MINISTÉRIO DA EDUCAÇÃO E CULTURA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE PESQUISAS HIDRÁULICAS

ANÁLISE DE CRITÉRIOS PARA OUTORGA DOS DIREITOS DE USO DA ÁGUA NA BACIA DO RIO BRANCO - BA

LUCIANO MENESES CARDOSO DA SILVA

Dissertação submetida ao Programa de Pós-Graduação em Engenharia de Recursos Hídricos e Saneamento Ambiental do Instituto de Pesquisas Hidráulicas da Universidade Federal do Rio Grande do Sul como requisito parcial para obtenção do título de Mestre em Engenharia.

Porto Alegre, março de 1997.

"Eu sou Pessoa
Palavra Pessoa hoje não soa bem
Pouco me importa!
Não
Você não me impediu de ser feliz
Nunca, jamais bateu a porta em meu nariz
Ninguém é gente
Nordeste é uma ficção
Nordeste nunca houve
Não, eu não sou do lugar dos esquecidos
Não sou da Nação dos condenados
Não sou do Sertão dos ofendidos
Você sabe bem
Conheço o meu lugar"
Belchior.

Apresentação

Este trabalho foi desenvolvido no Programa de Pós-Graduação em Engenharia de Recursos Hídricos e Saneamento Ambiental do Instituto de Pesquisas Hidráulicas da Universidade Federal do Rio Grande do Sul, sob a orientação do Prof. Dr. Antônio Eduardo Leão Lanna.

Agradecimentos

Sou grato ao CNPq pela bolsa de estudos que possibilitou esta pesquisa.

Agradeço ao Prof. Lanna pela valiosa orientação no decorrer deste trabalho e pelo grande impulso que tem dado a minha carreira profissional.

Aos meus pais e irmãos pelo constante incentivo e apoio nesta inestimável conquista profissional e de vida.

A Laffayete cuja dissertação serviu de ponto de partida para este trabalho e cuja amizade e incentivo me ajudaram chegar até aqui.

A Joaquim Santana, Neto, João Krelling e Neli Bonfim pela boa vontade em me ajudar e pela valiosa contribuição de dados para esta pesquisa.

A todos os colegas do IPH e da CEU que contribuíram com companhia, amizade, paciência e diversão ao longo destes 2 anos: Luziel, Sérgio, Eraly, Walter Colli...., Esaul, João, Sandro, Jairo, Girlene, Alex, Jaildo, Adolfo, Andréia, Mário Mediondo, Jorge Pillar, Marcus etc, etc....

Aos professores do IPH pelos conhecimentos e segurança transmitidos durante a pós-graduação.

Um agradecimento especial às "garotas" da biblioteca, a Dona Lígia e a Nadir pela simpatia e paciência inesgotáveis.

A Ana Paula que acompanhou pacientemente esta jornada compartilhando toda força, carinho e amor que precisei e certamente contarei por toda vida.

Por fim, dedico este trabalho ao Estado da Bahia (minha terra natal) e a todos aqueles que de alguma forma abdicaram de parte de suas vidas (família, casa, amigos...) em nome de um sonho nobre a fim de não passarem a vergonha de morrer antes de terem vencido uma luta qualquer pelo o bem da humanidade.

Resumo

O uso racional e disciplinado dos recursos hídricos esbarra em uma série de problemas de ordem ambiental, técnica, cultural e, principalmente, política. A elaboração de uma política eficiente de exploração dos recursos hídricos apoiada em leis, fiscalização e, principalmente no comprometimento dos diversos segmentos da sociedade, traduz um passo importante para equalizar as ações antrópicas e a tênue resistência do meio ambiente.

Os emergentes conflitos pelo uso da água na Região Oeste do Estado da Bahia, vêm requerendo um novo modelo de ação regional no que se refere à gestão desse recurso. A falta de um conhecimento mais profundo acerca dos processos agroclimáticos, hidrológicos, suas sazonalidades e a interdependência com os demais atores da sociedade, confere mais um desafio na eliminação ou atenuação desses conflitos.

A presente pesquisa procura abordar esse tema de forma sistemática com o fim de produzir informações úteis para promover o uso racional da água. São analisados, portanto, critérios de outorga dos direitos de uso da água na bacia do Rio Branco (afluente do Rio Grande - Bahia) com o fim de compatibilizar a oferta natural da mesma com as crescentes demandas. Esta análise de critérios é feita de forma sistêmica (admitindo a bacia hidrográfica como unidade de planejamento) com o uso de modelos matemáticos de avaliação e gestão, particularmente modelos de simulação hidrológica, em conjunto com um modelo agro-hidrológico. A avaliação de diversos valores de outorga agregados a níveis decrescentes de prioridades, levando em consideração bases econômicas como: custos de plantio, preços de mercado dos produtos, demanda de energia elétrica gerada na bacia e recorrência dos níveis de falhas de atendimento, revela um modelo de utilização otimizado dos recursos hídricos superficiais da bacia. Nesse âmbito, os resultados dessa pesquisa lançam bases para futuras investigações sobre cobrança pelo uso da água na região.

Abstract

The rational and disciplined use of water resources runs into a series of environmental, technical, cultural and especially political problems. The elaboration of an efficient exploration policy of water resources based on laws and supervision and especially on the commitment of various segments of society, translates into an important step to equalize man's actions on nature and the fragile resistance of the environment.

The emerging conflicts due to the use of water in the Western Region of the State of Bahia, have required a new model of regional action concerning resource management. A lack of deeper knowledge about the agroclimatic and hydrological processes, their seasons and the interdependence with the rest of society's actors, affirm another challenge in the elimination or attenuation of these conflicts.

