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Abstract: Soil heat flux (G) is an important component for the closure of the surface energy balance
(SEB) and the estimation of evapotranspiration (ET) by remote sensing algorithms. Over the last
decades, efforts have been focused on parameterizing empirical models for G prediction, based on
biophysical parameters estimated by remote sensing. However, due to the existing models’ empirical
nature and the restricted conditions in which they were developed, using these models in large-scale
applications may lead to significant errors. Thus, the objective of this study was to assess the ability
of the artificial neural network (ANN) to predict mid-morning G using extensive remote sensing
and meteorological reanalysis data over a broad range of climates and land covers in South America.
Surface temperature (Ts), albedo (α), and enhanced vegetation index (EVI), obtained from a moderate
resolution imaging spectroradiometer (MODIS), and net radiation (Rn) from the global land data
assimilation system 2.1 (GLDAS 2.1) product, were used as inputs. The ANN’s predictions were
validated against measurements obtained by 23 flux towers over multiple land cover types in South
America, and their performance was compared to that of existing and commonly used models. The
Jackson et al. (1987) and Bastiaanssen (1995) G prediction models were calibrated using the flux
tower data for quadratic errors minimization. The ANN outperformed existing models, with mean
absolute error (MAE) reductions of 43% and 36%, respectively. Additionally, the inclusion of land
cover information as an input in the ANN reduced MAE by 22%. This study indicates that the ANN’s
structure is more suited for large-scale G prediction than existing models, which can potentially
refine SEB fluxes and ET estimates in South America.
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1. Introduction

Soil heat flux (G) is one of the main components of the surface energy balance (SEB)
and accounts for the energy transferred to and from the land surface and deeper layers
of the ground [1]. The SEB determines the energy and mass exchanges of the soil-plant-
atmosphere continuum, surface temperature (Ts), the amount of energy available for
evaporation and, ultimately, SEB defines local climate conditions and water availability [2].
Most energy that is transferred into the soil during sunlight hours is transferred back at
night. Thus, G in vegetated surfaces is generally the smallest of the SEB fluxes and has been
neglected in daily considerations of the SEB with some success [3,4]. However, significant
energy transfers occur both during the day and night, and G’s exclusion from instantaneous
SEB estimations can lead to substantial errors, e.g., mid-morning G (usually between 9 am
and 12 pm) can be as large as sensible heat flux (H) for some land covers [5,6].

Several remote sensing products provide valuable knowledge at different spatiotem-
poral scales to assess land surface and meteorological conditions. Motivated by this
availability, many models were developed to calculate SEB fluxes from the integration of
remote sensing data, mainly focused on actual evapotranspiration (ET) estimation [7–18].
Among them, the SEBAL (surface energy balance algorithm for land) is one of the most used
models around the world [11,12,19–23], with relatively accurate predictions of ET [24–26].

However, the empirical nature of the developed G prediction models usually impli-
cates that their application to conditions other than the ones for which they were developed
(e.g., land cover, climate) may result in large uncertainties [27], suggesting a need for local
calibration for accurate estimations [28,29]. Moreover, errors in G can profoundly decrease
the accuracy of SEB models [1,23,29–32]. To address this limitation, a local calibration can
be applied [21,33], but overall this may be impractical for operational purposes, such as
SEB mapping over large areas. Comparative studies revealed a wide range in models’
performance, especially across different land covers [27,33], and seasonal and regional
biases have been identified, indicating potential issues with model comparisons at the local
scale [27].

To overcome the issue of regional biases when performing a local scale model calibra-
tion/validation, we built a network of flux towers from regional initiatives to represent
the wide-ranging climate and ecosystem diversity of South America [34]. In addition to
the most used flux tower network data compilation [35] from the large-scale biosphere-
atmosphere experiment in the Amazon (LBA-ECO) [36], we also included data from the
SULFLUX (South Brazilian network of surface fluxes and climate change), ONDACBC
(National Observatory of Water and Carbon Dynamics in the Caatinga Biome) [37], and the
PELD Pantanal (long-term ecological research in Pantanal) [38], in conjunction with flux
measurements supported by Brazilian universities, including the UFMT (Federal Univer-
sity of Mato Grosso) [39] and the USP (University of Sao Paulo) [40], funded by national
and regional research agencies. This network encompasses most land covers in South
America, corresponding to over 80% of its area (except for urban, barren, and high altitude
forest land covers) [41], and has been used as validation data for SEB flux estimations via
remote sensing [23,32,33].

