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ABSTRACT

Multiple coordinated views have often been used in visual analytics applications over the

years. They are widely and successfully used on 2D displays, but the current multiple 3D

visualizations in 2D conventional displays lack usability and do not guarantee the use-

fulness that the extra dimension would provide. Immersive visualization techniques can

potentially fulfill these gaps by improving 3D visualizations with novel 3D interaction

techniques. This dissertation presents studies that assess the approach we proposed for

interacting with multiple coordinated visualizations in immersive virtual environments.

We use a 3D-WIMP-like concept, which are virtual cubes that we call Spaces, for en-

capsulating views that the user can freely control in the virtual environment. A first user

study was conducted to compare our immersive approach to a 3D desktop version for

evaluating its performance when dealing with compound tasks. Results have shown that

our approach has advantages since it allows a comfortable and precise exploration. Then,

with the purpose of improving and expanding the Spaces approach, a second study was

conducted to evaluate multiple coordinated 3D visualization techniques. We compared

variants of 3D scatterplots like Animation, Overlaid Trails, and Small Multiples to assess

the effectiveness of such techniques in immersive environments. Results have shown that

Overlaid Trails perform the best time overall, followed by Animation and Small Multi-

ples, while accuracy is task-dependent. We demonstrate in both studies that our approach

presents good results in terms of user comfort and immersion and is potentially useful in

solving analytical tasks.

Keywords: Multiple Coordinated Views. Immersive Analytics. Virtual Reality. Trends

Visualization. 3D Visualizations.



Uma abordagem imersiva para explorar múltiplas visualizações 3D coordenadas

em ambientes virtuais imersivos

RESUMO

Nos últimos anos, múltiplas visualizações coordenadas têm sido freqüentemente usadas

para fins de análise visual. Elas são amplamente usadas em displays 2D, mas múltiplas

visualizações 3D em monitores convencionais ainda carecem de usabilidade e não ga-

rantem a utilidade que a dimensão extra forneceria. Técnicas de visualização imersiva

podem preencher potencialmente essas lacunas através de visualizações 3D associadas a

novas interações. Esta dissertação apresenta estudos que avaliam uma abordagem para

interagir com múltiplas visualizações coordenadas em ambientes virtuais imersivos. A

nova abordagem denominada Spaces é baseada num conceito semelhante a 3D-WIMP, ou

seja, cubos virtuais que encapsulam visualizações e que o usuário pode controlar livre-

mente no ambiente virtual. Um primeiro estudo de usuário foi conduzido para comparar

essa abordagem imersiva com uma versão 3D desktop, avaliando seu desempenho ao lidar

com tarefas compostas. Os resultados mostram que a abordagem Spaces apresenta van-

tagens, pois permite uma exploração confortável e precisa. Com o objetivo de aprimorar

e expandir a abordagem, foi realizado um segundo estudo para avaliar múltiplas técnicas

de visualização diferentes. Foram avaliadas a eficácia e a precisão de três variantes de

diagramas de dispersão 3D, Animation, Overlaid Trails e Small Multiples, em ambientes

imersivos. Os resultados mostram que Overlaid Trails têm o melhor desempenho no ge-

ral, seguido por Animation e Small Multiples, enquanto que a precisão depende da tarefa.

Ambos os estudos mostram que a abordagem apresenta bons resultados em termos de

conforto e imersão do usuário e é potencialmente útil na realização de tarefas analíticas.

Palavras-chave: Múltiplas Visualizações Coordenadas, Immersive Analytics, Realidade

Virtual, Visualizações de tendências, Visualizações 3D.
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1 INTRODUCTION

The increasing power of computers and other devices and the widespread use of

sensors result in continuous production and accumulation of data reaching exorbitant fig-

ures, which exceeds our ability to analyze them. Visual Analytics (VA) aims at helping to

fulfill the need for flexible, precise, and straightforward techniques for such analyses tasks

(THOMAS; COOK, 2005). This area is based on information visualization (MUNZNER,

2014), an ever-growing field, where we can find many techniques that range from conven-

tional plots shown in 2D displays to complex visualizations using immersive technology

that are less used due to some limitations.

When data is plotted in 2D, the main limitations can be the screen size and the

reduced spatial dimension to render the information. Many investigations focus on the

study of strategies to render data using different approaches, for example, dimensionality

reduction techniques (NONATO; AUPETIT, 2019), color-based encoding (WARE, 2020),

and multiple views (BALDONADO; WOODRUFF; KUCHINSKY, 2000). Immersive

technologies extend beyond that typical screen (MOH, 2018), allowing the analysts to

be immersed in the data. Also, 3D data visualizations can offer several advantages in

different contexts, especially when the data analysis requires understanding the three-

dimensional geometric structure of objects or scenes (MUNZNER, 2014).

Those immersive technologies, such as virtual and augmented reality (VR/AR),

provide a different perspective to visualize and interact with data. The stereoscopic dis-

plays with natural interaction are the reasons why the researchers began to explore data

visualizations in immersive environments. The area that comprises both fields is called

Immersive Analytics (CHANDLER et al., 2015).

Immersive Analytics (IA) is defined as an interdisciplinary field where any tech-

nology that removes barriers between users and their data can be used for building tools

to support data exploration, communication, reasoning, and decision making (MAR-

RIOTT et al., 2018). Technologies like Augmented Reality (AR) let users navigate the

physical environment to interact with different devices such as multiple displays (RAN

et al., 2019). The use of multiple devices helps collaborative tasks involving multiple

views (SERENO et al., 2020), while Virtual Reality (VR) techniques allow the user to

be completely unaware of the surroundings providing a feeling of reality to the end-

user (CHANDLER et al., 2015). Technologies for virtual and augmented reality applica-

tions provide the means to visualize complex information in a physical space, supporting
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complex data analysis scenarios (BILLINGHURST et al., 2018). They help the identifi-

cation of meaningful patterns and the analysis of multidimensional clusters, trends, and

outliers (BUTSCHER et al., 2018). Moreover, the human-computer interaction (HCI)

field has contributed with a variety of studies and techniques targeting 3D visualization

and interaction within the context of multiple coordinated views (BÜSCHEL et al., 2018).

A recent survey on immersive analytics (FONNET; PRIé, 2021) found more than one hun-

dred papers related to VR, and only 15 employing AR technologies from 1991 to 2019,

which shows a general preference for VR technology. The authors concluded that the IA

community should focus on real-life scenarios that require novel methods for interacting

with multiple views.

1.1 Motivation

The complexity and volume of the data to be analyzed in several domains have mo-

tivated the use of multiple visualizations (BALDONADO; WOODRUFF; KUCHINSKY,

2000). Multiple Coordinated Views (MCV) are among the most commonly used ways

of composing visualization techniques to offer different perspectives of the same or po-

tentially correlated data to facilitate insight into a complex dataset (JAVED; ELMQVIST,

2012a). Such an approach is especially suited for Visual Analytics (VA) applications

(THOMAS; COOK, 2005). Depending on the data, using multiple 2D views in conven-

tional 2D displays demands the use of large displays, while for 3D visualizations, such

setup may not guarantee a useful tool.

Interaction techniques for 3D visualization exploration have been studied for decades,

and the technology to provide better usability than keyboard-and-mouse used to be touch-

ing displays (YU et al., 2010; BüSCHEL et al., 2017). Regarding multiple views, earlier

studies showed that the interaction with multiple 3D visualizations in 2D displays does

not meet usability criteria (SANTOS; GROS, 2002). This lack of usability could be over-

come if the exploration happens in immersive environments, where the user has an extra

degree of freedom for interacting with 3D visualizations (GREFFARD; PICAROUGNE;

KUNTZ, 2014). Additionally, human spatial awareness and organizational capabilities

can help the analytical process performed interactively with the visualizations (KNUD-

SEN; CARPENDALE, 2017). Immersive analytics approaches have taken advantage of

these characteristics.

Aiming at improving the interaction with multiple coordinated views in immer-
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sive environments, we designed the Spaces approach, which is based on a 3D version of

WIMP (windows, icons, menus, pointer) graphical user interfaces for manipulating three-

dimensional visualizations. To evaluate our approach, we first designed a similar desktop

version to compare with a VR version and decided to focus a first study on the following

research question: Do our Spaces approach improve the manipulation of multiple coordi-

nated 3D views when they are explored in an immersive virtual environment? How does

the approach differ from a 3D conventional desktop version?

Since in the first study we obtained positive results, we improved the interactive

features by including near and far interaction and virtual navigation and used them to

evaluate three different visualization techniques in a fully immersive environment. This

second study compared temporal trends visualizations using three 3D-scatterplot variants

following the research question: Do 3D scatterplot variants as Animation, Small Mul-

tiples, and Overlaid Trails lead to the detection of trends when they are explored in an

immersive environment? How do they differ?

Both studies confirmed that the Spaces approach presented good results regarding

(1) user comfort and interaction over the corresponding desktop version and (2) usefulness

for comparative tasks using three-dimensional visualization techniques in a virtual reality

environment.

1.2 Objectives and Contributions

The primary goal of this work was to develop and evaluate a helpful approach

for interacting with multiple coordinated views that show 3D visualizations in immersive

environments. Our technique uses a virtual cube as a 3D-WIMP version – we call it

Space, inspired by a previous work by Mahmood et al. (2018). Each Space encapsulates

a view, and allows two modes of interaction: the macro mode for interacting with the

Spaces, and the micro mode for interacting with the data displayed in the Space. To

achieve our primary goal, we designed two user studies that evaluate the following aspects

of our approach:

• Seamless interaction with multiple 3D visualizations in a VR environment. Im-

mersive technologies demand different possibilities to access the virtual space. The

manipulation of objects inside it is essential to obtain multiple perspectives of the

data. The interaction techniques developed in this work are simple ways to interact
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with data.

• Multiple interaction techniques for coordinating visualizations. Interaction with

multiple coordinated views have been studied over the years. Our approach must

be compatible with any interactive techniques which might be needed. Also, mul-

tiple views demand composing tasks, and the way to resolve them will depend on

the implemented techniques. The coordination between views is a crucial part for

getting insights from the views.

• Multiple different visualization techniques. The possibility of displaying differ-

ent visualizations in the views gives opportunities to analyse data and confirm/reject

hypotheses. The use of our approach in the two studies involving different datasets

and different visualizations indicates its compatibility for exploring several immer-

sive analytics scenarios.

In summary, our main contribution is the Spaces approach for interacting with

multiple coordinated views that shows 3D visualizations as a 3D-WIMP-like concept in

VR, each Space encapsulating one view. This work was conducted within a research

project approved by the research committee of our Institute and is registered at our Uni-

versity under the number 37021.

1.3 Structure of the Dissertation

The remainder of the dissertation is organized as follows. Firstly, related works

in the relevant areas for our research are reviewed in Chapter 2. The Space approach

is presented in Chapter 3 and its evaluation against a desktop version is presented in

the same chapter. Our second study is presented and discussed in Chapter 4. Finally,

Chapter 5 summarizes our conclusions and points directions for future works.



16

2 RELATED WORK

Data visualization in immersive environments involves several aspects. Our work

began by surveying relevant topics, starting with immersive analytics (Section 2.1), fol-

lowed by multiple coordinated views (Section 2.2) and its use in immersive environments

(Section 2.3). These works helped us to shape our general goal. Additionally, to evalu-

ate the suitability of our approach to any visualization technique, we decided to explore

visualizations for trends analysis because it is relevant in immersive analytics. Then, we

surveyed scatterplot variants for trend analyses (Section 2.4), including the ones used in

immersive environments (Sections 2.5 and 2.6).

2.1 Immersive Analytics

Immersive Analytics (IA) has gained increasing attention in the data visualization

community (MARRIOTT et al., 2018). It refers to the use of immersive technologies for

data analysis. Indeed, IA involves several areas such as information visualization, immer-

sive environments, and human-computer interaction (ENS et al., 2021). The interest of

researchers in the use of immersive technologies has been driven by the ability to represent

3D data in 3D, as well as the possibility to better exploit human perception capabilities,

and to make use of embodied perception and interaction. Previously, immersive visu-

alization research has focused on large displays as CAVEs (CRUZ-NEIRA; SANDIN;

DEFANTI, 1993; FEBRETTI et al., 2013). However, with the release of head-mounted

displays (HMDs), several works started to show the potential of HMDs for perception

and interaction (BACH et al., 2017) and collaboration (CORDEIL et al., 2016) in data

analysis tasks.

In a survey of IA, covering papers until 2018, Fonnet and Prié (2021) found that

various categories of data types have been explored. These categories were mapped

to Ben Shneiderman’s taxonomy (SHNEIDERMAN, 1996): Spatial, Temporal, Spatio-

Temporal, Multidimensional, and Graphs and Trees. Also, they identified interaction

techniques used in the literature and challenges. Recently, Ens et al. (2021) discussed

challenges for IA systems to reach full potential regarding situated visualization, inter-

action, collaborative analyses, and evaluation (Table 2.1). Similarly, Kraus et al. (2021)

reflected on when and how immersion may be appropriate for data analysis. They pre-

sented four guiding scenarios similar to Ens et al. (2021).



17

Table 2.1 – Grand Challenges in Immersive Analytics.

Topics Challenges

SPATIALLY SITUATED
DATA VISUALIZATION

C1 Placing Visualisations Accurately in Space
C2 Extracting and Representing Semantic Knowledge
C3 Designing Guidelines for Spatially Situated Visual-

ization
C4 Understanding Human Senses and Cognition in Situ-

ated Contexts
C5 Applying Spatial Visualization Ethically

INTERACTING WITH
IMMERSIVE
ANALYTICS SYSTEMS

C6 Exploiting Human Senses for Interactive Immersive
Analytics

C7 Enabling Multi-Sensory Feedback for Immersive An-
alytics

C8 Supporting Transitions around Immersive Environ-
ments

C9 Coping with Immersive Analytics Interaction Com-
plexity

COLLABORATIVE
ANALYTICS

C10 Supporting Behaviour with Collaborators
C11 Overcoming Constraints of Reality
C12 Supporting Cross Platform Collaboration
C13 Integrating Current Collaboration Practice
C14 Assessing Collaborative Work

USER SCENARIOS
AND EVALUATION

C15 Defining Application Scenarios for Immersive Ana-
lytics

C16 Understanding Users and Contexts for Evaluation of
Immersive Analytics

C17 Establishing an Evaluation Framework for Immersive
Analytics

Source: Ens et al. (2021)

Our work is related to the challenge Supporting Transitions around Immersive En-

vironments (Table 2.1) because there is a need for interaction methods capable of achiev-

ing the functionalities of the predominant WIMP (windows, icons, menus, pointer) ap-

proach used for visual analysis tasks (LEE et al., 2012). Additionally, our work addresses

the challenge Coping with Immersive Analytics Interaction Complexity since our approach

supports multiple interaction techniques and different visualization techniques.

