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1 Introduction

Symmetries are essential in Theoretical Physics, playing important role in Classical

Physics in Lagrangian and Hamiltonian formulation, but even more fundamental in modern

Physics.

Group Theory is the area of Mathematics whose subject is the study of symmetries,

therefore, being present in most of the work of theoretical physicists going back to the

formulation of Quantum Mechanics itself. More precisely, the theory of representations of

groups by linear transformations was essential to the adequate description of the quantum

phenomena, for, aside the principal quantum number, the other quantum numbers we

know are associated to representations of Lie Groups. When it comes to gauge theories,

one associates fields to representations of such groups and their algebras; interaction

terms in the Lagrangian are built upon tensor products of Lie algebra’s representations;

mechanisms of spontaneous symmetry breaking are developed via decomposition of those

into their subalgebras (THOLE, 2019), (SLANSKY, 1981). Therefore, being able to

perform calculations of such nature is essential for modelling new phenomena or even for

simply understanding already existing theories.

Said calculations are rather tedious, though, also not always simple task and, so far,

there are not many computational options to take care of matters. Some options found

in the literature are presented here (FEGER; KEPHART, 2012), (FEGER; KEPHART;

SASKOWSKI, 2019), (LEEUWEN; COHEN; LISSER, 1992), (WYBOURNE, 2002),

(NUTMA, 2009). So far as this date, however, there is no similar software built on Python

language.

Here I present a user friendly Python2 library which is able to extract most of the

important information from Lie Groups and Lie Algebras and supply it in a clean and

straightforward manner.

Even though the cited libraries are much similar to the one developed in the present

work, Python is a programming language widely more popular than the ones utilized in

their works, and arguably much more pleasant to use - for it reads much more like the

way humans think. Even when compared to other vastly applied programming languages

by the academic population, such as C or FORTRAN, Python tends to grow in preference

year by year.

Python is a high level programming language and, as such, it is known to be slow,

rendering itself not very useful when performance is crucial. For the purpose of dealing

with such issue, most of the methods provided by the library are built on C language and

translated to Python by means of extensions, more precisely, Python C-API, Application

Programming Interface. Performance-wise, I write a whole section in the appendices where

I run some calculations on our library in comparison with similar calculations run in one

the libraries above cited.

Furthermore, the fact that C is also a popular language brings another advantage to
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the present work, for then the code can be easily understood or modified by the reader,

which is a crucial point: this application aims to be a modern open source alternative,

potentially being subjected to peer development, which, from my perspective is what lies

in the most essential nature of the scientific endeavor.

In terms of utility, the library is able to deal with classical Lie algebras corresponding

to the groups SU(N), SO(N), Sp(2N) and SO(2l) as well as with the exceptional Lie

algebras G2, F4, E6, E7 and E8. It has the capability to build irreducible representations, or

irreps, of those algebras; calculate tensor products between irreps; draw pictorial depiction

of the algebras, with Dynkin diagrams, and of their irreps, with Hasse diagrams; as well

as depict the consequences symmetry breaking over those objects, between others.

The possibility to create diagrams by means of the library is considered a strong

didactic characteristic it presents, for it is, arguably, much easier to learn about Group

Theory applied to Particle Physics when there exists an easy way of depicting the subject

the way I mentioned above.

When it comes to model building, it is not simple to construct a model that is

mathematically consistent. In many occasions, Group Theory is a good starting point.

The theory provides a framework for constructing analogies or models from abstractions,

and for the manipulation of those abstractions to design new systems, make new predictions

and propose new hypotheses (SLANSKY, 1981).

The rest of the work is presented in three sections, according to the following structure:

• Theoretical Background: starting from familiar objects like the SU(2) group and

its algebra, I develop the generalization of concepts easily understood in Quantum

Mechanics and introduce the Group Theory language necessary to understand how

the library works, as well as its applicability;

• Presentation of the Library: after introducing the fundamental knowledge regarding

Lie algebras, I cover the main functionalities of the library, like building irreducible

representations; Dynkin diagrams; diagrams depicting quantum numbers of irreps

and symmetry breaking, all by means of examples.

• Applying to Real Life Problems: I show that from the group SO(10) we are able

to retrieve the particles of the Standard Model of Particle Physics by means of

symmetry breaking and, consequently, that it can be considered as option when it

comes to building extensions to the SM.

2 Theoretical Background

Before we get to the core of what is needed for understanding the capabilities of the

library and its applications, meaning the study of Lie Groups - or more precisely, Lie

Algebras - let us get back a little and make a connection of what is to come with very

2



basic notions from Classical and Quantum Mechanics. Thus, with the purpose of building

intuition, I find it particularly interesting to begin with the discussion of rotations and,

consequently, angular momentum - which is conserved under central potentials, therefore

it can be used to classify quantum states. Then, we are able to define the commutation

relations for the angular momentum operators and understand they present a typical

algebraic structure, making a connection with the symmetry group of rotations in Euclidean

Space, SO(3). After discussing how to calculate the spectrum of the ~Li operators (get the

quantum numbers), we extend such notions to more general Lie algebras.

2.1 Angular Momentum Operators

Shall we remember that classically, the orbital angular momentum is defined as the

vector ~L = ~r × ~p. In Quantum Mechanics, as much as in Classical Physics, there are very

important problems of systems under the influence of central fields, e.g. the Hydrogen

atom, and, as early as in the first days of the theory as we know today, the counterpart

of ~L in QM has been introduced (BORN; JORDAN, 1925), (BORN; HEISENBERG;

JORDAN, 1926).

By means of the correspondence principle then, the orbital angular momentum is

defined as a vector operator whose components are, in analogy to ~L, given by:

L̂x = ŷP̂z − ẑP̂y; (1)

L̂y = ẑP̂x − x̂P̂z; (2)

L̂z = x̂P̂y − ŷP̂z. (3)

The algebra of such operators is defined by their commutation relations, e.g.:

[L̂x, L̂y] = i~L̂z. (4)

Applying the equivalent of (4) between the other components of ~̂L, which can be easily

done by hand, we get the well known algebra of the angular momentum operator:

[L̂i, L̂j] = i~εijkL̂k. (5)

It is also easy to check by hand that (5) respects the Jacobi identity:

[Li, [Lj, Lk]] + [Lj, [Lk, Li]] + [Lk, [Li, Lj]] = 0, (6)

and that information is going to be important later.

Even before the publication of the papers above mentioned, experiments like the

one known today as Stern-Gerlach experiment (GERLACH; STERN, 1922) suggested
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the existence of another kind of angular momentum, an intrinsic one with no classical

counterpart. Not much time later, Wolfgang Pauli described the ”proper moment”of the

electron, what we call spin today, as an operator respecting the same algebra as L̂, Eq.

(5), (PAULI, 1927).

So let us postulate that Eq. (5) is respected by the components any kind of angular

momentum operator, and we refer to it as ~̂J . It is valid, then:

[Ĵi, Ĵj] = i~εijkĴk. (7)

Having that settled, we can build an operator that commutes with all components of

the angular momentum, with the consequence that there are simultaneous eigenvectors

between them:

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z , (8)

and

[Ĵ2, Ĵi] = 0. (9)

We have that Ĵ2 and any component of the angular momentum are compatible

observables.

With the purpose of finding the spectrum of Ĵ2 and one of the Ĵi’s, we might still want

to define two more new (non-hermitian) operators, Ĵ+ and Ĵ− as:

Ĵ± = Ĵx ± iĴy. (10)

Then we can consider the following eigenvalue problems

Ĵ2|a, b〉 = a~2|a, b〉, (11)

and

Ĵz|a, b〉 = b~|a, b〉. (12)

Note that any component of Ĵi could have been used in (12), and we chose Ĵz arbitrarily.

Applying (10) on (11) from the right, we get:

Ĵ2(Ĵ±|a, b〉) = Ĵ±(Ĵ2|a, b〉) = a~2(Ĵ±|a, b〉), (13)

for Ĵ± commutes with Ĵ2, which is promptly seen since both components of Ĵ± commute

with Ĵ2.

Eq. (13) simply means, and that’s an important conclusion, that the action of Ĵ± does

not change the eigenvalue of the square of the angular momentum.

Now, in order to analyse the action of Ĵ± on Ĵz, first we need to calculate the

commutation relation between them:

[Ĵz, Ĵ±] = [Ĵz, Ĵx ± iĴy] = ±~Ĵ±. (14)
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Going on, we have then:

ĴzĴ±|a, b〉 = ([Ĵz, Ĵ±] + Ĵ±Ĵz)|a, b〉 = (±~Ĵ± + Ĵ±Ĵz)|a, b〉 = (b+ 1)~Ĵ±|a, b〉, (15)

where Eqs. (12) and (14) have been used.

We see, then, that the Ĵ+ and Ĵ− operators change (raise and lower, respectively), the

value of the eigenvalue b of Ĵz by one unit and, for that reason, are called step operators.

With step by step operations of the step operators, we can find the spectrum of Ĵ2 and Ĵz.

From eq. (15) one sees that, Ĵ±|a, b〉 is an eigenvector of Ĵz just as much as |a, b〉, but

the fact that the eigenvalue is b+ 1 indicates that Ĵ±|a, b〉 is proportional to |a, b± 1〉:

Ĵ±|a, b〉 = c|a, b± 1〉. (16)

In order to calculate the modulus of c, we multiply (16) from the left with its conjugate:

〈a, b|Ĵ†±Ĵ±|a, b〉 = c2. (17)

It is easy to see that Ĵ†± = Ĵ∓, then we have

c2 = 〈a, b|Ĵ∓Ĵ±|a, b〉. (18)

So we need to calculate Ĵ∓Ĵ±, which is easily seen to be hermitian:

Ĵ∓Ĵ± = (Ĵx ∓ iĴy)(Ĵx ± iĴy) = Ĵ2
x + Ĵ2

y ± i[Ĵx, Ĵy] = Ĵ2 − Ĵ2
z ∓ ~Ĵz. (19)

We can now use (19) to calculate the following:

Ĵ∓Ĵ±|a, b〉 = (Ĵ2 − Ĵ2
z ∓ ~Ĵz)|a, b〉 = ~2(a− b(b± 1))|a, b〉, (20)

so, finally, we have

c = ~
√
a− b(b± 1), (21)

(except for a phase), and

Ĵ±|a, b〉 = ~
√
a− b(b± 1)|a, b± 1〉. (22)

From Eq. (22) we extract the fact that, given successive applications of Ĵ+, there must

be a maximum value for b(b+ 1), otherwise the eigenvalue would not be real. We may say

bmax = l, then a = l(l + 1).