An alternative to the existing methods of modeling G is the use of artificial neural
networks (ANNs), which are universal approximators [42] and have been successfully
tested (used or applied) in several hydrological processes and modeling attempts and have
shown better performance than existing conceptual and empirical models [42–48]. ANNs
are computational models analogous to the brain’s biological behavior, simulating its
capabilities of learning and memorizing. The ANN relates input data to specified outputs
through a series of intertwined layers of neurons. The neurons connect and transform
input variables via activation functions. An ANN can be trained by pairing historical data
and calibrating the connections’ synaptic weights to obtain the best relationship between
inputs and outputs [42].

One of the main disadvantages of ANNs is that their structure does not describe
the underlying processes that explain the target variable, thus being labeled as black-
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box models [49]. On the other hand, the empirical origin of the existing models for
instantaneous G prediction also presents the same limitation. With this in mind, ANNs
become an attractive methodology for G prediction. In fact, previous applications of ANNs
for G prediction at the local scale [46,47] have yielded promising results. Considering the
availability of the long time series of measured G, representative of the South American
landscape [34,41], and the readily available remote sensing data, the usage of the ANN
approach for large-scale applications is encouraged as a next step to assess its efficiency in
predicting G.

Therefore, given the diversity of G estimation methods and their limited application
conditions, this paper focuses on assessing the ability of ANNs to predict G over a wide
range of ecosystems in South America, using long-term remote sensing and meteorological
time series, and comparing the ANN’s performance to that of commonly used G models.
With this study, we hope to assist future SEB closure studies and ET estimates with more
accurate estimates of G and consequently H and LE.

2. Materials and Methods
2.1. Study Sites

In this study, data from 23 flux towers were used to calibrate and validate the ANNs,
located in South America. The area surrounding each flux tower was considered one study
site. Table 1 lists the flux towers surrounding land covers and the data acquisition periods,
while Figure 1 displays the location and land cover of the study sites. For simplification
and repeatability, the land covers were grouped into one of five types: forest, irrigated
cropland, cropland, grassland, and savanna.

Table 1. Description of the flux towers used in this study.

Name Land Cover Main Land Cover Available Data Period Source

AFL Rainforest Forest February 2003–March 2004 [39]
BAN Seasonally flooded forest Forest October 2003–December 2006 [50]
BDP Seasonally flooded forest Forest June 2011–August 2015 [39]
BRA Cerrado Savanna January 2011–December 2011 [51]
CAL Cropland (soy) Cropland January 2009–September 2014 [52,53]
CAM Seasonally flooded forest Forest January 2007–January 2009 [38]
CDS Cropland (flooded rice) Irrigated cropland January 2011–December 2014 [54,55]
CMT Irrigated cropland Irrigated cropland September 2015–February 2017 [56]
CSJ Caatinga Savanna April 2019–December 2019 [57]
CST Caatinga Savanna February 2014–March 2020 [55,58]
FEX Pasture Grassland September 2006–March 2010 [39]
FMI Cerrado Savanna April 2009–May2013 [39]
FSN Pasture Grassland March 2002–July 2003 [59]
M34 Tropical forest Forest January 2000–September 2006 [60]
NPW Seasonally flooded forest Forest January 2015–July 2017 [61]
PAL Grassland Grassland September 2013–September 2016 [62]
PAN Cerrado Savanna January 2001–December 2006 [63]
PDG Cerrado Savanna January 2001–December 2006 [64]
PDS Cropland (flooded rice) Irrigated cropland October 2003–March 2004 [65,66]
SIN Transitional forest (cerradão) Forest May2005–October 2008 [39]
S77 Pasture/agriculture Grassland August 2000–November 2005 [67]
S83 Tropical forest Forest June 2000–March 2004 [68]

SMA Grassland Grassland January 2013–December 2016 [62]
USE Cropland (sugarcane) Cropland January 2001–December 2002 [69]
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net radiation (Rn) dataset was acquired from the global land data assimilation system ver-
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PM window. Both satellite and reanalysis products were available from the Google Earth 
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Table 2. Input data description. 