2.2 Multiple Coordinated Views

Multiple views provide a solution for displaying different visualizations of com-

plex data to facilitate the analyses of massive amounts of information. They have been
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used for years (ROBERTS, 2007), but due to the cognitive overload that might be intro-

duced by interacting with multiple views, designers might ask themselves when and to

what extent multiple views should be used.

Baldonado, Woodruff and Kuchinsky (2000) proposed some rules to help to decide

when multiple views should be used:

• Rule of diversity, when there is a diversity of attributes, models, and/or levels of

abstraction,

• Rule of Decomposition, when it is necessary to partition complex data,

• Rule of Complementarity, when different views bring out correlations or disparities,

and

• Rule of Parsimony, which states that multiple views should be used minimally.

Each of these rules solves part of the challenges of visual analytics. These authors

also identified a list of issues of multiple views systems, where the first four concern to

cognitive aspects, and the last three, to system requirements:

• The time and effort required to learn the system,

• the load on the user’s working memory,

• the effort required for comparison,

• the effort required for context switching,

• the computational requirements for rendering the additional display elements,

• the display space requirements for the additional views, and

• the design, implementation, and maintenance resources required by the system.

Multiple coordinated views (MCV) explore the premise that users understand their

data better if they interact with the resented information and view it through different

representations (SANDSTROM; HENZE; LEVIT, 2003). They share a relationship that

is used for coordinating them. Scherr (2008) analyzed coordination techniques, the most

common one being brushing where, given a selection of elements in one view, the same

or related elements are highlighted in the other linked views. There is also navigational

slaving that describes the relation between views and data, based on a 2x3 taxonomy:
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Figure 2.1 – 2x3 taxonomy of multiple window coordinations.

Source: Scherr (2008)

selecting items – selecting items, navigating views – navigating views, and selecting items

– navigating views. Figure 2.1 shows the 2x3 taxonomy.

Multiple coordinated views approaches implement the concept of composite vi-

sualization views (CVVs) (JAVED; ELMQVIST, 2012a). Javed and Elmqvist (2012a)

used the concepts of visual composition, visual structure and view based on Card et al.’s

pipeline (CARD; MACKINLAY; SHNEIDERMAN, 1999). While visual composition is

the placement or arrangement of multiple visual objects and visual structure corresponds

to the graphical result of a visualization technique, view is the physical display where a vi-

sual structure is rendered. A “composite visualization" is the visual composition of two or

more visual structures in the same view. These authors identified different forms of com-

posing visualizations and came up with CVVs design patterns as follows (Figure 2.2):

juxtaposition, that corresponds to placing visualizations side-by-side; superimposition,

which corresponds to overlaying two visualizations in a single view; overloading, which

uses the space of one visualization for another; nesting, which is having the contents of

one visualization inside another visualization, and integrating, which places visualiza-

tions in the same view with visual links.
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Figure 2.2 – Four different visual composition operators (from the left): juxtaposition,
superimposition, overloading, and nesting.

Source: Javed and Elmqvist (2012a)

2.3 Multiple Coordinated Views in Immersive Analytics

Several immersive analytics studies have used diverse strategies to provide multi-

ple views (KNUDSEN; CARPENDALE, 2017) regarding different CVVs design patterns,

coordination techniques and settings. In this section, we briefly review the studies mostly

related to ours, highlighting the limitations and challenges addressed by them.

2.3.1 Multiple Views on Large Displays

Several authors have explored multiple views in wall-sized displays, usually adopt-

ing a juxtaposition pattern. Febretti et al. (2014) presented OmegaLib, a software frame-

work for supporting the development of immersive applications using Hybrid Reality En-

vironments (HREs), which integrates high-resolution wall-sized displays with immersive

technologies. This framework allows the linking of 2D and 3D views, and is designed for

a group to discuss the visualizations showed in a wall display, while another group using

laptops is in charge of the control management of the multiple views. With OmegaLib,

they try to overcome known problems of these alternative approaches: the static spatial

allocation of 3D and 2D used in most systems and the lack of unified interaction between

the 2D and 3D visualizations.

Similarly, Langner, Kister and Dachselt (2019) presented a study based on an

MCV system using interaction on a wall-sized display for analyzing the behavior of mul-

tiple users exploring more than 45 coordinated views. Their study implemented a general

layout with multiple number and different sizes of views, and users could swap the views’

positions (juxtaposition). The authors highlight that view management was not the focus

of their study. To support interaction from varying positions, they combined direct touch

and distant interaction using mobile devices. To interact with views, the users had to

select the region’s border showing the desired visualization. It is worth noting the impor-

tance of interactions for free navigation and the use of the border to change the mode for
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manipulating the data shown in the view.

A hybrid application developed by Su, Perry and Dasari (2019) allowed the user

to visualize 2D and 3D information using a Large High-Resolution Display (LHRD) and

VR technology, respectively. The study qualitatively compared 2D/3D coordination data

displayed in 2D displays, 2D/3D data without coordination, and 2D/3D coordinated data

displayed in the 2D display and in the VR environment. The visualizations used in the

study were: a geolocation map, chord and horizon time plots in 2D views, and a 3D

scene of a city. The 2D visualization shows the location and link data over time for the

highlighted assets and links in the 3D visualization. The location trail is superimposed

to the 2D and 3D maps, while the chord and time plots show coordinated actions. The

results favored the 2D/3D coordinated environment in understanding and interactivity,

but 2D/2D was the global favorite due to the facility of staying in one context only. The

participants showed signs of discomfort because removing the headset was too disruptive

for the data analysis workflow. Nonetheless, the users agreed there are benefits in using

hybrid environments.

2.3.2 Multiple Views in AR and VR Environments

An alternative way to avoid the problem of changing the environment is to adopt

augmented reality (AR) solutions. Mahmood et al. (2018) proposed a 3D version of a

conventional MCV designing a workspace containing multiple coordinated 3D "spaces”.

AR techniques were used to integrate a physical environment and to combine 2D views

and virtual 3D spaces, such as 2D displays with virtual 3D visualizations. This workspace

is built by obtaining positions of 2D surfaces, and then plotting 3D spaces onto these posi-

tions (see Figure 2.3). The workspace area is adjusted and subdivided into multiple spaces

with similar sizes. The visualization methods used were based on 2D WIMP, displaying

3D parallel coordinates that linked real or virtual views (overloading) and topographic

maps with superimposed scatterplots. Three-dimensional visualizations contained maps

and 3D scatterplots included in 3D spaces. The interaction techniques implemented were

data/view selection, scaling, and translating (allowing juxtaposing views), show/hide vi-

sualizations, and creation of history, which saves a configuration of the workspace, all

with the help of hand gestures and voice commands provided by the Microsoft HoloLens.

This work focused mainly on Coordinated Spaces for supporting immersive analytics in

a physical environment and motivated our approach.
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Figure 2.3 – Multiple visualizations and interactions from different devices are used in this AR
approach. Visualizations can be placed in the Spaces that are built by the positions of the 2D

surfaces (left). At the same time, the interactions by the user are obtained by gesture and voice
commands provided by the AR device (right).

Source: Adapted from Mahmood et al. (2018)

The number of works using MCVs in VR environments has been increasing over

time. ImAxes (CORDEIL et al., 2017) is an interactive tool that allows users to manip-

ulate multiple charts’ axes like physical objects in a VR environment to design visual-

izations. The user can manipulate one axis for observing a 1D histogram. Two or three

axes placed perpendicularly create 2D and 3D scatterplots, while parallel coordinates are

created distributing the axes in parallel in the VR environment. ImAxes was used by ex-

perts for economic analysis in a subsequent study by Batch et al. (2019). Since ImAxes is

based on placing axes in the VR environment, users can juxtapose them. In addition, the

proximity between visualizations can create linked 2D and 3D scatterplots (integration

pattern).

Another study using the juxtaposition pattern is presented by Johnson et al. (2019).

In Bento Box, a VR technique is used for exploring multiple 3D visualizations juxtaposed

in a grid, like small multiples. Their tool was evaluated within a CAVE, and results

showed that the users found it good for data analysis because it facilitates collaborative

discussion. More recently, Liu et al. (2020) also used 3D visualizations as small multiples

in an immersive environment.

Coordination techniques were studied by Prouzeau et al. (2019b). The authors

proposed a design space for routing visual links between multiple 2D views in immersive

environments, which we classify as the integration pattern. Their real-time algorithm al-

lows them to draw links to connect multiple visualizations considering their coordination

and the users’ views. These visualizations were evaluated without interactive techniques
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showing the challenges of strategies for MCVs applied in VR.

Two recent works describe approaches that allow users to interact with multiple

views in a way close to ours. Satriadi et al. (2020) describe the exploration of multiple 2D

maps in a VR environment. Each map view could be created, scaled, and arranged by the

users. Their study focused on the exploration of user-generated patterns with the maps

views. Based on a juxtaposition and overload patterns, their work shows an interesting

way to arrange 2D maps to better understand how users arrange the views. More recently,

Lee et al. (2021) developed FIESTA, a system for collaborative data analysis in immer-

sive environments using VR. FIESTA uses static visualizations floating in a virtual room

(juxtaposition). Its interactions are based on direct contact with user interface elements

and distant contact using a laser pointer.

2.4 Evaluation of Scatterplot Variants for Trend Analyses

Typically time-series analysis tasks involve finding trends, correlations, and vari-

ations at multiple time scales such as hourly, daily, weekly, and seasonal (MUNZNER,

2014). Formally, trend estimation is a statistical technique to identify trend lines or trend

curves (BIANCHI; BOYLE; HOLLINGSWORTH, 1999). The most common (and in-

formal) procedure to recognize a temporal trend in data is to plot variable’s values on a

line plot or bar chart and look for a general increase or decrease over time, which is per-

ceived as an upward or downward trend. No changes indicate a constant trend. A general

increase and decrease that reverses direction denote a reversing trend, while if there are

more than a few reversals, it appears to be cyclic or noisy data, and no trend is perceived

(ROBERTSON et al., 2008).

There are several tools to visualize trends based on conventional desktop envi-

ronments. A well-known example is Gapminder Trendalyzer (Gapminder Organization,

2020), which uses an animated bubble chart to show populational statistics, social, eco-

nomic, and environmental indicators about nations. This 2D scatterplot variant maps

attributes to x and y axes, and the size of points (bubbles) (TUFTE, 1983; VIEGAS et

al., 2007), and animates changes over time. The bubbles’ trail allows perceiving the vari-

ation on values through time. Hans Rosling used this popular tool in TED (Technology,

Entertainment, Design) presentations (ROSLING, 2006; ROSLING, 2007), where the at-

tendees had to observe the informal trend estimation.

Some studies analyzed tasks requiring trend interpretation using conventional 2D
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scatterplots. Robertson et al. (2008) evaluated the effectiveness of analyzing trends in

multidimensional data. Their study compared the animated bubble chart technique like

the one in Gapminder Trendalyzer (Gapminder Organization, 2020) and two other static

scatterplot variants: Small Multiples and Overlaid Traces (Figure 2.4-top). A static scat-

terplot shows all data changes in a single chart, the bubbles corresponding to a single

data item connected by a trail as time evolves. In Small Multiples, the trail of each data

item is displayed in a single chart, while Overlaid Traces shows all data in a single view

simultaneously.

The evaluation described by Robertson et al. (2008) was based on two conditions:

the Analysis condition, simulating analyst users, where participants discovered trends us-

ing visualization and interaction tools on desktop displays, and the Presentation condi-

tion, simulating a conference talk, where a narration described a relevant trend shown in

the chart, and the participant was invited to answer the actual task without guidance. The

results showed that participants performed better with the animated bubble charts in the

Presentation condition than in the Analysis condition. Animation was more fun but less

effective for both conditions, while the static Traces, and Small Multiples were better in

the Analysis condition.

Recently, Brehmer et al. (2019) analyzed how effective trend visualizations are

on mobile phones, comparing Animation and Small Multiples techniques (Figure 2.4-

bottom). They adapted Robertson et al.’s tasks for representing possible trend scenarios

with the trajectories of target and distractor items. Figure 2.5 shows the adapted tasks.

The user study was performed with a subset of 16 items from the United Nations Com-

mon Database (DATABASE, 2019), which was also used by Robertson et al. (2008). Fur-

thermore, the Small Multiples version was slightly modified. In their version, each nation

is plotted as a point and its corresponding trail, showing the end year and the changes

over time, respectively. Moreover, they do not provide interactive features, i.e., users per-

formed the tasks only observing the two conditions, Small Multiples and Animation. The

evaluation focused on analyzing individual tasks’ characteristics because Robertson et al.

found advantages of Small Multiples over Animation while using large displays. Their

results showed that in terms of completion time, the Small Multiples variant was faster

than Animation but not necessarily more accurate, unlike Robertson et al.’s study. In our

work, we aim to analyze whether those visualization techniques would remain to be a

viable design choice for immersive environments.

Other works explored the use of Small Multiples and Animation in different con-
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Figure 2.4 – Trend visualization designs using 2D scatterplots variants for desktop and large
displays (top) and mobile displays (bottom). The left is a frame of animation from the Gapminder

Trendalyzer animation tool, the top-middle and bottom-right are the Small Multiples static
variant, while the top-right is the Overlaid Traces.

