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ABSTRACT

The performance of algorithms is often highly sensitive to the values of their pa-
rameters. Therefore, algorithm configuration plays a pivotal role when designing or
adapting algorithms for a given problem domain. Automatic algorithm configuration
methods automate this process, reducing human effort and potential biases involved
in error-prone manual configuration approaches. A more general and ambitious
research field, called automatic algorithm design, applies automatic configuration
methods to select, combine and calibrate algorithm components, producing high-
quality algorithms automatically for different problem domains. Despite the growing
attention and substantial progress made in the last years, there are still open research
directions on understanding, improving and exploring methods for the automatic
design and configuration of algorithms.

We present a comprehensive study on automatic algorithm configuration with the fol-
lowing contributions. First, we improve the efficiency of the automatic configuration
of optimization algorithms. In particular, we propose a set of capping methods that
use previous executions to build a performance envelope, which is used to identify
poor-performing executions and stop them early. These methods considerably reduce
the configuration time without loss of quality. Second, we improve the quality of
automatic algorithm configuration by exploring parameter regression models. In-
stead of searching for parameter values, we calibrate models that set these values
according to the instance size of the instance being solved, leading to expressive
gains in algorithm performance when compared to using fixed configurations. Third,
we provide a visualization tool to analyze and understand the automatic algorithm
configuration process. The visualizations allow to identify different types of flaws
and improve configuration scenarios. Finally, we propose a component-wise heuristic
solver for a general class of binary optimization problems. This solver implements a
set of heuristic components that can be selected and combined to produce complete
algorithms. Given a problem, automatic configuration methods explore this design
space and search for the best heuristic algorithm. We automatically produce new
state-of-the-art algorithms for different binary problems using this solver.

Keywords: Automatic algorithm configuration. Automatic algorithm design. Pa-
rameter tuning. Capping methods. Parameter regression models. Unconstrained
binary quadratic programming.



Configuração Automática de Algoritmos: Métodos e Aplicações

RESUMO

O desempenho de algoritmos está geralmente associado aos valores dos seus parâ-
metros. Portanto, a configuração do algoritmo desempenha um papel fundamental
ao projetar ou adaptar algoritmos para um dado domínio. Métodos de configuração
automática de algoritmos automatizam esse processo, reduzindo o esforço humano e
potenciais vieses envolvidos em abordagens de configuração manuais. Um campo de
pesquisa mais geral e ambicioso, chamado projeto automático de algoritmos, aplica
métodos de configuração automática para selecionar, combinar e calibrar compo-
nentes algorítmicos, produzindo algoritmos de alta qualidade automaticamente para
diferentes problemas. Apesar da crescente atenção e substancial progresso feito nos
últimos anos, ainda existem possibilidades de pesquisa em aberto relacionadas ao en-
tendimento, melhoria e exploração de métodos de projeto e configuração automáticos
de algoritmos.

Este trabalho apresenta um estudo abrangente sobre configuração automática de
algoritmos com as seguintes contribuições. Primeiro, melhora-se a eficiência da
configuração automática de algoritmos de otimização. Em particular, são propostos
métodos de poda que usam execuções prévias para construir um envelope de desempe-
nho, o qual é usado para identificar execuções de baixo desempenho e interrompê-las
antecipadamente. Esses métodos reduzem consideravelmente o tempo de configuração
sem perda de qualidade. Segundo, melhora-se a qualidade da configuração automática
de algoritmos explorando modelos de regressão de parâmetros. Em vez de buscar
por valores de parâmetros, são calibrados modelos que determinam esses valores de
acordo com o tamanho da instância a ser resolvida, levando a um ganho expressivo
no desempenho dos algoritmos quando comparado ao uso de configurações fixas.
Terceiro, este trabalho disponibiliza uma ferramenta de visualização para analisar
e entender o processo de configuração automática de algoritmos. As visualizações
permitem identificar diferentes tipos de falhas e melhorar cenários de configuração.
Finalmente, este trabalho propõe um solver heurístico baseado em componentes
para a classe geral de problemas binários de otimização. Esse solver implementa um
conjunto de componentes heurísticos que podem ser selecionados e combinados para
a produção de algoritmos completos. Dado um problema, métodos de configuração
automática exploram esse espaço de componentes e buscam pelo melhor algoritmo



heurístico. Foram produzidos novos algoritmos no estado-da-arte para diferentes
problemas binários usando esse solver.

Palavras-chave: Configuração automática de algoritmos, projeto automático de
algoritmos, ajuste de parâmetros, métodos de poda, modelos de regressão de parâ-
metros, programação quadrática binária irrestrita.
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1 INTRODUCTION

We ourselves feel that what we are doing is just a drop
in the ocean. But the ocean would be less because of
that missing drop.

— Saint Teresa of Calcutta

In computer science, we design algorithms to solve a wide range of problems.
We classify these problems in two main groups. Decision problems ask for a yes/no
answer, e.g. determining whether it is possible to allocate forty-eight talks, each one
with its predefined duration, to the eleven rooms available for the school event on
Saturday morning. Instead, if we want to determine the allocation that uses the
smallest number of rooms, we have an optimization problem. In this second type of
problem, a measure of cost (or quality) indicates how good a solution is, and the goal
is to find a best one, which is called an optimal solution. The search for the shortest
route between two points is another example of optimization problem, where the
cost of a route is simply its total distance and the optimal solution is the route with
smallest distance.

The computational algorithms that manage and solve these problems are
called exact (or optimal), when they guarantee finding the right answer for a decision
problem, or an optimal solution in case of an optimization problem. For some
optimization problems, exact algorithms take fast-growing time with respect to
problem size and their use becomes impractical as problem size grows. To deal with
these cases, (meta)heuristic algorithms apply (usually stochastic) search techniques
to systematically explore the solution space and produce high-quality solutions in
reasonable time, but there is no optimality or any approximation guarantee1.

The progress of computer science relies on the advancement of these algorithms,
either by developing new ones, improving existing algorithms, or adapting them to
new problem domains. In such an algorithm design process, the developer must
identify, from a wide range of possibilities, higher-level algorithmic strategies that
perform well on the specific domain of interest. Then, he must decide over several
lower-level choices regarding the internal behavior of such strategies to produce a
complete algorithm. Some of these higher- and lower-level choices are left to the

1For some problems, there are also approximation algorithms, which explore the problem
structure and guarantee a bound on the solution cost related to the cost of the optimal solution.
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users as input parameters, allowing them to adapt the algorithm to new problems
and get optimized performance on different domains. For example, the exact solver
SCIP (ACHTERBERG, 2009) for mixed-integer programming has more than 2500
parameters2 in its current version 7.0.2.

In this context, a parameter configuration is a valid assignment of values to the
input parameters of an algorithm, and algorithm configuration is the search for the
best parameter configurations. In general, configuring an algorithm involves testing
several parameter configurations on different problem instances, in order to find those
configurations that optimize the algorithm performance on the instances of interest.
Therefore, algorithm configuration is a tedious and time-consuming process that
usually takes a considerable effort from the researcher. Besides that, it is advisable
to know the internal details of the algorithm to select promising combinations
of parameter values to test. Even so, several configurations can be left out and
the process is usually biased and non-replicable. Although using the algorithm’s
default configurations could avoid these complications, substantial performance
improvements are usually observed when choosing appropriate parameter values
relative to the specific problem domain or execution conditions (e.g. termination
criteria). This emphasizes the importance of the algorithm configuration.

Automatic algorithm configuration is an alternative to this manual process and
alleviate the aforementioned problems. Many tools, called configurators, have been
proposed in the last years. They apply techniques specially designed for configuring
algorithms, including heuristic search (HUTTER et al., 2009b; ANSÓTEGUI; SELL-
MANN; TIERNEY, 2009), model-based optimization (HUTTER; HOOS; LEYTON-
BROWN, 2011), and racing algorithms (BALAPRAKASH; BIRATTARI; STÜTZLE,
2007; LÓPEZ-IBÁÑEZ et al., 2016). Such configurators have shown to be useful
in improving the performance of existing algorithms by finding good configurations
in several domains, like exact mathematical solvers (HUTTER; HOOS; LEYTON-
BROWN, 2010; LÓPEZ-IBÁÑEZ; STÜTZLE, 2014), compilers (PÉREZ CÁCERES
et al., 2017), decision algorithms (HOOS; HUTTER; LEYTON-BROWN, 2021) and
optimization algorithms (YARIMCAM et al., 2014; PÉREZ CÁCERES; LÓPEZ-
IBÁÑEZ; STÜTZLE, 2015). For example, Hutter, Hoos and Leyton-Brown (2010)
report speed ups of exact mathematical solvers for mixed-integer programming up
to a factor of 153, in comparison to default configurations.

2For a complete list of SCIP parameters see: https://www.scipopt.org/doc-7.0.2/html/
PARAMETERS.php.

https://www.scipopt.org/doc-7.0.2/html/PARAMETERS.php
https://www.scipopt.org/doc-7.0.2/html/PARAMETERS.php
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A more advanced use of such configurators is applying them to automate
the whole algorithm design process. Instead of focusing on configuring the input
parameters of a predefined algorithm, we define a set of algorithm components
that can be combined to produce different and hybrid complete algorithms. We
then apply a configurator to automatically explore the design space of components
and search for the best algorithms for a problem domain. This approach is called
automatic algorithm design and has produced state-of-the-art algorithms for different
domains. Some examples include the automatic design of boolean satisfiability
solvers (KHUDABUKHSH et al., 2016), stochastic local searches for permutation
flowshop problems (MARMION et al., 2013; PAGNOZZI; STÜTZLE, 2019), and evo-
lutionary algorithms for multi-objective optimization (BEZERRA; LÓPEZ-IBÁÑEZ;
STÜTZLE, 2014a; BEZERRA; LÓPEZ-IBÁÑEZ; STÜTZLE, 2020b).

1.1 Motivation and Scope

Automatic configuration methods have been shown to be important both for
configuring parameters of an existing algorithm and for automatically designing new
ones. Automatic approaches improve the algorithm design process and contribute
to the field in different ways by: (i) freeing researchers and practitioners from the
tedious and time-consuming task of testing different algorithm configurations, which
allows them to focus on creativity-related tasks, such as the development of new
algorithm components; (ii) removing a potential bias from the configuration process,
e.g. by better covering the configuration space when selecting parameter values to
test; (iii) making it easier to design entirely new or adapt existing algorithms to
new problem domains, even for users with no expert knowledge; (iv) allowing a fair
evaluation and comparison of different algorithms; and (v) supporting the analysis of
algorithms and problem domains by providing useful information about the algorithm
performance on different problem instances and under different configurations.

Despite the recent efforts to understand and develop automatic techniques for
algorithm configuration, there are still several open research directions related to the
improvement of such methods. Given the wide applicability of automatic algorithm
configuration to build and improve algorithms, the advancement of these methods
contributes directly to the progress of various related research fields. In this work,
we study the automatic configuration of algorithms and propose a set of methods to
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improve and better understand the configuration process, as well as applications for
designing algorithms automatically. In this sense, this work has four objectives:

Objective 1.
Increase efficiency in the automatic configuration of optimization algorithms.

When configuring algorithms with the objective of minimizing their running
time, most state-of-the-art configurators implement capping methods to avoid spend-
ing time evaluating unpromising configurations (HUTTER et al., 2009b; HUTTER;
HOOS; LEYTON-BROWN, 2011; PÉREZ CÁCERES et al., 2017a; PUSHAK;
HOOS, 2020). These methods determine a running time bound based on previous
executions of the best configuration found so far, and then stop early executions
that exceed this bound. These approaches are not suitable for configuring opti-
mization algorithms, since the objective is usually to minimize the cost of the best
solution found after running the algorithm with a predefined termination criterion.
Current configurators do not implement any method to save time when evaluating
poorly-performing configurations of optimization algorithms. As a consequence, the
configuration process of such algorithms is more costly, which sometimes prevents the
appropriate use of automatic configuration in optimization scenarios with large con-
figuration spaces. Given this situation, the first step of this thesis is to develop a set
of capping methods specially designed to improve the efficiency when automatically
configuring optimization algorithms.

Objective 2.
Improve the quality of automatic algorithm configuration.

Most algorithm configuration methods search for fixed parameter values for
the whole set of problem instances, i.e. instance-oblivious configurations that do
not consider their characteristics. For each parameter, such methods perform an
equivalent to a constant regression, since the parameter value remains constant for
any problem instance. However, optimal parameter values may vary depending on
instance features, such as the instance size (BÖTTCHER; DOERR; NEUMANN,
2010; EL YAFRANI; AHIOD, 2018). In the second step of this thesis, we aim at
improving the quality of the automatic algorithm configuration by exploring the
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relation between instance size and optimal parameter values to produce non-constant
configurations with optimized performance according to the instance being solved.
In particular, focusing on the instance size makes this approach useful and easily
applicable to any problem domain, since this feature is problem-independent, always
available, and can be computed efficiently.

Objective 3.
Facilitate analyzing and understanding of the algorithm configuration process.

Despite the widespread use of automatic configuration methods in diverse
domains, it is possible and even common to apply such techniques as black-box
configuration methods, and a proper analysis and understanding of their operation
is frequently missing. On the other hand, it is important to analyze the execution
of the configurator being used and understand how it works, in order to obtain the
best results from the configuration process. The data generated when executing
the configurator provide useful information about the algorithm performance under
different configurations and the decisions made during the configuration process.
However, analyzing these data can be quite challenging, since they must be processed
and interpreted carefully to get useful information, besides requiring knowledge
about the internal behavior of the configurator, e.g how it selects configurations
to evaluate. Therefore, our third objective aims at simplifying the analysis of the
algorithm configuration process, by providing methods to process, interpret, and
visualize the configuration data.

Objective 4.
Apply automatic algorithm design to build heuristic solvers for classes of problems.

There are several heuristic solvers for optimization problems. They commonly
implement general-purpose algorithms based on metaheuristics that can be used to
solve a class of problems. Examples include solvers based on local search (BENOIST
et al., 2011) and scatter search (GORTAZAR et al., 2010). Although these approaches
handle different problems, they implement fixed algorithmic strategies and their
adaptation to different domains is limited. Therefore, the obtained performance
across such domains is usually far from the one obtained by using problem-specific
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algorithms.
An alternative idea is defining a variety of algorithm components and use

automatic design techniques to search for the best algorithms for a given problem.
This approach allows the generation of hybrid heuristic algorithms, by combining
the available algorithm components and defining specific values for their input
parameters. The primary goal of methods based on automatic algorithm design is not
to outperform problem-specific algorithms, but provide a general-purpose approach
that reaches competitive solutions in comparison to state-of-the-art algorithms, with
little human effort and no need for expert knowledge in the problem domain. In the
context of this thesis, we aim at using the above ideas to provide a heuristic solver
for a wide range of binary problems.

1.2 Summary of Contributions

First, we propose a set of methods that improve the efficiency and quality of
the configuration process, and facilitate its analysis and understanding. Below we
briefly discuss our main contributions in these directions.

1. We introduce a set of capping methods for optimization scenarios. These
methods define several strategies to (i) evaluate the quality of an execution,
and (ii) determine a minimum required performance for new executions. Then,
poorly-performing executions can be terminated early, saving the remaining
running time. Our experiments show a reduction from about 5% to 78% of
the configuration time, without loss of quality. We also provide evidence that
capping can help to find better final configurations, when the saved time is used
to further explore the configuration space, i.e. in scenarios using a configuration
time budget.

2. We propose improved regression models for algorithm configuration. In contrast
to existing configuration approaches, we represent parameters by non-constant
models, which set the parameter values according to the instance size. Instead
of searching for parameter values directly, the configuration process calibrates
such models. We propose different approaches to approximate both linear and
nonlinear relations between the instance size and optimal parameter values.
The evaluation of the proposed methods on different configuration scenarios
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show good performance gains in comparison to traditional instance-oblivious
algorithm configuration with the same effort.

3. We present a visualization tool that helps to analyze the automatic configura-
tion of algorithms. We focus on executions of the irace configurator (LÓPEZ-
IBÁÑEZ et al., 2016) and provide a visual representation of the configuration
process, allowing users to extract useful information, e.g. how the configura-
tions evolve over time. When test data is available, this tool also shows the
performance of each configuration on the test instances. Using this visualiza-
tion, users can analyze and compare the quality of the configurations produced
and observe their performance differences on training and test instances. We
also present several exemplary case studies of how the visualizations can be
used to analyze and improve configuration scenarios.

We also used automatic algorithm configuration techniques to automatically
design heuristics for binary optimization problems. The resulting contributions are
presented below.

1. We implement a component-wise framework of heuristics to handle binary
problems. It allows instantiating different hybrid algorithms by selecting and
combining its algorithm components. The framework is based on the Uncon-
strained Binary Quadratic Programming (UBQP) and since many problems can
be reduced to UBQP (KOCHENBERGER et al., 2014; KOCHENBERGER
et al., 2004), the framework can be used to solve a wide range of problems.
Providing the implementation of such heuristic components and a unified
framework that allows selecting and combining them into complete algorithms
can be of high interest.

2. We demonstrate that automatic algorithm configuration techniques can be
used to explore the design space of the framework and search for the best
combinations of components to solve a given problem. Such automatic algorithm
design approach uses a grammar to express the design space of components,
and a parametric representation of this grammar to allow using automatic
configuration tools to produce high-quality algorithms.

3. We provide a heuristic solver for binary problems that combines the proposed
framework based on UBQP with the automatic algorithm design approach.
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The user provides a problem description and a set of problem instances, and
the solver automatically builds a heuristic algorithm to solve the problem. This
solver can be quite useful, since it can be applied to a wide range of problems
that can be modeled as binary quadratic programming, with no need of expert
knowledge on the problem domain, heuristic algorithms or automatic design
techniques.

4. By using the proposed solver, we produce hybrid heuristic algorithms for
different optimization problems (namely UBQP, maximum cut on graphs, and
test-assignment, a variant of the graph coloring problem). These algorithms
outperformed state-of-the-art approaches, and found new best solutions for
several instances of the maximum cut and test-assignment problems.

5. This work provides general guidelines for researchers and practitioners on the
automatic design of algorithms.

Finally, we mention below some further side contributions of this research,
which can also be useful when working with automatic algorithm configuration.

1. We demonstrate the practical relevance of the automatic design and configura-
tion of algorithms. We test several (most optimization) algorithm configuration
scenarios and show the improvements in algorithm performance when using
automatic configuration approaches.

2. We provide a comprehensive set of configuration scenarios, with most of
them being new ones, which can be useful either to adapting the underlying
target algorithms to new problem domains, or testing and comparing different
algorithm configuration techniques.

Additional information about the contributions of this research is given in
Appendix A, including the resulting scientific publications, implementations of the
proposed methods, and supplementary information about the experiments and results.



26

1.3 Thesis Outline

This thesis is organized in five parts. Part I introduces this research and
gives some background information (Chapters 1, 2 and 3). Part II presents the
proposed methods to improve and analyze the automatic configuration of algorithms
(Chapters 4, 5 and 6). Part III presents applications of automatically building
heuristics for a class of optimization problems (Chapters 7 and 8). Part IV concludes
the thesis and presents some future research directions (Chapter 9). In addition to
the main body, Part V comprises supplementary information that is of interest for
future reference (Appendices A and B). Below we give an overview on the remaining
chapters.

Chapter 2 formalizes and motivates the algorithm configuration problem. We
present existing automatic configuration methods and detail the irace configurator.
We review the literature and discuss several applications of automatic algorithm
configuration on different problem domains. We also discuss the application
of these approaches to the general concept of automatic algorithm design from
components and present some closely related problems.

Chapter 3 introduces the algorithm configuration scenarios used in this work. We
discuss the underlying problem, target algorithms, configuration budget, involved
parameters and benchmark instances; we also classify these scenarios according to
some characteristics (e.g. decision vs. optimization problems or exact vs. heuristic
algorithms).

Chapter 4 presents a set of capping methods to reduce the configuration time of
optimization algorithms. We discuss the proposed methods in detail and present
extensive experiments on six configuration scenarios.

Chapter 5 explores parameter regression models for improving the quality of auto-
matic algorithm configuration. We propose different models to map the instance
size to optimal parameter values and evaluate them on four configuration scenarios.

Chapter 6 proposes a visual tool to analyze the automatic configuration process.
We present a set of case studies, showing how the visualization techniques can
be used to identify problems in the configuration scenarios based on the data
generated during the configuration process.
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Chapter 7 explores the use of automatic algorithm configuration and design tech-
niques to build a component-wise heuristic solver for the general class of binary
optimization problems. First, we propose an algorithm framework of heuristic
components to tackle binary optimization problems. Then, we study the use of
automatic configuration techniques to explore the design space defined by this
framework and searches for the best combination of components to generate a
complete algorithm for a given problem. We present and discuss the underlying
methodology and internal behavior of the proposed solver.

Chapter 8 presents an experimental evaluation of the component-wise heuristic
solver based on automatic algorithm design. We use it to solve different binary
optimization problems and show that it is able to produce algorithms competitive
to state-of-the-art approaches, improving them in some cases and finding new best
solutions for different problems.

Chapter 9 concludes this thesis, discussing its main results and outlining directions
to further extend our research.

Appendix A presents the main products of this thesis. We list the scientific
publications arising from this research, the presentations of this work in workshops,
doctoral consortia and Ph.D. schools, and software made available with the
proposed approaches. We also provide the reader with supplementary material
for the proposed methods and experiments.

Appendix B presents an extended abstract of this thesis in Portuguese.
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2 THE ALGORITHM CONFIGURATION PROBLEM

If I had an hour to solve a problem I’d spend 55
minutes thinking about the problem and 5 minutes
thinking about solutions.

— Albert Einstein

As stated in Chapter 1, many algorithms have parameters that allow to adapt
their behavior to the problem being solved. Since most algorithms are sensitive to
their parameter values, the selection of good configurations often improves their
performance and is a fundamental step of the algorithm design. In this thesis,
we deal with the offline algorithm configuration problem. Offline methods search,
during a training phase, for the best configurations (i.e. those that lead to the best
algorithm performance) by evaluating the target algorithm under several different
configurations. When this phase ends, the best found configurations can be used
in production. Usually, offline methods use a set of training instances to configure
the algorithm, and then evaluate the resulting configurations on a different set of
test instances. Despite the simple idea behind algorithm configuration, there are
several difficulties involved in this problem (e.g. how to explore the configuration
space efficiently), which make it challenging.

In this chapter, we formalize the algorithm configuration problem, introduce
the corresponding mathematical notation, and present some approaches to automate
the configuration process. We discuss the irace configurator in more detail, since
we use it throughout the whole thesis to test the proposed methods. We present
a summary of applications of automatic approaches for configuring algorithms for
several different domains. We also present the ideas of automatic algorithm design
from components, which use configurators to explore the design space of algorithms,
automatically searching for the best algorithms for a given problem. Finally, we
discuss some closely related problems.

2.1 Problem Formulation

The algorithm configuration problem can be formally defined as follows. Let
A be a target algorithm with n parameters pi, i = 1, . . . , n, each one with domain Θi.
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The space of all configurations Θ is the subset of Θ1 × · · · ×Θn of valid parameter
combinations. Given a set of instances Π and a metric c(θ, π) that measures the cost
of running A with configuration θ ∈ Θ and instance π ∈ Π as input, the algorithm
configuration problem is to find a configuration θ∗ ∈ Θ that minimizes the cost of A
over instances Π, i.e.

θ∗ ∈ argmin
θ∈Θ

C(θ,Π), (2.1)

where C is an aggregation function of c(θ, π) over all instances π ∈ Π. For example,
we can use the average performance C(θ,Π) = ∑

π∈Π c(θ, π)/|Π|. There are different
choices for the cost metric c. For decision problems, usually the running time is
used. For optimization problems, it is common to use the cost of the best found
solution, after an execution with a given computational effort, such as running time
or number of iterations1. Finally, if the target algorithm A is stochastic, then c(θ, π)
is a random variable.

Parameters may have different types (TRIOLA, 2019). Categorical parameters
can assume a fixed number of values, and are often used to model discrete choices
such as algorithmic strategies, e.g. the acceptance criterion in a local search. Ordinal
parameters have a natural ordering but no definite distance; an example would be the
choice of a neighborhood in a local search when ordered by size. Numerical parameters
represent real or integer values, e.g. the numerical tolerance in a mathematical solver,
or the initial temperature in Simulated Annealing.

A parameter can be also conditional, i.e. it is only active when a second
parameter assumes certain values. For example, setting a value to a tabu tenure
parameter is only necessary when the parameter that defines the type of improvement
procedure has been set to “tabu search”. Apart of that, parameter values may have
to satisfy constraints, either due to relations with other parameters, e.g. the number
of individuals to be selected for crossover in a genetic algorithm can not be greater
than its population size, or due to explicitly forbidden parameter combinations
that cause undesired behavior or execution errors. These characteristics make some
configurations invalid, which are excluded from the configuration space Θ.

Based on the above, we now formally define a configuration scenario.

1For other scenarios like the configuration of machine learning models, a performance metric
can be used in place of the cost metric, e.g. the prediction accuracy of the model. In this case, the
configuration task searches for configurations that maximize the algorithm performance.
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Configuration scenario. A configuration scenario is an instance of the algorithm
configuration problem defined by a 6-tuple 〈A,Θ,Π, c, B,S〉, where

• A is a parameterized target algorithm;

• Θ is the configuration space of A;

• Π is a set of training instances;

• c is a cost metric used to evaluate an execution;

• B is a configuration budget;

• S is a set of additional settings.

Budget B defines the computational resources available for the configuration process,
e.g. the maximum number of executions of A or the total configuration time. We also
define a set S of additional settings for the configuration process itself (e.g. default and
initial configurations), for the training instances (e.g. instance specific arguments),
and for the target algorithm (e.g. the termination criterion).

Algorithms can be configured manually. The so-called manual algorithm con-
figuration is based on the previous experience and intuition of the algorithm designer,
who tests different configurations and chooses those that seem more appropriate.
This approach becomes difficult to replicate, requires specialized knowledge on the
algorithm being configured and often demands a large amount of time, which is
partially spent testing ineffective configurations. The configuration space is often
not explored systematically, since sometimes configurations are chosen based only on
previous experience, or evaluated using shortcuts to reduce configuration time, such
as short test runs on few instances. This may ignore promising configurations and
lead to biases in the configuration process.

2.2 Automatic Algorithm Configuration

Automatic algorithm configuration methods apply techniques specially de-
signed to use the available computational resources to efficiently explore the configu-
ration space, minimizing the drawbacks discussed above. The tools implementing
these methods, called configurators, follow the setup depicted in Figure 2.1. Note the
interaction between the algorithm configurator and each component of the configura-



31

Algorithm Configuration
Scenario

Configuration
space Θ

Target
algorithm A

Training
instances Π

Configuration
budget B

Additional
settings S

Algorithm configurator

Best configuration
found θ∗

calls A(θ, π)

returns c(θ, π)

de
fin

es
so
lv
es
π

Figure 2.1 – General setup for algorithm configuration: the configuration space Θ, budget
B, and the additional settings S are the inputs of the algorithm configurator; during the
configuration process, the configurator calls the target algorithm A to solve instance π
under configuration θ, and gets the resulting execution cost c(θ, π); when the budget B is
consumed, the best configuration found θ∗ is returned.

tion scenario (introduced in Definition 1). The inputs of the configurator are the
configuration space Θ, defined by the parameters of the target algorithm A being
configured, the configuration budget B, and the additional settings S. The configura-
tor explores the configuration space by repeatedly evaluating different configurations.
It evaluates the cost of running A on instance π under configuration θ by calling
A(θ, π) and getting the resulting cost c(θ, π). When the budget B is consumed, the
configurator returns one or a set of best configurations, possibly with information
about the configuration process for further analysis.

The configuration of algorithms is itself an optimization problem, but the
objective function is not given in closed form and we can not solve it analytically,
but only evaluate it at given points. Besides that, it has several characteristics that
make it a challenging problem. We discuss these characteristics in the following.

Multiple instances. The optimal configurations are those that minimize the cost
of running the algorithm on a set of training instances (Eq. 2.1). Evaluating the
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quality of a configuration involves aggregating the observed costs over instances. In
case of costs with different scales across instances, additional processing might be
necessary, e.g. normalization of costs or the use of ranks. Since it is usually not
feasible (due to time restrictions) to test the configurations on all training instances,
configuration costs have to be estimated through observations on a limited sampling
of instances.

Stochastic nature. The first source of stochasticity is the sampling of the problem
instances involved in the configuration process. Besides that, algorithm A can be
stochastic itself. Then, c(θ, π) is a random variable even with fixed θ and π, and
multiple tests of the same configuration-instance pair might be necessary.

Numerical, categorical and conditional parameters. Configuration scenarios
usually have mixed numerical (real numbers or integers) and categorical parameters,
and due to conditionality, some parameters may not exist in some configurations.
As a consequence, typical algorithms must be adapted, e.g. the concepts of neighbor-
hood or recombination, for local searches (HUTTER et al., 2009b) or evolutionary
algorithms (ANSÓTEGUI; SELLMANN; TIERNEY, 2009), respectively. It also
prevents using some approaches, like most of black-box optimization algorithms,
since they usually handle only numerical variables with no conditionality (YUAN et
al., 2012).

Parameter interaction. The algorithm performance might depend on second or
higher order parameter interactions (HUTTER; HOOS; LEYTON-BROWN, 2014;
FAWCETT; HOOS, 2016), i.e. the effect of changing these parameters simultaneously
is different than the effect of changing them individually. This characteristic can be
explored when searching for the best configurations.

Expensive evaluation. Evaluating a configuration is costly, since it involves run-
ning the target algorithm to solve one or more instances and observe the resulting
execution cost. Therefore, configurators must carefully choose which configurations to
evaluate on which instances, in order to minimize the number of algorithm executions,
keep the configuration process feasible even on large configuration spaces, and ensure
an efficient use of the available computational resources.

In addition to the characteristics discussed above, the configuration scenario
must be carefully defined. The parameter domains, which determine the configuration
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Figure 2.2 – Internal steps of general purpose algorithm configurators: first, a set of
configurations Θ′ ⊂ Θ are selected based on a sampling modelM; second, configurations Θ′
are evaluated on a subset of the training instances; finally, the best performing configurations
Θ∗ from the previous step and the evaluation data D are used to update the sampling
modelM; the process is repeated until budget B is consumed.

space Θ, must be properly chosen. Large intervals or a lot of possible values,
for numerical and categorical parameters, respectively, increase the size of the
configuration space and, consequently, the complexity of the configuration task. On
the other hand, reducing such domains too much might exclude promising values
and lead to poor final configurations. Similarly, the configuration budget B must
be properly defined. While low budgets might result in a poor exploration of the
configuration space, potentially leading to underperforming algorithms, unnecessarily
large budgets often imply waste of both time and computational resources.

In the offline algorithm configuration we search for the best configurations
based on their performance on a set of training instances. Then, the best found
configurations can be used in production or can be evaluated on a different set of test
instances. Thus, it is important to choose training instances that are representative
of the instances for which the target algorithm is configured to solve. Otherwise, the
resulting configurations will perform poorly in production. Besides that, insufficiently
diverse training instances may lead to overtuning (BIRATTARI, 2009), i.e. the
observed performance on the training instances does not generalize to unseen test
instances2.

2In machine learning, this is named overfitting (HAWKINS, 2004), i.e. the resulting configuration
(machine learning model) specializes on the training instances (training data) and does not generalize
to unseen instances (test data).
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A number of configurators were proposed in the last years to handle, at least
partially, the particularities detailed above. These configurators follow the general
schema given by Figure 2.2. First, a sampling model M is used to select one or
more configurations (Θ′ ⊂ Θ). The performance of the target algorithm A under
these configurations are evaluated on a subset of the training instances Π. The best
configurations Θ∗ and the results of the evaluation step D are used to update the
sampling model for the next iteration. These steps (selection, evaluation and model
update) are repeated until the budget B is consumed. Some methods use a static
model to guide the selection of configurations, therefore they do not require any
model update.

The next sections discuss configurators and detail the underlying configuration
techniques applied to select configurations, evaluate them and update the sampling
models. We first present an overview of several configurators, then we discuss irace
in further detail, since it is used in our experiments.

2.2.1 Review on Algorithm Configurators

We present here several automatic algorithm configuration methods developed
in the past three decades. We focus on general purpose algorithm configurators,
i.e. domain-independent methods that handle any target algorithm, and do not
detail approaches like the MULTI-TAC system (MINTON, 1993) for constraint
satisfaction problems, higher level genetic algorithms (GA) that configure lower level
GAs (GREFENSTETTE, 1986; TERASHIMA-MARÍN; ROSS; VALENZUELA-
RENDÓN, 1999), and the so-called adaptive problem solving methods, e.g. the
COMPOSER system of (GRATCH; DEJONG, 1992; GRATCH; CHIEN, 1996).
Nevertheless, most of the configurators described below have limitations, i.e. they
often do not handle all particular characteristics of the algorithm configuration
problem discussed above, but such methods were important to the development
of the algorithm configuration field and proposed fundamental techniques that are
currently used in the most prominent and widely used configuration methods (which
are detailed at the end of this section). We classify the configurators according to
the techniques they use to explore the configuration space, i.e. to select and evaluate
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configurations and, in some cases, to fit and update a sampling model3.
Several of these methods rely on experimental design techniques (MONT-

GOMERY, 2012), also called Design of Experiments (DoE), to select configurations
to be tested, combined with additional approaches to increase efficiency and eliminate
(or at least minimize) human intervention. Some approaches, e.g. Parsons and John-
son (1997) or Ridge and Kudenko (2006, 2007), rely on full or fractional design for
selecting configurations to evaluate. The evaluation results are used to fit response
surface models (RSM), which predicts the importance of each parameter and identify
potentially optimal configurations. Coy et al. (2001) use fractional factorial design
combined with gradient descent to select and evaluate configurations, identifying
the best ones for each training instance. These best performing configurations are
combined into the final configuration by setting each parameter to the average value
taken from all of them. The CALIBRA configurator by Adenso-Díaz and Laguna
(2006) selects configurations using a Taguchi experimental design (PEACE, 1993),
and applies multiple runs of a local search procedure to refine the region of interest
for the next selection. The main drawback of these approaches is the large number
of algorithm evaluations required, which limits their application to scenarios with
small configuration spaces (HOOS, 2012a).

Another research direction is the adaptation of numerical optimization meth-
ods to the algorithm configuration problem, with the main limitation of handling
only (and usually few) continuous parameters with no dependencies. Numerical
optimization methods already tested for the algorithm configuration problem are
the mesh adaptive direct search (MADS) algorithms of Audet and Orban (2006),
the bound optimization by quadratic approximation (BOBYQA) of Powell (2009),
the Nelder-Mead Simplex approach of (NELDER; MEAD, 1965) (also used in Park
and Kim (1998) and Muja and Lowe (2009) for algorithm configuration), and the
covariance matrix adaptation evolution strategy (CMA-ES) described in Hansen and
Ostermeier (2001) and Hansen (2006). Yuan et al. (2012) present a comprehensive
study of this kind of methods and analyze their use in the context of algorithm con-
figuration. They found that CMA-ES worked best and presented robust performance
over different configuration scenarios. CMA-ES is an evolutionary algorithm that
recombines configurations based on a multivariate Gaussian distribution, whose mean

3Note that many of the configurators discussed here could be classified in different groups at the
same time, since they use various techniques simultaneously. We classify them according to the
nature of the main inner approach.
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is a linear combination of the best performing configurations from the population.
The search trajectory is used to update the covariance matrix of the distribution,
allowing to predict parameter influence and interactions.

