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Control of tunneling in an atomtronic switching
device
Karin Wittmann Wilsmann1, Leandro H. Ymai2, Arlei Prestes Tonel2, Jon Links 3 & Angela Foerster1

The precise control of quantum systems will play a major role in the realization of atomtronic

devices. As in the case of electronic systems, a desirable property is the ability to implement

switching. Here we show how to implement switching in a model of dipolar bosons confined

to three coupled wells. The model describes interactions between bosons, tunneling of

bosons between adjacent wells, and the effect of an external field. We conduct a study of the

quantum dynamics of the system to probe the conditions under which switching behavior can

occur. The analysis considers both integrable and non-integrable regimes within the model.

Through variation of the external field, we demonstrate how the system can be controlled

between various “switched-on” and “switched-off” configurations.
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The phenomenon of quantum tunneling is paramount in
many studies of ultracold quantum gases. The two-well
Bose–Hubbard Hamiltonian has been very successful in

modeling quantum tunneling1,2, displaying two principal dyna-
mical scenarios. These are referred to as Josephson tunneling and
self-trapping, and they have been experimentally observed3. In
the case of tunneling, the system can also be controlled to pro-
duce either alternating or direct currents4. A three-well system
opens up wider possibilities for physical behaviors5–7, most
notably as an ultracold version of a transistor8, or similar type of
switching device. The individual wells can be identified as the
source, gate, and drain, potentially forming a building block in
the emerging field of atomtronics9–11. This prospect is driving
research into transistor-like structures beyond the electronic
domain12,13.

Here we investigate the influence of integrability in the control
of tunneling in a triple-well system. To do so, we must go beyond
the familiar three-well Bose–Hubbard model14–18, and consider a
more general system which facilitates an integrable limit. Such a
model has already been introduced into the literature. It models
dipole–dipole interactions and the tunneling between adjacent
sites for a population of ultracold dipolar bosons with large dipole
moment, such as chromium or dysprosium, loaded in an aligned
triple-well potential. The Hamiltonian has the general structure19

H ¼U0

2

X3
i¼1

NiðNi � 1Þ þ
X3
i¼1

X3
j¼1;j≠i

Uij

2
NiNj

� J1ðay1a2 þ a1a
y
2Þ � J3ðay2a3 þ a2a

y
3Þ:

ð1Þ

The canonical creation and annihilation operators, ayi and ai,
i= 1,2,3, represent the three bosonic degrees of freedom in the
model, and Ni ¼ ayi ai, i= 1,2,3 is the number operator for each
well. The parameters Ji, i= 1,3 are the couplings for the tunneling
between wells, and U0 is the coupling constant for on-site
interactions which results from contact interactions and
dipole–dipole interactions (DDI). Both of these can be either
attractive or repulsive, which in principle allows for the manu-
facture of weak net on-site interaction. The parameters Uij=Uji,
i ≠ j characterize DDI between particles on different sites.
Although the DDI follows an inverse cubic law, it is also
dependent on the angle between dipole orientation and the dis-
placement between dipoles. In combination with the geometry of
the trap potential (viz. oblate versus prolate), it is entirely feasible
to adjust the system parameters across a wide range of values.
Importantly, this includes the possibility for the inter-well cou-
plings Uij to have greater magnitude than the on-site coupling U0.
The experimental feasibility of this system for dipolar bosons was
detailed by Lahaye et al.19, using a triple-well potential. The wells
are aligned along the y-axis, separated by a distance l, with bosons
polarized by a sufficiently large external field along the z-direc-
tion. It was shown that U12=U23= αU13, where the parameter
4 ≤ α ≤ 8 depends only on the ratio l/σx, where σx is the width of
the Gaussian cloud along the x-direction. (See Methods for fur-
ther details.)