Source: Adapted from Robertson et al. (2008) and Brehmer et al. (2019)

texts, like clusters identification (GRIFFIN et al., 2006), flow maps (BOYANDIN; BERTINI;

LALANNE, 2012), multidimensional metamodels (GEBHARDT et al., 2018), geograph-

ical propagation phenomena (ARAYA; BEZERIANOS; PIETRIGA, 2020), mental maps

(Archambault; Purchase; Pinaud, 2011) and dynamic networks (BACH; PIETRIGA; FEKETE,

2014; LU et al., 2020).

2.5 3D Scatterplot Variants and Immersive Analytics

The latest technologies for VR and AR have contributed to improving the effec-

tiveness of immersive visualization techniques (KRAUS et al., 2019) by providing more

comfort and overcoming the limitations of hardware that existed initially (CORDEIL

et al., 2016). Immersive Analytics explores complex datasets using new technologies

(BACH et al., 2016), enhancing spatial perception and complex scene understanding, and

minimizing memory workload (MCINTIRE; LIGGETT, 2014).

Several immersive analytics applications have adopted 3D scatterplots for visu-

alizing multidimensional data (BACH et al., 2017; CORDEIL et al., 2017; FONNET et
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Figure 2.5 – Representative diagrams of the tasks performed in mobile phones. The starting and
ending positions of target and distractor items are indicated by filled and unfilled circles,

respectively.

Source: Brehmer et al. (2019)

al., 2018; WAGNER-FILHO et al., 2018; PROUZEAU et al., 2019a; YANG et al., 2020).

However, few works explore scatterplot variants in immersive settings.

Onorati et al. (2018) proposed a 3D bubble chart version to verify user understand-

ing of hierarchical data in virtual reality. A 3D bubble chart is also provided in VRIA

(BUTCHER; JOHN; RITSOS, 2019), a framework for VR on the web. This framework

provides several visualizations and interactive techniques for developers of any level.

Small Multiples (LIU et al., 2020; JOHNSON et al., 2019) and trails(PROUZEAU

et al., 2019b; HURTER et al., 2019) visualizations were also explored in immersive sce-

narios. Fiberclay by Hurter et al. (2019) used an animated scatterplot variant, where



27

trajectories of data points from large datasets are visualized as animated dots. It also

uses Small Multiples to display multiple facets. Unlike VRIA, IATK (CORDEIL et al.,

2019) is a desktop framework that enables the design of scatterplot matrices for studying

correlations, among other charts.

Simpson et al. (2016) proposed an immersive tool based on multidimensional data

to explore climate-economy models by displaying trails in scatterplots. They aim at un-

derstanding how immersion improves multi-objective decision-making that is typical of

such integrated assessment models. Similar visualization techniques showing trails as a

sequence of points are also found in DXR (SICAT et al., 2019) to represent flow lines.

2.6 Trends Visualization in Immersive Environments

We found different applications or tools that we can classify as providing immer-

sive visualizations to distinguish trends over time. An application by the Wall Street Jour-

nal (KENNY; BECKER, April, 2015 (accessed November 02, 2020)) lets users virtually

walk on a line chart like a staircase to experience the rise and sudden fall of the Nas-

daq index during a stock market crash. ImAxes is an interactive tool that allows users to

manipulate chart axes like physical objects in a VR environment to design visualizations

(CORDEIL et al., 2017). It provides several charts, like histograms, 2D-3D scatterplots,

and parallel coordinates. Histograms can be built by manipulating one axis. Two or three

axes can be placed perpendicularly to build 2D or 3D scatterplots or parallel to obtain par-

allel coordinates visualization. ImAxes allows the analysis of trends based on the density

of lines or points in some regions of multiple visualizations. In subsequent work, Batch

et al. (2019) developed a study including experts, where the ImAxes approach is used for

economic analysis.

Butscher et al. (2018) designed ART, a collaborative AR tool for identifying clus-

ters and outliers and analyzing trends in multidimensional data. Data points in multiple

2D scatter plots are linked, creating a 3D parallel coordinates visualization anchored to a

touch-sensitive tabletop.

Recently, an interesting VR application uses a 3D representation of multiple time

series axes stacked uniformly along the third dimension (KLOIBER et al., 2020). The

WaveChart visualization represents the time series of different sensors captured during a

single cycle or different cycles captured from one sensor. It is manipulated in VR using a

proxy to explore and detect anomalous behaviors in the time series.
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2.7 Summary

An increasing number of works report experiments with multiple views and high-

light the limitations of the methods provided to control composite visualizations with

coordinated interactions using 2D/3D views. For example, the studies surveyed herein

commonly used the juxtaposition pattern followed by superimposition, which is typical

of geographical maps. The absence of methods and practical guidelines to use composite

views in IA induced the development of different strategies, which showed disadvantages,

especially in VR environments (GRAČANIN, 2018). Our work presents an approach to

allow users to compose visualizations, and moving MCVs for improving the scene lay-

out, facilitating data exploration. Furthermore, studies evaluating the effectiveness of

Animation over static alternatives emerged using large and small displays. Herein, we

expand previous studies towards the design space for immersive environments using our

approach. Evaluating 3D scatterplot variants is a timely research problem since Immer-

sive Analytics keeps evolving as a field and still needs a better understanding of how users

analyze data in VR environments.
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3 AN IMMERSIVE APPROACH FOR EXPLORING MULTIPLE COORDINATED

3D VIEWS

This chapter presents the Spaces approach, which uses a virtual cube called Space,

inspired by Mahmood et al.’s work (MAHMOOD et al., 2018), for encapsulating each

view and provides two modes of interaction with the views: the macro mode for inter-

acting with the Spaces, and the micro mode for interacting with the data displayed in

the Space. In addition to standard interaction techniques, the approach also provides

“cloning" and “coordinated interactions" features. In this chapter, we also describe the

first experiment designed for evaluating the approach by comparing it with a similar

desktop version. The Spaces approach was published recently (QUIJANO-CHAVEZ;

NEDEL; FREITAS, 2021a).

3.1 The Spaces Approach

The change from standard 2D to 3D WIMP induces differences in perception and

interactivity (MARRIOTT et al., 2018). Following the design space of composite visual-

ization (JAVED; ELMQVIST, 2012a), where multiple “visual structures" are combined in

the same “view", we designed our approach based on similar concepts. The “visual struc-

ture" is mapped to a virtual cube where it is rendered. The virtual cube is called Space

inspired by Mahmood et al. (MAHMOOD et al., 2018). An overview of the approach is

shown in Figure 3.1 and its details are presented below.

3.1.1 The Space concept

A Space is a container for one visualization only and can be manipulated similarly

to an object but without physics, weight, or texture associated. The objective of a Space

is to facilitate the interaction across multiple visualizations. We chose a cuboid shape

to represent a Space to have a reference point for the coordinate system, and added a

title identifying the dataset being visualized in the Space. It can be cloned, and then the

title is customized with the version number to distinguish it from the original Space (see

Figure 3.2-left). To interact with a Space, the interacting agent must be in macro mode,

while to interact with the data displayed inside a Space, it must be in micro mode (see
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Figure 3.1 – Overview of the Spaces approach: reading from the datasets (1); a visualization
instance is added to the interaction manager (2) for coordination techniques (Brushing and
Navigational Slaving); data is rendered in the virtual environment, in the Spaces graphical

representation (3).

Source: The author

Subsection 3.1.2).

Figure 3.2 – The proposed macro/micro modes of interaction allow the user to interact with the
Spaces and the data. The Spaces can be grabbed and overlaid to facilitate comparison of the data

represented inside each one (left). The two virtual hands are independent from each other: the
user can grab a Space with one hand and explore its information with the other one (center). Our

approach allows the exploration of Multiple Coordinated Spaces (right).

Source: The author

In a VR environment, the interacting agent used is the virtual hand, which is con-

sidered the most natural interaction paradigm (BOWMAN et al., 2004) for 3D interaction

with near objects. The user can change between macro and micro modes of interaction

through the proximity sensor of the index finger. For evaluation purposes, we developed a

similar 3D desktop version. In that version, the mouse cursor is the interacting agent, and

the mode change is based on events. We present the distribution of the events for both the

VR and desktop versions in Figure 3.3.
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3.1.2 Interaction Techniques

The standard WIMP functions are moving, close, and minimizing or maximizing.

We developed similar functions for both the VR and desktop versions of our approach for

manipulating the Spaces, except for minimizing and maximizing. These functions are

presented in Figure 3.3.

As mentioned before, the interaction techniques are divided into macro and micro

modes.

Figure 3.3 – Distribution of actions for each interactive command used in the Virtual Reality and
Desktop versions. We propose two easily interchangeable modes of interaction, the micro mode
to manipulate data displayed in the Space, and the macro mode to interact with the Spaces. A

controller module manages how the user interacts with the Spaces and data, while an
interaction module connects data to Spaces. All features needed for coordinating interactions

are provided by this module.

Source: The author

3.1.2.1 Macro mode interaction.

For selecting a Space, the virtual hand must be inside it. The Space chosen will

slightly change color, avoiding perception changes in the visualization technique. In order

to grab a Space, the user must keep the Grab button pressed, allowing to grab one Space

per hand. We selected the Grab button because it resembles the behavior of holding an

object. Once grabbed, the user can move and rotate the Space freely according to their
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movement. To scale a Space, the user must grab it with both hands, and by separating

or joining them, the scale will increase or decrease the size of the Space, accordingly.

To clone a Space, it is necessary to select it and press the Clone button: a copy of the

Space will be created, including the same visual features. To remove a Space, one must

select the Space and then press the Delete button: a confirmation window will open on

the user’s hand to verify whether or not the Space should be deleted.

3.1.2.2 Micro mode interaction.

Two commands are available in the micro mode. The view interaction is based on

touching a data item with the virtual hand: it shows details about the data on the Space at

hand. The second command is highlight, which allows changing the color of a data item

for contrasting with others. The way to highlight or remove the highlight is to point at the

data item and press the Grab button.

3.1.2.3 Coordinated interactions

Multiple coordinated Spaces are based on coordinate interactions. Each time a

Space is rotated, the linked spaces will rotate too (navigation slaving). When the data

is highlighted or not, the linked data will undergo the same change, thus providing the

linking-and-brushing functionality.

3.1.3 Implementation Details

We developed our proof-of-concept prototype using the Unity game engine, C#,

and the SteamVR plug-in to build a tool compatible with the HTC Vive and Oculus Rift

head-mounted displays. As we can see in Figure 3.1, datasets are read, and the visu-

alizations are created in Spaces. A reference to the dataset and Space is instantiated

in the interaction module, which is responsible for the interaction management thus

linking both data and Space to support coordination. Also, each Space can be linked to

other Spaces for navigational slaving and brushing-and-linking interactions. Each Space

keeps track of the virtual hands that are inside it managed by the controller module, al-

lowing the communication between them for scaling interaction. Axes of the coordinate

system of each Space are drawn, which is useful when the user superimposes Spaces for

comparison purposes, for instance.
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Figure 3.4 – Overview of the interaction flow and change of interaction modes.

Source: The author

The controller module manages the macro/micro modes of interaction (Figure 3.4).

We use three states for managing the modes. The idle state is the default state, which in-

dicates that the virtual hands are not inside any Space. The primary use state indicates

that a virtual hand is ready to interact or is interacting with a Space, and the secondary

use state is used for controlling interactions that need two virtual hands. Also, to differ-

entiate the macro/micro modes for the virtual hands, the controller device is shown in the

VR environment every time the macro mode is active. The method chosen for the mode

change is the index finger’s proximity sensor.

3.2 Evaluation

The evaluation of our approach of multiple coordinated 3D views in VR using

the Spaces approach was performed through an experiment with users. We implemented

a VR-based and a similar 3D desktop version with the same interactions to standard-

ize the experiment variables. The First Person navigation technique was implemented

for the desktop because it is more immersive than a third-person point of view (POV)

(DENISOVA; CAIRNS, 2015) approach. Our user study compares the users’ behavior

while handling 3D visualizations in the desktop and virtual reality settings.

3.2.1 Hypotheses

To evaluate if our approach improves the MCV issues (mentioned in Section 2.2)

(BALDONADO; WOODRUFF; KUCHINSKY, 2000), we focused on the comparative
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performance between the desktop (3D) and the virtual reality (VR) versions. We ex-

cluded the learning issue because it is challenging to have non-expert users available.

Furthermore, issues related to infrastructure and implementation capacity were also not

addressed because we assume that new technologies such as HMDs give support for those.

The hypotheses that guided our first experiment are:

• H1: It will be faster to complete tasks using multiple coordinated views in VR

than in 3D. Although there are several interaction techniques mapped to the desk-

top version, which can lead to interaction difficulties, the familiarity with mouse +

keyboard can overcome those and allow a fair comparison.

• H2: The user will keep more information in VR than in 3D. We aim to analyze

the first impression of the environment’s data. The VR environment can be more

fun for the user, and they would pay less attention to the data than in the desktop

with physical space limitation. However, proprioception can help users in the VR

version.

• H3: It will be easier to compare views in VR than in 3D. We aim to analyze the use

of multiple visualizations, including cloning them.

• H4: The context switching will be hardest in VR than in 3D. The composed tasks

let the user change visualization with different data interpretation. We displayed

bar chart filters in one scene and increased the scatterplot chart filters in another.

• H5: Interacting with multiple coordinate views will be more comfortable in VR

than in 3D.

• H6: Interacting with multiple coordinated views using the Spaces approach will be

more efficient in VR than in 3D.

• H7: Multiple coordinated views using the Spaces approach will be easier to use in

VR than in 3D.

3.2.2 Use Case

The use case we designed for testing our hypotheses is the exploration of a music

dataset because music is a well-known topic that does not demand introduction effort.



35

The dataset used is the same previously used by Liang et al. (LIANG; GU;

O’CONNOR, 2011), and it contains the following data for each music album: year, artist,

genre, and also feature data from sound signals. For the experiment, the dataset was

processed to avoid missing data. Finally, a total of 338 tracks were chosen.