Heuristic search techniques are also explored to configure algorithms, especially
for scenarios involving categorical parameters. A widely used heuristic strategy
is local search, applied in configurators like the dynamically dimensioned search
(DDS) of Tolson and Shoemaker (2007), OpenTuner (ANSEL et al., 2014), and the
optimization of algorithms (OPAL) of Audet, Dang and Orban (2014). Evolutionary
approaches use heuristics to evolve a population of configurations, e.g. the evolutionary
calibrator (EVOCA) of Riff and Montero (2013). Nannen and Eiben (2006, 2007)
propose the relevance estimation and value calibration configurator (REVAC, further
extended in Smit and Eiben (2009)), an evolutionary approach combined with an
estimation of distribution algorithm (PELIKAN; GOLDBERG; LOBO, 2002) to
configure evolutionary algorithms. REVAC maintains a population of configurations
and evaluates them on the (single) training instance. The best performing ones are
selected and recombined by a multi-parent crossover operator, generating a new
configuration. After a mutation step, the newly generated configuration replaces
the oldest configurator in the population. These steps repeat until the budget is
consumed. Ansótegui, Sellmann and Tierney (2009) proposed a gender-based genetic
algorithm (GGA) to evolve configurations. The population is divided into competitive
and non-competitive genders. Competitive individuals are evaluated on the training
instances, while non-competitive individuals are only used for diversity preservation.
GGA recombines the best performing competitive individuals with non-competitive
individuals, and selects the next generation using an age-based criterion.

The configurators discussed above present different strategies to select config-
urations to evaluate. None of them, however, present an explicit prediction-based
model for that. In this line, model-based optimization approaches use the ideas behind
Bayesian optimization methods (MOCKUS, 1989; SHAHRIARI et al., 2016) for al-
gorithm configuration. They use robust surrogate models to predict the performance
of new configurations based on the results of previous evaluations. These predictions
guide the selection of configurations, and help to avoid spending computational
resources evaluating unpromising configurations. Some examples of model-based con-
figurators are the Learn-and-Optimize (LaO) approach of Brendel and Schoenauer
(2011), the BONESA configurator of Smit and Eiben (2011), and GGA++ (AN-
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SÓTEGUI et al., 2015), an extended version of GGA that uses a random forest
model in an attempt to guide the search to high-performance regions of the con-
figuration space. The sequential parameter optimization (SPO) is one of the main
configuration methods of this nature and is described in Bartz-Beielstein, Lasarczyk
and Preuss (2005) and Bartz-Beielstein and Preuss (2006). Further extensions of
SPO were proposed by Hutter et el. (2009a, 2010), and its implementation is avail-
able in the SPOT configurator (BARTZ-BEIELSTEIN; LASARCZYK; PREUSS,
2010; BARTZ-BEIELSTEIN et al., 2011). At the beginning, SPOT selects initial
configurations using Latin hyper-cube sampling. In subsequent iterations, it uses the
prediction model for that, which is fitted using the results of previous evaluations. In
its first version, SPO uses regression models based on design and analysis of computer
experiments (DACE), like linear and quadratic models, handling numerical parame-
ters only. The current version uses a more robust random forest model (BREIMAN,
2001) that also supports categorical parameters. The main limitation of SPOT is
that it only considers a single training instance.

To the best of our knowledge, the most prominent configurators currently
available are ParamILS, SMAC, GPS and irace. They consistently present robust
performance over different configuration scenarios, and are the currently most used
configurators in the literature. The general operation and underlying techniques
applied in each of them are discussed below.

ParamILS. ParamILS performs an iterated local search in the configuration space
(HUTTER et al., 2009b). It starts evaluating a set of initial configurations, including
a user-defined default configuration and some additional random configurations
selected uniformly from the configuration space; the best performing one is used as
the first incumbent configuration. Then, ParamILS executes a local search modifying
one parameter at a time. Every time the local search finds an improving configuration,
it replaces the current configuration and the order in which parameters are modified
is shuffled. Once the local search reaches a local optimum, the locally optimal
configuration is compared to the incumbent and the best one is kept. The local
search is followed by a perturbation method that changes the values of a subset of
parameters of the incumbent configuration and applies a new local search starting
from the resulting perturbed configuration. With a low probability, the perturbation
is replaced by a restart mechanism that generates a random configuration for the
next iteration. ParamILS implements racing strategies to compare configurations.
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The BasicILS version evaluates configurations on a fixed number of instances, and
selects the one with lower cost estimate. The FocusedILS version uses a dominance
criterion to compare configurations and iteratively increases the number of instances
on which they are evaluated. A configuration θ1 dominates another configuration
θ2 when it has been evaluated on at least the same number of instances as θ2,
and presents lower cost estimate for the number of instances on which θ2 has been
evaluated. If no dominance is determined, FocusedILS increases the number of
instances on which θ2 is evaluated and repeats the dominance test. Increasing the
number of instances used to evaluate configurations over the configuration process
is a sharpening strategy. Since configurations produced in latter iterations tend to
outperform those produced earlier, increasing the number of instances (or repetitions)
helps comparing different configurations and identifying the best ones. Finally,
ParamILS also implements a so-called adaptive capping method for configuration
scenarios involving the minimization of the target algorithm’s running time. This
method defines a running time limit (i.e. a capping time) for new configurations as
the maximum time they could take to be better than the incumbent configuration.
Then, executions of poorly-performing configurations are terminated early and the
configuration budget can be spent evaluating better configurations.

SMAC. SMAC uses random forest models to guide the search for good configura-
tions (HUTTER; HOOS; LEYTON-BROWN, 2011). It defines an initial configura-
tion, usually a default or a randomly generated configuration (alternatively, a set
of initial configurations can be used instead of a single one). This configuration is
evaluated on a subset of the training instances, and the results are used to learn the
random forest model. Its predictions are used to determine the expected improvement
(as used in Schonlau, Welch and Jones (1998) and Jones, Schonlau and Welch (1998))
of all previously seen configurations, and the best ones are used as starting points of
a local search procedure that iteratively selects the best improving neighbor with
respect to the expected improvement. The resulting locally optimal configurations,
in addition to a set of randomly generated ones (to diversify the search process), are
sorted according to their expected improvement and evaluated, in the given order,
on a subset of the training instances. When a given time limit for the evaluation step
is reached, it is terminated and the evaluation results are used to update the random
forest model for the next iteration, when new configurations are generated and
the process repeats. Analogous to ParamILS, SMAC also maintains an incumbent
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configuration and its evaluation process implements a racing procedure based on
configuration dominance, using sharpening and capping strategies. Besides that,
SMAC includes instance features as variables for the random forest model. Thus,
it is able to identify high-performing configurations related to classes of instances.
However, such instance features might not be readily available for many practical
problems.

GPS. GPS stands for golden parameter search, an algorithm that optimizes the
value of each parameter semi-independently (PUSHAK; HOOS, 2020). In a recent
work, Pushak and Hoos (2018) studied the configuration landscapes of several
prominent algorithms and observed that most of the parameters appear to have
uni-modal responses when changed individually; this is exploited in GPS. It maintains
a bracket for each parameter, which defines an interval or set of values believed
to contain the optimum parameter value. Iteratively, GPS samples a parameter
using a multi-armed bandit procedure, which prioritizes parameters believed to be
important by giving more probability to select parameters whose value was updated
more in the configuration process. Then, GPS races each pair of values taken
from the bracket of the selected parameter, using a dominance-based criterion to
compare different configurations. The selected parameter is updated in the incumbent
configuration when there is statistically sufficient evidence that it improves its
performance. Additionally, the new value must have been evaluated on a minimum
number of instances, as well as on a super-set of the instances the last incumbent was
evaluated when it became incumbent. GPS also implements a procedure to update
the brackets, i.e. expand or shrink the interval or set of values, when there is sufficient
evidence for improvement. For numerical parameters, this procedure is similar to
the golden section search algorithm (KIEFER, 1953), which uses end and interior
points that follow a so-called golden ratio to control and update the brackets, in
order to focus the search near the best performing values. For categorical parameters,
the bracket update consists in simply removing or re-adding values according to
their performance in comparison to the performance of the incumbent configuration.
Finally, GPS uses sharpening to update the number of instances configurations must
be evaluated on, and implements a capping method to early terminate the evaluation
of unpromising configurations.

irace. The irace configurator iteratively samples configurations, evaluates them using
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racing and uses the results to update the sampling models (LÓPEZ-IBÁÑEZ et al.,
2016). It also uses sharpening and capping (PÉREZ CÁCERES et al., 2017a) when
evaluating configurations. We devote Section 2.2.2 to discuss irace in further detail.

We summarize all configurators discussed above and indicate their main
limitations and features in Table 2.1, following three indicators: whether the configu-
rator handles multiple instances, allows mixed-type parameters, i.e. numerical and
categorical, and handles conditional parameters. For additional details about these
methods, we refer to Hoos (2012a) or Stützle and López-Ibáñez (2019).

2.2.2 The irace Configurator

The irace configurator (LÓPEZ-IBÁÑEZ et al., 2016) is an iterated racing
method based on the Friedman-Race (F-Race) proposed by Birattari et al. (2002) and
the iterated F-Race (I/F-Race) proposed by Balaprakash, Birattari and Stützle (2007)
(see Birattari et al. (2010) for a detailed discussion of both methods). Algorithm 1
shows the main steps of irace, which follow the schema presented in Figure 2.2. The
algorithm maintains an elite set Θelite ⊆ Θ of the best found configurations and a
sampling modelM, which guides the generation of new configurations Θ′ (sample
procedure in line 4). The newly generated configurations are evaluated against
the elite ones by racing (race procedure in line 5) on a subset of the instances Π
according to the performance metric c(θ, i). The best found configurations form
the elite set Θelite, which is used to update the sampling model M for the next
iteration. The sampling, racing and model update steps are repeated until budget
B is consumed. The number of iterations is determined by irace at the beginning
of the configuration process, based on the number of parameters to be configured.
The budget of an iteration is determined at the start of the iteration, based on the
remaining budget available and the number of iterations to be executed next.

The sample procedure (line 4) is based on modelM. At the beginning,M
samples the configuration space Θ uniformly. In subsequent iterations, the elite
configurations are ranked according to the observed quality in previous evaluations,
and iteratively one of them is selected to generate each new configuration θ. Elite
configurations of a higher rank have a higher probability of being selected. Then, a new
value of each parameter in θ is determined based on a truncated normal distribution for
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Table 2.1 – Summary of configuration methods and their main limitations. Note that some
methods with limitations could be adapted to handle either multiple instances, mixed-type
parameters, or conditional ones; we present here the characteristics found in the referenced
papers. The numbered references are: [1] Parsons and Johnson (1997); [2] Ridge and
Kudenko (2006); [3] Ridge and Kudenko (2007); [4] Coy et al. (2001); [5] Adenso-Díaz
and Laguna (2006); [6] Yuan et al. (2012); [7] Audet and Orban (2006); [8] Powell (2009);
[9] Nelder and Mead (1965); [10] Park and Kim (1998); [11] Muja and Lowe (2009);
[12] Hansen and Ostermeier (2001); [13] Hansen (2006); [14] Tolson and Shoemaker (2007);
[15] Ansel et al. (2014); [16] Audet, Dang and Orban (2014); [17] Riff and Montero (2013);
[18] Nannen and Eiben (2006); [19] Nannen and Eiben (2007); [20] Smit and Eiben (2009);
[21] Ansótegui, Sellmann and Tierney (2009); [22] Ansótegui et al. (2015); [23] Hutter et al.
(2009b); [24] Pushak and Hoos (2020); [25] López-Ibáñez et al. (2016); [26] Brendel and
Schoenauer (2011); [27] Smit and Eiben (2011); [28] Bartz-Beielstein, Lasarczyk and Preuss
(2010); [29] Bartz-Beielstein et al. (2011); [30] Hutter, Hoos and Leyton-Brown (2011).

Configurator/approach Multiple
instances

Mixed-type
parameters

Conditional
parameters

Experimental design
DoE + RSM [1, 2, 3] X X –
DoE + gradient descent [4] X – –
CALIBRA [5] X – –

Numerical optimization
MADS [6, 7] X – –
BOBYQA [6, 8] X – –
Nelder-Mead Simplex [6, 9, 10, 11] X – –
CMA-ES [6, 12, 13] X – –

Heuristic search
DDS [14] – – –
OpenTuner [15] – X –
OPAL [16] – X –
EVOCA [17] X X –
REVAC [18, 19, 20] – – –
GGA/GGA++ [21, 22] X X X
ParamILS [23] X – X
GPS [24] X X X
irace [25] X X X

Model-based optimization
LaO [26] X – –
BONESA [27] – – –
SPOT [28, 29] X X –
SMAC [30] X X X

continuous parameters, or a discrete probability distribution for discrete parameters.
Each elite configuration has its associated probability distributions for each parameter,
and newly generated configurations inherit this set of probability distributions from
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Algorithm 1: Iterated racing procedure.
Input :Configuration scenario 〈A,Θ,Π, c, B,S〉.
Output :Best configurations found Θelite.

1 Θelite ← ∅
2 M← initialize(Θelite)
3 repeat
4 Θ′ ← sample(Θ,M) . Selection step in Fig. 2.2
5 Θelite ← race(Θ′ ∪Θelite,Π, c) . Evaluation step in Fig. 2.2
6 M← update(Θelite) . Update step in Fig. 2.2
7 until budget B is consumed
8 return Θelite

their parents. In the update procedure (line 6), modelM is updated with the new
elite set Θelite, and the parameters of their probability distributions are updated to
focus the sampling process around the best parameters values as the configuration
process evolves.

The race procedure evaluates the quality of the new and elite configurations
(Θ′ and Θelite, respectively) on a subset of the instances Π according to the cost metric
c. After evaluating each configuration on a predefined number of initial instances,
irace uses either the non-parametric Friedman test (associated with the post-hoc test
described by Conover (1999)) or the paired t-test to identify worse configurations
to be discarded. The racing method in irace extends I/F-Race (BALAPRAKASH;
BIRATTARI; STÜTZLE, 2007) by reusing evaluations from previous races in the
current race and by preventing elite configurations from being discarded without
considering all their evaluations from previous races. The surviving configurations
are evaluated on a new instance, and a new statistical test is performed. This process
is repeated until the budget of the iteration is consumed, or a minimum number of
surviving configurations remains. The surviving configurations become the elite set
for the next iteration.

The updates of the probability distributions may lead to a premature conver-
gence of the configuration process. In this case, the newly generated configurations
are very similar to those already evaluated and the configuration process loses di-
versity. To avoid this, irace implements a convergence detection mechanism that
compares each new configuration to the elite configuration used to generate it. The
comparison is carried out by calculating their distance, based on the differences
of the parameter values presented by both configurations. If this distance is less
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than a threshold, irace performs a soft restart that updates the parameters of the
sampling distributions associated to that elite configuration, in order to increase the
probability of generating different configurations.

2.2.3 Some Applications of Automatic Algorithm Configuration

This section summarizes some applications of automatic configuration methods
in different contexts and problem domains. It is not intended to be an exhaustive
literature review, but aims at giving a notion of the applicability, contributions and
significance of such techniques and, more generally, of this research field.

Automatic methods are widely applied to configure algorithms from a diversity
of domains, reaching significant performance improvements when compared to default
configurations or those obtained by a manual configuration process. We present
some examples to give the reader an overview of such applications. In the case of
configuring (exact and heuristic) optimization algorithms, several problems have
been explored, like the traveling salesperson problem (LÓPEZ-IBÁÑEZ et al., 2013),
machine reassignment (MALITSKY et al., 2013), online bin packing (YARIMCAM
et al., 2014), graph coloring (BLUM; CALVO; BLESA, 2015), permutation flowshop
scheduling (BENAVIDES; RITT, 2015), university course timetabling (MÜHLEN-
THALER, 2015), quadratic assignment (FRANZIN; STÜTZLE, 2019), multiobjective
problems (DUBOIS-LACOSTE; LÓPEZ-IBÁÑEZ; STÜTZLE, 2011), and continu-
ous function optimization (LIAO; MONTES DE OCA; STÜTZLE, 2013). In some
cases, the improvements obtained by automatic configuration methods are even
bigger when the target algorithms are applied to contexts different than those for
which they were designed in the first place, like using different problem instances
or changing the termination criterion. As an example, Pérez Cáceres, López-Ibáñez
and Stützle (2015) configured ant colony optimization algorithms with a limit in the
number of objective function evaluations. They found configurations with better
performance than the one obtained by the best known configurations for the version
of the algorithm without this modified termination criterion.

Regarding the configuration of decision algorithms, much effort has been
spent in improving existing algorithms for boolean satisfiability problems (see Hoos,
Hutter and Leyton-Brown (2021) for a recent survey). Additional examples in-
clude Hutter et al. (2007, 2017), Falkner, Lindauer and Hutter (2015), Hutter et
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al. (2017), Pérez Cáceres et al. (2017a), Dang et al. (2017). We also include in
the list of decision-based scenarios successful applications on the configuration of
compilers (PÉREZ CÁCERES et al., 2017), mathematical solvers (HUTTER; HOOS;
LEYTON-BROWN, 2010; LÓPEZ-IBÁÑEZ; STÜTZLE, 2014; PÉREZ CÁCERES;
STÜTZLE, 2017), and AI planners (VALLATI et al., 2013). Another direction is
the automatic configuration of machine learning algorithms (BERGSTRA et al.,
2011; MIRANDA; SILVA; PRUDÊNCIO, 2014; BISCHL et al., 2016), also called
hyperparameter optimization in the corresponding literature. Along this line, Hutter,
Kotthoff and Vanschoren (2019) present a detailed review of existing techniques
and open research directions related to the so-called automated machine learning
(AutoML).

In addition to optimizing the algorithm performance, automatic configuration
methods contribute in different ways to the algorithm design process. First, they
ease the analysis of the contributions of particular parameters and design choices to
the algorithm performance, which helps to understand such algorithms and guides
their development. For example, Massen et al. (2013) use irace to generate high-
quality configurations for a given hybrid heuristic; then a sensitivity analysis is
performed to measure the significance of each parameter. Bezerra, López-Ibáñez and
Stützle (2014b) analyze the contribution and interaction between different design
choices and parameter values of multiobjective evolutionary algorithms. Franzin and
Stützle (2019, 2021) explore similar ideas to study simulated annealing algorithms
on different problem domains.

A second contribution of automatic configuration methods is to allow fairer
comparisons between different algorithms. Once the configuration spaces of the
algorithms have been defined, one can configure them using equivalent budgets prior
to evaluation, in order to obtain high-quality configurations and avoid biases that
could be inserted due to human expertise. Besides that, as stated above, configuration
is necessary when applying an algorithm to different conditions than those for which
it was designed. In Pellegrini and Birattari (2007) and Liao, Molina and Stützle
(2015), authors compare the performance of different algorithms under the default
and automatically produced configurations, showing the significant performance
improves obtained after the configuration process. The latter work also shows how
varying the benchmark instances affects the performance of different configurations.

The widespread use of automatic algorithm configuration can be observed
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Figure 2.3 – Number of citations of ParamILS, SMAC and irace configurators in the last
five years, according to Google Scholar; accessed in January 2022.

in the number of scientific publications related to this field. ParamILS, SMAC and
irace have a total of 1024, 2108 and 1287 citations4, respectively, according to Google
Scholar (up to January 2022). Figure 2.3 shows the number of citations obtained
by these configurators from 2017 to 2021. Considering the sum over the different
configurators, we observe an increase in citations over the years, which indicates
a notable interest of the scientific community, and also the relevance of automatic
configuration in the algorithm design process. These observations justify the efforts
in developing, improving and understanding automatic configuration methods.

2.3 Automatic Algorithm Design

Usually, algorithm configuration represents the last step of the algorithm
design process, i.e. when the values of the parameters of a previously designed
algorithm must be set. Here, automatic configuration helps not only by automating
this task, but also by defining a more appropriate way of maintaining algorithms.
Whenever a change is made in the algorithm or execution environment (e.g. including

4We consider the following publications: Hutter et al. (2009b) for ParamILS; Hutter, Hoos and
Leyton-Brown (2011) for SMAC; and López-Ibáñez et al. (2011, 2016) for irace.
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Figure 2.4 – General schema for the automatic algorithm design from components. The
algorithm framework provides a set of components and the combination rules to determine
how they can be selected and combined into complete algorithms. The framework defines
the design space, which is explored by the automatic configurator to find the algorithm
with optimized performance on a given set of training instances.

a new algorithm component or defining different termination criteria), the internal
behavior of the algorithm or its execution conditions may change and the previously
defined configurations may perform worse. Therefore, it is advisable to reconfigure the
algorithm (STÜTZLE, 2009), and some works propose using automatic configuration
in this iterative algorithm design process (MONTES DE OCA; AYDIN; STÜTZLE,
2011). A more general, sophisticated and even ambitious approach concerns in
exposing not only the parameters of the algorithm, but also higher-level design
choices (e.g. which search procedure or recombination method to use), and then
applying existing configuration methods to make such choices, automating other steps,
and even the entire algorithm design process. This research field is called automatic
algorithm design5, and its general idea is depicted in Figure 2.4. First, it uses a
(preferably flexible) configurable algorithm framework of components, which allows
selecting and combining such components to produce complete algorithms. The
components, their input parameters and the combination rules form the configuration
space, which we call design space in the context of automatic algorithm design. Now,
we can apply automatic configuration methods to explore this design space and
search for the best algorithms for a given set of (training) problem instances. Several
approaches have been developed in this direction and applied to automatically design

5Other names for automatic algorithm design are commonly found in the literature, like
programming by optimization (HOOS, 2012b), automatic algorithm synthesis (DI GASPERO;
SCHAERF, 2007), or automatic programming (OLSSON; LØKKETANGEN, 2013).
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complex algorithms for several different domains. We discuss automatic algorithm
design below and give an overview of applications. For further details, we refer
to Stützle and López-Ibáñez (2019).

The main task of the algorithm designer is to provide the design space,
i.e. the set of algorithm components, and the implementation of the underlying
algorithm framework that allows combining such components and instantiate complete
algorithms. Once the design space, a set of training instances, and the configuration
setup (i.e. budget, performance metric and other elements of the configuration
scenario) are given, the rest of the design process can be fully automated. A possible
approach to define the design space is by extracting the main components from
state-of-the-art algorithms of a given domain of interest. The major benefit of this
practice is that such components are usually high performing and well designed, at
least when considering the problem domains from which they are being extracted. By
defining a design space from such components, one may not only recreate algorithms
from the literature, but also combine them with new components to produce hybrid
and potentially better performing algorithms, in some cases reaching previously
unexplored designs.

Existing approaches for automatic algorithm design differ from each other in
the structure and representation of the design space. We classify them in top-down
and bottom-up approaches.

2.3.1 Top-Down Algorithm Design

Top-down approaches define a static algorithm template in which specific
points are left open, allowing one to choose between different alternative designs,
i.e. selecting the desired algorithm components. Choosing specific components
instantiates a particular version of the algorithm defined by the template. Algorithm 2
defines an exemplary template for an iterated local search: after generating an initial
solution (line 1), the algorithm iteratively perturbs the current solution and applies
an improvement step (lines 3 and 4), maintaining the best solution found during the
search; an acceptance criterion determines whether the resulting solution replaces the
current one (line 5). In this example, procedures initialize, perturb, improve and accept
do not define any specific component. Instead, there are several alternative choices
for each of them (examples are presented as comments after each procedure), e.g. we
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Algorithm 2: Template for an iterated local search.
1 s← initialize() . random, greedy, ...
2 while termination criterion not met do
3 s′ ← perturb(s) . random, directed, ...
4 s′′ ← improve(s′) . local search, tabu search, ...
5 s← accept(s, s′′) . never, always, better, ...
6 return best solution found

can choose between a random or greedy strategy to produce the initial solution,
or different search methods for the improvement step. Now, by fixing the desired
component for each design choice, we instantiate different iterated local searches, and
can search for specific versions with a good performance. The number of different
iterated local search algorithms we can produce from this template is given by the
total possible combinations of design choices.

The structure of the algorithm template defines the rules for combining
the different components available. In this case, each design choice is represented
by a categorical parameter. For example, the template of Algorithm 2 defines a
design choice for the initialization procedure (line 1), which can be represented
by a categorical parameter with the available components (e.g. random, greedy,
. . .). The choice of particular components can enable lower-level design choices,
and even component-specific input parameters. For example, by choosing a tabu
search as improvement procedure (line 4), we may need to choose between different
neighborhood operators (i.e. a new design choice with possibly several alternative
components) and a value for the tabu tenure parameter. In such cases, these choices
are represented by conditional categorical or numerical parameters. Therefore, we
can use a direct parametric representation for a given algorithm template, which
enables us to use automatic configurators to perform the exploration of this design
space.

There are several examples of top-down algorithm design in the literature.
The SATenstein framework of Khudabukhsh et al. (2009, 2016) implements various
local search heuristics extracted from the literature, and provides an algorithm
template to guide their combination, allowing to produce different algorithms for the
boolean satisfiability (SAT) problem. By applying automatic techniques to explore
the design space of SATenstein, the authors could derive local search algorithms able
to outperform the previous state of the art. Franzin and Stützle (2019) analyze the
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literature of simulated annealing (SA), and extract both general and problem-specific
components to build a configurable algorithm framework. They were able to study
different variants of SA present in literature and improve their performance by auto-
matically designing new SA implementations. Several works address the automatic
design of heuristic algorithms for continuous optimization problems. They propose
algorithm templates for different metaheuristics, including ant colony optimization
(UACOR approach of Liao et al. (2014)), bee colony optimization (ABC-X approach
of Aydın, Yavuz and Stützle (2017)), and particle swarm optimization (PSO-X
approach of Villalón, Dorigo and Stützle (2021)). In all these examples, the resulting
algorithm framework is built with components from the literature, and the applica-
tion of automatic methods to explore the design space leads to new state-of-the-art
designs. Finally, much effort has been spent in automatically designing algorithms to
tackle multi-objective optimization problems. López-Ibáñez and Stützle (2010, 2012)
automatically design multi-objective ant colony optimization (MOACO) algorithms
to solve the bi-objective traveling salesperson problem. Bezerra et al. (2014a, 2016,
2020a, 2020b) study the automatic design of a more general class of multi-objective
evolutionary algorithms (MOEA), considering components of various evolutionary
approaches from the literature and producing new state-of-the-art algorithms.

2.3.2 Bottom-Up Algorithm Design

In the top-down approaches discussed above, the rules for combining com-
ponents and building algorithms are given explicitly by the algorithm template.
Considering all possible design alternatives and their interactions during the defini-
tion of such templates is increasingly hard as the number of design choices grows.
Hence, an alternative bottom-up approach concerns providing algorithm components
and allowing their composition in a more flexible way at the time the algorithm is
instantiated. In this case, the algorithm template is not fixed and there is higher
flexibility when combining components, which may lead to completely new designs
and hybrid algorithms.

Since bottom-up approaches do not use a fixed algorithmic structure, the
combination rules need to be defined. A common solution is using a context-free
grammar in Backus-Naur form, which describes how an algorithm can be instantiated
out of a set of algorithm components. Figure 2.5 presents a context-free grammar
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1 〈search〉 → ls (〈improvement〉) | ts (〈improvement〉, 〈tenure〉)
2 | sa (〈improvement〉, 〈temp〉) | ils (〈search〉, 〈pert〉)
3 〈improvement〉 → fi | bi | si
4 〈pert〉 → random(〈size〉) | directed(〈size〉)
5 〈tenure〉 → [10, 1000]
6 〈temp〉 → [10, 5000]
7 〈size〉 → {1, 10, 50, 100}

Figure 2.5 – An example of a context-free grammar of components. Note that the grammar
is recursive in the rule of lines 1 and 2, allowing flexible combinations of components into
hybrid algorithms.

for an exemplary design space of components to generate search-based heuristic
algorithms. The grammar consists of a set of rules, each one describing a decision,
i.e. a component to be chosen. The start symbol is the non-terminal 〈search〉 in line 1
(note that non-terminal symbols are presented between angular brackets). Starting
from 〈search〉, four different search components can be chosen: local search (ls),
tabu search (ts), simulated annealing (sa) and iterated local search (ils). Depending
on the component chosen, new non-terminals are reached and additional decisions
are needed. Besides that, the components’ parameters can be also included in
the grammar, e.g. those given by the non-terminals 〈tenure〉, 〈temp〉 and 〈size〉. A
complete derivation of the grammar instantiates a concrete algorithm, and we can
combine components in a flexible way into hybrid algorithms. For example, the
grammar defines an iterated local search component (ils in line 2) with an internal
search procedure, and allows us to freely choose any search component for this step,
like tabu search, simulated annealing or even another iterated local search.

The design space defined by the grammar must be mapped into a parametric
representation to allow using automatic configuration methods to explore it. A
codon-based mapping is proposed in the context of grammatical evolution (RYAN;
COLLINS; NEILL, 1998), an early grammar-based automatic design approach that
uses evolutionary algorithms to explore the design space (grammatical evolution is
discussed in Section 2.4). The codon-based mapping consists in defining a sequence
of integer values (codons) to map the decisions for the rules of the grammar. To
instantiate an algorithm, whenever a design choice must be made, the next codon
c is consumed and the c mod n alternative is selected, where n is the number of
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alternatives for the corresponding design choice and mod is the integer modulo
operation. Since the codon-based mapping is basically a sequential representation,
usually expressed by a binary string, the use of evolutionary algorithms to explore
the design space is straightforward. However, the codon-based mapping suffers from
low locality and high redundancy problems. As discussed in Rothlauf and Oetzel
(2006), a mapping is said to have a high locality when a small change in the choices
representation leads to a small change in the produced algorithm. This is clearly
not the case when using a codon-based mapping, e.g. by changing the value of the
first codon from 0 to 1 we change the decision for the first rule in our exemplary
grammar (line 1 in Figure 2.5), producing a completely different algorithm (a tabu
search instead of a local search). Redundancy is a consequence of using integer
codons with a fixed interval, say [0, 255]. If a rule has less than 256 alternative
choices, which is usually the case, many different values maps to the same choice.
Finally, when a derivation is finished but codons are still available, these approaches
may ignore the remaining ones. In contrast, when there are still choices to be made
but no codons, wrapping is usually allowed and the first codons are reused. As a
consequence, changing values for one codon can produce different decisions for more
than one design choice, increasing problems of low locality.

Lourenço, Pereira and Costa (2016) propose the structured grammatical
evolution approach, addressing these problems. In their structured representation,
each non-terminal is linked to a specific codon, increasing locality. This allows
adjusting the interval of values of each codon according to the number of alternative
choices of the corresponding non-terminal, eliminating redundancy. In case a non-
terminal is expanded more than once, the corresponding codon stores a list of
values, one for each possible expansion. Mascia et al. (2013, 2014b) propose to
map the grammar rules directly as categorical and numerical parameters, and then
use automatic configuration methods to explore the design space. This parametric
mapping allows defining conditionality, i.e. since we know the conditions under which
a non-terminal is expanded, we can represent such cases and require values for certain
parameters only when needed. For example, in the grammar of Figure 2.5, a decision
value for the non-terminal 〈pert〉 is only needed when ils is chosen for non-terminal
〈search〉. When representing such decisions by parameters, we define a categorical
parameter pSearch to decide over non-terminal 〈search〉, and another categorical
parameter pPert to decide over non-terminal 〈pert〉, which is required only when
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pSearch = ‘ts’, i.e. pPert is conditional to pSearch. This reduces the size of the design
space and, consequently, the complexity of the automatic design task. However,
in case a non-terminal is expanded more than once, a set of parameters must be
created. Thus, to keep a finite number of parameters, a maximum level of recursion
has to be defined. Mascia et al. (2013, 2014b) show that their approach outperforms
grammatical evolution when automatically designing heuristic algorithms for different
problem domains.

We find several examples of bottom-up algorithm design in the literature.
Mascia et al. (2013, 2014b) applied the approaches discussed above to automatically
design iterated greedy algorithms for permutation flowshop scheduling and bin pack-
ing problems. Their framework was extended with additional components, allowing
to produce hybrid stochastic local search algorithms. Different works used this ap-
proach to the automatic design of algorithms for different problem domains, including
permutation flowshop scheduling, unconstrained binary quadratic programming and
the traveling salesperson problem (MARMION et al., 2013; MASCIA et al., 2014a;
LÓPEZ-IBÁÑEZ; MARMION; STÜTZLE, 2017). In more recent studies, these ideas
were used to automatically design heuristic algorithms for permutation flowshop
scheduling with different objective functions (BRUM; RITT, 2018a; BRUM; RITT,
2018b; PAGNOZZI; STÜTZLE, 2019; PAGNOZZI; STÜTZLE, 2021), and for hybrid
flowshop problems (ALFARO-FERNÁNDEZ et al., 2020). These works present
extensive algorithm frameworks with heuristic components from the associated lit-
erature, and produced algorithms with better performance than state-of-the-art
approaches.

2.4 Related Problems

In previous sections, we discussed research efforts related to the general field
of automatic design and configuration of algorithms, which are closely connected to
the approaches we follow in the rest of this work. Nevertheless, there are a number
of research fields extending the algorithm configuration problem, with active research
communities working on and contributing to the goal of producing better algorithms
while reducing human effort. We briefly introduce these topics below, making the
proper distinction with the ideas previously discussed, presenting some application
examples and indicating references for further reading.



53

Online algorithm configuration. Also known as dynamic algorithm configura-
tion or parameter control, online configuration methods start with initial parameter
values and adapt them during the algorithm execution. Therefore, they integrate
the configuration process into the algorithm execution in order to not only find
the best parameter values, but determine a strategy to update them throughout
the algorithm execution, adapting to the observed execution conditions and the
instance being solved. Historically, online configuration has been widely applied to
evolutionary algorithms (EIBEN; HINTERDING; MICHALEWICZ, 1999; KARAFO-
TIAS; HOOGENDOORN; EIBEN, 2015; ALETI; MOSER, 2016) and several studies
show that updating parameter values at different stages of the evolutionary process
achieves better performance in comparison to using fixed parameter values (BÄCK,
1992; SMITH, 2001). Applications include the configuration of algorithms for AI
planning (SPECK et al., 2021), computer vision (CHAU et al., 2014) and deep
learning (DANIEL; TAYLOR; NOWOZIN, 2016).

Instance-specific algorithm configuration. The configuration approaches pre-
viously discussed try to find a configuration with the best performance over the
whole set of training instances. However, as stated by the no free lunch theo-
rem (WOLPERT; MACREADY, 1997) and observed in practice (MUJA; LOWE,
2009; SMITH-MILES et al., 2014), there is no single configuration (or algorithm)
with optimized performance over all instances. Hence, increasing performance on
certain instances usually leads to a corresponding loss of performance on others.
Instance-specific algorithm configuration approaches rely on a set of features de-
scribing the problem instances, and determine the best performing configurations
according to the feature values. A first approach uses empirical performance models
to select the most promising configuration when solving a new instance (HUTTER
et al., 2006). Kadioglu et al. (2010) cluster the training instances according to their
features and determine the best configuration for each cluster. A new instance being
solved is first associated to a cluster according to its feature values, and the corre-
sponding configuration is used to solve it. Instance-specific algorithm configuration
has been used in different problem domains, like boolean satisfiability (ANSÓTEGUI;
MALITSKY; SELLMANN, 2014), mixed-integer programming (KADIOGLU et al.,
2010) and black-box optimization (BELKHIR et al., 2017). We revisit instance-
specific algorithm configuration in Chapter 5, in which we propose a set of models
to determine parameter values as functions of the instance size. Hence, Chapter 5
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discusses this topic in detail and reviews the corresponding literature.