In the case when U13=U0, the Hamiltonian (1) is integrable20.
In this limit there exists an additional conserved operator besides
the Hamiltonian and the total particle number, such that the
number of independent conserved operators is equal to the
number of degrees of freedom. While for classical systems
integrability is well-known to prohibit chaotic behavior, the
consequences for quantum system are less understood21,22.
Notwithstanding, it is recognized that quantum integrability has
far reaching impacts. One route to characterize the degree of
chaoticity in a quantum system is through energy level spacing
distributions23. Integrable systems tend to display Poissonian

distributions24, while non-integrable systems generally observe
the Wigner surmise25 following the Gaussian Orthogonal
Ensemble, or similar26,27. Another impact of quantum integr-
ability is the absence of thermalization, observed in a quantum
version of Newton’s cradle28 and similar systems29. Here we
demonstrate how integrability, and the breaking of it, can be
utilized to investigate tunneling dynamics. This work contrasts
the above mentioned studies in that it applies to a system with
very low number of degrees of freedom.

A simple means of breaking integrability in the model is
through an applied external field. Generally, it might be expected
that this will drive the system into a chaotic dynamical regime.
However it is shown that in certain circumstances the changing
dynamics of the model, through tuning of the external field, can
be predicted with remarkable accuracy. The result can be
understood by revealing the structure of a hidden subsystem
within the model. This level of control points towards the
potential utility of a physical realization of the model as a
quantum switch.

Results
Integrability. It has been established that the model (1) contains
a family of integrable three-well tunneling models when U13=
U0

20. In this case, we can write the Hamiltonian in the reduced
form H0 ¼ �Hþ ðαþ 1ÞU0N

2=4� U0N=2 yielding

H0 ¼UðN1 � N2 þ N3Þ2

þ J1ðay1a2 þ a1a
y
2Þ þ J3ðay2a3 þ a2a

y
3Þ;

ð2Þ

where U= (α− 1)U0/4. Note that (2) commutes with the total
number operator N=N1+N2+N3, and the interchange of the
indices 1 and 3 leaves the Hamiltonian invariant. The Hamilto-
nian has, beyond the energy and the total number of particles N,
another independent conserved quantity expressed through the
operator20

Q ¼ J21N3 þ J23N1 � J1J3ðay1a3 þ ay3a1Þ: ð3Þ

This conserved operator can alternatively be interpreted as a
tunneling Hamiltonian for a two-well subsystem containing only
wells 1 and 3. Because Q admits the factorization Q ¼ ΩyΩ,
where Ω= J1a3− J3a1, the dynamical evolution governed by Q is
harmonic for any initial state. Later, it will be shown that Q
assumes a fundamental role in the analysis of resonant30

quantum dynamics of the system (2). This arises due to an
unexpected connection with virtual processes. Details are
provided in Methods.

As the model has three degrees of freedom and three
independent conserved quantities satisfying

½H0;N� ¼ 0; ½H0;Q� ¼ 0; ½N;Q� ¼ 0; ð4Þ

the model is integrable. Further details about the integrability,
and associated exact solvability, have been established. This was
achieved through the Yang-Baxter equation and Bethe Ansatz
methods20.

Breaking the integrability. In order to break the integrability, we
add to the Hamiltonian (2) the operator H1= ε(N3−N1), which
acts as an external field for the wells labeled 1 and 3. This is
schematically shown in Fig. 1. It is important to observe that the
above Hamiltonian still commutes with the operator N. However,
the operator Q is not conserved because the commutator
½H;Q� ¼ 2εJ1J3ðay1a3 � ay3a1Þ is non-zero when the parameters ε,
J1 and J3 are all non-zero.
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Structure of energy levels. The integrable three-well system (2)
possesses many features in common with the two-well
Bose–Hubbard model, which is also integrable because the total
number operator is conserved and there are only two degrees of
freedom. Set J ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J21 þ J23
p

. Following Leggett2, it is useful to
define the regimes:

● Rabi: U≪ JN−1.
● Josephson: JN−1≪U≪ JN.
● Fock: JN≪U.

where in the two-well case the “Fock regime corresponds to a
strongly quantum pendulum, while in the Rabi and Josephson
regimes the behavior is (semi)classical”2.