Analogously, for successive applications of Ĵ−, there must be a bmin such that a =

l(l + 1) = bmin(bmin + 1). In other words, bmin = −l.
In conclusion, we have −l ≤ b ≤ l, and b is allowed to vary 1 unit up or down on

each application of Ĵ±. Also, the whole interval [−l, l] is only completely covered if l is an

integer or semi-integer number.
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We may now, after everything, write:

Ĵ2|l,m〉 = ~2l(l + 1)|l,m〉; (23)

Ĵz|l,m〉 = ~m|l,m〉; (24)

Ĵ±|l,m〉 = ~
√
l(l + 1)−m(m± 1)|l,m± 1〉, (25)

where l = 0, 1
2
, 1, 3

2
, 2, ... and m = −l,−l + 1,−l + 2, ...., 0, ..., l − 2, l − 1, l.

We are done with the eigenvalue problem, and it is important for our purposes to

emphasize the fact that all the results so far are just algebraic consequences of Eq. (7),

showing the power of being able to manipulate such a structure. In fact, it would show

to be very useful if we could generalize the procedure above to more complex systems,

and that is exactly the point of this whole work. We are going to see that any system

provided with symmetry is subject to be treated by means of similar tools. For some

systems, though, the calculations might be extensive and boring, then our library can do

the job for you.

2.2 Lie Groups

Everything we have seen so far comes naturally trough the development of Quantum

Mechanics, but we need to understand it as the outcome of more abstract concepts such

as groups and algebras, more specifically, Lie Groups and Lie Algebras. Let us start, then,

by defining what consists a group.

A group, G, is a set, g, provided with an operation called product, ∗, respecting the

following conditions:

1. Closure: the set g is closed under the product: ∀a, b ∈ g, a ∗ b ∈ g.

2. Associativety: ∀a, b, c ∈ g, (a ∗ b) ∗ c = a ∗ (b ∗ c);

3. Identity: There exist some IG in G, also called neutral element, such that ∀a ∈
g, a ∗ IG = IG ∗ a = a;

4. Inverse: For all element a ∈ g, there must be an inverse, a−1 ∈ g, such that

a ∗ a−1 = a−1 ∗ a = IG.

In order to build intuition, and make an important connection between symmetries

and groups, we might consider the example of rotations that preserve the symmetry of

systems which indeed possess rotational symmetry. If we represent such rotations by

rotation matrices, it is easy to show that they respect the above conditions with the matrix

multiplication as the product.
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Back to Quantum Mechanics, the rotation operator, D̂, is a matrix whose dimension

depends on the ket space it acts on. For infinitesimal rotations around n̂, of an angle δφ,

it assumes the form

D̂(n̂, δφ) = 1− 1

~
n̂ · ~̂Jδφ. (26)

In the case of finite rotations, it takes the form

D̂(n̂, φ) = lim
N→∞

(
1− n̂ · ~̂Jδφ

~N

)N

= exp

{
−iφn̂ ·

~̂J

~

}
, (27)

where the angular momentum, ~̂J , is said to be the generator of the rotation.

It is important for us to know that the elements of any group associated to continuous

transformations just like the above, denominated a Lie Group 1, have the same form as

(27). Also, in order to get information about continuous groups, suffices to know the

relationship between its generators instead of working with the group elements themselves

- anytime we want, we can take the exponential of the former to retrieve the latter. Those

relationships are in fact the algebra of the generators and, in the case of a Lie Group, they

are called Lie Algebras.

Equations (5) and (7) are examples of Lie Algebras, both associated to rotation groups,

but of slightly different kinds. The first is the group of all 3× 3 orthogonal matrices whose

determinant is +1, called SO(3). The second is the group formed by all 2 × 2 unitary

matrices of determinant +1, denominated SU(2). The fact that SO(3) and SU(2) have

identical algebras is called isomorphism.

We have seen that utilizing algebraic tools for dealing with the angular momentum

operator has proven to be very useful in the problem of determining its spectrum, therefore

it would be really convenient if we were able to find similar structures in other algebras,

for then we could just copy the same procedures we are already familiar with.

2.3 Generalization for any Lie Algebra

Much of what we are going to encounter next is the work of a Russian mathematician

called Eugene Dynkin, who, in 1947, published a paper in which he presented complex

Lie Algebras in the structure we are about to study, as well as invented what we call root

system, fundamental for our present work, and the Dynkin diagrams, that enable us to

visualize algebras in a very intuitive way (DYNKIN, 1947). Just like we have done for the

case of SU(2), it is by means of the root system of a semisimple Lie Algebra that we are

able to describe the effect of the lowering and raising operators of the group’s algebra on

the eigenvalues (quantum numbers) of the diagonal generators, and provide geometrical

interpretation of the commutation relations.

1 After the Norwegian mathematician Sophus Lie.
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At this point, we are almost ready to develop the knowledge necessary to comprehend

our library in its full glory. Before going ahead, though, we should clarify the concept of

semisimple Lie Algebra just mentioned. We say a Lie Algebra is semisimple when it is

the direct sum of simple Lie Algebras, meaning the algebras of simple Lie Groups. The

latter are, in turn, groups that do not possess a continuous invariant subgroup. Finally, an

invariant subgroup, a, is a subgroup of G such that the action of the elements of G on its

elements does not take them out of a.

2.3.1 The Cartan-Weyl Base

After finding the commutation relation between the generators of a group, like Eqs.

(5) and (7), which is the standard form of the algebra associated to it, it is always possible

to make a base transition by means of a linear combination of the generators.

What is important is the fact that, for any basis, the commutation relation between

the generators may be written in the following form ((DYNKIN, 1947), (DYNKIN, 1946),

(THOLE, 2019)):

[Ĵi, Ĵj] =
n∑
i=1

Ck
ijĴk, (28)

where n is the dimension of G and Ck
ij are the so called structure constants which, locally,

determine G completely.

It is always possible, then, to write the algebra in a basis such that it contains the

the largest possible number of generators commuting with each other, or, in other words,

all the simultaneously diagonalizable generators - or, yet, the maximal abelian subalgebra.

We call that the Cartan subalgebra of the G. The cardinality of the Cartan subalgebra, l,

corresponds to the rank of the group - which is analog to the notion of dimension of a

vector space - and that also means the maximum amount of structure constants equal to 0

for that algebra. The rest of the non-zero structure constants are going to play a very

crucial role in the development of our work, receiving the special name of roots of the

algebra.

Said basis is called Cartan-Weyl basis and, in order to construct it, we start with the

Cartan subalgebra:

[Ĥi, Ĥj] = 0; i, j = 1, 2, 3..., l, (29)

where Ĥi have act like weight operators.

Than we demand the other generators, to which we will refer as Êα to respect the

following commutation relation:

[Ĥi, Êα] = αiÊα; i, j = 1, 2, 3..., l, (30)
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where the weight of the operators, the αi are the contravariant components of a vector, ~α,

in an l-dimensional space, called root vector. It is important to point out that the Eα act

as the step operators we defined for SU(2) (GEORGI, 1999).

For the algebra to be complete, we need two more commutation relations, that can be

obtained from the first two.

By taking the hermitian conjugate of (30), we have:

[Ĥi, Êα]† = −αiÊ†α, (31)

meaning E†α = E−α. And we interpret Eα as a raising and E−α as a lowering operator.

Now, the generators of the algebra written in this basis still respect the Jacobi identity

(BRIAN, 2015). So we have that

[Ĥi, [Êα, Ê−α]] = −[Êα, [Ê−α, Ĥi]]− [Ê−α, [Ĥi, Êα]] = 0, (32)

meaning [Eα, E−α] is a generator of the Cartan subalgebra, then is might be written as a

linear combination of the Ĥi:

[Êα, Ê−α] =
l∑

i=1

αiĤi = ~α · ~H. (33)

By means of the Jacobi identity again, we have also that

[Ĥi, [Êα, Êβ]] = −[Êα, [Êβ, Ĥi]]− [Êβ, [Ĥi, Êα]] = (αi + βi)[Êα, Êβ] = NαβÊα+β, (34)

where α + β 6= 0 and Nαβ if α + β is not a root.

Finally, we conclude that an algebra written in the Cartan-Weyl basis has the general

form 2:

[Êα, Êβ] = NαβÊα+β, α 6= β; (35)

[Êα, Ê−α] = αiHi; (36)

[Ĥi, Êα] = αiÊα; (37)

[Ĥi, Ĥj] = 0. (38)

It should be clear that this way of writing the algebra is completely analogous to the

algebras of SO(3) and SU(2) we have seen above, just written in a different base. In this

language, operators like Ĵ2 receive a new denomination. One characteristic that renders

it useful in SU(2) is the fact that it commutes with all components of Ĵ , or, in other

2 The reader may find a rich derivation of all that algebra in (JACOBSON, 1979) and (THOLE, 2019)
or, in more straightforward manner, in (GREINER; MüLLER, 1994).

9



words, with all generators of the group. Operators with that property are called Casimir

operators, and their number in a group corresponds to its rank.

Being able to write the algebra in the above fashion is advantageous because then the

Casimir operators together with the weight operators form a commuting set of hermitian

operators and, as such, there are states that can be defined with respect to them and used

to define quantum numbers. Also, the manner in which we defined and utilized the step

operators in SU(2) can now be reproduced for more complex algebras.

2.3.2 Graphical Representation of Root Vectors

Since the roots of the algebras written in the Cartan-Weyl basis are vectors, we are

able to define the scalar product between them:

(α, β) = αiβi. (39)

Then, follow three important consequences ((DYNKIN, 1947), (DYNKIN, 1946)), that

I present without proof 3:

1. If α and β are roots, then 2(α, β)/(α, α) is an integer and β − 2(α, β)/(α, α) is also

a root.

2. If α is a root vector, then α, 0 and −α are the only integer multiples of α that are

also root vectors.

3. A root series based on α which contains another root β consists of no more than

four roots, satisfying 2(α, β)/(α, α) = 0,±1,±2,±3.

From what is stated above, if we draw vectors corresponding to each root, an l-

dimensional diagram is built and it is unique for each algebra, therefore an useful way of

visualizing quantum numbers.

Still, as a consequence of what has been stated, it can be shown that the angle between

those vectors might only be φ = 0◦, 30◦, 45◦, 60◦ and 90◦ (CARTER, 2005).

It is also easy to show the connection between those angles and the ratios of the roots

α and β4, (α, α)/(β, β)((CARTER, 2005), (GEORGI, 1999)):

φ = 30◦,
(α, α)

(β, β)
= 3; φ = 45◦,

(α, α)

(β, β)
= 2;

φ = 60◦,
(α, α)

(β, β)
= 1; φ = 90◦,

(α, α)

(β, β)
: not enough information to know.

Some graphics generated by our library can be seen in Figs. 1, 2 and 3. Those figures

are important because the irreps they represent are going to appear again in other examples

along the text.
3 The reader may find the whole development of those properties in (CARTER, 2005), or (GREINER;

MüLLER, 1994)
4 Here, care must be taken to the fact that the shorter root is chosen to be β.
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Figure 1 – Diagram for 3 of SU(3) in quantum number space.

Figure 2 – Diagram for 3̄ of SU(3) in quantum number space.
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Figure 3 – Diagram for 8 of SU(3) in quantum number space.

