APLCache (MERTZ;

NUNES, 2018). In the study, we use three target open-source web applications4, pre-

sented in Table 4.5, which summarizes the general characteristics of each target system.

4Available at <http://www.cloudscale-project.eu/>, <https://github.com/SpringSource/spring-petclinic/
> and <http://www.shopizer.com/>.

http://www.cloudscale-project.eu/
https://github.com/SpringSource/spring-petclinic/
https://github.com/SpringSource/spring-petclinic/
http://www.shopizer.com/

62

Table 4.4 – Research Questions and Metrics. List of the research questions of our evaluation and
the metrics used to answer each of them.

Research Question Metric

RQ1. What performance gain
does Tigris provide?

M1-1. Throughput (average number of requests
handled per second) of the target applications with
monitoring (and no caching)
M1-2. Throughput of the target applications using
APLCache

RQ2. What is the effectiveness
achieved with execution traces
collected by Tigris?

M2-1. Number of identified caching opportunities
M2-2. Hit ratio
M2-3. Number of hits
M2-4. Precision
M2-5. Recall
M2-6. F-measure

RQ3. How does Tigris cope
with workload variations over
time?

M3-1. Difference in the number methods selected
by the first phase of the approach (coarse-grained
monitoring) through multiple monitoring cycles in
sequence

We also keep the same APLCache parameters, such as cache provider and eviction policy.

For all the RQs we consider performance test suites in the form of workload

simulations. The simulation starts with five simultaneous users continuously navigating

through the application based on a navigation pattern that falls into a specific distribution

(transition table). Then, at every second, we randomly add or remove a number of users

(from 1 to 10) from the simulation until all the users make the total of 60k requests to the

application. We adopt a minimum number of 5 simultaneous users to keep a minimum of

concurrency in the workload, and a maximum of 20 to avoid disruptions in the response

times due to struggles from the web server. To stimulate changes in the workload, we

created three variations of navigation patterns for each application, and whenever a user

is added to the simulation, we randomly decide which of the three workload variations the

new user should follow. To keep a fresh selection of execution traces collected in detail

by the second phase (fine-grained monitoring), the processing of lightweight metrics is

triggered every two minutes during the simulation. These parameters were empirically

chosen based on a sample application, which was not used in our evaluation.

To increase the reliability of the results, we create the workload with the above

settings once and execute the exactly same sequence of requests and user variations per

second ten times. To evaluate how changes in the workload may impact in our proposal,

the simulation is segmented in three monitoring cycles of 20k requests, we collect and

63

Table 4.5 – Target Systems. List of the target web applications used in our evaluation, together
with their application domain and size. Size is detailed by the number of lines of code (LOC) and

the number of files.

Project Domain LOC # Files

Cloud Store File Synchronization 7.6 K 98
Pet Clinic Sample application 6.3 K 72
Shopizer e-Commerce 111.3 K 946

inspect from the simulation the subset of methods selected by the first phase of Tigris as

well as the cacheable opportunities found by APLCache. Thus, for all the metrics in the

results we report mean and standard deviations of these multiple executions. For all the

simulations, we use two machines located within the same network, one machine (16G

RAM, Intel i7 2GHz) for the Tomcat5 web server and MySQL6 database, and one machine

(16G RAM, Intel i5 2.4GHz) to handle the performance test suite with JMeter7.

To configure Tigris, we must specify relevance filters in TigrisDSL. We used as a

basis the Cacheability Pattern (MERTZ; NUNES, 2017a), which indicates a set of criteria

for deciding whether a method should be cached. We assess two alternative filters in

our study, presented in Table 4.6. The Restricted Filter leads to a subset of methods

selected by the Expanded Filter to be monitored in the second phase of our framework.

The specified relevance filters indicate that four relevance criteria are considered and, for

each of them, we must indicate the metric estimations to be used. We selected the metrics

Invocation Frequency, Computation Pattern, User Behavior and Execution Time, for the

criteria Frequency, Changeability, Usage pattern and Expensiveness, respectively. The

Tigris second phase also receives as parameter a sampling rate. We selected six sampling

rates (ranging from 1% to 100%) to understand how the number of collected traces can

impact in the analysis of the traces.

4.5.2 Results

We next present and analyze the results obtained by running the simulations with

each of our three target applications and collecting the specified metrics.

5<http://tomcat.apache.org/>
6<https://www.mysql.com/>
7<http://jmeter.apache.org/>

http://tomcat.apache.org/
https://www.mysql.com/
http://jmeter.apache.org/

64

Table 4.6 – Relevance Filter Specification. Specification of the two filters used in our evaluation,
namely Restricted Filter and Expanded Filter.

Name TigrisDSL-based Specification

Restricted
Filter

less changeable ∩ more frequent ∩ (more
usage-pattern ∪ (more expensive ∩ less
usage-pattern))

Expanded
Filter

(less changeable ∪ changeable) ∩ (more frequent ∪
frequent) ∩ ((more usage-pattern ∪ usage-pattern)
∪ (more expensive ∪ expensive))

4.5.2.1 RQ1. What performance gain does Tigris provide?

Our first results consist of assessing how much Tigris reduces the cost of moni-

toring, considering its ability to filter and reduce the scope of monitoring. For that, we

compare the performance of each application using Tigris (restricted and expanded filters)

to the baselines with full monitoring and no monitoring. The information collected with

full monitoring leads to the ground-truth decisions made based on execution traces, while

no monitoring provides a baseline of the application performance without any overhead.

This analysis allows us to assess how far our decisions are from the ground truth and the

performance costs associated with them. To compare the application performance un-

der these different monitoring configurations, we use throughput, which is measured by

calculating the average number of requests handled per second throughout the simulation.

Thus, high throughput (i.e. close to the throughput achieved with no monitoring) indicates

an effective monitoring configuration, as more requests can be processed within the same

period of time.

The results are presented in Figure 4.4. In each chart, we present the throughput

of executing the application with no and full monitoring, which serve as references. We

also detail the cost of running the application only with the Tigris first phase activated. All

these are presented as horizontal lines because they do not vary in terms of the sampling

rate. The throughput of running Tigris with the two considered filters is presented with its

varying results according to the sampling rate.

As expected, monitoring an application causes an overhead, even with Tigris.

Considering the different applications and varying evaluated configurations, we observed

that the minimum overhead was obtained with the restricted filter and 1% sampling rate

for Shopizer (Figure 4.4c). This configuration achieves a throughput of 15.91 req/s vs.

16.47 req/s obtained with no monitoring, resulting in 3.42% of performance impact. The

65

Application	baseline

Tigris	Coarse-grained	(1st	Phase)

Full	monitoring

Caching	only

APLCache	baseline

Sampling	Rate

Th
ro
ug
hp
ut
	(
re
qu
es
ts
/s
ec
on
d)

APLCache	+	Tigris	with	Restricted	Filter APLCache	+	Tigris	with	Expanded	Filter
Tigris	(Two	Phases)	with	Restricted	Filter Tigris	(Two	Phases)	with	Expanded	Filter

100% 50% 25% 10% 5% 1%
18

20

22

24

26

28

30

32

34

36

(a) Cloud Store

Application	baseline

Tigris	Coarse-grained	(1st	Phase)

Full	monitoring

Caching	only

APLCache	baseline

Sampling	Rate

Th
ro
ug
hp
ut
	(
re
qu
es
ts
/s
ec
on
d)

APLCache	+	Tigris	with	Restricted	Filter APLCache	+	Tigris	with	Expanded	Filter
Tigris	(Two	Phases)	with	Restricted	Filter Tigris	(Two	Phases)	with	Expanded	Filter

100% 50% 25% 10% 5% 1%
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72

(b) Pet Clinic

Application	baseline

Tigris	Coarse-grained	(1st	Phase)

Full	monitoring

Caching	only

APLCache	baseline

Sampling	Rate

Th
ro
ug
hp
ut
	(
re
qu
es
ts
/s
ec
on
d)

APLCache	+	Tigris	with	Restricted	Filter APLCache	+	Tigris	with	Expanded	Filter
Tigris	(Two	Phases)	with	Restricted	Filter Tigris	(Two	Phases)	with	Expanded	Filter

100% 50% 25% 10% 5% 1%
11
12
13
14
15
16
17
18
19
20
21
22
23
24

(c) Shopizer
Figure 4.4 – RQ1: Throughput by Sampling Rate. Performance of each application executed with

and without APLCache using varying monitoring configuration.

66

maximum observed overhead came from the combination of expanded filter and 100%

sampling rate for Shopizer (Figure 4.4c), which led to a throughput of 12.39 req/s—

24.7% lower than the baseline with no monitoring (16.47 req/s). In brief, Tigris resulted

in a performance penalty ranging from 3.4% to 24.7%, compared to the baseline without

monitoring.

However, the framework largely reduces the cost of full monitoring. The overhead

of this configuration ranges from 22.6% (its throughput is 40.09 req/s for Petclinic as seen

in Figure 4.4b, vs. 51.81 req/s of the baseline) to 29.9% (its throughput is 11.53 req/s for

Shopizer as seen in Figure 4.4c, vs. 16.47 req/s of the baseline).

Assessing solely the cost of the Tigris, we observe that the overhead is caused

mostly by its second phase, in which methods are fine-grained monitored. The maximum

overhead of the coarse-grained monitoring (first-phase) was 3.3%, because Cloud Store

achieved 24.32 req/s when compared to the baseline without monitoring of 25.16 req/s.

The performance overhead of the second phase varies according to the results of

the first phase and the sampling rate in which it collects traces. The overhead decreases

when the sampling rate decreases because fewer executions are traced. For example,

when collecting 1% of the traces with the restricted filter, the overhead is marginal for all

three applications, ranging from 3.4% to 3.8% when comparing to the baseline with no

monitoring in Figure 4.4, being similar to the coarse-grained phase only. Collecting traces

with the expanded filter at a 100% sampling rate, i.e. no sampling is performed, largely

increases the overhead to the application performance, ranging from 18.0% to 24.7%,

when comparing to the baseline with no monitoring in Figure 4.4.

To compare the overall performance of APLCache with full monitoring and with

Tigris, we also assess the throughput. However, the overall performance is not only af-

fected by the monitoring but also by the opportunities cached based on the analysis of

collected traces. Obtained results are presented in Table 4.7 (column Throughput) and

Figure 4.4. We observe that the throughput achieved by APLCache when supported by

Tigris is higher than using full monitoring, with both filters and any sampling rate. Tigris

improves the throughput of all the three target applications with gains ranging from 4.4%

to 27.4%, in comparison to APLCache with full monitoring. Because Tigris can filter a

subset of relevant methods and consequently monitor fewer methods in detail, the over-

head of monitoring tends to decrease.

In Pet Clinic (Figure 4.4b), the overall performance typically increases as the sam-

pling rate decreases. Nevertheless, this does not always hold. With fewer execution traces

67

Table 4.7 – Simulation Results. Results of executing each application with full monitoring,
restricted filter and expanded filter. Reported metrics (average of all the ten executions) for the

different sampling rates (Sample) are throughput, hit ratio (HR), number of hits (Hits), number of
cacheable opportunities (Cacheability), precision (Pr.), recall, and F-Measure (F1). Throughput
and Cacheability are shown in absolute and relative (percentage change in comparison with full
monitoring) terms. Cacheability, precision, recall and F-Measure are presented as the average of

all three monitoring cycles.
Monitoring Sample Throughput HR Hits Cacheability Pr. Recall F1

C
lo

ud
St

or
e

Full Monitoring 25.6 0.96 45,877 7.67

Restricted Filter

100% 27.5 +7.3% 0.96 30,252 3.67 -52.2% 1.0 0.47±0.04 0.64±0.03
50% 27.9 +9.0% 0.95 27,036 2.67 -65.2% 1.0 0.34±0.05 0.51±0.05
25% 29.1 +13.7% 0.97 25,924 2.33 -69.6% 1.0 0.30±0.06 0.46±0.07
10% 31.4 +22.4% 0.98 26,100 2.33 -69.6% 1.0 0.30±0.06 0.46±0.07

5% 32.7 +27.4% 0.97 25,532 2.33 -69.6% 1.0 0.30±0.06 0.46±0.07
1% 29.0 +13.2% 0.98 17,208 1 -87.0% 1.0 0.13±0.01 0.23±0.01

Expanded Filter

100% 29.5 +15.1% 0.96 42,144 6.33 -17.4% 1.0 0.83±0.14 0.90±0.08
50% 30.0 +17.0% 0.94 41,668 6.33 -30.4% 1.0 0.70±0.18 0.81±0.13
25% 31.1 +21.3% 0.98 36,060 4 -47.8% 1.0 0.52±0.04 0.68±0.03
10% 31.8 +24.0% 0.94 33,384 3.67 -52.2% 1.0 0.48±0.09 0.64±0.09

5% 30.5 +19.1% 0.96 25,524 2.33 -69.6% 1.0 0.30±0.10 0.46±0.11
1% 28.81 +12.2% 0.95 20,328 1.33 -82.6% 1.0 0.17±0.09 0.29±0.12

Pe
tc

lin
ic

Full Monitoring 54.17 0.94 52,860 4

Restricted Filter

100% 58.5 +8.0% 0.94 41,040 2.33 -41.7% 1.0 0.58±0.14 0.73±0.11
50% 60.3 +11.4% 0.94 41,404 2.33 -41.7% 1.0 0.58±0.14 0.73±0.11
25% 60.9 +12.5% 0.94 38,076 2 -50.0% 1.0 0.50±0.00 0.66±0.00
10% 63.6 +17.5% 0.94 38,488 2 -50.0% 1.0 0.50±0.00 0.66±0.00

5% 64.5 +19.2% 0.94 38,980 2 -50.0% 1.0 0.50±0.00 0.66±0.00
1% 63.3 +16.8% 0.94 26,224 1 -75.0% 1.0 0.25±0.00 0.40±0.00

Expanded Filter

100% 62.9 +16.1% 0.94 52,616 4 0.0% 1.0 1.00±0.00 1.00±0.00
50% 63.9 +17.9% 0.94 52,772 4 0.0% 1.0 1.00±0.00 1.00±0.00
25% 64.4 +18.9% 0.94 49,032 3.67 -8.3% 1.0 0.91±0.14 0.95±0.08
10% 64.9 +19.9% 0.94 46,900 3 -25.0% 1.0 0.75±0.00 0.85±0.00

5% 65.1 +20.3% 0.94 46,652 3 -25.0% 1.0 0.75±0.00 0.85±0.00
1% 65.7 +21.3% 0.94 45,824 3 -25.0% 1.0 0.75±0.00 0.85±0.00

Sh
op

iz
er

Full Monitoring 17.30 0.92 691,352 24.33

Restricted Filter

100% 20.0 +15.9% 0.92 419,656 16.33 -32.9% 1.0 0.66±0.03 0.80±0.02
50% 19.8 +14.6% 0.93 257,012 13.33 -45.2% 1.0 0.54±0.01 0.70±0.01
25% 20.1 +16.4% 0.92 182,520 10 -59.0% 1.0 0.40±0.03 0.58±0.03
10% 19.1 +10.6% 0.94 71,460 6 -75.3% 1.0 0.24±0.01 0.39±0.02

5% 18.8 +8.7% 0.93 35,892 4 -83.6% 1.0 0.16±0.02 0.27±0.03
1% 18.0 +4.4% 0.91 17,998 1 -95.9% 1.0 0.04±0.00 0.07±0.01

Expanded Filter

100% 21.1 +22.2% 0.91 513,960 17.67 -27.4% 1.0 0.74±0.17 0.84±0.11
50% 20.7 +20.0% 0.91 350,072 14.33 -41.1% 1.0 0.60±0.14 0.74±0.11
25% 20.3 +17.8% 0.92 184,232 10.33 -57.5% 1.0 0.43±0.10 0.60±0.10
10% 19.3 +11.7% 0.91 68,660 6 -75.3% 1.0 0.25±0.06 0.40±0.08

5% 18.9 +9.7% 0.91 32,818 3.33 -86.3% 1.0 0.14±0.03 0.24±0.05
1% 18.6 +7.8% 0.93 18,412 1 -95.9% 1.0 0.04±0.00 0.08±0.01

(lower sampling rate), the identification of cacheable opportunities is less consistent with

the actual behavior of the application, thus reducing the gains of caching the application.

This can be seen in the other two applications. The overall performance of CloudStore

(Figure 4.4a) increases up to 5% sampling rate for the restricted filter and 10% sampling

rate for the expanded filter, and then it decays. The overall performance of the Shopizer

68

application (Figure 4.4c), in turn, tends only to decrease as the sampling rate decreases.