Data Product Spatiotemporal Resolution Source 
Net radiation (Rn) GLDAS 2.1 0.25°/3 h [70] 

Land surface temperature (Ts) MOD11A2.V6 1000 m/1 day [71] 
Albedo (α) MCD43A3.V6 500 m/1 day [72] 

Enhanced vegetation index (EVI) MOD13Q1.V6 250 m/16 days [73] 
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on each flux tower dataset to remove incomplete (gap-filling) data. Rn values 10% lower 
than the five days moving average were discarded to remove cloudy sky data. Finally, G 

Figure 1. Flux tower locations and main land cover types used in this research.

2.2. Input Data

Table 2 shows the input data used in the development of the ANN. Surface temper-
ature (Ts), surface albedo (α), and enhanced vegetation index (EVI) data were obtained
from a moderate resolution imaging spectroradiometer (MODIS) product at daily time
intervals. Given that the training process of ANN requires a large amount of data, the
MODIS products were selected due to their high temporal resolution. MODIS’s image
acquisition (on-board of the Terra satellite) occurs at around 10:30 AM (local time). The
net radiation (Rn) dataset was acquired from the global land data assimilation system
version 2 (GLDAS 2.1) reanalysis product at a 3 h time intervals, averaged for the 9 AM
to 12 PM window. Both satellite and reanalysis products were available from the Google
Earth Engine platform (https://earthengine.google.com/ [Accessed date: 30 June 2020]).

Table 2. Input data description.

Data Product Spatiotemporal Resolution Source

Net radiation (Rn) GLDAS 2.1 0.25◦/3 h [70]
Land surface temperature (Ts) MOD11A2.V6 1000 m/1 day [71]

Albedo (α) MCD43A3.V6 500 m/1 day [72]
Enhanced vegetation index (EVI) MOD13Q1.V6 250 m/16 days [73]

Flux tower data were obtained at hourly and sub-hourly time intervals and were also
resampled and averaged to the 9 AM to 12 PM local time window. A search was executed
on each flux tower dataset to remove incomplete (gap-filling) data. Rn values 10% lower
than the five days moving average were discarded to remove cloudy sky data. Finally, G

https://earthengine.google.com/
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values beyond the range of−50% to 50% of Rn were also removed from the analysis [74–76].
After this filtering procedure, a total of 3778 samples remained available.

Figure 2 displays the correlation plot between the observed G from the flux towers
and the Rn, Ts, EVI, and α datasets. The correlation plots and r values are distinguished by
land cover. Correlation among the input datasets is generally weak, with |r| < 0.50 for
most land covers, where |r| is the absolute value of r. Exceptions (|r| > 0.50) are mainly
found for Ts and Rn on most land covers. The correlation of observed G to input datasets
is also low in general. The correlation plots are useful to identify potentially redundant
inputs of the ANN. Due the low correlation among the variables, it can be assumed that
they may contribute independently to the ANN predictions.
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2.3. ANN’s Structure

Figure 3 displays a generic scheme of the ANNs that were built. The input data
are combined into a series of processing units in the hidden layer, called neurons. These
“hidden” neurons are then connected to an output neuron that converts the hidden layer’s
information into the desired output. In order to transform the data, each neuron passes
the received information through an activation function, such as the bipolar and unipolar
sigmoid functions. The connections between neurons are established by synaptic weights
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(or simply weights), and these, together with the activation functions, determine the
relationship between the input data and the corresponding outputs. The weight values
are defined during the training process. The number of neurons in the hidden layer (m)
determines the ANN complexity and is assessed based on a search process for a network
with the least complexity that still obtains the same performance, with a validation sample,
as an initial network, that is purposefully over-sized [77]. The ANNs were developed with
the most common inputs used in models for G computation [43–47]. This allows for the
assessment of the benefits of using ANNs compared to preexisting models.