Adopting the same classification for the integrable three-well
system given by (2), numerical computation of the energy
spectrum shows that transition from the Rabi to the Josephson
regime is accompanied by the emergence of energy bands.
Illustrative results are depicted in Fig. 2. Hereafter units are
chosen such that ℏ= 1, and for all figures isotropic tunneling
J1=J ¼ J3=J ¼ 1=

ffiffiffi
2

p
is adopted for simplicity. The Hamiltonian

acts on the Fock space spanned by the normalized vectors
jN 1;N 2;N 3i ¼ C�1ðay1ÞN 1ðay2ÞN 2ðay3ÞN 3 j0i; where C ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiN 1!N 2!N 3!
p

and |0〉≡ |0,0,0〉 is the Fock vacuum. On each
panel the line E=UN2 is depicted. This quantity is the
expectation value of the state |N,0,0〉. In the extreme Rabi regime
with U= 0 the energy levels are uniformly distributed with
spacing ΔE= J. The line E=UN2 emerges from the midpoint of
the entire energy spectrum when U= 0, to lie on the lower edge
of the uppermost energy band as U is increased to bring the
system into the Josephson regime. Note that the separation into
distinct energy bands becomes very evident once the system is
deep into the Josephson regime. These features significantly
influence the dynamical evolution of the system from the initial
state |N,0,0〉. In the Rabi regime, an accurate description of the
initial state requires a linear combination over all eigenstates.
However in the Josephson regime the state |N,0,0〉 can be
accurately approximated as a linear combination of a subset of
eigenstates, due to the band structure. This conclusion applies for
all particles numbers, with the result represented in Fig. 2
depicting the cases N= 30 and N= 60. Provided UN=J � 1, the
separation into bands is clearly identifiable. The consequences
will be investigated at a deeper level in the next section, where we
will fix N= 60. Moreover, it will be shown how the breaking of
the integrability, through the application of an external field,
allows for control of the dynamics in a predictable fashion.

Quantum dynamics. The time evolution of the expectation
values for the number operators are computed using
〈Ni〉= 〈Ψ(t)|Ni|Ψ(t)〉, i= 1,2,3, where |Ψ(t)〉= exp(−iHt)|ϕ〉 and
|ϕ〉 represents an initial state. We adopt a protocol for which

|ϕ〉= |N,0,0〉, so the well labeled 1 is the source, the well labeled 2
is the gate, and the well labeled 3 is the drain.

We begin with the integrable model (2) and first consider
variations in the interaction parameter U to manipulate the
tunneling across the wells. Figure 3 presents results obtained for
four choices of U. The dynamics typically display collapse and
revival of oscillations in the Rabi regime, as in Fig. 3a. On
increasing U, the period increases while the time-average of 〈N2〉
decreases. Furthermore, the dynamics between wells 1 and 3

J1 J3

U

y
�

Fig. 1 Schematic representation of the system. With reference to the
Hamiltonian H= H0+ H1, the arrows J1 and J3 represent the tunneling
couplings between the wells, U characterizes inter-well and intra-well
interaction between bosons, while ε is the coupling strength for an external
field
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Fig. 3 Time evolution of expectation values. Dimensionless units are used.
In the integrable regime, the expectation values of the number operators
are shown, with the initial state |60,0,0〉. The configuration used has ε/J=
0. a U/J= 0.001; b U/J= 0.015; c U/J= 0.05; d U/J= 0.17. It is apparent
that increasing U leads to an increasing suppression of tunneling into the
gate, while maintaining oscillations between the source and the drain. In the
case d, the expectation value of the number operator associated with the
gate is negligible, so tunneling to the gate is considered to be switched-off.
The oscillations between the source and the drain are close to being
harmonic and coherent
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approach harmonic oscillations with hN1i þ hN3i ’ N . The
transition between the Rabi and Josephson regimes can be seen,
qualitatively, in the passage from Fig. 3b and c. This change in
behavior is in accord with the threshold point in Fig. 2.