In most cases, the restricted filter achieves worse results than the expanded filter. This

means that, although the restricted filter leads to fewer methods to be monitored in the

second monitoring phase, the set of fine-grained monitored methods causes the identifi-

cation of caching opportunities that provide lower increases in the performance. That is,

the balance between the cost of monitoring and the gain of caching is higher with the

expanded filter than with the restricted filter.

RQ1: Findings. The impact of full monitoring applications is high, causing perfor-

mance impacts ranging from 22.6% to 29.9% when compared to the baseline of no

monitoring. Tigris, with varying configurations, implies a lower impact to the appli-

cation performance, with values ranging between 2.9% and 24.7%, when compared

to the baseline of no monitoring. The overhead of Tigris is mostly caused by fine-

grained monitoring, which can be reduced by decreasing the sampling rate. With

respect to overall performance with enabled caching, it provides improvements rang-

ing from 4.4% to 27.4% in relation to monitoring all method calls with APLCache.

The relevance filter and sampling rate provide a configuration space that allows the

approach to achieve the best trade-off between the cost of monitoring and the quality

of the analysis of execution traces.

4.5.2.2 RQ2. What is the effectiveness achieved with execution traces collected by Tigris?

The previous research question has shown that the performance gains depend on

which methods are cached. This decision is made by APLCache, which analyzes the

collected execution traces. Therefore, we now evaluate the cached opportunities identified

with each monitoring configuration. We assess the number of cached opportunities, the

hit ratio, and the number of hits. These are presented in Table 4.7 (columns Cacheability,

HR and Hits, respectively).

Although the number of selected methods to be cached using Tigris is smaller in

comparison to APLCache monitoring, we observe that this number changes according to

the filtering and sampling configuration. For all applications, restricting the filter and de-

creasing the sampling rate may significantly reduce the number of caching opportunities.

The amount of information collected is reduced, and thus the accuracy of APLCache may

be compromised.

69

Sampling	Rate

R
ec
al
l

Restricted	Filter Expanded	Filter

100% 50% 25% 10% 5% 1%
0

0.25

0.5

0.75

1

(a) Cloud Store

Sampling	Rate

R
ec
al
l

Restricted	Filter Expanded	Filter

100% 50% 25% 10% 5% 1%
0

0.25

0.5

0.75

1

(b) Pet Clinic

Sampling	Rate

R
ec
al
l

Restricted	Filter Expanded	Filter

100% 50% 25% 10% 5% 1%
0

0.25

0.5

0.75

1

(c) Shopizer
Figure 4.5 – RQ2: Recall by Sampling Rate. Recall obtained for each combination of filter

(Restricted Filter and Expanded Filter) and sampling rate.

70

None of the combinations of filters and sampling rates can identify all the op-

portunities initially identified by the original APLCache. However, the throughput is

still improved due to the filtered monitoring guided by the coarse-grained phase of our

approach. The absolute number of hits varies according to the number of cacheable op-

portunities. The lower number of hits follows reduced cacheable opportunities. The hit

ratio remains almost the same along with all the simulations, and small variations are due

to the variations in cacheable opportunities found at different monitoring cycles.

We also analyze the effectiveness achieved with each set of execution traces ob-

tained using Tigris with the different filters and sampling rates. Although improving the

overall performance is important, our key goal is to record the traces that are actually

those needed for the analysis made by APLCache. Consequently, we consider as ground-

truth the set of caching opportunities identified with full monitoring and compare it to

the sets obtained with the various Tigris configurations. We measure this using typical

classification performance metrics, namely precision, recall and f-measure. Results are

presented in Table 4.7 (columns Pr., Recall and F1, respectively).

As can be seen, the precision—for both filters and sampling rates—is 1.00, that

is, there are no false positives. This means that the subset of methods to be monitored

in the second phase allows APLCache to identify caching opportunities correctly. These

results, however, do not hold for recall. The recall decreases when the filter is more

restricted and the sampling rate is lower. Filters can cause relevant methods (those that

should be identified as a cacheable opportunity) to be not monitored in the second phase.

Consequently, they are not traced and considered for caching. The low sampling rate, in

turn, can lead to samples that are not representative of the population of the method calls.

The variation of recall across the different Tigris configurations can be seen in Figure 4.5.

It shows that the filter has a larger effect on recall than the sampling rate.

The restricted filter, for CloudStore and PetClinic, is the main cause for a low re-

call. It can be seen that even with sampling rates higher than 5%, the recall remains quite

similar or even the same. For Shopizer, although the recall with 100% is not high (0.66),

it decreases as the sampling rate decreases. Both the filter and the sampling rate, there-

fore, affect the recall. Although the expanded filter leads to false negatives, it achieves

high recall, up to 1.00 (i.e. all the cacheable opportunities were found). Increasing the

sampling rate improves the recall for all applications, as more information is provided for

APLCache to analyze. For CloudStore and PetClinic, the highest recall can be achieved

even with sampling rates lower than 100%. Shopizer potentially has results different

71

from the other applications because it is larger and thus has a broader range of methods.

In addition, the margin of error of the recall, observed in the different monitoring cycles,

demonstrated to be high for the expanded filter. It demonstrates how the workload vari-

ations can impact the number of methods selected for fine-grained monitoring and the

number of cacheable opportunities found at each monitoring cycle by APLCache.

RQ2: Findings. The relevance filter and sampling rate of Tigris can reduce the num-

ber of identified caching opportunities and, consequently, the number of hits. The hit

ratio, however, remains almost the same (0.91–0.98). Therefore, lower performance

gains are obtained due to less cached opportunities. Tigris leads to no false positives

considering APLCache and the target applications, thus achieving a precision of 1.00.

However, recall can decrease due to the used relevance filter and low sampling rates,

being larger the effect of the filter.

4.5.2.3 RQ3. How does Tigris cope with workload variations over time?

To evaluate how changes in the workload impact the methods selected by the first

phase of the proposed approach, we inspected the subset of methods selected by the first

phase of Tigris at the end of each monitoring cycle. Obtained results are presented in Ta-

ble 4.8. We first observe that the number of selected methods for fine-grained monitoring

changed on every cycle for all the applications. These changes were expected since the

relevance criteria are domain-neutral, and the metrics used to analyze them do not rely

on pre-defined thresholds or assumptions regarding the workload. As a consequence, the

selected methods are based on the application’s emerging behavior. In addition, the re-

sults show that bigger applications (i.e. with more methods and navigation paths) such as

CloudStore and Shopizer, tend to have significant differences among monitoring cycles.

As Petclinic has fewer navigation paths to be executed, the workload variations do not

affect much the relevance-based selection. Still, all Petclinic monitoring cycles resulted

in changes in the selection. This demonstrates the ability of our approach to adapt to

workload variations. For all the applications, the restricted filter results in less relevant

methods being selected for detailed monitoring than the expanded filter.

72

Table 4.8 – Simulation Results. Results in terms of changes in the relevance evaluation and
selected methods to monitor for each application with restricted and expanded filters. After each

monitoring cycle a snapshot of the coarse-grained selection is taken, reporting the amount of
selected methods in that cycle (Selected), the overall difference from the last cycle (Difference),

including the specific amount of additions and exclusions.

Monitoring Cycle Selected Difference
C

lo
ud

St
or

e Restricted Filter
1 8
2 14 +6 (+8/-2)
3 13 -1 (0/-1)

Expanded Filter
1 36
2 24 -12 (+0/-12)
3 20 -4 (+1/-5)

Pe
tc

lin
ic Restricted Filter

1 4
2 5 +1 (+2/-1)
3 4 -1 (+1/-2)

Expanded Filter
1 14
2 13 -1 (+0/-1)
3 12 -1 (+0/-1)

Sh
op

iz
er Restricted Filter

1 33
2 45 +12 (+13/-1)
3 38 -7 (+2/-9)

Expanded Filter
1 76
2 55 -21 (+6/-27)
3 62 +7 (+11/-4)

RQ3: Findings. Because the proposed relevance criteria and metrics are domain-

neutral and do not rely on pre-defined thresholds or assumptions, Tigris can adapt

to different workloads, identifying relevant methods according to the application’s

emerging behavior.

4.5.2.4 Threats to Validity

We now analyze the threats to the validity of our empirical evaluation. First, the

performance impact of monitoring highly depends on workloads. Although we do not

make any assumptions regarding the workload and rely on the randomness added to the

tests, the workload used in the experiments may not be representative enough to be gen-

eralized. Nevertheless, our approach does not depend on a particular workload and can

find relevant traces with any pre-specified workload, which may evolve in real-world sce-

narios. Therefore, even if the workload changes substantially and initial relevant methods

73

are no longer useful, our approach can adapt itself, automatically discarding outdated

monitoring configurations and discovering a new set of relevant execution traces.

Second, our evaluation is limited to one goal of monitoring (i.e. application effi-

ciency in terms of performance) and only one monitoring-based approach (i.e. a caching

technique). Therefore, the results may not be generalizable. To address this threat, we

selected three open-source target applications, with different sizes and domains, imple-

mented by different developers. In addition, we provide a wide variety of the tunable pa-

rameters for adaptive monitoring (i.e. the relevance filter and sampling rate) and compare

the results against a baseline. We acknowledge that all of the threats mentioned above may

require several evaluations concerning multiple systems of different sizes, users, traces,

workloads, and other environmental conditions that should be addressed as part of future

work.

4.6 Limitations

Providing a solution for effective execution tracing requires dealing with many

challenges other than those addressed in this thesis, such as overhead management, sam-

pling gaps, and defining appropriate criteria, metrics and sampling rate to achieve the

goal of monitoring. Consequently, although our approach makes substantial advances to-

wards software monitoring, there are challenges that remain open. These correspond to

limitations of our work, which are discussed as follows.

The coarse-grained monitoring demands to instrument all method calls, and thus

a minimal but additional overhead is incurred due to this per-instruction instrumentation

before the filtering and sampling decision making. To reduce even more the overhead

of the approach, we can also apply a dynamic sampling strategy into the coarse-grained

monitoring.

Although the framework supports the use of already implemented estimations

of metrics, which were identified and conceived based on the investigation of existing

monitoring-based approaches, our approach does not cover the challenge of deciding

which estimate or criteria are appropriate to specific goals of monitoring. In fact, tun-

able parameters for adaptive monitoring (in terms of relevance criteria and sampling rate)

create a configuration space and as a result expose a secondary problem of finding ap-

propriate values for such configuration options. Thus it is not in the scope of this thesis.

However, the results of our foundational study includes a list of relevance criteria, an

74

occurrence-based association between groups of goals and relevance criteria, and exam-

ples of goals and metrics used by the surveyed approaches. This information provides

support to specify or at least reduce the configuration space created by our approach. In

addition, although the available criteria, goals, and metric estimations achieved good re-

sults in our experiment, they may not fit well in all the domains and workloads. To solve

this problem, Tigris was designed to be extensible and flexible, providing interfaces that

can be used to customize and change how metrics are calculated.

Regarding the classification of data into groups, we do not deal with possible out-

liers that may appear due to the transient behavior of the application, such as an increase

in the execution time of a method given the high level of concurrency. It can be addressed

in the future with enhanced statistical analysis and filtering of outliers. In addition, some

tests for normality may be not sensitive enough given the sample size and the property of

the data. Ideally, testing for normality should be executed and interpreted alongside his-

tograms, QQ-plots, and skewness and kurtosis values. To solve this problem, the frame-

work can be evolved in such a way that small parts of the monitoring phases could be

customized by users, such as how to classify data.

The coarse-grained monitoring data is stored in memory, and despite its low mem-

ory usage, it may reach an imposed limit if kept forever. In our evaluation, this was not

an issue. However, this can be configured in the form of a time frame and added as an ad-

ditional parameter of the framework. We also need to understand how we could combine

sliding windows of monitoring to avoid losing historical information.

Although the framework is adaptive as it can vary the selected list of relevant

methods according to the application’s emerging behavior, it is necessary to specify when

this adaptation should be triggered. In our evaluation, it uses a two-minute interval. How-

ever, choosing the most appropriate interval to update the list of relevant methods involves

a trade-off between collecting enough lightweight information about the application be-

havior to reach good decisions and changing the list fast enough to keep it in sync with the

application behavior and collect more relevant traces. To solve this problem, future work

can provide an adaptive triggering strategy, which detects significant variations in the

workload characteristics or degradation in the quality of traces being collected, according

to the goal of monitoring.

75

4.7 Final Remarks

This chapter presented a framework, called Tigris, to perform monitoring based

on user-specified relevance criteria. The framework is guided by relevance criteria and

metrics that are specified by users using our proposed TigrisDSL. The first monitoring

phase is coarse grained, computing low-overhead metrics of executed methods. The sec-

ond phase is fine grained, after dynamically selecting which methods should be traced in

detail, given a relevance criteria specification and a sampling strategy to reduce the over-

head. By splitting the process into different phases (or cycles), our proposed framework

achieves a flexible and extensible architecture, where each phase can be supplemented or

replaced by alternative approaches.

Although the proposed filtering strategy is based on the goal of monitoring, given

as input of the approach, the sampling strategy used in the second phase of the approach

follows a fixed sampling rate, leading to uncertainty in the monitoring result in terms

of representativeness. Choosing a sampling rate is not an easy task and depends on the

representativeness needed and also the supported overhead. A low sampling rate may give

a lousy precision, and a high sampling rate may generate a considerable amount of useless

data and overhead. To deal with this situation, we can adopt an adaptive sampling, which

dynamically adjusts the sampling rate by observing the impact of sampling rates on the

overall computational resource usage. Our proposal for adaptive sampling is presented in

the next chapter.

76

77

5 ADAPTIVE SAMPLING

Given the limitations of existing work and our goal of collecting representative

samples of detailed execution traces at runtime with controlled performance impact, we

propose a three-activity process for monitoring software applications with an adaptive

sampling rate. Our decisions are at the granularity of application request, which have

method calls (executed to respond it) recorded as detailed execution traces. This occurs

if the request is selected to be part of a sample collected in a monitoring cycle. We use

the PetClinic1 project as a running example to explain the activities of our process. It

is a web application that demonstrates the use of the Spring Framework and its features.

It provides features (possible requests) in which employees of a pet clinic can view and

manage information regarding veterinarians (/vets), clients (/owners), and their pets

(/pets). It also includes a home page (/home), which is the entry point for users.

We next first overview our process and its activities, describing each activity in

detail (Section 5.1). Then, we present an evaluation of the proposed solution (Section 5.2)

and its limitations (Section 5.3).

5.1 Process Overview

The key idea underlying our process is to decrease the monitoring overhead to

an acceptable level when the target software application needs its resources for regular

processing and increasing it after the situation has been normalized. At the same time,

we keep track of general statistics about the sample and population of requests to identify

when a sample is representative. Our monitoring process is performed in cycles and the

result of each cycle is a representative sample. This behavior is shown in Figure 5.1, where

the black line represents the application workload, the red line represents the monitoring

overhead, and the green line indicates the amount of requests and their execution traces

being collected over time.

In order to make this behavior possible, three activities are performed in parallel at

runtime as part of our process, as shown in Figure 5.2. The first activity, Sampling Deci-

sion, is responsible for deciding whether an application request should have its associated

execution traces collected and stored in detail (which is costly and requires I/O), taking

into account both the sampling rate and the representativeness of the sample compared

1<https://projects.spring.io/spring-petclinic/>

https://projects.spring.io/spring-petclinic/

78

Monitoring Cycle (n)

Am
ou

nt

Time

Requests
(Workload)

Sampled
Traces

Monitoring
Overhead

Resource
Limits

Lack of representativeness
due to low sampling rate

Adjusts the sampling rate for
under/over-sampling

future events

Monitoring
Cycle (n + 1)

Representative Sample

Sample meets
the acceptance criteria

Performance evaluation

Randomly disables
monitoring to obtain

performance baselines

Monitoring
Cycle (n - 1)

Figure 5.1 – Illustration of the Adaptive Sampling Process in Action: The figure shows how the
sampling rate varies (in terms of the number of sampled traces) according to the current

application workload. In peaks, the sampling rate is reduced to reduce the monitoring overhead.

A
da

pt
iv

e
Sa

m
pl

in
g

En
ab

le
/D

is
ab

le

m
on

ito
rin

g

Sa
m

pl
in

g
D

ec
is

io
n Sampling Decision

Yes

No

Discard
execution trace

Should save
the event trace?

Population
Statitstics

Sample

Sa
m

pl
in

g
R

at
e

A
da

pt
at

io
n Decrease

Sampling Rate
Increase

Sampling Rate

Yes
No

Is the application
performance compromised?