This present research seeks to approach this theme on a systematic basis with the goal of producing useful information to promote the rational use of water. Therefore, concession criteria of water use rights are analyzed in the Rio Branco Basin (Rio Grande - Bahia's tributary) in order to make compatible the natural availability to the growing demands. This criteria analysis is done in a systematic way (assuming the river basin as a planning unit) using mathematical models of evaluation and management, particularly models of hydrologic simulation, along with a agro-hydrologic model. The evaluation of various values of concessions aggregated at falling levels of priorities, taking into consideration economical basis such as: costs of planting, market prices of products, electrical energy demand produced in the basin and recurrence levels of service failures, reveals a utilization model bettered by superficial water resources of the basin. In this aspect, the results of this research set a base for future investigations in charging the use of water in the region.

<u>Sumário</u>

1. INTRODUÇÃO E OBJETIVOS	1
1.1 Introdução	1
1.2 Objetivos	3
2. REVISÃO BIBLIOGRÁFICA	5
2.1 Outorga (formas e legislação)	5
2.1.1 Abordagem Institucional (Esfera Federal)	5
2.1.2 Autorização, Concessão e Permissão de Uso das Águas Públicas	9
2.1.3 Gerenciamento de Recursos Hídricos no Brasil (breve histórico)	14
2.1.4 Esfera Estadual	16
2.2 PCH - Pequenas Centrais Hidroelétricas	19
2.3 Impacto do Uso Consuntivo da Água sobre a Geração Hidroelétrica	19
2.4 Modelagem Agro-Hidrológica	21
2.5 Alguns Parâmetros da Modelagem Agro-Hidrológica	22
2.5.1 Capacidade de Campo (Cc) e Ponto de Murcha (Pm)	22
2.5.2 Excesso Hídrico	23
2.5.3 Stress Hídrico	23
2.6 Sistema Pivô-Central	25
2.7 Turno de Rega	26
	20
3. ÁREA DE ESTUDO	
3.1 Panorama dos Problemas	
3.1.1 Particularização para a bacia do Rio Branco	31
3.2 Caracterização da Bacia do Rio Branco	
3.2.1 Localização	35
3.2.2 Características físicas	35
3.4 Dados disponíveis	44

4. METODOLOGIA	46
4.1 Introdução	46
4.1.1 Identificação i Priorização das Demandas	46
4.1.2 Simulação Hidrológica	47
4.1.3 Simulações Agro-Hidrológicas	47
4.1.4 Simulações Econômicas	47
4.1.5 Esquema de Outorga	49
4.2 Panorama da Modelagem Matemática	49
4.3 Modelagem Matemática para Subsídio à Outorga	51
4.3.1 Modelagem Hidrológica SAGBAH	
Sistema de Apoio ao Gerenciamento de Bacias Hidrográficas	51
4.3.1.1 Gerenciamento Quantitativo	54
4.3.2 Modelagem Agro-Hidrológica - Programa BALHIDRO	58
4.4 Simulações com o PROPAGA	68
4.5 Simulações com o BALHIDRO	70
4.6 Avaliação dos benefícios	74
4.7 Tratamento dos Fluxos Econômicos	78
4.8 Análise Global	85
4.9 Análise Econômica	87
4.9.1 Balanço anual	88
4.9.2 Análise Inter-anual	89
5. APLICAÇÃO	90
5.1 Utilização do PROPAGA	90
5.2 Utilização do BALHIDRO	95
5.3 Quantificação dos Benefícios Financeiros Líquidos	101
5.4 Tratamento dos Benefícios Financeiros Líquidos	105
5.4.1 Critério do Valor Médio	106
5.4.2 Critério da Renda Fixa com Depósito Inicial	108
5.4.3 Critério da Renda Fixa sem Depósito Inicial	109
5 4 4 Critério do Seguro	111

5.4.5 Critério do Risco Mínimo	113
6. RESULTADOS E DISCUSSÃO	116
6.1 Avaliação das incertezas	126
7. COMENTÁRIOS	128
7.1 Influência da Cobertura do Solo na Infiltração	128
7.2 Irrigar ou não Irrigar ?	131
7.3 Ocupação da Região Oeste da Bahia	132
8. CONCLUSÕES E RECOMENDAÇÕES	133
REFERÊNCIAS BIBLIOGRÁFICAS	137
LISTA DE ENDEREÇOS	142
ANEXO	