2.3.3 Dynkin Diagrams

Dynkin realized that all the information about an algebra can be retrieved from a

small subset of its root vectors, what he called the simple roots. And it is possible to build

a diagram representing them, which we call today a Dynkin diagram, from which is easy

to deduce the angles between the positive roots, as well as the ratio between their lengths.

In order to define a simple root then (which is a definition depending on the basis

choice), we need first to define what is a positive root, which is a root whose first non-

negative coordinate, in that basis, is positive. Now, we say that a root is simple if it is not

the sum of two positive roots.

There are also three conditions regarding simple roots, that, again, I present without

proof ((CARTER, 2005),(GREINER; MüLLER, 1994), (THOLE, 2019)):

1. If α and β are simple roots, α− β is not a simple root.

2. If α and β are simple roots, 2(α, β)/(α, α) = −p, where p ∈ Z+.

3. The angles between two simple roots might only be 90◦, 120◦, 135◦ or 150◦

If (β, β) ≤ (α, α), it follows:

φ = 120◦,
(α, α)

(β, β)
= 1; φ = 135◦,

(α, α)

(β, β)
= 2;

φ = 150◦,
(α, α)

(β, β)
= 3; φ = 90◦,

(α, α)

(β, β)
: not enough information to know.

Dynkin prescribed that in the diagram, the simple roots are represented by circles

connected by one, two or three lines in case the angles between them are 120◦, 135◦
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or 150◦ respectively, while orthogonal roots are disconnected. The shortest root vec-

tors are represented by filled circles, as opposed to the unfilled ones regarding the largest

vectors. Consequently, each algebra is uniquely represented as we are able to see in Table 15:

Cartan’s Group Dynkin
Notation Diagram

Al SU(l + 1)

Bl SO(2l + 1)

Cl Sp(2l)

Dl SO(2l)

G2 G2

F4 F4

E6 E6

E7 E7

E8 E8

Table 1 – Dynkin diagram for classical and exceptional Lie Algebras.

5 Other connected diagrams are not possible.
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2.3.4 Cartan Matrices

Now it has come the time to talk about the most fundamental object to our library.

To each algebra it is possible to relate a matrix, called Cartan Matrix, containing pretty

much the same information as in the Dynkin diagrams (CARTER, 2005). Therefore, upon

having one, the other may be obtained.

The elements of the Cartan matrix are given by:

Aij = 2
(αi, αj)

(αi, αi)
, (40)

where αi are simple roots.

The usage of our library will typically start with the construction of a group based on

the respective Cartan Matrix, from which all information about the algebra is generated.

I reckon we have already established enough theoretical background to move on and

present the library already. I am going to treat topics like the construction of irreducible

representations, or irreps, along with their dimensions and their classification accordingly;

products of irreps; symmetry breaking and the creation of diagrams containing information

about the algebras. Besides, I am going to illustrate each point with examples of how the

library works. The subject is going to be developed in a way to prepare the reader to

follow along a practical application of the library and its tools, which is going to involve

symmetry breaking of groups larger then SU(3)⊗SU(2) to try and fit the Standard Model

inside a possible candidate for extensions of the theory.

3 Presentation of the Library

Here I illustrate the underlying reasoning by which some of the main capabilities

possessed by the library have been developed. I do not have the pretension of writing a

manual, since I do not want to show how to use the library, but how it actually produces

the results it is able to generate.

That being said, I mean to cover only part of the vast endeavor that comprehends the

library, for the rest of its functionalities are all built upon what I am about to expose. In

the appendices, the reader find all the methods the library possesses and the comparison

of its performance with a similar library found in the literature.

3.1 Generating Dynkin Diagrams

We have already seen that there are conditions respected by the simple roots of a

semisimple Lie Algebra ((CARTER, 2005), (THOLE, 2019)), and that taking them in

consideration, Dynkin proposed the construction of the diagrams now known by his name

(DYNKIN, 1946).
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I am going to use the same conditions to work out an example of how the library builds

the referred diagram from a given Cartan Matrix. So far I have used SU(n) as example

whenever one was given, but the diagrams corresponding to those algebras are rather too

simple (see Table 1). Therefore, it might be interesting to work on the example of F4’s

algebra, whose Cartan Matrix is the following:

Aij =


2 −1 0 0

−1 2 −2 0

0 −1 2 −1

0 0 −1 2

 (41)

Since A02 = A03 = 0 in (41), we gather (α0, α2) = (α0, α3) = 0, meaning those roots

are orthogonal to each other, so they are not connected in the diagram.

Furthermore, since A01 = A10 = −1, it means that

A01

A10

=
(α1, α1)

(α0, α0)
= 1, (42)

where Eq. (40) was used.

Therefore, the angle between α0 and α1 is 120◦ and, by the rules proposed by Dynkin,

the related circles should be connected by one line only. Equation (42) also implies that

α0 and α1 have the same length.

Similarly, from (41) also we have that

A12

A21

=
(α2, α2)

(α1, α1)
= 2, (43)

meaning the angle between α1 and α2 is 135◦, and the corresponding circles should be

connected by two lines. Also, the last result points out α1 has the shortest length compared

with α2, and the corresponding circle must be filled, while the other remains unfilled.

Consequently, the circle bound to α0 is also filled.

By the similar reasoning, α2 and α3 have the same length and the circle corresponding

to α3 must be unfilled as well. The resulting diagram can be seen in Figure 4.

Figure 4 – Dynkin diagram for the algebra of F4.
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The library is also capable of producing Dynkin diagrams for groups whose symmetry

has been broken, and we come back the issue later, when we will see that it makes the

library really useful to work with GUTS.

3.2 Building Irreps

In Quantum Mechanics, we are used to the concept of multiplet, consisting of states

defined by the eigenvalues of some observables appropriate to define quantum number.

Also, by means of the step operators, one is able to “navigate” between the states belonging

to the multiplet, but no state outside the multiplet can be accessed by their action. The

notion of multiplet can be extended for more complex algebras, and henceforth, we are

going to regard it as an irreducible representation of an algebra, or irrep.

The basis vectors |u〉 of an irrep are classified by their eigenvalues with respect to the

operators Hi of the Cartan subalgebra (SLANSKY, 1981):

Hi|u〉 = λi(u)|u〉. (44)

We call the weight of a state the vector

Λ(u) = (λ1(u), ..., λl(u)), (45)

where l is the rank of the Lie algebra.

We can express the weights in terms of the simple roots of the algebra ((BOER,

2021/22), (SLANSKY, 1981)):

λ =
l∑

i=1

µiαi; µi ∈ Q. (46)

We can also define an ordering relation between weight vectors: we say λ is greater

than λ′ if the first non-zero λi−λ′i, i = 1, 2..., N is positive. As such we uniquely determine

a maximal weight, Λmax for each irrep, with the properties:

1. Λmax is non-degenerate;

2. There is a one-to-one correspondence between Λmax and the corresponding irrep.

It is important to point out that in (45), the λ’s correspond to the quantum numbers

of the irrep. Now, in order to make them useful for our purposes, we must write them in

the so called Dynkin basis, where, for each Λ, its components in this form are ((GREINER;

MüLLER, 1994), (THOLE, 2019)) the following:

ai =
2(λ, αi)

(αi, αi)
. (47)
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Now, it is easy to see that, from the definition above, the ai’s are all integers, turning

the calculations easier. As an example, a triplet of SU(3), in the Dynkin basis, is (1, 0) or

(0, 1).

Now I am able to illustrate, by means of examples, how the library builds irreps based

on the facts above mentioned.

3.2.1 An Algorithmic Approach

What I am going to present is an algorithmic procedure, for that is how the library

works. We start by choosing the group with which we want to work and the maximal

weight of the irrep we want to construct. I say it might be interesting to build the irrep for

Λmax = (1, 0, 1), in SU(4), given its algebra is not as simple as the SU(2)’s and SU(3)’s

but still not so complex to the point of turning the following calculations too absorbing.

To begin with, we need the Cartan matrix of SU(4), which can be easily deduced from

the corresponding Dynkin diagram (Table 1). However, since our library is able to provide

the Cartan matrix for any Lie group, I am going to skip ahead and start from the point

where said matrix is given:

Aij =

 2 −1 0

−1 2 −1

0 −1 2

 (48)

Now, the lines of the Cartan matrix coincide with the simple roots of the algebra

written in the Dynking basis, and that is a powerful consequence of what we just discussed

above. Therefore, we get, as simple roots of SU(4), in said basis, the following:

α0 = (2,−1, 0); α1 = (−1, 2,−1); α2 = (0,−1, 2). (49)

Now, from Λmax = (1, 0, 1) we can “go down” subtracting α0, α1 or α2 in the correct

fashion:

• since the first element of Λmax is ≥ 0 and equal to 1, we subtract α0 from Λmax once

and the resulting vector is a root;

• since the second element is 0, we cannot subtract α1 from Λmax;

• since the third element is again ≥ 0 and equal to 1, we subtract α2 from Λmax once

and the resulting vector is a root.

We repeat the process for each root arising from the last step till the point where no

positive root is produced 6. The result of the whole process is shown in the Figure 5,

which is a Hasse diagram generated by our very library.

We should now attend to two facts:
6 If any element of Λmax were greater than 1, one should subtract the convenient simple root (α0, α1 or

α2) an amount of times equal to the integer element even if the corresponding element in an resulting
root along the way was ≤ 0.
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Figure 5 – Irreducible representation of dimension 15 in SU(4).

1. The root with weight (−1, 2,−1) has been produced twice in the second step (once

for each root obtained in the first round of subtractions), as well as (1,−1,−1),

(−1,−1, 1) and (−1, 0,−1) later on, but it does not necessarily mean the states

in question are degenerate, although they might be. Similarly, (0, 0, 0) has been

obtained three times, but has not necessarily multiplicity 3. We will turn back to

this fact later.

2. Since every element of the resulting root in the third step is 0, we could only go on

because there were elements equal to 2 in the roots7 from the step before, so we get

the right to evolve one more step despite.

Remains the problem of determining the multiplicity of each obtained root, and, for

that matter, one might use both the methods furnished next.

3.2.2 Multiplicity of Simple Roots Inside Irreps

3.2.2.1 Freudenthal’s formula

Let R contain the roots of the algebra in question, then it is valid the following

recurrence formula, called Freudenthal’s formula (BERTRAM, 1959):

((Λmax + δ,Λmax + δ)− (Λ′ + δ,Λ′ + δ))nΛ′ = 2
∑

α∈R;α≥0

∞∑
k=1

nΛ′+kα(Λ′ + kα, α), (50)

7 Here I interchange the words weight and root when talking about irreps, for we do not actually need
to distinguish both concepts in our scope.
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where δ =
∑

α∈R;α≥0 α/2 and nΛ = 0 if Λ is not a weight of the representation. In addition,

for any Λ′ 6= Λmax, nΛ′ 6= 0. Note also, that nΛmax = 1, always.

There is still another, much easier way of determining the multiplicity of the roots:

observing the symmetry associated to the roots and their reflections, and we see more

details below.