Performance
Baseline

Assessment

Sa
m

pl
e

Ev
al

ua
tio

n

Readiness
Evaluation Representative

SampleSample is
representative

Application

Request

Figure 5.2 – Overview of our Adaptive Sampling Process.

to the population. The sample representativeness is based on the distribution of applica-

tion requests. All requests go through screening and by doing so, we also keep general

statistics of the population of requests.

79

The sampling rate used in the Sampling Decision activity is updated by the Sam-

pling Rate Adaptation activity. It observes the current application workload as well as

the monitoring overhead to decrease or increase the sampling rate. These adjustments of

the sampling rate can be seen in Figure 5.1—the larger the space between the black and

red lines, the higher the sampling rate and, consequently, the monitoring overhead. When

a performance degradation is perceived, i.e. the application response time increases, the

sampling rate is decreased proportionally to the perceived degradation. To exemplify,

suppose that an unexpected increase in the application workload results in the application

bumping in the limits of its runtime platform (shadowed red boxes). In this situation,

the monitoring is gradually reduced to allow the application to maintain its throughput.

The sampling rate can be restored when the application workload decreases. To be able

to assess the impact caused by monitoring, this activity also involves the collection of a

performance baseline, which is a measurement of the application performance without

monitoring. In Figure 5.1, this occurs in the shadowed blue boxes.

Finally, the Sample Evaluation activity is responsible for continuously evaluating

the sample being collected to identify when it is considered representative. When the sam-

ple satisfies acceptance criteria with respect to the representativeness of the population, it

is released for analysis, and a new monitoring cycle starts. If our monitoring process is

used, e.g., in a self-adaptive system, the analysis of the sample can take place right after

each cycle is concluded. After broadly understanding how our process works, we next

describe each of its activities.

5.1.1 Activity 1: Sampling Decision

The Sampling Decision activity involves the execution of Algorithm 1 whenever

a new observable request happens in the application. It performs three main tasks: (i)

store statistics of the population of application requests (line 1); (ii) decide whether a

request should be recorded with execution traces (lines 2–13) and (iii) store statistics of

the request being added to the current sample (line 8), when applicable.

Storing statistics associated with the population and sample means keeping track

of the frequency distribution of each request in these two sets. This information is used to

decide whether a particular request should be recorded with execution traces or whether

a sample is representative and the monitoring cycle is complete. By adding requests

to the population and sample (lines 1 and 8), we keep registered the number of each

80

Algorithm 1: Sampling Decision
Input: request to be processed by the application;
Input: current sampling rate rate ∈ (0, 1);
Input: monitoring control isMonitoringEnabled;
Data: population, sample;
Result: True if the execution traces of request should be recorded, false

otherwise.

1 add(request, population);
2 if isMonitoringEnabled then
3 shouldSample← Bernoulli(rate);
4 if shouldSample then
5 Ep ← {x ∈ population | x = request.id };
6 Es ← { y ∈ sample | y = request.id };

7 if
(

|Ep|
|population|

≥ |Es|
|sample|

, ε

)
then

8 add(request, sample);
9 return true;

10 end
11 end
12 end
13 return false;

Table 5.1 – Running example: Frequency distribution of the population and sample in the
sampling decision activity.

Request population sample

/home 105 (47.7%) 53 (47.7%)
/vets 43 (19.5%) 22 (19.8%)
/pets 62 (28.3%) 31 (27.9%)
/owners 10 (4.5%) 5 (4.5%)

Total 220 (100%) 111 (55.5%)

possible request, as shown in Table 5.1 considering the PetClinic example. These values

are obtained with an initial sampling rate of 50%.

A request is added to the sample and recorded with execution traces when three

conditions are satisfied. The first refers to whether the monitoring is enabled (line 2). As

introduced in the previous section, there are moments when the monitoring is disabled

to obtain a performance baseline—this is controlled by the Sampling Rate Adaptation

activity. The second condition involves randomly deciding whether the request should be

selected based on the current sampling rate (rate), which gives the probability of selecting

a request as part of the sample. This decision is made using the Bernoulli distribution with

parameter p ∈ (0, 1) to assign the value 1 (true) with probability p and the value 0 (false)

81

with probability 1 − p to the shouldSample variable (line 3). The request satisfies the

second criteria when shouldSample is true.

The third condition is related to the representativeness of the sample— we aim to

keep its frequency distribution similar to that of the population (lines 5–7). The rationale

is to not miss less frequent requests with, e.g., anomalies and exceptions. The idea is

related to stratified sampling, where a population can be partitioned into subpopulations,

i.e. clusters (PIRZADEH et al., 2011), and a representative sample has the same class

distribution as the population. The verification that is performed consists of a runtime re-

sampling strategy to balance the sample’s class distribution according to the population’s

class distribution. This strategy is inspired by data analysis resampling to deal with un-

balanced datasets (ESTABROOKS; JO; JAPKOWICZ, 2004). By resampling, we balance

the sample classes according to the population distribution to keep representativeness in

terms of proportion. It consists of ignoring new requests from the majority classes to

allow minority classes to include more requests and increase their cardinality. As pre-

viously said, we keep the statistics of the population (population) and sample (sample)

(exemplified in Table 5.1). These are kept as key-value mappings, where the type of a re-

quest is the key (request.id), and its execution frequency within a monitoring cycle is the

value. Using these statistics, it is possible to compute Ep and Es, which are the amount

of requests of a particular type in the population (line 5) and in the current sample (line

6), respectively. Based on these values, we test if the sample is lacking requests of the

type in consideration, considering an error margin ε. For example, if a request of type

/vets occurred (Table 5.1), it will be not added to the sample because it already has

enough traces from /vets (19.8%) when compared to the population (19.5%). When

a request satisfies this condition (line 7), the request is added to the sample (line 8) and

the algorithm returns true (line 9), that is, the request should be recorded with execution

traces. If any of the three conditions is not satisfied, the algorithm returns false and the

request is not recorded, implying no additional monitoring overhead.

5.1.2 Activity 2: Sampling Rate Adaptation

The sampling rate used in the previously described activity is updated by Algo-

rithm 2 executed in the Sampling Rate Adaptation activity. This is done considering the

following premisses.

82

Algorithm 2: Sampling Rate Adaptation
Input: current sample being collected in the monitoring cycle;
Input: the maximum time window in which a performance baseline must be kept

duration;
Input: the current performance currentPerf ;
Input: monitoring control isMonitoringEnabled ;
Data: the current samplingRate; performanceReference;
Result: The updated sampling rate.

1 addPerformanceSample(performanceReference , currentPerf ,
isMonitoringEnabled);

2 medianRps ← median({x ∈ performanceReference[RpS] |
performanceReference[ME = isMonitoringEnabled]});

3 normalBehavior ← performanceReference[RpS = medianRpS ∧ME =
isMonitoringEnabled];

4 equal ← ttest(normalBehavior , currentPerf , 0.05);

5 diff ←
∑

i∈currentPerf i∑
i∈normalBehavior i

− 1;

6 if isMonitoringEnabled then
7 if equal or diff > 0 then
8 rate← min(rate+ (rate ∗ |diff |),maxRate);
9 else

10 enablePerformanceBaseline(duration);
11 end
12 else
13 if not equal and diff < 0 then
14 rate← max(rate− (rate ∗ |diff |),minRate);
15 end
16 end
17 return rate;

1. A software engineer is able to provide a desired sampling rate that leads to an ac-

ceptable performance impact caused by monitoring when the application workload

is typical.

2. The acceptable performance impact is not in terms of percentage but the absolute

increase in the response time. For example, if the response time of a request is

typically 100ms and with monitoring 105ms, the acceptable performance impact is

5ms and not 5% of overhead.

3. The sampling rate should be reduced to prevent an increase in the response time

when the application is under stress, limited by a minimum required sampling rate.

4. The sampling rate should be increased if it is below the desired level and the soft-

ware application is returning to its typical behavior after a peak.

83

Table 5.2 – Running example: performanceReference table containing the response time of each
request according to a given workload in requests per second (RpS). The ME column indicates
whether the record was collected when monitoring was enabled. Rows highlighted in gray refer

to the median of each group (ME = true and ME = false).

RpS /home /vets /pets /owners ME

1 500 325ms 450ms 800ms 1200ms true
2 1500 400ms 550ms 900ms 1500ms true
3 2500 600ms 780ms 1050ms 1100ms false
4 550 350ms 400ms 650ms 900ms true
...
n− 1 325 430ms 420ms 480ms 700ms false
n 200 270ms 200ms 235ms 500ms true

Based on these premisses, the adaptation of the sampling rate requires three inputs:

(i) maxRate, which is the desired sampling rate and a higher sampling rate is not needed;

(ii) minRate, which is the minimum required sampling rate; (iii) the duration of the pe-

riod in which the approach should collect data to understand the application performance

with the monitoring disabled (this is required for assessing the monitoring performance

impact); and (iv) the frequency in which the sampling rate is revised (in seconds).

Algorithm 2 performs the following tasks. First, it stores statistics of the appli-

cation performance (line 1). The parameter currentPerf gives the current application

performance as a record with the number of requests executed since the last algorithm

execution (RpS) and the average response time of each executed request. These data are

stored in the performanceReference table, which consists of a performance sample. For

each record, we also store a flag indicating if these data correspond to a period in which

monitoring is enabled. An example of performanceReference is shown in Table 5.2 for

PetClinic. To avoid bias towards past observations and consuming unnecessary resources,

performanceReference is size-limited and stores the most recent executions, i.e. the oldest

record is discarded to store a new one when the size limit is reached.

Based on these statistics, it is possible to derive both the typical application work-

load medianRpS (line 2) and the corresponding normal behavior normalBehavior in terms

of response time (line 3), with and without monitoring. The typical application work-

load is given by the median of requests per second medianRpS of the records in perfor-

manceReference. Considering our example, these are the records #2 and #3, with and

without monitoring, respectively. Because we need to select a single record to be used

in the next algorithm tasks, if performanceReference contains an even number of records,

we select the highest requests per second (as opposed to the arithmetic mean of the two

84

middle values) and the associated record, which is the normalBehavior.

Then, we test if the current application performance currentPerf is significantly

different from the normal behavior normalBehavior of the application to detect perfor-

mance variations (line 4). This is done by comparing the averages of the execution times

of each request type with a paired t-test, with the null hypothesis that the mean of the

paired differences between currentPerf and normalBehavior is 0, with a significance level

of 95% (p = 0.05). Assume that Algorithm 2 is executing in our example with monitoring

disabled and thus the normalBehavior is record #3. Let currentPerf be

{〈/home, 500〉, 〈/vets, 720〉, 〈/pets, 950〉, 〈/owners, 1020〉}. (5.1)

The result of the comparison of normalBehavior and currentPerf is assigned to the vari-

able equal, which is the result of

ttest(〈600, 780, 1050, 1100〉, 〈500, 720, 950, 1020〉, 0.05). (5.2)

This results in equal = true, indicating that there is no significant difference between

these two groups. This is the first indicator of whether the sampling rate should be up-

dated. The second indicator is the difference diff (in percentage) between currentPerf and

normalBehavior (line 5). In the example, it is

diff = (3190/3530)− 1 = 0.9037− 1 = −0.0963 (5.3)

This means that the current performance is 9.63% lower than the normal behavior.

These two indicators (equal and diff) are used together with the monitoring state

of the application to decide whether the sampling rate should be updated. The sampling

rate is increased—proportionally to the observed difference, limited by maxRate—if the

current performance (which includes monitoring) is similar or better than the normal be-

havior (lines 7–8). This means that the current execution times of the requests are similar

or faster than the past observations, and thus the monitoring overhead is acceptable. The

sampling rate is decreased (also based on diff), if the normal behavior is significantly

different from the current performance (which does not include monitoring, limited by

minRate) and the current performance is worse than the normal behavior (lines 13–15).

This case occurs when the current execution times of the requests are slower when com-

pared to past observations. In this situation, the application is (a) being impacted by users

85

with an increased workload, or (b) the monitoring overhead is impacting the performance

above acceptable levels. Note that minRate > 0 because if the sampling rate reaches 0,

it remains 0 indefinitely.

In order to identify whether the application performance still faces degradation

regardless of the case, there is a need for collecting a performance baseline (line 10).

This occurs when the application is being monitored and the current performance is worse

(significantly different and lower) than the normal behavior. In this case, the monitoring is

then globally disabled and the performance baseline is collected according to the specified

duration. Finally, if none of these conditions are met, the sampling rate remains the same.

5.1.3 Activity 3: Sample Evaluation

Our process aims at collecting a representative sample in each monitoring cycle.

Therefore, when a new request is added to the sample, the sample representativeness is

evaluated to determine if it is ready for being used. This is done in the Sample Evaluation

activity that involves the execution of Algorithm 3. A sample is considered representative

if it satisfies three criteria: (i) it is larger than the minimum sample size; (ii) the perfor-

mance between the sample and population is equivalent; and (iii) the sample distribution

is similar to the population distribution. When the sample satisfies these criteria, there is

statistical evidence that it is representative.

To prevent a scenario in which the sample being collected is never representative,

Algorithm 3 uses an exponential decaying confidence (line 1). It is used to adjust the

required level of representativeness of the sample based on the length of the monitoring

cycle. The confidence (z) starts at 100% and decreases by a constant λ every second (t)

in the monitoring cycle, where λ = 1/maxLength. maxLength is the maximum length

of the monitoring cycle, which is the required parameter of this activity.

The first criterion—sample size—is checked in line 4. The required sample size

(line 3) is given by Cochran’s minimum sample size (COCHRAN, 1977) (line 2), with

finite population correction, where the decaying confidence level z is used to estimate

the associated standard normal distribution (e.g., 1.96 for z = 0.95), e is the margin

of error (e = 0.05) and p is the degree of variability of the population, indicating how

heterogeneous the population is. We use p = 0.5 because it does not assume that the

population is homogeneous and leads to higher samples, being thus a conservative choice.

Given that we track the performance of application requests, we test the equiva-

86

Algorithm 3: Sample Evaluation
Input: the length of the current monitoring cycle t in seconds;
Data: the current population and sample;
Result: true is the sample is representative of the population.

1 z← 100 ∗ e−λt;

2 n∞←
z2p(1− p)

e2
;

3 n← n∞

1 +
n∞ − 1

|population|

;

4 if |sample| > n then
5 if ttest(population, sample, z) then
6 balanced← false;
7 foreach request in population do
8 Ep ← {x ∈ population | x.id = request.id };
9 Es ← { y ∈ sample | y.id = request.id };

10 if
(

|Ep|
|population|

=
|Es|

|sample|
, z

)
then

11 balanced← true;
12 end
13 end
14 if balanced then
15 release sample for analysis;
16 sample← ∅;
17 population← ∅;
18 return true;
19 end
20 end
21 end
22 return false;

lence between the sample and population—stored in Table 5.2—using this measurement,

which is the second criterion. This is done by verifying if the frequency distribution of

the sample significantly differs from the postulated population mean using a one-sample

parametric t-test (two-sided) (line 5) to test the null hypothesis that the sample mean is

equal to the population mean, with a decaying confidence level (computed in line 1). The

test compares the average values of the two data sets and determines if they came from

the same population.

Finally, the third criterion is evaluated in lines 6–14, which checks the balance

in the request distribution, measuring the over- or under-representation of requests in the

sample compared to the population. This is similar to the comparison shown in Table 5.1.

However, in line 10, the comparison between each request type in the sample and in the

87

population considers a margin of error of z (decaying confidence level). This evalua-

tion aims to maximize the sample distribution in such a way that the sample is balanced

according to the population to give confidence that all requests, even those that rarely

happen, are present.

When the sample meets all these three criteria, it is said representative and is

released for analysis. After releasing the sample for analysis, we reset the sample and

population (lines 16 and 17), and a new monitoring cycle starts.

5.2 Evaluation

Having described our monitoring process in detail, we now evaluate it using ap-

plications of a widely known and used benchmark.

5.2.1 Evaluation Settings

5.2.1.1 Research Questions and Metrics

Our monitoring process aims at collecting representative samples of execution

traces and, at the same time, keeping the performance overhead at an acceptable level.

Therefore, the goal of evaluation is to assess these two aspects, which are the focus of our

two research questions, listed as follows. Metrics used to answer each question are also

detailed.

1. RQ1 What is the performance impact of our monitoring process?

TR Throughput (average number of requests / second)

SR Average sampling rate / second

2. RQ2 What is the representativeness of the samples of executions traces collected

with our monitoring process?