The visualizations implemented are 3D scatterplots of music tracks, artists, and

genres, obtained from a multidimensional projection technique, and bar charts showing

the number of tracks per year, artist, and genre. The primary view is a scatterplot showing

music tracks, and the other visualizations operate as music filters by brushing. Each

visualization result is displayed in a Space.

The coordination between Spaces allows obtaining data corresponding to the in-

tersection of filters applied to different visualizations and data corresponding to the union

when more than one filter is applied to a single visualization. The Spaces of the genre and

artist scatterplots are linked to the Space of the music scatterplot letting the navigational

slaving interaction.

The 3D scatterplots are the result of the dimensionality reduction technique t-

SNE (MAATEN; HINTON, 2008) configured as follows: 100,000 iterations and perplex-

ity equal to 40. We selected these parameters because they provided the best possible

clusterization of genres. Then, to obtain the artist and genre scatterplots, we calculate

the centroid using an average of their tracks’ positions. Additionally, the centroids were

multiplied by a weight (20) because more than one centroid was overlapping.

The implemented brushing interaction is based on highlighting data. Initially, the

data is displayed with a shade that is sufficient for viewing details about the data item.

A limitation of our brushing technique is that the information on the number of tracks is

not refreshed (nor the height of the bar plots). The year, genre, and artist visualizations

filter directly to the music scatterplot. Additionally, the user can clone any visualization

for saving filtered data.

3.2.3 Tasks

For our user study, we designed composed tasks involving the manipulation of

multiple views. The contexts used are artist, genre, and music tracks. Our test tries to

emulate real system solutions. To finish each task, the user had to state the answer. A

confirmation dialog similar to deleting cloned Spaces was used to confirm the end of

each task.
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• T1. Select the artist with more music tracks of genre Punk between 2005

and 2010. A comparison of dense selected data from different filters is required.

Cloning and comparing Spaces is the expected goal. Given multiple comparisons,

this task exclusively tests H3 and helps to measure time for H1.

• T2. Select the closest artist to the music most different from the majority of

genre Folk between 2005 and 2010. This task aims at two objectives, the selection

of the most atypical filtered data and the selection of the nearest data to a different

context. We look for the overlapping Spaces – this task measures time to evaluate

H1 and the accuracy to evaluate H4.

• T3. Given to the user 2 min of free exploration, answer ten questions about

genres, years, and artists with more and fewer music tracks (we asked 6 medium

level questions), the more similar artists (2 difficult level questions) and music gen-

res from the year 1991 and 1995 (2 very difficult level questions). With this task,

we want to measure the memorization rate related to H2.

The hypotheses H5, H7 are evaluated through questionnaires, while H6 is assessed

through the correct responses in tasks T1 and T2.

3.2.4 Training and Pilot Test

After signing the Term of Consent, the participants received a brief description of

the environment (VR and desktop), data, and visualizations. The instructions of use for

each environment were also explained at this time. The first training took approximately

15 minutes (10 min to VR and 5 min to 3D Desktop) and included macro and micro

interactions.

In a pilot test, we noted that the users could not perform the tasks taking advantage

of the functionalities of cloning, overlaying, and walking navigation, and consequently,

the tasks would demand too much time. In order to reduce the testing time, we extended

the training, inviting them to walk over the virtual area to improve confidence. Also, short

recommendations were given to deal with tasks that involved overlapping and cloning.
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3.2.5 Experiment

The experiment was carried out in a 4 x 4 meters room; the users were aware of the

space where they could walk. A similar virtual room was set up to improve immersion.

Additionally, an existing TV in the room was also modeled in the VR environment for

displaying the tasks (see Figure 3.5).

Figure 3.5 – The virtual room had a TV that showed the tasks. The participants started the
exploration in the middle of the room, and the visualizations were displayed around them. Users
interacted with the visualizations using keyboard + mouse (left), while in the VR environment

they used controllers as virtual hands (right).

Source: The author

The user study followed a within-subjects design, combining VR and 3D desktop

environments, 6/4 Spaces, where genre and artist scatterplots were added in the second

case, and three tasks (independent variables). A Latin-square design counterbalanced the

order of the environments and the number of Spaces. Each participant performed four

sessions, where they started using 4 and 6 Spaces (or vice-versa) in the VR environment

and later continued in a similar order on the desktop version (or vice-versa). Each of

these scenarios started with a short training (learned from pre-testing) followed by the

experimental session. We collected the time to complete each trial and correct answers as

dependent variables.

The average training time was 30 minutes (20 min for VR and 10 min for 3D

Desktop). After completing a task, the users were consulted through a Web version of

the Subjective Mental Effort Questionnaire (SMEQ) (SAURO; DUMAS, 2009), and one-

select Emocards (DESMET; OVERBEEKE; TAX, 2001) used to validate H7 and H5,

respectively. Finally, completing the number of Spaces series (6 or 4), a UMUX-lite

form was asked to analyze H7.

The target population consisted of 19 participants (16 males and 3 females), where
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18 were computer science students and 1 was a student on ecology. Their average age

was 23 years. The majority of the participants had none or minimal experience with VR

headsets; only three reported high experience.

3.3 Results

Figure 3.6 – Box-and-whiskers plot of SMEQ scores for each trial. For T1, the VR version with
4-Spaces was the easiest (Mean = 26.57, SD = 21.16), the 3D Desktop version with 4-Spaces was
the most difficult (Mean = 34.21, SD = 20.24). Also, T2 in the VR version with 4S was the less

difficult (Mean = 18.26, SD = 16.40) and the 3D Desktop version with 4-Spaces, the most
difficult (Mean = 39.94, SD = 29.89). T3 had similar result, the VR version was hardly less

difficult (Mean = 47.50, SD = 41.24) than 3D Desktop (Mean = 55.28, SD = 36.55).

Source: The author

To validate the usability of the environments, we compared the perceived difficulty

of the tasks T1 and T2 with the SMEQ “How difficult or easy was to conclude the Task

overall?”. Results (Figure 3.6) showed a normal distribution by Shapiro-Wilk, and the

statistical analysis by ANOVA indicates that VR was easier than 3D Desktop (p = .0163).

Additionally, the System Usability Score (SUS) was calculated based on the UMUX-

lite (LEWIS; UTESCH; MAHER, 2013) questionnaire. ANOVA analysis was used for

finding the effects of the number of Spaces using the SUS score (normal distribution vali-

dated by Shapiro-Wilk), resulting in significant differences. Post-hoc analysis by Tukey’s

HSD suggests that using 4 Spaces in VR is significantly more usable than in a 3D Desk-

top with 4 Spaces (p = .0121) and 6 Spaces in VR shows a higher usability score than in

3D Desktop with 4 Spaces (p = .0184). H7 is validated in both analyzes (results can be

visualized in Figure 3.7-left).

Analyzing the duration of tasks for validating H1, the time showed a normal dis-
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Figure 3.7 – Box-and-whiskers plot (left) of SUS score for each condition. * and ** indicate
significant differences. Histogram of emocards (right) selected by users per environment (VR and

3D).

Source: The author

tribution validated by Shapiro-Wilk. We found through ANOVA that there was no signif-

icant difference for T1 (p = .7380) and T2 (p = .2830) in the duration of tasks.

We selected the correct answers to calculate the efficiency for validating H3, H4

and verify H6. From 152 answers, we obtained only 8 wrong answers in T1, and 17 errors

in T2. The time of correct answers did not show significant differences for T1 (p = .9170)

and T2 (p = .9070). The efficiency distribution can be observed in Figure 3.8.

Friedman test was performed to compare the number of correct answers for T3

(Shapiro-Wilk showed no normal distribution). Results demonstrate that there are no

significant differences (p = .7960), not validating H2 (see Figure 3.8-right).

The comfortability of each environment was evaluated based on emotional cate-

gories using emocards (Figure 3.7-right). We calculated Cohen’s kappa of 114 responses

(6 answers by user), evaluating the two environments per categorical answers (“pleasant”,

“unpleasant” and “neutral”). The results are summarized in Table 3.1. Cohen’s kappa was

0.26 and conducted a reliability “fair” (LANDIS; KOCH, 1977). We concluded that the

VR version was “average pleasant" (Mdn = 3) over the “calm pleasant” for 3D Desktop

(Mdn = 4) with fair reliability validating H5.

The SUS ranged from 28.32 to 87.90 for 3D Desktop (M = 66.80, SD = 13.07)

and from 44.57 to 87.90 for the VR version (Mean = 77.64, SD = 10.44). According

to surveys that compare SUS scores for different systems, our VR version is ranked as

“Good” (BANGOR; KORTUM; MILLER, 2009).

In summary, only H5 had significant differences and was validated, showing that
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Figure 3.8 – Box-and-whiskers plot of time (seconds) for correct answers for T1 and T2 (left).
Similar distributions were obtained for T1 in the 3D Desktop version (Mean = 187.54, SD =
104.33) and VR (Mean = 202.68, SD = 136.39), and T2 in the 3D Desktop version (Mean =

135.57, SD = 74.58) and VR (Mean = 123.44, SD = 86.31). Box-and-whiskers plot of trials per
number of correct answers (right). No significant differences were found.

Source: The author

Table 3.1 – Results of 114 emotional answers per environment.
3D Desktop

Pleasant Neutral Unpleasant Total
Pleasant 46 24 13 83

VR
Neutral 6 15 2 23

Unpleasant 2 1 5 8
Total 54 40 20 114

Source: The author

our approach is more comfortable than the 3D version. The other hypotheses could not

be proved nor rejected due to lack of statistical significance.

3.4 Discussion

While visual analytics systems often use multiple coordinated views to explore

and analyze complex datasets in 2D desktop environments, literature shows that fully-

immersive analytics applications lack well-established techniques to use similar approaches.

We analyzed the difficulties of multiple coordinated views and proposed and eval-

uated an approach to provide multiple three-dimensional views in immersive Virtual Re-

ality. Our method allows the user to use virtual hands to grab the visualizations displayed

in three-dimensional versions of WIMPs (the Spaces) for free interaction in macro mode

and interacting with the data items in micro mode. This way, the approach divides the



41

interaction between Spaces and data, respectively. Moreover, the use of two modes for

each virtual hand increases the number of grouped interactions that can be implemented

(macro, micro, macro - macro, micro - micro, macro - micro). Another significant aspect

is that our approach does not depend on the user’s dominant hand.

3.4.1 Findings

The evaluation of our approach was based on comparing it with a 3D desktop

version for testing 7 hypotheses. We designed and conducted an experiment where 19

subjects explored a music dataset, employing 4 and 6 coordinated views in both environ-

ments.

Before the actual experiment, a pilot test with five users made us recognize that

although the case study was easy, the manipulation of multiple views required users with

experience in data exploration. Interactions, as navigation and visualization grabbing,

cloning, and overlaying, were not known, so they did not learn the most optimal man-

ner to perform the tasks, and the tests demanded excessive time. The training was then

improved, reducing the experiment time and the difficulties of the tasks.

However, the pilot test also showed that the usability of grabbing and manipulat-

ing visualizations had good results in comfort, in favor of our VR version. The three-

dimensional visualization could be placed in different locations for better exploration. In

addition, the training in physical walking for navigation caused the users to trust our sys-

tem. This is reflected in the comfort results and comments. Furthermore, the navigation

for the 3D desktop version was intuitive because most users knew the FPS format, but the

translation and rotation interactions were hated due to the depth.

Concerning the hypotheses, although the quantitative results indicated no signif-

icant differences between the VR and 3D desktop, some interesting findings came from

the questionnaires.

As for hypothesis H1, “It will be faster to complete tasks using multiple coordi-

nated views in VR than in 3D." (tasks T1 and T2), one might assume that the familiarity

with mouse + keyboard could lead the desktop version to be faster than VR but that was

not confirmed. This might suggest that our approach did not introduce difficulties even

for users with no experience in VR, presenting competitive execution times.

Regarding hypothesis H2, “The user will keep more information in VR than in

3D", it was evaluated based on the correct answers for task T3. Results were also non-
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significant, most likely due to a learning effect. We noticed that the participants acquired

memorization strategies after completing task T3 and applied them to the other tasks. The

shuffled questions ordering did not avoid the learning effect as we assumed it would.

The time spent and correct answers for tasks T1 and T2 allowed us to evaluate

hypothesis H3, “It will be easier to compare views in VR than in 3D" and H6, “Inter-

acting with multiple coordinated views using the Spaces approach will be more efficient

in VR than in 3D". Both hypotheses were not statistically confirmed. However, partici-

pants commented that they had better confidence using the VR version, probably by novel

technology. Also, most of them liked being able to organize the visualizations in the 3D

virtual environment.

Regarding H4, “The context switching will be hardest in VR than in 3D", was

also assessed by task T2, which was far more complex than the others. Since there were

no significant differences in time or number of correct answers between the VR and 3D

versions, this hypothesis was also not confirmed. Such a result might suggest that our

approach did not increase the cognitive effort demanded to complete the task compared

to a well-known setting such as the desktop.

Finally, the hypotheses H5, “Interacting with multiple coordinate views will be

more comfortable in VR than in 3D", and H7, “Multiple coordinated views using the

Spaces approach will be easier to use in VR than in 3D", were evaluated through ques-

tionnaires. The results showed that the comfort of handling multiple Spaces is higher in

our fully-immersive environment than in the 3D desktop version, which probably might

have influenced the same good result regarding usability.

3.4.2 Limitations

When designing our approach regarding the composite visualization patterns, we

chose to support the juxtaposition and superimposition patterns. However, our applica-

tion’s architecture separates interaction with the Spaces (macro mode) from interaction

with the data (micro mode), allowing a Space to be used with any data visualization.

Therefore, overloading (by proximity) and integration (showing linking) are feasible pat-

terns to evaluate in future works.

Another limitations are related to our experimental application. Multiple views are

used to solve complex tasks, which is not feasible with non-expert participants. Having

only non-expert users as subjects may be the most probable cause of not finding significant
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differences.