3.2.2.2 The Weyl Orthogonal Group

From Figure 5 we gather the diagram is provided with symmetry and, based only on

that observation, we can determine if the number of ways each root was generated while

building the irrep corresponds or not to its multiplicity.

Before going on, we should remember that, as exposed earlier, in a root system R for

each α ∈ R, β − 2α (α,β)
α,α

is also a root (β ∈ R), which now we recognize as a reflection of

Sα about the hyperplane perpendicular to it. We call the Weyl group, W , the subgroup

formed by all the reflections Sα in R (JACOBSON, 1979).

Now, given the symmetry of α and Sα, we know that they should have the same

multiplicity. Then, if we look to the roots α = (−1, 2,−1) and Sα = (1,−2, 1) we see that

the latter has multiplicity 1, thus the former should also be non-degenerate. As another

example, if we compare the roots (1, 0, 1) ans (−1, 0,−1), we see that the latter should

also be non-degenerate, for the former has multiplicity 1 as well.

After all we should conclude that the only root that can have multiplicity greater then

1 is (0, 0, 0) and, as already pointed out in Fig. 5, it is three times degenerate.

Finally, counting up all the roots in the irrep according to their multiplicity, we conclude

that its dimension is 15.

Before going on, it is important to say that our library is able to calculate the multiplicity

of the roots in a irrep by means of both methods discussed above.

3.3 Dimension of an Irrep

It is not necessary to build the irrep to know its dimension given the highest weight,
~Λmax, by means of the Weyl dimension formula:

dim(~Λmax) =
∏
α+

(α+, ~Λmax + ~δ)

(α+, ~δ)
, (51)

where I use α+ to refer to a positive root and ~δ = (1, 1, ..., 1) (with the same number of

components as the given weight).

3.3.1 The Nomenclature Problem

It is possible to have more than one irrep with the same dimension. One example is the

3 and 3̄ of SU(3), where 3̄ is the conjugate of 3. But that is still not the only possibility
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of confusion the library is going to find along the way, for there are irreps with the same

dimension in an algebra which are not the conjugate of each other.

For solving that issue, we define an index to the irrep, given as follows:

Ind =
dim(~Λmax)

ord(G)
~Λmax · (~Λmax + 2~δ), (52)

where ord(G) is the order of the group, meaning the number of elements present in it.

If both the dimension and index are the same for two different Λmax, the irreps differ

by congruency number, c, which is actually a single number for all algebras we have here

encountered except for Dl, being a two component vector in this case. Then, given an

irrep α, its ”congruency number” is given by ((MCKAY, 1981), (LEMIRE; PATERA,

1980)):

Al : c =
l∑

k=1

kαk(modl + 1). (53)

Bl : c = αl(mod2). (54)

Cl : c =

l−1
2∑

k=0

α2k+1(mod2). (55)

Dl : c =

(
αn−1 + αn(mod2)∑ l−3

2
k=0 α2k+1 + (l − 2)αl−1 + lαl(mod4)

)
. (56)

E6 : c = α1 − α2 + α4 − α5(mod3). (57)

E7 : c = α4 − α6 + α7(mod2). (58)

E8, F4, G2 : c = 0. (59)

As an example, all the irreps whose Λmax are following have dimension 20: (0, 2, 0),

(1, 1, 0), (0, 1, 1), (3, 0, 0), (0, 0, 3).

From which fololows:

• The irrep associated with (0, 2, 0) has index 16.000000 and congruence class 0.

• The irrep associated with (1, 1, 0) has index 13.000000 and congruence class 3.

• The irrep associated with (0, 1, 1) has index 13.000000 and congruence class 1.

• The irrep associated with (3, 0, 0) has index 21.000000 and congruence class 3.

• The irrep associated with (0, 0, 3) has index 21.000000 and congruence class 1.
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Figure 6 – Hasse diagram for 3 in SU(3).

Now, the weights (1, 1, 0) and (0, 1, 1) have the lowest indices among all irreps above,

therefore they are not primed in their names. Next is the self conjugated irrep associated

with the label (0, 2, 0) it receives, therefore, a single prime. Finally, irreps with the third

highest index receive two primes. And the prime counts would keep increasing were there

more irreps of dimension 20. They are then expressed, respectively, as 20, 2̄0, 20′, 20′′, ¯20′′.

3.4 Multiplication of Irreps

The evident majority of systems in nature are made of multiple particles. Then, in

the case of coupling between the particles, the individual quantum numbers might not be

conserved, and we are not able to work with the states corresponding to the individual

parts. In that case, we might want to work with the space generated from the product

between irreps, which is reducible.

Again I am going to present an algorithmic approach in order to illustrate how the

library works out the tensor product between irreps. Let us then go about the product

3⊗ 3 in SU(3) 8.

We start by building the irreps we want to multiply, the way we have already learned.

In our case, both are the same, so we can focus on the algorithm. The Hasse diagram for

the 3 in SU(3) can be seen in Figure 6.

Next, we sum term by term each root in the first irrep to each root in the second.

In sequence, we search for the highest positive weight in the obtained list and build the

8 In general, the user don’t need to know the dimensions of the irreps being multiplied, only the maximum
weights.

21



Figure 7 – Hasse diagram for 6̄ in SU(3).

corresponding irrep. After eliminating from the list the weights belonging to that irrep,

we repeat the process until the whole list is spanned.

In our example, the first step gives (2, 0), (0, 1), (1,−1), (0, 1), (−2, 2), (−1, 0), (1,−1),

(−1, 0) and (0,−2). The highest weight in the list is (2, 0), whose corresponding irrep can

be seen in Figure 7, and has dimension 6.

Among the weights left, the only positive is (0, 1), which is clearly a 3̄ (mind that the

maximum weight of 3 is (1, 0)), and obviously the two weights left belong to it.

Finally, we should conclude that9, in SU(3), 3⊗ 3 = 6̄⊕ 3̄.

3.5 Symmetry Breaking

It is important to point out that the Standard Model of Particle Physics, SM, is built

in terms of Lie Algebras (PESKIN; SCHROEDER, 1995), meaning all fundamental forces

except gravity are underlined by means of symmetry groups, more specifically, SU(3),

SU(2) and U(1). These correspond, respectively, to the strong, weak and electromagnetic

forces, where each existing particle corresponds to a representation of those groups.

9 In the majority of the literature, this result is presented as 3 ⊗ 3 = 6 ⊕ 3̄, because of a historical
convention (see (ZEE, 1982)) that we do not obey in the library.
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The SM is the most successful theory for the description of elementary particles

and their interactions mankind has developed so far, but there are limitations. The

model presents 19 free parameters (25 if we take in consideration the masses of neutrinos

and the parameters associated to cross-generational mixing between them) not derived

from principles, but which have been introduced so the model agrees with observation

(THOMSON, 2013).

Among other reasons, that is enough to motivate the search for groups with larger

symmetries then the Standard Model from which SU(3)⊗ SU(2)⊗ U(1) emerges under

symmetry breaking. Some of the most explored candidates as symmetry group for the so

called GUT’s - Grand Unified Theories - are the classical Lie Groups SU(5) (GEORGI;

GLASHOW, 1974) and the SO(10) (HEINEMEYER; MONDRAGON; ZOUPANOS,

2012), (FRITZSCH; MINKOWSKI, 1975) and the exceptional Lie Group E6 (GURSEY

P. RAMOND, 1976).

Even inside the Standard Model, mechanisms of spontaneous symmetry braking plays

important role in giving the masses of the particles (HIGGS, 1964). Because of the above

reasons, one very useful feature of our library its set of tools developed to deal with

symmetry breaking. It is able to generate symmetry breaking following two different paths:

by eliminating one node from do Dynkin diagram for the algebra we are working with

or by eliminating a node from the corresponding extended Dynkin diagram. The first

breaks the original algebra into non-semisimple subalgebras, while the second breaks it

into semisimple subalgebras.

We have already seen that every semisimple Lie Algebra decomposes as a direct sum

of simple Lie algebras (BRIAN, 2015). Now, a non-semisimple Lie algebra is a semisimple

Lie algebra times U(1).

3.5.1 Decomposing Algebras into Non-Semisimple Subalgebras

In this case, we start from the Dynkin diagram for the algebra whose symmetry we

want to break. In order to promote symmetry breaking, we need to chose one of the nodes

in the diagram to be eliminated. The result is two or more disconnected Dynkin diagrams

representing semisimple Lie algebras, while the eliminated dot represents U(1).

An interesting example is breaking the symmetry of SU(5) by eliminating the dot in

the Dynking diagram corresponding to α2 (see Table 1 for the A4’s diagram). The diagram

depicting the consequences of the breaking can be seen in 8, from which we gather SU(5)

breaks into SU(3)⊗ SU(2)⊗ U(1).

3.5.2 Decomposing Algebras into Semisimple Lie Algebras

In this case, before the breaking, we introduce another node in the Dynkin diagram,

which depicts, then, the so-called extended Lie algebra. This is generating by adding the
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Figure 8 – Dynkin diagram for a non-semisimple Lie algebra emerging from breaking the
symmetry of SU(5).

negative of the highest root, which is the weight corresponding to the adjoint representation

of the same algebra, to the set of the simple roots of the original algebra.

An adjoint representation is a map from the group on the general linear group, or the

the group of invertible matrices, or yet a representation with dimension of the group, given

by linear transformations on the Lie algebra. The reader may find the highest roots for

some of the algebras we are dealing with in Table 2.

Algebra Highest Root (γ)

A4 (1, 0, 0 1)
B4 (0, 1, 0, 0)
C4 (2, 0, 0, 0)
D4 (0, 1, 0, 0)
E6 (0, 0, 0, 0, 0, 1)
E7 (1, 0, 0, 0, 0, 0, 0)
E8 (0, 0, 0, 0, 0, 0, 1, 0)
F4 (1, 0, 0, 0)
G2 (1, 0)

Table 2 – Highest root for some representative algebras.

All the extended Dynkin diagrams for the algebras of Table 1 can be found in Table 3.

Note that breaking the symmetry of the extended SU(n) algebra gives back the same

algebra. So, as an example, breaking the symmetry of the extended algebra for E6 by

means of eliminating α3, generates the diagram in Figure 9, where we see two disconnected

Dynkin diagrams corresponding to SU(6) and SU(2), so E6 breaks into SU(6)⊗ SU(2).

3.5.3 Breaking Symmetry of Irreps

With the purpose of studying the consequence of symmetry breaking on the irreps of

an algebra, I am going to use the SU(4) example once more, for we are already familiar

with it. Now, say we chose to eliminate the node corresponding to α2 (see Table 1 for A3),

then the corresponding Dynkin diagram can be seen in Figure 10.

24



Original Extended Dynkin
Algebra Diagram

Al

Bl

Cl

Dl

G2

F4

E6

E7

E8

Table 3 – Dynkin diagram for extended Lie Algebras.
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Figure 9 – E6 → SU(6)⊗ SU(2).