Algorithm selection. In the algorithm selection problem (RICE, 1976) there is a
set of problem instances and a set of algorithms, commonly called algorithm portfolio.
The objective is to find the best algorithm for solving the problem instances, according
to a given performance metric. Recent approaches define the selection rules on a
per-instance basis, where a model predicts the most promising algorithm based
on the features of the given instance (LEYTON-BROWN et al., 2003). Besides
that, algorithm selection is commonly combined with algorithm configuration in
more sophisticated approaches. In particular, several works propose an offline step
to automatically construct the algorithm portfolio by means of instance-specific
algorithm configuration, combined with an online strategy to select an algorithm
when solving a new given instance. These approaches have been applied to different
problem domains, including boolean satisfiability (XU et al., 2008; XU; HOOS;
LEYTON-BROWN, 2010; MALITSKY; MEHTA; O’SULLIVAN, 2013), answer set
programming (GEBSER et al., 2013), constraint solving (O’MAHONY et al., 2008),
and the traveling salesperson problem (KERSCHKE et al., 2018). Kerschke et al.
(2019) present a comprehensive review of automatic algorithm selection and discuss
several applications.

Hyper-heuristics. Hyper-heuristics are higher-level search or learning methods
that produce lower-level heuristics for solving computational search problems. Some
hyper-heuristics select one or a set of heuristics to solve a given problem, while more
sophisticated approaches generate new heuristics from a set of heuristic components
using genetic programming (discussed below). Hence, hyper-heuristics can be seen
as automatic algorithm selection or design approaches, but are usually applied
to small scenarios and the selection or generation of simple heuristics. Burke et
al. (2013) present a comprehensive literature review on hyper-heuristics, discuss
a classification of the existing methods and present several applications of both
selection and generation hyperheuristics. More recent articles from Burke et al.
(2019) and Drake et al. (2020) also discuss hyper-heuristics and present advances in
the field.

Genetic programming. Genetic programming is a bottom-up approach for au-
tomatic algorithm design, and can be seen as generation-based hyper-heuristic.
However, genetic programming is applied to the design of not only heuristics, but a
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number of types of algorithms. Unlike the approaches for automatic algorithm design
previously discussed, the algorithm components tackled by genetic programming usu-
ally have a much smaller granularity, like simple operators, expressions or commands.
Besides that, the design space exploration is performed by a genetic algorithm. The
traditional tree-based genetic programming represents algorithms using syntax trees,
while some extensions propose alternative representations, like using linear sequences
of instructions (linear genetic programming, BRAMEIER; BANZHAF, 2007) or gram-
mars (grammatical evolution, discussed below). For details on genetic programming
and application examples, we refer the reader to Koza (1992), Poli, Langdon and
McPhee (2008) and Poli and Koza (2014)

Grammatical evolution. Also called grammar-based genetic programming, gram-
matical evolution (RYAN; COLLINS; NEILL, 1998; O’NEILL; RYAN, 2001) is an
automatic algorithm design approach whose design space is represented by grammars
and explored by genetic algorithms6. As previously discussed, grammatical evolution
first used a simple codon-based solution representation that leads to low locality and
high redundancy (ROTHLAUF; OETZEL, 2006). More recent approaches follow the
structured grammatical evolution proposed by (LOURENÇO; PEREIRA; COSTA,
2016) that use a direct association of codons to each decision of the grammar. Gram-
matical evolution was used in different problem domains, including the automatic
generation of local search heuristics (BURKE; HYDE; KENDALL, 2012) and ant
colony optimization algorithms (TAVARES; PEREIRA, 2012). For additional infor-
mation about grammatical evolution and applications, we refer the reader to Ryan,
O’Neill and Collins (2018).

6Some works propose alternative search algorithms to explore the design space in grammatical
evolution, e.g. Hyde, Burke and Kendall (2013).
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3 ALGORITHM CONFIGURATION SCENARIOS

There is no higher or lower knowledge, but one only,
flowing out of experimentation.

— Leonardo da Vinci

This chapter introduces the algorithm configuration scenarios used to evaluate
the methods proposed in this thesis (Section 3.1). For each scenario, we present
the underlying problem, target algorithm, and problem instances. We also discuss
characteristics of the configuration space (e.g. number and type of parameters) and
additional details (e.g. configuration budget and termination criteria). We conclude
the chapter with a summary of characteristics of each configuration scenario and a
brief comparison among them in Section 3.2. All configuration scenarios are available
at Souza and Ritt (2022a)1, including algorithm implementations, execution scripts,
problem instances, parameter descriptions and the configurator setup.

3.1 Description of Scenarios

We propose a set of configuration scenarios comprising different character-
istics: heuristic and exact algorithms; mostly optimization, but also one decision
problem, to evaluate the contributions of visualizations of configuring algorithms
for both performance metrics (solution cost and solving time); deterministic and
stochastic algorithms; small, medium and large configuration spaces; and different
effort measures, especially to evaluate the proposed capping methods. In summary,
the configuration scenarios described in this chapter were used in the following parts
of this research:

• Chapter 4 (capping): ACOTSP, HEACOL, TSBPP, HHBQP, LKH and SCIP;

• Chapter 5 (regression models): ILSBQP, BSFS, HHTA and TSCPP;

• Chapter 6 (visualizations): ACOTSP and SPEAR;

• Chapters 7 and 8 define their own configuration scenario for the automatic
design of heuristic algorithms from components; we describe it in detail in
Chapter 7.

1The algorithm configuration scenarios can be downloaded at https://github.com/souzamarcelo/
ac-scenarios.

https://github.com/souzamarcelo/ac-scenarios
https://github.com/souzamarcelo/ac-scenarios
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For the scenarios using a running time limit as termination criterion, we define
such time limit considering their execution on particular machine specifications. The
running time limits of scenarios ACOTSP, HHBQP and LKH are based on their
execution on a single core of a computer with an 8-core AMD FX-8150 processor
running at 3.6 GHz and 32 GB main memory, under Ubuntu Linux. On the other
hand, the running time limits of scenarios SCIP, ILSBQP, BSFS, HHTA and TSCPP
are based on their execution on a single core of a computer with a 12-core AMD
Ryzen 9 3900X processor running at 3.8GHz and 32GB main memory, under Ubuntu
Linux.

3.1.1 Scenario ACOTSP

ACOTSP implements several ant colony optimization (ACO) algorithms for
the symmetric traveling salesperson problem (TSP) (BONDY; MURTY, 1976). All
algorithms are described in Dorigo and Stützle (2004), and the source code can be
obtained in Stützle (2002). ACOTSP is part of the AClib benchmark library for
algorithm configuration (HUTTER et al., 2014) and is widely used as a testbed for
studying automatic algorithm configuration (see López-Ibáñez and Stützle (2014),
Pérez Cáceres, López-Ibáñez and Stützle (2014, 2015), and López-Ibáñez, Stützle
and Dorigo (2018) for some examples). We use ACOTSP version 1.03.

This scenario has 11 parameters, 5 of them being conditional. We use
60 seconds of wall clock time as termination criterion of ACOTSP and define 2000 ex-
ecutions as budget for the configuration process. We use Random Uniform Euclidean
TSP instances of size 2000 (RUE-2000), as used in López-Ibáñez et al. (2016). We
randomly generated 50 training instances and 200 test instances, using the portgen
instance generator from the 8th DIMACS Implementation Challenge (JOHNSON
et al., 2001). This generator distributes cities in a square uniformly at random,
and computes the Euclidean distances between every pair of cities to determine the
distance matrix.

3.1.2 Scenario HEACOL

HEACOL implements a hybrid evolutionary algorithm (HEA) for the graph
coloring (COL) problem (BONDY; MURTY, 1976; LEWIS, 2016a). This algorithm
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was proposed by Galinier and Hao (1999) and is described in Lewis (2016a). It
keeps a population of solutions and combines an evolutionary approach based on a
problem-specific recombination operator, with a local search procedure. The source
code of HEACOL is provided by Lewis (2016b).

The HEACOL configuration scenario has 7 unconditional parameters. The
termination criterion is the maximum number of constraint checks. A constraint check
happens whenever the algorithm requests some information about the instance, e.g.,
whether two vertices are neighbors. We use a termination condition of 109 constraint
checks and a configuration budget of 2000 executions. For the training, we generated
27 instances consisting of 3 randomly generated graphs for each combination of sizes
n ∈ {250, 500, 1000} and densities d ∈ {0.1, 0.5, 0.9}, where each of pair of vertices
are made adjacent with probability d. For the test, we use the 79 well known graph
instances available in Trick (2018), with sizes ranging from 11 to 1000 vertices and
different structures, e.g. random and Latin square graphs.

3.1.3 Scenario TSBPP

This scenario concerns a tabu search (TS) algorithm for the two- and three-
dimensional bin packing problems (BPP) (DELORME; IORI; MARTELLO, 2016)
proposed by Lodi, Martello and Vigo (1999). The source code is described in Lodi,
Martello and Vigo (2004a) and is available at Lodi, Martello and Vigo (2004b).

This scenario has 6 unconditional parameters, and the termination criterion
is the number of iterations of the tabu search. We use a maximum of 5000 iterations.
TSBPP is a deterministic algorithm and since it has only 6 parameters, we set
a configuration budget of 500 executions only. We use the instances of the two-
dimensional bin packing problem (2BPP) proposed by Berkey and Wang (1987)
and Martello and Vigo (1998), which are divided in ten different classes with 50
instances each. A complete description of them can be found in Lodi, Martello and
Vigo (1999). All 500 instances are used for the test phase, and 20 out of them were
selected for the training phase (we randomly selected two instances of each class).
Additional information about these and other instances, as well as other approaches
to solve the BPP can be found in Delorme, Iori and Martello (2018).



59

3.1.4 Scenario HHBQP

This scenario consists in a hybrid heuristic (HH) algorithm to solve the
unconstrained binary quadratic programming (UBQP). See Kochenberger et al.
(2014) and Beasley (1998) for a review on UBQP and different approaches for solving
it. This algorithm was automatically produced using our component-wise solver for
binary problems (described in Chapters 7 and 8) that, in summary, uses irace to
explore the grammar-based design space of heuristic components from the literature
of UBQP (PALUBECKIS, 2006; GLOVER; LÜ; HAO, 2010; WANG et al., 2012).
The source code is available at Souza and Ritt (2018d).

The scenario has 14 parameters, with 7 being conditional. We use a time limit
of 20 seconds for the training executions, 30 seconds for the executions in the test
phase, and a configuration budget of 2000 total executions. For the test phase, we use
the 10 instances of size 2500 of Beasley (1998). They can be downloaded from Wiegele
(2007b) and more details can be found in Wiegele (2007a). For the training phase,
we randomly generated 9 instances with the same structure as Beasley’s instances.
We generated 3 instances for each size n ∈ {2000, 2500, 3000}, with a density of 0.1
and integer coefficients uniformly sampled within [−100, 100].

3.1.5 Scenario LKH

This scenario concerns the configuration of the Lin-Kernighan-Helsgaun (LKH)
algorithm for traveling salesperson problems (TSP). The LKH algorithm is an iterated
local search based on the Lin-Kernighan heuristic (LIN; KERNIGHAN, 1973). The
algorithm and an effective implementation are described in Helsgaun (2000, 2009,
2018a). The source code is available in Helsgaun (2018b). We use LKH version 2.0.9.

The LKH scenario has 21 unconditional parameters. We set a time limit
of 10 seconds as termination criterion, and a configuration budget of 2000 total
executions. We use Random Uniform Euclidean TSP instances of sizes 1000, 1500,
2000, 2500 and 3000 (RUE-1000-3000), randomly generated using portgen (JOHNSON
et al., 2001). We generated 50 training instances (10 for each size) and 250 test
instances (50 for each size).
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3.1.6 Scenario SCIP

This scenario consists in the configuration of SCIP (Solving Constraint Integer
Programs), an open-source exact solver for mixed integer programming (ACHTER-
BERG, 2009). We configure SCIP for solving the combinatorial auction winner
determination problem (DE VRIES; VOHRA, 2003). SCIP was previously config-
ured in López-Ibáñez and Stützle (2014). We use the same version of SCIP (2.0.2)
together with the linear programming solver SoPlex 1.5.0. We also set the maximum
memory to be used by SCIP to 350MB.

We consider the same 207 unconditional categorical parameters used in López-
Ibáñez and Stützle (2014). Although SCIP is an exact solver, we run it for a given
running time limit and measure the cost of the best found solution, using it as
performance metric for the configuration process. We set a time limit of 60 seconds
for each execution of SCIP, and a configuration budget of 2000 total executions. We
use the instances introduced in Leyton-Brown, Pearson and Shoham (2000). We
randomly selected 50 training instances and 50 test instances with 200 goods and
1000 bids (Regions200).

3.1.7 Scenario ILSBQP

The ILSBQP scenario implements an iterated local search (ILS) algorithm
to solve the unconstrained binary quadratic programming (UBQP). It iteratively
executes a best improvement local search followed by a random perturbation step.
ILSBQP has a single parameter that controls the perturbation size. The source code
is available at Souza and Ritt (2022b).

We consider the UBQP instances of Beasley (1998) with sizes {250, 500, 1000,
2500}. There are 10 instances of each size, from which we use 3 for training, and the
remaining 7 for testing. These instances are available in Wiegele (2007b) (for more
details see Wiegele (2007a)). The running time limits vary according to the instance
size, being 4, 8, 15 and 30 seconds of wall clock time for instances with sizes 250,
500, 1000 and 2500, respectively. We test configuration budgets of 300, 1000 and
2000 total executions.
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3.1.8 Scenario BSFS

This scenario consists of the bubble search (BS) algorithm for the permutation
flowshop scheduling (FS) problem (EMMONS; VAIRAKTARAKIS, 2013). The
bubble search algorithm was proposed by Lesh and Mitzenmacher (2006) and extends
priority-based greedy heuristics with applications in several problems. We use the
implementation of Zubaran and Ritt (2013), who studied its application on FS and
its performance under different values for the single parameter that controls the
algorithm randomness.

We consider the instances proposed by Taillard (1993), which are divided in
12 groups with the number of jobs varying between 20 and 500, and the number
of machines between 5 and 20. Each group has 10 instances, with processing times
drawn uniformly at random from [1, 99]. We selected the first instance of each group
for training, and all instances for testing. Following the literature, we use a running
time limit of 30nmmilliseconds for instances with n jobs and m machines. The
configuration budget is set to 300, 1000 and 2000 total executions.

3.1.9 Scenario HHTA

The HHTA configuration scenario concerns a hybrid heuristic (HH) algorithm
for the test-assignment (TA) problem (DUIVES; LODI; MALAGUTI, 2013). This
algorithm solves the TA by first reducing it to UBQP, and then applying an evolu-
tionary approach that keeps a set of elite solutions and iteratively recombines them
with path relinking, followed by a tabu search improvement step. This algorithm was
also automatically produced using our component-wise solver for binary problems
(Chapters 7 and 8) and can be downloaded at Souza and Ritt (2018g).

In this scenario we adapted the HHTA algorithm, exposing three unconditional
numerical parameters defined by constants: the tabu tenure, the size of the elite
set, and the distance factor of the path relinking. We use a running time limit of
10 seconds of wall clock time and configuration budgets of 1000, 2000 and 5000 total
executions. We use the 36 instances proposed in Duives, Lodi and Malaguti (2013),
with 20 to 79 desks, 2 to 4 different tests, and between 0 and 20 unoccupied desks.
We randomly selected 12 instances for training, and used all instances for testing.
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3.1.10 Scenario TSCPP

This scenario consists in a three-phase tabu search (TS) for the clique parti-
tioning problem (CPP). For details about the CPP we refer to the original works
of Grötschel and Wakabayashi (1989, 1990). The TSCPP algorithm was proposed
by Zhou, Hao and Goëffon (2016a) and its source code is available at Zhou, Hao and
Goëffon (2016b). It uses a restricted neighborhood based on the problem structure,
and iterates between three phases: an intensification by local search, an exploratory
step using a tabu search, and a solution perturbation step.

We adapted the original TSCPP algorithm, exposing three unconditional
numerical parameters defined by constants: the tabu tenure, the perturbation size,
and the number of candidates for perturbation. We use a running time limit of
10 seconds of wall clock time and configuration budgets of 1000, 2000 and 5000 total
executions. We use a set of graph instances proposed by Charon and Hudry (2006)
and Brusco and Köhn (2009), with 100 to 500 vertices and edge weights selected
uniformly at random from [−100, 100] (5 instances) or [−5, 5] (5 instances). We use
5 randomly chosen instances for training, and all 10 instances for testing. These
instances (which we call “RAND”) can be downloaded at Zhou, Hao and Goëffon
(2016b).

3.1.11 Scenario SPEAR

SPEAR (BABIĆ; HUTTER, 2008) is an exact tree-based solver for (decision)
boolean satisfiability (SAT) problems (BIERE et al., 2021). The SPEAR configuration
scenario is also part of the Algorithm Configuration Library (HUTTER et al., 2014)
and has been configured in several works (LÓPEZ-IBÁÑEZ et al., 2016; PÉREZ
CÁCERES et al., 2017a; HUTTER et al., 2017). We use SPEAR version 1.2.1.

This scenario has 26 parameters, 9 of which are conditional. We use the SAT-
encoded instances of graph coloring based on small world graphs (SWGCP) of Gent et
al. (1999), which can be downloaded from Hutter (2007). We randomly selected 121
instances for training and no test instances, since we do not perform experiments with
test phase for SPEAR (we only use this scenario as a test case for the visualizations
proposed in Chapter 6). We set a limit of 10 seconds of wall-clock time for each
execution of SPEAR, and a configuration time budget of 20000 seconds. Here, the
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configuration process aims at minimizing SPEAR’s solving time, where for evaluations
in which the instance is not solved, a penalized performance value is returned. In
particular, we return the running time limit multiplied by a constant penalty factor,
which is in line with the penalized average running times (PAR) approach commonly
used in the literature (LINDAUER et al., 2015; PÉREZ CÁCERES et al., 2017a).

3.2 Summary of Characteristics

We summarize the characteristics of each configuration scenario in Table 3.1.
We indicate the target (heuristic or exact) algorithm, the associated (optimization
or decision) problem, whether the algorithm is deterministic, and the configuration
budget. We also present the configuration space, indicating the number of integer,
categorical, real and conditional parameters, the effort type and limit used when
executing the target algorithm, and the number of training and test instances.

We emphasize that the diverse characteristics presented by the configuration
scenarios allow us to properly evaluate the methods we propose in this research. We
have, for instance, scenarios with different configuration space sizes and various effort
types to evaluate the capping methods under different conditions. We also use both
optimization and decision scenarios to apply the proposed visualizations on different
situations, i.e. when optimizing the target algorithm in terms of solution cost and
running time, respectively.
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Table 3.1 – Summary description of the configuration scenarios. Column Problem indicates the associated optimization (“opt”) or decision (“dec”)
task; column Det. indicates whether the target algorithm is deterministic or stochastic; finally, column Budget is defined in terms of the maximum
executions allowed, except for SPEAR, which uses a total configuration time budget. The performance metric of optimization scenarios is the cost of
the best found solution, while for decision scenarios we use the solving time. The numbered references are: [1] Trick (2018); [2] Beasley (1998);
[3] Taillard (1993); [4] Duives, Lodi and Malaguti (2013).

Scenario Algorithm Problem Det. Budget
Parameters Effort Instances

int cat real cond type limit description train test

ACOTSP ACO (heuristic) TSP (opt) no 2000 4 3 4 5 time 60 s RUE-2000 50 200
HEACOL HEA (heuristic) COL (opt) yes 2000 4 2 1 0 checks 109 From [1] 27 79
TSBPP TS (heuristic) BPP (opt) no 500 3 2 1 0 iterations 5000 2BPP 20 500
HHBQP HH (heuristic) UBQP (opt) no 2000 10 3 1 7 time 20/30 s From [2] 9 10
LKH LKH (heuristic) TSP (opt) no 2000 12 9 0 0 time 10 s RUE-1000-3000 50 250
SCIP SCIP (exact) MIP (opt) yes 2000 0 207 0 0 time 60 s Regions200 50 50
ILSBQP ILS (heuristic) UBQP (opt) no 300 ∼ 2000 1 0 0 0 time 3 ∼ 300 s From [2] 12 28
BSFS BS (heuristic) FS (opt) no 300 ∼ 2000 1 0 0 0 time 4 ∼ 30 s From [3] 12 120
HHTA HH (heuristic) TA (opt) no 1000 ∼ 5000 2 0 1 0 time 10 s From [4] 12 36
TSCPP TS (heuristic) CPP (opt) no 1000 ∼ 5000 3 0 0 0 time 10 s RAND 5 10
SPEAR SPEAR (exact) SAT (dec) yes 20000 s 4 12 10 9 time 10 s SWGCP 121 0
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Part II

Methods
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4 CAPPING METHODS FOR OPTIMIZATION SCENARIOS

A man who dares to waste one hour of time has not
discovered the value of life.

— Charles Darwin

Automatic algorithm configuration free researchers from the tedious and error-
prone task of manually searching the best configurations, which allows them to focus
on other more creative activities of the algorithm design process. Besides that, the
configuration time remains a bottleneck, since automatic approaches need to evaluate
different parameter values on different (training) instances, and each evaluation often
takes a considerable amount of time. As a result, researchers tend to wait from hours
to weeks for the resulting configurations. As an example, López-Ibáñez et al. (2016)
configure the 26 parameters of the SPEAR solver for boolean satisfiability problems
using a cutoff time of 300CPU-seconds for each execution, and a configuration budget
of 10 000 executions. Without considering parallel evaluations, this configuration
would take more than one month to finish (or almost a week considering parallel
evaluations on a 6-core CPU).

There is a trade-off between the number of evaluations (or instances evaluated)
and the quality of the final configurations found, and so reducing the effort (i.e. the
configuration budget) will usually lead to worse configurations. A better approach
to reduce the configuration time is to evaluate the quality of a configuration during
its execution, and immediately stop it when poor performance is expected. This
approach has been applied previously to the automatic configuration of decision
algorithms (HUTTER et al., 2009b; PÉREZ CÁCERES et al., 2017a), where the
performance of an algorithm is measured by its running time and the goal of
configuration is to minimize it. The key idea behind existing methods is to cap
the execution time, i.e. to determine a bound on the running time based on the
best-performing configuration found so far and, if the execution reaches the running
time bound, stop it and discard the current configuration.

For optimization problems, we usually execute an algorithm with a predefined
stopping criterion, and measure its performance by the cost of the best found solution
(assuming, without loss of generality, minimization of solution cost). Thus, existing
capping methods are not suitable for these scenarios. In this chapter, we propose
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capping methods for configuring optimization algorithms. The main idea is to use
previously seen executions to determine a performance envelope for the current
execution. We then monitor the evolution of the performance of each configuration,
and stop it if at some point the conditions defined by the performance envelope are
violated. We present and evaluate an implementation of such capping methods in
the irace configurator.

This chapter details our contributions in the direction introduced above. First,
we discuss some related work in Section 4.1. Then, we introduce several new capping
methods for optimization problems in Section 4.2, and discuss the results of extensive
computational experiments comparing the different methods in Section 4.3. Finally,
we give some concluding remarks in Section 4.4.

4.1 Related Work

Hutter et al. (2009b) proposed capping methods for ParamILS to be used
for configuration scenarios minimizing running time. The best configuration θ′ of
the current iteration of ParamILS is used to determine a cut-off running time for
subsequent executions. A new configuration θ must be executed and present better
performance on the same instances that θ′ has been executed to replace it and become
the new best configuration. If the time used by θ to solve a subset of those instances
exceeds the time used by θ′ to solve all of them, θ is discarded before the complete
evaluation. Hutter et al. (2009b) call this method trajectory-preserving capping, since
it discards only configurations that would be discarded after the complete evaluation.
It reduces the configuration time, but does not change the search trajectory. A second
approach, called aggressive capping, considers not the best found configuration of
the current iteration, but the best configuration overall θ∗. In this case, the cut-off
time when evaluating a new configuration θ is b times the mean running time of
θ∗. Multiplier b defines the aggressiveness of the capping method. Although the
aggressive capping method may change the search trajectory, it can also lead to large
savings in the configuration time.

Based on the above ideas, Pérez Cáceres et al. (2017a) integrated a capping
method for configuring decision algorithms into irace. Consider a new configuration
θ that will be executed on instance πi and was previously evaluated on instances
π1, π2, . . . , πi−1. The cut-off time tc is given by tc = i·telite

i +tmin−(i−1)tθi−1, where telite
i
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is the median running time of the elite configurations Θelite on instances π1, π2, . . . , πi,
tθi−1 is the average running time of configuration θ on instances π1, π2, . . . , πi−1, and
tmin > 0 is the minimally measurable running time. The cut-off time can be seen
as the maximum time available for θ to improve over the performance of the elite
configurations. Pérez Cáceres et al. (2017a) also proposed the following dominance-
based elimination criterion. A configuration θ is dominated if telite

i + tmin < tθi .
When all configurations have been evaluated on a new instance πi, the dominated
configurations are eliminated.

The capping methods proposed for ParamILS (HUTTER et al., 2009b) and
irace (PÉREZ CÁCERES et al., 2017a) are designed for decision problems, when the
goal is to minimize the running time of the target algorithm. Those capping methods
cannot handle optimization scenarios, where the solution cost may be improved
over time and, thus, there is information about the progress (or lack thereof) of
the algorithm. In an optimization context, Karapetyan, Parkes and Stützle (2018)
propose an approach to approximate the 1% best configurations of optimization
algorithms based on short runs. They uniformly sample and evaluate 1% of the
configuration space, determining a performance envelope, which is the hull defined
by the worst solution cost obtained in those executions at each point in time. Then,
previously untested configurations are executed. If, at some point in time, the cost
of the best found solution is more than 20% worse than the one defined by the
performance envelope, the execution is stopped and the configuration is discarded. If
the configuration survives, it replaces the worst performing element of the 1% pool
(according to the final solution cost). Among the capping methods proposed here, we
include this definition of performance envelope as a particular case. Moreover, our
capping methods are designed to work within the existing algorithm configuration
techniques, e.g. the racing mechanism of irace, instead of relying on uniform sampling.

Capping methods for optimization scenarios analyze the algorithm perfor-
mance under a given configuration during its execution. Thus, they are suitable when
configuring anytime algorithms (ZILBERSTEIN, 1996; LÓPEZ-IBÁÑEZ; STÜTZLE,
2014), i.e. the algorithm has to produce feasible solutions prior to completion and
continuously produce improved solutions until completion. Capping methods are not
useful for configuring algorithms that do not satisfy these requirements, such as those
that only return a single solution, that need a long exploratory phase or are based on
random restarts. Fortunately, many practical optimization algorithms are anytime



69

(e.g. trajectory based heuristics that can return the best found solution if stopped at
any time). Some techniques used to find configurations that present good anytime
behavior are similar to those implemented by capping methods. For example, Branke
and Elomari (2011) use a higher-level genetic algorithm to search for parameter
settings of a lower-level genetic algorithm aiming to optimize its anytime behavior.
To evaluate the population of configurations, they analyze their performance profiles.
Configurations that present the best solution cost for some time point are ranked first.
These configurations are removed from the population and the process is repeated,
but now the best remaining configurations are ranked second, and so on. The ranks
are used to guide the selection of configurations. Although their proposal is not a
capping method, one of our methods similarly builds an envelope by considering the
best solution cost found at any running time (effort) point.

López-Ibáñez and Stützle (2014) also explore the automatic configuration of
algorithms to improve their anytime behavior. They model this configuration task
as a bi-objective optimization problem, considering the performance profiles as a
set of nondominated bi-objective points. They use irace to find configurations that
maximize the hypervolume of such nondominated sets. The results show that the
proposed techniques are effective in improving the anytime behavior of algorithms
for two different scenarios. We propose here an area-based measure to determine the
performance envelope (Section 4.2.2) that is equivalent to the hypervolume metric
used in López-Ibáñez and Stützle (2014).

4.2 Capping for Optimization Scenarios

The capping methods we propose use the performance profiles of previously
seen configurations to determine a minimum performance bound for new executions,
and then stop poor performers early. The performance profile of a run is given by
the solution cost as a function of the effort P : R+ → R, where P (t) = c denotes
the cost c of the best found solution after spending computational effort t. Any
effort measure, e.g. the running time, number of iterations, or number of objective
function evaluations, can be used. Assuming a minimization problem, a profile will
always be monotonically decreasing and, for discrete problems, is a step function.
Thus, in practice, we only need to collect the points (t, c) at efforts t where c
decreases. Figure 4.1 presents an overview of the capping method, which is applied



70

Previous executions
(performance profiles)

effort cost
2 97
9 78
18 61
...

...

Profile-based approach

Area-based approach
Determine
envelope

Performance
envelope

Evaluate
execution

CAP!

Capping

Amax

Performance
envelope

Evaluate
execution >Amax

CAP!

Capping

Figure 4.1 – Overview of the capping methods. Left: for each instance previous performance
profiles are kept. Upper right: in the profile-based approach these performance profiles
are combined into a performance envelope. If the current performance profile (dashed
line) leaves the envelope (solid line) it is capped. Lower right: in the area-based approach
profiles are combined into a maximum allowed area Amax. If the total area of the current
performance profile (dashed line) exceeds Amax it is capped.

before executing each configuration. The first step of this process is to obtain all
performance profiles of the previous executions on the current instance. They are used
to determine a performance envelope, which represents the minimum performance
required for this instance. If at some point the observed performance profile is worse
than the envelope, the execution is stopped. Unlike capping methods for decision
problems, our methods do not cap after a fixed running time. Instead, they monitor
the progress of the execution and terminate it when appropriate.

We propose two different types of envelopes. The profile-based envelope is
represented by a performance profile, which determines the maximum allowed solution
cost throughout the used effort. When using this method to evaluate an execution,
as soon as its performance profile exceeds the envelope, i.e., the solution cost of the
execution is worse than the one defined by the envelope for some value of effort, the
execution is capped (see Profile-based approach in Figure 4.1). This approach not
only defines the limits in terms of the expected solution cost, but also the acceptable
behavior of the performance profile. For example, it is not allowed to be worse than
the envelope in the beginning of the execution, e.g., by trying to diversify the search
to find better solutions at a later time in the execution. Hence, this approach implies
that the execution must show a clear good anytime behavior. In other cases, the
final solution cost is the only performance criterion that matters, and allowing a
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Figure 4.2 – Example of profile- and area-based capping behaviors. Note that the cost of
P ′ is worse than the cost of P for t ∈ [4, 6). The total area of P ′, however, is smaller than
the area of P , since P ′ presents better cost during the execution, except for the mentioned
interval. If P is the performance envelope, P ′ is capped by profile-based methods, but not
capped by area-based methods.

worse performance in the beginning is not a problem, as long as a good solution is
found in the end. Stützle et al. (2012), for example, studied parameter adaptation
techniques for ant colony optimization algorithms. Their results on the traveling
salesperson problem show that for some parameter settings, worse performance in
the beginning of the execution leads to better final solutions.

In the area-based envelope, instead of dealing directly with the performance
profiles, we consider the area defined by them. In this case, the area under the
performance profiles of previous executions is used to determine a maximum area
for the current execution. This maximum area value is the envelope. The current
execution will be capped if the area of its performance profile exceeds the envelope,
i.e. the maximum area available (see Area-based approach in Figure 4.1). As long
as the maximum area is not exceeded, the performance profile can present different
behaviors. For example, a configuration can produce worse solutions in the beginning
of its execution in comparison to previously seen configurations, but produce better
solutions towards the end of the execution, maintaining the total area within the
envelope. Figure 4.2 illustrates this situation for the performance profile P ′ of a
running execution. With a profile-based envelope P , execution P ′ would be capped
at effort t = 4, since the solution cost of P ′ at that point exceeds the corresponding
solution cost of envelope P . However, when defining the envelope as the area under
P at t = 14, then P ′ would not be capped, since its area is always smaller than the
envelope.

It is important to consider that an unsatisfactory performance of a capped
configuration on the current instance does not imply a similar performance on other
instances. Therefore, instead of directly discarding the configuration, we just stop
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the execution and return to irace the cost of the best solution found. In other
words, the configuration is penalized by having a reduced execution effort, but it
can compensate this by presenting a better performance on other instances. The
decision of discarding configurations is delegated to irace.

4.2.1 Profile-based Envelope Generation

The profile-based methods define the envelope as a performance profile. We
propose two different strategies to compute the envelope: elitist and adaptive. For
both approaches, we first select a subset of the non-capped previous executions
on the current instance. Then, we aggregate their performance profiles into a
performance envelope. The elitist envelope generation is based on the executions of
configurations from an elite set, while the adaptive strategy considers all previous
executions and discards some of them according to an aggressiveness value. Another
difference between elitist and adaptive strategies is the behavior when evaluating
elite configurations. Elitist strategies use those configurations to determine the
performance envelope, and never cap executions of elite configurations. Adaptive
methods, on the other hand, do not differentiate configurations when determining
the envelope and when evaluating them. Therefore, adaptive strategies can cap both
elite and non-elite configurations.