The brushing technique also introduced a limitation because the information on

the number of music tracks is never updated. If we had that feature, we could have

proposed other comparison tasks. Finally, the interaction techniques are based on direct

contact between the users’ hands and the virtual cube representing the Spaces. So, far

interaction strategies using ray casting were missing.

3.5 Summary

Motivated by the challenges related to multiple views (BALDONADO; WOODRUFF;

KUCHINSKY, 2000; JAVED; ELMQVIST, 2012b; KNUDSEN; CARPENDALE, 2017)

and the increasing use of immersive analytics applications (MARRIOTT et al., 2018), in

this first study we proposed an approach that allows composite visualization patterns in

VR and comfortable and easy ways of interacting with multiple 3D visualizations in such

environments. Our results show that the Desktop version is not significantly better than

the VR version in terms of time and accuracy despite using the standard FPS approach

with keyboard and mouse. Multiple 3D views are not typically used in desktop versions,

and this could be the reason for the non-significant results. Subjective results show that

our VR approach is significantly better than the Desktop version. We infer that the partic-

ipants are not able to explore multiple 3D visualizations with common desktop interaction

devices.
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4 COMPARING SCATTERPLOT VARIANTS FOR TEMPORAL TRENDS VISU-

ALIZATION IN IMMERSIVE VIRTUAL ENVIRONMENTS

In this chapter we present the second experiment, where we evaluated the ef-

fectiveness of 3D scatterplot variants for trends comparison tasks using the Spaces ap-

proach. The techniques are three-dimensional Small Multiples and Overlaid Trails (static

versions), and Animation. In this study, we focus on informal ways of finding trends,

i.e., those that allow perceiving trends without statistical estimation, based on visualiza-

tions only. This study has already been submitted for publication (QUIJANO-CHAVEZ;

NEDEL; FREITAS, submitted).

4.1 Introduction

Our second experiment was inspired by the previous studies presented by Robert-

son et al. (2008), and Brehmer et al. (2019). In Section 2.4, these two previous works

were briefly described. Robertson et al. (2008) assessed two static bubble chart tech-

niques (Small Multiples and Overlaid Traces) in trend analysis tasks, contrasting with the

conventional Animation technique. The Overlaid Traces technique follows the principle

of superposition (GLEICHER et al., 2011) showing the bubbles’ trajectories overlaid si-

multaneously in one chart, while Small Multiples follows the principle of juxtaposition

(GLEICHER et al., 2011) by displaying separate, side-by-side line plots for each item.

Brehmer et al. (2019) studied the efficacy of two conditions on mobile phones (Anima-

tion and Small Multiples variants of scatterplots) for comparing trends in multivariate

datasets. They designed possible trend scenarios, illustrating trajectories of target and

distractor items (Figure 2.5). These studies were based on displaying two or three dimen-

sions simultaneously on 2D displays. The time was one of them plotted as the position on

the x-axis or the trail from the starting to the ending value of the period.

Regardless of the diversity of contexts in which animation, overlaid traces, and

small multiples have been compared in 2D, we did not find studies in the literature about

the effectiveness of such techniques in immersive environments. Inspired by the fact that

Immersive Analytics keeps evolving as a field and we need a better understanding of how

users analyse data in such environments, we decided to focus our study on the following

question: Do 3D scatterplot variants as Animation, Small Multiples, and Overlaid Trails
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lead to the detection of trends when they are explored in an immersive environment? How

do they differ?

Our second experiment was a user study comparing each visualization technique

(Animation, Small Multiples, and Overlaid Trails) regarding completion time, accuracy,

and subjective preferences using our Spaces approach. Also, we included a scene with

all three techniques as the last phase of the experiment (Figure 4.1) for analyzing user’s

choices and preferences. To further interpret our results, we characterized each trend

comparison task and offered reflection about future studies.

Figure 4.1 – Trends analysis tasks using the Spaces approach with three interactive 3D scatterplot
variants. Ray casting and virtual hand are used as far and near interaction modes, respectively

(details in the circles at both sides of the figure). Information on a data point is shown when the
user reaches the corresponding marker in any mode.

Source: The author

4.2 Study Design

The change from standard 2D to 3D context induces many differences, primarily

regarding perception and interactivity. (MARRIOTT et al., 2018).Since we adopted the

tasks defined by Brehmer et al., we followed the same analyses’ methodology to allow a

fair comparison.

In this section, we describe all aspects of the second user study, which allowed us

to evaluate the Spaces approach with different visualization in a temporal data analysis

scenario.
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4.2.1 Datasets

Since we followed a within-subjects approach differently from Brehmer et al.’s

between-subjects experiment, we used two datasets to prevent learning effects.

We adopted the mobile dataset employed by Brehmer et al., obtained from the

United Nations Common Database (DATABASE, 2019). Therefore, we had economic

and public health indicators for 16 nations from 26 years (1975 to 2000). Since we wanted

to use a second dataset with behavior similar to the mobile dataset regarding trends, we

analyzed the dimensions involved in each task for the mobile dataset. Then, we manually

generated the data, but the dimensions’ names were set to a different theme, sports (LIN

et al., 2020). Both datasets are included in a public repository (QUIJANO-CHAVEZ;

NEDEL; FREITAS, 2021b).

4.2.2 Visualization Techniques

In all three visualization techniques (Animated, Small Multiples, and Overlaid

Trails) (Figure 4.1), we used spheres as points to represent nations, totalizing 16 spheres

by visualization. Then, we map quantitative dimensions (indicators) to the three axes

and the nation’s population to the size of the points. It is important to mention that we

have carefully chosen the third axis to avoid overlaying points that could make the tasks

difficult or impossible to perform. Each Space contains a scatterplot variant with axes

distinguished by blue, red, and green colors. Appropriate labels for the minimum and

maximum values are shown for each axis. The data points are color-coded depending on

the nation’s region. Each region color is selected using Color-Brewer (BREWER; UNI-

VERSITY, 2013), based on “Quality scheme color” because it is suited to representing

nominal or categorical data (the region in our case). Since labeling each point would

cause occlusion (YU et al., 2020), we show the data associated with each point during

the interaction technique only (see details in Figure 4.1). The data includes each nation’s

name anonymously renamed with one letter (A–P) and additional information like the x,

y, and z values, region, and year. We also provided intuitive interaction (CORDEIL et

al., 2017) both with the Space that can be grabbed, moved, rotated and scaled, and within

each visualization technique.

Animation. This technique is based on a single scatterplot, where the changes

of attribute values over time are presented as successive frames, with the values being
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interpolated to create a smooth transition between each time step. We mapped the en-

tire 26-years timeline to a 12-second animation, resulting in ≈0.462s interval between

consecutive years. The scatterplot is located in a single space with a 1-meter side. For

providing equivalent levels of interactivity across techniques, our implementation was in-

spired by the non-interactive Brehmer et al.’s condition, so the users are not allowed to

reach any year-step. The animation plays in a continuous loop, and the current year is

shown on the chart title. The user can only grab the space and scale it.

Small Multiples. Small multiples follow the juxtaposition arrangement approach (GLE-

ICHER et al., 2011) to allow visual comparisons through a tiled display of charts or mod-

els using the same axes and measure system.In our experiment, we used Small multiples

to represent each nation in a 3D cell of a 4x4 grid since it is suited for displaying small

multiples in immersive spaces, and this was the size used by Brehmer et al. (LIU et al.,

2020). Each cell is a space with a side of 0.4m, as well as the entire grid, that is arranged

as a curved surface, so the cells are facing the user. All cells have identical dimensions

and respond coordinately to scale and rotate interactions, similar to a previous design

study (LIU et al., 2020). Grabbing cells allows for rotation, while the grid container

translates the entire matrix. In each chart, the nation is plotted as a point at the location

corresponding to the country attributes’ values in the initial year. The changes over time

are represented as a trail (interpolation is used for smoothing it) through the positions

corresponding to each year. The nations are ordered alphabetically in the grid, and each

nation’s name is shown in its chart title.

Overlaid Trails. This technique uses the principle of superposition (GLEICHER

et al., 2011), where charts are overlaid one over another. Similar to Robertson et al.’s

study (ROBERTSON et al., 2008), in our implementation of Overlaid Trails, the visual

representation of nations and their timelines are identical to the Small Multiples tech-

nique, except that all nations are displayed in a single chart in a space with a side of 1m.

The nation’s point is located at the initial year, while the end of the trail represents the last

year. Grab and scale interactions are the same as in Animation.

4.2.3 Interaction and Navigation Techniques

Visual data exploration requires interaction over three categories: data, view,

and process to allow efficient analysis (HEER; SHNEIDERMAN, 2012). We provide

several interactive techniques (Figure 4.2) to be used with each visualization in data
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analysis tasks. They are available in the two interaction modes we implemented: vir-

tual hand (BOWMAN et al., 2004) and ray casting, which allow near and far interac-

tion, respectively. The 3D Space manipulation using ray casting is similar to a previous

study (GRANDI; DEBARBA; MACIEL, 2019). In our virtual implementation, we show

the controllers because of the button hints needed throughout the experiment. Further-

more, both interaction modes can be alternated quickly by the user: while the index finger

is closed, the ray is enabled; when the index finger is open, the virtual hand is enabled

and ray casting disabled.

Interaction with Data. The users interact with data points to obtain details about

each entity by pointing to the corresponding sphere either with the index finger in virtual

hand mode or using ray casting (see Figure 4.1). So, brushing is not a need for task

progress. The neighbors’ within a range of 0.05 units from a sphere pointed by the user

are displayed with an opacity of 30% to facilitate perception. Furthermore, a data point

can be highlighted when the participant presses the select button: the sphere is shown

with intense green to stand out from others. At the same time, in visualizations with

trails, it is displayed with the same visual effects. Lastly, the data points have a binary

state (selected/unselected), and the user can swap between both conditions as many times

as required.

Figure 4.2 – Distribution of buttons for interaction and navigation techniques in our virtual
environment.

Source: The author

Interaction with the View. As mentioned before, the visualizations are displayed

within a space represented by a box container. The user can grab, scale, rotate, and

translate any box container. This set of actions is activated when the user pointer (virtual

hand or ray) is in the space but not pointing to any sphere, and the grab button is pressed.
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Each interaction in the space affects the visualization. For Animation and Overlaid Trails

techniques, their space can be rotated and translated while grabbed, this way being widely

used (FONNET; PRIé, 2021). On the other hand, since Small Multiples is in a single grid

container and divided into cells, only rotation and scale are enabled over cell spaces,

and they affect all cells’ spaces coordinately. For the whole grid space, we do not allow

rotation to avoid overload. Each of these interactions can be performed with any hand

except for scale. To scale, we need both hands to calculate the distance for resizing.

Navigation. Recent studies recommend different navigation techniques to operate

in distinct room-sizes (YANG et al., 2020), mainly to simulate walking in VR applications

(LEE; KIM; KIM, 2017; LANGBEHN; LUBOS; STEINICKE, 2018; Brument et al.,

2019; DROGEMULLER et al., 2020). We implemented joystick-based navigation to be

used in addition to physical exploration, mainly when the user is in boundary positions

on the real room. In our joystick-based navigation scheme, the participant can move

forward by pressing “forward” on the joystick. Users could explore the scene using any

method (physical or virtual). Furthermore, the joystick function does not interrupt other

interactions, and the user is free to use it at any time.

Table 4.1 – The tasks are characterized by the trajectories of target and distractor items over time
(characteristic), number of indicators (axes queried), and distribution of items (Figure 4.6).

Description refers to the United Nations Common Database dataset. Our study evaluated Small
Multiples (S), Overlaid Trails (O), and Animation (A) regarding Completion time, Correct and

Partial responses using Confidence Intervals (CIs). We map the significant results of each task to
soft colors to represent the 95% CIs and intense colors the 99% CIs. The higher results are

marked with a *.

Source: The author
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4.2.4 Tasks

Since the study carries an associated complexity from the necessary immersive

3D interaction, we defined 9 tasks replicating the trend behaviors from previous works to

compare results. We defined two additional tasks to assess the third dimension, resulting

in 11 formal tasks for trend analysis. They are listed in Table 4.1 and illustrated in the

first column of Figure 4.6.

Different aspects could affect the user performance when using each visualization

to complete the 11 formal tasks. These aspects are the distribution of items, trajectories

of target and distractor items over time, and task complexity based on the number of

indicators involved in the task. We propose to examine the performance across tasks

by axes queried and characteristic. The axes queried pattern is related to the number

of indicators (variation in axes) analyzed by the user to perform the task. We called

1D, 2D, and 3D tasks to distinguish if the task involves one, two, or three indicators,

respectively. This allows assessing abstract tasks that are represented in the first column

of the Figure 4.6. The characteristic pattern involves the remaining two aspects. We

categorized the tasks as:

Finding similar trends. Given three dimensions, we wanted to know how difficult

it is to find trends using three axes, asking the variation across dimensions (Task 10). The

distractors’ trails were not similar between dimensions. Since the beginning, we knew

this is the most demanding task.

Finding a specific trend in two dimensions. The tasks asked to find the trail with

a specific condition in two dimensions (Tasks 3, 8, and 9). The distractors show similar

conditions, but the target items have a slight movement difference.

Finding reversal trails. When a point shows a reversal in its direction in any

dimension, we identify it as a reversal (Tasks 4 and 7). The distractors here start the trail

in the same direction as target items.

Comparing two dimensions. The participant has to identify the trail(s), where

one dimension decreases or increases more than another dimension (Tasks 1 and 6). Some

distractors share similar length and direction trails.

Finding long trails. The participant has to observe the length of trails to respond.

We take as the length the point’s path over time, including reversal trajectories. Long

trails are asked in Tasks 5 and 11. Distractors also have long trails but not subjectively

similar.
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Finding small change on overlaid points. When minor changes occur in the

data, a short trail is plotted. This task looks to find constant values. This task (Task

2) aims to evaluate the effectiveness of exploration in an overlaying points context (dis-

tractors), where the change of trends is not perceived easily using one view. We expect

that Small Multiples would be advantageous because of the multiple coordinated view

approach (BALDONADO; WOODRUFF; KUCHINSKY, 2000; SCHERR, 2008).