Figure 10 – SU(4) group after symmetry breaking. Effectively, SU(3)⊗ U(1).

As one might have expected, we end up with two connected nodes representing SU(3)
10.

Considering the consequences suffered by the irreps of the original group, I take the

one with maximal weight (1, 0, 1) as example once more - a 15 in SU(4). Obviously, we

can anticipate that it breaks into a sum of irreps inside SU(3), but we need to develop a

way of determining the correct SU(3) multiplets that will emerge from the process. We

have already encountered examples of Hasse diagrams regarding irreps created by our

library, and I have already covered the path taken in order to produce them (see Figure

5). Anyhow, there is still the possibility of producing the Hasse diagram depicting the

weights from the irreps that get disconnected after breaking the underlying symmetry.

Since we chose to risk α2 from the Dynkin diagram, we should also risk the corresponding

element in each weight in the original irrep. Aiming to determine the resulting SU(3)

multiplets, every arrow departing from the roots in Figure 5 as consequence of the

subtraction of α2 must be eliminated. Then it will be created isolated subsets of roots,

10 The fact that SU(3) is multiplied by U(1) may be omitted, but the information is kept by the library
so it might be used in order to break the symmetry in the irreps.
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Figure 11 – Symmetry breaking in 15 of SU(4).

each corresponding to an irrep in SU(3), as one can see in Figure 11.

We should interpret Figure 10 in the following manner: in red we have the SU(3) irrep

whose maximal weight is (1, 0), therefore a 3; in pink we have the SU(3) irrep whose

maximal weight is (0, 1), therefore a 3̄; in green we have the SU(3) irrep whose maximal

weight is 1, 1, therefore an 8. But care must be taken, for the root (0, 0) happens in

the SU(3)’s 8 only twice, so the third (0, 0) corresponds to a singlet, or an 1 of SU(3).

Consequently, the green section in the figure corresponds to 8⊕ 1. Finally, we conclude

that the 15 in SU(4) breaks into 3⊕ 8⊕ 1⊕ 3̄ in SU(3).

Later we are going to encounter one more way the library permits the user to depict

the same process of symmetry breaking in irreps. First, we need to talk about diagrams

representing irreps in the quantum number space.

3.6 Multiplet Diagrams in Quantum Number Space

We have also seen already examples of diagrams regarding irreps in the quantum

number space (Figs. 1, 2, 3). Now we are going to explore the path the library takes in

order to construct them.

First, the user must provide the library with a list of vectors in the Euclidean space for

some groups’s root vectors. That process is expected to be automatized in future versions

of the library. For now, we must keep in mind the Dynkin diagram for the group to which

the irrep belongs.
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As an example, I am going to cover the diagram for the 8 in SU(3) (see Figure 3).

From the Cartan matrix for this group (or from the corresponding Dynkin diagram) we

able to identify the ratio, and, consequently, the angle, between the chosen vectors. From

Table 1 we see that, in this case, both have the same length and the angle between them

is 120◦. So we can chose the first as α = (1, 0), which makes the second β = (−0.5,
√

3/2).

Given those vectors, then the library makes combinations between them: from the

rules exposed in Section 2.3.2 we have that, besides the given vectors, α + β is a root, as

well as −α, −β and −(α + β). The linear combination that generates the (0, 0) must be

the trivial one (0α + 0β), or, otherwise, α and β would not be linear independent. Since

the library is able to calculate the dimension of each root, that is used here to decide that

the (0, 0) happens twice, then completing the diagram.

It is easy to extrapolate the described method for plots in 3 dimensions. As an example,

see Fig. 12, depicting the 15 in SU(4).

Figure 12 – Diagram for 15 of SU(4) in quantum number space.

It is important to realize that the painted planes in the Figure 12 correspond to the 3,

the 3̄ and the 8 in SU(3), so it is one more way to understand how the smaller group fits

inside the other and one more powerful pictorial way to understand the consequences of

the symmetry breaking we discussed above.

4 Applying to Real Life Problems

A complete demonstration of the powers our library delivers could not be made without

a proper demonstration of its functionalities in an practical problem.
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I am going to show how we are able to retrieve all particles from the SM from the

larger symmetry group SO(10). When it comes to a Grand Unified Theory, the particles

that do not couple in the subalgebras contained in the larger group may be part of an

irrep in the latter, for they are subject to one unified force in intense energy regimes. So,

for the considered GUT, all the 15 fermions of a generation are in the same 16-dimensional

irrep of SO(10).

In the SM, the generators of the groups SU(3), SU(2) and U(1) are bosonic particles(the

8 gluons mediators of the strong interaction, the W± and Z0, mediators of the weak

interaction and the photon, carrier of the electromagnetic force), and, therefore, the way

the fermions interact via those bosons depends on their representations. For example,

the left-handed quarks up and down are triplets of the SU(3) but doublets of the SU(2),

while right-handed electrons are singlets in both groups. Before going on, then, we should

take a look at Table 4, containing the 15 fermions of the SM of the first generation.

Fermion Representation Hypercharge

Left-handed quarks 3SU(3) ⊗ 2SU(2) 1/3
Left-handed leptons 1SU(3) ⊗ 2SU(2) -1

Right-handed up quark 3̄SU(3) ⊗ 1SU(2) 4/3
Right-handed down quark 3̄SU(3) ⊗ 1SU(2) -2/3

Right-handed electron 1SU(3) ⊗ 1SU(2) -2

Table 4 – The fermions of the Standard Model.

Now, the reader should also remember the U(1) is always present when we eliminate a

dot from a Dynkin diagram in order to promote the symmetry breaking. The physical

meaning of such singlet varies from GUT to GUT and, sometimes, is interpreted as a

right-handed neutrino ((CHU; SMIRNOV, 2016), (THOLE, 2019)).

In order to use the library for our purposes, first we create the SO(10) group:

>>> from PyLA.LieAlgebras import *

>>> so10 = Group("SO10")

If we then eliminate the node corresponding to α4 from the Dynkin diagram for SO(10),

we get SU(5)⊗ U(1) (see Fig. 13):

>>> from PyLA.drawDiagrams import *

>>> so10.breakSym(4)

[< Group SU(5) or A4 >]

>>> fig = drawDynkinDiagramBrokenSym(so10)

>>> fig.savefig("so10cross.png")
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Figure 13 – SO(10)→ SU(5).

We also want to investigate the symmetry breaking in the irrep with dimension 16.

First, then, we use search for the possible labels corresponding to that dimension, then we

generate the irrep and break the symmetry (see Fig. 14):

>>>labs = findLabels(16, so10)

[[0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]

>>> irp = so10.irrep(labs[0])

>>> print irp

| 16 >

>>> irp.breakSym(4)

[(| 5 bar >, 0.75), (| 10 >, -0.25), (| 1 (cc) >, -1.25)]

>>> fig = drawIrrepBrokenDiagram(irp, frame =False)

>>> fig.savefig("16so10broken.png")

We get as result that the 16 of SO(10) breaks into three irreps in SU(5):

16→ 10⊕ 5̄⊕ 1.

Now we need to find the path by which we break SU(5) → SU(3) ⊗ SU(2). Using

the library, that can even be done by try and error, but it is not hard to grasp, from the

observation of the Dynkin diagram for SU(5) (see Table 1), that the elimination of the α2

will break it into SU(3) ⊗ SU(2) ⊗ U(1). Anyhow, this has already been done in 3.5.1

(see Figure 8).

After building the SU(5) group with the library, then we should build the irreps with

dimensions 5 and 10 and break their symmetry:

>>> su5 = Group("SU5")

>>> su5.breakSym(2) #Not necessary, but useful.

[< Group SU(3) or A2 >, < Group SU(2) or A1 >]

>>>

>>> labs1 = findLabels(5, su5)

>>> print labs1

[[1, 0, 0, 0], [0, 0, 0, 1]]
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Figure 14 – 16→ 10⊕ 5̄⊕ 1.

>>> print su5.irrep(labs1[1])

| 5 bar >

>>> irp1 = su5.irrep(labs1[1])

>>>

>>> labs2 = findLabels(10, su5)

>>> print labs2

[[0, 1, 0, 0], [0, 0, 1, 0]]

>>> print su5.irrep(labs2[0])

| 10 >

>>> irp2 = su5.irrep(labs2[0])

>>>

>>> irp1.breakSym(2)

[(| 1 (cc) >, | 2 (cc) >, 0.6), (| 3 bar >, | 1 (cc) >, -0.4)]

>>> irp2.breakSym(2)

[(| 3 bar >, | 1 (cc) >, 0.8), (| 3 >, | 2 (cc) >, -0.2),

(| 1 (cc) >, | 1 (cc) >, -1.2)]

>>>

>>> fig1 = drawIrrepBrokenDiagram(irp1, frame=False)

>>> fig1.savefig("5barsu5broken.png")

>>> fig2 = drawIrrepBrokenDiagram(irp2, frame=False)

>>> fig2.savefig("10su5broken.png")
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It is easy to interpret the results by means of the Figures 15 and 16. For example, a

glance at the first permits us to see that, by eliminating the third weight from the highest

root of the 5̄ in SU(5) we end up with the product of irreps with maximum weights (0, 0)

and (1) plus the product of irreps with maximum weights (0, 1) and (0), which are easily

recognizable as a singlet of SU(3) times a doublet of SU(2) plus a triplet of SU(3) times

a singlet of SU(2):

5̄SU(5) → 1SU(3) ⊗ 2SU(2) ⊕ 3̄SU(3) ⊗ 1SU(2). (60)

Similarly, we also have:

10SU(5) → 3̄SU(3) ⊗ 1SU(2) ⊕ 3SU(3) ⊗ 2SU(2) ⊕ 1SU(3) ⊗ 1SU(2). (61)

Figure 15 – 5̄SU(5) → 1SU(3) ⊗ 2SU(2) ⊕ 3̄SU(3) ⊗ 1SU(2).

The information about the hypercharge of each particle is also given by the library

when the symmetry of the irrep is broken, but, because of the vectors I loaded to the group,

its value is multiplied by 0.6. Having that in mind, from Table 4 and Equation (60) we see

that the Left-handed anti-leptons and the right-handed down quark emerge as part of the

same 5-dimensional irrep in the SU(5). Similarly, by means of Equation (61) we gather
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Figure 16 – 10SU(5) → 3̄SU(3) ⊗ 1SU(2) ⊕ 3SU(3) ⊗ 2SU(2) ⊕ 1SU(3) ⊗ 1SU(2).

the 10 in SU(5) breaks into the anti-right-handed electron plus the anti-right-handed up

quark plus the left handed quarks.

5 Conclusions

I have presented an open source library application in Python2 language for calculating

quantities associated to Lie Algebras and their representations for the use in Particle

Physics. It is able to generate group objects from the related Cartan matrix, as well

as Dynkin diagrams; diagrams depicting the multiplets both in 2D and 3D; irreducible

representions, along with their classifications; Weyl reflections; tensor products of irreps;

promoting symmetry breaking between other useful functions.