In this latter regime, Fig. 3c and d, these dynamical features can
be understood by observing that the integrable Hamiltonian
possesses a hidden two-well algebraic structure, with an effective
well given by the combined source and drain. As is known1,2,31,
the self-trapping regime is expected to occur in the two-well
model in the Josephson regime. To be more precise, hN2i=N<~ε
when UN>J=ð2 ffiffiffiffiffiffiffiffiffiffiffiffi

~ε� ~ε2
p Þ if well 2 is initially empty. Thus, for

UN � J , we find hN2i=N ’ 0, and almost all bosons are
distributed between the source and the drain if only a small
fraction of bosons are initially in the gate.

On the other hand, it has been pointed out19 that for isotropic
tunneling the source and the drain can form an effective non-
interacting two-well system, by second-order processes32–34

through the gate, such that hN2i ’ 0. For general tunneling, we
find the remarkable result that the effective Hamiltonian is simply
given by Heff=−λQ, where Q is the conserved charge (3), and
λ−1= 4U(N− 1) (details are provided in Methods). This
produces an effective tunneling coupling given by Jeff= λJ1J3,
which decreases with increasing N, and therefore will only be
observed in mesoscopic samples19. In view of the above
observations, we formally identify the resonant tunneling regime
of the system to be determined by UN � J , which contains the
Josephson regime.

In Fig. 4, the time evolution of expectation values for number
operators is displayed in a case of broken integrability. Increasing
the value of ε suppresses the tunneling of particles into the drain,
while increasing the time-average value of 〈N2〉. For ε/J= 1.63
this suppression of tunneling into the drain is strong enough that
its number expectation value is close to negligible, i.e. tunneling
into the drain has been switched-off.

Control of resonant tunneling. In Fig. 3d, the dynamics is seen
to be remarkably close to being harmonic over sufficiently short
time scales, with the period monotonically increasing with

interaction coupling U. This behavior supports the conclusion
that the effective Hamiltonian for the resonant tunneling regime
is simply related to the conserved charge Q. The frequency of
oscillation in this regime is given by ωJ= λJ2, with the amplitude
also being U-dependent. When the initial state is |N,0,0〉, the
oscillations between the source and drain are coherent, with
tunneling to the gate switched-off. On the other hand, if the initial
state is |0,N,0〉 the system will remain trapped in this initial state
configuration, with tunneling from the gate switched-off.

Next, we maintain the system in the resonant tunneling regime
UN � J and study the non-integrable dynamics using the
parameter ε to control the behavior of the source and drain
subsystem. The approach here, following the study above, is to
choose the initial state |N,0,0〉 and investigate the ability to
control the frequency and amplitude of the populations
oscillating between the source and the drain.

In Fig. 5a–c, the interaction coupling is fixed as U/J= 0.17, and
results are shown for the expectation values of the populations
using three choices for ε. It is seen that the presence of the
external field does not significantly influence the gate, in the sense
that it does not affect the negligible average population 〈N2〉.
Figure 5d shows how the amplitude decays while increasing the
external field, as well as the dependence of the frequency. The
three points highlighted in the curves correspond to the values of
the amplitude and frequency of Fig. 5a (cyan circle), Fig. 5b
(yellow triangle), and Fig. 5c (lime diamond).

In this non-integrable regime the effective Hamiltonian is given
by

Heff ¼ �λQþ εðN3 � N1Þ: ð5Þ

For short time scales the dynamics exhibits Josephson-like
oscillation28 with frequency

ωJ ¼
2λJ1J3ffiffiffiffiffiffi

Δn
p ; ð6Þ
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where Δn= 1/(1+ γ2) is the amplitude and γ ¼ ðλðJ21 � J23 Þ �
2εÞ=2λJ1J3 (see Methods for details). Increasing the external field
reduces the oscillation amplitude Δn and the period between the
source and the drain, until the amplitude of oscillation is
completely suppressed, i.e., all tunneling is switched-off, demon-
strating various levels of control, especially in the range 0 < ε <
0.2. Through semiclassical analysis, one can obtain analytic
expressions for the expectation values of the relative populations,
ni≡Ni/N (i= 1, 3), in the wells 1 and 3, given by 〈n1〉= 1− 〈n3〉
and hn3i ¼ Δn sin2ðωJt=2Þ (see details in Methods). In agreement
with Chuang et al.35, the maximum amplitude is obtained when
the field is small.