Relação das Tabelas

Tabela 2.1 - Águas Federais	13
Tabela 2.2 - Águas Estaduais (superficiais ou subterrâneas) no Estado da Bahia	13
Tabela 3.1 - Elementos Climáticos	36
Tabela 3.2 - Vazões Características	38
Tabela 3.3 - Informações Econômicas	41
Tabela 3.4 - Pontos Característicos para Irrigação	43
Tabela 3.5 - Formas de Geração Elétrica e Custos associados	43
Tabela 3.6 - Pontos Característicos para Geração de Energia Elétrica	44
Tabela 4.1 Matriz de Contribuição	52
Tabela 4.2 - Nível de atendimento às demandas em 240 simulações	
(saída do PROPAGA)	70
Tabela 4.3 - Seqüência Outorga → Produtividade para	
o PC-1, cultivo: feijão (exemplo)	74
Tabela 4.4 - Evolução (hipotética) da produção agrícola	75
Tabela 4.5 - Benefícios Líquidos (hipotéticos) do feijão no PC-1	79
Tabela 4.6 - Esquema de Outorga Sazonal (hipotético)	86
Tabela 5.1 - Matriz de Contribuição da bacia do Rio Branco	90
Tabela 5.2 - Vazões Outorgadas e de Referência	91
Tabela 5.3 - Variações das Outorgas nos PC's	92
Tabela 5.4 - % Falha x Nível de Outorga aos PC's de Irrigação	93
Tabela 5.5 - Calendário Agrícola	95
Tabela 5.6 - Dados agronômicos Decendiais da cultura Melancia	96
Tabela 5.7 - Dados agronômicos Decendiais da cultura Feijão	97
Tabela 5.8 - Dados agronômicos Decendiais da cultura Milho	97
Tabela 5.9 - Dados agronômicos Decendiais da cultura Abóbora	98
Tabela 5.10 - Evapotranspirações Potenciais médias	
decendiais da região	99
Tabela 5.11 - Custos Variáveis	102
Tabela 5.12 - Custos Fixos de Investimento	102
Tabela 5.13 - Fluxo Financeiro para cálculo da TIR	104

Tabela 5.14 - Fluxos de Benefícios Financeiros Líquidos	
do PC-2, cultura Abóbora (parcial)	105
Tabela 7.1 - Efeito da Cultura sobre a Erosão do Solo	130
Tabela 7.2 - Efeito do Manejo dos Resíduos sobre a Erosão do Solo	130

Relação das Figuras

Figura 2.1 - Resultados de vários estudos mostrando a variação da ET relati	iva com a
umidade do solo (Minhas et al., 1974)	
apud (Oliveira, 1995)	25
Figura 3.1 Área de Estudo	36
Figura 4.1 Fluxograma Geral da Modelagem Matemática	50
Figura 4.2 Evapotranspiração Relativa x Umidade do Solo	67
Figura 4.3 Fluxograma do Modelo POPAGA	71
Figura 4.4 Esquema de Evolução da Produtividade Agrícola sujeita a	
aumentos de Outorga	72
Figura 4.5 Esquema de Perda de Produtividade devido a Déficit Hídrico	73
Figura 4.6 Relação entre Área plantada e Outorga	74
Figura 4.7 Produção agrícola em função da área plantada	76
Figura 4.8 Custos de Produção agrícola x Área plantada	77
Figura 4.9 Curva Teórica de Benefícios	78
Figura 4.10 Regularização de Renda Fixa pelo Critério 2	81
Figura 4.11 Regularização de Renda Fixa pelo Critério 3	82
Figura 4.12 Regularização de Renda Fixa pelo Critério 4 (Seguro)	84
Figura 5.1 Variação dos incrementos de Vazão aos PC's de Irrigação	92
Figura 5.2 % Falha x Outorga	94
Figura 5.3 Saída do BALHIDRO	100
Figura 5.4 Fluxo Financeiro para projeto de 8 anos (análise por ha)	104
Figura 5.5 Critério do Valor Médio para o cultivo da Melancia	107
Figura 5.6 Evolução dos Benefícios Líquidos da Melancia pelo	
Critério do Valor Médio	108
Figura 5.7 Aplicação do Algoritmo de Renda Fixa com	
Depósito Inicial ao PC-1 (Abóbora)	110
Figura 5.8 Critério da Renda Fixa com Depósito Inicial para Abóbora	111
Figura 5.9 Evolução dos Benefícios Líquidos da Abóbora pelo	
Critério do RF c/ DI	108

Figura 5.10 Aplicação do Algoritmo de Renda Fixa sem
Depósito Inicial ao PC-7 (Melancia)
Figura 5.11 Evolução dos Benefícios Líquidos da Melancia pelo
Critério do RF s/ DI108
Figura 5.12 Aplicação do Algoritmo Seguro à Cultura Melancia no PC-9114
Figura 5.13 Evolução dos Benefícios Líquidos da Melancia pelo
Critério do Seguro115
Figura 6.1 Resultado da aplicação do Critério das Medias
sobre as culturas de Melancia e Feijão117
Figura 6.2 Resultado da aplicação do Critério das Medias
sobre as culturas de Milho e Abóbora117
Figura 6.3 Resultado da aplicação da RF c/ DI
sobre as culturas de Melancia e Feijão118
Figura 6.4 Resultado da aplicação da RF c/ DI
sobre as culturas de Milho e Abóbora118
Figura 6.5 Resultado da aplicação da RF s/ DI
sobre as culturas de Melancia e Feijão119
Figura 6.6 Resultado da aplicação da RF s/ DI
sobre as culturas de Milho e Abóbora120
Figura 6.7 Resultado da aplicação do Critério do Seguro
sobre as culturas de Melancia e Feijão121
Figura 6.8 Resultado da aplicação do Critério do Seguro
sobre as culturas de Milho e Abóbora121
Figura 6.9 Resultado da aplicação do Critério de Risco Mínimo
sobre as culturas de Melancia e Feijão123
Figura 6.9 Resultado da aplicação do Critério de Risco Mínimo
sobre as culturas de Milho e Abóbora123
Figura 6.11 Comparação entre os VPL's totais obtidos
com a Melancia e o Feijão124
Figura 6.12 Comparação entre os VPL's totais obtidos
com a Milho e Abóbora

Figura 6.13 Comparação entre os Benefícios Regularizados totais	
com a Melancia e Feijão	126
Figura 6.14 Comparação entre os Benefícios Regularizados totais	
com a Milho e Abóbora	127
Figura 7.1 Cobertura do Solo x Erosão Relativa	129