The 11 tasks are grouped by their characteristic in Table 4.1. Also, the tasks are

illustrated in Figure 4.6, where the first column shows the representative task and abstract

instruction. Moreover, Tasks 1, 2, 4, 5, 6, and 11 admit multiple responses. When using

the Animation technique, the response can be chosen after the first loop ends only.

4.3 Experiment

Since the study involves VR hardware, we wanted the physical environment and

devices identical to all participants. Moreover, we knew that we would have a limited

number of participants. Then, the experiment was designed as a within-subjects study

with the Visualization technique (Animation, Small Multiples, and Overlaid Trails) as the

sole independent variable of the study. We evaluated the effectiveness of the visualization

techniques for the 11 tasks, each one in a virtual scene. In addition, similar to previous

studies (Brehmer et al., 2019; BREHMER et al., 2019) we inserted a quality control

task between two of the formal tasks in the shuffled task ordering to test the participants’

attention and essentially their ability to interpret a scatterplot. Specifically, this quality

control task asked participants to Select the two nations having the largest Population in

the year 1975. The nation’s populations were redundantly encoded to both the x-position

and the size of their corresponding points. Furthermore, this task did not require any

judgment of change over time, as the two nations corresponding to the correct responses

had the largest population no matter the year. Additionally, one mixed scene with the

three visualizations (placed aleatory in each trial) was included at the end for exploring

decision patterns (ROBERTS et al., 2021) and gathering subjective measures.

Before the actual experiment, we performed a pilot study with two volunteers.

Results allowed us to improve some instructions.
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4.3.1 Participants and Safety Measures

We recruited 19 participants (not including those in the pilot study), but 18 com-

pleted the experiment (14 males and 4 females). Age ranged from 21 to 29 (M = 26.44,

SD = 2.28). Seventeen were graduate students in Computer Science and only one in Vet-

erinary. Two reported no previous experience with VR devices, 9 low, 4 medium, while

only 3 were high experienced. All had normal or corrected-to-normal vision. They were

all volunteers and did not receive any compensation.

Due to the COVID-19 pandemic, we took safety measures for the experiment (STEED

et al., 2020) and planned the study to be performed either in person or remotely. Also,

since the use of non-uniform apparatus is a potential threat to validity in remote VR stud-

ies, to avoid it in the participants’ recruitment, we specified the target hardware. Only

two users accepted our online invitation, but one of them had to retreat due to hardware

failures. A problem in the controller did not allow the use of the joystick appropriately,

and the user was invited to leave. The one we could perform remotely was managed

via Google Hangout. We verified that the remote participants’ performance supported the

findings in a pre-analysis. Consequently, we included them in the overall analysis. For the

other subjects, we provided two physical environments with hardware setup and sanitary

measures. Each environment could be used only once a day. The devices were sanitized

before and after use. Some participants that live together were allowed to participate

on the same day. We respected the distance and used face shields during all the experi-

ment duration. The guidance was verbal without any physical contact. These conditions

allowed the participants to feel safe to accept and complete the experiment.

4.3.2 Apparatus and Implementation

We used the Oculus Rift (1080×1200 pixels per eye, 90Hz refresh rate, ≈100° field

of view) with Touch Controllers and the Unity3D game engine (version 2018.3.10f1) to

implement the application. We also used SteamVR version 1.3.10 to implement interac-

tive and compatibility functionalities. The source code is available under the MIT open

source license on GitHub (QUIJANO-CHAVEZ; NEDEL; FREITAS, 2021b).
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4.3.3 Measures

We defined the following primary measures that apply to all eleven tasks: (1)

Completion Time: measured from the moment the participant starts reading the task

statement until they answer; (2) Accuracy: measured at two levels of granularity, the

Proportion of Correct Responses, computed as binomial proportions per task (number

of correct answers per task over the total number of repetitions), and the Partial Cor-

rectness, computed as the number of correct answers for the tasks requiring multiple re-

sponses; (3) Self-reported confidence on the responses; (4) the perceived visualization’s

ease of use to perform the tasks; and (5) visualizations used in the mixed scene.

As secondary measures, we collected interaction techniques used (and their du-

ration) per task, and responses from the cybersickness (SSQ (Bimberg; Weissker; Kulik,

2020)) and usability questionnaires (Umux-lite (LEWIS; UTESCH; MAHER, 2013)) and

the overall ranking of the three techniques at the end of the experiment.

4.3.4 Procedure

At first, we sent an e-mail message containing a link to a Google Form and a

counterbalance code number to distribute the participant according to the within-subjects

design. The form began with a consent term, user profile, and pre-cybersickness question-

naires. Then, the form instructed a step-by-step setup of the application. The VR session

started just after it. The counterbalance code number was required before putting the

headset on. In the VR session, each participant had to follow instructions shown on the

TV (see Figure 4.1) to perform the tutorial about the visualization and interaction tech-

niques followed by the experimental session. A finalization code was provided so the user

could continue with the post-experiment questionnaires (cybersickness, usability) and the

overall ranking question). We counterbalanced the visualization technique and datasets

order using a Latin square model.

The experimental session started with 3 training tasks for each visualization. The

mixed scene was not included because it is the last scenario, and the participant would

already know each technique. We used the first dataset for the tutorial and training. These

instructions were replicated from the previous study (BREHMER et al., 2019) where the

instructions requested different behaviors from the formal tasks. Then, the experiment

proceeded with the 11 formal tasks.
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The participants were placed in the center of a virtual room (height = 3m, width

= 4m, depth = 4m). For each task, a single visualization is presented to the user in the

virtual environment, which also contains a TV that shows instructions. For the last task, a

mixed scene including all three visualizations is presented, and the users can freely choose

which ones they prefer to perform the task. In this case, the Animation technique is shown

on the left side, Small Multiples at the front, and Overlaid Trails on the right side.

Each visualization technique was adjusted dynamically to the participant height.

The 11 tasks and a quality-control task were shuffled, and we randomized the assignment

of nations to letters A through P and the assignment of colors to regions. This procedure

was replicated from Brehmer et al.’s work and modified for our variants.

After completing the tasks in each scene, the participant had to answer two sub-

jective questions (self-reported confidence and the perceived visualization’s ease of use)

and was invited to rest if wanted.

We logged the sessions, device setups, headset tracking, interaction techniques

used and duration, users’ answers for each task, and responses to the questionnaires.

4.4 Results

The experiment took from a minimum of 61 minutes to at most 188 minutes (M =

119), including questionnaires, rest time, and the VR session composed by tutorial + each

scene: 3 training tasks (mixed scene with no training), and 12 measured tasks (including

one quality control task). In total, the experiment gathered data from 18 participants × (9

training tasks + 4 scenes × 12 tasks) = 1026 trials.

We analyzed, reported, and interpreted our inferential statistics using interval es-

timation instead of p-values (CUMMING, 2014; DRAGICEVIC, 2016). The Confidence

Intervals (CIs) are calculated using bootstrap (BESANÇON; DRAGICEVIC, 2017). The

collected data and analysis scripts, and the dataset that we generated are provided along-

side the application source code in our Github repository (QUIJANO-CHAVEZ; NEDEL;

FREITAS, 2021b). All participants performed the quality control task right. We excluded

training and quality control tasks from our analyses and verified that counterbalancing

technique and task order did not have a consistent effect on performance by comparing

the Confidence Intervals (CIs) of each (condition + ordering) group for each task and

response metric. We analyzed the effectiveness of the visualization techniques and their

manipulation using interaction techniques. The mixed scene was used to obtain subjec-
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tive and interaction data. We report 95% and 99% CIs similar to Brehmer et al.’s study

(BREHMER et al., 2019) indicating the range of plausible values for the mean completion

time, the proportion of correct responses, and correctness.

4.4.1 Overall Results across Tasks

We analyzed measures for all tasks grouped by the visualization technique and the

number of axes queried.

4.4.1.1 Completion Time

We log-transform participants’ completion times to correct for positive skew-

ness and present anti-logged geometric mean completion times (DRAGICEVIC, 2016;

SAURO; LEWIS, 2010). For comparing whole completion times, we compute differences

in log-transformed values and present these differences as anti-logged ratios between ge-

ometric means (BESANÇON; DRAGICEVIC, 2017).

Most participants took more than one minute to complete each task. Figure 4.3-top

shows completion time for all tasks grouped by visualization technique. Mean times are

shorter for Overlaid Trails (60.84s), followed by Animation (71.96s) and Small Multiples

(85.67s). The observed differences (Figure 4.3-top) are strong evidence that Overlaid

Trails is faster by 0.71 on average than Small Multiples and by 1.18 on average than

Animation. There is also strong evidence that Animation is faster than Small Multiples

by 0.84.

Figure 4.3-bottom shows completion time for all tasks grouped by the number of

axes queried and visualization technique. The CIs show that mean times for 3D tasks are

shorter than those for 2D and 1D tasks, with Overlaid Trails and Animation conditions

having the most considerable differences: 30.50s and 26.56s on average, respectively for

1D tasks, and 20.64s and 19.59s, for 2D tasks. Additionally, the CIs size represents a

large variability of observations resulting in no evidence across their conditions (CUM-

MING, 2014). In conclusion, we do not have sufficient evidence to suggest differences

in completion times over 3D tasks. For 1D-2D tasks, differences showed strong evidence

that Overlaid Trails is faster. There is also evidence that Animation is faster than Small

Multiples in 2D tasks by 0.79.
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Figure 4.3 – Mean Completion Time in seconds and pairwise comparisons for each visualization
(top), and grouped by the number of axes queried (bottom) for all tasks. S = Small Multiples, O =
Overlaid Trails and A = Animation. Evidence of differences are marked with *. Thick error bars
represent 95% CIs, while thin error bars are conservative 99% (the further away from 1.0 ratio

and the tighter the CI, the stronger the evidence).

Source: The author

4.4.1.2 Proportion of Correct Responses

Concerning the proportion of participants who responded to the tasks correctly,

without considering partial correctness, we computed binomial proportions similarly to

Brehmer et al.’s study (BREHMER et al., 2019). For comparing differences, when the CI

overlaps 0%, this means insufficient evidence of a difference in accuracy.

As can be observed in Figure 4.4-top, at least 50% of the participants responded

to the tasks successfully. Proportions are smaller for Animation (57.58%), followed by

Overlaid Trails (59.59%) and Small Multiples (63.64%). There is no evidence that the

proportion of participants that responded correctly are different across techniques.

On the other hand, Figure 4.4-bottom shows that the participants had a lot of

difficulties to successfully complete the 3D tasks, the proportion is less than 25%. For 1D

tasks, differences show strong evidence that participants completed more successfully the

responses using Small Multiples than Overlaid Trails by 22.22%. Also, there is evidence

that Small Multiples is 14.81% more accurate than Animation. There is no evidence of

differences in 2D-3D tasks (Figure 4.4-bottom).

4.4.1.3 Partial Correctness

We report means and CIs of partial correct answers for tasks requiring multiple re-

sponses (Tasks 1, 2, 4, 5, 6 and 11). As in the previous analysis, differences are interpreted
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Figure 4.4 – Proportion of correct responses and pairwise comparisons for each visualization
(top), and grouped by the number of axes queried (bottom) for all tasks. S = Small Multiples, O =
Overlaid Trails and A = Animation. Evidence of differences are marked with *. Thick error bars
represent 95% CIs, while thin error bars are conservative 99% (the further away from 0 and the

tighter the CI, the stronger the evidence).

Source: The author

when the CI overlaps 0%.

Figure 4.5-top shows that mean correctness is shorter for Overlaid Trails (76.39%),

followed by Animation (80.71%) and Small Multiples (85.34%). There is strong evidence

that Small Multiples is more accurate than Overlaid Trails by 24.07% (Figure 4.5-top).

Also, Animation is more accurate than Overlaid by 15.74%.

Figure 4.5-bottom presents partial correctness with the differences grouped by

number of axes queried and visualization technique, showing that 3D tasks are less accu-

rate than 1D and 2D tasks. Pairwise comparisons show evidence that Small Multiples is

more accurate than Overlaid by 37.04% in 1D tasks (Figure 4.5-bottom).

4.4.2 Results per Tasks

We also report results on completion time and correct responses for each task.

While Figure 4.6 shows such results for all tasks, Figure 4.7 presents the partial correct-

ness of tasks with multiple responses. We interpret our results based on the tasks’ char-

acterization presented in Section 4.2.4, using both Figures. 4.6 and 4.7. Additionally, we

summarize the significant results in Table 4.1.

Comparing two dimensions (Tasks 1 and 6). There is strong evidence that Small

Multiples is slower by 0.72 on average than Overlaid Trails and by 0.62 than Animation

in Task 1, and by 0.53 than Overlaid Trails and by 0.57 than Animation in Task 6 (Fig-
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Figure 4.5 – Mean partial correctness and pairwise comparisons for each visualization (top), and
grouped by the number of axes queried (bottom) for multiple responses tasks. S = Small

Multiples, O = Overlaid Trails and A = Animation. Evidence of differences are marked with *.
Thick error bars represent 95% CIs, while thin error bars are conservative 99% (the further away

from 0 and the tighter the CI, the stronger the evidence).

Source: The author

ure 4.6). Also, Animation is the fastest in Task 1 (50.52s), while Overlaid Trails is fastest

in Task 6 (50.33s). The proportions of correct responses (Figure 4.6) and partial correct-

ness (Figure 4.7) in Task 1 show an evident ceiling effect. For Task 6, proportions suggest

that Overlaid Trails is more error-prone than Animation and Small Multiples (both by

11.11%) without evidence, opposite to correctness where Small Multiples is more accu-

rate than Overlaid by 27.78%.