Discussion
We have analyzed a model for boson tunneling in a triple-well
system. This was conducted in both integrable and non-integrable
settings through variation of coupling parameters. The model
draws an analogy with a transistor through identification of the
wells as the source, gate, and drain. Our primary objective was to
investigate how this model could be implemented as an atom-
tronic switching device.

In the integrable setting, we identified the resonant tunneling
regime between the source and drain, for which expectation
values of particle numbers in the gate are negligible. Moreover, it
was found that a conserved operator of the integrable system acts
as an effective Hamiltonian, which predicts coherent oscillations.
This is in agreement with observations from numerical
calculations.

We then broke integrability through application of an external
field to the source and the drain. It was shown in Fig. 4 that the
applied field to the system, in Rabi regime, was able to switch-off
tunneling to the drain. On the other hand, in the resonant tun-
neling regime, the field did not destroy the harmonic nature of
the oscillations, but did influence the amplitude and frequency.
Increasing the applied field allowed for tuning the system from
the switched-on configuration through to switched-off (Fig. 5).
Results from semiclassical analyses produced formulae for the
amplitude and frequency, which proved to be remarkably accu-
rate when compared to numerical calculations. This demonstrates
the possibility to reliably control the harmonic dynamical beha-
vior of the model in a particular regime. A surprising feature of
this result is that the ability to control the system in a predictable
manner arises through the breaking of integrability. Our results
open possibilities for multi-level logic applications and conse-
quently new avenues in the design of atomtronic devices.

It is important, finally, to comment on the limitations of a
three-mode Hamiltonian in the description of cold atom systems
in a triple-well potential. Contributions from higher energy levels
of the single-particle spectrum cannot be ignored under certain
coupling regimes. For example, the presence of the external field
will ultimately lead to level crossings as the field strength is
increased. In the case of the analogous double-well system, esti-
mates for when this may occur have been formulated36. We have
undertaken checks to confirm that it is indeed possible to avoid
these undesired scenarios, within an experimentally feasible sce-
nario. (See Supplementary Note 1, Supplementary Figure 1 for
further details). However, it is also noteworthy that it is possible
to include three-body, and higher, interaction terms as correc-
tions37 to compensate for when the three-mode approximation
breaks down.

Methods
In this section, we provide the details concerning algebraic structures behind the
model, and complementary semiclassical approximations, which were used to
derive analytic expressions characterizing quantum control in the resonant tun-
neling regime. These expressions were found to give close agreement with results

obtained by exact numerical diagonalization (see Supplementary Note 2, Supple-
mentary Figures 2 and 3 for more details). We also discuss the feasibility of physical
realization of the system.

Two-mode structure and the resonant tunneling regime. The integrable three-
well model can be structured through two modes, as follows. From Eq. 2, we define
J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J21 þ J23

p
and the operators N1,3=N1+N3, a1,3= J−1(J1a1+ J3a3) and ay1;3 ¼

J�1ðJ1ay1 þ J3a
y
3Þ satisfying the Heisenberg algebra

½N1;3; a1;3� ¼ �a1;3; ½N1;3; a
y
1;3� ¼ ay1;3; ½a1;3; ay1;3� ¼ 1:

Then

H0 ¼ UðN1;3 � N2Þ2 þ Jðay1;3a2 þ ay2a1;3Þ;

such that the modes of wells 1 and 3 are now represented by the single mode “1,3”.
The two-well model exhibits a self-trapping regime, with onset in the vicinity of