Relação dos ANEXOS

- ANEXO 1 Bacia do Rio Branco
- ANEXO 2 Relação dos Postos Pluviométricos
- ANEXO 3 Diagrama de Barras Extensão das Séries Pluviométricas
- ANEXO 4 Relação dos Postos Fluviométricos
- ANEXO 5 Diagrama de Barras Extensão das Séries Fluviométricas
- ANEXO 6 Valores de Vazões Referenciais Totais e Incrementais por Ponto Característico
- ANEXO 7.1 ao 7.16 Séries de Benefícios Líquidos obtidos com cada cultura nos 8 pontos característicos de irrigação da bacia
- ANEXO 8.1 Quadros Totais de Benefícios pelo Critério do Valor Médio (Feijão)
- ANEXO 8.2 Quadros Totais de Benefícios pelo Critério do Valor Médio (Milho)
- ANEXO 8.3 Quadros Totais de Benefícios pelo Critério do Valor Médio (Abóbora)
- ANEXO 9.1 Quadros Totais de Benefícios pelo Critério da Renda Fixa com Depósito Inicial (Melancia)
- ANEXO 9.2 Quadros Totais de Benefícios pelo Critério da Renda Fixa com Depósito Inicial (Feijão)
- ANEXO 9.3 Quadros Totais de Benefícios pelo Critério da Renda Fixa com Depósito Inicial (Milho)
- ANEXO 10.1 Quadros Totais de Benefícios pelo Critério da Renda Fixa sem Depósito Inicial (Feijão)
- ANEXO 10.2 Quadros Totais de Benefícios pelo Critério da Renda Fixa sem Depósito Inicial (Milho)
- ANEXO 10.2 Quadros Totais de Benefícios pelo Critério da Renda Fixa sem Depósito Inicial (Abóbora)
- ANEXO 11.1 Quadros Totais de Benefícios pelo Critério do Seguro (Feijão)
- ANEXO 11.2 Quadros Totais de Benefícios pelo Critério do Seguro (Milho)
- ANEXO 11.3 Quadros Totais de Benefícios pelo Critério do Seguro (Abóbora).

Capítulo 1

Introdução e Objetivos

1. INTRODUÇÃO E OBJETIVOS

1.1 Introdução

O extremo oeste do Estado da Bahia vem, nos últimos anos, passando por dinâmicos processos de transformação em sua economia, resultado do surgimento de uma agricultura moderna que conta com alta tecnologia. As condições hidro-climáticas sem enchentes, secas ou geadas que prejudicassem as culturas, terras em grande extensão a preços baixos, boas condições topográficas e pedológicas além de crédito subsidiado e incentivos fiscais, configuraram o estímulo necessário para que a Região Oeste do Estado fosse ocupada com o fim de aumentar a produção, a geração de empregos e a arrecadação, atraindo, dessa forma, investimentos vultosos em lavoura irrigada e mecanizada. Este fato resultou em elevados índices de produtividade de grãos, tornando essa região uma das fronteiras agrícolas mais visadas do país além de ser o maior potencial do Estado no que tange à geração hidroelétrica. Nesse plano, a sua posição geográfica, com fácil comunicação com o Nordeste e com o Centro Sul, realça outra característica estratégica da região.

Como todo desenvolvimento acelerado, a procura por recursos naturais e a ocupação do solo torna-se desenfreada e predatória, na medida em que não há o correspondente controle por parte dos órgãos governamentais e, principalmente, consciência ambiental dos ocupantes. As modificações de ordem socio-econômicas, cultural e ambiental, dentre outras, vêm requerendo um novo modelo de desenvolvimento regional exigindo, portanto, ações que sistematizem, racionalizem e disciplinem o uso desses recursos, sobretudo a água.

Nesse contexto, um dos principais pontos adotados pela política governamental do Estado da Bahia é estabelecer diretrizes que acomodem os conflitos existentes entre os diversos usos da água, principalmente para irrigação e geração hidroelétrica. Pois, sabe-se que o fator que limita um crescimento maior da irrigação na região é a disponibilidade de água e não a quantidade de solos predispostos. Os Planos Diretores de Recursos Hídricos, promovidos pelo Governo do Estado e executados

por empresas privadas (iniciados em 1991), os quais adotam a bacia hidrográfica como unidade de gestão, fazem uma ampla caracterização das mesmas, inventariando seus recursos e conflitos propondo, daí, diretrizes para o disciplinamento do uso da água.

Oficialmente, desde 12.05.95 a Superintendência de Recursos Hídricos, órgão gestor desses recursos do Estado, vem adotando como critério de outorga para irrigação até 80% da vazão mínima de 7 dias e 10 anos de tempo de retorno ($Q_{7,10}$), avaliada para o ponto de captação, subtraídas as outorgas a montante. Para geração hidroelética, uma vazão com 90% de garantia e para a vazão ecológica o valor mínimo de 20% de $Q_{7,10}$. Atualmente, critérios de outorga para irrigação com base na vazão com 90% de permanência (garantia) vêm sendo utilizados, não configurando, ainda, um quadro definitivo.

Independente do critério adotado até então, as vazões que ocorrem são sensivelmente superiores à 80% $Q_{7,10}$ durante a maior parte do tempo em diversos pontos da bacia e a ocorrência de escassez em outros . O resultado disso, são fortes pressões e inúmeros pedidos de maiores valores de outorga por parte dos usuários, principalmente irrigantes. A concessão das outorgas no Estado é feita, puramente, de forma quantitativa de atendimento ou não à determinada prioridade (tendo como teto a vazão 80% de $Q_{7,10}$) em detrimento de uma política global (em termos de bacia hidrográfica) que encerre aspectos econômicos, sociais e ambientais.