RMSE Root-mean-square error of memory consumption

Whenever we monitor a software application, there is performance overhead.

Therefore, in RQ1, we quantitatively assess this overhead by measuring the application

throughput (TR). In addition, given that the monitoring overhead is proportional to the

88

sampling rate, to better understand the throughput, we also measure the sampling rate

(SR). A dynamic sampling rate may have a negative effect on the representativeness of

collected traces, making them less useful for understanding the application behavior for a

particular goal, such as debugging. For not biasing our evaluation towards our approach,

we do not use the criteria on which our process relies to assess sample representativeness.

Instead, we use a software characteristic—memory consumed by methods—that can be

understood through monitoring, is straightforward to be collected, and can have its cor-

rectness evaluated. Based on a ground truth (explained as follows), we can assess the

error (RMSE) of the sample with respect to the average memory usage of each method.

If RMSE is low, it indicates that the collected traces are reliable for debugging memory

consumption, for example.

5.2.1.2 Compared Approaches

Our adaptive monitoring process (ADP) is compared to the main alternative ap-

proach (HAUSWIRTH; CHILIMBI, 2004; BRÖNINK; ROSENBLUM, 2016), which is

a sampling rate inversely proportional to the workload given by the throughput (INV),

and a practically used approach, which is uniform sampling (UNI). The selected uniform

sampling rate is 50%, which is the same used as initial (and desired) sampling rate for

ADP and INV. As a reference, we also execute our evaluation with two additional con-

figurations. The first is no monitoring (NOM), in which there is no monitoring overhead

and it thus provides the maximum (best) possible value for throughput. The second is full

monitoring (FUM), in which every application request is recorded with execution traces.

FUM gives thus the minimum (worst) possible throughput value and also serves as ground

truth for calculating RMSE because it contains data from the population and not a sample.

5.2.1.3 Target Applications

We use the DaCapo (BLACKBURN et al., 2006a; BLACKBURN et al., 2006b)

benchmark suite for our evaluation. DaCapo provides various Java applications to eval-

uate approaches that focus on the execution environment of applications. Consequently,

it does not explicitly provide extension points for customizing its execution. Because we

need to simulate a workload with variation (not simply firing requests one after another)

as well as instrument the applications, we selected a subset of five applications to be

instrumented, described as follows.

89

cassandra Executes queries to recover documents from the NoSQL database manage-

ment system Cassandra.

h2 Executes SQL transactions against a model of a banking application on top of the H2

database.

lusearch Executes search queries against the document search engine Lucene.

tradebeans Runs HTTP requests via Java Beans against a web application that simu-

lates a stock trading system.

xalan Calls multiple times an XSLT processor for transforming XML documents into

HTML pages.

The rationale for selecting these particular applications is that they are all dis-

tributed applications designed to process multiple requests in parallel, e.g. web requests

or database queries, and are based on domains in which monitoring is valuable and diffi-

cult to control in terms of overhead.

5.2.1.4 Procedure

We instrumented all the target applications (which are open source) to enable mon-

itoring using aspect orientation. Aspects intercept method calls, and then there are four

Java implementations (ADP, INV, UNI, and FUM) to decide whether an application re-

quest should be recorded and, if so, collect execution traces. NOM corresponds to the

original version of the applications.

As introduced, our monitoring process requires a set of parameters. They consist

of a single configuration for all target applications and not values that must be tuned for

specific applications. We used a sample application, not used in our evaluation, to empir-

ically choose these parameters. The Sampling Rate Adaptation activity is triggered every

1s and the collection of performance baselines lasts 3s. The maximum and minimum

sampling rates are 50% (as in UNI) and 1%, respectively. Finally, the maximum length

of a monitoring cycle is 180s (3 min).

For generating application workloads, we use the workload simulation provided

by DaCapo, which relies on a navigation pattern that either falls into a specific distri-

bution (transition table) or follows a specific sequence of executions. We use this nav-

igation pattern to simulate a varying number of simultaneous users (i.e. threads). This

90

allows us to observe the impact of monitoring when the application is under various stress

conditions and how the sampling rate is adjusted. Inspired by load intensity modeling

approaches (Von Kistowski et al., 2017), the designed workload includes (a) situations

in which it keeps a stationary number of users, (b) seasonal patterns, and (c) bursts in

the number of simultaneous users. The same workload settings are used to execute each

application with each compared approach.

The simulations were executed on an Intel i7 2GHz with 16G RAM. The max-

imum heap size of the Java Virtual Machine (JVM) was limited to 4GB to cause the

applications to execute under stress (with limited resources considering the workload).

Each simulation was executed 10 times. The maximum number of simultaneous users

was selected based on the identification of which number of users causes the application

to deteriorate its performance due to the lack of resources. With 4GB of RAM available,

this number varies from 6 to 200. The memory consumed by methods is not explicitly

made available by the JVM. We use a standard way of performing this, i.e. checking the

available memory before and after the method execution. Some measurements, however,

must be discarded because they are invalid—negative values due to the execution of the

JVM garbage collector to free up memory.

5.2.2 Results

The results obtained following the procedure described above are presented in Ta-

ble 5.3. It shows the values obtained for each metric (TR, SR, and RMSE) with each

compared approach (ADP, INV, UNI) and reference values (NOM and FUM) for each

target application. Because we run the simulation 10 times for each configuration, we

present the mean and standard deviation. As can be seen, the results are consistent across

all applications, even though they vary in nature. A Friedman’s test showed that there

is significant difference among the compared approaches, both for TR (χ2(2) = 84.28,

p < 0.001) and RMSE (χ2(2) = 74.68, p < 0.001). Post-hoc analysis with pairwise com-

parisons using Nemenyi-Wilcoxon-Wilcox all-pairs test for a two-way balanced complete

block design revealed that this is due to the differences among all approaches in both

cases.

With respect to performance overhead (RQ1), as expected, UNI achieves the worst

results, causing the throughput to be 13.5–23.1% lower than NOM. The impact is approx-

imately 50% of FUM, as it collects execution traces of roughly half of the requests. INV

91

Table 5.3 – Simulation Results: Comparison of the values obtained for the metrics Throughput
(TR), Sampling Rate (SR), and Root-mean Square Error (RMSE).

Mon. TR SR RMSE
ca

ss
an

dr
a NOM 23180.4±488.6 0% —

FUM 16769.5±468.7 (-27.6%) 100.0% —

ADP 20763.9±666.2 (-10.4%) 48.7%±1.3 496.6±42.9
INV 21112.7±520.6 (-8.9%) 29.2%±2.5 699.9±57.0
UNI 18900.2±661.7 (-18.4%) 50.0% 651.6±75.2

h2

NOM 1829.0±20.1 0% —
FUM 1197.1±30.2 (-34.5%) 100.0% —

ADP 1587.1±19.8 (-13.2%) 44.0%±3.4 628.0±108.6
INV 1633.2±24.4 (-10.7%) 32.7%±1.5 1291.9±118.7
UNI 1517.0±19.1 (-17.0%) 50.0% 1196.1±102.8

lu
se

ar
ch

NOM 74376.7±213.8 0% —
FUM 49397.7±363.9 (-33.5%) 100.0% —

ADP 66267.2±324.2 (-10.9%) 41.6%±2.2 1394.2±349.0
INV 70951.0±216.0 (-4.6%) 28.0%±1.6 3010.8±450.0
UNI 57142.0±433.3 (-23.1%) 50.0% 2086.0±251.1

tr
ad

eb
ea

ns

NOM 1832.2±20.2 0% —
FUM 1204.6±17.9 (-34.2%) 100.0% —

ADP 1571.8±14.0 (-14.2%) 48.4%±0.9 721.2±40.3
INV 1619.6±15.1 (-11.6%) 32.7%±1.1 797.7±55.5
UNI 1512.8±22.6 (-17.4%) 50.0% 831.0±36.7

xa
la

n

NOM 266.8±1.0 0% —
FUM 182.6±1.7 (-31.5%) 100.0% —

ADP 239.1±1.5 (-10.3%) 47.5%±0.9 111.7±9.1
INV 241.1±1.7 (-9.6%) 24.0%±0.6 187.4±13.2
UNI 230.5±1.3 (-13.5%) 50.0% 135.0±10.3

has the lowest performance overhead, with an overhead ranging from 4.6% to 11.6%. This

occurs because it always reduces the sampling rate with more intense workloads, regard-

less of its impact on the collected execution traces. ADP, in turn, is the “middle option”,

which has an overhead from 10.3% to 14.2%, as it also takes sample representativeness

into account while monitoring the application.

The performance overhead is in accordance with the sampling rate. The lower

the performance overhead, the lower the sampling rate. Despite achieving the interme-

diate results, in all cases, ADP has a performance overhead closer to INV than to UNI.

Nevertheless, its average sampling rate is, also in all cases, closer to UNI than to INV,

sometimes as high as 48.7% (note that the sampling rate is always limited to 50%). This

92

indicates that ADP is able to choose the moments in which the sampling rate should be

reduced (this is further discussed in the next section) as well as reduce the sampling rate

in a sustainable manner.

With respect to the error present in collected samples (RQ2), ADP is not the mid-

dle option. In all cases, it has the best (lowest) results for RMSE, which is the average

error of the sample (in memory kilobytes) with respect to the population. This provides

evidence that ADP is able to collect execution traces that better represent the popula-

tion. Although, as expected, INV has the highest error for most applications, this is not

the case for tradebeans. A possible explanation is that the memory consumption of

the different application requests largely varies for this application and, in this particular

case, relying on randomization to collect traces, even with higher sampling rates, cannot

guarantee good results.

Conclusion. ADP is able to collect the most representative samples of execution

traces, using memory consumption as representativeness measure. The error of the

collected samples is 9–54% and 12–44% lower than INV and UNI, respectively. It

also significantly reduces the performance overhead of UNI (3–12% lower). Although

it has a performance overhead higher than INV, it is much lower (1–6%) than the

reduction of the error in the collected samples.

5.2.2.1 Detailed Analysis

In the previous section, the results show that ADP significantly improves the rep-

resentativeness of the collected samples of execution traces, with little impact on the

performance overhead. To explain these results, we analyze in detail the results obtained

with h2, shown in Figures 5.3 and 5.42. From the 10 executions, we selected that with

the median throughput value.

Interaction among workload, throughput, and sampling rate. We first analyze what

happens over the course of the simulation in Figure 5.3a. The blue line shows the ap-

plication workload. The typical workload is 8 simultaneous users, which can be 20 in

peeks (recall that the memory limit is 4GB). As explained, the workload has stationary

segments, seasonal patterns and bursts. In stationary segments, ADP is able to keep the
2All applications have similar results. Due to space restrictions, their charts are available in our comple-

mentary material at <https://tinyurl.com/adaptive-sampling-thesis>.

https://tinyurl.com/adaptive-sampling-thesis

93

Time in Seconds

Sim
ult

an
eo

s U
se

rs Sampling Rate

BB

CA

B

B

Simultaneos Users Sampling Rate Throughput

0 500 1000 1500
0

4

8

12

16

20

0

0.2

0.4

0.6

0.8

1

(a) Interaction among workload, throughput, and sampling rate.

Average
Uniform Sampling

Average

Time in Seconds

Sim
ult

an
eo

s U
se

rs Sampling Rate

E

E

E

D
D

DD

Simultaneos Users Adaptive Sampling Rate
Inversely Proportional Sampling Rate

0 500 1000 1500
0

20

5

10

15

0

0.6

0.15

0.3

0.45

(b) ADP Sampling Rate vs. INV Sampling Rate.
Figure 5.3 – Analysis of the ADP Results with the h2 Application.

sampling rate at a value close to 50% (label A), with small decreases due to variances

in the response time, as this is the metric used to adapt the sampling rate. In seasonal

patterns, ADP detects performance degradation and reduces the sampling rate (label B).

94

(a) Collected sample sizes over time.

Distribution of traces (%)

1.6%
​|

1.4%
​|

1.5%
​|

0.8%
​|

25.8%

24.9%

24.7%

23.1%

4%
​|

4.1%
​|

3.6%
​|

3.2%
​|

4%
​|

3.7%
​|

5.2%
​|

5%
​|

17.2%

17.3%

15.4%

17.1%

0.5%
​|

0.4%
​|

0.1%
​|

1.3%
​|

44.5%

45.7%

47%

47.4%

2.4%
​|

2.5%
​|

2.5%
​|

2.1%
​|

Order status by name New order New order rollback
Payment by ID Delivery schedule Stock level
Payment by name Order status by ID

Full Monitoring (FUM)

Adaptive Sampling (ADP)

Uniform Sampling (UNI)

Inversely Proportional Sampling
​(INV)

0 20 40 60 80 100

(b) Comparison of the distribution of application requests.
Figure 5.4 – Analysis of the ADP Results with the h2 Application.

Note that even with a decreased sampling rate, the throughput (orange line) decreases,

showing that the user requests are causing the application to be under stress. Lastly, in

isolated bursts, the sampling rate remains at 50% (label C) because the increased number

95

of users for brief moments does not have a major impact on the application performance.

As can be seen, despite the monitoring and the peeks, the throughput is not lower than in

the rest of the simulation.

ADP Sampling Rate vs. INV Sampling Rate. Now we look in detail at the sampling

rate controlled by INV and how it differs from ADP. Both approaches apply mechanisms

to reduce the sampling rate when the application is struggling with an increased workload

(label D). However, while ADP uses the response time to make decisions, INV relies on

the workload (throughput). In many cases, this correctly reduces the sampling rate to not

cause a major performance impact on the application. But in certain situations (label E),

low throughput is due to a low number of requests, thus there is no need to reduce the

sampling rate. ADP is able to better understand the application as a whole as it keeps

track of a performance baseline with and without monitoring, allowing it to identify when

the monitoring is competing for resources with the application.

Collected Sample Sizes. ADP does not focus on collecting execution traces to be an-

alyzed all together, but works in cycles providing a set of samples of execution traces,

each being representative of the population in each cycle. Although there is a timeout

for cycles, ideally the cycle ends when the representativeness criteria are met, leading to

samples of various sizes. We present the collected samples sizes for h2 in Figure 5.4a.

The horizontal proximity between the dots indicates that no cycle reached the timeout of

180s—the maximum cycle time is 25 seconds. Figure 5.4a also shows that the sample

size is not correlated to the sampling rate. This may occur in h2 due to the low number of

types of requests (8 distinct types) because it is easier to have similar distributions when

the number of classes to be compared between the sample and population is low. Note

that there is an outlier cycle composed only of 211 execution traces and that lasted less

than 1s. This indicates that the sample satisfied the representativeness criteria with high

confidence because the longer the cycle, the lower the confidence level as it decays over

time. As result, on average, h2 had 163 cycles. Because the request types of xalan and

tradebeans are also low, 16 and 12, respectively, they manage to collect representa-

tive samples in shorter times, resulting in 422 and 151 cycles, respectively. cassandra

and lusearch, in turn, have more than 100 request types, causing the lowest number

of cycles (122 and 48, respectively). We observed longer monitoring cycles in these two

applications, including timeouts.

96

Distribution of Application Requests. Lastly, we analyze the distribution of applica-

tion requests in Figure 5.4b considering the data in all samples collected during one ex-

ecution of the simulation of h2. FUM shows the distribution of the population (ground

truth). Although ADP checks for distribution similarity by sample, the resulting set of

samples has the distribution most similar to the population (considering the whole simu-

lation), having the new order request the highest difference (1.2%). This request type,

which is the most frequent, also led to the highest difference for UNI and INV. UNI has a

difference of 2.5%; while INV, which focuses on performance rather than representative-

ness, has the highest difference (2.9%) among the three approaches.

5.2.2.2 Threats to Validity

Our evaluation involves runtime execution with a particular workload and, thus,

there are many settings that may influence the results. All our settings were selected to

avoid bias. The fired application requests have a key role in the obtained results. To

minimize the chance of using a workload that favors a particular approach, we rely on

the randomness and reliability provided by DaCapo. Another workload configuration

that may influence the results is the number of simultaneous users and how it varies over

time. Our designed workload includes different types of variations, which are those used

in existing work. Moreover, the maximum number of users, based on preliminary ex-

ecutions, was selected to guarantee that the application executes under stress in certain

moments. Another construction threat to validity is how we assess representativeness.