We have started this project with the idea of using the library to build effective

Lagrangians for bound quarks states, but it has been shown to be specially useful for

dealing with symmetry breaking, therefore, being a great tool for the study of GUTS.

With that in mind, an example of the problem and how it would be treated by means of

the library was illustrated.

For future versions, one expects to implement tools for working with Young tableaux

and calculating Clebsch-Gordan coefficients, as well as translating the code to Python3

language.
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Appendices





1 Library’s Commands List

1.1 Module LieAlgebras

The module also contains three objects:

• Group → Group object type. Contains the structure of a Group.

• Weight → Weight Object Type. Contains a Weight associated with a given group.

• Irrep → Irreducible representation object type. Contains the structure of an Irrep

associated with a given group.

Follow the methods particular to the module:

• hello → Prints ”Hello”in the screen.

• cartanMatrix → Returns the Cartan matrix for a given group.

• combinator → Returns all possible labels with a given sum for a given rank.

• findLabels→ Returns all labels corresponding to irreps of a given dimension for a

given group.

• findLabelsBetween→ Returns all labels corresponding to irreps of dimension inside

a given range for a given group.

• groupStringReader → Identifies the group in a string and prints on screen its

cartan matrix.

1.1.1 The Group type

• Group.roots (method) → returns the list of roots as Weight types.

• Group.positiveRoots (method)→ returns the list of positive roots as Weight types.

• Group.weylVector (method) → returns the weyl vector of the group as a Weight

type.

• Group.rank (attribute) → the group’s rank.

• Group.npRoots (attribute) → number of positive roots in the group.

• Group.scalarP (attribute) → Matrix with the resulting scalar product of the root

vectors.

• Group.show (method)→ prints on screen all computed information about the group.
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• Group.irrep (method) → creates an irreducible representation of the group. Slower

algorithm.

• Group.irrep2 (method)→ creates an irreducible representation of the group. Faster

algorithm (uses weyl reflection.)

• Group.labelsDimension (method) → given a list of Dynking labels, evaluates the

dimension of the corresponding irreducible representation.

• Group.labelsDimensionDbl (method) → same as Group.labelsDimension, but the

result is a double, such that it can evaluate the dimension even if it is bigger than

the maximum possible integer the compiler can deal with.

• Group.breakSym (method) → Breaks the symmetry by removing a node from the

Dynkin diagram. Its input is the node’s number to be removed (between zero and

the group’s rank minus one) and returns a list with the groups the symmetry breaks

into (but ignores the U (1) which is always a factor in such symmetry breakings).

• Group.breakSymExt (method) → Breaks the symmetry by removing a node from

the Dynkin diagram of the extended algebra. Its input is the node’s number to be

removed (between zero and the group’s rank minus one) and returns a list with the

groups the symmetry breaks into.

• Group.broken (attribute) → If the group’s symmetry has been previously broken,

this attribute is an integer indicating the node removed from the corresponding

Dynkin diagram. It is -1 otherwise.

• Group.brokenExt (attribute) → Is 0 or 1 indicating if, when the group symmetry

was broken, it was by removing a node from its usual Dynking diagram or the

extended one.

• Group.brokenOrder (method) → Return the way the roots are ordered when the

symmetry was broken by removing a node from the extended algebra.

• Group.gamma (method) → If the symmetry was broken by removing a node from

the extended algebra, this method returns a Weight object corresponding to the

minimum weight that extends the algebra.

• Group.loadVecs (method) → This method receives a list where each element is a

list with the vector components in Euclidian space for the group’s root vectors. This

information is used latter for computing the weights’ quantum numbers for weights

derived from the group.

• Group.productDecomposition (method) → Given two Irreps, evaluates the maxi-

mum weights resulting in the irrep product.
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• order (attribute) → Group’s order.

• conjW (method) → Returns the dynking label associated to the irrep conjugate to

the one represented by the labels given as argument in the method call.

• indexAndCongru (method)→ Returns the index and congruency class for the dynkin

label entered as argument in the method call.

• latexNameFor (method)→ Returns in latex form the name of the irrep whose labels

are given as argument in the method call.

1.1.2 The Weight type

• Weight.ws (attribute) → Tuple with the list of integers that define the weight.

• Weight.deco (attribute) → Tuple with the coefficients of the decomposition of the

weight in terms of the group’s simple roots.

• Weight.rank (attribute) → Rank of the group to which it belongs.

• Weight.multiplicity (attribute)→ Multiplicity of the weight (is zero if the weight

was not originated from an irreducible representation).

• Weight.group (attribute) → Group to which it belongs.

• Weight.qnumbers (method) → If the group associated to the weight has the root

vectors in Euclidian space loaded to it, this method returns the quantum numbers

(vector resulting from evaluating weight decomposition) associated to it.

• Weight.show (method) → Shows the weight information.

1.1.3 The Irrep type

• Irrep.dimension (attribute) → Dimension of the irreducible representation.

• Irrep.nWs (attribute) → Number of different weights in the irrep. It may be less

than the dimension, since some weights might have multiplicity bigger than one.

• Irrep.group (attribute) → Group to which the irrep belongs.

• Irrep.maxw (attribute) → Tuple with the integers composing the representation

maximum weight.

• Irrep.broken (attribute) → Same as Group.broken, but referring to the irrep.

• Irrep.brokenExt (attribute)→ Same as Irrep.broken, but referring to the extended

algebra.
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• Irrep.weights (method) → Returns a list of the irrep weights.

• Irrep.show (method) → Shows details about the irrep.

• Irrep.links (method) → returns the information on how the irrep was actually

built by the algorithm. The returned list has tuples with three elements, the first is

the weight from where it comes, the second to where it goes and the third through

which simple root it went. This and the method below are important to draw

diagrams, as will be clear latter.

• Irrep.levels (method) → returns a list indicating the level (how many steps from

the maximum weight) each weight in the irrep appeared.

• Irrep.slice (method) → Receives an integer as input and returns a list with lists

of weights, indicating groups of weights that get disconnected if a node is removed

from the corresponding group’s Dynking diagram (if symmetry is broken in such

way).

• Irrep.partition (method) → Returns the partition of weights if symmetry was

previously broken.

• Irrep.breakSym (method) → Receives an integer as input and returns a list with

tuples of irreps of the grups into which the symmetry was broken by removing the

input node.

• Irrep.breakSymExt (method) → Receives an integer as input and returns a list

with tuples of irreps of the grups into which the symmetry was broken by removing

the input node from the group’s extended algebra.

• Irrep.maxWbar (method) → Returns a tuple with the integers corresponding to the

maximum weight of the irrep’s complex conjugate.

• Irrep.OTimes (method) → Multiplies the irrep to another irrep. This method is

usually slower than using the mul (simple multiplication).

• Irrep.productDecomposition (method) → Returns the maximum weights in the

product decomposition of multiplying the irrep by the irrep corresponding to the

maximum weights given.

• Irrep.pow (method) → Takes the irrep to a given power (multiplies it by itself

many times).

• Irrep.isCC → Checks if the irrep is its own complex conjugate.

• Irrep.latexName → Writes in latex form the dimension name of the irrep.

42



1.2 Drawing Diagrams

The package also has a module to draw some diagrams. This module depends on the

matplotlib library for python.

The functions contained in this module are:

• limitingWeights → This function receives an Irrep object as input and returns a

list of its weights that are in the “border” of the irrep (weights that if added to some

of the group’s positive roots will result in weights outside the irrep).

• drawDynkinDiagram → Draws the dynking diagram for a Group object.

• drawDynkinDiagramBrokenSym → Draws the dynking diagram for a Group object

with a node crossed (symmetry broken).

• drawDynkinDiagramBrokenSymExt → Draws the dynking diagram for a Group

object extended algebra with a node crossed (symmetry broken).

• drawIrrepDiagram → Draws the diagram depicting the construction of an irrep.

• drawIrrepBrokenDiagram → Draws the diagram depicting the weights from a irrep

that get disconnected when breaking the underlying symmetry.

• drawMultiplet2D → Draws a two dimensional slice of a multiplet (Irrep’s quantum

numbers).

• drawMultiplet3D→ Draws a three dimensional slice of a multiplet (Irrep’s quantum

numbers).

2 Comparisson With Popular Similar Libraries

Although this library is the first to be build upon Python language, it is not the only

existing library aiming to deal with Lie Algebras. In the literature, one may find similar

applications like, for example, (LEEUWEN; COHEN; LISSER, 1992), (NUTMA, 2009),

(FEGER; KEPHART, 2012) and (FEGER; KEPHART; SASKOWSKI, 2019) (the latter

being a new version of the former).

Every one of the cited libraries, among others, has good reasons to be popular, and

one could find that they have, in effect, been the tool for the writing of many published

papers. But ours, being the first written in Python, is a good innovation, for the language

grows in popularity and is really easy to use. Furthermore, although LIE is also open

source, the others are not.

While SimpLie is free to use, although not open source, LieART, for being an aplication

for Mathematica, is consequently not free to use. It should also be said that the first is
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written in C language, and the second, in Java (therefore being also easy to use with a

nice interface). For that reason, a reserve for the future the comparison of the performance

of this library against LIE’s, since the calculations in ours are also coded in C. This time,

though, I have made the comparison with LieArt.

Bellow I compare the time taken to perform the same operations as in chapter 5

(Benchmarks) of (FEGER; KEPHART; SASKOWSKI, 2019). The results are in tables

5 - 7. In the last column of these tables I show the ratio between the reported time in

the article and the time it took in my computer (Intel Core i5, with 8G RAM). The ratio

fluctuates, but ours is at least more than 100 times faster for high dimensional irreps!

Since I do not know exactly how they perform the operation in their software, I considered

that maybe the construction time for the irrep is also included.

For generating the results, I first found all the possible Dynkin labels corresponding to

a given dimension for an irrep inside a given algebra, then used the irrep.pow method and

found the time taken to calculate the tensor product of the irrep with itself a given number

of times. It is important to say that the irrep.pow method returns only the maximum

weights in the product decomposition (it does not construct the irreps resulting). I report

here also the time our algorithm took to construct each representation. I considered that

maybe the construction time for the irrep is also included, so I also summed to the product

time in our is the result in parenthesis in the tables.

2.1 Calculations for the group E6

2.1.1 Irreps with dimension 27

In Table 5 we see the results for the irreps with dimension 27 of E6. The time taken

for constructing irrep was 0.005627 s. Follow also the results of the calculations.