χ � UN=J ’ 11,31. This translates to a resonant tunneling regime for the triple-well
model. Here we follow the approach of using semiclassical analysis38, such that this
regime may be clearly identified. Using the usual number-phase correspondence,
that is, a2 ¼ eiθ2

ffiffiffiffiffiffi
N2

p
, a1;3 ¼ eiθ1;3

ffiffiffiffiffiffiffiffi
N1;3

p
and the conservation of boson number

N1,3+N2=N, we find

h ¼ H0

N
¼ UNð1� 2n2Þ2 þ 2J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2Þn2

p
cos ϕ;

where n2=N2/N and ϕ= θ1,3− θ2. Consider the dynamics where the initial
condition is n2= 0. At the initial time t= 0 the system has the energy h=UN. By
energy conservation at all times, we obtain the expression

n2 ¼
1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 � cos2ϕ

p
2χ

: ð7Þ

The conditions χ > 1 and |cosϕ|= 1 (maximum value) imply that 0 ≤ n2 ≤ 0.5.
From Eq. (7), we conclude that when χ � jcos ϕj, n2 → 0, and the bosons are
distributed between the wells labeled 1 and 3, producing the resonant tunneling
regime.

Effective integrable Hamiltonian for resonant tunneling. In order to better
understand the dynamics in the resonant tunneling regime, we first observe that
the integrable Hamiltonian can be written, by using the conserved quantity N, as an
effective Hamiltonian without on-site interaction (up to a global constant UN2).
Specifically H0=HI+V, where the interaction term HI=−4UN2(N1+N3) has
eigenstate and eigenvalues given by

HI jN 1;N 2;N 3i ¼ �4UN 2ðN 1 þN 3ÞjN 1;N 2;N 3i;

and the tunneling term V ¼ ðJ1ay1 þ J3a
y
3Þa2 þ h:c: is treated as a perturbation. For

the isotropic case J1 ¼ J3 ¼ J=
ffiffiffi
2

p
19, since n2 ’ 0 the interaction part is HI ’ 0 and

the wells 1 and 3 form an effective non-interacting two-well system coupled
through well 2 by a second-order process19,32–34 with the effective Hamiltonian
Heff ¼ Jeff ðay1a3 þ ay3a1Þ. Recall that the transition rate from initial state |s〉 to final
state |k〉 is expressed

WðiÞ ¼ 2πjhkjV ðiÞjsij2δðEk � EsÞ; i ¼ 1; 2;

where V(1)=V for first-order transition (Fermi’s golden rule), δ is the delta
function and

Vð2Þ ¼
X
m

V jmihmjV
Es � Em

for second-order transitions. Equating second-order transition of V with the first-
order transition of Heff for the states |N,0,0〉 and |N−1,0,1〉, it is found that

Jeff ¼
J2

8UðN � 1Þ :

Observing that J23N1 þ J21N3 is constant for isotropic tunneling in the regime
χ � 1, then it does not affect the dynamics if we consider the linear combination
Jeff ðay1a3 þ ay3a1Þ þ λ′ðJ23N1 þ J21N3Þ. By numerical inspection, we conclude that
the effective Hamiltonian for general tunneling, which includes the anisotropic
tunneling J1 ≠ J3, is given by

Heff ¼ �λQ;

where Q ¼ J21N3 þ J23N1 � J1J3ða1ay3 þ ay1a3Þ is conserved and λ−1= 4U(N− 1).
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Effective non-integrable Hamiltonian and quantum control. For the non-
integrable case, the effective Hamiltonian in the resonant tunneling regime χ � 1
is given by Heff=−λQ+ ε(N3−N1). Returning to a semiclassical analysis it is
found that, up to an irrelevant constant,

h ¼Heff

N
¼ �λJ21 ð1� n1Þ � ðλJ23 þ 2εÞn1

þ 2λJ1J3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1ð1� n1Þ

p
cosφ;

where n1=N1/N and φ= θ1− θ3. For initial condition n1= 1 and n3= 0, we have
h ¼ �λJ23 , a constant. Applying energy conservation and the condition cosφ= ±1,
we find that the amplitude of oscillation Δn (Fig. 5d) is given by Δn= 1/(1+ γ2),
where γ ¼ ½λðJ21 � J23 Þ � 2ε�=2λJ1J3. Hamilton’s equation gives