The study sites were grouped into different land cover types to consider characteristics
that are difficult to capture from remote sensing data, such as subcanopy vegetation density,
vegetation height, and soil skin temperature. Land cover data were inputted as numerical
data in the ANNs, as follows: 1 for cropland; 2 for irrigated cropland; 3 for forest; 4 for
grassland; and 5 for savanna. The impact of the inclusion of land cover data as an input was
assessed using a comparison of the ANNs with and without the land cover information.
Thus, two networks were generated. From this point on, the two networks will be referred
to as: (i) Gc: an ANN that considers land cover as an input; and (ii) Gnc: an ANN that does
not consider land cover as an input.
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In order to avoid preferential treatment of inputs with different magnitudes, input
and output data were scaled using a normalization procedure, shown by Equation (1):

X′ =
(X− Xbottom)

Xtop − Xbottom
(1)

where X′ is the scaled variable; X is the raw variable; and Xbottom and Xtop are the data
bottom and top limits, respectively. The top and bottom limits were chosen based on
observations of the 23 study sites’ available series and are shown in Table 3. These values
also represent the valid range for applications of the trained ANNs.

Table 3. Data limits used for the scaling procedures presented in Equation (1).

Data Bottom Limit Top Limit

Soil heat flux (G) −20.0 W/m2 200.0 W/m2

Net radiation (Rn) 150.0 W/m2 1000.0 W/m2

Land surface temperature (Ts) 275.0 K 325.0 K
Albedo (α) 0.1 0.5

Enhanced vegetation index
(EVI) −0.1 1.0

Land cover 0.0 6.0
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The developed ANNs are generically represented by Equation (2):

O′ = fo

{
m

∑
i=1

wo,ifh

[
n

∑
j=1

(
wh,i,jX

′
j

)
+ bh,i

]
+ bo

}
(2)

where O′ is the ANN’s output, equivalent to G in its scaled form; n is the number of input
datasets; m is the number of neurons in the hidden layer; wh, bh, fh, wo, bo, and fo are the
synaptic weights (w), biases (b), and activation functions (f) of the hidden (h) and output
(o) layers, respectively.

The unipolar sigmoid function was used as the activation function for both the hidden
and output layers.

2.4. ANN’s Training Process

The ANN’s training consisted of adjusting of the synaptic weights and biases by
minimization of the output error using the backpropagation algorithm [78]. w and b values
were updated using the method presented in [79] and the learning rate was calculated
according to the training acceleration techniques proposed by [80].

The cross-validation method was used to control overfitting. This method consists of
dividing the datasets into three series of similar sizes: a training series, a validation series,
and a verification series. Weight and bias updates occur to reduce the total quadratic error
in the training dataset (St) with each iteration, but the quadratic error in the validation
series (Sv) is also observed. The final values of w and b are the ones that provide the
minimal Sv value. The ANN performance is then assessed for the verification series.

The number of iterations (or cycles) must be sufficient to identify the best iteration
(minimal error). If the best cycle is too close to the end of the network training, it is possible,
and probable, that a better solution could be found if there were more iterations. Thus,
a method for increasing the total number of cycles was applied to the ANN training,
as follows:

A starting minimum of 200,000 cycles was defined;
If the best iteration occurred before the 100,000th cycle, the training was considered

complete. If it happened after, the total number of cycles was doubled, up to 400,000 cycles.
This second step was repeated either until the best cycle was found in the first half

of the training process or until a limit of five duplications was reached, reaching up to
6.4 million iterations. This limit was applied to reduce computational running time and to
avoid infinite loops.