The key goal is to evaluate whether the desired execution traces are included in the sam-

ple. Given that this depends on the monitoring goal, we use memory usage due to the

reasons explained in the study settings. This measurement is not used by any of the com-

pared approaches for adapting the sampling rate or making decisions. The only challenge

is to collect this information in Java, because its virtual machine offers limited support

to fine-grained memory measurements and, in addition, it has multiple features that can

affect this kind of measurement during the application execution, such as garbage col-

lector and just-in-time compilation. We used a standard way to measure memory usage

as well as discarded invalid measurements—negative values due to the execution of the

garbage collector—for all approaches, including FUM. An external threat to validity is

the selected applications. We selected applications of different domains and that use var-

ious technologies. Although the number of applications is not large, we emphasize that

the obtained results are consistent across all applications and thus provide evidence of the

97

generalization of the results. However, as any empirical study, further evaluations with

different settings would improve the generality and reliability of the results.

5.3 Limitations

We now point out limitations of our monitoring process. A monitoring cycle fin-

ishes when the representativeness criteria are met. In situations that an application must

timely react to particular requests, this may cause the application to give a delayed re-

sponse. We addressed this issue using a decaying confidence level based on the mon-

itoring cycle time frame, which can be customized. However, the more elapsed time,

the lower the confidence level. Therefore, if an application requires samples with some

confidence level guarantees, the sample evaluation activity must be adapted.

In our work, we monitor applications by continuously making decisions and adap-

tations to collect execution traces, which implies an overhead higher than making simple

adjustments (as in INV). This is, however, done in a lightweight way and our evaluation

showed that despite the execution of our process activities, we obtain the most representa-

tive samples with a performance not far from INV. Yet, it is possible to reduce the cost of

the Sampling Rate Adaptation activity by using bootstrapping and other statistical tech-

niques to generate data from samples and estimate the population based on monitoring

time frames instead of instrumenting all the requests. Then, the monitoring can be dis-

abled for extended periods when the sample is in good shape to be used in bootstrapping.

5.4 Final Remarks

We presented in this chapter an adaptive sampling process to find the sweet spot

between two conflicting goals, namely overhead vs. representativeness. Our process is

performed in monitoring cycles and is composed of three activities, which use algorithms

with statistical foundations to decide whether a particular application request must be

recorded, when and to what degree adapt the sampling rate, and determine when a sample

has been collected to, then, begin a new monitoring cycle. We evaluated our process

by comparing it with monitoring performed with uniform sampling and a sampling rate

that is inversely proportional to the workload (INV) as well as used executions with no

monitoring and monitoring every application request as a reference. Our results show

98

that our approach collects samples with the lowest errors with respect to the population,

having a performance impact that is only 1–6% higher than INV, which achieves the

highest errors. We next conclude this thesis, summarising its main contributions and

pointing out directions for future work.

99

6 CONCLUSION

Software runtime monitoring has been largely used for a wide range of purposes,

from debugging to self-adaptation. When it collects costly information like detailed ex-

ecution traces in production environments, it is crucial to prevent the monitoring from

causing unacceptable overhead. Typical approaches to address this issue rely on filtering

or sampling strategies to reduce the monitoring overhead and enable faster trace analysis.

However, such strategies have been commonly adopted with pre-defined and fixed config-

urations, which specify specific software locations to be monitored and a sampling rate.

These configurations may be unsuitable to cope with software usage peaks and unable to

handle unforeseen scenarios.

In this thesis, we increase the practical feasibility of software runtime monitor-

ing by leveraging filtering and sampling strategies to reduce the monitoring overhead and

increase the relevance and representativeness of the collected traces. We performed a sys-

tematic literature review to understand and identify relevance criteria and metrics used

in monitoring approaches. Based on the literature review results, we derived a domain-

specific language (DSL), named TigrisDSL, which allows the specification of monitoring

filters through high-level relevance criteria. These relevance filters can guide monitoring

components to collect a set of relevant traces that are analyzed to achieve the goal of

monitoring. This DSL was incorporated into a proposed two-phase approach for adaptive

filtering of execution traces. The filtering approach is domain neutral and can be instan-

tiated to collect relevant traces for different domains and purposes. The first phase of our

approach is based on obtaining lightweight metrics from the system’s execution. Then,

periodically, it evaluates the collected metrics according to a set of relevance criteria spec-

ified in TigrisDSL. The second phase filters and samples executions relevant to the goal

of monitoring, thus achieving a reduced monitoring overhead. In addition, to address the

limitations associated with sampling, we proposed an adaptive sampling process to col-

lect execution traces with detailed information in environments where the performance

impact is critical, such as production environments. The adaptive sampling is performed

in monitoring cycles and is composed of three activities, which use algorithms with sta-

tistical foundations to decide whether a particular application request must be recorded,

when and to what degree adapt the sampling rate, and determine when a sample has been

collected to, then, begin a new monitoring cycle.

Both adaptive techniques were implemented in Java for our empirical evaluation,

100

but they are generic and language independent. These implementations served as basis

for conducting empirical studies to assess different aspects of the proposed techniques.

Regarding our research question, our results showed evidence that our proposals can col-

lect execution traces at runtime that are relevant and representative with an acceptable

performance impact. Thus, we conclude that our proposed adaptive solutions can be used

as monitoring components of existing monitoring-based approaches in different domains

and applications.

6.1 Contributions

Various contributions can be enumerated as a result of the work presented in this

thesis. Together, they frame our solutions to increase the practical feasibility of software

monitoring.

Research Topic Refinement. In the context of this thesis, while further exploring the

applications of software runtime monitoring, we performed research work that helped in

the understanding of the existing problems and idealization of possible solutions to be

applied. During a three-month research visit at the University of Grenoble (FR), we in-

vestigated the monitoring needs and opportunities in IoT scenarios, such as smart homes.

This investigation resulted in two research papers (LALANDA; MERTZ; NUNES, 2018;

MERTZ et al., 2017), which are focused on monitoring communications between devices

and pervasive platforms to identify caching opportunities and, consequently, improving

the resilience and performance of the environment. In collaboration with researchers

from TU Darmstadt and ETH Zurich, we extended previous work to define application-

level caching as a research area and pinpoint research opportunities (MERTZ et al., 2020),

highlighting the monitoring and understanding of applications as one of the main chal-

lenges in the area.

Relevance Criteria and TigrisDSL. Chapter 3 presented the design and results of a

systematic literature review to identify relevance criteria and metrics that can be used for

monitoring applications. This review also analyzed existing monitoring-based approaches

in terms of generality, scalability, and adaptability (MERTZ; NUNES, 2019; MERTZ;

NUNES, 2021). Based on the results of the literature review, we proposed TigrisDSL, a

DSL that allows the specification of monitoring filters by means of high-level relevance

101

criteria. These monitoring filters can be used to capture and express different goals of

monitoring in such a way that can be given as input for monitoring approaches to guide

the collection of relevant traces for the given goal.

Adaptive Filtering Approach. In Chapter 4, we presented a two-phase monitoring

approach for filtering execution traces at runtime (MERTZ; NUNES, 2019; MERTZ;

NUNES, 2021). In its first phase, coarse-grained monitoring is performed to identify rele-

vant parts of the software execution. It receives the goal of monitoring as input, expressed

in TigrisDSL in the form of high-level relevance criteria. The criteria are translated into

software metrics, which are collected and analyzed at runtime to guide in-depth and fine-

grained monitoring in the second phase of the approach. Such filtering approach tailors

the monitoring process according to the goal of monitoring, keeping its overhead at an

acceptable level while collecting relevant traces. Consequently, the approach can be used

as a monitoring component to effectively monitor a software system and provide informa-

tion for different purposes, e.g. to identify security vulnerabilities, model inconsistencies

or performance bugs.

Tigris Framework. Chapter 4 also presented a framework, named Tigris, which is one

instance of the adaptive filtering approach that can seamlessly integrate the proposed so-

lution to existing software systems to support monitoring-based activities. The goal of the

framework is to decouple the monitoring phase of monitoring-based approaches, which is

domain independent, from the analysis they perform (i.e. the goal of monitoring), which

is domain specific, thus being possible to reuse the same monitoring process in different

domains by defining the goal of monitoring in form of a set of relevance criteria and met-

rics. Thus, the framework provides reusable behavior based on minimum domain-specific

input (MERTZ; NUNES, 2019; MERTZ; NUNES, 2021).

Adaptive Sampling Process. The process described in Chapter 5, provides a sampling

strategy that pursues an adequate trade-off between monitoring overhead and represen-

tativeness of the collected sample of traces (MERTZ; NUNES, 2022. Submitted.). This

process is performed in monitoring cycles and is composed of algorithms with statistical

foundations to pursue that, by the end of each monitoring cycle, the collected sample is

representative of the population. During the monitoring cycles, the proposed adaptive

sampling dynamically decides which traces to keep and adapts the sampling rate towards

102

reducing the monitoring overhead to an acceptable level when the target software applica-

tion needs its resources for regular processing. To empirically evaluate our proposal, we

implemented our process and algorithms into a selected platform. However, our adaptive

sampling proposal is independent of the programming language paradigm and technology.

6.2 Future Work

The contributions presented in this thesis advance research on the development of

monitoring approaches. However, there still remains several open challenges in this con-

text that should be addressed in future work. These challenges are discussed as follows.

Combination of Adaptive Filtering and Adaptive Sampling. We evaluated each strat-

egy in different and specific empirical studies that were designed to solely assess the ben-

efits and impacts of the proposed solutions without the influence of other components.

However, the proposed solutions for adaptive filtering and adaptive sampling could be

combined, as they essentially address different problems regarding the monitoring of soft-

ware applications. Therefore, it is future work an evaluation of both approaches combined

to reduce the monitoring overhead and increase the relevance and representativeness of

collected traces at the same time.

Self adaptation with an Enhanced Feedback Loop. Our proposed approaches for

adaptive filtering and sampling (Chapters 4 and 5, respectively) would benefit of enhanced

self-adaptive capabilities, such as a complete feedback loop that takes the effectiveness

of the domain-specific analysis of the collected traces as feedback to adjust the approach

parameters (e.g. increasing the sampling rate or expanding the set of filtered methods).

This would provide means of improving the results in terms of relevance and representa-

tiveness by leveraging domain-specific information, provided either manually, at design

time, or dynamically, at runtime.

User Study and Case Studies. The evaluations conducted in Chapters 4 and 5 demon-

strated that the proposals presented in this thesis have the potential to be reused in different

application domains. Nevertheless, a user study that assesses the benefits of its reuse from

the perspective of developers would provide valuable information regarding its strengths

and weaknesses while monitoring software systems in production environment with real

103

workloads. In addition, our future work involves implementing and evaluating our ap-

proaches in projects written in other programming languages and for different purposes,

such as post-mortem fault analysis.

In summary, this thesis advances research on reducing the impact of software

runtime monitoring, paving the way to cover more unaddressed monitoring challenges in

the future. Further work is required to develop a general solution that provides effective

monitoring with practically acceptable costs, but our work is one of the steps in this

direction.

104

105

REFERENCES

ALIABADI, M. R. et al. ARTINALI: Dynamic invariant detection for Cyber-Physical
System security. In: Proceedings of the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering. New York, New York, USA: Association for Computing
Machinery, 2017. Part F1301, p. 349–361. Available from Internet: <http://dl.acm.org/
citation.cfm?doid=3106237.3106282>.

ALONSO, J. et al. Towards Self-adaptable monitoring framework for self-healing.
Grid and Services Evolution, p. 1–9, 2009. Available from Internet: <http://www.
springerlink.com/index/K85L5065Q453W2P7.pdf>.

ANGELOPOULOS, K. et al. Model predictive control for software systems with Co-
bRA. In: Proceedings - 11th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2016. [S.l.]: Association for Comput-
ing Machinery, Inc, 2016. p. 35–46.

APIWATTANAPONG, T.; HARROLD, M. J. Selective path profiling. ACM SIGSOFT
Software Engineering Notes, 2003.

BAILEY, C. et al. Run-time generation, transformation, and verification of access control
models for self-protection. In: Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems - SEAMS 2014. New
York, New York, USA: ACM Press, 2014. p. 135–144. Available from Internet: <http:
//dl.acm.org/citation.cfm?doid=2593929.2593945>.

BARNA, C. et al. Hogna: A Platform for Self-Adaptive Applications in Cloud Environ-
ments. In: Proceedings - 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2015. [S.l.]: Institute of Electrical and
Electronics Engineers Inc., 2015. p. 83–87.

BARNA, C. et al. Delivering Elastic Containerized Cloud Applications to Enable DevOps.
In: Proceedings - 2017 IEEE/ACM 12th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems, SEAMS 2017. [S.l.]: Institute of
Electrical and Electronics Engineers Inc., 2017. p. 65–75.

BARTOCCI, E. et al. Introduction to runtime verification. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics). Springer, Cham, 2018. v. 10457 LNCS, p. 1–33. Available
from Internet: <http://link.springer.com/10.1007/978-3-319-75632-5_1>.

BASTANI, O.; ANAND, S.; AIKEN, A. Interactively verifying absence of explicit infor-
mation flows in android apps. In: Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLA. New York, New
York, USA: Association for Computing Machinery, 2015. v. 25-30-Oct-, p. 299–315.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=2814270.2814274>.

BIELIK, P.; RAYCHEV, V.; VECHEV, M. Scalable race detection for android appli-
cations. In: Proceedings of the Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, OOPSLA. New York, New York, USA: Asso-
ciation for Computing Machinery, 2015. p. 332–348. Available from Internet: <http:
//dl.acm.org/citation.cfm?doid=2814270.2814303>.

http://dl.acm.org/citation.cfm?doid=3106237.3106282
http://dl.acm.org/citation.cfm?doid=3106237.3106282
http://www.springerlink.com/index/K85L5065Q453W2P7.pdf
http://www.springerlink.com/index/K85L5065Q453W2P7.pdf
http://dl.acm.org/citation.cfm?doid=2593929.2593945
http://dl.acm.org/citation.cfm?doid=2593929.2593945
http://link.springer.com/10.1007/978-3-319-75632-5_1
http://dl.acm.org/citation.cfm?doid=2814270.2814274
http://dl.acm.org/citation.cfm?doid=2814270.2814303
http://dl.acm.org/citation.cfm?doid=2814270.2814303

106

BLACKBURN, S. M. et al. The DaCapo benchmarks: Java benchmarking development
and analysis. In: OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and Applications.
New York, NY, USA: ACM Press, 2006. p. 169–190.

BLACKBURN, S. M. et al. The DaCapo Benchmarks: Java Benchmarking Develop-
ment and Analysis (Extended Version). [S.l.], 2006. Http://www.dacapobench.org.

BRAND, T.; GIESE, H. Towards generic adaptive monitoring. In: International Con-
ference on Self-Adaptive and Self-Organizing Systems, SASO. IEEE, 2018. v. 2018-
September, p. 156–161. Available from Internet: <https://ieeexplore.ieee.org/document/
8614290/>.

BRAND, T.; GIESE, H. Generic Adaptive Monitoring Based on Executed Architecture
Runtime Model Queries and Events. In: IEEE 13th International Conference on Self-
Adaptive and Self-Organizing Systems (SASO). [s.n.], 2019. p. 17–22. Available from
Internet: <https://ieeexplore.ieee.org/document/8780535/>.

BROCANELLI, M.; WANG, X. Smartphone Radio Interface Management for Longer
Battery Lifetime. In: Proceedings - 2017 IEEE International Conference on Auto-
nomic Computing, ICAC 2017. [S.l.]: Institute of Electrical and Electronics Engineers
Inc., 2017. p. 93–102.

BRÖNINK, M.; ROSENBLUM, D. S. Mining performance specifications. In: Proceed-
ings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering.
[S.l.: s.n.], 2016. p. 39–49.

CÁMARA, J.; MORENO, G. A.; GARLAN, D. Stochastic game analysis and latency
awareness for proactive self-adaptation. In: 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2014 - Proceedings.
New York, New York, USA: Association for Computing Machinery, 2014. p. 155–164.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=2593929.2593933>.

CASANOVA, P. et al. Diagnosing unobserved components in self-adaptive systems.
In: 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS 2014 - Proceedings. New York, New York, USA: As-
sociation for Computing Machinery, 2014. p. 75–84. Available from Internet: <http:
//dl.acm.org/citation.cfm?doid=2593929.2593946>.

CASSAR, I. et al. A Survey of Runtime Monitoring Instrumentation Techniques.
aug 2017. Available from Internet: <http://arxiv.org/abs/1708.07229http://dx.doi.org/10.
4204/EPTCS.254.2>.

CHAN, A. et al. Scaling an object-oriented system execution visualizer through sam-
pling. In: Proceedings - IEEE Workshop on Program Comprehension. IEEE Comput.
Soc, 2003. v. 2003-May, p. 237–244. Available from Internet: <http://ieeexplore.ieee.org/
document/1199207/>.