Power Our Time (with Irrep constr.) [s] LieArt Time [s] LieArt/Our (with Irrep constr.)
2 0.017835 (0.023462) 0.136494 7.653196 (5.817648)
3 0.018531 (0.024158) 0.143171 7.725992 (5.926384)
4 0.061531 (0.067158) 0.436060 7.086854 (6.493048)
5 0.115320 (0.120947) 0.715819 6.207242 (5.918446)
6 0.198395 (0.204022) 1.533490 7.729479 (7.516291)
7 0.507153 (0.512780) 12.996200 25.625796 (25.344583)
8 1.507932 (1.513559) 93.807900 62.209638 (61.978353)

Table 5 – Powers of 27 in E6

272 = 27⊕ 351⊕ 351′

273 = 1⊕ 2(78)⊕ 3(650)⊕ 2925⊕ 3003⊕ 2(5824)

274 = 6(27) ⊕ 3(351
′
) ⊕ 6(351) ⊕ 8(1728) ⊕ 6(7371) ⊕ 6(7722) ⊕ 17550 ⊕ 19305′ ⊕

2(34398)⊕ 3(51975)⊕ 3(54054)
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275 = 15(27) ⊕ 26(351) ⊕ 20(351′) ⊕ 24(1728) ⊕ 30(7371) ⊕ 15(7722) ⊕ 20(17550) ⊕
20(19305)⊕ 34398⊕ 46332⊕ 10(51975)⊕ 10(61425)⊕ 100386⊕ 20(112320)⊕ 4(314496)⊕
4(359424′)⊕ 5(386100)⊕ 5(412776)⊕ 6(494208)

276 = 15(1) ⊕ 65(78) ⊕ 130(650) ⊕ 45(2430) ⊕ 110(2925) ⊕ 50(3003) ⊕ 15(3003) ⊕
80(5824)⊕136(5824)⊕144(34749)⊕43758⊕90(70070)⊕45(78975)⊕90(78975)⊕45(85293)⊕
40(105600)⊕ 40(146432)⊕ 16(252252)⊕ 80(252252)⊕ 15(371800)⊕ 442442⊕ 30(600600)⊕
5(600600)⊕5(812175)⊕45(852930)⊕45(972972)⊕5(1337050)⊕5(1559376)⊕5(1896180)⊕
9(2453814)⊕ 10(2977975)⊕ 9(3007368)⊕ 10(3309696)⊕ 16(4752384)

277 = 210(27)⊕225(351
′
)⊕385(351)⊕630(1728)⊕735(7371)⊕595(7722)⊕525(17550)⊕

105(19305′)⊕300(19305)⊕336(34398)⊕315(46332)⊕735(51975)⊕441(54054)⊕105(61425)⊕
560(112320) ⊕ 504(314496) ⊕ 504(359424) ⊕ 210(386100) ⊕ 71(393822) ⊕ 21(412776) ⊕
21(459459) ⊕ 106(494208) ⊕ 210(579150) ⊕ 105(638820) ⊕ 6(741312) ⊕ 70(853281) ⊕
420(967680)⊕ 210(1123200)⊕ 140(1253070)⊕ 210(1640925)⊕ 1706562⊕ 21(1837836)⊕
210(2088450)⊕ 90(4200768)⊕ 14(4582656)⊕ 15(5553900)⊕ 105(5776056)⊕ 84(6110208)⊕
14(6243237)⊕ 105(6747300)⊕ 15(7528950)⊕ 126(7601958)⊕ 6(8401536)⊕ 14(10378368)⊕
14(14805504)⊕14(16540524)⊕15(17453475)⊕21(17918901)⊕21(19297278)⊕20(19768320)⊕
35(30115800)⊕ 35(34906950′)

278 = 820(27) ⊕ 1435(351′) ⊕ 1960(351) ⊕ 2800(1728) ⊕ 4165(7371) ⊕ 2520(7722) ⊕
3780(17550)⊕ 105(19305

′
)⊕ 3220(19305)⊕ 1316(34398)⊕ 1736(46332)⊕ 3675(51975)⊕

1092(54054)⊕1960(61425)⊕196(100386)⊕5040(112320)⊕4144(314496)⊕2400(359424)⊕
1120(359424′)⊕2660(386100)⊕1260(393822)⊕1652(412776)⊕1260(459459)⊕2856(494208)⊕
421(579150)⊕420(638820)⊕112(741312)⊕2240(967680)⊕2240(1123200)⊕420(1253070)⊕
1345(1640925)⊕238(2088450)⊕1344(2559843)⊕420(3281850)⊕210(3675672)⊕112(4088448)⊕
2688(4200768)⊕840(4582656)⊕20(5501925)⊕420(5553900)⊕1260(5776056)⊕5895396⊕
455(6243237)⊕21(6675669)⊕140(6747300)⊕140(7528950)⊕637(7601958)⊕28(7757100′)⊕
1260(7757100)⊕630(9189180)⊕560(10378368)⊕448(12648636)⊕560(13478400)⊕672(14017536)⊕
140(17918901)⊕28(19297278)⊕14(22007700)⊕140(23629320)⊕28(26702676)⊕272(30115800)⊕
140(30718116)⊕7(32424678)⊕35(36100350)⊕301(37459422)⊕14(41442192)⊕252(46542600)⊕
280(48243195)⊕35(49017150)⊕64(54991872)⊕448(66830400)⊕20(74826180)⊕64(75119616)⊕
21(77026950)⊕28(89791416

′
)⊕42(93459366)⊕35(103169430)⊕56(123803316)⊕56(136547775)⊕

70(138881925)⊕ 70(184864680)⊕ 64(192067200)⊕ 90(219490128)

2.1.2 Irreps with dimension 78

In Table 6 we see the results for the irreps with dimension 78 of E6. The time taken

for constructing irrep was 0.005214 s. Follow also the results of the calculations.

782 = 1⊕ 78⊕ 650⊕ 2430⊕ 2925

783 = 1⊕ 5(78)⊕ 4(650)⊕ 3(2430)⊕ 4(2925)⊕ 2(5824)⊕ 2(5824)⊕ 3(34749)⊕ 43758⊕
70070⊕ 2(105600)
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Power Our Time (with Irrep constr.) [s] LieArt Time [s] LieArt/Our (with Irrep constr.)
2 0.017835 (0.023462) 0.136494 7.653196 (5.817648)
3 0.018531 (0.024158) 0.143171 7.725992 (5.926384)
4 0.061531 (0.067158) 0.436060 7.086854 (6.493048)
5 0.115320 (0.120947) 0.715819 6.207242 (5.918446)
6 0.198395 (0.204022) 1.533490 7.729479 (7.516291)
7 0.507153 (0.512780) 12.996200 25.625796 (25.344583)
8 1.507932 (1.513559) 93.807900 62.209638 (61.978353)

Table 6 – Powers of 27 in E6

784 = 5(1)⊕ 17(78)⊕ 24(650)⊕ 18(2430)⊕ 26(2925)⊕ 2(3003)⊕ 2(3003)⊕ 16(5824)⊕
16(5824)⊕27(34749)⊕6(43758)⊕15(70070)⊕6(78975)⊕6(78975)⊕3(85293)⊕16(105600)⊕
8(252252)⊕8(252252)⊕537966⊕600600⊕600600⊕6(812175)⊕6(852930)⊕2(1337050)⊕
3(1911195)⊕ 3(2453814)

785 = 17(1) ⊕ 90(78) ⊕ 150(650) ⊕ 110(2430) ⊕ 175(2925) ⊕ 24(3003) ⊕ 24(3003) ⊕
140(5824)⊕ 140(5824)⊕ 255(34749)⊕ 50(43758)⊕ 170(70070)⊕ 90(78975)⊕ 90(78975)⊕
51(85293) ⊕ 160(105600) ⊕ 16(146432) ⊕ 16(146432) ⊕ 120(252252) ⊕ 120(252252) ⊕
10(537966)⊕40(600600)⊕40(600600)⊕95(812175)⊕120(852930)⊕24(972972)⊕24(972972)⊕
30(1337050)⊕1559376⊕1559376⊕40(1911195)⊕75(2453814)⊕30(2977975)⊕30(2977975)⊕
15(3490695) ⊕ 20(4752384) ⊕ 20(4752384) ⊕ 4969107 ⊕ 20(5054400) ⊕ 20(5054400) ⊕
10(11655930)⊕11(12514788)⊕4(19160064)⊕4(19160064)⊕4(22843392)⊕20(23795200)⊕
5(29422393)⊕ 5(34906950)⊕ 6(42134742)

786 = 90(1)⊕ 542(78)⊕ 1100(650)⊕ 840(2430)⊕ 1390(2925)⊕ 270(3003)⊕ 270(3003)⊕
1264(5824) ⊕ 1264(5824) ⊕ 2496(34749) ⊕ 465(43758) ⊕ 1905(70070) ⊕ 1170(78975) ⊕
1170(78975)⊕ 720(85293)⊕ 1680(105600)⊕ 320(146432)⊕ 320(146432)⊕ 1615(252252)⊕
1615(252252)⊕ 40(371800)⊕ 40(371800)⊕ 115(537966)⊕ 745(600600)⊕ 745(600600)⊕
1370(812175)⊕1890(852930)⊕585(972972)⊕585(972972)⊕495(1337050)⊕65(1559376)⊕
65(1559376)⊕585(1911195)⊕1350(2453814)⊕760(2977975)⊕760(2977975)⊕45(3007368)⊕
45(3007368)⊕ 66(3162159)⊕ 66(3162159)⊕ 90(3309696)⊕ 90(3309696)⊕ 450(3490695)⊕
15(4548180)⊕560(4752384)⊕560(4752384)⊕15(4969107)⊕480(5054400)⊕480(5054400)⊕
80(7779200)⊕80(7779200)⊕245(11655930)⊕515(12514788)⊕240(19160064)⊕240(19160064)⊕
80(22843392) ⊕ 640(23795200) ⊕ 115(29422393) ⊕ 144(32752512) ⊕ 144(32752512) ⊕
210(34906950)⊕ 36685506⊕ 225(42134742)⊕ 5(44767800)⊕ 5(44767800)⊕ 41(47783736)⊕
41(47783736)⊕90(47849373)⊕90(47849373)⊕90(53557504)⊕90(53557504)⊕15(59073300)⊕
15(59073300)⊕46(64205141)⊕40(64414350)⊕40(64414350)⊕45(66023100)⊕80(115287744)⊕
80(115287744)⊕15(119189070)⊕5(200449886)⊕5(203365305)⊕5(221077350)⊕30(226459233)⊕
9(252808452)⊕9(252808452)⊕10(303388800)⊕10(303388800)⊕50(348985350)⊕45(350895402)⊕
9(366235506)⊕ 10(476952476)⊕ 16(734557824)