In order to assess the ANN’s complexity, the training process was repeated with the
progressive reduction in the number of neurons in the hidden layer, from a maximum of
12 neurons, until a decrease in its generalization capacity was observed, measured by the
quadratic error in the validation series. The smallest number of neurons that did not yield
a decrease in the network’s generalization capacity was then chosen.

After assessing the ANN’s complexity, the data series division was evaluated, as
recommended by [81]. One-third of the total data was reserved for the verification series.
The remaining data were split into calibration and validation series. The tested split
ratio range was larger than that recommended by [81], because it was noticed that better
predictions of G happened for smaller training datasets. Therefore, a broader range of split
ratios needed to be tested. A sequence of tests between 10/90 and 90/10 was executed to
determine the optimal calibration/validation split ratio. The quadratic error present in the
validation series was used to determine the optimal data division.

Due to the ANN’s empirical nature and the randomness of the initial conditions,
training runs could prematurely stop at a local minimum on the objective function surface.
To avoid this, after each randomization and partitioning of the data series, the cross-
validation process was repeated ten times. Since data randomization was performed
40 times, ANN training was repeated in parallel 400 times for each of the two networks



Remote Sens. 2021, 13, 2337 8 of 17

created. The trained ANNs with the best performance in the validation series were then
used to predict G in the verification data series.

2.5. Performance Assessment and Input Data Contribution Analysis

The ANN’s predictions were assessed against data measured in the flux towers via
a set of statistical indexes, calculated for the validation data series of each of the 40 data
randomizations. The Nash–Sutcliffe coefficient (NS) [82] value in the validation dataset
was used as the criterion for selecting the optimal ANN.

For comparison purposes, G was also estimated by the original and adjusted Jackson
et al. (1987) [83] and Bastiaanssen (1995) [84] equations. Reparameterization was performed
using the minimum quadratic error as the goal function. Table 4 presents the originals and
adjusted equations (for results, see Section 3.2. Models’ performance evaluation), where
Ts is the surface temperature (◦C); α is the surface albedo; and NDVI is the normalized
difference vegetation index.

Table 4. Original Jackson et al. (1987) and Bastiaanssen (1995) equations and adjusted equations calibrated for minimum
quadratic error.

Original Equations Adjusted Equations

Jackson et al. (1987): Jackson et al. (1987):
G = 0.583Rn exp(−2.13·NDVI) G = 0.150Rn exp(−0.89·NDVI)− 34.3

Bastiaanssen (1995): Bastiaanssen (1995):
G = TsRn(0.0038 + 0.0074α)

(
1− 0.98NDVI4

)
G = TsRn(−0.0019 + 0.0106α)

(
1− 1.10NDVI4

)
+ 10.4

The performances of the Gc and Gnc ANNs, and of the Jackson et al. (1987) and
Bastiaanssen (1995) models, were evaluated via the comparison of NS, mean absolute error
(MAE), root-mean-square error (RMSE) [85], bias [86], the slope coefficient (A0) [87], and
the linear correlation coefficient (r) [88], calculated for the verification series. The MAE,
RMSE, and bias metrics were calculated as absolute values and as a percentage of the mean
of the observed verification data series.

The input data sets contribution to the ANNs was calculated by the connection weights
method proposed by [89] and modified by [90]. In this method the relative importance of
the input variable is entirely derived from the synaptic weights of the ANN post-training.

3. Results
3.1. ANN Training Process

The complexity analysis of the ANNs indicated that its performance improves initially
with higher complexity but is stable for complexities greater than four neurons. Therefore,
for security reasons, seven neurons for Gc and five neurons for Gnc were chosen.

After assessing the ANN’s complexity, the optimal dataset training/validation split ratio
was verified, resulting in 748 samples for the training series, 1745 samples for the validation
series, and 1285 samples for the verification series, for both the Gc and the Gnc ANNs. The
synaptic weights of the trained ANNs, as well as the relative importance of each input variable
to each ANN, are available as Supplementary Information (Tables S1–S3).