Finding a specific trend in two dimensions (Tasks 3, 8, and 9). There is strong

evidence that Small Multiples is slower than Overlaid by 0.64. Also, results in Task 3 evi-

dence that Overlaid Trails is 1.59 faster than Animation. However, Task 8 shows evidence

that Animation is 0.65 faster than Small Multiples. Furthermore, there is evidence that

Overlaid Trails is more accurate only in Task 3 by 27.78% on average than Small Multi-

ples and Animation. For Task 8, there is no evidence of differences in accuracy between

conditions, the proportion of correct responses among participants being higher in Small

Multiples (72.22%) than Overlaid Trails (61.11%) and Animation (50%). As for Task 9,

the proportions of correct responses suggest high difficulty in tasks using Small Multiples

(16.67%), followed by Animation (27.78%) and Overlaid Trails (33.33%).

Finding long trails (Tasks 5 and 11). Results report that participants were faster

using Overlaid Trails (45.32s) than using Animation (21.49s) and Small Multiples (63.31s)

for Task 5. There are no differences in completion time for Task 11. In Task 5, there is

strong evidence that Small Multiples is more accurate than Animation both in the propor-



59

Figure 4.6 – Completion Time (seconds) and Proportion of Correct Responses (in %) for each
task. S = Small Multiple, O = Overlaid Trails and A = Animation. In the first column, we

represent tasks’ features showing targets (red) and distractors (black). Arrows indicate starting
and ending positions. Interpretation is also shown in red e.g., −∆Y > +∆X means that the

variation in Y-axis is decreasing and increasing on X-axis. The second and third columns show
the means per visualization (left) and pairwise comparison (right). Evidence of differences is

marked with *. Thick error bars represent 95% CIs, while thin error bars are conservative 99%
(the further away from 1.0 for time ratio and 0 for proportion and the tighter the CI, the stronger

the evidence).

Source: The author

tion of correct responses (33.33%) and correctness (50%). For Task 11, results suggest

that participants had difficulties identifying all targets correctly without evidence of dif-
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ferences between conditions. Less than 17% of participants responded all correctly.

Finding reversals (Tasks 4 and 7). For Task 4, there is strong evidence that

Overlaid Trails is faster than Small Multiples by 0.56 and than Animation by 1.93. For

Task 7, there is no evidence of differences in completion time between conditions. The

proportion of correct responses among participants is 100% in Task 4 using Overlaid

Trails. Results suggest that Overlaid Trails is more accurate than Small Multiples by

5.56% and than Animation by 11.11%. On the other hand, the correct responses for Task

7 using Small Multiples is 100%, with strong evidence that Overlaid Trails and Animation

are less accurate than Small Multiples by 5.56%. In Task 4, the mean partial correctness is

also 100% using Overlaid Trails, with evidence of 11.11% difference for Small Multiples

and 16.67% for Animation.

Finding small changes on overlaid points (Task 2). There is strong evidence

that Animation is faster than Small Multiples by 0.59. Also, the proportion of correct

responses among participants and partial correctness support our assumptions that there

is evidence of Overlaid Trails being less accurate than Animation and Small Multiples

(more than 55% of difference). There is no evidence of differences between Animation

and Small Multiples.

Finding similar trends (Task 10). There is no evidence of differences in com-

pletion time, although mean times are shorter for Overlaid Trails (70.00s), followed by

Animation (82.04s) and Small Multiples (92.89s). Participants reported this task as the

most difficult. Accuracy was less than 50%, and there is no evidence of differences be-

tween conditions.

4.4.3 Interaction Results

Since participants can combine navigation and other interaction techniques (Sec-

tion 4.2.3), their behavior in each scene offers insights into their preferences. Figure 4.8

shows the distribution of task time per interaction technique. Participants’ heads were

tracked during the entire experiment, and translating and rotating camera refer to head

movements. We sampled every 2 seconds and determined a threshold of 0.1m for trans-

lation and 30° for rotation.

Results suggest that participants interacted more in the Small Multiples scene,

where the design and the composite interactions over grid and cells induced the longest

times. Interaction time was similar between Overlaid Trails and Mixed scene, while
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Figure 4.7 – Partial Correctness (in %) for each task with multiple answers: mean correctness
(left) and pairwise comparisons for each visualization (right). S = Small Multiple, O = Overlaid
Trails and A = Animation. Evidence of differences are marked with *. Thick error bars represent
95% Bootstrap CIs, while thin error bars are conservative 99% (the further away from 0 and the

tighter the CI, the stronger the evidence).

Partial Correctness

Source: The author

Mixed scene resulted in longer navigation times due to multiple visualizations, and the

participants interacted more, grabbing Overlaid Trails using Virtual Hand. The Animation

scene shows the lowest interactivity since the participants only follow the points transition

during the automated loop.

Figure 4.8 also shows that participants used more the grab interaction in Overlaid

scene than others. The overlaying trails and points lead the participants to make rotations

using virtual hand more than with the ray casting. Targeting 3D small points (Figure 4.1)

at a distance using ray is difficult; for this reason, participants preferred to interact with

shelves and cells using rays and virtual hands to choose responses. Rotating camera is

mostly used in the mixed scene because participants checked the points selected across

coordinated visualizations, resulting in more confidence (Figure 4.9). Scale interaction
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Figure 4.8 – Distribution of task time per interactions for each task in each scene condition,
where time (x-axis) is in minutes. Each interaction technique is encoded in a different color.

Source: The author

times are short (<0.9m using finger and <0.6m using ray by task), practically indistin-

guishable. Overlaid Trails is the most scaled among all scenes, and participants scaled

this chart more for finding small changes on overlaid points (Task 2). Furthermore,

comparing two dimensions tasks present different results between them in mixed scene,

while Task 1 was the most interactive of all, Task 6 was one of the lesser ones. Also, Task

7 had the lowest interactivity for Animation and Small Multiples, while Task 4 had the

lowest for Overlaid Trails and Mixed scene.

4.4.4 Results from Questionnaires

4.4.4.1 Self-reported confidence and ease of use

The participants were asked about their confidence in the responses and the visu-

alization’s ease of use after each scene during the experiment. The mean ratings along

with CIs on a Likert scale from 1 (low) to 5 (high) concerning these measures are shown

in Figure 4.9. Participants reported they were more confident in their responses in the

mixed scene than in single-technique scenes (Animation, Overlaid Trails, and Small Mul-

tiples). Regarding the ease of use, mixed scene was also the most well-rated, followed by

Overlaid Trails and Animation. Small Multiples is the less rated with strong evidence that
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the overload of interactions contributed to these results.

Figure 4.9 – Subjective results rating from 1 (low) to 5 (high) for S = Small Multiple, O =
Overlaid Trails, A = Animation and M = Mixed scene. Evidence of differences are marked with
*. Thick error bars represent 95% CIs, while thin error bars are conservative 99% (the further

away from 0 and the tighter the CI, the stronger the evidence).

Source:The author

Figure 4.10-left shows the distribution of response points across different visu-

alizations. Some participants selected the response in different visualizations more than

one time. We report the last selection as the answer with the most confidence. It is clear

that Overlaid Trails is the visual technique with more preference. We were surprised to

see the choice of the Overlaid Trails technique in Task 2 because the overlaying trails +

points would induce to prefer the other techniques.

4.4.4.2 Secondary measures results

The System Usability Score (SUS) of the VR system (including tutorial, training,

and experimental session) was calculated from UMUX-lite (LEWIS; UTESCH; MAHER,

2013) and ranged from 60.82 to 87.90 (M = 74.66, SD = 6.75), which corresponds to

“Good”(BANGOR; KORTUM; MILLER, 2009). Also, the long duration of the experi-

ment demanded to analyze sickness incidences. The pre and post-VR Simulator Sickness

scores widely adopted in VR researches (Bimberg; Weissker; Kulik, 2020) measured

through SSQ showed that there is no evidence of differences. Furthermore, we calculated

the average delta 4.06, which is considered negligible (KENNEDY et al., 2003).

Finally, participants rated the visualization technique preference (Figure 4.10-

Center). Most participants rated Overlaid as their first choice (66.66%), followed by

Animation (33.33%). Only two participants rated Small Multiples as their first choice.
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Figure 4.10 – (Left) Distribution of answers across the different visualizations in Mixed Scene,
number of task’s answers limited by red line. (Center) Distribution of rating choice across the
different visualization techniques. (Right-up) Mean Cybersickness score evaluated before (B)

and after (A) the experiment. (Right-down) Pairwise comparisons, where thick error bars
represent 95% CIs, while thin error bars are conservative 99%.

Source: The author

4.5 Discussion

Given the lack of studies about the effectiveness of animation techniques for

exploring data visualization in immersive environments, our study compared 3 differ-

ent scatterplot variants (Animation, Overlaid Trails, and Small Multiples) for analyzing

trends in immersive environments. We replicated the majority of features from Brehmer

et al.’s and Robertson et al.’s studies (BREHMER et al., 2019; ROBERTSON et al., 2008),

which focused on mobile phones and large displays settings. Given the differences be-

tween our design and theirs, the results cannot be directly compared, but we discuss our

findings in the light of their results when possible.

4.5.1 Contrasting Tasks

The Overlaid Trails showed completion time faster overall, followed by Anima-

tion and Small Multiples, with results statistically different from previous studies where

Animation was the slowest. The accuracy was task-dependent: results from tasks requir-

ing the analyses of three dimensions were less accurate. Also, for 3D tasks, there is insuf-

ficient evidence of differences across visualizations, contrasting with 1D-2D tasks, which

showed differences. Notoriously, Small Multiples had disadvantages in our experiment.

The desire to provide the same interaction techniques in each visualization produced an

overload for Small Multiples, and consequently, long time to perform the tasks and a low
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score in the subjective questionnaires.

As for individual tasks, Animation was faster only in 2 tasks, while Small Mul-

tiples was slower in 6 tasks. Tasks 1 and 6 were the easiest ones (Comparing two di-

mensions), with Task 1 showing a ceiling effect. Brehmer et al.’s study also had a ceiling

effect for Task 6 but not for Task 1. We infer that our immersive design helped to identify

targets from their distractors in slope comparison. Results from finding trend in two

dimensions showed task dependency: for Task 3, Overlaid Trails was the most accurate,

while in Task 8, Small Multiples was the more accurate, opposite to Task 9, where the

accuracy was low. These results contrast with Brehmer et al.’s findings. We infer that

distinguishing a "slight movement" from distractors in 3D visualizations was more diffi-

cult to perceive, possibly due to depth. As for finding long trails, Task 5 showed Small

Multiples as the most accurate, similar to Brehmer et al. However, Task 11 involves com-

paring three dimensions, where the participants suffered to complete all three responses

correctly. We noted that the participants did not measure the length of reversal trails,

which was probably the most important reason that the results had insufficient evidence

of differences. Participants were most accurate for the tasks of finding reversal trails

(Task 4 and 7), similar to Brehmer et al.’s study. The behavior of targets and distractors

moving in the same direction initially but later moving in a markedly different direction

is easily perceived in 3D charts. For the task of finding small change on overlaid points,

Overlaid Trails is less accurate as we expected. Similar accuracy is obtained between

Animation and Small Multiples: the accuracy proportion was larger than half, different

from Brehmer et al. We infer that immersive environments improve identifying trends on

overlaid points. Finding similar trends involved three dimensions and was the most diffi-

cult. Participants lost trails’ tracking, and although we decided to ask for similar changes

to avoid overload of conditions, some of them commented confusion about the “similar

change” expression. The poor performance of three-dimensional trend tasks entails the

need for finding better interaction techniques.

4.5.2 Implications from Design

The design of effective visualizations for immersive environments still requires

experimental studies. In comparison to previous studies (ROBERTSON et al., 2008;

BREHMER et al., 2019), where the visualizations have similar designs, ours differ. While

Animation and Overlaid Trails have a similar design by the space volume, the shelf struc-
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ture of Small Multiples demands small markers, and one can interact either within the cell

or shelf, which resulted in notable differences in the subjective preferences and comple-

tion time. In addition, the major problem lies in the cell comparison; when the participants

took far to view all the shelves, the trail thickness was not distinguishable. Consequently,

they demanded more effort navigating. Figure 4.8 shows the translating camera and vir-

tual movement are notably higher on Small Multiples than others. Nonetheless, Small

Multiples allowed properly to find trends in each scene despite demanding the longest

interaction times. Accuracy results did not differ greatly from the other techniques. Also,

it shows notable advantages on finding small change on overlaid points and absolute

accuracy on finding reversal trails using two dimensions.

When comparing Animation and Overlaid Trails, the continuous animation loop

resulted in participants taking more time than with Overlaid Trails. The difficulty of

tracking points probably required more attention, and therefore participants preferred the

static version (Figure 4.10-left) and found it easier to use (Figure 4.9-bottom). It is worth

noting that the interaction techniques differ from Robertson et al.’s experiment, where

participants could use a time slider control and performed better in Animation than in

static charts (Overlaid Trails and Small Multiples).

Regarding trails, thickness is important to achieve good performance. We ob-

served some participants had difficulties following the trail when they were far from the

scene. Small Multiples design has this problem, and also reading the axis labels demanded

more interaction. Some participants wanted to interact with the trails, similar to the tran-

sition detail when the bubble moves. Also, they commented on the interest of observing

the details on a specific point of the trail.

The Mixed scene was considered the most engaging and accurate visualization.

We left this scene out of our quantitative analyses because it was performed after the

three other scenes and might have a learning effect. However, the SUS score, confidence

results (Figure 4.9), and comments from the participants demonstrate that our multiple

visualizations design does not lead to cognitive overload (BALDONADO; WOODRUFF;

KUCHINSKY, 2000). A typical user behavior we observed was the validation of the re-

sponse using other techniques. Participants used commonly Overlaid Trails to select the

data (Figure 4.10) but made a previous verification of their choice with the other views.

This finding opens opportunities to novel strategies to support tasks that demand multiple

views, how to combine them in an immersive environment, and different ways of control-

ling multiple interactions and navigation techniques (CHEN et al., 2020; ROBERTS et
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al., 2021).

Concerning interaction, our experiment would not have been successful without

the multiple interactive techniques we implemented. The ray and virtual hand modes op-

erated harmoniously throughout the experiment, the same for the navigation techniques.

We observed the finger gesture to switch mode was quickly assimilated by participants.