787 = 542(1) ⊕ 3962(78) ⊕ 9156(650) ⊕ 7413(2430) ⊕ 12481(2925) ⊕ 3024(3003) ⊕

46



3024(3003)⊕ 12474(5824)⊕ 12474(5824)⊕ 26481(34749)⊕ 5055(43758)⊕ 22204(70070)⊕
14910(78975)⊕14910(78975)⊕9786(85293)⊕19376(105600)⊕5236(146432)⊕5236(146432)⊕
21420(252252)⊕ 21420(252252)⊕ 1155(371800)⊕ 1155(371800)⊕ 1505(537966)⊕
12145(600600) ⊕ 12145(600600) ⊕ 19621(812175) ⊕ 28161(852930) ⊕ 10899(972972) ⊕
10899(972972)⊕ 8085(1337050)⊕ 1701(1559376)⊕ 1701(1559376)⊕
175(1896180) ⊕ 175(1896180) ⊕ 8910(1911195) ⊕ 22365(2453814) ⊕ 14770(2977975) ⊕
14770(2977975) ⊕ 1575(3007368) ⊕ 1575(3007368) ⊕ 2016(3162159) ⊕ 2016(3162159) ⊕
2870(3309696) ⊕ 2870(3309696) ⊕ 9729(3490695) ⊕ 686(4548180) ⊕ 11760(4752384) ⊕
11760(4752384) ⊕ 231(4969107) ⊕ 9450(5054400) ⊕ 9450(5054400) ⊕ 2990(7779200) ⊕
2990(7779200)⊕ 5075(11655930)⊕ 13216(12514788)⊕ 420(14152320)⊕ 420(14152320)⊕
6804(19160064)⊕6804(19160064)⊕1624(22843392)⊕15114(23795200)⊕2730(29422393)⊕
5544(32752512)⊕ 5544(32752512)⊕ 6111(34906950)⊕ 21(36685506)⊕ 5901(42134742)⊕
196(42398720) ⊕ 196(42398720) ⊕ 455(44767800) ⊕ 455(44767800) ⊕ 490(45741696) ⊕
490(45741696)⊕ 2156(47783736)⊕ 2156(47783736)⊕ 3870(47849373)⊕ 3870(47849373)⊕
3430(53557504)⊕ 3430(53557504)⊕ 300(54991872

′
)⊕ 300(54991872′)⊕ 1260(59073300)⊕

1260(59073300)⊕ 2541(64205141)⊕ 1400(64414350)⊕ 1400(64414350)⊕ 2079(66023100)⊕
560(85974525)⊕ 560(85974525)⊕ 315(89791416)⊕ 315(89791416)⊕ 3360(115287744)⊕
3360(115287744)⊕525(119189070)⊕106(152423700)⊕175(200449886)⊕140(203365305)⊕
70(212838912) ⊕ 70(212838912) ⊕ 386(221077350) ⊕ 225961450 ⊕ 1575(226459233) ⊕
560(236487680)⊕ 560(236487680)⊕ 819(252808452)⊕ 819(252808452)⊕ 840(303388800)⊕
840(303388800)⊕3465(348985350)⊕2100(350895402)⊕294(366235506)⊕210(392837445)⊕
210(392837445)⊕ 505(466237200)⊕ 505(466237200)⊕ 525(476952476)⊕ 14(532097280)⊕
14(532097280)⊕ 504(537567030)⊕ 504(537567030)⊕ 70(598998400)⊕ 70(598998400′)⊕
210(625532544′)⊕ 210(625532544)⊕ 15(649806300)⊕ 15(649806300)⊕ 126(688740975)⊕
966(734557824)⊕ 105(797489550)⊕ 140(929510400)⊕ 140(929510400)⊕ 21(944929700)⊕
420(1051315200)⊕420(1051315200)⊕216(1177830720)⊕216(1177830720)⊕6(1445558400)⊕
216(1478062080)⊕210(1525620096)⊕210(1525620096)⊕84(1544524800)⊕84(1544524800)⊕
14(1643241600′′′)⊕14(1643241600′′)⊕14(3116305920)⊕20(3203785728)⊕20(3203785728)⊕
14(3256917300)⊕84(3548188800)⊕119(3863940795)⊕15(4035297123)⊕105(4129204716)⊕
21(4790483775)⊕35(4942962024)⊕35(4942962024)⊕21(4973434830)⊕141(4991693850)⊕
35(8713554850)

2.2 Calculations for the group E8

2.2.1 Irreps with dimension 248

In Table 7 we see the results for the irreps with dimension 248 of E8. The time taken

for constructing irrep was 0.381720 s. Follow also the results of the calculations.

2482 = 1⊕ 248⊕ 3875⊕ 27000⊕ 30380

2483 = 1⊕5(248)⊕3(3875)⊕3(27000)⊕4(30380)⊕2(147250)⊕3(779247)⊕1763125⊕
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Power Our Time (with Irrep constr.) [s] LieArt Time [s] LieArt/Our (with Irrep constr.)
2 0.000031 (0.381751) 0.850115 27428.005730 (2.226883)
3 0.000177 (0.381897) 0.883473 4994.008541 (2.313380)
4 0.000405 (0.382125) 31.985500 78962.278159 (83.704255)
5 0.001380 (0.383100) 49.929500 36181.669241 (130.330190)
6 0.009504 (0.391224) 90.112000 9481.639708 (230.333572)
7 0.228582 (0.610302) 7636.290000 33407.237497 (12512.314162)

Table 7 – Powers of 248 in E8

2450240⊕ 2(4096000)

2484 = 5(1)⊕ 16(248)⊕ 17(3875)⊕ 18(27000)⊕ 23(30380)⊕ 13(147250)⊕ 21(779247)⊕
6(1763125) ⊕ 12(2450240) ⊕ 16(4096000) ⊕ 3(4881384) ⊕ 6(6696000) ⊕ 8(26411008) ⊕
6(70680000) ⊕ 6(76271625) ⊕ 79143000 ⊕ 146325270 ⊕ 2(203205000) ⊕ 3(281545875) ⊕
3(344452500)

2485 = 16(1) ⊕ 79(248) ⊕ 90(3875) ⊕ 100(27000) ⊕ 136(30380) ⊕ 100(147250) ⊕
170(779247)⊕ 50(1763125)⊕ 109(2450240)⊕ 140(4096000)⊕ 36(4881384)⊕ 70(6696000)⊕
100(26411008)⊕75(70680000)⊕90(76271625)⊕10(79143000)⊕36(146325270)⊕30(203205000)⊕
40(281545875) ⊕ 24(301694976) ⊕ 60(344452500) ⊕ 15(820260000) ⊕ 30(1094951000) ⊕
20(2172667860)⊕ 20(2275896000)⊕ 2642777280⊕ 10(3929713760)⊕ 10(4825673125)⊕
6899079264⊕ 20(8634368000)⊕ 4(12692520960)⊕ 5(17535336000)⊕ 4(20288765952)⊕
5(21039669000)⊕ 6(23592339045)

2486 = 79(1) ⊕ 421(248) ⊕ 575(3875) ⊕ 675(27000) ⊕ 924(30380) ⊕ 775(147250) ⊕
1386(779247)⊕415(1763125)⊕1011(2450240)⊕1240(4096000)⊕405(4881384)⊕765(6696000)⊕
1144(26411008)⊕ 895(70680000)⊕ 1125(76271625)⊕ 115(79143000)⊕ 554(146325270)⊕
410(203205000)⊕ 510(281545875)⊕ 456(301694976)⊕ 855(344452500)⊕ 315(820260000)⊕
605(1094951000)⊕405(2172667860)⊕470(2275896000)⊕15(2642777280)⊕15(2903770000)⊕
195(3929713760)⊕45(4076399250)⊕325(4825673125)⊕125(6899079264)⊕80(8634368000′)⊕
480(8634368000)⊕80(12692520960)⊕115(17535336000)⊕216(20288765952)⊕165(21039669000)⊕
180(23592339045)⊕144(45329752170)⊕45(63513702720)⊕45(66393847000)⊕69176971200⊕
90(83080364250)⊕90(85424220000)⊕40(110977024000)⊕40(124436480000)⊕15(152883490500)⊕
15(220778105625)⊕80(234550030000)⊕267413986840⊕30(355647996000)⊕5(417933862500)⊕
5(492957660000)⊕45(508731738750)⊕45(574197082368)⊕5(627099023250)⊕9(841900509450)⊕
5(919045960000)⊕10(1041872676000)⊕9(1283242632840)⊕10(1349926375875)⊕16(1813461073920)

2487 = 421(1)⊕ 2674(248)⊕ 4081(3875)⊕ 5061(27000)⊕ 7007(30380)⊕ 6580(147250)⊕
12306(779247) ⊕ 3850(1763125) ⊕ 9779(2450240) ⊕ 11830(4096000) ⊕ 4452(4881384) ⊕
8226(6696000)⊕12830(26411008)⊕10465(70680000)⊕13566(76271625)⊕1330(79143000)⊕
7651(146325270)⊕5370(203205000)⊕6405(281545875)⊕7014(301694976)⊕11445(344452500)⊕
5250(820260000)⊕9744(1094951000)⊕6714(2172667860)⊕8204(2275896000)⊕231(2642777280)⊕
455(2903770000)⊕3290(3929713760)⊕1281(4076399250)⊕6475(4825673125)⊕3171(6899079264)⊕
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8840(8634368000) ⊕ 2296(8634368000′) ⊕ 1414(12692520960) ⊕ 2240(17535336000) ⊕
5124(20288765952) ⊕ 3696(21039669000) ⊕ 3717(23592339045) ⊕ 4410(45329752170) ⊕
1449(63513702720)⊕ 1674(66393847000)⊕ 21(69176971200)⊕ 2765(83080364250)⊕
3150(85424220000)⊕ 1190(110977024000)⊕ 1820(124436480000)⊕ 420(152883490500)⊕
1155(220778105625)⊕ 300(223850628000)⊕ 2835(234550030000)⊕ 546(267413986840)⊕
1155(355647996000)⊕ 105(417532087000)⊕ 140(417933862500)⊕ 175(492957660000)⊕
1575(508731738750)⊕ 315(560213725500)⊕ 2170(574197082368)⊕ 280(627099023250)⊕
294(841900509450)⊕ 875(919045960000)⊕ 420(1041872676000)⊕ 560(1198018560000)⊕
735(1283242632840) ⊕ 756(1349926375875) ⊕ 1473701482500 ⊕ 756(1813461073920) ⊕
105(3067797300750)⊕ 504(3191795712000)⊕ 504(3233052753920)⊕ 105(3431612952000)⊕
3754721200320 ⊕ 210(3950782290000) ⊕ 70(4007202600000) ⊕ 210(4189713446646) ⊕
21(4490627295000)⊕ 70(4779643627500)⊕ 5006235840320⊕ 210(6458110083072)⊕
21(7723951192125)⊕ 420(8145764352000)⊕ 140(8715491428800)⊕ 6(10701806469120)⊕
210(12737135385000)⊕210(13532264250750)⊕84(19994148864000)⊕84(26125438976000)⊕
105(26461348084080)⊕14(28123973939490)⊕105(29369472656250)⊕14(30014459904000)⊕
15(33372802062000)⊕ 6(33699815424000)⊕ 126(33943999320000)⊕ 14(46678711926784)⊕
21(53540697687750)⊕ 14(56860936405000)⊕ 21(57306919524192)⊕ 20(57591234560000)⊕
15(58549130859375)⊕ 35(85471274280000)⊕ 35(107701303073000)
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