3.2. Model Performance Evaluation

Performance metrics of the Gc and Gnc ANNs, and the Jackson et al. (1987) and
Bastiaanssen (1995) original and adjusted models, are displayed in Table 5. The adjusted
versions of the Jackson et al. (1987) and Bastiaanssen (1995) models yielded significantly
better performance metrics in relation to the original versions. Given this difference in
performance, the original versions were not further assessed. The ANNs performed better
than the adjusted models, with lower values of MAE and RMSE, and higher NS, A0, and r
values. The Gc ANN yielded the best NS, MAE, RMSE, A0, and r values.
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Table 5. Performance metrics of the Gc and Gnc ANNs, and of the Jackson et al. (1987) and
Bastiaanssen (1995) original and adjusted models.

Metric Gc Gnc
Jackson et al. (1987) Bastiaanssen (1995)

Original Adjusted Original Adjusted

NS 0.53 0.27 −23.11 −0.17 −7.16 0.02
MAE (W/m2) 14.04 18.06 145.66 24.43 84.69 21.78

MAE (%) 56% 70% 603% 101% 351% 90%
RMSE (W/m2) 23.95 28.90 159.15 35.00 92.61 32.00

RMSE (%) 95% 113% 659% 145% 384% 133%
Bias (W/m2) −1.87 −0.82 145.36 1.07 81.73 0.99

Bias (%) −7% −3% 602% 4% 339% 4%
A0 0.52 0.30 0.08 0.01 0.12 0.08
r 0.73 0.53 0.04 0.02 0.12 0.21

3.3. Model Performance by Land Cover

Figure 4 compares the seasonal G in each land cover, given by the flux tower obser-
vations and by the Gc and Gnc ANNs, and the Jackson et al. (1987) and Bastiaanssen
(1995) adjusted models. While forest land cover displays a relatively constant observed
G throughout the year, other land covers present a broader seasonal range and larger
monthly standard deviations (given by shaded areas). Overall, the Gc ANN yielded the
best adherence to the observed G series, showing similar seasonal patterns and standard
deviations, especially in the savanna land cover. On the other hand, the Gnc ANN and the
adjusted models yielded a smaller seasonal range and standard deviation, not adhering to
the observed G series as well as the Gc ANN.
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Figure 5 presents the correlation plots of observed G in the flux towers to the predicted
G by the Gc and Gnc ANNs, and by the Jackson et al. (1987) and Bastiaanssen (1995)
adjusted models, distinguished by land cover. The Gc ANN presents the closest adherence
to the 1:1 relationship line (black line in each plot), as the other methods underestimate
higher values of G. H. A higher correlation was observed for the Gc ANN over savanna
(r = 0.86), followed by grassland (r = 0.49). In contrast, the lowest correlation values were
found over forest (r = 0.22) and irrigated cropland (r = 0.36). The Gnc model yielded a
similar correlation for all land covers, ranging from r = 0.48 over savanna to r = 0.68 over
irrigated cropland. The adjusted Jackson et al. (1987) best and worst performances were
observed for grassland (r = 0.30) and savanna (r = −0.28), respectively. The Bastiaanssen
(1995) adjusted model performed better over savanna (r = 0.38) and cropland (r = 0.29),
and worse over irrigated cropland (r = −0.38) and forest (r = −0.13).
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Figure 6 displays other performance metrics of the neural networks and adjusted
models for each land cover. G predictions over forest yielded generally low NS and A0
values, except for Gnc (NS = 0.70). On the other hand, errors (MAE, RMSE, and bias) were
also lower for forest in comparison to other land covers. Except Gc bias (−0.19 W/m2),
the positive bias yielded by Gnc and the adjusted models indicates an overestimation
of G for forests by models that do not consider land cover as an input. The Gnc ANN
yielded the lowest errors of all models. The models and ANNs performed similarly over
irrigated cropland, cropland, and grassland, being slightly better for grassland and worse
for irrigated cropland. NS and A0 values were low, ranging between −0.89 and 0.41 and
between −0.23 and 0.35, respectively. The MAE ranged between 19.08 and 33.41 W/m2;
RMSE ranged from 27.67 to 42.47 W/m2; and bias between −13.60 and 14.10 W/m2. Over
savanna, the performance of the ANNs and adjusted models differ the most. Gc predictions
yielded NS = 0.72, while the others ranged between −0.33 and 0.01. Errors (MAE and
RMSE) of the Gc and Gnc ANNs were nearly 50% lower than errors from the Jackson et al.
(1987) and Bastiaanssen (1995) adjusted models. A0 values were better for the ANNs as
well, being 0.66 for Gc and 0.41 for Gnc, while the adjusted models ranged between −0.10
and 0.06.
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Some contradictions can be identified between Figures 4 and 5 and Figure 6. Although
higher correlation values are yielded by Gnc in comparison to the Gc ANN, Gc presents
systematic biases of seasonal G values, as well as higher errors (MAE and RMSE) and lower
values of NS and A0. This discrepancy indicates that the correlation coefficient alone can
be misleading as an accuracy metric.
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4. Discussion