4.2.1.1 Elitist Profile-based Envelope Generation

The elitist strategy uses only the best performing (elite) configurations to
define the envelope. In irace, the elite configurations are those that survived the
previous race. We divide the aggregation of the previous executions for a fixed
instance in two steps, as illustrated in Figure 4.3. Let us consider a set of n
configurations θ1, . . . , θn, where each configuration θi has been evaluated mi times on
the same instance. Let P be the space of all possible performance profiles and Pij ∈ P

be the performance profile of the jth replication of θi on that instance. We define the
aggregated performance profile for configuration θi as Pi = AR(Pi1, Pi2, . . . , Pimi

),
where AR : 2P → P is an function that aggregates the performance profiles of
multiple runs of a configuration. The profile-based envelope is defined as P =
AC(P1, P2, . . . , Pn), where AC : 2P → P is a function that aggregates the performance
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Figure 4.3 – Aggregation scheme for elitist capping methods. First, all replications of
a given configuration i are aggregated by function AR into a single performance profile
Pi. Then, function AC aggregates all resulting performance profiles into the performance
envelope P .

profiles of multiple configurations.
Two possible approaches for defining AR and AC are the worst aggregation

function W and the best aggregation function B. Function W : 2P → P generates a
performance profile that selects, for each effort t, the pointwise maximum solution
cost among all input performance profiles. Given a set of performance profiles
P1, P2, . . . , Pk, the performance profile generated by W is given by

W (P1, . . . , Pk)(t) = max {P1(t), . . . , Pk(t)}. (4.1)

Analogously, the best aggregation function B : 2P → P generates a performance
profile that selects, for each value of effort t, the pointwise minimum solution cost
among all performance profiles, then

B(P1, . . . , Pk)(t) = min {P1(t), . . . , Pk(t)}. (4.2)

Aggregation methods W and B are illustrated in Figure 4.4. There are
three different performance profiles to be aggregated (left side). The aggregated
performance profiles given by W and B functions are shown on the right side of
the figure. W and B form the hull of the input performance profiles. Function W
produces the pessimistic performance (least aggressive profile), while function B

produces the optimistic performance (most aggressive profile).
Aggregation functions AR and AC may be different or the same. For example,
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Figure 4.4 – Best (B) and worst (W ) aggregation methods for profile-based envelopes.
Methods W and B select the pointwise maximum and minimum solution cost, respectively,
for each effort t, among all input performance profiles.

if AR = W and AC = B, then the envelope will be

P (t) = AC(AR(P11, . . . , P1m1), . . . , AR(Pn1, . . . , Pnmn))(t)

= B(W (P11, . . . , P1m1), . . . ,W (Pn1, . . . , Pnmn))(t)

= min{max{P11(t), . . . , P1m(t)}, . . . ,max{(Pn1(t), . . . , Pnm(t)}}

(4.3)

We also propose a model-based aggregation function as follows. Given the
performance profile P of a single run and a maximum cut-off effort tmax (maximum
budget for any run) such that P (t) ≥ P (tmax), ∀t ≥ 0, let T (P, c) be the smallest
effort to reach target c defined as

T (P, c) =


min{t ≥ 0 | P (t) ≤ c} if P (tmax) ≤ c,

αtmax otherwise,
(4.4)

where α ≥ 1 is a penalty factor applied when the performance profile does not reach
the target, similar to the PARX penalization approach (PÉREZ CÁCERES et al.,
2017a). We now assume that the value of T (P, c) for any randomly selected run P of an
algorithm is a random variable T (c) that follows an exponential distribution, which is
often a reasonable assumption for optimization algorithms (HOOS; STÜTZLE, 2005).
Its empirical cumulative distribution function is given by F (t;λ) = Pr(T (c) ≤ t) =
1− e−λt, where λ is the parameter of the distribution. Given the performance profiles
P1, . . . , Pk of k runs of the algorithm, we estimate the mean effort to reach target
c as T̄ (c) = ∑k

i T (Pi, c)/k. Then, the maximum likelihood estimator for parameter
λ is λ̂(c) = 1/T̄ (c) and we can determine the effort Tp(c) required for a fraction
p ∈ [0, 1] of the executions not reaching target value c by setting F (Tp(c);λ) = 1− p,



75

which holds for Tp(c) = − ln(p) · T̄ (c). Since Tp(c) is monotone, it has an inverse
T−1
p (t) that gives the expected c reached after effort t by at most a fraction 1− p of

executions. We can now define a model-based aggregation as

M(P1, . . . , Pk; p)(t) = T−1
p (t). (4.5)

If there is only one performance profile to be aggregated i.e. k = 1, methods
W and B produce the same performance profile, since they simply select cost values
for each value of effort from the available profile. In contrast, method M computes
the aggregated performance profile based on the exponential model, whose parameter
can be estimated even with a single sample. For example, given a single performance
profile P to be aggregated with p = 0.1 and T (P, c) = 20 for a particular target cost
c, the mean T̄ (c) = 20 is multiplied by − ln(0.1) ≈ 2.3, leading to an effort equal to
43 for the aggregated performance profile. The effort values required for the fraction
p not reaching all target costs are computed, producing an aggregated performance
profile different from the one used as input.

4.2.1.2 Adaptive Profile-based Envelope Generation

The adaptive strategy determines the envelope based on all previous executions
on the current instance, not only on the executions of elite configurations. These
performance profiles are ordered by the cost of the best solution found, and the
envelope is determined in such a way that only the best ones would not be capped. The
number of such non-capped performance profiles is determined by an aggressiveness
parameter a ∈ [0, 1]. Given k performance profiles sorted by the cost of their best
solution found, we determine the most aggressive envelope that would cap a fraction
a of them. That is, the adaptive profile-based envelope generation is equivalent to
the aggregation function

D(P1, . . . , Pk)(t) = W (P1, . . . , Pd(1−a)ke)(t), (4.6)

given that P1, P2, . . . , Pk are ordered by the cost of their best solution found. Fig-
ure 4.5 shows an example with 4 performance profiles PA, PB, PC , PD. When sorting
them, we get the ordered list L = (PD, PA, PC , PB). Given a = 0.5, we select only
the 2 best performance profiles and compute the most aggressive envelope that would
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Figure 4.5 – Adaptive aggregation for profile-based envelope. A profile that would be
capped d(1− a)ke of the k previous executions is determined.

not cap them by applying W function (Eq. 4.1). The resulting envelope is shown on
the right side of Figure 4.5.

Given a value of a for the current iteration, we create an envelope before each
execution, and use it to evaluate (and possibly cap) that execution. However, we
cannot ensure that this value of a will produce envelopes that cap exactly a fraction
a of those executions. Therefore, once the current iteration is finished, we adapt the
value of a based on the number of executions capped, and then use the updated value
to compute the envelopes in the next iteration, in an attempt to reach a user-defined
aggressiveness goal ag.

Let ac be the fraction of executions capped in the previous iteration of irace.
Since the goal was to cap a fraction ag of those executions, we

• increase a to the lowest value that would have capped ag, if ac < ag − ε,

• decrease a to the highest value that would have capped ag, if ac > ag + ε,

• maintain a, otherwise,

where ε ∈ [0, 1] is a user-defined parameter that specifies the tolerance of the observed
aggressiveness deviation from the aggressiveness goal ag. For example, given ag = 0.3
and ε = 0.05, if in the previous iteration we capped 18 out of 100 executions, then
the adaptation procedure would increase a, since ac = 18/100 < 0.3 − 0.05, such
that Eq. (4.6) would cap exactly 0.3 · 100 = 30 executions.

When increasing a, we can easily determine which value of a would cap the
desired number of executions from the previous iteration by adding performance
profiles one at a time to those used by Eq. (4.6). The case of decreasing a is more
complicated since we want to find the value a that would not cap the desired number
of executions. Because the executions were capped, we do not know the performance
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Figure 4.6 – Example of the performance profile prediction for adaptive profile-based
methods. Given the median of improvement ratios r and the number of improvements s,
the missing part of the capped performance profile (left) is predicted (right).

profile until the cut-off effort and, therefore, we cannot compute exactly the value
of a that would not ever cap them. Instead, we predict the unknown part of the
performance profile and combine it with the known part when calculating the value
of a that would not cap it.

To predict how a capped performance profile Pc would behave from the effort
at which it was capped tc until the cut-off effort tmax, we consider all previous non-
capped performance profiles on the same instance, and compute from them a simple
extrapolation. First, we estimate the number of improvements s of the objective
function from tc to tmax as the median number of improvements in the same range over
all non-capped profiles. Next, we estimate the final solution cost P̂c(tmax) = r ·Pc(tc),
where r is the median of the improvement ratios P (tmax)/P (tc) between the solution
cost at tc and the final cost at tmax over all non-capped performance profiles. Finally,
we estimate the solution cost at each effort ti = tc + i(tmax − tc)/(s + 1), with
i = 1, . . . , s, as

P̂c(ti) = Pc(tc) + i(P̂c(tmax)− Pc(tc))/s. (4.7)

Figure 4.6 presents an example of the performance profile prediction. On
the left side we can see the performance profile Pc capped at tc = 91 with cost
Pc(tc) = 50. Let us assume that r = 0.8 and s = 2, thus the predicted final cost at
tmax = 100 is P̂c(tmax) = 50 · 0.8 = 40. Then, we build s = 2 intermediary points
until tmax. The first will be at t1 = tc + 1 · (tmax − tc)/(s + 1) = 91 + 9/3 = 94
with cost P̂c(t1) = Pc(tc) + 1 · (P̂c(tmax) − Pc(tc))/s = 50 + 1 · (−10/2) = 45. The
second point will be at t2 = tc + 2 · (tmax− tc)/(s+ 1) = 91 + 2 · (9/3) = 97 with cost
P̂c(t2) = Pc(tc) + 2 · (P̂c(tmax) − Pc(tc))/s = 50 + 2 · (−10/2) = 40. The predicted
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Figure 4.7 – Example of area calculation for a given performance profile. The area is
calculated between a minimum cost value cmin and the curve given by the performance
profile.

performance profile, with the calculated points, can be seen on the right side of
Figure 4.6.

4.2.2 Area-based Envelope Generation

The area-based envelope is defined as the maximum area available for the
execution. The area of a performance profile P is

AP =
∫ tf

ts
P (t)− cmin dt, (4.8)

where ts and tf are the start and final effort values, respectively, and cmin is a
baseline cost. The start effort ts should be the same for calculating the area of
different performance profiles, to ensure a fair comparison between them. In our
implementation, the target algorithms report the corresponding cost as soon as the
first solution is obtained. Then, when evaluating k performance profiles, we define
ts = maxi∈{1,...,k} tis, where tis is the starting effort value of performance profile i. The
final effort tf is the cut-off effort (tmax) for finished executions or the current effort
of the execution in progress. Figure 4.7 illustrates a performance profile and the
respective value of area.

The area depends on the baseline cost cmin. If cmin is too low, we obtain
a larger area, which makes capping less aggressive; if it is too high, we may have
negative areas, and possibly a too aggressive capping. Ideally, we would like to set
cmin to the optimal solution cost or a good lower bound. These are often unknown,
thus we maintain for every instance the best found solution cost and set cmin to it.

Finally, we first compute the area of previous performance profiles on the
current instance, and then aggregate the areas into the envelope, which is represented
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here by the area budget Amax. The current execution P will be capped as soon
as AP > Amax. Similar to the profile-based methods, in the area-based envelope
generation we also use elitist and adaptive aggregation strategies.

4.2.2.1 Elitist Area-based Envelope Generation

Given all performance profiles of the elite configurations on the current
instance, the area-based elitist strategy calculates their area and uses functions AR
and AC to aggregate replications and configurations, respectively. We use worst
and best approaches for both AR and AC aggregation steps, replacing the pointwise
behavior by the selection of the largest area

W (P1, . . . , Pk) = max{AP1 , . . . , APk
}, (4.9)

or the smallest area

B(P1, . . . , Pk) = min{AP1 , . . . , APk
}. (4.10)

4.2.2.2 Adaptive Area-based Envelope Generation

The area-based adaptive envelope generation is similar to the profile-based
approach. We compute the area of all previous performance profiles of the current
instance, and select the area which would cap a part of them, according to the
aggressiveness parameter a ∈ [0, 1]. In this case, the performance profiles are sorted
by their area values. Given a list of performance profiles P1, P2, . . . , Pk ordered such
that APi

≤ APi+1 , the adaptive area-based envelope generation is given by

D(P1, . . . , Pk) = APd(1−a)ke . (4.11)

The aggressiveness is adjusted at the beginning of each iteration. It increases or
decreases a according to the amount of capping reached in the last iteration, the
aggressiveness goal parameter ag ∈ [0, 1], and the tolerance ε.

As done in the profile-based approach, when the amount of capped executions
in the previous iteration is out of the range [ag− ε, ag + ε], we calculate the value of a
that would cap exactly the number of executions needed to achieve the aggressiveness
goal ag. The only difference with respect to the profile-based approach is in the
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Figure 4.8 – Example of area prediction for a given performance profile. To estimate area
Â for the missing portion of the performance profile, we first compute a ratio r = A′′/A′ of
the real area A′ and the upper bound area A′′ of the performance profiles of non-capped
previous executions.

estimation required when decreasing a. Here we need to estimate the area of the
capped performance profile Pc by predicting its behavior after the capping point
(tc, Pc(tc)). In the best case, the best possible solution would have been found just at
tc, such that Pc(tc) = cmin, and thus the remaining area would be zero. In the worst
case, no solution better than Pc(tc) would have been found until tmax, thus the upper
bound of the unknown area would be (Pc(tc)− cmin) · (tmax− tc). Let ÂPc = APc + Â

be the (estimated) total area used by Pc if it had not been capped, where APc is
the known area until tc and Â ∈ [0, (Pc(tc)− cmin) · (tmax − tc)] is the unknown area
between tc and tmax, which must be estimated. Figure 4.8 shows an example where
the execution was capped at effort tc = 65 with P (tc) = 40. Then, the real area of
this execution until tc is APc = 3200 and the remaining area is 0 ≤ Â ≤ 4000.

To estimate the value of Â, we use the performance profiles of non-capped
previous executions on the current instance. For each performance profile P , we
compute the real area A′ from tc to tmax and the upper bound A′′ = (Pc(tc) −
cmin) · (tmax − tc), and then calculate the ratio A′′/A′. We use the median ratio
r to estimate the remaining area of the capped performance profile Pc as Â =
r · (Pc(tc)− cmin) · (tmax − tc) and its predicted area ÂPc = APc + Â. In the example
of Figure 4.8, by using r = 0.7, the remaining area is estimated as Â = 2800, giving
a predicted total area of ÂPc = 6000.

4.2.3 Summary of Proposed Methods

Table 4.1 summarizes the components of all the methods described in this
section. A complete capping method consists of an envelope type (P or A), an
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Table 4.1 – Summary of the proposed capping methods. We present the envelope types,
main strategies and corresponding parameters.

Envelope Strategy Parameters

Profile (P )
Elitist (E) AR={W,B,M}, AC={W,B}, p ∈ [0, 1], α ∈ [1,∞)
Adaptive (D) ag ∈ [0, 1], ε ∈ [0, 1]

Area (A)
Elitist (E) AR={W,B}, AC={W,B}
Adaptive (D) ag ∈ [0, 1], ε ∈ [0, 1]

envelope generation strategy (E or D), the corresponding aggregation functions (W ,
B or M , when applied), and parameter values (p and ag, when applied).

The capping methods proposed here are mostly independent of the configu-
rator, and can be applied whenever the following requirements are met. First, the
target algorithm must periodically report the progress of the objective function. It
must also report the effort if it is different from wall-clock time, e.g. the number of
evaluations. Second, the elitist capping methods require that elite configurations
are identified. Third, the adaptive capping methods require to indicate when the
aggressiveness parameter needs to be updated. The latter two requirements can be
satisfied by the configurator but may also be implemented in additional external
components.

When integrated with irace, the capping methods identify the elites from the
data already reported by irace, update the aggressiveness at the end of each race
(Algorithm 1), and do not apply capping in the first race. This integration does not
require any changes in irace except using the capping methods as a wrapper around
the target algorithm.

4.3 Computational Experiments

In this section, we present our computational experiments to evaluate the
capping methods. We detail the experimental setup, i.e. software versions, values
for the parameters of the capping methods, configuration scenarios, and machine
settings. Then, our first experiment evaluates how good the capping methods are
in saving effort during the tuning process, as well as in finding good configurations
(Section 4.3.2). We identified two conservative, robust methods and analyzed their
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behavior in detail (Section 4.3.3). Finally, we asses the contributions of the capping
methods when using the total execution time as budget for irace (Section 4.3.4).

4.3.1 Experimental Setup

We evaluated the proposed capping methods on six configuration scenarios:
ACOTSP, HEACOL, TSBPP, HHBQP, LKH, and SCIP. They are all described
in Chapter 3. In case of SCIP, some configurations produce infeasible solutions.
We assign those configurations the worst possible cost value and do not use them
to determine the performance envelopes in the capping methods. All heuristic
algorithms were implemented in C or C++ and compiled with the GNU C/C++

compiler version 7.0.4 with maximum optimization. We used irace version 3.1 with
its default parameter values. The capping methods have been implemented as a
Python 3 script (tested with Python 3.6.8) that can be used together with irace
and does not require any changes to irace. For the aggregation method using the
exponential model (Eqs. 4.4 and 4.5), we used the penalty constant α = 10. For the
adaptive methods, we used a tolerance of the deviation from the aggressiveness goal
ε = 0.05. When experiments are replicated with different random seeds, the same
initial seed is used for all executions of irace in the same replication.

Most of the experiments were performed using a single core of a computer
with an 8-core AMD FX-8150 processor running at 3.6GHz and 32GB main memory,
under Ubuntu Linux. The experiments of the SCIP scenario were performed using a
single core of a computer with a 12-core AMD Ryzen 9 3900X processor running at
3.8GHz and 32GB main memory, under Ubuntu Linux.

4.3.2 Evaluation of Capping Methods

The first experiment consists in the evaluation of all capping methods. For
each method, we executed irace 20 times and computed the total effort used for the
configuration process. Then, we executed the first ranked configuration of each irace
execution on the set of test instances with 5 replications, and computed the average
cost deviation from the best known solutions.

The results are shown in Table 4.2. In the method description (column
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Table 4.2 – Average relative effort and average solution cost deviation for each capping
method. The three best values of each column are shown in bold.

Capping
method

ACOTSP HEACOL TSBPP HHBQP LKH SCIP
r. e. r. d. r. e. r. d. r. e. r. d. r. e. a. d. r. e. r. d. r. e. r. d.

No cap. 100.0 0.33 100.0 4.14 100.0 1.31 100.0 49.72 100.0 0.04 100.0 0.04
PEWW 40.3 0.37 38.7 4.22 87.4 1.25 55.7 65.16 37.8 0.04 69.0 0.05
PEBB 22.3 0.52 25.2 4.48 61.9 1.27 25.1 58.38 24.3 0.08 21.7 0.11
PEMW.1 74.5 0.34 77.9 4.10 95.1 1.24 82.6 72.44 60.2 0.04 89.9 0.03
PEMW.3 51.4 0.35 61.5 4.16 92.1 1.28 66.7 63.52 46.4 0.04 75.8 0.05
PEMW.5 30.2 0.44 27.3 4.48 54.5 1.35 40.0 72.16 35.4 0.05 54.4 0.07
PEMB.1 50.0 0.32 58.5 4.11 86.7 1.22 53.7 67.19 40.4 0.04 28.6 0.12
PEMB.3 26.9 0.46 31.5 4.23 74.6 1.30 37.2 55.75 31.0 0.05 23.6 0.12
PEMB.5 21.8 0.48 23.5 4.49 44.6 1.33 25.8 61.40 24.0 0.07 21.6 0.12
PD.2 65.0 0.38 62.4 4.28 92.6 1.24 78.4 36.06 66.2 0.04 65.3 0.15
PD.4 63.7 0.38 61.9 4.27 88.3 1.28 74.6 44.71 62.1 0.04 63.9 0.16
PD.6 55.7 0.40 56.5 4.30 80.7 1.29 65.7 48.87 53.6 0.05 58.6 0.16
PD.8 43.7 0.41 47.9 4.39 73.9 1.37 54.3 57.26 39.8 0.05 48.6 0.16
AEWW 73.2 0.35 72.8 4.18 87.6 1.28 82.7 46.97 52.5 0.04 94.0 0.04
AEBB 47.3 0.38 53.0 4.18 58.6 1.35 34.1 68.56 33.8 0.06 62.9 0.08
AD.2 82.8 0.35 84.6 4.16 85.6 1.30 85.2 37.03 78.7 0.04 83.4 0.03
AD.4 77.9 0.35 81.8 4.16 71.5 1.26 72.9 37.48 72.4 0.04 80.3 0.06
AD.6 69.7 0.35 74.0 4.14 58.5 1.34 58.2 37.71 59.5 0.04 71.1 0.08
AD.8 55.3 0.36 62.1 4.21 52.6 1.45 41.9 54.13 43.5 0.04 61.6 0.10

“Capping method”), the first letter indicates the envelope type (P for profile-based
or A for area-based) of the capping method, followed by the strategy (E for elitist or
D for adaptive). In the case of elitist methods, the next two letters represent the
aggregation functions (B, W or M) used, respectively, for aggregating over multiple
replications of a configuration (AR) and for aggregating over multiple configurations
(AC). In the case of methods with a user-defined parameter (p or ag), its value is
given at the end of the description. For example, the method PEMW.1 represents
the profile-based envelope, using the elitist strategy, model-based function M to
aggregate replications, worst function W to aggregate configurations, and 0.1 for the
parameter p required by the M function. Column “r. e.” presents the average relative
effort required when using each capping method in comparison to the effort required
when configuring without capping. Column “r. d.” presents the average relative
deviation from the best known solutions, obtained by executing the best found
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Figure 4.9 – Normalized configuration effort and quality of the resulting configurations for
all capping methods.

configurations on the test instances. In the case of HHBQP, we report the average
absolute deviation (column “a. d.”) from the best known solutions, following the
practice of the literature of UBQP (PALUBECKIS, 2006; GLOVER; LÜ; HAO, 2010;
WANG et al., 2012). We say that a capping method presents better quality than
another when its best found configurations have a smaller deviation. We highlighted
the three best values of relative effort and deviation for each configuration scenario.

We observe that all capping methods reduce some amount of effort. The
reduction ranges from about 5% (method PEMW.1 on TSBPP) to about 78%



85

(method PEMB.5 on ACOTSP and SCIP, and method PEBB on SCIP) of the effort
required when configuring without capping. The resulting configurations present
competitive quality in comparison to the one obtained without using capping. As
expected, we can also observe that more aggressive methods (e.g. PEBB, PEMB.5 and
PEMW.5) save more effort, but usually in exchange of producing worse configurations.
This is the case when using best (B) instead of worst (W ) aggregation functions, as
well as using more aggressive (higher) values for the parameter p of the exponential
model and the aggressiveness goal ag.

We also measured the number of training instances used by each run of irace.
For ACOTSP, HEACOL, TSBPP, LKH and SCIP, irace used an average of 35%,
71%, 61%, 37% and 49% of the available instances, respectively, with no more than
10% of variation over the different capping methods. Thus, irace never needed to
perform more than one replication per training instance, and methods W and B

have no effect when aggregating replications. The model-based method M has an
effect even with a single replication, as explained in Section 4.2.1.1. For scenario
HHBQP, irace does use all training instances and thus sometimes performs more
than one replication per instance. In this case methods W and B for aggregating
replications lead to different results.

Figure 4.9 presents the trade-off between the average relative effort and
the average solution cost deviation of each capping method. It also presents the
Pareto frontier defined by the non-dominated methods, considering relative effort and
deviation as two distinct objectives of the capping methods that must be minimized.
We can see that most of the Pareto-optimal methods are profile-based and elitist,
except in the HHBQP scenario, where profile- and area-based adaptive methods are
the majority in the Pareto frontier.

We also observe that all capping methods present competitive results in the
quality of the configurations found. The difference of the observed relative deviations
from the best known solutions in comparison to those obtained without capping is
always less than 1% (and less than 100 of absolute deviation for HHBQP, whose
objective values are in the order of magnitude of 106). Even the most aggressive
methods (PEBB, PEMB.5, PEMW.5) produce acceptable configurations, while saving
more than half of the total configuration effort. We would expect no capping would
produce the best results, however, in some cases the tuning process with capping found
a better final configuration (e.g. capping method PEMW.1 in scenarios HEACOL,
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Table 4.3 – Results of the multiple comparison Dunn’s test, adjusted with the Bonferroni
method. Comparing the quality of the configurations produced using each capping method
with those obtained using no capping. Symbol “ns” means no significant difference, while
the asterisks denote the order of the p-values: “∗” for p ≤ 0.01, “∗∗” for p ≤ 0.001 and
“∗∗∗” for p ≤ 0.0001.

Capping
method

No capping Capping
method

No capping
ACOTSP SCIP ACOTSP SCIP

PEWW ns ns PD.4 ns ∗∗∗
PEBB ∗∗∗ ns PD.6 ∗∗ ∗∗∗
PEMW.1 ns ns PD.8 ∗∗∗ ∗∗
PEMW.3 ns ns AEWW ns ns
PEMW.5 ∗∗∗ ns AEBB ns ns
PEMB.1 ns ∗ AD.2 ns ns
PEMB.3 ∗∗∗ ns AD.4 ns ns
PEMB.5 ∗∗∗ ∗ AD.6 ns ns
PD.2 ns ∗∗ AD.8 ns ns

TSBPP, and SCIP). Since capped runs are penalized by returning the current cost,
this can lead irace to discard the corresponding configuration earlier and focus the
sampling of the parameter space on better configurations.

We have performed a non-parametric Kruskal-Wallis test to check whether
any capping method statistically dominates another in terms of the quality of the
produced configurations (MONTGOMERY, 2012). The results indicate statistically
significant differences in the ACOTSP, HEACOL, LKH and SCIP scenarios (p-values
of 1.01× 10−23, 1.82× 10−7, 1.93× 10−3 and 2.97× 10−22, respectively), while the
null hypothesis could not be rejected in the TSBPP and HHBQP scenarios (p-values
of 0.99 and 0.09, respectively). We have also performed a post-hoc analysis using the
Dunn’s multiple comparisons test (DUNN, 1964) to assess the pairwise differences
of the capping methods. We used a significance level of 0.01, and the Bonferroni
correction method (DUNN, 1961) to control the familywise error rate. The HEACOL
and LKH scenarios presented statistical differences among distinct capping methods,
but no difference was identified between any capping method and configuring with
no capping. For ACOTSP and SCIP, however, some of the most aggressive methods
presented statistically worse configurations than those obtained by configuring with
no capping. Table 4.3 presents these results, and their statistical significance. We
can see that the differences are statistically more significant for ACOTSP. For the
area-based methods, even the more aggressive approaches (e.g. AEBB and AD.8)
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Table 4.4 – Recommended capping methods. We present the average relative effort and
the loss in the quality of the best found solutions for all configuration scenarios.

Category Capping
method

Rel.
eff.

Quality loss
ACOTSP HEACOL TSBPP HHBQP LKH SCIP

Conservative PEMW.1 80.0 0.01 -0.04 -0.07 22.72 0.00 -0.01
AD.4 76.1 0.02 0.02 -0.05 -12.24 0.00 0.02

Aggressive PEMB.1 53.0 -0.01 -0.03 -0.09 17.47 0.00 0.08
PEWW 54.8 0.04 0.08 -0.06 15.44 0.00 0.01

produce solutions which are statistically not worse than those found without capping.

4.3.3 Recommended Methods

Based on the results discussed above, we can identify specific recommendations
presented in Table 4.4. First, we selected two conservative, robust capping methods
(PEMW.1 and AD.4) that maintain the quality of the final configurations, but still
save a reasonable effort. Then, we selected two aggressive methods (PEMB.1 and
PEWW) that save more effort, but sometimes find worse configurations than tuning
with no capping. Table 4.4 shows the average relative effort of those methods for all
six configuration scenarios, as well as their quality loss on each configuration scenario.
The quality loss is the difference between the average cost deviation obtained using
the capping method and using no capping. We observe that all recommended methods
reduce the tuning effort by at least 20%, but still produce solutions of acceptable
quality. In some cases, the use of capping produced better configurations than
tuning with no capping. We also note that the selected methods cover the different
capping components, i.e. profile-based elitist and area-based adaptive methods. In
this section, we analyze in detail the behavior of the recommended capping methods.
We used the visualization tool acviz, presented in Chapter 6.

Figures 4.10 and 4.11 present the evolution of the configuration process of
ACOTSP with no capping, when using the conservative methods PEMW.1 and
AD.4 (Figure 4.10) or the aggressive methods PEWW and PEMB.1 (Figure 4.11).
We selected one of the irace executions at random to produce this figure (the other
executions present a similar behavior). We plot the quality over the executions. Since
we used a budget of 2000 total executions in the ACOTSP scenario, the x axis ranges
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Figure 4.10 – Evolution of the automatic configuration of ACOTSP using the conservative
capping methods.

from 1 to 2000. The quality is the relative deviation (on a logarithmic scale) from
the best known solutions. A vertical dashed line marks the beginning of each irace
iteration with the respective budget used so far. We also indicate if the execution
was capped (+) or not (×), and the execution of elite configurations. A blue circle
represent the execution of a configuration selected as elite in the corresponding
iteration. A purple triangle represents the execution of a configuration which became
elite in the last iteration, i.e. a final elite configuration. Executions of the best final
configuration are represented by a green star. This is the configuration used to
evaluate the quality of the irace run. In the case of capped executions (+ marker),
we executed them again until the cut-off effort, i.e. without capping it, to obtain the
quality of the complete execution. Therefore, the quality values of capped executions
are those which would be obtained if they were not capped. Finally, the horizontal
lines in each iteration represent the median relative deviations of all executions (green)
and of the executions of elite configurations (orange) obtained in that iteration.
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Figure 4.11 – Evolution of the automatic configuration of ACOTSP using the aggressive
capping methods.

The behavior of how the observed execution quality changes over iterations is
very similar for the different scenarios. We can see that the capping methods are
effective in identifying poor performers and then stop executions that will not find
the best solutions. Almost all executions capped by the analyzed methods turned
out to be bad performers when executed until completion, as we observe in the final
quality of capped executions in Figures 4.10 and 4.11. We can also analyze the
aggressiveness of the recommended methods by looking at the amount of capped
executions, which is clearly bigger in methods PEWW and PEMB.1. Besides that,
we observe that the separation between capped and non-capped executions is higher
in the conservative methods, indicating more tolerance in allowing configurations to
run until completion. On the other hand, in some iterations the aggressive methods
turn out to cap almost all executions of non-elite configurations. Finally, for users
seeking a conservative method, we recommend to use PEMW.1, for those seeking an
aggressive method, we recommend to use PEMB.1.
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4.3.4 Time as Budget

A common scenario is using a time limit for the budget of the configuration
process. We designed an experiment to evaluate the benefits of using capping in
these conditions. We defined tight configuration time limits of 21000 s for ACOTSP,
3200 s for HEACOL, 700 s for TSBPP, 7000 s for HHBQP, 3500 s for LKH, and
21000 s for SCIP. This means around 350 non-capped executions for ACOTSP,
HEACOL, HHBQP, LKH and SCIP, which had a budget of 2000 executions in
previous experiments, and around 100 non-capped executions for TSBPP, which had
a budget of 500 executions. These budget values make the configuration a challenging
task.

When using the total execution time as budget, irace first estimates the time
required by a single execution by evaluating a few random configurations. Based
on this estimated time, it plans the iterations to be performed and the number of
executions in each of them. Every time an iteration finishes, the time required by
each previous execution is used to update the time estimate and re-plan the next
iterations. When using capping, the time saved by early stopping poorly-performing
executions becomes available to evaluate more configurations in the next iterations.
The redistribution of the saved time is performed by irace considering the average
time used so far in each execution. Thus, irace implicitly uses the amount of capping
done to plan the next iterations. Thus, when using capping, we expect that the time
saved is used to further explore the configuration space.

We evaluated all capping methods in the described scenario with 5 independent
runs of irace. Table 4.5 shows the percentage of increase in the number of executions,
generated configurations and evaluated instances, in comparison to configuring with
no capping. We observe that the capping methods can help irace to make better use
of the available budget, since poor performers are discarded early and the saved time
can be used to further explore the configuration space. When using capping, irace
samples more configurations and performs more executions during the tuning process.
Besides that, it uses more instances to evaluate the quality of the configurations. For
example, the increase in the number of configurations ranges from around 30% (less
aggressive method AD.2) to around 2250% (more aggressive method PEMB.5). The
corresponding increase in the number of total executions exceeds 1500% in the most
aggressive methods.
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Table 4.5 – Evaluating the capping methods with a configuration time budget. We show
the percentage of increase in the number of executions, configurations generated, and
instances evaluated for each capping method, in comparison with using no capping.

Capping
method Exe. [%] Conf. [%] Ins. [%] Capping

method Exe. [%] Conf. [%] Ins. [%]

PEWW 193.2 203.2 19.0 PD.4 78.8 71.9 18.2
PEBB 1598.2 2023.5 63.8 PD.6 108.7 95.3 22.0
PEMW.1 49.2 50.7 1.0 PD.8 202.6 193.1 25.8
PEMW.3 106.2 102.5 17.6 AEWW 55.1 55.1 4.6
PEMW.5 264.7 298.6 29.1 AEBB 222.5 252.4 28.6
PEMB.1 258.6 305.4 25.4 AD.2 33.9 31.1 7.6
PEMB.3 627.4 753.2 45.3 AD.4 51.8 48.0 8.5
PEMB.5 1792.1 2256.6 66.7 AD.6 92.4 85.2 24.5
PD.2 61.1 56.4 12.8 AD.8 171.1 177.6 20.4

Table 4.6 presents the mean relative deviation (and the mean absolute de-
viation for HHBQP) from the best known solutions when configuring with each
capping method and using the budget as a total configuration time. These values
were determined by running 5 replications of the best configuration found in each
irace run on the set of test instances. We highlight in bold the deviation values less
than the one obtained by configuring with no capping. For most of the scenarios,
the configurations found by using capping performed better than those obtained
without capping. In HEACOL, TSBPP, HHBQP and LKH, the use of capping
allowed irace to find configurations competitive to those obtained in the experiment
with executions as budget (Table 4.2 and Figure 4.9), but using less computational
effort.

Given the above results, we recommend using AEBB for scenarios where the
configuration budget is defined relative to the time of the target algorithm. Although
the percentage increase in configurations and executions achieved by AEBB is more
modest than for other methods (Table 4.5), these additional executions lead to
consistent improvements in quality for all scenarios evaluated here (Table 4.6).
Thus, the AEBB capping method improves the quality of the automatic tuning of
optimization algorithms in this type of scenario.

4.4 Discussion

We have proposed capping methods that speed up the automatic configuration
of optimization algorithms. Previous methods (HUTTER et al., 2009b; PÉREZ
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Table 4.6 – Average deviation of the resulting configurations with configuration time as
budget. The values better than configuring with no capping are shown in bold and the
three best values of each scenario are underlined.

Capping
method ACOTSP HEACOL TSBPP HHBQP LKH SCIP

No capping 0.46 4.48 1.31 206.91 0.11 0.12
PEWW 0.51 4.12 1.31 81.37 0.05 0.09
PEBB 0.60 4.24 1.24 117.81 0.06 0.11
PEMW.1 0.41 4.29 1.31 98.58 0.05 0.09
PEMW.3 0.41 4.20 1.31 78.77 0.06 0.05
PEMW.5 0.56 4.18 1.31 89.93 0.06 0.09
PEMB.1 0.40 4.21 1.31 80.94 0.07 0.17
PEMB.3 0.54 4.18 1.24 93.26 0.07 0.13
PEMB.5 0.53 4.40 1.31 62.43 0.10 0.12
PD.2 0.43 4.18 1.38 72.82 0.10 0.23
PD.4 0.41 4.26 1.40 165.60 0.05 0.24
PD.6 0.42 4.25 1.31 35.62 0.09 0.24
PD.8 0.59 4.30 1.40 39.64 0.07 0.20
AEWW 0.40 4.17 1.24 60.30 0.08 0.13
AEBB 0.40 4.20 1.24 33.21 0.05 0.10
AD.2 0.39 4.09 1.24 84.22 0.06 0.13
AD.4 0.38 4.28 1.24 65.77 0.10 0.17
AD.6 0.44 4.15 1.24 67.05 0.08 0.18
AD.8 0.42 4.34 1.24 83.33 0.06 0.23

CÁCERES et al., 2017b) were designed for the configuration of decision algorithms
and are not suitable for optimization scenarios. The methods described in this
chapter use the previous executions to compute a performance envelope, which is
used to evaluate new executions and cap those with unsatisfactory performance. The
experimental results show the effectiveness of the capping methods to reduce the
computational effort of the automatic algorithm configuration, while keeping the
quality of the resulting configurations. We identified two conservative (PEMW.1 and
AD.4) and two aggressive (PEMB.1 and PEWW) methods, which have been shown
to be robust and present good trade-offs between the saved effort and the quality of
the final configurations. Their average effort savings ranges from 20% to 45% of the
configuration time with no capping, and the resulting configurations are comparable
in terms of quality.

We also evaluated the proposed capping methods with the total execution
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time as configuration budget. In this case, the capping methods helped to discard
poorly-performing configurations and allow irace to use the saved time to better
explore promising regions of the parameter space. We recommend AEBB for this
type of scenario as it improves the results over no capping in all benchmarks.
These results indicate that capping can also be helpful to scale the automatic
configuration techniques to challenging scenarios (MASCIA; BIRATTARI; STÜTZLE,
2013; STYLES; HOOS, 2013).

The software implementing the capping methods presented in this chapter was
named capopt and is available online (SOUZA; RITT; LÓPEZ-IBÁÑEZ, 2020)1. We
also provide supplementary material for this chapter in Souza, Ritt and López-Ibáñez
(2021)2, containing the configuration scenarios, source code for the target algorithms
and all experimental data. Appendix A gives more information about the artifacts
produced from this research.