O que se nota, portanto, é uma clara necessidade de redistribuir, redefinir ou ainda equalizar o esquema de outorga adotado para a Região Oeste do Estado. Esta atitude, provavelmente, aumentará os valores outorgados em alguns pontos e, conseqüentemente a atividade econômica sem, contudo, perder de vista a garantia de abastecimento humano e a vazão ecológica.

1.2 Objetivos

O presente trabalho objetiva analisar critérios de outorga dos direitos de uso da água na bacia do Rio Branco (extremo oeste do Estado da Bahia), propondo indicadores de uso racional e otimizadores desse recurso na mesma.

O alvo principal destes critérios é o uso da água para irrigação a qual demanda grandes cotas hídricas (conflitando com diversos outros usos) ao mesmo tempo que retorna os maiores benefícios financeiros para a região. Essa dicotomia é, então, tratada de forma sistêmica, com bases econômicas, a fim de se formular um modelo de utilização otimizada e, até certo ponto, auto sustentável da água.

Através de simulação hidrológica distribuída do processo de propagação de vazões (modelo hidrológico) serão testados, simultaneamente, níveis crescentes de outorga para irrigação em diversos pontos da bacia a fim de se avaliar a susceptibilidade à falhas de atendimento em quatro prioridades pré-estabelecidas: abastecimento humano, vazão ecológica, irrigação e geração hidroelétrica (nesta ordem).

Na seqüência, serão executadas simulações de balanço hídrico (modelo agrohidrológico) de umidade do solo e da resposta das culturas à escassez hídrica, ambas com base nos resultados do primeiro procedimento.

Numa terceira etapa serão feitas avaliações econômicas dos benefícios líquidos obtidos a partir de cada outorga, para cada cultivo em diversas posições da bacia. Dentro deste enfoque aparecerão situações em que os irrigantes terão de suportar eventuais falhas de abastecimento em suas lavouras e ainda assim terem retornos financeiros significativos, principalmente para a bacia como um todo.

A pesquisa busca, portanto, valores de outorga para irrigação de diversas culturas, em muitos pontos da bacia do Rio Branco, que minimizem toda ordem de custos e conflitos resultando nos maiores benefícios globais possíveis (altas produtividades e máxima utilização dos potenciais das Pequenas Centrais Hidroelétricas hora projetadas),

sem, contudo, ameaçar a vazão ecológica e o abastecimento humano, mitigando os desperdícios e impactos ambientais.

Capítulo 2

Revisão Bibliográfica

2. REVISÃO BIBLIOGRÁFICA

2.1 Outorga (formas e legislação).

2.1.1 Abordagem institucional (Esfera Federal)

A outorga, segundo Granzieira (1993), é o instrumento jurídico onde o Poder Público, através dos competentes atos administrativos (permissão ou concessão), autoriza a exploração dos recursos ambientais e ainda exerce o controle e a fiscalização sobre os mesmos.

A outorga do uso da água é um instrumento essencial ao gerenciamento dos recursos hídricos, pois a mesma possui aspectos técnicos, legais e econômicos que, bem articulados, colaboram para o sucesso da implementação de um sistema racionalizado do uso dos mananciais. Para o planejamento de recursos hídricos, os meios de prover as decisões gerenciais devem estar apoiados em instrumentos legais e normativos que tratem desse tema.

Portanto, a outorga da água é um ato discricionário do governo que permite, autoriza ou concede determinado volume a ser derivado ou usado, de manancial superficial ou subterrâneo, para uma ou diversas finalidades.

Sabe-se que a água é utilizada para múltiplas finalidades, as quais, muitas vezes são concorrentes e conflitantes entre si, dada a não adequação de sua qualidade e/ou a escassez desse recurso. É necessário, portanto, que se estabeleça uma hierarquização das prioridades desses usos, propiciando uma solução desses conflitos.

Uma análise regional, orientada por planos de recursos hídricos, ambientais e de uso do solo, bem como o conhecimento da capacidade de assimilação de poluentes e os processos físicos e bioquímicos que definem a qualidade da água, constituem pontos básicos para se definir critérios de outorga do uso da água numa bacia. Além disso, para que se tenham condições de análise da outorga é necessário avaliar as

demandas de água, o consumo e as cargas poluentes atuais e futuras numa bacia hidrográfica.

No Brasil, o Regime Jurídico das águas internas (rios, lagos, mares interiores, portos, canais, baías, estuários, ancoradouros e golfos), nos termos da 1ª Conferência de Direito Internacional de Haia, 1930, é estabelecido pelo Código de Águas (Dec. Fed. 24.643, de 10.07.34), e posteriores alterações, com especial importância para o Decreto-lei 852 de 11.11.38. A Constituição Federal de 1988 em seus artigos 20,III e 26,II, estabelece que a água, seja na forma de lagos e quaisquer correntes de água em terrenos de seu domínio, ou que banhem mais de um estado, ou constituam limite com outros países ou ainda se estendam em território estrangeiro ou dele provenham, bem como os terrenos marginais e as praias fluviais, constituem um bem público (bem da União). As águas subterrâneas são sempre de domínio do Estado, exceto nos territórios ou áreas de domínio da União.