Also, each action shared the same button distribution in the two modes (Figure 4.2), which

afforded intuitive learning.

Indeed, long-term experimental produces fatigue implications on virtual environ-

ments (MURATA; MIYOSHI, 2000). We tried to avoid such implications affecting the

results, inviting participants to rest at the end of each scene. Only four out of 18 partic-

ipants decided not to rest; they had previous experience using VR devices. In addition,

our study did not prevent the experiment from being carried out either standing or sit-

ting because previous works (MURATA; MIYOSHI, 2000) concluded that some hours

of immersion in a VR environment reduce postural control psychologically and physio-

logically. Finally, we were not notified of any high implications during the experiment,

validating our design experiment, this being represented on the Cybersickness score (Sec-

tion 4.4.4.2).
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5 CONCLUSIONS AND FUTURE WORK

In this work, in an effort to address some of the challenges of Immersive Analyt-

ics reported in Table 2.1, we developed and evaluated an approach for interacting with

multiple coordinated views that shows 3D visualizations in immersive environments. Our

approach uses a virtual cube as a 3D-WIMP version – we call it Space, for encapsulating

each view, and two modes of interaction with the views: the macro mode for interact-

ing with the Spaces, and the micro mode for interacting with the data displayed in the

Space. Also, we improved the approach including two strategies: virtual hand and ray

casting, which allow near and far interaction, respectively. Additionally, we included a

walk and virtual navigation highly recommended in VR applications. As reported in this

dissertation, we proceeded in two phases:

1. First, we explored multiple coordinated three-dimensional views, assessing per-

formance during composed tasks, usability, interaction techniques, and interaction

modes (Chapter 3, (QUIJANO-CHAVEZ; NEDEL; FREITAS, 2021a)). During that

phase, we designed the main idea of our approach where the user can grab, move

and clone any virtual cube containers (Spaces) with visualizations inside them, al-

lowing composite patterns.

2. Secondly, we applied the knowledge obtained from the first phase to improve our

approach and assess the effectiveness of three 3D scatterplot variants (Animation,

Overlaid Trails, and Small Multiples) for analyzing trends in immersive environ-

ments (Chapter 4, (QUIJANO-CHAVEZ; NEDEL; FREITAS, submitted).

The development of the Spaces approach required us to address several aspects,

which we did based on previous studies:

1. Developing techniques for using multiple views in VR is a challenge because they

require more complex control of interaction techniques (KNUDSEN; CARPEN-

DALE, 2017).

2. There is a need for interaction methods capable of achieving the functionalities of

the predominant WIMP (windows, icons, menus, pointer) used for visual analysis

tasks (LEE et al., 2012).

3. Some experiments performed with FiberClay (HURTER et al., 2019) for exploring

trajectories allowed the authors to report suggestions for improving the user expe-
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rience in VR environments with multiple views, such as: avoid 2D graphical user

interface components, limit the number of interaction modes, facilitate the naviga-

tion, and preferential use of one primary view.

4. Another studies, like the one by Yang et al. (2020), suggested the implementation

of multiple navigation methods to suit different room sizes, allowing smooth exper-

imentation remotely.

5. Wagner, Stuerzlinger and Nedel (2021) showed that integrating different modes of

interaction (far and near) are not only helpful but necessary for IA to overcome the

limitations of specific input methods.

Furthermore, in our second user experiment, we extended a sequel of studies about

the performance between animated and static 2D scatterplot variants in large and small

displays for analyzing trends. Besides 3D visualizations, our experiment design included

features for far and near interactions and walk and virtual navigation for comparison tasks,

different from previous works. Also, we designed a fourth scene to evaluate multiple

views for trend analysis scenarios. Our findings show the value of interaction due to the

potential insights it brings into the users’ decisions.

5.1 Future work

Research on immersive interactive visualization is still an emerging field. As fu-

ture work, we would like to conduct an extensive experimental study involving a more

complex use case involving different visualization techniques and employing the over-

loading and integration CVVs patterns with the support of expert participants. Consider-

ing that expert users in visualization are not necessarily familiar with immersive VR and

the use of the proprioception in virtual environments, we will also extend the training to

motivate them better to explore the real environment and their body movements.

Moreover, since we extended the Small Multiples study by Liu et al. (2020) using

it in our mixed scene, future work can evaluate animated small multiples. Furthermore,

future studies could include interactive tools for annotating visualizations since this would

facilitate identifying trends that involve 3D comparisons. Also, tools for scrolling time

while keeping track of data points would help to identify trends in large datasets.

Finally, we encourage more studies of alternative proposals to our approach that

provide more results that can be used as baselines and cover more visual analytics studies.
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APPENDIX A — UMA ABORDAGEM IMERSIVA PARA EXPLORAR

MÚLTIPLAS VISUALIZAÇÕES 3D COORDENADAS EM AMBIENTES

VIRTUAIS IMERSIVOS

A.1 Introdução

A quantidade de dados gerados constantemente excede nossa capacidade de analisá-

los. Visual Analytics (VA) visa ajudar a atender a necessidade de técnicas flexíveis,

precisas e diretas para tais tarefas de análise (THOMAS; COOK, 2005). Esta área é

baseada em visualização de informação onde podemos encontrar visualizações mostradas

em telas convencionais (por exemplo, monitores, telas grandes, telefones celulares, etc.)

que são amplamente utilizadas no dia-a-dia. Também as visualizações podem ser exibidas

em tecnologias imersivas como os head-mounted displays (HMDs) que permite interagir

em ambientes de realidade virtual e aumentada (VR/AR). Essas tecnologias imersivas

fornecem uma experiência diferente, pois permitem que os analistas fiquem imersos nos

dados (MOH, 2018) permitindo experiencias mais reais.

Por outro lado, visualizações de dados em 3D podem oferecer vantagens em diver-

sos contextos, especialmente quando a análise de dados requer a compreensão da estru-

tura geométrica tridimensional de objetos ou sua localização em cenas 3D (MUNZNER,

2014). Os estudos de visualizações 3D em ambientes imersivos constituem a emergente

área denominada de Immersive Analytics (CHANDLER et al., 2015).

A complexidade e o volume dos dados tornam mais difícil o desenho de repre-

sentações visuais e motivam o uso de múltiplas vistas (BALDONADO; WOODRUFF;

KUCHINSKY, 2000). Dependendo dos dados, o uso de múltiplas visualizações 2D em

monitores convencionais pode exigir o uso de configurações mais complexas como, por

exemplo, os wall-displays, formados por múltiplas telas. Enquanto as visualizações 3D,

as configurações convencionais pode não garantir uma ferramenta útil. Estudos anteriores

em múltiplas visualizações 3D mostraram que as interações em monitores convencionais

não atendem aos critérios de usabilidade (SANTOS; GROS, 2002). Essa falta de usabil-

idade pode ser superada se a exploração dos dados acontecer em ambientes imersivos,

onde o usuário tem um grau extra de liberdade (GREFFARD; PICAROUGNE; KUNTZ,

2014).

Dada a motivação, o trabalho teve como objetivo geral desenvolver e avaliar uma

abordagem útil para interagir com múltiplas visualizações coordenadas que exibem visu-
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alizações 3D. Nossa técnica usa um cubo virtual como uma versão WIMP 3D, denom-

inada Space e inspirada no trabalho de Mahmood et al. (2018), para encapsular cada

visualização e oferece dois modos de interação: o modo macro, para interagir com os

Spaces, e o modo micro para interagir com os dados exibidos em cada Space.

A.2 Trabalhos Relacionados

Há um conjunto grande de trabalhos relevantes relacionados ao trabalho, começando

com os estudos em Immersive Analytics (ENS et al., 2021; CRUZ-NEIRA; SANDIN;

DEFANTI, 1993; FEBRETTI et al., 2013; BACH et al., 2017; CORDEIL et al., 2016;

FONNET; PRIé, 2021), seguido por Multiple Coordinated Views (ROBERTS, 2007;

BALDONADO; WOODRUFF; KUCHINSKY, 2000; SANDSTROM; HENZE; LEVIT,

2003; SCHERR, 2008; JAVED; ELMQVIST, 2012a) e seu uso em ambientes imersivos

(KNUDSEN; CARPENDALE, 2017), usando wall-displays (FEBRETTI et al., 2014;

LANGNER; KISTER; DACHSELT, 2019; SU; PERRY; DASARI, 2019) ou tecnologias

totalmente imersivas AR/VR (MAHMOOD et al., 2018; CORDEIL et al., 2017; BATCH

et al., 2019; JOHNSON et al., 2019; LIU et al., 2020; PROUZEAU et al., 2019b; SATRI-

ADI et al., 2020; LEE et al., 2021).

Esses trabalhos nos motivaram a descobrir a idéia central de pesquisa. Além disso,

para fornecer compatibilidade com qualquer técnica de visualização, decidimos explorar

a análise de tendências em séries temporais, porque é uma aplicação relevante e ainda

não estudada na área de Immersive Analytics. Assim, foi dada seqüência a dois estudos

encontrados na literatura que exploram variantes de scatterplots para análise de tendência

(ROBERTSON et al., 2008; BREHMER et al., 2019). Foram estudadas as variantes de

scatterplot existentes usadas em Immersive Analytics (ONORATI et al., 2018; BACH

et al., 2017; CORDEIL et al., 2017; FONNET et al., 2018; WAGNER-FILHO et al.,

2018; PROUZEAU et al., 2019a; YANG et al., 2020), e a visualização de tendências

em ambientes imersivos (CORDEIL et al., 2017; BATCH et al., 2019; KLOIBER et al.,

2020).
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A.3 Uma abordagem imersiva para explorar múltiplas visualizações 3D coordenadas

Num primeiro estudo apresentamos nossa abordagem para exibir múltiplas visu-

alizações coordenadas que contém visualizações 3D. A abordagem usa um cubo virtual,

uma versão WIMP 3D, chamada Space. Dado que WIMPs 3D semelhantes podem tam-

bém ser exibidas em monitores 2D, neste primeiro estudo desenvolvemos uma versão

similar em desktop para compará-la com nossa abordagem de Spaces em VR. Formu-

lamos hipóteses inspiradas nos problemas descritos nos estudos de múltiplas visões co-

ordenadas relatados na literatura. Em seguida, conduzimos um estudo de usuário com

19 participantes. Nossos resultados mostram que a versão Desktop não é significativa-

mente melhor do que a versão VR em termos de tempo e precisão, apesar de usar a

abordagem FPS padrão com teclado e mouse. Múltiplas visualizações 3D de dados não

são normalmente usadas em versões Desktop, e esse pode ser o motivo dos resultados

não significativos. Os resultados subjetivos mostram que nossa abordagem em VR é sig-

nificativamente melhor do que a versão Desktop. Inferimos que os participantes não são

capazes de explorar múltiplas visualizações 3D com dispositivos de interação comuns em

desktop.

A.4 Comparando Variantes de scatterplots para Visualização de Tendências Tempo-

rais em Ambientes Virtuais Imersivos

Nesse segundo estudo avaliamos a eficácia das variantes scatterplots 3D em tare-

fas de análise de tendências usando realidade virtual e interação 3D. A abordagem Space

foi melhorada para incluir interações adicionais com diferentes técnicas de visualização.

As técnicas de visualização utilizadas são Small Multiples, Overlaid Trails (versões es-

táticas) e Animation (versão animada). Independentemente da diversidade de contextos

em que elas foram comparadas em displays 2D, não encontramos na literatura estudos

sobre a eficácia dessas técnicas em ambientes imersivos. Então, conduzimos um estudo

com usuários comparando a execução de tarefas específicas com cada técnica de visual-

ização em relação ao tempo, precisão e preferências subjetivas. Além disso, incluímos

uma cena com todas as três técnicas de visualização como a última fase do experimento

para analisar as escolhas e preferências do usuário. Os resultados mostram que Over-

laid Trails apresentam o melhor desempenho geral. No entanto, a precisão depende da

tarefa e quando a tarefa requer análise de tendência usando as três dimensões, a precisão
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é inferior. Nossos resultados também mostram o valor da interação devido aos insights

proporcionados pela interação nas decisões dos usuários.

A.5 Conclusão e Trabalhos Futuros

Neste trabalho, em um esforço para explorar os desafios de sistemas de ImmersiveAnalytics,

o objetivo foi desenvolver e avaliar uma abordagem útil para interagir com múltiplas visu-

alizações coordenadas que mostram visualizações 3D e ambientes imersivos. Conforme

relatado, procedemos em duas fases:

1. Em primeiro lugar, exploramos múltiplas visualizações coordenadas tridimension-

ais, avaliando o desempenho durante tarefas compostas, usabilidade, técnicas de in-

teração e modos de interação. Durante essa fase, foi desenvolvida a ideia principal

da abordagem onde o usuário pode pegar as visualizações dentro de um contêiner

(Space), permitindo padrões de visualizações coordenadas compostas (CCVs).

2. e, em segundo lugar, aplicamos o conhecimento produzido na primeira fase para

melhorar a abordagem, incluindo outras técnicas de interação, e avaliar a eficácia

de três variantes de scatterplots 3D (Animation, Overlaid Trails e Small Multiples)

para analisar tendências em ambientes imersivos.

Como trabalhos futuros, seria interessante realizar um extenso estudo experimen-

tal envolvendo um caso de uso mais complexo com diferentes técnicas de visualização e

empregando outros padrões de CCVs com a participação de especialistas de domínio.

Adicionalmente, como estendemos o estudo de Small Multiples de Liu et al.

(2020), trabalhos futuros podem avaliar Small Multiples animados. Além disso, estu-

dos futuros podem incluir ferramentas interativas para anotações dentro das visualiza-

ções, pois isso facilitaria a identificação de tendências que envolvem comparações em

3D. Também, ferramentas para filtrar períodos de tempo nas visualizações de séries tem-

porais ajudariam a identificar tendências em grandes conjuntos de dados.

Finalmente, são necessárias propostas alternativas de visualizações coordenadas

em ambientes imersivos que forneçam resultados que possam ser usados como linhas de

base para outros estudos em ImmersiveAnalytics.
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