1The capopt package is available at https://github.com/souzamarcelo/capopt.
2The supplementary material for this chapter is available at https://github.com/souzamarcelo/

supp-cor-capopt.

https://github.com/souzamarcelo/capopt
https://github.com/souzamarcelo/supp-cor-capopt
https://github.com/souzamarcelo/supp-cor-capopt
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5 IMPROVED PARAMETER REGRESSION MODELS

The sciences do not try to explain, they hardly even
try to interpret, they mainly make models. By a model
is meant a mathematical construct which, with the
addition of certain verbal interpretations, describes ob-
served phenomena. The justification of such a math-
ematical construct is solely and precisely that it is
expected to work.

— John von Neumann

A particular characteristic of the configuration approaches we study in this
work, e.g. irace (LÓPEZ-IBÁÑEZ et al., 2016), SMAC (HUTTER; HOOS; LEYTON-
BROWN, 2011) or GPS (PUSHAK; HOOS, 2020), is that they determine fixed
configurations for the whole set of problem instances. In such configurations, pa-
rameters assume constant values when solving different instances, no matter the
different features they present. It is known, however, that good parameter values
may vary depending on instance features (see Muja and Lowe (2009), Smith-Miles
et al. (2014), and El Yafrani and Ahiod (2018) for some examples), including
problem-dependent features, e.g. statistics about clauses and variables in boolean
satisfiability (ANSÓTEGUI et al., 2016), or problem-independent ones, e.g. the
instance size (BÖTTCHER; DOERR; NEUMANN, 2010) or characteristics of the
solution landscape (REEVES, 1999; MERZ, 2004; SCHIAVINOTTO; STÜTZLE,
2007; WATSON, 2010; MERSMANN et al., 2011; FRANZIN; STÜTZLE, 2020).
From a machine learning perspective, Bengio, Lodi and Prouvost (2021) argue that
traditional algorithm configuration approaches correspond to constant regression.

In this chapter, we explore additional regression models for algorithm config-
uration. Parameters are represented by models that define their values according
to the instance size. Regarding instance features, in practice there are no features
defined for most problems and determining a good feature set can be highly complex.
For example, the instance features successfully used in the literature for different
problem domains are result of much research effort (HOOS; HUTTER; LEYTON-
BROWN, 2021; KERSCHKE et al., 2018). Besides defining and filtering unhelpful
features (KROER; MALITSKY, 2011), practitioners need to compute them for the
instances of interest, which is sometimes computationally expensive. Contrary to
the goals of automating the algorithm configuration, this makes the process complex
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and increases human effort. Therefore, we explore the instance size as the single
feature, since it is problem-independent and available “for free”, i.e. there is no
costly computation involved. Regarding the parameter regression models, we first
explore a simple yet effective linear model on the instance size, then extend it to a
piecewise linear model based on multiple support points. We also apply a log-log
transformation to the parameter and instance size spaces, and then apply the linear
model to the transformed scenario. Both piecewise and log-log linear approaches can
address cases when the relation between instance size and optimal parameter values
is not linear.

The rest of this chapter is organized as follows. We review the literature
and discuss the related work in Section 5.1. We present our proposed approach in
Section 5.2, detailing the basic linear model and the techniques for dealing with
nonlinear behavior. We also compare these models to each other on an artificial
scenario to illustrate their modeling capabilities. We evaluate the proposed methods
on four configuration scenarios and discuss the results in Section 5.3. We give some
concluding remarks and directions for future research in Section 5.4.

5.1 Related Work

In many problems, a configuration with good performance on a given instance
may perform poorly on others. Using instance features to characterize different
types of instances and incorporating this information into the configuration process
can considerably improve algorithm performance (HUTTER; HAMADI, 2005; AN-
SÓTEGUI et al., 2016). However, this task is not simple, since one needs to define
how to map instance features to high-performing configurations, considering only
executions on a limited set of training instances.

One of the most common approaches for instance-specific algorithm configu-
ration rely on empirical performance models. These models predict the algorithm
running time, using instance features and parameter values (i.e. algorithm con-
figurations) as predictor variables. Once the model is trained and given a new
instance described by its features, the model is used to search for high-performing
configurations. Hutter et al. (2006, 2005) use linear regression models proposed
in Leyton-Brown, Nudelman and Shoham (2002) and apply this approach to configure
algorithms for boolean satisfiability. Given the nature of the empirical performance
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models used in Hutter et al. (2006), which predicts the algorithm running time,
this approach is not directly applicable to optimization scenarios, in which the algo-
rithm is configured to minimize the cost of the best found solution. This approach
was also used by Belkhir et al. (2016, 2017) to configure the covariance matrix
adaptation-evolution strategy (CMA-ES) for black-box continuous optimization.
They also minimize the algorithm running time, outperforming default and fixed
configurations.

An alternative approach, named ISAC (MALITSKY; SELLMANN, 2010;
KADIOGLU et al., 2010; MALITSKY, 2014), consists in first clustering the training
instances according to their instance features. The algorithm is configured for each
cluster, i.e. using only its instances and obtaining optimized fixed configurations
for each of them. When solving a new instance, the configuration associated with
the closest cluster is chosen. Kadioglu et al. (2010) use the g-means algorithm
for clustering and the GGA configurator (ANSÓTEGUI; SELLMANN; TIERNEY,
2009). The proximity measure used in g-means and to associate instances to clusters
is the Euclidean distance with normalized feature values. Liefooghe et al. (2017)
explore the same ideas, using irace to configure a memetic algorithm for black-
box optimization problems. The success of this approach depends on different
factors, e.g. choosing a discriminative set of instance features and normalizing them
adequately, as well as choosing appropriate clustering methods. While the traditional
algorithm configuration can be seen as a constant regression, cluster-based approaches
can be seen as piecewise constant nearest neighbors regression (BENGIO; LODI;
PROUVOST, 2021).

More recently, El Yafrani et al. (2021) proposed MATE, a configurator that
represents parameters as expressions of the instance features. They use genetic pro-
gramming to evolve such expressions, which are then used to determine the parameter
values to solve new instances. In contrast to the aforementioned approaches, in
MATE the configuration process searches for a direct mapping from instance features
to parameter values, i.e. without using empirical performance models or clustering
approaches. El Yafrani and Ahiod (2018) use a similar approach to configure the
number of trials of a simulated annealing algorithm for the traveling thief problem.
They divide the instances in groups according to their size and determine the best
parameter value for each group. The resulting values are then used in a linear
interpolation, which determines the parameter value as a function of the instance size.
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Figure 5.1 – Ideas behind linear ( ) and piecewise linear ( ) regression models for
algorithm configuration. The value of parameter pi is set by the linear model ϕ or the
piecewise linear model ϕ′ (3 pieces in this example) for any instance size n.

Mascia, Birattari and Stützle (2013) also explore linear functions on the instance
size to determine parameter values for an iterated local search and a tabu search.
They propose an experimental protocol to configure such algorithms for solving large
instances of the quadratic assignment problem, based on evaluations performed on
small instances only. They use a strategy to select the cut-off running time of the
target algorithm on the small instances, and determine a policy to set parameter
values for larger instances by extrapolating from the configurations obtained for
small instances.

5.2 Model-Based Parameters

The general idea of our proposal is to search for high-quality models for each
numerical parameter, instead of exploring parameter values directly. Therefore, we
transform the configuration space, replacing each parameter by a model. Then, a
configurator calibrates such models to map the instance size to optimal parameter
values.

5.2.1 Exploring Linear Models

Given a numerical parameter pi with domain Θi, we define a model ϕ : F → Θi

to determine its value based on a set of feature values F . Since this work focuses
on the instance size n as the single feature, F corresponds to the set of integer
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numbers Z. Our first approach assumes the optimal parameter response to be linear
on the instance size, thus ϕ(n) = an + b, where a and b are the coefficients of the
model. Figure 5.1 presents an example of such a linear model ϕ (blue segment with
circle markers) on the instance size n. Note that this example highlights the area
of interest defined by the allowed interval for parameter pi, i.e. [min(Θi),max(Θi)],
and the possible values of instance size, defined by nmin and nmax. Despite that,
model ϕ can be used to determine parameter values for instance sizes out of the
given interval, by preventing going outside the bounds of the parameter, i.e. pi =
min(max(ϕ(n),min(Θi)),max(Θi)).

Based on the above ideas, we can use a configurator to find a linear model
that maps the instance size to optimal parameter values. To do this, we define a
configuration space with two parameters, corresponding to the function values at
nmin and nmax (i.e. ϕ(nmin) and ϕ(nmax)), with domain Θi. From these two points
we can derive the linear model to be used for determining the parameter value for
any instance size. These two points are represented by the round markers associated
with the linear model ϕ(n) shown in Figure 5.1.

5.2.2 Addressing Nonlinear Behavior

Although being more representative than a simple constant model, the linear
model presented above may not represent well scenarios with nonlinear relations
between instance size and optimal parameter values. To address such cases, we
explore a piecewise linear model based on multiple support points and defined by a
linear interpolant (MONTGOMERY; PECK; VINING, 2021). Formally, we consider
m support points, i.e. instance sizes n1 < n2 < · · · < nm, and interpolate each pair of
sizes (ni, ni+1) with linear functions. Then, the parameter value for a given instance
size ni ≤ n ≤ ni+1 is given by

ϕ′(n) = (1− α)ϕ′(ni) + αϕ′(ni+1),

with
α = α(n) = n− ni

ni+1 − ni
.

Figure 5.1 presents an example of a piecewise linear model ϕ′ (red segment
with triangle markers) that uses four support points, thus defining three pieces and
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Figure 5.2 – Comparing all parameter regression models on a nonlinear artificial scenario.
We show the optimal parameter response (i.e. the optimal values of parameter p for different
instance sizes n), as well as optimal approximations and the corresponding mean squared
errors (MSE) for constant (a), linear (b), piecewise linear (c) and log-log linear (d) models.

the corresponding linear functions. Note that although the values given by both
linear and piecewise linear models at the extreme points (nmin and nmax) are similar,
the behavior between them is completely different and the only the latter is able to
model such a nonlinearity. In this approach, the configurator sets the values at each
support point, i.e. ϕ′(ni), for i ∈ [m].

Finally, we propose an alternative approach to deal with nonlinear optimal
parameter response. We apply log-transformations on the instance sizes and parame-
ter values, in order to improve the linearity. The resulting log-log linear model is
given by log(ϕ(n)) = a log(n) + b, and the configurator tunes ϕ in the transformed
space. The parameter values are transformed back to the original interval only when
used in the algorithm being configured.

5.2.3 Comparing Parameter Regression Models

Figure 5.2 presents a concrete example using an artificial scenario, upon which
we analyze and compare the available models. In this example, there is a single
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Table 5.1 – Algorithm configuration scenarios used to test the parameter regression models.
Showing the values of budget, the range of instance sizes, parameter descriptions, types
and domains.

Scenario Budget Instance size Parameter Domain

ILSBQP {300, 1000, 2000} [250, 2500] Perturbation size (int) [1, 2500]

BSFS {300, 1000, 2000} [100, 10000] Randomness control (int) [50, 100]

HHTA {1000, 2000, 5000} [60, 395] Tabu tenure (int) [1, 395]
Elite set size (int) [1, 100]
Distance factor (real) [0.1, 0.5]

TSCPP {1000, 2000, 5000} [100, 500] Tabu tenure (int) [1, 100]
Perturbation size (int) [1, 100]
Candidates for pert. (int) [1, 50]

parameter p ∈ [0, 1], whose optimal values are presented by the cross markers for
different instance sizes n ∈ [100, 1000]. For each model, we present an approximation
that minimizes the mean squared error (MSE). As we can see in Figure 5.2a, the
constant model implemented in most configurators does not represent well the optimal
parameter response, thus obtaining a MSE of 0.074. The linear model (Figure 5.2b)
improves considerably the representation (MSE of 0.016) in comparison to a constant
value, but given the nonlinear behavior of the optimal parameter response, the linear
model cannot approximate the optimal parameter values for some instance sizes
(e.g. for n = 400).

We see a much better mapping when using the piecewise (Figure 5.2c) and
log-log (Figure 5.2d) linear models, with MSEs of 0.001 and 0.006, respectively. In
this particular example, the piecewise linear model is slightly better in terms of MSE.
However, we must consider that this approach increases the number of parameters by
a factor of 3 (considering 2 pieces), while the log-log linear model keeps the number
of parameters fixed in 2.

5.3 Computational Experiments

In this section, we evaluate the proposed models on four configuration scenarios
with different characteristics. After presenting the experimental setup and a summary
of the configuration scenarios, we show the ability of our approaches in modeling
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Table 5.2 – Average absolute deviations of constant and linear models on ILSBQP. Showing
values for each instance size and the overall average results for different budgets. The best
values for each size and the best overall are highlighted in bold.

Size
Constant Linear

300 1000 2000 300 1000 2000
250 11.2 11.6 9.0 3.4 2.4 0.0
500 12.4 12.3 5.2 -11.0 -13.5 -16.0
1000 2708.0 2688.7 2664.0 2651.8 2637.6 2637.0
2500 2060.7 2282.2 2275.1 620.2 801.3 533.0
Avg. 1198.1 1248.7 1238.3 816.1 857.0 788.5

the relation between instance size and optimal parameter values, and discuss the
resulting gains in algorithm performance for each scenario.

5.3.1 Experimental Setup

In our experiments we use the irace (LÓPEZ-IBÁÑEZ et al., 2016) configurator
and test the parameter regression models on four configuration scenarios: ILSBQP,
BSFS, HHTA and TSCPP (see Chapter 3 for more details). For ILSBQP and
TSCPP, the instance size is defined by the number of variables and the amount of
vertices, respectively. For BSFS, we define the instance size as the product between
the number of jobs and machines. For HHTA, the instance size is the product
between the number of desks and tests (adding an additional “nonexistent” test for
assigning to unoccupied desks), which is also the resulting number of variables of
the unconstrained binary quadratic program after the reduction from TA. Since the
proposed models increase the configuration space (by up to four times the number
of numerical parameters), the configuration task becomes more complex and larger
configuration budgets might be necessary. Therefore, we test the proposed approaches
under different budgets to assess their impact on the quality of the configurations
produced. The budgets, instance sizes and the parameters of each configuration
scenario are given in Table 5.1.

To evaluate the proposed approaches, we run five replications of irace for all
configuration settings (configuration scenarios, budgets and models) using the set
of training instances. The best configuration returned by irace in each replication
is evaluated on the set of test instances with five more replications. To evaluate
algorithm performance, we compute the average deviations from the best known
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Figure 5.3 – Optimal parameter values and configurations produced using constant and
linear models for ILSBQP. Showing the parameter values for each instance size and for
different configuration budgets.

solutions.
Our experiments were ran on a computer with a 12-core AMD Ryzen 9 3900X

processor running at 3.8GHz and 32GB main memory, under Ubuntu Linux, using
only one core for each execution. The parameter regression models were written in
Python (SOUZA; RITT, 2022d) and tested with Python 3.8.10, using irace version
3.3. The target algorithms are implemented either in C or C++ and compiled with
the GNU C/C++ compiler version 9.3.0.

5.3.2 Configuring ILSBQP

Our first experiment applies the constant and linear models for configuring
the ILSBQP scenario. The results are shown in Table 5.2. We report the average
absolute deviations from the best known solutions for each configuration budget
and each instance size, as well as the overall average deviations. The best results
for each instance size and the best overall are shown in bold. We can see that the
configurations obtained using the linear model perform better than those produced
using the constant model. The absolute deviations are consistently better with the
linear model, even with a low configuration budget. Moreover, even the constant
configurations produced using a budget of 2000 executions are worse than the linear
configurations produced with a budget of only 300 executions.

Additionally, we evaluated ILSBQP on all test instances using several values
for the perturbation size, in order to visualize the relation between instance size
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Table 5.3 – Average relative deviations of constant and linear models on BSFS. Showing
values for each instance size and the overall average results for different budgets. The best
values for each size and the best overall are highlighted in bold.

Size
Constant Linear

300 1000 2000 300 1000 2000
100 1.34 1.43 1.31 1.28 1.23 1.31
200 2.77 2.85 2.74 2.72 2.73 2.74
250 0.30 0.30 0.28 0.27 0.27 0.28
400 2.17 2.21 2.16 2.14 2.14 2.15
500 2.50 2.50 2.50 2.48 2.48 2.48
1000 3.63 3.57 3.62 3.61 3.56 3.59
2000 3.10 3.06 3.10 3.11 3.10 3.10
4000 4.02 4.00 4.04 4.03 4.03 4.02
10000 2.00 2.00 2.01 1.98 1.96 1.97
Avg. 2.43 2.44 2.42 2.40 2.39 2.40

and optimal parameter values, and to compare it with the configurations produced
in the previous experiment. Figure 5.3 shows the parameter values that perform
best on ILSBQP. Green cross markers represent the first-ranked parameter values
(i.e. sometimes different values achieve the same average result), while the blue and
red ones represent the second- and third-ranked parameter values, respectively. We
also show the constant configurations (gray dashed segments) and the linear ones
(orange continuous segments) produced using budgets 300, 1000 and 2000.

We observe that the optimal values for the perturbation size increase as the
instance size grows. The constant configurations cannot model this relation properly.
On the other hand, we observe a good approximation of this relation when using
the linear model, i.e. the values defined by the linear model for each instance size
are very close to the observed optimal values, even using a budget of only 300 total
executions. This ability to model the relation between instance size and optimal
parameter values explains the observed performance gains obtained by configuring
ILSBQP using the linear model (Table 5.2).

5.3.3 Configuring BSFS

We executed the experiments presented above on the BSFS scenario. Table 5.3
presents the average relative deviations from the best known solutions obtained
using constant and linear models. Similar to the results on ILSBQP, we observe
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Figure 5.4 – Optimal parameter values and configurations produced using constant and
linear models for BSFS. Showing the parameter values for each instance size and for
different configuration budgets.

a better performance of bubble search under linear configurations. Although the
differences between both models are weaker in comparison to the previous scenario,
the experiments using the linear model are consistently better than using the constant
model, even with a low budget. In fact, there is not much difference in increasing
the budget for the linear model.

Figure 5.4 shows the relation between instance size and optimal parameter
values, and also the configurations produced for the BSFS scenario. By looking at the
best parameter values (cross markers), we note an interesting behavior. The response
of the optimal parameter values is not linear in the instance size. Instead, there is a
fast increase between sizes 100 and 2000, followed by a much slower increase until
size 10000. Although better than the constant model, the linear approach cannot
model well the observed behavior. Nevertheless, the increase in the parameter value
as the instance size grows is captured by the linear model, with some exceptions in
two particular configurations. This explains the better performance of the linear
configurations. Due to the observed behavior, this scenario is further explored in
Section 5.3.6, where we apply the piecewise and log-log linear models to address its
nonlinearity.

5.3.4 Configuring HHTA

We made the same analyses for the HHTA scenario. The average relative
deviations of constant and linear models are shown in Table 5.4. The performance of



105

Table 5.4 – Average relative deviations of constant and linear models on HHTA. Showing
values for each instance size and the overall average results for different budgets. The best
values for each size and the best overall are highlighted in bold.

Size
Constant Linear

1000 2000 5000 1000 2000 5000
60 0.00 0.06 0.00 0.00 0.08 0.03
80 0.38 0.39 0.33 0.35 0.18 0.15
100 1.28 1.20 1.14 0.12 -0.07 -0.04
141 3.71 3.44 3.90 1.89 1.65 1.28
180 2.91 2.24 2.66 1.84 1.97 1.76
188 3.76 3.72 3.04 2.71 2.24 2.41
235 2.91 2.99 2.79 2.89 2.24 2.27
237 1.67 1.43 1.67 1.22 1.14 1.26
240 2.95 2.86 3.12 2.78 2.42 2.33
300 5.02 4.76 5.55 3.16 3.24 3.05
316 3.63 3.20 3.39 1.22 0.98 1.16
395 7.68 7.60 6.71 2.26 1.98 1.97
Avg. 2.99 2.82 2.86 1.70 1.50 1.47

HHTA is substantially improved using the configurations given by the linear model.
The average relative deviations when using constant configurations are in the interval
[2.82, 2.99]. These average deviations decrease to 1.70 using a budget of only 1000
executions. When using greater budgets, it decreases to less than 1.50. Similar
to previous scenarios, the use of the linear model consistently improves algorithm
performance in all test cases.

We also analyze the relation between instance size and optimal parameter
values in the HHTA scenario. Figure 5.5 presents the resulting visualizations, where
each plot corresponds to one of the three parameters of HHTA and the configurations
are those obtained using budget 1000. To produce each visualization, we test several
values for the corresponding parameter with the other parameters fixed at their
default values. Therefore, the optimal parameter values we show (cross markers) are
optimal only under these conditions (i.e. when setting the other parameters to their
default values). If we change the values of the other parameters, the optimal values
may be different from those of Figure 5.5, given potential parameter interactions. We
need to take this into account when analyzing the constant and linear configurations
produced by irace. Since no parameter is fixed at any value, the configuration space
is different from the one explored in the basic analysis and optimal parameter values
may be different.
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Figure 5.5 – Optimal parameter values and configurations produced using constant and
linear models for HHTA. Showing the values for each parameter separately and for each
instance size using a configuration budget of 1000 total executions.

Regarding the optimal parameter values of HHTA, we observe clear behaviors
for the tabu tenure and elite set size parameters. As instance size grows, a larger
tabu tenure performs better, while smaller elite sets are preferable. On the other
hand, no clear relation between instance size and the distance factor is observed,
although it seems to present some decrease of its optimal value with respect to the
growth of instance size (e.g. observe the variation in the first-ranked green markers).
We also note that the constant model finds configurations within the optimal ranges,
but is not able to represent the relation with instance size. The linear model fits very
well the behavior of the tabu tenure parameter, and also the decreasing behavior of
the elite set size. With regard to the elite set size, however, the linear configurations
present higher parameter values in comparison to the optimal ones. These differences
can be an effect of the potential parameter interactions discussed above, i.e. better
elite set sizes are found associated with different values for the other two parameters.
For the distance scale parameter, the linear configurations lie within the range defined
by the optimal parameter values and present decreasing behavior (except for one
configuration).

5.3.5 Configuring TSCPP

Finally, the results on the TSCPP scenario are given in Table 5.5. Here, we
note that all configurations solve the instances of size 100 easily, since the average
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Table 5.5 – Average absolute deviations of constant and linear models on TSCPP. Showing
values for each instance size and the overall average results for different budgets. The best
values for each size and the best overall are highlighted in bold.

Size
Constant Linear

1000 2000 5000 1000 2000 5000
100 0.32 0.00 0.16 0.00 0.00 0.00
200 29.48 64.94 36.54 5.90 1.06 5.68
300 82.80 1.38 22.80 91.76 122.64 42.10
400 164.60 169.64 223.72 137.12 149.90 131.94
500 778.84 956.16 791.92 594.88 539.00 567.56
Avg. 211.21 238.42 215.03 165.93 162.52 149.46

absolute deviations are always zero or very close to it. For instance size 300, we see
that the constant configurations perform much better than the linear ones, especially
those constant configurations obtained using a budget of 2000 total executions. For
the other instance sizes, the linear configurations present better performance. The
overall relative deviations also indicate the superiority of the linear model, with
an average deviation of 149.46 (with budget 5000), better than the best average
deviation of 211.21 obtained by the constant model.

Figure 5.6 shows the visualizations for the TSCPP scenario. To analyze one
parameter, we also fix the other parameters at their default values. Thus, the same
conditions regarding parameter interaction discussed above apply here. We note that
instances with size 100 are solved easily, no matter the value for the three parameters.
We also note that the optimal values for the tabu tenure parameter increase as
instance size grows. This relation is mapped properly by the linear model, with an
exception of one replication, which presents a decreasing behavior on instance size.
On the other hand, there is no clear relation between instance size and the optimal
values for population size and candidates for perturbation. In the latter, the linear
configurations vary considerably and no tendency can be observed.

5.3.6 Nonlinear Models for BSFS

As discussed in Section 5.3.3, the relation between instance size and optimal
parameter values for BSFS is nonlinear. As a consequence, the linear model cannot
properly represent this relation. In this section, we revisit this scenario and test the
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Figure 5.6 – Optimal parameter values and configurations produced using constant and
linear models for TSCPP. Showing the values for each parameter separately and for each
instance size using a configuration budget of 1000 total executions.

proposed approaches to deal with nonlinearity. In particular, we apply the piecewise
linear model with 2 and 3 pieces (which use 3 and 4 support points, respectively),
and the log-log linear model. We manually defined support points at 100, 2000 and
10000 for the piecewise linear model using 2 pieces, and at 100, 1500, 3000 and 10000
when using 3 pieces. In all cases, we use the same budget of 1000 total executions.
The resulting average relative deviations are shown in Table 5.6. We also present
the results of the piecewise linear model with a single piece, which reduces to the
linear model (thus, the results for this column are the same of Table 5.3).

The approaches for addressing nonlinearity improve algorithm performance,
with average deviations decreasing from 2.39 to 2.32. We note that the log-log linear
model has better performance on small instances (up to 500), while the piecewise
linear models are better on larger instances. Actually, the piecewise and log-log
linear models are better than the linear model for all instance sizes, which points out
the potential of nonlinear approaches to map this kind of relation between instance
size and optimal parameter values.

Figure 5.7 shows the optimal parameter values for BSFS (the same presented
in Figure 5.4) and the configurations obtained by the piecewise and log-log linear
models. We observe that these approaches can model the optimal parameter response
well. The values defined by these models are very close to the optimal values
identified, which explains the associated performance gains. We also note that using
3 pieces improves the ability of the piecewise linear approach of modeling the optimal
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Table 5.6 – Average relative deviations of the piecewise and log-log linear models on BSFS.
Showing values for each instance size and the overall average results using a configuration
budget of 1000 total executions. The best values for each size and the best overall are
highlighted in bold.

Size
Piecewise linear

Log-log
1 2 3

100 1.23 1.14 1.09 1.03
200 2.73 2.65 2.61 2.57
250 0.27 0.26 0.25 0.23
400 2.14 2.11 2.07 2.06
500 2.48 2.47 2.47 2.47
1000 3.56 3.54 3.54 3.57
2000 3.10 3.00 3.01 3.07
4000 4.03 3.91 3.91 3.96
10000 1.96 1.95 1.95 1.95
Avg. 2.39 2.34 2.32 2.32

parameter response. For small instances (up to 500), the piecewise linear model with
2 pieces cannot model well the best parameter values. We also highlight the fact
that the piecewise linear models find better configurations using the same budget as
the linear model, even dealing with larger configuration spaces as a consequence of
increasing the number of parameters.

Regarding the log-log linear model, we observe a good approximation of the
optimal parameter response. For instance sizes 1000 to 4000, however, it gives
values smaller than the optimal ones, which explains the worse performance on these
instances in comparison to the piecewise linear models. For other instance sizes, the
log-log linear model gives values very close to the optimal ones, which is in line with
the good performance observed on these instances (Table 5.6; being also better than
other models).

5.4 Discussion

In this chapter, we propose a new approach for instance-specific algorithm
configuration considering the instance size as the single feature. Instead of configuring
parameter values, we configure models that define these values according to the
instance size. Specifically, we propose a basic linear model and let the configurator
calibrate it to map instance sizes to parameter values. For scenarios in which this
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Figure 5.7 – Configurations for BSFS using the pointwise and log-log linear models.
Showing the configurations produced using a budget of 1000 total executions. The piece-
wise linear models with 2 and 3 pieces use support points at {100, 2000, 10000} and
{100, 1500, 3000, 10000}, respectively.

relation is nonlinear, we propose a piecewise linear model, as well as a log-log linear
model.

We tested these approaches on four configuration scenarios, showing that
the configurations obtained by the proposed models are better than those obtained
using the original configuration approach. In all cases, we observe performance gains
by using the linear model, even with low configuration budgets. We also test the
piecewise and log-log linear models on a scenario with a nonlinear optimal parameter
response, and show that they are able to model such a nonlinearity. In this case, the
configurations are better than the constant ones, and also better than those obtained
using the basic linear model.

Although effective, the proposed models are simple. First, we consider a single,
problem-independent, and maybe the most common instance feature: the instance
size. Practitioners do not need to worry about feature definition and filtering, and
no additional computational power must be spent in this regard. For scenarios where
the instance size is unknown for some reason, one could use the size of the instance
file as a surrogate value for the instance size. Concerning the proposed models,
they are simple to understand and easy to visualize, i.e. their outcome is human
readable and easily explainable. Besides that, these models can be computed and
used efficiently. That said, we believe this kind of instance-specific approaches can
improve algorithm configuration and reach good performance gains, as suggested by
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the presented experimental results.
We provide a set of utility functions in implementing the proposed models

in Souza and Ritt (2022d)1. We also provide supplementary material to this chapter
in Souza and Ritt (2022e)2, containing the configuration scenarios, source code
for the corresponding algorithms, problem instances and further details about the
experimental results. More information about the artifacts produced from this
research are given in Appendix A.

1The implementations regarding the parameter regression models are available at https://github.
com/souzamarcelo/regression-models-ac.

2The supplementary material for this chapter is available at https://github.com/souzamarcelo/
supp-models-ac.

https://github.com/souzamarcelo/regression-models-ac
https://github.com/souzamarcelo/regression-models-ac
https://github.com/souzamarcelo/supp-models-ac
https://github.com/souzamarcelo/supp-models-ac
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6 VISUAL ANALYSIS OF THE CONFIGURATION PROCESS

The improvement of understanding is for two ends:
first, our own increase of knowledge; secondly, to
enable us to deliver that knowledge to others.

— John Locke

As discussed previously, the use of configurators like irace allows users to adjust
algorithms for obtaining high performance without the need of vast expert knowledge
about the algorithm or the problem. The configuration process implemented in irace
generates (usually significant volumes of) algorithm performance data that are used
to guide the search for good configurations. The data produced by irace can be used
to obtain insights about the configured algorithm and the configuration process itself.

Although irace can be used as a black-box method for configuring algorithms,
in some cases it might be helpful to understand how the configurator works and
analyze its execution, in order to obtain the best results from the configuration process
and ensure the efficient use of the computational resources. This understanding is
important when designing the configuration scenario, i.e. mainly the configuration
space, training instances, and configuration budget. The configuration scenario can
be setup inadequately, e.g. using too little or too much computational effort, which
may lead to poor results or the waste of available computational resources. Using
training instances that are not representative of typical problem instances may lead
to overtuning (BIRATTARI, 2009) and poor results when using the algorithm in
production. A detailed analysis of the configuration process helps to identify such
cases and adjust the configuration scenario. Unfortunately, the analysis of the data
generated by irace is not simple, since they must be processed and interpreted, and
knowledge about the configurator is often necessary. In addition, there are no tools
available to directly visualize the configuration process data and thus, promoting
and simplifying the analysis of it.

In this chapter we present acviz, a visual tool to analyze runs of irace based
on the graphical representation of the configuration process. The acviz tool provides
two types of visualizations. The first shows the evolution of a single run of the
configuration process performed by irace. The second visualizes the performance
of the best found configurations on test instances and contrasts them with the
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performance on the training instances used by irace. We first describe acviz and its
functionalities (Section 6.1), then we present examples that show how it can be used
to understand the configuration process, and how it can provide useful information
to design better configuration scenarios (Section 6.2). Finally, we present a brief
discussion on these ideas (Section 6.3).

6.1 The acviz Program

Given a log file produced by running irace, the acviz program provides visual-
izations of the configuration process. Figure 6.1 gives examples of the configuration
of two different algorithms. A point (i, v) shows the performance v obtained in
the ith evaluation in the configuration process. Note that each evaluation is asso-
ciated to a unique configuration-instance pair (θ, π). The first example shows the
configuration of an optimization algorithm. In this case, the performance value
v is the relative deviation of the best solution found in each evaluation from an
instance-based reference value. These reference values can be provided by the user
when, for example, there are best known solutions for the instances or there is a
current default configuration and its performance can be used as reference. When
no reference value is provided, the best values found by irace are used. The plot also
shows the beginning of each iteration by a vertical dashed line, with the number
of evaluations (bottom) and the number of different instances (top) used until that
iteration. This vertical line is presented in red for iterations in which a soft restart
was applied. Finally, evaluations on different instances are indicated by different
colors, and evaluations of elite configurations are represented using different markers
(⦁ for elite configurations of the current iteration, ⬥ for configurations that were elite
in the final iteration, and ★ for the best found configuration, i.e. the first ranked
elite configuration of the final iteration).

The horizontal lines present the estimated performance of the elite (purple
line) and non-elite (orange line) configurations in each iteration. The estimated
performance is determined by the median of the results obtained by all configurations
of the current iteration on all instances evaluated so far, considering evaluations in
the current and previous iterations. Some of the non-elite configurations may not be
evaluated on a subset of the instances, e.g. when the configuration is discarded in the
middle of an iteration. For the calculation of the estimated performance, we replace
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Table 6.1 – Arguments of acviz. Default options are shown in bold.

Argument Options Description

--iracelog <log file> The irace log file (.Rdata)
--typeresult {aval, adev, rdev} Which values are presented
--bkv <bkv file> The file containing reference values
--imputation {elite, alive} Imputation strategy for missing values
--scale {log, lin} Scaling of the y-axis
--noelites – Disables different markers for evaluations

of elite configurations
--noinstances – Disables coloring evaluations on different

instances
--pconfig [0, 1] Identifies the configurations of the best

evaluations
--overtime – Presents the configuration time on the

x-axis
--alpha [0, 1] The opacity of the points
--timelimit [0, ∞] Time limit used to evaluate decision

algorithms
--testing – Presents the plot of the test phase
--testcolors {instance, overall} The scheme for the color map
--exportdata – Exports the data of the configuration

process to a csv file
--exportplot – Exports the produced plot to pdf and png

files
--output <prefix> The prefix name of the exported files
--monitor – Monitors the irace log file and updates

the plot after each iteration

missing values by the worst result of the elite configurations, since the eliminated
configuration is not better than the worst elite configuration (called elite imputation
strategy). An alternative approach is to use the worst result of the configurations
being evaluated in the current iteration (called alive imputation strategy).

Table 6.1 presents the input arguments of acviz. The command to produce
the first visualization shown in Figure 6.1 is:

python3 acviz.py --iracelog irace.Rdata --bkv bkv.txt
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which provides the irace log file to be used, in this case irace.Rdata, and the file
containing the reference values used to compute the relative deviations (bkv.txt).
Additional options control the elements of the visualization, like presenting the
absolute performance values or the absolute deviations from the reference values
(option --typeresult), or changing the imputation strategy. Users can also disable
the coloring of instances and the markers of elite configurations, or tell acviz to show
the ID of the configurations associated with the p% best performing evaluations of
each iteration (option --pconfig). The opacity of the points can be changed and
the default logarithmic scale of the y-axis can be disabled.

The second visualization in Figure 6.1 shows the configuration of a decision
algorithm, where the performance of each evaluation is the running time used to
solve the corresponding instance. In this case, the configuration budget is a time
limit, then users can opt to plot the starting time of evaluations on the x-axis (option
--overtime), making it possible to observe how the configuration time is distributed
over the iterations, and identify evaluations that took a long time. To produce this
visualization, we select to show absolute performance values in the y-axis and disable
the logarithmic scale.