No que tange à exploração dos recursos hídricos, segundo o artigo 22,IV é de competência da União legislar sobre águas e energia, viabilizando a exploração dos "serviços e instalações de energia elétrica e o aproveitamento energético dos cursos d'água, em articulação com os Estados onde se situam os potenciais hidroenergéticos", de forma direta ou através de concessão, permissão ou autorização (art. 21, XII,b). O artigo 176, 1°, veda autorizações ou concessões a estrangeiros ou sociedades organizadas fora do país. Compete também à União o planejamento e promoção da defesa contra calamidades públicas como secas e inundações, bem como a instituição do Sistema Nacional de Gerenciamento do Recursos Hídricos e a definição de critérios de outorga.

Porém, é necessário entender, previamente, alguns tipos (doutrinas) de direito sobre o uso das águas.

A água (rios, lagos etc.) pode ser entendida como um bem livre onde seu uso não está atrelado a nenhuma norma ou precise de permissão para tal. Assim como a

chuva que, por enquanto, não precisa de autorização de pessoa física ou jurídica para a sua captação e utilização.

Por outro lado, a água pode ser tida como um bem dominical, seja do Governo, seja da iniciativa privada.

Nos Estados Unidos, por exemplo, segundo Wurbs (1995), os direitos de uso da água se dividem em, basicamente, três doutrinas. A primeira delas, adotada em 29 Estados do leste americano, é a doutrina das apropriações ribeirinhas ('First in time is first in right') onde os primeiros proprietários de terras ribeirinhas, usuários dos recursos hídricos, possuem a outorga das águas. A segunda doutrina refere-se ao sistema de propriedade prévia ('prior-aproppriation') onde os direitos de uso das águas são inerentes à propriedade da terra ribeirinha.

Originalmente, reconhecem os direitos de apropriação ribeirinha, mas depois a convertem no sistema descrito. As prioridades são estabelecidas pela época em que os primeiros usuários se beneficiaram do uso da água. Esta doutrina é adotada em 9 Estados americanos. Dois outros Estados adotam um sistema híbrido de gerenciamento.

De certa forma, este tipo de doutrina ainda perdura no Brasil uma vez que em diversas transações comerciais de venda de fazendas ou terrenos, que possuam cursos d'água, está implícita a transferência do uso da mesma não tendo qualquer compromisso com outros usos potencialmente conflitantes.

Pires (1996) reforça, conceituando a *Outorga Vinculada à Terra* como a outorga que é informalmente e livremente concedida aos proprietários de terras cujos recursos hídricos se encontrem. O mesmo lembra que este tipo de instrumento não combate a escassez, contribuindo para uma desordenada concorrência sem estabelecimento de prioridades de uso e sem visão integrada de bacia hidrográfica.

Trata-se de um sistema cujo bom funcionamento se dará em bacias onde não há problemas de escassez.

A *Outorga Comercializável* é um outro instrumento de gestão de Recursos Hídricos onde a água torna-se um bem valorável, podendo ser leiloada, alugada, vendida, ou trocada de acordo com as leis de mercado de procura e oferta.

Wurbs (1989) e Pires (1996) lembram que este instrumento é eficiente para tratar a escassez quantitativa, principalmente, uma vez que há uma valoração econômica sobre um bem finito.

Apesar de sua eficácia econômica, evitando desperdícios e promovendo o uso racionalizado desses mananciais, este sistema não trata o recurso de forma integrada, com obediência de prioridades de uso. Isto é, há uma tendência ao surgimento de um monopólio natural daqueles economicamente mais capacitados. Neste instante, cabe aos mesmos o estabelecimento de suas próprias prioridades de consumo as quais, não necessariamente, coincidem com as da bacia hidrográfica.

Segundo Wurbs e Walls (1989), no Estado do Texas, cujo código da água é baseado na doutrina da 'prior aproppriation', a apropriação das águas só é aprovada pela TWC - Texas Water Commision - se o uso benéfico for contemplado, a conservação da mesma for praticada, não prejudicando as outorgas existentes e o seu uso não ponha em risco o bem estar social. A outorga, por exemplo, garante ao proprietário de um reservatório (cidade, Estado, pessoa física, etc.) vender e/ou usar a água do mesmo. Existe, também, a autoridade do governo sobre o rio que vende as águas para cidades, indústrias e fazendas sem, contudo, obter a permissão dos direitos de uso das mesmas.

Um outro tipo de instrumento de gestão é a *Outorga sob Controle*. Nesta modalidade o órgão gestor concede, com base em aspectos técnicos, econômicos, sociais e ambientais, a determinado usuário o direito de captar uma cota hídrica. São realizadas análises prévias do tipo de uso que será dado à água, sua prioridade no

contexto geral da bacia e sua integração com os demais usos com o fim de minimizar conflitos e desperdícios.

A não obediência das especificações das derivações d'água estabelecidas ou o mau uso das mesmas incorrerá no cancelamento ou na não renovação da outorga (Pires, 1996) e (Silva, 1996).

Trata-se de um esquema de outorga mais amplo que os demais na medida que encerra questões ambientais e sociais, combatendo a escassez e possibilitando o acesso de usuários de baixa renda.

A Lei que regulamenta a Política de Recursos Hídricos do Estado da Bahia prevê a utilização deste tipo de outorga e a sua associação com outro instrumento mais racionalizador: a cobrança pelo uso da água. Este último ajusta os níveis de consumo aos estritamente necessários (é o que se espera), atenuando os desperdícios, mas dificultando, de certa forma, a entrada ou permanência de usuários com menor capacidade financeira.