CHEN, T.-H. et al. CacheOptimizer: Helping Developers Configure Caching Frameworks
for Hibernate-based Database-centric Web Applications. In: Proceedings of the 2016

https://ieeexplore.ieee.org/document/8614290/
https://ieeexplore.ieee.org/document/8614290/
https://ieeexplore.ieee.org/document/8780535/
http://dl.acm.org/citation.cfm?doid=2593929.2593933
http://dl.acm.org/citation.cfm?doid=2593929.2593946
http://dl.acm.org/citation.cfm?doid=2593929.2593946
http://arxiv.org/abs/1708.07229 http://dx.doi.org/10.4204/EPTCS.254.2
http://arxiv.org/abs/1708.07229 http://dx.doi.org/10.4204/EPTCS.254.2
http://ieeexplore.ieee.org/document/1199207/
http://ieeexplore.ieee.org/document/1199207/

107

24th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering - FSE 2016. New York, New York, USA: ACM Press, 2016. p. 666–677. Avail-
able from Internet: <http://dx.doi.org/10.1145/2950290.2950303>.

CHEN, T.-H. et al. Detecting performance anti-patterns for applications developed using
object-relational mapping. In: Proceedings of the 36th International Conference on
Software Engineering - ICSE 2014. New York, New York, USA: ACM Press, 2014.
p. 1001–1012. Available from Internet: <http://dl.acm.org/citation.cfm?doid=2568225.
2568259>.

CHEN, Z. et al. Speedoo. In: Proceedings of the 40th International Conference on
Software Engineering - ICSE ’18. New York, New York, USA: ACM Press, 2018.
p. 811–821. Available from Internet: <http://dl.acm.org/citation.cfm?doid=3180155.
3180229>.

CHRISTAKIS, M. et al. A General Framework for Dynamic Stub Injection. In: Pro-
ceedings - 2017 IEEE/ACM 39th International Conference on Software Engineer-
ing, ICSE 2017. [S.l.]: Institute of Electrical and Electronics Engineers Inc., 2017. p.
586–596.

CLARK, S. S.; BEAL, J.; PAL, P. Distributed Recovery for Enterprise Services. In: In-
ternational Conference on Self-Adaptive and Self-Organizing Systems, SASO. [S.l.]:
IEEE Computer Society, 2015. v. 2015-Octob, p. 111–120.

COCHRAN, W. G. Sampling techniques. New York, New York, USA: John Wiley
& Sons, Ltd, 1977. 89 – 149 p. Available from Internet: <https://archive.org/details/
Cochran1977SamplingTechniques{_}201703/page>.

CORNELISSEN, B. et al. Execution trace analysis through massive sequence and circular
bundle views. Journal of Systems and Software, v. 81, n. 12, p. 2252–2268, 2008.

DAOUD, H.; EZZATI-JIVAN, N.; DAGENAIS, M. R. Dynamic trace-based sampling al-
gorithm for memory usage tracking of enterprise applications. In: 2017 IEEE High Per-
formance Extreme Computing Conference, HPEC 2017. IEEE, 2017. p. 1–7. Available
from Internet: <http://ieeexplore.ieee.org/document/8091061/>.

DELLA TOFFOLA, L.; PRADEL, M.; GROSS, T. R. Performance problems you can fix:
a dynamic analysis of memoization opportunities. In: Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications - OOPSLA 2015. New York, New York, USA: ACM
Press, 2015. p. 607–622. Available from Internet: <http://dx.doi.org/10.1145/2814270.
2814290>.

DENARO, G. et al. Dynamic data flow testing of object oriented systems. In: Proceedings
- International Conference on Software Engineering. [S.l.]: IEEE Computer Society,
2015. v. 1, p. 947–958.

DEVRIES, B.; CHENG, B. H. Run-time monitoring of self-adaptive systems to detect
N-way feature interactions and their causes. In: Proceedings - International Confer-
ence on Software Engineering. New York, New York, USA: IEEE Computer Society,
2018. p. 94–100. Available from Internet: <http://dl.acm.org/citation.cfm?doid=3194133.
3194141>.

http://dx.doi.org/10.1145/2950290.2950303
http://dl.acm.org/citation.cfm?doid=2568225.2568259
http://dl.acm.org/citation.cfm?doid=2568225.2568259
http://dl.acm.org/citation.cfm?doid=3180155.3180229
http://dl.acm.org/citation.cfm?doid=3180155.3180229
https://archive.org/details/Cochran1977SamplingTechniques{_}201703/page
https://archive.org/details/Cochran1977SamplingTechniques{_}201703/page
http://ieeexplore.ieee.org/document/8091061/
http://dx.doi.org/10.1145/2814270.2814290
http://dx.doi.org/10.1145/2814270.2814290
http://dl.acm.org/citation.cfm?doid=3194133.3194141
http://dl.acm.org/citation.cfm?doid=3194133.3194141

108

DING, R. et al. Log2: A cost-aware logging mechanism for performance diagnosis. In:
Proceedings of the 2015 USENIX Annual Technical Conference, USENIX ATC 2015.
Santa Clara, CA, USA: USENIX Association, 2015. p. 139–150.

DONG, F. et al. FraudDroid: Automated ad fraud detection for android apps. In: ES-
EC/FSE 2018 - Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering. New York, New York, USA: Association for Computing Machinery,
Inc, 2018. p. 257–268. Available from Internet: <http://dl.acm.org/citation.cfm?doid=
3236024.3236045>.

DUGERDIL, P. Using trace sampling techniques to identify dynamic clusters of classes.
In: Proceedings of the 2007 Conference of the Center for Advanced Studies on Col-
laborative Research, CASCON ’07. New York, New York, USA: ACM Press, 2007. p.
306–314.

EICHELBERGER, H.; SCHMID, K. Flexible resource monitoring of Java programs.
Journal of Systems and Software, 2014.

ESTABROOKS, A.; JO, T.; JAPKOWICZ, N. A multiple resampling method for learning
from imbalanced data sets. Computational Intelligence, v. 20, n. 1, p. 18–36, 2004.

FEI, L.; MIDKIFF, S. P. Artemis. In: Proceedings of the 2006 ACM SIGPLAN con-
ference on Programming language design and implementation - PLDI ’06. New
York, New York, USA: ACM Press, 2006. v. 41, n. 6, p. 84. Available from Internet:
<http://portal.acm.org/citation.cfm?doid=1133981.1133992>.

FENG, Y. et al. Hierarchical abstraction of execution traces for program comprehension.
In: Proceedings of the 26th Conference on Program Comprehension - ICPC ’18. As-
sociation for Computing MachineryACM ACM, 2018. p. 86–96. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=3196321.3196343>.

FINOCCHI, I. Software streams: Big data challenges in dynamic program analysis. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). [S.l.: s.n.], 2013. v. 7921 LNCS, p.
124–134.

FISCHMEISTER, S.; BA, Y. Sampling-based program execution monitoring. In: ACM
SIGPLAN Notices. New York, New York, USA: ACM Press, 2010. v. 45, n. 4, p. 133.
Available from Internet: <http://portal.acm.org/citation.cfm?doid=1755951.1755908>.

GAO, L. et al. A survey of software runtime monitoring. In: 2017 8th IEEE Interna-
tional Conference on Software Engineering and Service Science (ICSESS). Beijing,
China: IEEE, 2017. p. 308–313.

GHEZZI, C. et al. Mining behavior models from user-intensive web applications. In:
Proceedings - International Conference on Software Engineering. New York, New
York, USA: IEEE Computer Society, 2014. p. 277–287. Available from Internet: <http:
//dl.acm.org/citation.cfm?doid=2568225.2568234>.

http://dl.acm.org/citation.cfm?doid=3236024.3236045
http://dl.acm.org/citation.cfm?doid=3236024.3236045
http://portal.acm.org/citation.cfm?doid=1133981.1133992
http://dl.acm.org/citation.cfm?doid=3196321.3196343
http://portal.acm.org/citation.cfm?doid=1755951.1755908
http://dl.acm.org/citation.cfm?doid=2568225.2568234
http://dl.acm.org/citation.cfm?doid=2568225.2568234

109

GONG, L.; PRADEL, M.; SEN, K. JITProf: pinpointing JIT-unfriendly JavaScript code.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-
neering - ESEC/FSE 2015. New York, New York, USA: ACM Press, 2015. p. 357–368.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=2786805.2786831>.

HAMOU-LHADJ, A.; LETHBRIDGE, T. Summarizing the content of large traces to fa-
cilitate the understanding of the behaviour of a software system. In: IEEE International
Conference on Program Comprehension. [S.l.: s.n.], 2006. v. 2006, p. 181–190.

HAMOU-LHADJ, A.; LETHBRIDGE, T. C. A Survey of Trace Exploration Tools
and Techniques. IBM Press, 2004. 42–55 p. Available from Internet: <http://dl.acm.
org/citation.cfm?id=1034914.1034918>.

HAUSWIRTH, M.; CHILIMBI, T. M. Low-overhead memory leak detection using adap-
tive statistical profiling. In: Proceedings of the 11th international conference on Ar-
chitectural support for programming languages and operating systems - ASPLOS-
XI. New York, New York, USA: ACM Press, 2004. v. 39, n. 11, p. 156–164. Avail-
able from Internet: <http://portal.acm.org.www.library.gatech.edu:2048/citation.cfm?id=
1024393.1024412>.

HAWKINS, B.; DEMSKY, B. ZenIDS: Introspective Intrusion Detection for PHP Appli-
cations. In: Proceedings - 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering, ICSE 2017. [S.l.]: Institute of Electrical and Electronics Engineers
Inc., 2017. p. 232–243.

HE, J.; DAI, T.; GU, X. TScope: Automatic timeout bug identification for server systems.
In: Proceedings - 15th IEEE International Conference on Autonomic Computing,
ICAC 2018. [S.l.]: Institute of Electrical and Electronics Engineers Inc., 2018. p. 1–10.

HOLMQVIST, V.; NILSFORS, J.; LEITNER, P. Cachematic - Automatic Invalidation in
Application-Level Caching Systems. In: Proceedings of the 2019 ACM/SPEC Inter-
national Conference on Performance Engineering - ICPE ’19. New York, New York,
USA: ACM Press, 2019. p. 167–178. Available from Internet: <http://dl.acm.org/citation.
cfm?doid=3297663.3309666>.

HORKÝ, V. et al. Analysis of Overhead in Dynamic Java Performance Monitoring. In:
Proceedings of the 7th ACM/SPEC on International Conference on Performance
Engineering - ICPE ’16. New York, New York, USA: ACM Press, 2016. p. 275–286.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=2851553.2851569>.

HUANG, J.; LUO, Q.; ROSU, G. GPredict: Generic predictive concurrency analysis.
In: Proceedings - International Conference on Software Engineering. [S.l.]: IEEE
Computer Society, 2015. v. 1, p. 847–857.

HUEBSCHER, M. C.; MCCANN, J. a. A survey of autonomic computing—degrees,
models, and applications. ACM Computing Surveys, ACM, v. 40, n. 3, p. 1–28, aug
2008. Available from Internet: <http://dl.acm.org/citation.cfm?id=1380584.1380585>.

JENSEN, S. H. et al. MemInsight: platform-independent memory debugging for
JavaScript. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering - ESEC/FSE 2015. New York, New York, USA: ACM Press, 2015.

http://dl.acm.org/citation.cfm?doid=2786805.2786831
http://dl.acm.org/citation.cfm?id=1034914.1034918
http://dl.acm.org/citation.cfm?id=1034914.1034918
http://portal.acm.org.www.library.gatech.edu:2048/citation.cfm?id=1024393.1024412
http://portal.acm.org.www.library.gatech.edu:2048/citation.cfm?id=1024393.1024412
http://dl.acm.org/citation.cfm?doid=3297663.3309666
http://dl.acm.org/citation.cfm?doid=3297663.3309666
http://dl.acm.org/citation.cfm?doid=2851553.2851569
http://dl.acm.org/citation.cfm?id=1380584.1380585

110

p. 345–356. Available from Internet: <http://dl.acm.org/citation.cfm?doid=2786805.
2786860>.

JUNG, C. et al. Automated memory leak detection for production use. In: Proceedings -
International Conference on Software Engineering. [S.l.: s.n.], 2014. p. 825–836.

KANG, P. Function call interception techniques. Software - Practice and Experience,
v. 48, n. 3, p. 385–401, may 2018. Available from Internet: <http://doi.wiley.com/10.
1002/spe.2501>.

KANG, Y. et al. DiagDroid: Android performance diagnosis via anatomizing asyn-
chronous executions. In: Proceedings of the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering. New York, New York, USA: Association for Comput-
ing Machinery, 2016. p. 410–421. Available from Internet: <http://dl.acm.org/citation.
cfm?doid=2950290.2950316>.

KANTERT, J. et al. A Graph Analysis Approach to Detect Attacks in Multi-agent Sys-
tems at Runtime. In: International Conference on Self-Adaptive and Self-Organizing
Systems, SASO. [S.l.]: IEEE Computer Society, 2014. v. 2014-Decem, n. December, p.
80–89.

KICZALES, G. et al. Aspect-oriented programming. European conference on object-
oriented programming, v. 1241/1997, n. June, p. 220–242, 1997.

KIM, C. H. et al. PerfGuard: binary-centric application performance monitoring in
production environments. In: Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering - FSE 2016. New
York, New York, USA: ACM Press, 2016. p. 595–606. Available from Internet: <http:
//dl.acm.org/citation.cfm?doid=2950290.2950347>.

KIM, C. H. et al. PerfGuard: binary-centric application performance monitoring in pro-
duction environments. In: Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering. New York, New York, USA: ACM Press, 2016.
v. 13-18-Nove, p. 595–606. Available from Internet: <http://dl.acm.org/citation.cfm?
doid=2950290.2950347>.

KIM, D. et al. Apex: Automatic programming assignment error explanation. In: Pro-
ceedings of the Conference on Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA. New York, New York, USA: Association for Computing
Machinery, 2016. v. 02-04-Nove, p. 311–327. Available from Internet: <http://dl.acm.
org/citation.cfm?doid=2983990.2984031>.

KNUTH, D. E. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms. USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

KOUAME, K.; EZZATI-JIVAN, N.; DAGENAIS, M. R. A Flexible Data-Driven Ap-
proach for Execution Trace Filtering. In: Proceedings - 2015 IEEE International
Congress on Big Data, BigData Congress 2015. IEEE, 2015. p. 698–703. Available
from Internet: <http://ieeexplore.ieee.org/document/7207296/>.

LALANDA, P.; MCCANN, J. a.; DIACONESCU, A. Autonomic Computing. Princi-
ples, Design and Implementation. 1. ed. Springer London, 2013. XV, 288 p. Available
from Internet: <http://dx.doi.org/10.1007/978-1-4471-5007-7>.

http://dl.acm.org/citation.cfm?doid=2786805.2786860
http://dl.acm.org/citation.cfm?doid=2786805.2786860
http://doi.wiley.com/10.1002/spe.2501
http://doi.wiley.com/10.1002/spe.2501
http://dl.acm.org/citation.cfm?doid=2950290.2950316
http://dl.acm.org/citation.cfm?doid=2950290.2950316
http://dl.acm.org/citation.cfm?doid=2950290.2950347
http://dl.acm.org/citation.cfm?doid=2950290.2950347
http://dl.acm.org/citation.cfm?doid=2950290.2950347
http://dl.acm.org/citation.cfm?doid=2950290.2950347
http://dl.acm.org/citation.cfm?doid=2983990.2984031
http://dl.acm.org/citation.cfm?doid=2983990.2984031
http://ieeexplore.ieee.org/document/7207296/
http://dx.doi.org/10.1007/978-1-4471-5007-7

111

LALANDA, P.; MERTZ, J.; NUNES, I. Autonomic caching management in industrial
smart gateways. In: IEEE Industrial Cyber-Physical Systems, ICPS 2018. IEEE, 2018.
p. 26–31. Available from Internet: <https://ieeexplore.ieee.org/document/8387632/>.

LARSSON, L. et al. Quality-Elasticity: Improved Resource Utilization, Throughput, and
Response Times Via Adjusting Output Quality to Current Operating Conditions. In: Pro-
ceedings - 2019 IEEE International Conference on Autonomic Computing, ICAC
2019. [S.l.]: Institute of Electrical and Electronics Engineers Inc., 2019. p. 52–62.