During the configuration process, evaluations that reach the running time
limit without solving the instance are penalized by returning to irace the time limit
multiplied by a penalization factor (PÉREZ CÁCERES et al., 2017a). If we inform
the time limit to acviz, each evaluation with a result that exceeds this limit is presented
in the upper border of the plot, indicating that these evaluations did not solve the
instance (see those cases in the second visualization shown in Figure 6.1). The
following command produces this visualization (observe that argument --iracelog
can be omitted):

python3 acviz.py irace.Rdata --typeresult aval \

--scale lin \

--timelimit 10 \

--overtime

A second plot provided by acviz presents the results obtained by the best
found configurations on the set of test instances (this requires the testing feature
to be enabled when running irace). Figure 6.3 shows an example, presenting the
results of the best elite configurations of each iteration and all elite configurations
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of the last iteration. Each column in the plot is associated with a configuration.
The acviz tool presents its ID and, in parenthesis, the iterations in which it was
the first ranked elite configuration (e.g. 251 (3, 4) means configuration 251 was the
best ranked elite configuration in iterations 3 and 4). For the final iteration, we also
present the rank of the corresponding configuration in the elite set in a subscript
(e.g. 91 means that the configuration was ranked first in the 9th iteration). The
instance name is black if the instance has been used during training and testing,
and blue, if it has been used only for testing. The subplot on the left shows the
mean relative deviations from the reference values that, as for the previous plot, can
be provided using the --bkv option, or are determined by acviz based on the best
values found during the execution of irace (in both training and test phases). The
subplot on the right presents the ranking of each configuration on each instance,
allowing us to compare the performance of different configurations across instances.
The command to produce the visualization shown in Figure 6.3 indicates that acviz
should present the plot of the test phase:

python3 acviz.py irace.Rdata --bkv bkv.txt --testing

In the visualization of the test phase, we can also use option --typeresult to
present the mean absolute values or the mean absolute deviations from the reference
values. The colors in the plot help to differentiate the performance obtained by the
resulting configurations. In Figure 6.3, the color map is calculated according to the
results obtained within each instance. Worst values for each instance are in red while
the best values are in green. Alternatively, the color map can be defined according
to the whole range of values in all instances, thus visualizing the overall performance
obtained in the test phase.

When using the interactive presentation mode, acviz allows the user to control
the visualization by moving the plot, zooming and controlling the margins of the
figure. When positioning the cursor over a point, acviz shows a tooltip box with the
corresponding evaluation number, the associated instance name and configuration
ID. It is also possible to export the data and both of the plots. Finally, when option
--monitor is enabled, acviz monitors the irace log file during the configuration process
and updates the visualization after each iteration, allowing the user to analyze the
evolution of the configuration process during its execution. All acviz options discussed
above are summarized in Table 6.1.
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6.2 Analyzing the Configuration Process with acviz

In this section we present three exemplary case studies of configurations with
flaws that can be easily identified when using acviz. Experiments were run on a
GNU/Linux platform running on an 8-core AMD FX-8150 CPU 3.6GHz and 32GB
memory. We used acviz 1.0, irace 3.1, ACOTSP 1.03, and SPEAR 1.2.1. The acviz
program was written in Python 3 and requires R (≥ 3.4) and the following libraries:
numpy (≥ 1.18), pandas (≥ 1.0.3), matplotlib (≥ 3.1), and rpy2 (≥ 3.2).

We use ACOTSP and SPEAR configuration scenarios (see Chapter 3 for
details about them), which provide different characteristics and allow us testing all
functions implemented in acviz. For ACOTSP, irace optimizes the cost of the best
found solution after a running it for 20 seconds (instead of the 60 seconds defined
in Chapter 3). On the other hand, irace minimizes SPEAR’s solving time, where
for evaluations in which the instance is not solved, a penalized performance value is
returned, i.e. the PARX penalization approach (PÉREZ CÁCERES et al., 2017a).
For the third case study, where we configure ACOTSP and evaluate the resulting
configurations on a set of test instances with different structure, we additionally
use ten TSP instances with uniformly random distance matrices, generated with
portmgen from the 8th DIMACS Implementation Challenge (JOHNSON et al., 2001).
Finally, we use the default settings of irace in all our experiments.

6.2.1 Case Study 1: Easy and Hard Instances

Here, we discuss two example scenarios and show how easy and hard instances
can be identified. We configure ACOTSP with a budget of 2K evaluations, and
SPEAR with a budget of 20K seconds. Figure 6.1 shows the visualizations produced
by acviz. When configuring ACOTSP we observe the evolution of the configuration
process, i.e. how the performance of the sampled configurations change over the
iterations. At the beginning of the configuration, there is a subset of the configurations
with bad performance on almost all evaluated instances (points in the upper part
of the figure in the four first iterations). The number of such bad performers
decreases over the iterations, while the estimated performance of elite and non-elite
configurations (the median values given by the horizontal lines) becomes better. We
can also see that the instance selection strategy implemented in irace iteratively
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Figure 6.1 – Configuring ACOTSP and SPEAR with instances of different hardness.

increases the number of instances on which the configurations are evaluated.
In the configuration of SPEAR, the performance of the configurations also

improves over the iterations. Besides that, we see that different configurations
have a similar performance on each instance. Note that the evaluations of different
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configurations on a particular instance, represented by clusters of points of the same
color, present a small variation of the running time. Nevertheless, we observe that
elite configurations perform better than others, since they are often among the best
in each cluster.

The visualizations shown in Figure 6.1 also provide some information about
the configuration scenarios. We can see that both scenarios are quite homogeneous,
i.e. a configuration with good performance on one instance often presents good
performance on the others. For example, if we look at the elite configurations (⦁
markers) of each iteration, we see that they present the best results for almost all
instances. This contributes to irace easily identifying the best configurations in the
racing phase, and consequently, using less evaluations than the budget available
for the iterations. The saved budget is then used to perform more iterations than
the five initially scheduled, as observed in the plot. Those additional iterations are
increasingly shorter because they are consuming the remaining budget and fewer
new configurations are sampled.

We included in both scenarios two additional instances: one that is easy to
solve, shown in gray, and another that is hard to solve, shown in green. Figure 6.1
shows an interesting behavior of the configurations on those instances. In ACOTSP,
we can see that almost all configurations perform very well on the easy instance.
Besides that, there is no variation of different configurations on this instance. There-
fore, the evaluations on this instance do not help to determine the quality of different
configurations and decide which one is better. In the case of the hard instance, we
observe that it helps to differentiate the quality of the configurations in the first
iterations. However, as for the easy instance, from the fifth iteration on, it stops
being useful for the configuration process.

In the configuration of SPEAR it is even more evident that the easy and
hard instances do not contribute to the configuration process. We observe that all
configurations immediately solve the easy instance, while no configuration solves the
hard instance. In this case, we could exclude the easy instance from the configuration
scenario, since it does not help to evaluate the configurations. We could also exclude
the hard instance, or increase the time limit, trying to find configurations that can
solve it. The acviz tool helps to identify such cases by visualizing and comparing
how the configurations perform on the training instances and which ones are actually
contributing to the configuration process.
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Scenario 2: SPEAR with a budget of 500K seconds.
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Figure 6.2 – Configuring ACOTSP and SPEAR with large budgets.

6.2.2 Case Study 2: Unnecessarily Large Budget

Choosing an adequate configuration budget can be difficult. A small budget
may not be sufficient to find good configurations. A common practice is to use the
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highest possible budget, according to time constraints and the available computational
resources. However, even after running irace, it may not be clear if the chosen budget
was appropriate. In this second experiment, we configure both ACOTSP and
SPEAR with very large budgets of 100K evaluations and 500K seconds, respectively.
Figure 6.2 shows the resulting visualizations. Since the budget is larger, irace samples
more configurations and uses more instances to evaluate them.

In ACOTSP, the observed behavior is similar to the first case study. We can
see a fast evolution of the configuration process in the first iterations, producing
configurations with better performance compared to those obtained in the first case
study. From the fifth iteration on, after approximately 20K evaluations, the quality
of the sampled configurations stagnates. Note that the estimated performance of
both elite and non-elite configurations (orange and purple horizontal lines) does not
improve from that point until the end of the configuration process. We can also see
that irace performs a soft restart (red dashed line) in almost all subsequent iterations,
which indicates that the sampling models converged. The same behavior is observed
in the configuration of SPEAR, where soft restarts are present after about 400K
seconds.

In both scenarios, if we needed to repeat the process, we could decrease
the budget to about 20K∼ 30K evaluations (ACOTSP) or 300K∼ 400K seconds
(SPEAR), for example. Alternatively, if we have the time for a large budget, we could
tell irace to sample more configurations at each iteration to increase diversification
(parameter nbConfigurations). For heterogeneous scenarios, the additional budget
could be better spent in increasing the number of instances evaluated before the first
and between each elimination test (parameters firstTest and eachTest of irace,
respectively).

6.2.3 Case Study 3: Unrepresentative Instances

A common mistake when configuring algorithms is to choose training instances
that are not representative of the instances to be used in production. Suppose, for
example, we use an algorithm that has been configured on a certain class of instances
Π. Now, we want to solve additional instances of class Π′. In order to get the
best performance, we may want to configure the algorithm again to reflect the
new instance distribution. If the goal is to obtain a configuration that performs
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Ranks by instance

Figure 6.3 – Test results after configuring ACOTSP with unrepresentative training instances.
Instances with random distances (starting with ‘r’ and in blue) were used only for test,
while Euclidean instances (in black) were used for both training and test.

well for both instance classes, then starting the configuration process from the
current configuration (tuned for Π) and training only on instances of Π′ would be
a methodological mistake. Note that the previous example is an extreme case of
an unrepresentative training set. Nevertheless, a similar situation is obtained when
the training set is composed of different instance classes and one or more classes are
strongly underrepresented in the set.

In this experiment, we reproduce the above situation using ACOTSP to
analyze how the configuration process behaves. In a first step, we select ten TSP
instances with random distances and tune ACOTSP on them to obtain a set of
initial configurations. Then, we select ten Euclidean TSP instances, and use them as
training instances for an irace run with a budget of 3K evaluations. We provide the
configurations from the first step as initial configurations. We use the testing options
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of irace to evaluate the resulting configurations on all Euclidean instances (used as
training set) and all random distance instances (not used as training set, thus we call
it test set). Random distance and Euclidean instances define structurally different
TSP instances and thus, ACOTSP configurations that exhibit high performance in
one instance class are not expected to maintain such high performance in the other
class. The testing results are shown in Figure 6.3. Since we evaluate the resulting
configurations on both training and test instances, we have useful information about
how they perform on both instance sets. The mean deviations give an overview of
the results, allowing us to observe the evolution in the quality of configurations found
during the configuration process. We can also observe how those configurations
compare with each other by analyzing the obtained ranks.

When the training instances are not representative, the found configurations
may specialize on the known training instances and present poor performance on
unseen test instances. Such an overtuning can be observed in Figure 6.3. As the
configuration progresses, the performance of the configurations is becoming better
on the training instances. On the other hand, the performance on the test instances
degrades over the iterations. Since we initialized irace with configurations known to
perform well on the test instances, the best configuration in the first iteration still
performs well on the test set, but the performance quickly degrades on subsequent
iterations. To solve this problem, we need to include some random distance instances
in the training set, and make sure that the relative frequency of each type of instance
seen during training matches their relative frequency in the test set, or the frequency
expected in unseen instances.

6.3 Discussion

As we show in the case studies, the visualizations provided by acviz contribute
to improve the usability of irace, since they facilitate the understanding of the
configuration process, allow users to analyze irace runs, and help evaluating the
configuration scenario (e.g. the quality of the training instances, or the adequability
of the configuration budget). Such understanding is important to avoid mistakes
when defining the configuration scenarios, to get the best performance from the
automatic configuration process and, consequently, to achieve better results in terms
of the quality of final configurations.
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The acviz program is available online in Souza et al. (2020a)1. The irace
log files used in the experiments and other material necessary for reproducing the
experimental results are available as supplementary material for this chapter (SOUZA
et al., 2020b)2. More information about the artifacts produced from this research
are given in Appendix A.

1The acviz program is available at https://github.com/souzamarcelo/acviz.
2The supplementary material for this chapter is available at https://doi.org/10.5281/zenodo.

4028904.

https://github.com/souzamarcelo/acviz
https://doi.org/10.5281/zenodo.4028904
https://doi.org/10.5281/zenodo.4028904
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Part III

Applications
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7 AUTOBQP:ACOMPONENT-WISESOLVERTOBINARYOPTIMIZATION

Civilization advances by extending the number of im-
portant operations which we can perform without
thinking of them.

— Alfred North Whitehead

In this chapter, we use automatic algorithm design methods as the core piece
of AutoBQP, a component-wise heuristic solver for binary optimization problems.
Given a problem description with the implementation of the objective function and
a set of training instances, this solver uses automatic algorithm design to produce an
algorithm with optimized performance on such instances. Specifically, we follow a
bottom-up design approach by defining a flexible algorithm framework of heuristic
components that can be selected and combined. Then we apply the irace configurator
to explore the corresponding design space of components and parameter values,
searching for the best algorithms for different problem domains. The heuristic com-
ponents were extracted from state-of-the-art algorithms for the unconstrained binary
quadratic programming (UBQP), including constructive heuristics, neighborhoods
for local searches, perturbation strategies for iterated local searches, and solution
recombination strategies. We focus on heuristic components for the UBQP since
many problems can be reduced to it. Kochenberger et al. (2004, 2014) discuss general
reduction techniques to binary quadratic optimization and present around thirty
problems that can be reduced to UBQP. The resulting design space is expressed by a
context-free grammar, whose design choices and parameter values are represented by
categorical and numerical parameters, allowing us to use irace to automate the design
process. The flexibility of this approach allows to produce different combinations of
heuristic components, leading to hybrid and potentially high-performing algorithms,
whose can be applied to a wide range of binary problems via UBQP formulations.

This chapter presents the structure of the proposed AutoBQP solver and discuss
its inner techniques. Section 7.1 reviews the related literature, focusing on previous
applications of automatic algorithm design for optimization problems, as well as
discussing existing heuristic solvers for binary problems. Section 7.2 gives an overview
of our base problem, the unconstrained binary quadratic programming. Section 7.3
presents our design space of components and its grammar-based representation,
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Table 7.1 – Summary of grammar-based bottom-up approaches for automatic algorithm
design. The proposed approach is presented in the last line.

Approach Framework Problems
Mascia et al. (2013) Iterated greedy Permutation flowshop

Mascia et al. (2014b) Iterated greedy Bin packing;
Permutation flowshop

Mascia et al. (2014a) ParadisEO (hybrid) Permutation flowshop

Marmion et al. (2013) ParadisEO (hybrid) Permutation flowshop

López-Ibáñez, Marmion and
Stützle (2017)

ParadisEO (hybrid) Permutation flowshop;
Traveling salesperson;
UBQP

Brum and Ritt (2018a, 2018b) FSSolver (hybrid) Permutation flowshop

Pagnozzi and Stützle (2019, 2021) EMILI (hybrid) Permutation flowshop

Alfaro-Fernández et al. (2020) EMILI (hybrid) Hybrid flowshop

AutoBQP UBQP heuristics Binary problems

discussing each heuristic component in detail. Section 7.4 details our automatic
design methodology, discussing the algorithm framework and the use of irace to
explore its design space. Finally, Section 7.5 concludes the chapter and presents a
general discussion of the contributions of this research.

7.1 Related Work

The bottom-up approach for automatic algorithm design we follow in this
chapter has four main ingredients: (i) a flexible framework of algorithm components;
(ii) a grammar describing the corresponding design space; (iii) a parametric repre-
sentation of this grammar; and (iv) an algorithm configurator, in this case irace, to
explore the design space and produce algorithms automatically. In Section 2.3.2 we
reviewed the literature and presented different approaches that follow the same above
ideas. Now, we discuss them in more detail, focusing on their algorithm frameworks
and problem domains.

Table 7.1 summarizes the algorithm frameworks of each approach and the
problem domains they were applied, including our approach (AutoBQP). Regarding
the algorithm frameworks, Mascia et al. (2013, 2014b) define a simple design space of
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iterated greedy components. Their approach was extended in Mascia et al. (2014a)
by using ParadisEO (CAHON; MELAB; TALBI, 2004; DRÉO et al., 2021), an
algorithm framework that contains several heuristic components and provides a
much larger design space. The same framework was used in Marmion et al. (2013)
and López-Ibáñez, Marmion and Stützle (2017), allowing them to produce hybrid
algorithms by combining components from different heuristic approaches. Brum and
Ritt (2018a, 2018b) extracted heuristic components from state-of-the-art algorithms
for the permutation flowshop problem and build their own framework. The same
was done in Pagnozzi and Stützle (2019, 2021) with the EMILI framework, which
is also used in Alfaro-Fernández et al. (2020). We follow the same idea and build
our framework with heuristic components extracted from the literature of UBQP.
Regarding the problem domains, we observe that all previous works shown in Table 7.1
focus on solving permutation and hybrid flowshop problems. Mascia et al. (2014b)
extend the application of these techniques to the bin packing problem, while López-
Ibáñez, Marmion and Stützle (2017) additionally consider the traveling salesperson
and UBQP problems. Besides solving the UBQP, López-Ibáñez, Marmion and Stützle
(2017) present only a simple experimental analysis, do not compare to results from
the literature, and do not consider any additional problem formulated as binary
optimization. In summary, all these works are limited to one or just few problems,
while AutoBQP is designed for a general class of binary problems, which gives it a
broader applicability.

Other approaches in the literature aim at solving general classes of problems,
e.g. binary problems. This is the case of LocalSolver1 (BENOIST et al., 2011), a
commercial heuristic solver for different problems, and BinarySS (GORTAZAR et
al., 2010), a heuristic solver based on scatter search for binary problems. In addition,
the algorithms for UBQP (e.g. Palubeckis (2006), Glover, Lü and Hao (2010) and
Wang et al. (2012)) can also be applied to solve general binary problems. However,
all these approaches implement fixed heuristic strategies, i.e. they are not based
on automatic design techniques. In consequence, their adaptation to new problem
domains other than those they were designed for is limited. In contrast, AutoBQP
combines the automatic design techniques with a framework of components extracted
from the literature of UBQP, allowing us to produce specialized heuristic algorithms
for a general class of binary problems that can be reduced to UBQP.

1For more information about LocalSolver, see https://www.localsolver.com.

https://www.localsolver.com
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7.2 Unconstrained Binary Quadratic Programming

Given a symmetric matrix of coefficients Q = (qij) ∈ Rn×n, UBQP asks to

maximize xtQx

subject to x ∈ {0, 1}n.

This model comprises a wide range of applications in combinatorial optimization,
including problems on graphs (KOCHENBERGER et al., 2013; WANG; XU, 2013;
KOCHENBERGER et al., 2015), boolean satisfiability (HANSEN; JAUMARD, 1990;
KOCHENBERGER et al., 2005), set partitioning (LEWIS; KOCHENBERGER;
ALIDAEE, 2008) and machine scheduling (ALIDAEE; KOCHENBERGER; AH-
MADIAN, 1994). Given a UBQP formulation, these problems can be solved by
methods initially designed for UBQP. A concrete example is the decision version
of the maximum clique (MC) problem, which can be reduced to binary quadratic
optimization (PARDALOS; XUE, 1994; BOMZE et al., 1999). Given an undirected
graph G = (V,E) and a value k, is there a clique (i.e. a complete subgraph) of
size k or more? With binary variables xv ∈ {0, 1}, v ∈ V , and weights quv = 1 for
{u, v} ∈ E, and quv = −

(
n
2

)
otherwise, we have a “yes”-instance of MC iff UBQP

has a solution of value
(
k
2

)
or more. This reduction can be done in polynomial time

and since MC is NP-hard, UBQP is NP-hard too. UBQP remains hard if there is a
unique solution (PARDALOS; JHA, 1992). As a consequence, current exact methods
for UBQP can only solve small instances (for more details about the exact methods
see Kochenberger et al. (2014)). For this reason, most research focuses on heuristic
methods to solve medium and large instances in the range of 2500 to about 15000
variables.

Palubeckis (2006) proposes an iterated tabu search (ITS). Given a random
initial solution, it iteratively applies a tabu search as an improvement step, followed
by a perturbation step to escape from local optima. The author uses a constant
tabu tenure, and the least-loss perturbation procedure. Least-loss perturbation ranks
variables according to the loss when flipping their value. Then, it randomly flips
variables from the b variables of least loss. The size of the perturbation is selected
uniformly at random from the interval [d1, n/d2], where n is the size of the instance,
and d1 and d2 are input parameters. Glover, Lü and Hao (2010) propose an iterated
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tabu search algorithm using an elite set as a diversification mechanism (D2TS, which
stands for diversification-driven tabu search). The elite set stores the best solutions
found so far, which are used as initial solutions for a perturbation and a search step.
They compute the tabu tenure according to n/td + c ∈ [0, tc], where c and tc are
input parameters. Their diversity-based perturbation method scores variables based
on their flip frequency and the values they present in the elite solutions, and uses
a parameter β as a weight factor for the frequency contribution. Then it selects
variables to be randomly assigned to 0 or 1, with probability of selection proportional
to the variable’s score. Parameter λ defines the importance of the score in this step.
The perturbation size is given by n/g, where g is a parameter.

Wang et al. (2012) propose a repeated elite recombination algorithm based
on path relinking. The algorithm uses an elite set to store the best found solutions.
Initially, it generates random solutions for the elite set and applies a tabu search
procedure to improve them. Iteratively, each pair of solutions from the elite set is
recombined by path relinking. The resulting solution is improved by a tabu search
and replaces the worst solution of the elite set, if its quality is better. The path
relinking step applies a local search to the first solution (also called starting solution),
allowing only modifications that get it closer to the second solution. In other words,
the modification of a variable i is only allowed if the new value is equal to the
value of variable i in the second solution. The authors propose two path relinking
strategies. The first one (PR1) uses a best improvement strategy for moving to the
next neighbor, selecting the best neighbor (i.e. the solution with highest quality)
when no improvement is possible. The second one (PR2) always selects a random
neighbor. Moreover, PR1 and PR2 require that path relinking returns a solution
with minimum and maximum distances from the endpoints as dmin = γ ×H and
dmax = H − dmin, where H is the Hamming distance between both solutions. If no
such solution is found, the result is the starting solution.

7.3 The Design Space of Components

We extracted the heuristic components from the literature of UBQP to build
our algorithm framework, specifically the state-of-the-art algorithms of Palubeckis
(2006), Glover, Lü and Hao (2010) and Wang et al. (2012). We also include some
additional heuristic components frequently found in literature, e.g. different local
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1 〈start〉 → 〈search〉 | 〈construction〉 | 〈recombination〉
2 〈search〉 → ls (〈improvement〉) | nmls (〈improvement〉) | 〈ts〉
3 | ils (〈search〉, 〈pert〉) | ilse (〈search〉, 〈pert〉)
4 〈improvement〉 → fi | fi-rr | bi | si | si-partial | si-partial-rr
5 〈ts〉 → sts | rts
6 〈pert〉 → random | least-loss (〈step〉) | diversity (〈step〉)
7 〈step〉 → uniform | gaussian | exponential | gammam
8 〈construction〉 → gra (〈constructor〉) | grasp (〈constructor〉, 〈search〉)
9 〈constructor〉 → zero | half

10 〈recombination〉 → rer (〈improvement〉, 〈search〉)

Figure 7.1 – The reduced grammar expressing the design space of components. We omit
the input parameters of each component to highlight the algorithm components and the
combination rules. The complete list of input parameters, their types, descriptions and
ranges of values are presented later in Table 7.2.

search strategies and the well known GRASP metaheuristic (FEO; RESENDE, 1995).
This section describes the design space of components and their input parameters.

Figure 7.1 shows the reduced grammar in Backus-Naur form, representing the
design space we propose to solve problems based on UBQP. The presented grammar
is reduced since we omit the input parameters of the algorithm components, in order
to focus on its components and their possible combinations. Such input parameters
will be detailed later in Table 7.2. The grammar consists of a set of rules, through
which the heuristic algorithms can be instantiated. Each rule describes a decision,
i.e. a component to be chosen. The start symbol of the grammar is the non-terminal
〈start〉 in line 1. Starting from 〈start〉, three main heuristic strategies can be chosen:
heuristics based on local search (〈search〉), on solution construction (〈construction〉),
or on recombination of candidates from a population of solutions (〈recombination〉).
In the following we describe all three strategies.

7.3.1 Search Methods

The search-based heuristics (line 2) start with an initial solution and modify
it, in order to explore the search space. The solutions obtained by all possible
modifications form a solution neighborhood. Then, search methods apply some
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strategy to select the next solution from the neighborhood (line 3). Given that in
the UBQP the neighborhood of a solution is the set of solutions with one modified
variable (a flip in a position of the vector x), we access the neighbors in the order
of the variables. The first improvement (fi) strategy selects the first neighbor
that improves the solution. We can apply a round-robin strategy (fi-rr), starting
the exploration from the position where the previous one has finished. The best
improvement (bi) strategy selects a neighbor that improves the solution most. The
some improvement strategy (si) selects a random improving neighbor. A variant,
called some improvement with partial exploration (si-partial) considers only the first
f% of variables in the exploration for some improvement. If no improving neighbor
is found, the rest of variables is explored. Alternatively, we can use a round robin
strategy to start the exploration from the position where the previous one has finished
(si-partial-rr).

The simplest search-based method is the local search (ls), which iteratively
applies an improving modification until no better neighbor is found. In order to avoid
local optimum, a common strategy is to select a random neighbor with probability
p, and an improving neighbor with probability 1 − p. This method is called non-
monotone local search (nmls). Tabu search (〈ts〉) was first proposed by Glover (1989)
and consists of a local search that keeps a list of prohibited solutions (tabu list), in
order to avoid the search coming back to previous visited solutions in a short-term
period. When a solution is selected, the modified variable is stored in the tabu list
for some number of iterations (tabu tenure). During this period, this variable cannot
be changed. There are different strategies to define the tabu tenure, like using a
constant, or a value according to the instance size. The simple tabu search (sts)
always apply a best improvement strategy to select a neighbor. A randomized tabu
search (rts) applies a random move with a probability p. Commonly used stopping
criteria for tabu search are a maximum number of iterations or a maximum number
of iterations in stagnation. For example, Palubeckis (2006) proposes the maximum
number of iterations to be a factor multiplied by the instance size. This factor is set
to 15000 if the instance has more than 5000 variables, 12000 if it has between 3000
and 5000 variables, and 10000 for instances up to 3000 variables.

Iterated local search (ils) was proposed by Lourenço, Martin and Stützle
(2003) and iteratively applies a local search, followed by a perturbation step (〈pert〉).
The iterated local search can also be combined with an elitist strategy (ilse), following
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the ideas of Glover, Lü and Hao (2010). An elite set stores the best solutions found
so far, which are used as initial solutions for the perturbation and search steps. The
〈pert〉 rule defines the available perturbation methods. The first one sets all variables
of the current solution to values chosen uniformly at random (random). The second
strategy implements the least-loss approach of Palubeckis (2006), and the third one
implements the diversity approach of Glover, Lü and Hao (2010). The grammar has
also several strategies to define the size of the perturbation (〈step〉), i.e. the number
of variables that will be flipped in least-loss or diversity perturbation methods. Given
the instance size n, the gammam strategy implements the approach of Glover, Lü
and Hao (2010). The uniform strategy implements the approach of Palubeckis (2006),
which consists in selecting a size value according to an uniform distribution in the
interval [d1, n/d2]. The gaussian and exponential strategies follow the same idea, but
apply a Gaussian and exponential distributions, respectively.

Our grammar allows the combination of the iterated local search with any
search and perturbation procedures. Therefore, we can instantiate state-of-the-art
algorithms such as the one proposed by Palubeckis (2006), which consists of an
iterated local search that applies a tabu search and the least-loss perturbation
procedure with the uniform strategy to compute the perturbation size. We can also
instantiate the diversification method of Glover, Lü and Hao (2010), selecting the
iterated local search combined with the elite set, a tabu search and a diversity-based
perturbation procedure with the gammam strategy to compute the perturbation size.

7.3.2 Construction Methods

The constructive methods are based on the heuristics of Merz and Freisleben
(2002). They start with an empty solution and iteratively set values to its variables.
The variable is chosen according to an α-greedy algorithm, which randomly selects one
of the α% best variables. The greedy randomized adaptive algorithm (gra) repeatedly
constructs m solutions and picks the best one. Another approach, proposed by Feo
and Resende (1995), is the greedy randomized adaptive search procedure (grasp),
which applies a search procedure whenever a solution is constructed. A first strategy
for the construction process for UBQP starts with all variables equal to zero, and
then sets some of them to one (zero). An alternative strategy starts all variables at
0.5, and then sets the values to zero or one (half).
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7.3.3 Recombination Methods

The recombination-based method implements the idea of evolving a population
of solutions. The rer component implements the repeated elite recombination method
of Wang et al. (2012). Any improvement strategy (〈improvement〉) can be selected
for the path relinking step. If using best improvement and no improving neighbor is
found, the exploration selects the best neighbor, according to Wang et al. (2012).
When using the other strategies, if no improving neighbor is found, the exploration
selects a random neighbor. Besides that, any search method can be selected for the
search step (〈search〉).

7.3.4 Input Parameters

Most of the components presented above have input parameters whose val-
ues must be selected to ensure high performance. For example, the constructive
approaches require the definition of the number of repetitions. We omit these pa-
rameters in Figure 7.1, but a complete derivation of the grammar not only gives
an algorithm, but also its parameter values. Table 7.2 shows all parameters, their
type, the related component and possible values. Categorical parameters (like the
different strategies to compute the tabu tenure) have a set of limited candidate values.
For numerical parameters, we define the correspondent interval of possible values.
Parameters t, s, and i choose the strategies for tabu tenure, maximum iterations in
stagnation and maximum iterations, respectively. Strategies t1 to t4 are presented in
the table, and strategy t5 sets the tabu tenure as the average degree of variables in the
instance being solved, i.e. the average number of non-zero coefficients associated with
each variable. Strategy i2 implements Palubeckis’ rule to determine the maximum
number of iterations, while i3 and s3 allow iterations and stagnation ∞. The rest of
parameters were explained above, when discussing the heuristic components.

7.4 Automatic Design Methodology

The proposed algorithm framework allows a flexible combination of its compo-
nents into hybrid metaheuristics, many of which probably have never been explored
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Table 7.2 – Input parameters of the algorithm components (n is the instance size). We
show all parameters, the corresponding types and components, a brief description and the
set or range of possible values.

Par. Type Component Description Values

t cat 〈ts〉 Strategy for tabu tenure {t1, . . . , t5}
tv int 〈ts〉 (t1) Constant for tabu tenure [1, 50]
tp int 〈ts〉 (t2) Tabu tenure is (tp × n)/100 [10, 80]
td int 〈ts〉 (t3, t4) Tabu tenure is n/td [1, 500]
tc int 〈ts〉 (t4) Tabu tenure is n/td + c ∈ [0, tc] [1, 100]
s cat 〈ts〉 Strategy for max. stagnation {s1, s2, s3}
sv int 〈ts〉 (s1) Constant for max. stagnation [500, 100 000]
sm int 〈ts〉 (s2) Maximum stagnation is sm × n [1, 100]
i cat 〈ts〉 Strategy for maximum iterations {i1, i2 , i3}
iv int 〈ts〉 (i1) Constant for maximum iterations [1 000, 50 000]
p real nmls; rts Probability of a random move [0.0, 1.0]
f int si-partial[-rr] Size of the partial exploration [5, 50]
d1 int 〈pert〉 Minimum perturbation size [1, 100]
d2 int 〈pert〉 Maximum perturbation size is n/d2 [1, 100]
g int gammam Perturbation size is n/g [2, 100]
b int least-loss Candidate variables for perturbation [1, 20]
β real diversity Frequency contribution [0.1, 0.9]
λ real diversity Selection importance factor [1.0, 3.0]
r int ilse Elite set size for ilse [1, 30]
e int rer Elite set size for rer [1, 20]
γ real rer Distance scale [0.1, 0.5]
α real 〈construction〉 Greediness of the construction [0.0, 1.0]
m int 〈construction〉 Number of repetitions [10, 100]

before. For example, we can derive a repeated elite recombination with an iterated
local search, which can use an internal non-monotone search procedure. We can
generate the algorithms found in the literature of UBQP, and also combine their com-
ponents with other ones to improve performance. However, the manual exploration
of such designs is impractical, given the large number of possible combinations and
the time required to evaluate them. This section describes the automatic algorithm
design methodology we use to explore this design space and produce hybrid and
high-performing algorithms for different problem domains with almost no human
intervention.
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Figure 7.2 – General setup for the automatic algorithm design process. Given a problem
description and a set of problem instances, the solver returns a concrete algorithm. In-
ternally, the solver implements the algorithm framework of components and uses irace as
automatic configurator. The design space is expressed by a context-free grammar, whose
decisions are represented by parameters, allowing the use of irace to explore the design
space and search for the best performing algorithms on the given instances.

The general idea behind AutoBQP is shown in Figure 7.2. We provide a
problem description containing the objective function and a set of problem instances.
AutoBQP automatically searches for high-performing algorithms and returns the
best one. To do this, we combine the algorithm framework with irace to explore the
design space by selecting and combining algorithm components and setting values
for their input parameters. The resulting algorithm is a complete and configured
heuristic method. For communicating the algorithm framework to irace, we follow
the fully parametric representation of Mascia et al. (2014b), in which the decisions
made in the grammar are defined by parameters to be tuned by the configurator. For
example, the 〈start〉 non-terminal in line 1 of the grammar (Fig. 7.1) has three options:
〈search〉, 〈construction〉, and 〈recombination〉. Therefore, we define a corresponding
categorical parameter with those three options. By defining a parameter for each
non-terminal, we avoid problems of low locality, i.e. when a small change in the
representation leads to big changes in the produced algorithm, and redundancy,
i.e. when different representations lead to the same algorithm. These problems are
common in token-based approaches (MASCIA et al., 2014b; ROTHLAUF; OETZEL,
2006; LOURENÇO; PEREIRA; COSTA, 2016).

We can see that our grammar is recursive in the rule of line 2 (〈search〉).
However, unlimited depth is unhelpful and we limit the recursiveness by not allowing
an iterated local search being the internal search procedure of another iterated local
search. This is a characteristic of the fully parametric representation, because we
need a finite number of parameters, and helps to reduce the size of the design space.
In this case, we need two parameters for the 〈search〉 rule, because when selecting
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one of the iterated local searches, we need to define the internal search. However,
the second parameter of this rule does not have the option to select an iterated
local search. Nevertheless, the proposed grammar is quite flexible and can generate
a wide range of hybrid metaheuristics by combining its components. In fact, the
grammar can generate 2396 different algorithms. This number increases substantially
if we consider the possible values of the 3 categorical and 15 integer parameters (see
Table 7.2), and is infinite considering the 5 real parameters.

Finally, some choices are conditional. The choice for rule 〈start〉 has to always
have a value, because this decision is taken in all possible algorithms that the grammar
can generate. This is not the case for the rest of rules. For example, rule 〈ts〉 is
applied only if a tabu search is selected in rule 〈search〉. The same idea is applied
to the input parameters, e.g., a value to parameter p is only set if a randomized
heuristic was selected (nmls or rts). In other words, the structure of design choices
reflects a relationship between them, defining the conditions to the need of each
specific choice. We implemented these conditions, such that the configuration task
needs to set values only for required choices.

7.5 Discussion

The main contributions of the research presented in this chapter are: (i) a
flexible algorithm framework that implements several heuristic components, which
are selected and combined to produce hybrid algorithms that handle a wide range
of binary problems; (ii) the application of automatic algorithm design techniques
to build a component-wise heuristic solver for binary problems; (iii) the proposed
AutoBQP solver, which can be used without knowledge of the heuristic components,
requiring only a problem description and a set of representative instances to produce
an algorithm; (iv) we provide guidelines for researchers and practitioners on the
automatic design of algorithms.