Uncertainties in the estimation of SEB fluxes from remote sensing data have motivated
the use of ANNs as an alternative to existing models [91–93], but reference material
regarding the validation of G estimates is still scarce, compared to other SEB fluxes. Table 6
presents the performance metrics of the G predictions via remote sensing presented by some
recent studies. These works used either airborne [14,46,94] or orbiting [23,28,32,33,48,95]
platforms associated with meteorological data to estimate G. Validation occurred via
comparison to flux tower data in one or more land covers. In most studies, the number
of samples was low, ranging between 12 and 698. An exception is the work performed
by [27], with over 100,000 samples. The lowest MAE and RMSE values were found by [14]
in cotton crops, while the highest values were obtained by [32] over forest. Generally, the
highest correlation and lowest error values were obtained with airborne remote sensing
data, which have higher spatial resolutions and are used over more homogenous land
surfaces. This indicates that using remote sensing data with a finer spatial resolution may
better correlate to G measurements.
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Table 6. Compilation of other validation studies of G estimation from remote sensing data.

Source Land Cover Number of Samples MAE (W/m2) RMSE (W/m2) r

[14] Cropland, shrubland, and grassland 620 4.5–41.5 5.4–46.3 0.96–0.97
[23] Savanna and cropland 56 35.0–41.0 - 0.66–0.75
[27] Various 100,234 - 26.9–42.1 0.32–0.46
[32] Forest 12 108.3–108.9 109.3–110.0 -
[33] Croplands and forest 131 - 29.2–45.3 0.06–0.76
[46] Croplands 50 - - 0.73–0.96
[48] Grasslands 67 40.6 43.0 0.70
[94] Grasslands 698 - 23.0–28.0 0.57–0.77
[95] Irrigated cropland and savanna 18 - 13.3 0.90

Compared to the metrics presented in Table 6, the Gc and Gnc ANNs and the
Jackson et al. (1987) and Bastiaanssen (1995) models performed within expectations. How-
ever, unlike other studies, the models’ adjustments and the ANN’s training were performed
for various land covers and a larger data series. This way, correlation values may be lower,
however the resulting models and ANNs provide a higher generalization potential. Over-
all, the MAE and RMSE values of the ANNs and adjusted models in Table 5 reside in the
lower portion of the ranges presented in Table 6.

As in our study, G predictions of the studies from Table 6 showed a lower correlation
in densely forested areas. One possible reason for this is the low variance of observed G in
forests. Another possible reason is that G is dependent on the soil skin temperature, while
remote sensing products provide canopy surface temperature, which can be uncorrelated in
dense vegetation. In fact, [96] verified that, despite the generally high correlation between
soil and canopy temperatures, this relationship is weaker in cloud-free images, when
radiative heating leads to fast changes in canopy temperature while soil temperature
changes slowly. This limitation hinders the improvement of G prediction with orbiting
remote sensors on forests. However, the Gc ANN yielded visibly lower errors (MAE, RMSE,
and bias), indicating the superiority of this method.