LAS-CASAS, P. et al. Weighted Sampling of Execution Traces. In: Proceedings of the
ACM Symposium on Cloud Computing - SoCC ’18. New York, New York, USA: ACM
Press, 2018. p. 326–332. Available from Internet: <http://dl.acm.org/citation.cfm?doid=
3267809.3267841>.

LAS-CASAS, P. et al. Sifter: Scalable Sampling for Distributed Traces, without Fea-
ture Engineering. In: Proceedings of the ACM Symposium on Cloud Comput-
ing - SoCC ’19. New York, New York, USA: Association for Computing Machin-
ery (ACM), 2019. p. 312–324. Available from Internet: <http://dl.acm.org/citation.cfm?
doid=3357223.3362736>.

LEE, G. J.; FORTES, J. A. Hadoop performance self-tuning using a fuzzy-prediction ap-
proach. In: Proceedings - 2016 IEEE International Conference on Autonomic Com-
puting, ICAC 2016. [S.l.]: Institute of Electrical and Electronics Engineers Inc., 2016. p.
55–64.

LEE, S.; JUNG, C.; PANDE, S. Detecting memory leaks through introspective dynamic
behavior modelling using machine learning. In: Proceedings - International Confer-
ence on Software Engineering. New York, New York, USA: IEEE Computer Soci-
ety, 2014. p. 814–824. Available from Internet: <http://dl.acm.org/citation.cfm?doid=
2568225.2568307>.

LIU, T.; CURTSINGER, C.; BERGER, E. D. DOUBLETAKE: Fast and precise error
detection via evidence-based dynamic analysis. In: Proceedings - International Confer-
ence on Software Engineering. New York, New York, USA: IEEE Computer Society,
2016. v. 14-22-May-, p. 911–922. Available from Internet: <http://dl.acm.org/citation.
cfm?doid=2884781.2884784>.

MADSEN, M. et al. Feedback-directed instrumentation for deployed JavaScript applica-
tions. In: Proceedings of the 38th International Conference on Software Engineering
- ICSE ’16. New York, New York, USA: ACM Press, 2016. p. 899–910. Available from
Internet: <http://dl.acm.org/citation.cfm?doid=2884781.2884846>.

MERTZ, J.; NUNES, I. A Qualitative Study of Application-Level Caching. IEEE Trans-
actions on Software Engineering, v. 43, n. 9, p. 798–816, sep 2017. Available from
Internet: <https://doi.org/10.1109/TSE.2016.2633992>.

MERTZ, J.; NUNES, I. Understanding Application-Level Caching in Web Applications.
ACM Computing Surveys, v. 50, n. 6, p. 1–34, 2017. Available from Internet: <http:
//dl.acm.org/citation.cfm?doid=3161158.3145813>.

https://ieeexplore.ieee.org/document/8387632/
http://dl.acm.org/citation.cfm?doid=3267809.3267841
http://dl.acm.org/citation.cfm?doid=3267809.3267841
http://dl.acm.org/citation.cfm?doid=3357223.3362736
http://dl.acm.org/citation.cfm?doid=3357223.3362736
http://dl.acm.org/citation.cfm?doid=2568225.2568307
http://dl.acm.org/citation.cfm?doid=2568225.2568307
http://dl.acm.org/citation.cfm?doid=2884781.2884784
http://dl.acm.org/citation.cfm?doid=2884781.2884784
http://dl.acm.org/citation.cfm?doid=2884781.2884846
https://doi.org/10.1109/TSE.2016.2633992
http://dl.acm.org/citation.cfm?doid=3161158.3145813
http://dl.acm.org/citation.cfm?doid=3161158.3145813

112

MERTZ, J.; NUNES, I. Automation of application-level caching in a seamless way.
Software - Practice and Experience, John Wiley & Sons, Ltd., v. 48, n. 6, p. 1218–
1237, 2018. Available from Internet: <http://onlinelibrary.wiley.com/doi/10.1002/spe.
2571/abstract>.

MERTZ, J.; NUNES, I. On the practical feasibility of software monitoring: A framework
for low-impact execution tracing. In: Proceedings of the 14th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. IEEE Press, 2019.
p. 169–180. Available from Internet: <https://doi.org/10.1109/SEAMS.2019.00030>.

MERTZ, J.; NUNES, I. Tigris: A DSL and framework for monitoring software systems
at runtime. Journal of Systems and Software, v. 177, p. 110963, 2021.

MERTZ, J.; NUNES, I. Software Runtime Monitoring with an Adaptive Sampling Rate
to Collect Representative Samples of Execution Traces. IEEE Transactions on Software
Engineering, 2022. Submitted.

MERTZ, J. et al. Satisfying increasing performance requirements with caching at the ap-
plication level. IEEE Software, Institute of Electrical and Electronics Engineers (IEEE),
2020. Available from Internet: <http://dx.doi.org/10.1109/MS.2020.3033508>.

MERTZ, J. et al. Autonomic management of context data based on application require-
ments. In: 43rd Annual Conference of the IEEE Industrial Electronics Society. [s.n.],
2017. v. 2017-January, p. 8622–8627. Available from Internet: <http://ieeexplore.ieee.
org/document/8217515/>.

MIRANSKYY, A. et al. Operational-Log Analysis for Big Data Systems: Challenges and
Solutions. IEEE Software, v. 33, n. 2, p. 52–59, 2016.

MIRANSKYY, A. V. et al. Sift: A Scalable Iterative-Unfolding Technique for Filtering
Execution Traces. In: Proceedings of the 2008 conference of the center for advanced
studies on collaborative research meeting of minds - CASCON ’08. New York, New
York, USA: ACM Press, 2008. p. 274. Available from Internet: <http://portal.acm.org/
citation.cfm?doid=1463788.1463817>.

MIZOUCHI, T. et al. PADLA: A Dynamic Log Level Adapter Using Online Phase De-
tection. In: International Conference on Program Comprehension (ICPC). [S.l.: s.n.],
2019. p. 135–138.

NARAYANAPPA, H.; BANSAL, M. S.; RAJAN, H. Property-aware program sampling.
In: Proceedings of the 9th ACM SIGPLANSIGSOFT workshop on Program analysis
for software tools and engineering PASTE 10. New York, New York, USA: ACM Press,
2010. p. 45. Available from Internet: <http://portal.acm.org/citation.cfm?doid=1806672.
1806682>.

PIRZADEH, H. et al. The concept of stratified sampling of execution traces. In: IEEE In-
ternational Conference on Program Comprehension. IEEE, 2011. p. 225–226. Avail-
able from Internet: <http://ieeexplore.ieee.org/document/5970192/>.

PIRZADEH, H. et al. Stratified sampling of execution traces: Execution phases serving as
strata. Science of Computer Programming, v. 78, n. 8, p. 1099–1118, aug 2013. Avail-
able from Internet: <http://linkinghub.elsevier.com/retrieve/pii/S0167642312002080>.

http://onlinelibrary.wiley.com/doi/10.1002/spe.2571/abstract
http://onlinelibrary.wiley.com/doi/10.1002/spe.2571/abstract
https://doi.org/10.1109/SEAMS.2019.00030
http://dx.doi.org/10.1109/MS.2020.3033508
http://ieeexplore.ieee.org/document/8217515/
http://ieeexplore.ieee.org/document/8217515/
http://portal.acm.org/citation.cfm?doid=1463788.1463817
http://portal.acm.org/citation.cfm?doid=1463788.1463817
http://portal.acm.org/citation.cfm?doid=1806672.1806682
http://portal.acm.org/citation.cfm?doid=1806672.1806682
http://ieeexplore.ieee.org/document/5970192/
http://linkinghub.elsevier.com/retrieve/pii/S0167642312002080

113

RABISER, R. et al. A comparison framework for runtime monitoring approaches. Jour-
nal of Systems and Software, Elsevier, v. 125, p. 309–321, mar 2017. Available from
Internet: <https://www.sciencedirect.com/science/article/pii/S0164121216302618>.

REGER, G.; HAVELUND, K. What is a trace? A runtime verification perspective.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics). Springer, Cham, 2016. v.
9953 LNCS, p. 339–355. Available from Internet: <http://link.springer.com/10.1007/
978-3-319-47169-3_25>.

REISS, S. P. Dynamic Detection and Visualization of Software Phases. Proceedings of
the third international workshop on Dynamic analysis (WODA 2005), v. 30, n. 4, p. 1,
2005.

SAMAK, M.; TRIPP, O.; RAMANATHAN, M. K. Directed synthesis of failing concur-
rent executions. In: Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications, OOPSLA. New York, New York, USA: As-
sociation for Computing Machinery, 2016. v. 02-04-Nove, p. 430–446. Available from
Internet: <http://dl.acm.org/citation.cfm?doid=2983990.2984040>.

SANTELICES, R.; SINHA, S.; HARROLD, M. J. Subsumption of program entities for
efficient coverage and monitoring. Proceedings of the 3rd international workshop on
Software quality assurance - SOQUA ’06, 2006.

SHEN, D. et al. Automating performance bottleneck detection using search-based appli-
cation profiling. In: Proceedings of the 2015 International Symposium on Software
Testing and Analysis - ISSTA 2015. New York, New York, USA: ACM Press, 2015.
p. 270–281. Available from Internet: <http://dl.acm.org/citation.cfm?doid=2771783.
2771816>.

SONG, L.; LU, S. Performance diagnosis for inefficient loops. In: Proceedings - 2017
IEEE/ACM 39th International Conference on Software Engineering, ICSE 2017.
[S.l.: s.n.], 2017. p. 370–380.

SRIDHARAN, M.; FINK, S. J.; BODIK, R. Thin Slicing. PLDI ’07: Proceedings of
the ACM SIGPLAN 2007 Conference on Programming Language Design and Im-
plementation, 2007.

SU, F. H. et al. Code relatives: Detecting similarly behaving software. In: Proceed-
ings of the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing. New York, New York, USA: Association for Computing Machinery, 2016. v. 13-
18-Nove, p. 702–714. Available from Internet: <http://dl.acm.org/citation.cfm?doid=
2950290.2950321>.

SU, F. H. et al. Identifying functionally similar code in complex codebases. In: IEEE In-
ternational Conference on Program Comprehension. [S.l.]: IEEE Computer Society,
2016. v. 2016-July.

SU, P. et al. Redundant Loads: A Software Inefficiency Indicator. In: Proceedings -
International Conference on Software Engineering. [S.l.]: IEEE Computer Society,
2019. v. 2019-May, p. 982–993.

https://www.sciencedirect.com/science/article/pii/S0164121216302618
http://link.springer.com/10.1007/978-3-319-47169-3_25
http://link.springer.com/10.1007/978-3-319-47169-3_25
http://dl.acm.org/citation.cfm?doid=2983990.2984040
http://dl.acm.org/citation.cfm?doid=2771783.2771816
http://dl.acm.org/citation.cfm?doid=2771783.2771816
http://dl.acm.org/citation.cfm?doid=2950290.2950321
http://dl.acm.org/citation.cfm?doid=2950290.2950321

114

THOMAS, J. J.; FISCHMEISTER, S.; KUMAR, D. Lowering overhead in sampling-
based execution monitoring and tracing. ACM SIGPLAN Notices, ACM, v. 46, n. 5,
p. 101, apr 2011. Available from Internet: <http://dl.acm.org/citation.cfm?doid=2016603.
1967692>.

TOFFOLA, L. D.; PRADEL, M.; GROSS, T. R. Synthesizing Programs That Expose Per-
formance Bottlenecks. CGO: International Symposium on Code Generation and Op-
timization, ACM, p. 314–326, 2018. Available from Internet: <http://dl.acm.org/citation.
cfm?doid=3168830>.

TUN, T. T. et al. Requirements and specifications for adaptive security. In: Proceed-
ings of the 13th International Conference on Software Engineering for Adap-
tive and Self-Managing Systems - SEAMS ’18. New York, New York, USA: ACM
Press, 2018. p. 161–171. Available from Internet: <http://dl.acm.org/citation.cfm?doid=
3194133.3194155>.

TUN, T. T. et al. Requirements and specifications for adaptive security: Concepts and
analysis. In: Proceedings - International Conference on Software Engineering. New
York, New York, USA: IEEE Computer Society, 2018. p. 161–171. Available from Inter-
net: <http://dl.acm.org/citation.cfm?doid=3194133.3194155>.

VAN HOORN, A.; WALLER, J.; HASSELBRING, W. Kieker: A framework for applica-
tion performance monitoring and dynamic software analysis. In: ICPE’12 - Proceedings
of the 3rd Joint WOSP/SIPEW International Conference on Performance Engineer-
ing. [S.l.: s.n.], 2012. p. 247–248.

VIERHAUSER, M.; RABISER, R.; GRÜNBACHER, P. Requirements monitoring frame-
works: A systematic review. Information and Software Technology, Elsevier, v. 80,
p. 89–109, dec 2016. Available from Internet: <https://www.sciencedirect.com/science/
article/abs/pii/S0950584916301288?dgcid=raven{_}sd{_}recommender>.

Von Kistowski, J. et al. Modeling and extracting load intensity profiles. ACM Transac-
tions on Autonomous and Adaptive Systems, ACM New York, NY, USA, v. 11, n. 4, p.
1–28, jan 2017. Available from Internet: <https://dl.acm.org/doi/abs/10.1145/3019596>.

XIAO, T. et al. Cybertron: Pushing the limit on I/O reduction in data-parallel programs.
ACM SIGPLAN Notices, v. 49, n. 10, p. 895–908, 2014.

XU, Z. et al. Python predictive analysis for bug detection. In: Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineering. New York, New
York, USA: Association for Computing Machinery, 2016. v. 13-18-Nove, p. 121–132.
Available from Internet: <http://dl.acm.org/citation.cfm?doid=2950290.2950357>.

YANDRAPALLY, R.; SRIDHARA, G.; SINHA, S. Automated modularization of GUI
test cases. In: Proceedings - International Conference on Software Engineering. [S.l.]:
IEEE Computer Society, 2015. v. 1, p. 44–54.

YANG, J. et al. View-Centric Performance Optimization for Database-Backed Web Ap-
plications. In: Proceedings - International Conference on Software Engineering.
IEEE Computer Society, 2019. v. 2019-May, p. 994–1004. Available from Internet:
<https://ieeexplore.ieee.org/document/8811938/>.

http://dl.acm.org/citation.cfm?doid=2016603.1967692
http://dl.acm.org/citation.cfm?doid=2016603.1967692
http://dl.acm.org/citation.cfm?doid=3168830
http://dl.acm.org/citation.cfm?doid=3168830
http://dl.acm.org/citation.cfm?doid=3194133.3194155
http://dl.acm.org/citation.cfm?doid=3194133.3194155
http://dl.acm.org/citation.cfm?doid=3194133.3194155
https://www.sciencedirect.com/science/article/abs/pii/S0950584916301288?dgcid=raven{_}sd{_}recommender
https://www.sciencedirect.com/science/article/abs/pii/S0950584916301288?dgcid=raven{_}sd{_}recommender
https://dl.acm.org/doi/abs/10.1145/3019596
http://dl.acm.org/citation.cfm?doid=2950290.2950357
https://ieeexplore.ieee.org/document/8811938/

115

YUAN, E.; ESFAHANI, N.; MALEK, S. Automated mining of software component
interactions for self-adaptation. In: Proceedings of the 9th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems - SEAMS 2014.
New York, New York, USA: ACM Press, 2014. p. 27–36. Available from Internet:
<http://dl.acm.org/citation.cfm?id=2593929.2593934>.

ZAIDMAN, A.; DEMEYER, S. Managing trace data volume through a heuristical clus-
tering process based on event execution frequency. Eighth European Conference on
Software Maintenance and Reengineering, 2004. CSMR 2004. Proceedings., 2004.

ZAVALA, E.; FRANCH, X.; MARCO, J. Adaptive monitoring: A systematic
mapping. Information and Software Technology, Elsevier, v. 105, p. 161–189,
jan 2019. Available from Internet: <https://www.sciencedirect.com/science/article/pii/
S0950584918301861>.

ZHANG, S.; ERNST, M. D. Which configuration option should i change? In: Proceed-
ings - International Conference on Software Engineering. New York, New York, USA:
IEEE Computer Society, 2014. p. 152–163. Available from Internet: <http://dl.acm.org/
citation.cfm?doid=2568225.2568251>.

ZHOU, N. et al. Autonomic parallelism and thread mapping control on software transac-
tional memory. In: Proceedings - 2016 IEEE International Conference on Autonomic
Computing, ICAC 2016. [S.l.: s.n.], 2016. p. 189–198.