As stated before, Kochenberger et al. (2014) present several examples of
problems modeled and solved via UBQP, and show that the methods based on
UBQP are usually competitive in comparison to those specially designed for the
original problems. In some cases, the solutions produced by the UBQP methods
are better than those obtained by specialized methods, although the former do not
exploit the original problem domain and structure. Said that, we expect AutoBQP
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to exhibit competitive performance with state-of-the-art approaches for UBQP and
problems reduced to it. We perform an experimental evaluation in Chapter 8. In
addition, we made the AutoBQP solver available online in Souza and Ritt (2018a)2.
Other artifacts produced from this research are given in Appendix A.

2The AutoBQP solver is available at https://github.com/souzamarcelo/autobqp.

https://github.com/souzamarcelo/autobqp.
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8 AN EXPERIMENTAL EVALUATION OF AUTOBQP

It doesn’t matter how beautiful your theory is, it
doesn’t matter how smart you are. If it doesn’t agree
with experiment, it’s wrong.

— Richard Feynman

This chapter presents an experimental evaluation of AutoBQP, our component-
wise heuristic solver described in Chapter 7. As previously discussed, a wide range of
combinatorial optimization problems can be modeled in the form of an unconstrained
binary quadratic program. Some of these problems occur in the form of a UBQP, while
other must be reduced into it via one or more transformations, e.g. using penalization
strategies to eliminate constraints. First, we evaluate AutoBQP on UBQP instances
and on the maximum cut (MaxCut) problem, a direct UBQP application; then,
we evaluate its performance on the linearly constrained test-assignment problem,
a variant of graph coloring that can be reduced to UBQP via reformulation. We
compare the performance of AutoBQP with state-of-the-art algorithms specialized in
each problem.

Regarding the experimental setup, all algorithm components of AutoBQP have
been implemented in C++ and were compiled using the GNU CCC compiler version
5.3.1 with maximum optimization. The experiments use irace version 2.4 and were
conducted on a computer with an 8-core AMD FX-8150 processor running at 3.6GHz
and 32GB main memory, under Ubuntu Linux, using only one core for each execution.
In the rest of the chapter, we detail our computational experiments and results.
Section 8.1 introduces the MaxCut problem and its reduction to UBQP. Section 8.2
presents the automatic design of heuristics for the UBQP and MaxCut problems.
Section 8.3 introduces the test-assignment problem and its reduction to UBQP
via reformulation, and discusses the solving methods from literature. Section 8.4
presents the automatic design of heuristics for the test-assignment problem. Finally,
Section 8.5 gives some concluding remarks about the experimental evaluation of
AutoBQP.
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8.1 Maximum Cut on Graphs

The maximum cut on graphs (MaxCut) can be defined as follows. Given an
undirected graph G = (V,E), where V = {1, . . . , n} is the set of vertices, E ⊆ [V ]2

is the set of edges and each edge {i, j} ∈ E has an associated weight wij, find a
subset V ′ ⊆ V such that the total weight of the edges {i, j}, i ∈ V ′, j /∈ V ′ (i.e. the
weight of the cut (V ′, V ′)) is maximum. Formally, the MaxCut problem asks to

maximize
∑
i∈[n]

∑
j∈[n]

wijxi(1− xj)

subject to xi ∈ {0, 1},∀i ∈ [n].

An instance of the MaxCut problem can be naturally modeled as a uncon-
strained binary quadratic program (see Section 7.2) by setting

qii =
∑

j∈[n]\{i}
−wij, ∀i ∈ [n],

qij = wij, ∀i, j ∈ [n], i 6= j.

Then, any algorithm for UBQP can be used to solve MaxCut instances without any
reformulation.

The corresponding decision problem of cut on graphs (given a graph G and
an integer k, determine whether exists a cut of total weight at least k in G) is
NP-hard (KARP, 1972) and, since a solution can be verified in polynomial time, it
belongs to NP and therefore is NP-complete too.

8.2 Automatic Design for UBQP and MaxCut

This section presents our experiments on automatically designing heuristic
algorithms for both UBQP and MaxCut problems. We use two UBQP instance sets.
The first is a set of 10 instances proposed by Beasley. They have 2500 variables and
approximately 10% density, i.e. around 10% of the elements of matrix Q have non-zero
values. The second is a set of 21 instances proposed by Palubeckis (PALUBECKIS,
2006). They have between 3000 and 7000 variables and densities from 50% to
100%. The coefficients of these instances are uniform random integers in the interval
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Table 8.1 – Performance of the specialized algorithms on UBQP and MaxCut. We present
the average absolute deviations obtained by the automatically produced algorithms and
the state-of-the-art algorithms on each instance set over 20 replications.

Instances ITS D2TS PR1 PR2 HHPAL HHMC
Beasley 2.0 0.0 1.34 5.84 0.0 34.0
Palubeckis 1109.6 2082.9 457.1 690.4 186.8 2424.3
MaxCut - - 5.6 4.7 25.0 4.4

[−100, 100]. For the MaxCut problem, we use the 54 instances of Helmberg and
Rendl (2000), consisting in toroidal, planar and random graphs, which have between
800 and 3000 vertices, edge weights taking values from {−1, 1}, and densities less
than 1%.

Our machine is approximately four times faster than the machine used
by Palubeckis (2006), so we used 25% of the time limit he used. This results
in a time limit of 150 s for the Beasley instances and 225 s, 450 s, 900 s, 1350 s, and
2250 s for the instances of Palubeckis with 3000, 4000, 5000, 6000, and 7000 variables,
respectively. For the MaxCut instances, we used 66.6% (1200 s) of the time limit
used by Wang et al. (2012), because our machine is no more than 33% faster than
their machine.

8.2.1 Producing Specialized Algorithms for Each Problem

The density and coefficients of the Beasley and Palubeckis instances, are
significantly different from those of the MaxCut instances. Therefore, we test in our
first experiment an individual design process for each of these two instance groups.
For each of the two experiments, we used samples of the instances for training with
a budget of 2000 runs, and then validate the resulting algorithm using the complete
set of instances. The first design process uses instances p3000-1, p4000-1, p5000-1,
p6000-1, and p7000-1 from Palubeckis, and the second uses the MaxCut instances
G1, G5, G10, G15, G20, G25, G30, G35, G40, G45, and G50. We call the algorithm
produced with the Palubeckis training instances HHPAL (hybrid heuristic for the
Palubeckis instances), and the one produced using the MaxCut training instances
HHMC (hybrid heuristic for the MaxCut problem).

The results of running each algorithm on the test instances with 20 replications



142

can be seen in Table 8.1. We evaluate the automatically produced algorithms and
the state-of-the-art algorithms ITS (PALUBECKIS, 2006), D2TS (GLOVER; LÜ;
HAO, 2010), PR1 and PR2 (WANG et al., 2012). We report the average absolute
deviation obtained by each algorithm, i.e. the difference between the quality of the
best solutions found and the quality of best known solutions. We can see that the
automatic approach produces algorithms that outperform state-of-the-art algorithms.
The algorithm produced using Palubeckis training instances, HHPAL, presents an
average absolute deviation of 186.8 on the complete Palubeckis instance set, which
is much better than the average of PR1. This algorithm also works well on Beasley’s
instances, since their structure is similar to Palubeckis’ instances, but is worse that
the state of the art on MaxCut instances, since they have a different structure. On
the other hand, the algorithm produced using MaxCut training instances, HHMC,
presents very good results for the MaxCut, improving slightly over PR2. However,
the performance of HHMC is worse on the other instance sets, since it is specialized
on MaxCut instances. Similar behavior can be observed for algorithms PR1 and
PR2 of Wang et al. (2012). PR1 performs well on Beasley and Palubeckis instances,
while PR2 performs well on MaxCut instances.

8.2.2 Producing a Single Algorithm for UBQP and MaxCut

In our second experiment, we aim at producing a single algorithm for solving
both UBQP and MaxCut problems. We create an independent set of 20 training
instances with a similar structure than those of the Beasley and Palubeckis instances.
They have 2000 to 7000 variables and densities from 10% to 100%. The coefficients
were selected uniformly at random from [−100, 100]. We analyze here the structure
of the produced algorithm and its performance on all benchmark instances.

The design process using the random instance set produced a recombination-
based algorithm, which internally applies an iterated tabu search. Based on the rules
presented in the grammar of Figure 7.1, it consists of an algorithm based on the
recombination strategy (〈recombination〉), which runs the repeated elite recombination
method (rer) with best improvement strategy (bi) for the path relinking and an
iterated local search (ils). The latter applies a stochastic tabu search (sts) and
the least loss perturbation method (least-loss plus gammam). We can see that the
recombination strategy is used by Wang et al. (2012), the iterated tabu search is used
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Algorithm 3: Hybrid heuristic for UBQP (HHBQP).
1 while stopping criterion not satisfied do
2 E ← create an elite set of size e
3 while E has any novel solution do
4 foreach (s, t) ∈ E × E | s 6= t do
5 V ← variables v | s[v] 6= t[v]
6 dmin ← γ × |V |
7 dmax ← |V | − dmin
8 d← 0
9 s∗ ← s

10 while V 6= ∅ do
11 v ← select the best variable from V
12 Flip s[v] and remove v from V
13 d← d+ 1
14 if s is better than s∗ then
15 if dmin ≤ d ≤ dmax then
16 s∗ ← s

17 s← iteratedTabuSearch(s∗) . According to Algorithm 4
18 if s is better than any solution of E then
19 Replace the worst solution of E by s

20 return best solution of E

by Palubeckis (2006), and the strategies to define the tabu tenure, the termination
criteria of the tabu search, and the perturbation size are used by Glover, Lü and
Hao (2010). Therefore, our automatic approach combined components from all three
algorithms from the literature. We call this algorithm HHBQP (hybrid heuristic
for binary quadratic programming). This algorithm could also be classified as a
steady-state memetic algorithm with a path-relinking-based recombination operator
and no mutation. It maintains diversity in the pool of elite solutions by requiring
the recombined solutions to have at least γ|V | different variables.

The outline of HHBQP are shown in Algorithm 3. Repeatedly, the set of elite
solutions is randomly created. Each pair of solutions is selected and then recombined
using path relinking. The resulting solution is improved by an iterated tabu search,
and then the elite set is updated. This process is repeated while better solutions
are found and added to the elite set. The path relinking method operates on the
pair of solutions s and t. It searches the space of variables that, if flipped, make s
closer to t. Iteratively, this method selects the best variable and flips it in solution
s. The new solution is accepted if it is better than the best solution found so far,
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Algorithm 4: Iterated tabu search used in HHBQP.
1 while stopping criterion not satisfied do
2 psize ← n/g
3 while psize > 0 do
4 V ← create list with the b best variables to flip
5 v ← random variable from V
6 Flip s[v]
7 psize ← psize − 1
8 while maximum iterations and maximum stagnation not reached do
9 Select non-tabu variable v that leads to the best neighbor

10 Update tabu list
11 Flip s[v] and set v as tabu

12 return best solution found

and according to some minimum and maximum modification steps (dmin and dmax).
The iterated tabu search procedure is given in Algorithm 4. It applies the least
loss perturbation method, iteratively flipping a random variable from the b best
variables to flip. This is repeated until psize variables are flipped. After perturbing
the solution, the perturbation’s search step performs a tabu search. The best found
solution is stored during the perturbation and search steps, and then returned at the
final of the execution. The values for the input parameters of the above components,
which are also set by the automatic design approach, are presented in Table 8.2.

The performance results of HHPAL and HHBQP on the instances of Palubeckis
are presented in Table 8.3. It presents the best and average absolute deviations
obtained by HHPAL, HHBQP and state-of-the-art approaches after 20 replications.
Although the performance of HHBQP is slightly worse than the specialized HHPAL
algorithm, we can see that HHBQP still improves the results in comparison to
algorithm PR1 of Wang et al. (2012), presenting an average absolute deviation of
211.7. HHPAL and HHBQP also scale better and thus present more uniform results,
with the average absolute deviation increasing less with the size of the instance.

Table 8.4 presents the performance results of HHMC and HHBQP on the

Table 8.2 – Values of the input parameters of HHBQP. These values were set by the
automatic design approach.

Parameter t td tc s sm i g b e γ

Value t4 310 25 s2 22 i2 10 8 16 0.2405
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Table 8.3 – Performance results on the instances of Palubeckis. We present the best and
average absolute deviations obtained by the automatically produced algorithms and the
state-of-the-art algorithms over 20 replications.

Instance
ITS D2TS PR1 HHPAL HHBQP

Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.
p3000-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p3000-2 0.0 97.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p3000-3 0.0 344.0 0.0 0.0 0.0 36.0 0.0 138.6 0.0 107.5
p3000-4 0.0 154.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p3000-5 0.0 501.0 0.0 0.0 0.0 90.0 0.0 129.6 0.0 49.1
p4000-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p4000-2 0.0 1285.0 0.0 0.0 0.0 71.0 0.0 249.8 0.0 323.1
p4000-3 0.0 471.0 0.0 0.0 0.0 0.0 0.0 21.6 0.0 2.7
p4000-4 0.0 438.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p4000-5 0.0 572.0 0.0 0.0 0.0 491.0 0.0 12.0 0.0 0.0
p5000-1 700.0 971.0 325.0 656.0 0.0 612.0 325.0 465.8 0.0 386.6
p5000-2 0.0 1068.0 0.0 12533.0 0.0 620.0 0.0 313.9 0.0 338.7
p5000-3 0.0 1266.0 0.0 12876.0 0.0 995.0 0.0 56.7 0.0 76.5
p5000-4 934.0 1952.0 0.0 1962.0 0.0 1258.0 0.0 582.7 0.0 553.6
p5000-5 0.0 835.0 0.0 239.0 0.0 51.0 0.0 162.2 0.0 36.9
p6000-1 0.0 57.0 0.0 0.0 0.0 201.0 0.0 83.3 0.0 18.4
p6000-2 88.0 1709.0 0.0 1286.0 0.0 221.0 0.0 200.8 0.0 148.4
p6000-3 2729.0 3064.0 0.0 787.0 0.0 1744.0 0.0 366.6 0.0 671.9
p7000-1 340.0 1139.0 0.0 2138.0 0.0 935.0 0.0 514.7 0.0 903.4
p7000-2 1651.0 4301.0 104.0 8712.0 0.0 1942.0 0.0 589.9 8.0 828.0
p7000-3 0.0 3078.0 0.0 2551.0 0.0 332.0 0.0 34.6 0.0 0.0
Avg. 306.8 1109.6 20.4 2082.9 0.0 457.1 15.5 186.8 0.4 211.7

MaxCut instances, as well as of the state-of-the-art algorithms. Column “SS” shows
the results for the scatter search proposed by Martí, Duarte and Laguna (2009), and
column “CC” shows the results for the CirCut method proposed by Burer, Monteiro
and Zhang (2002). We can see that HHMC improved the results of algorithm PR2
of Wang et al. (2012). Algorithm HHBQP has worse results for MaxCut instances
compared to the other approaches. This is due to the fact that the random instances
have the same structure of Palubeckis and Beasley instances, whose density and scale
of coefficients are quite different from those of the MaxCut instances. Nevertheless,
our results are comparable to the state-of-the-art approaches. Moreover, algorithms
HHMC and HHBQP found new best known values for the MaxCut instances, which
are presented in Table 8.5.
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Table 8.4 – Performance results on the MaxCut instances. We present the average absolute
deviations obtained by the automatically produced algorithms and the state-of-the-art
algorithms over 20 replications.

Inst. PR2 SS CC HHMC HHBQP Inst. PR2 SS CC HHMC HHBQP
G1 0.0 0.0 0.0 0.0 16.2 G28 7.1 11.0 36.0 8.3 10.8
G2 0.0 0.0 3.0 0.0 13.8 G29 13.1 16.0 29.0 14.8 21.6
G3 2.0 0.0 0.0 0.0 10.8 G30 7.2 9.0 27.0 6.5 14.2
G4 0.0 0.0 5.0 0.0 12.8 G31 6.5 18.0 21.0 5.3 12.2
G5 0.0 0.0 4.0 0.0 10.9 G32 5.4 12.0 20.0 8.7 34.6
G6 0.0 13.0 0.0 0.0 5.9 G33 5.9 20.0 22.0 8.7 29.8
G7 0.0 24.0 3.0 0.0 10.2 G34 5.8 20.0 16.0 8.0 31.7
G8 0.0 19.0 2.0 0.0 6.5 G35 13.2 16.0 14.0 15.2 41.5
G9 0.0 140. 6.0 0.0 9.6 G36 18.3 17.0 17.0 17.0 43.5
G10 0.2 7.0 6.0 0.0 10.2 G37 21.1 25.0 23.0 19.0 44.0
G11 0.0 2.0 4.0 0.0 7.6 G38 11.6 1.0 36.0 10.3 39.5
G12 0.0 4.0 4.0 0.0 10.0 G39 15.9 14.0 12.0 11.8 65.5
G13 0.0 4.0 8.0 0.0 14.0 G40 15.7 25.0 12.0 11.2 74.1
G14 1.4 4.0 6.0 1.4 8.1 G41 15.1 18.0 6.0 11.0 74.8
G15 0.7 1.0 1.0 0.1 14.2 G42 11.8 21.0 9.0 10.2 73.1
G16 0.6 7.0 7.0 0.1 13.6 G43 0.1 4.0 4.0 0.0 10.7
G17 0.6 4.0 10.0 0.3 12.7 G44 0.1 2.0 7.0 0.0 8.6
G18 0.0 4.0 14.0 0.0 17.7 G45 0.1 12.0 2.0 0.0 6.6
G19 0.0 3.0 18.0 0.0 19.1 G46 0.2 15.0 4.0 0.0 7.5
G20 0.0 0.0 0.0 0.0 25.9 G47 0.2 8.0 1.0 0.1 9.0
G21 0.0 1.0 0.0 0.0 27.5 G48 0.0 0.0 0.0 0.0 0.0
G22 4.5 13.0 13.0 9.8 20.6 G49 0.0 0.0 0.0 0.0 0.0
G23 10.4 25.0 25.0 9.9 12.0 G50 0.0 0.0 0.0 0.0 5.0
G24 11.7 34.0 23.0 15.1 15.9 G51 1.6 2.0 11.0 1.4 15.6
G25 10.8 19.0 13.0 9.8 14.1 G52 2.6 2.0 18.0 1.1 14.9
G26 13.7 32.0 12.0 11.2 14.3 G53 2.3 4.0 8.0 2.0 14.8
G27 10.1 19.0 31.0 8.8 20.8 G54 4.2 6.0 10.0 1.9 15.7

Avg. 4.7 10.2 10.8 4.4 20.3

8.3 The Test-Assignment Problem

Given a set of desks in a classroom and a set of test variants, the test-
assignment (TA) problem consists in assigning tests to desks, in order to minimize
the likelihood of cheating. Each pair of desks has a known (physical) proximity, and
each pair of test variants has a known similarity, and the likelihood of cheating is
defined as the product of proximity and similarity. Therefore, desks that are close-by
should receive less similar tests. If there are fewer students than desks in a classroom,
one may additionally select a subset of free desks that remain without a test. The
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Table 8.5 – New best known values found for the MaxCut instances. The best known
solutions were found by the automatically produced algorithms.

Instance G25 G26 G27 G28 G30 G31 G38
Previous value 13339 13326 3337 3296 3412 3306 7682

New value 13340 13327 3341 3298 3413 3310 7683

goal is to assign tests to desks minimizing the overall likelihood of cheating, defined
as the sum of the likelihoods for each pair of desks.

The problem can be modeled as an undirected graph, whose vertices are
the desks, and where pairs of desks (below a certain distance) are connected by an
edge, which is weighted by the proximity of the incident desks. Each pair of test
variants has an associated weight that defines their similarity. In this model it is easy
to see that test-assignment generalizes the vertex coloring problem, where vertices
represent the desks and each color represents a test variant. Indeed, for a given
undirected graph G = (V,E) we can set the proximity of all edges to 1, define k
tests corresponding to k colors and set the similarity for identical tests to 1 and for
different tests to 0. Then G admits a k-coloring if and only if there is an assignment
of tests to desks of total likelihood 0. This implies that test-assignment is strongly
NP-Hard, since vertex coloring is (GAREY; JOHNSON, 1977).

The test-assignment problem was introduced by Duives, Lodi and Malaguti
(2013) to improve the assignment of tests at the Engineering Faculty of the University
of Bologna. The authors also have shown NP-hardness of the problem by the
reduction mentioned above. To the best of our knowledge, this currently is the
only published paper on the test-assignment problem. Duives, Lodi and Malaguti
(2013) formulate the problem as a non-convex binary quadratic program. Three
different convex reformulations of that program are then solved with the commercial
solver CPLEX: a standard reformulation, and two reformulations with stronger lower
bounds obtained by solving an auxiliary semi-definite problem to partially and to
optimality.

Duives, Lodi and Malaguti (2013) further propose a tabu search that explores
the space of complete colorings in a neighborhood that selects a vertex and changes
its color greedily to the one that reduces the total likelihood of cheating most. The
initial solution is a random feasible coloring. After changing the color of a vertex
it cannot be changed again during the tabu tenure, to avoid visiting the same
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solution again. Different from a standard tabu search, the neighborhood is greedy
and randomized: in each iteration a random vertex is chosen to change its color
from a fixed percentage of the non-tabu vertices with the highest score, i.e. their
contribution to the objective function. Unoccupied desks are taken into account by
a greedy algorithm, that frees the desks with highest score. The tabu search shows a
good performance in experiments with instances up to 122 desks.

Before showing the reformulation of the test-assignment problem into UBQP,
let us first define it more formally. Let D be the set of desks, T the set of test
variants, and γtu the similarity between tests t, u ∈ T . We assume that only a subset
E ⊆ {{d, e} | d, e ∈ D} of desks are close enough, and have a defined proximity
pde, {d, e} ∈ E. We further assume that s ≤ |D| students will take the exam, and
therefore F = |D| − s desks remain free. Let T+ = T ∪ {0} be an extended set of
tests, where test “0” represents a “nonexistent” test which will be assigned to free
desks. Then the test-assignment problem can be formulated as follows (DUIVES;
LODI; MALAGUTI, 2013):

minimize
∑

{d,e}∈E
pde

∑
t∈T

∑
u∈T

γtuxdtxeu, (8.1)

subject to
∑
t∈T

xdt = 1, d ∈ D, (8.2)

∑
d∈D

xd0 = F, (8.3)

xdt ∈ {0, 1}, d ∈ D, t ∈ T. (8.4)

In this model the binary variable xdt = 1, if test t ∈ T is assigned to desk d ∈

D, and xdt = 0, otherwise. The model has a quadratic objective function (8.1),
which multiplies the proximity of each pair of desks with the similarity between
the assigned tests and represents the total likelihood of cheating that is to be
minimized. Constraint (8.2) makes sure that exactly one test is assigned to each
desk. Constraint (8.3) ensures that the “nonexistent” test is assigned to exactly F
free desks.

Model (8.1 – 8.4) is a linearly-constrained binary quadratic program of the
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form

minimize xtQx,

subject to Ax = b,

x ∈ {0, 1}nm,

by setting Q = (qij) ∈ Rnm×nm with qij = pdeγtu, n = |D|, m = |T |, and a
corresponding choice of A ∈ R(n+1)×nm and b ∈ Rn+1.

Such a linearly-constrained binary quadratic program can be transformed
to an equivalent unconstrained binary quadratic program by penalty methods (see
e.g. Kochenberger et al. (2014)). We relax Ax = b and penalize the deviation from
the equality in the objective function. For a large enough penalty P ∈ R the optimal
solutions of the original and the transformed program (if any) will be the same. The
penalty is given by

P (Ax− b)t(Ax− b) = P (xtAtAx− xtAtb− btAx+ btb)

= Pxt(AtA− 2diag(Atb))x+ Pbtb.

Given this penalty, we can define a new coefficient matrix

Q̂ = Q+ P (AtA− 2diag(Atb)),

and finally rewrite the binary quadratic problem as

minimize xtQ̂x+ Pbtb,

subject to x ∈ {0, 1}nm.

When optimizing, the constant term Pbtb can be omitted. To apply this transfor-
mation to the test-assignment problem, we can choose P = ∑

i,j|qij>0 qij. In this
way, we make sure that the best solution which violates a constraint has a larger
objective value than the worst feasible solution. This reduction allows us to solve
the test-assignment problem using algorithms for the UBQP.
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8.4 Automatic Design for the Test-Assignment Problem

This section presents our experiments on automatically designing heuristic
algorithms for the test-assignment problem, via its reformulation to UBQP. We
use the set of real-world instances proposed by Duives, Lodi and Malaguti (2013).
It contains 36 instances based on four different classrooms ranging from 20 to 79
desks, of which between 0 and 20 were unoccupied, 50 to 250 proximity relations
between neighboring desks, and two to four different tests per exam. Duives, Lodi
and Malaguti (2013) also report results for instances with 122 desks, which are not
available. We randomly selected 12 instances for the automatic design process and
used a budget of 10000 executions. The results of Duives, Lodi and Malaguti (2013)
have been obtained with a time limit of 100 s on a PC with a Pentium IV at 3.4 GHz
and 2 GB main memory running Linux. For a fair comparison, we use a time limit
of 40 s, to compensate for the relative performance of the two machines. We use
this same time limit for the automatic design process and to evaluate the produced
algorithms.

8.4.1 Producing Specialized Algorithms for the Test-Assignment Problem

We repeated the automatic design process two times, and AutoBQP produced
two very similar hybrid heuristic algorithms HHTA1 and HHTA2, with slightly
different strategies and parameter values. Algorithm 5 shows the algorithmic structure
of both heuristics, which uses the same repeated elite recombination method of the
HHBQP algorithm presented above. While there are novel solutions in the elite set, a
recombination by path relinking followed by a search step is performed for each pair
of elite solutions. The first difference is that HHBQP uses a best neighbor strategy
in the path relinking, while HHTA1 and HHTA2 use a first improvement strategy.
If no improving variable is found, a random variable which leads to the smallest
increase of the objective function value is chosen. Besides that, HHTA1 and HHTA2

apply a tabu search to improve the resulting solutions from the path relinking step
(instead of an iterated tabu search). The tabu search is applied in lines 17 to 20 of
Algorithm 5 and uses a best improvement strategy to select non-tabu variables to
flip.

The values for the input parameters of the components of algorithms HHTA1
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Algorithm 5: Hybrid heuristics for the test-assignment (HHTAX).
1 while stopping criterion not satisfied do
2 E ← create an elite set of size e
3 while E has any novel solution do
4 foreach (s, t) ∈ E × E | s 6= t do
5 V ← variables v | s[v] 6= t[v]
6 dmin ← γ × |V |
7 dmax ← |V | − dmin
8 d← 0
9 s∗ ← s

10 while V 6= ∅ do
11 v ← select the first improving variable with round-robin
12 Flip s[v] and remove v from V
13 d← d+ 1
14 if s is better than s∗ then
15 if dmin ≤ d ≤ dmax then
16 s∗ ← s

17 while max. iterations/stagnation not reached do
18 Select the best improving non-tabu variable v
19 Update tabu list
20 Flip s[v] and set v tabu
21 if s is better than any solution of E then
22 Replace the worst solution of E by s

23 return best solution of E

and HHTA2, which are also set by the automatic design approach, are presented
in Table 8.6. Besides the parameter values, the only difference between the two
algorithms lies in the choice of the improving variable during the recombination of
two solutions in line 11 of Algorithm 5: HHTA1 chooses the first improving variable in
a round-robin manner, i.e. it starts from the variable chosen in the previous iteration,
while HHTA2 chooses the first improving variable in the input variable order, always
starting from the first variable. These small differences suggest that the repeated
recombination followed by a tabu search is a good strategy and AutoBQP can reliably
identify it.

8.4.2 Evaluating the Algorithms on the Test-Assignment Instances

In this section we evaluate algorithms HHTA1 and HHTA2 on the complete
set of instances and compare it to the tabu search proposed by Duives, Lodi and
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Table 8.6 – Values of the input parameters of HHTA1 and HHTA2. These values were set
by the automatic design approach.

Parameter t td s sm i iv e γ

Value HHTA1 t3 1 s2 81 i1 4204 20 0.32
Value HHTA2 t5 – s2 1 i2 – 20 0.22

Malaguti (2013). The results are presented in Table 8.7. Each instance is identified
by the total number of desks, the number of unoccupied desks, and the number
of different tests in the exam. For each instance we report the average absolute
deviation (a. d.) and the average relative deviation (r. d.) from the best known value
b (defined as v/b − 1 for an objective function value v). We show results for the
tabu search of Duives, Lodi and Malaguti (2013) (TS) and algorithms HHTA1 and
HHTA2 over 20 replications with different seeds. The best relative deviations for each
instance are highlighted in bold. Negative relative deviations indicate improvements
over the current best known values. As mentioned above, the instances which have
been used for the automatic design process are marked with an asterisk.

We can see that HHTA2 leads to the best overall results, with an average
relative deviation of 1.09%, followed by HHTA1 with 1.33% and the tabu search with
2.90%. The newly found algorithms have a similar performance, and are significantly
better than the existing tabu search, in particular on the large instances where the
previous best solutions can be improved. The quality of the new best solutions found
are presented in Table 8.8. In these large instances, HHTA1 and HHTA2 show a
complementary performance, suggesting that different strategies for a small or a
large number of unoccupied desks may be helpful. Both heuristics are consistently
better than the tabu search on the majority of the instances, with HHTA1 finding a
worse solution in only 6 and HHTA2 in only 3 cases. In two instances TS found the
best solutions.

The few instances where the tabu search has a slight advantage over HHTA1 or
HHTA2 have 20 unoccupied desks (with the exception of the instance with 47 desks,
10 of them unoccupied, and 4 tests). This can be explained by the problem specific
representation used by Duives, Lodi and Malaguti (2013) which ignores unoccupied
desks, and greedily removes exams from desks on evaluation, which simplifies the
search space and the algorithm. Since we reduce the test-assignment to the UBQP,
we do not use problem-specific components. The fact that we penalize violated
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Table 8.7 – Detailed performance results on the test-assignment instances. We present the
average absolute and relative deviations obtained by the automatically produced algorithms
and the state-of-the-art algorithm over 20 replications. The best relative deviations for
each instance are highlighted in bold.

Instance TS HHTA1 HHTA2

Desks
Total Empty Tests Best known a. d. r. d. [%] a. d. r. d. [%] a. d. r. d. [%]

20 0 2 20.90 0.00 0.00 0.00 0.00 0.00 0.00
20 5 2 * 7.95 0.00 0.00 0.00 0.00 0.00 0.00
20 10 2 1.85 0.00 0.00 0.00 0.00 0.00 0.00
20 0 3 15.15 0.20 1.32 0.00 0.00 0.00 0.00
20 5 3 5.58 0.01 0.18 0.00 0.00 0.00 0.01
20 10 3 * 1.22 0.00 0.00 0.00 0.00 0.00 0.00
20 0 4 11.95 0.15 1.26 0.00 0.00 0.00 0.00
20 5 4 3.98 0.07 1.76 0.00 0.13 0.00 0.00
20 10 4 * 0.93 0.00 0.00 0.00 0.00 0.00 0.00
47 0 2 72.60 1.10 1.52 0.00 0.00 0.00 0.00
47 10 2 35.45 0.15 0.42 0.00 0.00 0.00 0.00
47 20 2 * 12.65 0.15 1.19 0.55 4.35 0.15 1.19
47 0 3 53.72 1.73 3.22 0.00 0.00 0.00 0.00
47 10 3 * 24.84 0.45 1.81 0.23 0.94 0.20 0.80
47 20 3 * 8.52 0.16 1.88 0.43 5.05 0.10 1.17
47 0 4 43.88 0.72 1.64 -0.05 -0.11 0.20 0.46
47 10 4 19.05 0.15 0.79 0.20 1.07 0.06 0.32
47 20 4 6.38 0.02 0.31 0.26 4.14 0.47 7.30
60 0 2 * 74.05 2.25 3.04 0.00 0.00 0.05 0.07
60 10 2 43.00 1.70 3.95 0.20 0.47 0.20 0.47
60 20 2 * 20.35 1.85 9.09 0.55 2.70 0.55 2.70
60 0 3 * 54.03 1.11 2.05 0.00 0.00 0.00 0.00
60 10 3 29.95 1.36 4.54 0.84 2.79 0.56 1.88
60 20 3 14.11 0.82 5.81 0.56 3.97 0.98 6.93
60 0 4 42.93 1.52 3.54 0.67 1.56 0.79 1.84
60 10 4 23.18 1.15 4.96 0.05 0.22 0.25 1.08
60 20 4 10.70 0.53 4.95 1.12 10.46 0.82 7.62
79 0 2 * 109.20 2.43 2.23 0.00 0.00 0.10 0.09
79 10 2 71.35 0.73 1.02 0.56 0.78 0.30 0.42
79 20 2 43.33 0.77 1.78 0.77 1.78 0.60 1.38
79 0 3 80.83 3.37 4.17 -0.71 -0.88 -0.68 -0.84
79 10 3 * 50.26 2.24 4.46 0.53 1.05 -0.26 -0.51
79 20 3 29.87 1.07 3.58 0.81 2.71 -0.04 -0.13
79 0 4 64.40 2.93 4.55 -0.19 -0.29 -0.04 -0.06
79 10 4 38.65 1.78 4.61 -0.22 -0.56 -0.07 -0.17
79 20 4 * 21.94 1.19 5.42 1.25 5.71 1.14 5.19

Averages 32.46 0.94 2.90 0.23 1.33 0.18 1.09
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Table 8.8 – New best known values found for the test-assignment instances. The best
known solutions were found by the automatically produced algorithms.

Instance Solution values
Desks

Total Empty Tests Previous value New value
Algorithm HHTA1

47 10 3 24.84 24.64
47 0 4 43.88 43.83
47 10 4 19.05 19.03
79 0 3 80.83 80.12
79 10 3 50.26 50.01
79 0 4 64.40 64.10
79 10 4 38.65 38.00

Algorithm HHTA2

47 10 4 19.05 18.93
79 0 3 80.83 80.03
79 10 3 50.26 49.71
79 20 3 29.87 29.83
79 0 4 64.40 64.33
79 10 4 38.65 38.15

constraints in the objective function generates a more irregular search space, with
new local optima. For example, to go from a feasible solution to another, a constraint
must be violated and, consequently, the quality of the intermediate solutions will be
worse. The algorithm must handle this new search landscape.

Finally, we have evaluated the effective contribution of AutoBQP in finding
good heuristic algorithms. To this end, we generated ten random hybrid heuristics
from the grammar and evaluated them on the test-assignment instances under the
same conditions. We found that the random heuristics have an average relative
deviation of 46.5% with a standard deviation of 31.1%. This shows that the search
space of algorithms contains heuristics of strongly varying quality and that the
automatic algorithm design approach is effective in finding heuristics that perform
well.

8.5 Discussion

The experimental results described in this chapter show the potential of the
proposed AutoBQP solver in automatically designing heuristic algorithms for binary
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problems. First, AutoBQP replaces the manual, laborious and often biased search for
good heuristic algorithms by an automatic algorithm design approach. It requires
only a problem description, a set of training instances and the configuration setup,
producing heuristic algorithms automatically from components. Second, AutoBQP
handles not only one problem, but a class of binary optimization problems. This is
due to the algorithm components based on UBQP, which can be used to solve a wide
range of problems via reformulation. Lastly, we show the flexibility of the proposed
approach, which combines components from different approaches and produces hybrid
and high-performing heuristic algorithms.