Para o Brasil, a Lei de Irrigação (Nº 6.662/79), de acordo com seu regulamento (Dec. nº 89.496/84), estabelece uma classificação específica que envolve as águas superficiais, com o fim de normatizar o uso da mesmas para irrigação e atividades decorrentes:

- ◆ Águas superficiais Permanentes: são as águas que correspondem à vazão mínima do rio em todas as estações do ano.
- ◆ Águas superficiais Eventuais são as águas excedentes da vazão mínima do rio.

A outorga de concessões e autorizações é tratada pelo art. 20, parágrafo único, da Lei de Irrigação, sendo considerada oportuna esta classificação, dada a necessidade de relacionar essa vazão mínima a um tempo de retorno.

2.1.2 - Autorização, Concessão e Permissão de Uso de Águas Públicas

UFRGS BIBLIOTECA IPH Qualquer uso de águas sob domínio federal para irrigação e atividades decorrentes, necessitará de uma autorização prévia do Ministério do Meio Ambiente, dos Recursos Hídricos e da Amazônia Legal. A concessão será outorgada, segundo o art. 23,1° da Lei de Irrigação, ao solicitante que derivar águas permanentes para fins de irrigação ou atividades decorrentes. A autorização, diz o art. 23,2°, será outorgada ao solicitante que derive águas eventuais para as mesmas finalidades, ambas mediante condições firmadas nos contratos. O art. 23,3° diz que enquanto não forem determinadas as águas permanentes do rio, assim como as disponibilidades para fins de irrigação e atividades decorrentes, serão outorgadas apenas autorizações, segundo a interpretação de Ganem (1987).

Para o Estado da Bahia, a concessão para águas estaduais é dada quando a utilização dos recursos hídricos for de utilidade pública, como geração hidroelétrica. Haverá dispensa de outorgas quando: o uso da água se destinas às primeiras necessidades da vida, limitada a sua utilização por derivação, à vazão máxima de 0,5 l/s. Enquanto que a autorização é dada para utilizações que não sejam de utilidade pública, como irrigação (Manual da Água, 1996).

Ao se outorgar uma concessão, estabelece-se um contrato bilateral e comutativo entre o concessionário e o poder público, com obrigações recíprocas. O concessionário é obrigado a pagar uma remuneração pelo uso das águas públicas, enquanto que o poder público tem o dever de garantir a vazão concedida, sob pena de pagar indenização ao concessionário caso haja falha de abastecimento (Ganem, 1987).

Dessa forma, seria necessário conhecer a vazão mínima do rio, disponível em todas as épocas do ano, com dada garantia, para que o órgão outorgante possa conceder o uso das águas e ter a certeza de cumprimento do contrato. Para as vazões acima da mínima (vazões eventuais), o seu uso só poderá ser outorgado através de autorização. Como essas vazões não possuem boa garantia e por isso são consideradas eventuais, o poder público não assume a responsabilidade em caso de

falta d'água (falha), assumindo, assim, o usuário, os prejuízos relativos à não ocorrência das mesmas.

No tocante à **permissão**, ela é outorgada quando a utilização da água não se destinar ao uso público e requerer *vazões insignificantes*, em relação ao caudal ou à capacidade do manancial (lago, rio, açude, poço tubular, dentre outros). Segundo a portaria nº 468 de 31.03.1978 do Ministério das Minas e Energia, *vazão insignificante* é aquela que representa até 20% da média das vazões mínimas do curso d'água no ponto de derivação, não podendo exceder, em nenhuma hipótese, a 1 m³/s (Manual do Usuário da Água, 1992). Se, nos períodos de estiagem, a vazão residual do rio atingir o valor mínimo já verificado, a permissão ficará automaticamente suspensa até que o fluxo, que permite preservar o referido mínimo, seja restabelecido.

Há um ponto de incompatibilidade entre o que estabelece o Código de Águas de 1934 e a Lei de Irrigação. A primeira estabelece para concessão as águas para uso de utilidade pública e autorização, caso tal utilidade não seja verificada. Segundo o Código, as concessões e autorizações de águas públicas para irrigação e atividades decorrentes ficam submetidas aos seguintes pré-requesitos:

- Observância das prioridades de uso da água assegurada pela legislação vigente;
- Comprovação de que o uso das águas não cause poluição e/ou desperdício dos recursos hídricos (art. 26 do Dec. nº 89.496/84).

No Estado da Bahia podem solicitar a outorga do direito de uso da água (Manual do Usuário da Água, 1992):

- Agricultores e pecuaristas;
- Cooperativas e Associações de Irrigantes;
- Empresas Agrícolas;
- Empresas ou órgãos geradores de energia elétrica;
- Empresas ou órgãos distribuidores de água;
- Empresas de mineração;

- Indústrias em geral;
- Agro-Indústrias;
- Órgãos canalizadores e retificadores de rios;
- Indústrias, Órgãos e condomínios residenciais lançadores de efluentes;
- Empresas e Órgãos que necessitam construir barragens;

Para conseguir os direitos de uso de determinadas águas, o solicitante deverá formalizar, junto ao órgão outorgante, o seu pedido em documentos contendo as seguintes informações (Manual do Usuário da Água, 1992):

- Nome e qualificação do solicitante;
- Discriminação se pessoa física ou jurídica;
- Localização e área da propriedade onde se dará o uso da água;
- Título de propriedade ou de direito real, contratos de arrendamento rural ou de parceria
 - agrícola, cessão de direitos ou compromisso de compre e venda do imóvel;
- Destinação da água;
- Vazão mínima solicitada e fonte onde se pretende obter a água;
- Plano do projeto de irrigação;
- Pedido de incentivos (justificados);
- Tipos de captação, obras complementares e equipamentos a serem utilizados;
- Informações adicionais consideradas importantes para a aprovação do pedido.