The Bastiaanssen (1995) equation provided better G predictions than the Jackson et al.
(1987) model, following observations of [33] and the assumption by [27] that models that
consider Ts outperform those that do not. When compared to the existing models, both
ANNs yielded better performance metrics, with Gc yielding the best predictions and closest
seasonal patterns to those observed in the flux towers. Therefore, the introduction of land
cover as a numerical input has also proved to be effective.

In this study, the optimal training/validation split ratio contrasts with that recom-
mended by [81] (30/70 against 50/50 to 70/30). It is supposed that this difference is a result
of the data set magnitude. As observed by [81], ANN training with large data sets is less
sensitive to partitioning, since there is enough data to support pattern recognition. Thus, a
smaller part of the data can be reserved for the training set.

The Gnc ANN yielded better performance than that of the Bastiaanssen (1995) model,
despite both models using the same input data. This indicates that this ANN’s structure is
more suited for large-scale G estimation. In addition, ANNs can incorporate many more
inputs, potentially achieving better performance. However, including too many inputs
requires expanding the complexity of the network, which causes longer computational
times. The low correlation among the considered input variables (Rn, Ts, EVI, and α)
provides a low redundancy level to the developed ANNs, and each one is essential to the
accurate prediction of G, as also indicated by [46]. The addition of land cover information
complemented the input data series and improved performance without significantly
impacting computational times. In Figure 4, systematic biases were identified for Gnc,
Jackson et al. (1987), and Bastiaanssen (1995). This indicates that existing models’ datasets
do not fully comprehend the dynamics of G, further demonstrating the importance of land
cover as a key factor in G prediction. Thus, additional datasets should be considered in
the future development of models for G prediction. Figure 4 shows that the average value
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and seasonality ranges of G vary significantly between the different land covers. It also
shows that, even though this flux is of small magnitude compared to others of the SEB, it is
not negligible. To the best of our knowledge, this work is one of the first large-scale model
developments for G prediction in South America, comprehending multiple land covers
and climates representative of most South American ecosystems. This work can potentially
improve ET estimates in South America and similar regions worldwide.

5. Conclusions

In this study, ANNs were developed to calculate G via the integration of satellite
remote sensing and meteorological reanalysis data. Compared to that of existing models,
the performance of the generated ANNs was better overall, yielding lower errors and
higher correlation values. This indicates that the ANN’s structure can better approximate
the behavior of G over various land covers and climate conditions.

The inclusion of land cover information into the ANNs as an input improved the
accuracy of the G predictions. The superior performance of the ANNs with land cover
as an input indicates that the commonly used remote sensing data may be insufficient to
fully capture the differences among the surfaces and appropriately predict G. However, it
is recommended to include additional remote sensing datasets in such models, especially
those used in image land cover classification, instead of land cover data. This would
remedy possible issues with the lack of standardization of land cover classification systems.
On the other hand, the addition of input data sets increases the complexity of the ANNs
and may even reduce accuracy. Thus, parsimony is recommended when selecting predictor
data sets.

These findings demonstrate that the developed ANNs can predict G spatiotemporal
variability more accurately than existing models. Despite the limitation of the distribution
of the available flux towers, the wide variety of land covers considered, encompassing
most of South America, and the length of the time series used in the ANN’s training mean
that the developed ANNs also yielded a higher generalization ability than the existing
models. However, the ANN’s accuracy over high altitude and meridional land covers
should also be assessed for greater reliability.

For future studies, we suggest the mapping of G over the whole South America using
the ANNs and a comparison of this to existing global products. The investigation of the
effects of ANN-based G estimates on error reduction of surface energy balance fluxes and
evapotranspiration modelling is also recommended.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13122337/s1, Table S1: Synaptic weights of the trained Gc ANN; Table S2: Synaptic weights
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