In addition, this research also contributes to different problem domains.
AutoBQP produced new state-of-the-art algorithms for the UBQP, MaxCut and
test-assignment problems, which even found new better solutions for several MaxCut
and test-assignment instances. We made HHPAL, HHMC, HHBQP and HHTAX

algorithms available online (see Souza and Ritt (2018f, 2018e, 2018d, 2018g))1.
Appendix A gives more information about the artifacts produced from this research.

1In the following, we give links to the repositories with implementations of the algorithms
produced in this chapter: HHPAL (https://github.com/souzamarcelo/hhpal); HHMC (https://
github.com/souzamarcelo/hhmc); HHBQP (https://github.com/souzamarcelo/hhbqp); and HHTA
(https://github.com/souzamarcelo/hhta).

https://github.com/souzamarcelo/hhpal
https://github.com/souzamarcelo/hhmc
https://github.com/souzamarcelo/hhmc
https://github.com/souzamarcelo/hhbqp
https://github.com/souzamarcelo/hhta
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Part IV

Conclusions
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9 CONCLUDING REMARKS

We shall not cease from exploration, and the end of
all our exploring will be to arrive where we started
and know the place for the first time.

— T.S. Eliot

This thesis presents a comprehensive study on automatic algorithm config-
uration. After formalizing the algorithm configuration problem and reviewing the
corresponding literature and solving approaches, we proposed a set of methods to
increase efficiency, improve quality, and better understand the automatic configura-
tion of algorithms. Besides that, we applied such methods to automatically design
heuristic algorithms for binary optimization. In this chapter we discuss the main
results and contributions of our research. Then, we present some open challenges in
automatic algorithm configuration and give potential avenues for future research.

9.1 Configuring Optimization Algorithms Faster

We introduced a set of capping methods for the automatic configuration of
optimization algorithms (Chapter 4). They explore the performance observed in
previous executions to determine a performance envelope, which is used to identify
unpromising executions and terminate them early. We proposed different approaches
to represent the performance of an execution, e.g. using the observed performance
profile or the area under such profile. We defined two general strategies for selecting
previous executions: an elitist approach that consider only the best configurations
found so far; and an adaptive approach that consider all previous executions and
determine the performance envelope based on a given aggressiveness parameter. For
the elitist methods, we proposed functions to aggregate the performance of previous
executions into the envelope, e.g. worst, best and model-based aggregation functions.

We presented an extensive experimental evaluation of the proposed capping
methods on six configuration scenarios with diverse characteristics. We observed
that they consistently reduce the configuration effort, with reductions ranging from
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about 5% to 78%, without loss of quality. The capping methods were also evaluated
in scenarios with a budget defined as a total configuration time. In such scenarios,
the time saved by terminating early unpromising executions is used to further
explore the configuration space. The capping methods proved to be useful under
these conditions, finding better configurations in comparison to using no capping
at all. In conclusion, we believe the proposed capping methods contribute to the
configuration of optimization algorithms, since they: (i) speed up the configuration
process; (ii) allow scaling it to larger configuration spaces; and (iii) help finding
better configurations in scenarios with a total configuration time budget.

9.2 Producing Better Configurations

We proposed new and improved parameter regression models for algorithm
configuration (Chapter 5). Each parameter is associated with a model that sets its
value according to the size of the instance being solved. Instead of searching for good
parameter values, the configurator calibrates the associated model. By considering
the instance size as the single problem-independent feature, we made the proposed
models simple and easily applicable to any problem domain, without the need of
feature engineering or the often computationally expensive feature computation.
Specifically, we proposed a simple yet effective linear model to map the instance size
to optimal parameter values. For cases when this relation is nonlinear, we proposed
piecewise and log-log linear models.

We evaluated the parameter regression models on four configuration scenarios.
Both linear and nonlinear approaches were able to approximate well the relation
between instance size and optimal parameter values, even using low budgets with
only hundreds of allowed executions. As a consequence, we observed good perfor-
mance gains in comparison to the traditional configuration approach using constant
parameter values. In summary, the proposed regression models improve the quality
of the algorithm configuration without increasing complexity much. Although the
transformation of the configuration space increases the number of parameters, we
observed no effective impact in the quality of the configurations produced, since they
were better than constant configurations even using low budgets.
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9.3 Understanding the Configuration Process

We provided a visual tool to analyze the configuration process using irace
(Chapter 6). This tool processes and interprets the configuration data, producing
visualizations that ease the analysis and understanding of the configuration process.
They show each algorithm evaluation with the associated instance and configuration,
as well as median performances of regular and elite configurations at each iteration,
allowing to visualize the evolution of the configuration process. We also introduced
visualizations for the performance of the produced configurations on the set of test
instances.

We presented a set of case studies showing how the visualization tool can
be used to analyze irace runs and identify flaws in the configuration scenario. In
particular, we identified instances that could be removed from the training set,
unnecessarily large budgets that could be decreased, and an overtuning effect caused
by using an unrepresentative set of training instances. We showed that a proper
analysis and understanding of the configuration process may help the design and
improvement of configuration scenarios, potentially leading to better results. Finally,
the proposed visualization tool may help researchers working on improving irace, since
it allows to analyze the behavior and compare irace runs under different conditions.

9.4 Solving Binary Optimization Problems Automatically

We presented a component-wise solver for binary optimization problems based
on automatic algorithm design techniques (Chapter 7). This solver implements an
algorithm framework of heuristic components, which allows instantiating (potentially
hybrid) algorithms by selecting and combining such components. The solver repre-
sents the design space of components using a grammar, which is mapped to a set of
parameters. Then, it uses automatic configuration methods to explore this design
space and search for the best algorithm for a given problem. Since we used heuristic
components for the unconstrained binary quadratic programming (UBQP), we can
solve many optimization problems that can be reduced to it.

We applied the proposed solver to automatically produce heuristic algorithms
for UBQP, maximum cut, and the test-assignment problem (Chapter 8). The resulting
algorithms presented better performance in comparison to state-of-the-art approaches,



160

and found new best solutions for several problem instances. Both algorithm framework
and the proposed component-wise solver are useful for researchers and practitioners
developing new heuristic solutions for binary optimization. The solver, in particular,
proved to be effective in producing competitive algorithms for new problems without
the need of specialized knowledge of the underlying heuristic components or the
automatic configuration techniques.

9.5 Further Contributions

In addition to the discussion above, this research gives side contributions to
the automatic design and configuration of algorithms. We demonstrated the practical
relevance of these approaches, since we evaluated them on several configuration
scenarios and showed substantial improvements in algorithm performance. We also
provided guidelines on applying automatic design methods to produce heuristic
algorithms from components, which can be used to apply similar approaches to other
problem domains. We produced and made available a set of high-quality algorithms
for different problems using the proposed component-wise solver. Finally, we provided
a comprehensive set of (mostly new) algorithm configuration scenarios that can be
useful either to adapting the underlying target algorithms to new problem domains,
or testing and comparing different algorithm configuration techniques. All artifacts
arising from this research are publicly available, including source code for all methods,
tools and algorithms, configuration scenarios and supplementary material for each
chapter. Appendix A gives all information about such artifacts.

9.6 Extending this Research

In this section, we present the directions for future work suggested at the end
of each chapter, discussing how the methods proposed in this thesis can be extended
and improved.

Additional applications of capping methods. Although the optimization sce-
narios were the primary focus of the proposed capping methods, a promising contin-
uation of this research involves their application for the automatic configuration of
algorithms in other domains. In fact, the proposed capping methods are suitable to
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any scenario in which the progress of the algorithm execution can be monitored. One
interesting possibility is the configuration of decision algorithms, in which we try to
minimize their running time. If we can measure how close a decision algorithm is to
its termination (e.g. the number of satisfied clauses in boolean satisfiability), we can
build a performance profile and, therefore, apply the proposed optimization-based
capping. We could also combine both decision- and optimization-based capping
methods in configuring decision algorithms, discarding configurations before exhaust-
ing the cut-off time whenever the observed performance profile is unsatisfactory.
Finally, another potential application is to configure computer simulation models
(e.g. Ferrer, López-Ibáñez and Alba (2019), Cintrano et al. (2021)). In this domain,
evaluations are computationally expensive, and capping methods can help to either
reduce the configuration time or improve its quality when using time budgets.

Extending parameter regression models. In this research, we proposed param-
eter regression models that proved to be useful, improving the automatic configuration
of algorithms. There is still plenty of room for improvement. A promising avenue is
exploring more sophisticated regression approaches, like (piecewise) polynomial or
Gaussian Process (RASMUSSEN, 2004) models, which can represent more complex
relations between instance size and optimal parameter values. Besides that, the
proposed approaches are suitable only for numerical parameters, thus an important
improvement would be including regression models for binary, ordinal and categorical
parameters. To accomplish this, classification methods must be explored and a promis-
ing candidate is using logistic regression models (DREISEITL; OHNO-MACHADO,
2002; HASTIE; TIBSHIRANI; FRIEDMAN, 2009). Another interesting extension
of these methods is a mixed two-phase configuration approach. In a first phase,
parameters are configured using constant models to identify good overall values.
After that, the non-constant regression models are explored and initial candidates
are generated by applying perturbations to the constant configurations already found.
We believe this kind of two-phase approach can be useful, since it takes advantage of a
simpler first step to identify good configurations for the whole set of instances, before
increasing the number of parameters to explore more complex regression models to
take into account the instance size. Therefore, good configurations are produced even
for scenarios in which non-constant regression models are not beneficial (e.g. when
the instance size has little influence on optimal parameter values).
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Improving the visual analyses. Additional visualizations can be helpful to ana-
lyze further details about the configuration process. For example, the comparison
between different irace runs can be simplified by showing side-by-side visualizations
of them, highlighting their main differences. The set of initial configurations or
the instances used for evaluating them change the trajectory of the configuration
space exploration. This may lead to substantial variation in the quality of final
configurations. Visualizing the particularities of different irace runs may help to
understand and explain the observed performance of the produced configurations.
Besides that, such comparative visualizations may help to analyze modified ver-
sions of irace (i.e. for those involved in the development of techniques for algorithm
configuration). Finally, it would be interesting to visualize the trajectory of the
configuration space exploration, i.e. how the parameter values or the associated
sampling models change over the iterations.

Extending the component-wise solver. The experimental evaluation of the pro-
posed component-wise solver demonstrated its capabilities in automatically designing
competitive heuristic algorithms for different problems. The main direction to
extend the solver is developing and including new components to the algorithm
framework, leading to new possibilities in terms of algorithm designs and poten-
tially producing better-performing algorithms. Besides, it can be integrated to
existing heuristic frameworks that allow representing and managing solutions using
binary strings, e.g. ParadisEO (CAHON; MELAB; TALBI, 2004; DRÉO et al.,
2021) or DEAP (FORTIN et al., 2012). Such a task is relatively simple, since the
grammar-based methodology we use is quite flexible to accommodate new components.
However, increasing the size of the design space may require larger configuration
budgets to explore it adequately. Finally, the potential of the component-wise solver
can be further explored by applying it to produce algorithms for different problem
domains.

9.7 Open Challenges

Beyond the ideas discussed above, there is much work to be done related
to improving and spreading the use of automatic algorithm configuration. There
are a plenty of exciting research opportunities and open problems to be explored,
whose solutions could substantially increase the capabilities of existing configuration
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methods, or even originate completely new ones.
The first challenge we highlight here is selecting high-quality training instances

to evaluate configurations. As discussed in Chapter 6, too easy and too hard instances
may not contribute to the configuration process, since different configurations perform
the same to solve them, and thus cannot be effectively compared. Moreover, an
instance may be too hard at the beginning of the configuration process, when the
configurations did not evolve yet, but become easier later (and even too easy). Thus,
we need strategies to smartly select instances that maximize the discrimination power
at each point of the configuration process, i.e. instances that help to compare different
configurations and identify the best one. A possible way to accomplish that is using
a form of curriculum learning (BENGIO et al., 2009), an approach commonly used
to select instances for training machine learning models.

A second challenge is developing strategies for dealing with stagnation in the
context of algorithm configuration. A seen in Chapter 6, visualizing the configuration
process after completion helps to identify stagnation. Detecting it automatically
while configuring (and as soon as possible) is still a challenge. Once identified, the
configurator must either restart the configuration process, or apply strategies to
increase the search diversification. We believe that approaches from the literature
of evolutionary computation can be explored for both detecting stagnation and
balancing the trade-off between exploration and exploitation. By dealing with
stagnation, we avoid the need of manual restarts (e.g. Pagnozzi and Stützle (2019)),
or many parallel runs of the configuration process (called standard protocol in some
papers, e.g. Styles, Hoos and Müller (2012), Hutter, Hoos and Leyton-Brown (2012),
Pushak and Hoos (2020)).

Additional challenges related to automatic algorithm configuration involve the
development of strategies to: (i) incorporate information about the target algorithm
in the configuration process (e.g. by means of features) to guide the search for
good configurations; (ii) improve the explainability of the outcome; (iii) scale the
automatic methods to large configuration scenarios; and (iv) use the performance
data generated by the configuration process to analyze the target algorithm and
obtain insights to improve it. We hope that the research described in this thesis and
the topics discussed here encourage other researchers to further develop automatic
algorithm configuration methods.
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APPENDIX A — ARTIFACTS OF THIS RESEARCH

In this appendix, we present the artifacts arising from our research. We
enumerate the scientific publications, talks and presentations in workshops, doctoral
consortia and Ph.D. schools, software implementations of the proposed methods, and
supplementary data for most of our experiments.

A.1 Contributions to Literature

The work herein described has appeared in a number of articles listed below.
The results presented in Chapter 4 regarding the capping methods for optimization
scenarios were published in Computers & Operations Research (1). A research article
about the proposed regression models for algorithm configuration, described in
Chapter 5, is under review and should be published soon (2). The visualization tool
described in Chapter 6 was published in Operations Research Perspectives (3). The
component-wise solver to binary optimization, described and evaluated in Chapters 7
and 8, respectively, originated the following publications in selected conferences:
an initial experimental study on applying automatic design of algorithms for the
unconstrained binary quadratic programming (4); a detailed description of the
methodology used in the solver and its experimental evaluation on the UBQP and
maximum cut problems (5); and the evaluation of the solver on the test-assignment
problem (6).1

1. Marcelo de Souza, Marcus Ritt and Manuel López-Ibáñez. Capping methods
for the automatic configuration of optimization algorithms. Comput-
ers & Operations Research, v. 139, p. 1–15, 2022.
[Souza, Ritt and López-Ibáñez (2022); DOI: 10.1016/j.cor.2021.105615]

2. Marcelo de Souza and Marcus Ritt. Improved regression models for al-
gorithm configuration. Article under review, title might change, 2022.
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A.3 Software

We provide open-source implementations for all methods and algorithms
proposed in this work, together with instructions and examples of use. The capping
methods of Chapter 4 are implemented in the capopt program, which can be used
within irace to speed-up the configuration process (1). A set of utility functions to
use the regression models proposed in Chapter 5 is provided in (2). The ILSBQP
algorithm we use as a test case for those models is available in (3). The acviz
visualization tool described in Chapter 6 is available in (4). The component-wise
solver described and evaluated in Chapters 7 and 8 was dubbed AutoBQP and is
available in (5). It can be used either to produce algorithms automatically for a
given binary problem, or to reproduce the algorithms presented in the experimental

2This publication presents a preliminary study on using random forest models to estimate
parameter importance in algorithm configuration scenarios. Since it is an ongoing research, it was
left out of this thesis.
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evaluation of Chapter 8. To ease access and reproducibility, we also make the
implementations of these algorithms available separately: HHPAL (6), HHMC (7),
HHBQP (8) and HHTA (9).
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A.4 Supplementary Material

Finally, we provide supplementary material for Chapters 4, 5 and 6 (items 1,
2 and 3 below, respectively). We include the source code of the tested algorithms, all
data, instructions and scripts to reproduce the experiments, and additional details
for the results. We also provide all files for the configuration scenarios we used
throughout this thesis (4), including algorithm implementations, execution scripts,
problem instances, parameter descriptions and the configurator setup.
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for the automatic configuration of optimization algorithms – supple-
mentary material, 2021.
[Souza, Ritt and López-Ibáñez (2021)]
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4. Marcelo de Souza and Marcus Ritt. Algorithm configuration scenarios,
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[Souza and Ritt (2022a); URL: https://github.com/souzamarcelo/ac-scenarios]
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APPENDIX B — RESUMO EXPANDIDO

CONFIGURAÇÃO AUTOMÁTICA DE ALGORITMOS:
MÉTODOS E APLICAÇÕES

Muitos algoritmos possuem parâmetros de entrada, que permitem aos usuários
adaptar seu comportamento a diferentes domínios de problema. O conjunto de valores
para os parâmetros de um algoritmo, chamado de configuração, está diretamente
relacionado ao seu desempenho. Neste contexto, dado um conjunto de instâncias
de treinamento, a configuração de algoritmos busca pelas melhores configurações,
i.e. aquelas que otimizam o desempenho do algoritmo nessas instâncias. Esse processo
envolve testar várias configurações em diferentes instâncias, tornando-o custoso e
exigindo um esforço considerável do pesquisador.

Diante desse contexto, diversas abordagens foram propostas nos últimos anos
com o objetivo de automatizar o processo de configuração de algoritmos. Den-
tre elas se destacam configuradores baseados em busca heurística (HUTTER et
al., 2009b; ANSÓTEGUI; SELLMANN; TIERNEY, 2009), otimização baseada
em modelos (HUTTER; HOOS; LEYTON-BROWN, 2011) e algoritmos de rac-
ing (LÓPEZ-IBÁÑEZ et al., 2016). Além de reduzir o esforço humano envolvido no
processo de configuração, esses métodos minimizam potenciais vieses de abordagens
manuais, facilitam a adaptação de algoritmos a diferentes problemas, e permitem
avaliar e comparar algoritmos de forma mais adequada. Além disso, esses méto-
dos se mostraram úteis na melhoria do desempenho de algoritmos em diferentes
domínios, incluindo solvers matemáticos (HUTTER; HOOS; LEYTON-BROWN,
2010; LÓPEZ-IBÁÑEZ; STÜTZLE, 2014), compiladores (PÉREZ CÁCERES et al.,
2017), algoritmos de decisão (HOOS; HUTTER; LEYTON-BROWN, 2021) e algorit-
mos de otimização (YARIMCAM et al., 2014; PÉREZ CÁCERES; LÓPEZ-IBÁÑEZ;
STÜTZLE, 2015).

Este trabalho apresenta um estudo abrangente sobre configuração automática
de algoritmos, cujas contribuições se baseiam em quatro objetivos: (i) aumentar a
eficiência da configuração automática de algoritmos de otimização; (ii) melhorar a
qualidade das configurações produzidas; (iii) facilitar a análise e o entendimento
do processo de configuração; e (iv) aplicar os métodos de configuração automática
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na construção de solvers heurísticos para classes de problemas. As seções a seguir
apresentam os métodos e ferramentas propostos neste trabalho e os principais
resultados alcançados.

B.1 Métodos de Poda para Cenários de Otimização

Ao configurar algoritmos visando a minimização do seu tempo de execução, a
maioria dos configuradores da literatura implementam métodos de poda, os quais
visam evitar o gasto de tempo na avaliação de configurações não promissoras (HUT-
TER et al., 2009b; HUTTER; HOOS; LEYTON-BROWN, 2011; PÉREZ CÁCERES
et al., 2017a; PUSHAK; HOOS, 2020). Esses métodos determinam um limite de
tempo de execução com base em execuções anteriores da melhor configuração encon-
trada até o momento, e então terminam antecipadamente execuções que excedam
esse limite. Essas abordagens não são adequadas para a configuração de algoritmos
de otimização, uma vez que nesse caso o objetivo consiste em minimizar o custo da
melhor solução encontrada após executar o algoritmo com um critério de terminação
predeterminado. Os configuradores atuais, portanto, não implementam nenhum
método de poda para cenários de otimização, o que torna o processo de configuração
desses algoritmos mais custoso e em alguns casos inviável.

Este trabalho preenche essa lacuna, propondo um conjunto de métodos de
poda capaz de reduzir o tempo de configuração de algoritmos de otimização. A
Figura B.1 apresenta a ideia geral desses métodos. Cada execução é representada pelo
seu perfil de desempenho, i.e. o custo da melhor solução encontrada ao longo do tempo
de execução (ou ao longo de qualquer outra medida de esforço computacional, como o
número de iterações). Antes de iniciar uma nova execução, os desempenhos observados
em execuções anteriores são agregados em um envelope de desempenho, o qual é usado
para avaliar a qualidade da nova execução. Caso ela não satisfaça o desempenho
mínimo definido pelo envelope, a execução é interrompida antecipadamente. São
propostas duas abordagens gerais para a construção dos envelopes de desempenho.
As abordagens baseadas em perfil (ilustradas na parte superior direita da Figura B.1)
definem esse envelope como um perfil de desempenho agregado. Já as abordagens
baseadas em área (ilustradas na parte inferior direita da Figura B.1) consideram a
área usada pelos perfis de desempenho das execuções anteriores, agregando-as em um
valor máximo de área. Se em algum momento a nova execução violar as condições
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Figura B.1 – Visão geral dos métodos de poda.

definidas pelo envelope, i.e. apresentar soluções piores que o esperado ou uma área
maior que o limite por ele definido, a execução é interrompida.

Foram propostas diferentes funções de agregação, tanto para perfis de desem-
penho quanto para os valores correspondentes de área, dando origem a 18 métodos
de poda distintos. Esses métodos foram avaliados em seis cenários de otimização,
comparando-os com a configuração sem uso de poda. Ao usar métodos de poda,
observou-se uma redução do esforço de configuração entre 5% e 78%, ao mesmo
tempo que mantida a qualidade das configurações produzidas. Também foi avaliada
a contribuição dos métodos de poda em cenários onde o esforço de configuração é
definido em termos do tempo máximo de execução. Nestes casos, o tempo econ-
omizado ao podar execuções não promissoras é usado para uma exploração mais
abrangente do espaço de configurações. Como consequência, o uso de métodos de
poda permitiu encontrar configurações de maior qualidade em comparação àquelas
obtidas nas mesmas condições sem o uso de poda. O Capítulo 4 apresenta em detalhes
os métodos de poda propostos, bem como sua avaliação experimental completa.

B.2 Modelos Melhorados para Regressão de Parâmetros

Uma característica dos métodos de configuração estudados neste trabalho é que
eles determinam configurações fixas para todo o conjunto de instâncias de treinamento.
Ou seja, os parâmetros assumem valores constantes na solução de diferentes instâncias,
não importa as variadas características que elas apresentem. É conhecido, no
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entanto, que bons valores de parâmetros podem variar em função de características
das instâncias (MUJA; LOWE, 2009; SMITH-MILES et al., 2014; EL YAFRANI;
AHIOD, 2018), incluindo características específicas do problema, e.g. estatísticas
sobre cláusulas e variáveis em problemas de satisfatibilidade booleana (ANSÓTEGUI
et al., 2016), ou independentes de problema, e.g. tamanho da instância (BÖTTCHER;
DOERR; NEUMANN, 2010) ou propriedades da paisagem de solução (REEVES, 1999;
MERZ, 2004; SCHIAVINOTTO; STÜTZLE, 2007; WATSON, 2010; MERSMANN
et al., 2011; FRANZIN; STÜTZLE, 2020). Sob uma perspectiva de aprendizagem
de máquina, abordagens de configuração de algoritmos tradicionais correspondem a
uma regressão constante no espaço de parâmetros (BENGIO; LODI; PROUVOST,
2021).

Este trabalho explora modelos adicionais de regressão para a configuração de
algoritmos. Os parâmetros são representados por modelos que definem seus valores
em função do tamanho da instância. Essa característica de instância é independente
de problema e obtida sem a necessidade de processamento computacional custoso, o
que torna o método simples e pronto para ser usado na configuração de algoritmos
para qualquer domínio de problema. Inicialmente, o trabalho explora modelos lineares
que, apesar de simples, são capazes de modelar a relação entre tamanho de instância
e valores ótimos de parâmetros para vários cenários de configuração. Nos casos em
que essa relação é não linear, este trabalho propõe um modelo linear em trechos
(ou modelo piecewise linear) baseado em múltiplos pontos de apoio. Além disso, o
trabalho propõe um modelo log-log linear que aplica uma transformação logarítmica
aos espaços de parâmetros e tamanhos de instância, e então aplica o modelo linear
básico ao cenário transformado. Ambos modelos piecewise e log-log linear são capazes
de representar relações não lineares entre o tamanho da instância e valores ótimos
de parâmetros.

A Figura B.2 apresenta um cenário artificial com a resposta do valor ótimo de
um parâmetro p em função de diferentes tamanhos de instância n. Para cada modelo,
é apresentada uma aproximação que minimiza o erro quadrático médio (EQM). É
possível verificar que o modelo constante (a) não representa de maneira adequada a
relação entre tamanho da instância e valor ótimo do parâmetro, obtendo um EQM
de 0.074. A representação é melhorada ao usar o modelo linear (b, com um EQM
de 0.016) porém, dada a não linearidade dessa relação, os modelos piecewise (c) e
log-log linear (d) apresentam uma melhor aproximação (EQMs de 0.001 e 0.006,
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Figura B.2 – Comparação dos modelos de regressão em um cenário artificial não-linear.

respectivamente).
Esses modelos foram avaliados em quatro cenários reais. Para cada cenário,

foi verificada a relação entre o tamanho da instância e os melhores valores dos
parâmetros. Em seguida, os algoritmos foram configurados usando a abordagem
tradicional (constante) e os modelos de regressão propostos. Finalmente, a qualidade
das configurações produzidas foi avaliada em instâncias de teste. Em geral, o modelo
linear foi capaz de aproximar de maneira satisfatória a relação entre tamanho da
instância e valor ótimo dos parâmetros. Em um dos cenários, onde essa relação
é não linear, os modelos piecewise e log-log linear foram capazes de melhorar a
aproximação. Como consequência, os algoritmos sob configurações não constantes
mostraram desempenho superior, em comparação ao uso de configurações constantes.
O Capítulo 5 descreve os modelos propostos e apresenta sua avaliação experimental
completa.

B.3 Análise Visual do Processo de Configuração

Diante da facilidade de uso de métodos de configuração automática de algo-
ritmos, é possível e até mesmo comum sua aplicação como métodos de caixa-preta,
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i.e. sem a necessidade de uma análise e entendimento aprofundados do seu funciona-
mento. Por outro lado, é importante analisar as execuções do configurador usado e
entender seu funcionamento, de modo a obter os melhores resultados do processo
de configuração. Os dados gerados durante a execução do configurador fornecem
informações úteis sobre o desempenho do algoritmo sob diferentes configurações e
sobre as decisões tomadas durante o processo de configuração. No entanto, analisar
esses dados (usualmente encontrados em grandes quantidades) é uma tarefa desafi-
adora, além de exigir conhecimento sobre o funcionamento interno do configurador,
e.g. como ele seleciona configurações para serem avaliadas. Diante disso, este tra-
balho propõe uma ferramenta que processa, interpreta e fornece visualizações do
processo de configuração de algoritmos, com o objetivo de simplificar sua análise e
entendimento.

A ferramenta desenvolvida, chamada acviz, fornece duas visualizações prin-
cipais com base em execuções do configurador irace. A primeira delas apresenta o
processo de configuração e sua evolução, mostrando cada avaliação do algoritmo,
junto da configuração e instância associadas e o resultado correspondente. Como
o irace implementa um método de configuração iterativo, o acviz mostra ainda o
desempenho mediano das configurações de cada iteração, bem como das melhores
configurações encontradas até o momento, o que permite identificar a evolução na
qualidade das configurações ao longo do tempo. A segunda visualização mostra o
desempenho das melhores configurações encontradas, tanto do processo completo
como de cada iteração, em um conjunto de instâncias de teste. O principal benefício
dessa visualização é verificar o poder de generalização dessas configurações para
novas instâncias e o desempenho esperado do algoritmo em produção.

O uso e benefícios da ferramenta acviz foram avaliados em três estudos de
caso envolvendo a configuração de algoritmos de decisão e otimização. O primeiro
estudo de caso considera cenários onde o conjunto de instâncias de treinamento inclui
uma instâncias muito fácil de ser resolvida e outra muito difícil. As visualizações
produzidas permitem identificar essas características das duas instâncias e perceber
que ambas não contribuem para a avaliação e comparação de configurações, visto
que o desempenho de diferentes configurações são igualmente bons na instância fácil
e igualmente ruins na instância difícil. O segundo estudo de caso considera cenários
onde o esforço computacional empregado no processo de configuração (número
máximo de avaliações ou tempo limite) é demasiado alto. As visualizações mostram
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a convergência do processo de configuração muito antes do seu término. Novas
configurações produzidas são muito similares àquelas já avaliadas, com a consequente
estagnação de desempenho. Finalmente, o terceiro estudo de caso considera cenários
com overtuning, i.e. quando as configurações produzidas se especializam nas instâncias
de treinamento e, dada sua baixa representatividade, o desempenho observado em
novas instâncias é pobre. As visualizações dos resultados das melhores configurações
de cada iteração nos conjuntos de instâncias de treinamento e teste permitem
identificar tal efeito, pois mostram a melhoria do desempenho nas instâncias de
treinamento ao longo do processo de configuração, ao passo que o desempenho nas
instâncias de teste piora simultaneamente.

Conforme apresentado nos estudos de caso propostos, a ferramenta acviz
permite identificar problemas nos cenários de configuração que não são facilmente
detectados de outra forma. Com isso, o projetista pode corrigir tais falhas, como
selecionar instâncias adequadas ou reduzir o esforço de configuração, e melhorar
a qualidade das configurações produzidas. O Capítulo 6 apresenta em detalhes a
ferramenta acviz e algumas funcionalidades adicionais, e.g. as diferentes medidas
de desempenho e opções de visualização implementadas, bem como a discussão
detalhada dos estudos de caso propostos.

B.4 Solver Baseado em Componentes para Otimização Binária

Um uso mais avançado de métodos de configuração consiste em aplicá-los
para automatizar o processo completo do projeto de algoritmos. Em vez de focar
na configuração dos parâmetros de um algoritmo predeterminado, define-se um
conjunto de componentes algorítmicos que podem ser selecionados, combinados e
calibrados para a produção de distintos algoritmos. Um configurador é então aplicado
para automatizar a exploração do espaço de componentes e buscar pelos melhores
algoritmos para um dado domínio de problema. Essa abordagem é chamada de
projeto automático de algoritmos e tem o potencial de produzir algoritmos híbridos
e competitivos com o estado-da-arte, a exemplo de solvers para satisfatibilidade
booleana (KHUDABUKHSH et al., 2016), buscas locais para problemas de sequen-
ciamento de produção (MARMION et al., 2013; PAGNOZZI; STÜTZLE, 2019), e
algoritmos evolutivos para otimização multiobjetivo (BEZERRA; LÓPEZ-IBÁÑEZ;
STÜTZLE, 2014a; BEZERRA; LÓPEZ-IBÁÑEZ; STÜTZLE, 2020b). Apesar da
variada aplicabilidade e dos resultados positivos reportados na literatura, os algo-



202

Instâncias
do problema

Descrição
do problema

Algoritmo
concreto

AutoBQP

Framework
algorítmico irace+

gramática parâmetros

Figura B.3 – Visão geral do projeto automático de algoritmos com AutoBQP.

ritmos produzidos usando as técnicas supracitadas são geralmente especializados
em um problema específico. Em contrapartida, este trabalho apresenta um solver
chamado AutoBQP, que aplica os conceitos de projeto automático de algoritmos
para resolver problemas de otimização binários, i.e. a classe geral de problemas de
otimização cujas soluções são representadas por um vetor de bits.

A Figura B.3 apresenta a estrutura e funcionamento do solver AutoBQP.
Dada uma descrição do problema contendo sua função objetivo e um conjunto de
instâncias de treinamento, o solver busca automaticamente por algoritmos de alto
desempenho. Para isso, o AutoBQP combina um framework, que implementa os
componentes algorítmicos e permite sua seleção e combinação, com o configurador
irace, responsável por buscar as melhores combinações de componentes e valores
para seus parâmetros de entrada. As regras para combinação de componentes
e produção de algoritmos completos são representadas por uma gramática, cujas
decisões são mapeadas para parâmetros (MASCIA et al., 2014b), o que permite a
comunicação do framework com o irace. O framework algorítmico foi construído com
base em componentes heurísticos para programação quadrática binária irrestrita
(ou UBQP, do inglês unconstrained binary quadratic programming). Como muitos
problemas podem ser reduzidos e resolvidos via UBQP (KOCHENBERGER et al.,
2004; KOCHENBERGER et al., 2014), o AutoBQP é capaz de resolver toda essa
classe de problemas binários.

O solver AutoBQP foi usado para produzir algoritmos heurísticos para três
problemas distintos: o próprio UBQP; o problema de corte máximo em grafos
(MaxCut), que pode ser representado diretamente como um modelo de programação
quadrática binária irrestrita; e a alocação de testes, uma variante da coloração de
grafos que pode ser reduzida ao UBQP via reformulação. Os algoritmos produzidos
se mostraram competitivos, apresentando desempenho melhor em comparação com
abordagens do estado-da-arte. Além disso, os algoritmos produzidos encontraram
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novas e melhores soluções para diversas instâncias do MaxCut e da alocação de
testes. Esses resultados mostram o potencial do projeto automático de algoritmos,
que permite construir soluções de alta qualidade com pouco esforço humano e sem a
necessidade de conhecimento especializado nas técnicas de configuração automática
e nos problemas explorados. O Capítulo 7 apresenta o solver AutoBQP, detalhando
seus componentes algorítmicos e as técnicas exploradas. Já o Capítulo 8 apresenta a
avaliação experimental do solver e discute os resultados obtidos.

B.5 Discussão

Conforme discutido nas seções anteriores, os métodos propostos neste trabalho
apresentam contribuições relevantes para o projeto e configuração automáticos de
algoritmos. Eles permitem reduzir o tempo de configuração e melhorar a qualidade dos
resultados, enquanto as visualizações produzidas facilitam a análise e entendimento
do processo de configuração. Além disso, o solver desenvolvido permite projetar
algoritmos de maneira automática para uma ampla classe de problemas de otimização.

Este trabalho também apresenta uma série de contribuições indiretas. As
aplicações apresentadas ao longo do trabalho demonstram a relevância prática e a
eficácia do projeto e configuração automáticos de algoritmos, bem como apresentam
um conjunto de diretrizes a pesquisadores e projetistas quanto ao uso desses métodos.
Com o solver desenvolvido, foram produzidos algoritmos para diferentes problemas e
com melhor desempenho em comparação com abordagens da literatura. Finalmente,
o trabalho fornece um conjunto amplo de cenários de configuração, cujos algoritmos
podem ser adaptados para diferentes domínios de problema. Esses cenários também
são úteis no desenvolvimento, avaliação e comparação de técnicas de configuração de
algoritmos.

As implementações de todos os métodos e ferramentas propostos neste trabalho
estão disponíveis para uso, bem como as implementações dos algoritmos produzidos.
Também estão disponíveis materiais suplementares para cada capítulo, contendo os
algoritmos correspondentes, definição dos cenários de configuração, instâncias de
treinamento e teste e detalhes adicionais dos resultados experimentais. Todos os
cenários de configuração usados nos experimentos foram também disponibilizados
separadamente para facilitar o acesso. O Apêndice A lista todos os artefatos pro-
duzidos a partir dessa pesquisa, incluindo publicações científicas e apresentações em
eventos.
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