_N1 ¼ � ∂Heff

∂θ1
¼ 2λJ1J3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1ðN � N1Þ

p
sinφ;) _n1 ¼ 2λJ1J3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1ð1� n1Þ

p
sinφ:

Using the Ansatz n1 ¼ 1� Δn sin2ðηtÞ, we can easily verify that the above
results provide analytic expressions for the expectation values

hn1i ¼ 1� Δn sin2 ωJt=2
� �

; hn3i ¼ Δn sin2 ωJt=2
� �

;

where ωJ is the frequency given by Eq. (6). Results for similar types of investigation
have been presented in the case of pair-tunneling between two wells34.

Physical realization. Here we discuss the feasibility of physical realization of the
triple-well Hamiltonian (2), through use of Bose–Einstein condensates (BECs) of
dipolar atoms.

Three parallel, tightly focused Gaussian beams, with waist of 1 μm and
wavelength λ= 1.064 nm, separated by a distance l= 1.8 μm, form an optical
triple-well potential aligned along the y-axis19. A transverse beam, with waist of
6 μm, provides xz-confinement. For such a setup, in the harmonic approximation
the potential of each well i= 1,2,3 is symmetrically cylindrical and is given by

V0ðx; y; zÞ ¼
X3
i¼1

1
2
mω2

xx
2 þ 1

2
mω2

r ððy � yiÞ2 þ z2Þ
� �

;

where yi= l,0,−l. The trap frequencies ωx and ωr can be controlled by the intensity
of the laser beams. This configuration facilitates the formation of three cigar-
shaped wells. We consider a system of bosons with dipole–dipole interactions to
provide long-range interactions, and weakly repulsive contact interactions to
promote condensate stability39. The dipoles are oriented along the z-direction
(Fig. 6).

The transverse beam performs the function of the external field that controls
the device. Its focus, when displaced along the y-axis by Δy, introduces the
potential energy

V1ðyÞ ¼
1
2
mω2

yΔyð2y þ ΔyÞ:

This generates a potential difference, resulting in the external field strength
ε ¼ mω2

yΔyl. The frequency of the transverse laser (ωy) is much lower than the
frequency of the parallel lasers (ωr), so that displacement by Δy introduces a
“tilting” of wells 1 and 3. These are the relevant wells in the resonant tunneling
regime.

For the case of a dipolar BEC of 52Cr40, we numerically find that the
integrability condition, with α � 5:8, is achieved for ωx � 2π ´ 64Hz,
ωr � 2π ´ 220Hz, where we assumed the Gaussian approximation for the ground
state. The value of U obtained in units of J is U=J � 7:5 ´ 10�3, which means that
the resonant tunneling regime can be achieved for N � 130 atoms. In principle,
this condition can be satisfied experimentally40. As an example, for N � 5000
atoms, with ωy � 2π ´ 1:5Hz, translating the transverse laser by Δy= 1.8 μm we

obtain ε=h � 3:6 ´ 10�2 Hz. It results in a tunneling amplitude Δn � 0:25, which
means that 25% of the population of the source in the initial state |N,0,0〉 switch to
the drain, and back, through harmonic tunneling. This example approaches the
case of Fig. 5b.

Another strongly dipolar BEC which can be considered is 164Dy41. In this case,
we calculate α � 5:9 for ωx � 2π ´ 22:7Hz, ωr � 2π ´ 67:3Hz with
U=J � 2:2 ´ 10�2. For N ~ 500 atoms, with ωy � 2π ´ 0:76Hz, this yields ε=h �
3:0 ´ 10�2 Hz and Δn � 0:23.

In both cases above, the parameter choices are such that higher-order
interaction terms, such as correlated hopping, are negligible42.

An analysis of the effects of perturbations is provided in Supplementary Note 3:
Fidelity dynamics, Supplementary Figures 4 and 5.

Data availability
All relevant data are available on reasonable request from the authors.
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