ZHOU, X. et al. Latent error prediction and fault localization for microservice applica-
tions by learning from system trace logs. In: ESEC/FSE 2019 - Proceedings of the 2019
27th ACM Joint Meeting European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. New York, New York, USA:
Association for Computing Machinery, Inc, 2019. p. 683–694. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=3338906.3338961>.

http://dl.acm.org/citation.cfm?id=2593929.2593934
https://www.sciencedirect.com/science/article/pii/S0950584918301861
https://www.sciencedirect.com/science/article/pii/S0950584918301861
http://dl.acm.org/citation.cfm?doid=2568225.2568251
http://dl.acm.org/citation.cfm?doid=2568225.2568251
http://dl.acm.org/citation.cfm?doid=3338906.3338961

116

117

7 RESUMO ESTENDIDO

À medida em que sistemas de software modernos se tornam cada vez maiores e

complexos, métodos de análise eficazes para entender o comportamento de um sistema de

software estão se tornando essenciais como ferramentas de suporte para diversas tarefas

fundamentais de engenharia de software, como verificação de tempo de execução, depu-

ração, compreensão do programa e auto-adaptação. Tal compreensão do comportamento

de sistemas pode ser alcançada através de monitoração de traços de execução, que rep-

resentam regras, componentes, funções ou tarefas executadas durante a execução de um

programa. Um traço de execução pode ser composto de informações básicas sobre a exe-

cução, como nome do evento, local do programa e data, ou ainda dados mais complexos e

detalhados sobre o evento como entradas, saídas, pilha de chamadas, mensagens comuni-

cadas e uso de recursos. Portanto, analisar e comparar os traços de execução do programa

pode ser benéfico para vários fins, como a validação dos requisitos de qualidade ou a

identificação de vulnerabilidades de segurança. A solução corporativa, AWS X-Ray 1,

por exemplo, é uma ferramenta que usa traços de execução para fornecer uma visão ponta

a ponta dos caminhos de requisição, incluindo um mapa dos componentes subjacentes ao

sistema. Isso ajuda, por exemplo, a identificar e solucionar a causa raiz de problemas e

erros de desempenho.

Uma forma amplamente utilizada de coleta de traços de execução é a instrumen-

tação, a qual é concebida a partir da interceptação de pontos específicos na execução

do programa para coleta de informações. Essas instruções de código adicionais são re-

sponsáveis por coletar e armazenar informações em tempo de execução de componentes

específicos de um sistema ou seu ambiente de execução enquanto o software está em

execução, dependendo do objetivo de monitoração. No entanto, apesar da utilidade dos

traços de execução, coletá-los em tempo de execução consome recursos do sistema e pode

levar à queda de desempenho do sistema, principalmente quando incluem informações

detalhadas, como parâmetros de métodos. Em ambientes de produção, onde é necessario

garantir um tempo de resposta consistente, torna-se crucial evitar que a monitoração cause

uma sobrecarga inaceitável no sistema.

Para amenizar os impactos da monitoração, traços de execução podem ser filtrados

ou amostrados. As técnicas de filtragem geralmente consistem em focar na monitoração

de execuções relevantes, ou seja, o subconjunto de traços coletado é focado em locais es-

1<https://aws.amazon.com/xray/>

https://aws.amazon.com/xray/

118

pecíficos do sistema sendo monitorado. Em amostragem, o objetivo é coletar um subcon-

junto representativo de traços com base em uma taxa de amostragem ou estratégia, onde

representatividade significa que as características do subconjunto de traços coletados de-

vem corresponder ao conjunto completo de traços de execução (população), seguindo a

mesma distribuição. A principal vantagem das técnicas de filtragem e amostragem é a

sobrecarga limitada, que diminui linearmente conforme a configuração de filtragem e a

taxa de amostragem.

No entando, apesar de serem adotadas como soluções, ambas as estratégias têm

limitações inerentes. A filtragem carece de reutilização em diferentes sistemas, sendo per-

sonalizada para casos particulares, por exemplo, limitando a monitoração apenas à even-

tos de alto nível ou um conjunto predefinido de execuções. A amostragem geralmente se

concentra na coleta de traços para uma finalidade específica ou depende de uma estraté-

gia que não pode garantir que os traços coletados sejam representativos da população.

Essas configurações podem ser inadequadas para lidar com picos de uso de software e são

incapazes de lidar com cenários imprevistos.

Com base nestas limitações, a questão de pesquisa que guia esta tese é a seguinte.

Como monitorar sistemas de software para coletar traços de execução em tempo de exe-

cução que são relevantes e representativos, com um impacto de desempenho aceitável?

Como a monitoração de sistemas consiste na execução de instruções adicionais,

isso necessariamente implica em uma sobrecarga. Embora essa sobrecarga possa ser re-

duzida a um nível aceitável com o uso de técnicas de filtragem e amostragem, o trabalho

existente se concentra apenas na coleta de traços para um propósito específico, são adota-

dos com configurações predefinidas e fixas, ou se usa uma estratégia que não pode garan-

tir que os traços coletados sejam relevantes e representativos da população. Ao abordar

essas questões, é possível fornecer uma solução capaz de atingir um balanço adequado

entre a sobrecarga de monitoração e a relevância ou representatividade das informações

coletadas.

Como a filtragem e a amostragem são problemas essencialmente diferentes nos

quais as soluções podem ser combinadas para resolver os problemas de monitoração e

compor uma solução eficaz, essa tese aborda e endereça os problemas individualmente.

Para resolver os problemas em torno da filtragem e fornecer uma solução que pode ser re-

utilizada em diferentes sistemas, propomos uma abordagem de monitoração de duas fases

para filtrar os traços de execução em tempo de execução. Em sua primeira fase, se faz uso

de uma monitoração de leve impacto para coletar metricas que possam auxiliar na identi-

119

ficação de partes relevantes da execução do sistemas. Como relevância é essencialmente

um conceito específico de domínio, este processo é informado pela definição de objetivo

do monitoração, dada pelo usuário, na forma de critérios de relevância de alto nível. Tal

definição é expressa em uma linguagem específica de domínio proposta, chamada Tigris-

DSL. Dessa forma, filtros de relevância podem orientar os componentes de monitoração

para coletar um conjunto de traços relevantes que são analisados para atingir o objetivo

de monitoração. Na prática, os critérios são traduzidos em métricas de software, que

são coletadas e analisadas em tempo de execução para orientar uma monitoração detal-

hada e refinada na segunda fase da abordagem. Tanto os critérios de relevância quanto

as métricas de software são derivados de uma revisão sistemática da literatura. Tal re-

visão sistemática da literatura foi realizada para compreender e identificar os critérios e

métricas de relevância usados por abordagens que se utilizam de monitoração.

A abordagem proposta para filtragem foi implementada como um framework,

chamado Tigris, que pode ser usado para integrar a solução proposta à sistemas de soft-

ware existentes para oferecer suporte às atividades baseadas em monitoração. Conse-

quentemente, nossa abordagem e framework podem ser usadas como um componente

para monitorar um sistema de software e fornecer informações para diferentes fins, por

exemplo, para identificar vulnerabilidades de segurança ou problemas de desempenho.

Para avaliar nossa proposta, instanciamos o framework Tigris como o componente de

monitoração de uma abordagem para identificação de oportunidade de cache em sistemas,

a qual utiliza traços de execução como entrada para seu funcionamento. Nossa avaliação

mostra que nossa proposta pode manter a eficácia da abordagem de cache, encontrando

oportunidades relevantes, enquanto reduz a sobrecarga de monitoração.

Para lidar com as limitações associadas à amostragem, propomos um processo

de amostragem adaptativo para coletar traços de execução com informações detalhadas

em ambientes onde o impacto no desempenho é crítico, como ambientes de produção.

Nosso objetivo é maximizar a representatividade das amostras de traços de execução ao

ajustar a taxa de amostragem usada para monitorar um sistema de software para lidar

com variações em sua carga de trabalho. O processo proposto é composto de três ativi-

dades: (1) decisão de amostragem, que decide se uma requisição (com traços de exe-

cução associados) deve ser registrada e incluída em uma amostra; (2) adaptação da taxa

de amostragem, que ajusta a taxa de amostragem em tempo de execução de acordo com a

carga de trabalho do sistema; e (3) avaliação da amostra, que avalia a representatividade

da amostra para identificar o final de um ciclo de monitoração. Essas atividades incluem

120

algoritmos com fundamentos estatísticos para buscar que, ao final de cada ciclo de moni-

toração, a amostra coletada seja representativa da população. Para avaliar nossa proposta,

utilizamos como alvo cinco sistemas do conhecido benchmark DaCapo, e os resultados

mostram que nossa abordagem pode alcançar maior representatividade e menor impacto

no desempenho do que as soluções existentes.

Portanto, ambas as soluções propostas aumentam a viabilidade prática de moni-

toração de software, reduzindo a sobrecarga de monitoração e buscando a relevância e

representatividade dos traços coletados. As soluções propostas podem ser usadas individ-

ualmente ou combinadas para monitorar efetivamente da monitoração de modo a fornecer

traços para abordagens com diferentes propósitos. Ambas as técnicas adaptativas foram

implementadas em Java para avaliações empíricas, mas são genéricas e independentes da

linguagem. Em relação à nossa questão de pesquisa, nossos resultados mostraram ev-

idências de que nossas propostas podem coletar traços de execução que são relevantes e

representativos com um impacto de desempenho aceitável. Assim, concluímos que nos-

sas soluções adaptativas propostas podem ser usadas como componentes de monitoração

de abordagens baseadas em monitoração existentes em diferentes domínios e aplicações.

Várias contribuições podem ser enumeradas como resultado do trabalho apresen-

tado nesta tese. Juntas, elas representam a solução proposta para aumentar a viabilidade

prática do monitoração de software.

Refinamento do tópico de pesquisa. No contexto desta tese, ao mesmo tempo em que

exploramos as aplicações de monitoração de tempo de execução de software, realizamos

um trabalho de pesquisa que auxiliou na compreensão dos problemas existentes em out-

ras áreas e na idealização de possíveis soluções a serem aplicadas. Durante uma visita

de pesquisa de três meses na Universidade de Grenoble (FR), investigamos as neces-

sidades e oportunidades de monitoração em cenários de IoT, como casas inteligentes.

Esta investigação resultou em dois artigos de pesquisa (LALANDA; MERTZ; NUNES,

2018; MERTZ et al., 2017), focados na monitoração de comunicações entre dispositivos e

plataformas pervasivas para identificar oportunidades de cache e, consequentemente, em

melhorar a resiliência e o desempenho do ambiente. Em colaboração com pesquisadores

da TU Darmstadt e ETH Zurich, estendemos um trabalho anterior para definir cache de

nível de aplicação como uma área de pesquisa e apontar trabalhos futuros (MERTZ et al.,

2020), destacando a monitoração e compreensão do comportamento de sistemas como

um dos principais desafios na área.

121

Critérios de relevância e TigrisDSL. Apresentamos os resultados de uma revisão sis-

temática da literatura para identificar critérios de relevância e métricas que podem ser us-

ados em aplicações de monitoração. Esta revisão também analisou abordagens baseadas

em monitoração existentes em termos de generalidade, escalabilidade e adaptabilidade (MERTZ;

NUNES, 2019; MERTZ; NUNES, 2021). Com base nos resultados da revisão da liter-

atura, propusemos o TigrisDSL, um DSL que permite a especificação de filtros de mon-

itoração por meio de critérios de relevância de alto nível. Esses filtros de monitoração

podem ser usados para capturar e expressar diferentes objetivos de monitoração de tal

forma que podem ser fornecidos como entrada para outras abordagens para orientar a

coleta de traços relevantes para um determinado objetivo.

Abordagem de filtragem adaptativa. Apresentamos uma abordagem de monitoração

em duas fases para filtrar os traços de execução em tempo de execução (MERTZ; NUNES,

2019; MERTZ; NUNES, 2021). Em sua primeira fase, uma monitoração de baix impacto

é aplicada para identificar as partes relevantes da execução do sistema. Ela recebe o

objetivo de monitoração como entrada, expresso em TigrisDSL na forma de critérios de

relevância de alto nível. Os critérios são traduzidos em métricas de software, que são

coletadas e analisadas em tempo de execução para orientar a monitoração detalhada e

refinada na segunda fase da abordagem. Essa abordagem de filtragem adapta o processo

de monitoração de acordo com o objetivo de monitoração, mantendo sua sobrecarga em

um nível aceitável enquanto coleta os traços relevantes. Consequentemente, a abordagem

pode ser usada como um componente de monitoração para monitorar efetivamente um

sistema de software e fornecer informações para diferentes fins.

Framework Tigris. Apresentamos um framework, chamado Tigris, que é uma instân-

cia da abordagem de filtragem adaptativa que pode ser integrada à sistemas para apoiar

atividades baseadas em monitoração. O objetivo do framework é separar a fase de mon-

itoração das abordagens baseadas em monitoração, que são independentes do domínio,

da análise que as mesmas realizam (ou seja, o objetivo do monitoração), que é especí-

fico do domínio. Sendo assim, é possível reutilizar o mesmo processo de monitoração

em domínios diferentes, definindo o objetivo de monitoração na forma de um conjunto

de critérios e métricas de relevância. Assim, o framework fornece comportamento re-

utilizável com base na entrada mínima específica do domínio (MERTZ; NUNES, 2019;

MERTZ; NUNES, 2021).

122

Processo de amostragem adaptativo. Apresentamos uma estratégia de amostragem

que busca um balanço adequado entre sobrecarga de monitoração e representatividade

da amostra de traços coletada (MERTZ; NUNES, 2022. Submitted.). Esse processo é

realizado em ciclos de monitoração e é composto por algoritmos com fundamentos es-

tatísticos para buscar que, ao final de cada ciclo de monitoração, a amostra coletada seja

representativa da população. Durante os ciclos de monitoração, a amostragem adaptativa

decide dinamicamente quais traços manter e adapta a taxa de amostragem para reduzir a

sobrecarga de monitoração a um nível aceitável quando o sistema de software alvo precisa

de seus recursos para processamento regular.

Por fim, esta tese avança a pesquisa sobre a redução do impacto do monitoração

do tempo de execução do software, abrindo caminho para cobrir mais desafios de mon-

itoração não resolvidos no futuro. É necessário mais trabalho para desenvolver uma

solução geral que forneça um monitoração eficaz com custos praticamente aceitáveis,

mas nosso trabalho é um dos passos nessa direção.

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Problem Statement and Limitations of Existing Work
	1.2 Proposed Solution and Contributions Overview
	1.3 Outline

	2 Background and Related Work
	2.1 Introduction to Runtime Software Monitoring
	2.2 Filtering
	2.2.1 Domain-specific Runtime Monitoring
	2.2.2 Domain-neutral Runtime Monitoring

	2.3 Sampling
	2.3.1 Fixed Configuration
	2.3.2 Adaptive Configuration

	2.4 Final Remarks

	3 Relevance Criteria and TigrisDSL
	3.1 Method
	3.2 Analysis and Results
	3.2.1 Goals, Criteria, and Metrics
	3.2.2 Generality
	3.2.3 Scalability
	3.2.4 Adaptability
	3.2.5 Discussion

	3.3 TigrisDSL: a Generic Way to Specify Relevance Criteria
	3.4 Final Remarks

	4 Adaptive Filtering
	4.1 Running Example: Application-level Caching
	4.2 Coarse-grained Monitoring
	4.3 Fine-grained Monitoring
	4.4 Tigris Framework
	4.5 Evaluation: Adaptive Monitoring for APLCache
	4.5.1 Study Settings
	4.5.2 Results
	4.5.2.1 RQ1. What performance gain does Tigris provide?
	4.5.2.2 RQ2. What is the effectiveness achieved with execution traces collected by Tigris?
	4.5.2.3 RQ3. How does Tigris cope with workload variations over time?
	4.5.2.4 Threats to Validity

	4.6 Limitations
	4.7 Final Remarks

	5 Adaptive Sampling
	5.1 Process Overview
	5.1.1 Activity 1: Sampling Decision
	5.1.2 Activity 2: Sampling Rate Adaptation
	5.1.3 Activity 3: Sample Evaluation

	5.2 Evaluation
	5.2.1 Evaluation Settings
	5.2.1.1 Research Questions and Metrics
	5.2.1.2 Compared Approaches
	5.2.1.3 Target Applications
	5.2.1.4 Procedure

	5.2.2 Results
	5.2.2.1 Detailed Analysis
	5.2.2.2 Threats to Validity

	5.3 Limitations
	5.4 Final Remarks

	6 Conclusion
	6.1 Contributions
	6.2 Future Work

	References
	7 Resumo Estendido