As principais causas de indeferimento da outorga são (Manual do Usuário da Água, 1992):

- Situação jurídica irregular do empreendimento ou do imóvel;
- Projeto técnico específico em desacordo com os parâmetros preconizados, ou incompleto;
- -Vazão requerida em desacordo com:
 - # A Q_{7,10} (Vazão mínima de sete dias e 10 anos de tempo de retorno) do rio cujas águas se pretende derivar;

- # A capacidade de armazenamento do barramento;
- # A vazão do poço.

As concessões e autorizações deverão constar o seu prazo de vigência nunca excedendo 35 anos. Deixando o concessionário de fazer uso privativo das águas durante três anos, a concessão ficará sem efeito.

As concessões e autorizações para derivação que não se destine à produção de energia elétrica são outorgadas pela União, Estados e territórios, a depender da área de domínio (art. 62). As concessões para produção de energia elétrica são outorgadas exclusivamente pela União, independente do domínio das águas (Constituição Federal, art. 168, o Código das Águas, art.150).

As tabelas 2.1 e 2.2 expõem quais as entidades outorgantes na esfera Federal e Estadual (Bahia).

Tabela 2.1 - Águas Federais.

Utilização da água	Órgão outorgante
Irrigação	Ministério do Meio Ambiente Recursos
_	Hídricos e Amazônia Legal
Demais usos	*
(exceto navegação)	

^{*} Atualmente, não existe uma definição precisa de qual órgão deve outorgar os demais usos para águas federais.

Tabela 2.2 - Águas Estaduais (superficiais ou subterrâneas) no Estado da Bahia.

Utilização da água	Órgão outorgante (Bahia)
Todos os usos	Secretaria de Recursos Hídricos
(exceto geração de energia e navegação)	Saneamento e Habitação do Governo do
	Estado.

Qualquer sistema de outorga, a princípio, deve pressupor o conhecimento das ofertas naturais de água e sua dinâmica no tempo, sua capacidade de assimilação de

poluentes, usos conflitantes (consuntivos ou não), níveis de demanda, vazão ecológica, além de uma política que defina a hierarquização dos usos.

Portanto, a necessidade de fiscalização é uma conseqüência direta desse processo. Obviamente, a interdependência direta dos diversos tipos de uso (vazão ecológica, irrigação, geração hidroelétrica, navegação, etc.) e os conflitos deles advindos, deverá ser considerada quando do estabelecimento das outorgas, sob pena de causar efeitos adversos no meio ambiente, economia, sociedade etc.

Nesse âmbito, segundo Campelo (1993), a aplicação do artigo 23 de Decreto nº 89.496/84, que regulamenta a Lei 6.662/72 que dispõe sobre a Política Nacional de Irrigação, é conflitiva em relação ao uso da água para irrigação. O mesmo coloca nas mãos de um único setor a outorga dos direitos de uso da água para tal fim, na medida que é indesejável separar essas outorgas dos outros usos.

2.1.3 Gerenciamento de Recursos Hídricos no Brasil (breve histórico)

O CBH-PCJ (1996) faz um resumo da evolução do Gerenciamento de Recursos Hídricos no Brasil. Ele lembra que um dos primeiros movimentos que se tem notícia no sentido de gerenciar os recursos hídricos, particularmente, com a unidade de bacia hidrográfica, data de 1976, na região do Alto Tietê (Estado de São Paulo), com o Comitê do Acordo Ministério das Minas e Energia - Governo do Estado de São Paulo.

No final da década de 70 o Governo Federal, através de portarias interministeriais, implantou Comitês de Bacias de Rios Federais, como o Comitê Executivo de Estudos Integrados das Bacias dos Rios Jaguari e Piracicaba (CEEIJPI).

Porém, a ausência de mecanismos financeiros, falta de poder de decisão e falta de integração com a comunidade e os poderes municipais, impuseram sérias limitações ao seu desenvolvimento. Somente em 1989 a Constituição Estadual de São Paulo

passou a dar ênfase aos recursos hídricos, considerando a participação de entidades da sociedade civil.

Na tentativa de encontrar um modelo mais genérico para o país, em 1986 surgiu a primeira proposta de um Sistema Nacional de Gerenciamento de Recursos Hídricos, a qual contemplou uma articulação entre os Estados e a União.

Em 1988 a Constituição Federativa do Brasil contemplou o Sistema Nacional de Gerenciamento de Recursos Hídricos. Porém, faltou a legislação que regulamentasse o mesmo.

Em 8 de janeiro de 1997 foi, finalmente (!), aprovado e sancionado o projeto de Lei nº 2.249-E (de 1991), na forma da **Lei nº 9.433**, que institui a Política Nacional de Recursos Hídricos e cria o Sistema Nacional de Gerenciamento de Recursos Hídricos, regulamentando o inciso XIX do art. 21 da Constituição Federativa do Brasil.

A seguir estão destacados alguns artigos desta Lei que dizem respeito à outorga dos direitos de uso de recursos hídricos:

Em seu art. 11, que dispõe sobre a Outorga dos Direitos de Uso de Recursos Hídricos, esta Lei diz que: "O regime de Outorga dos Direitos de Usos dos Recursos Hídricos tem como objetivos assegurar o controle quantitativo e qualitativo dos usos da água e o efetivo exercício dos direitos de acesso à água".

Em relação, particularmente, à outorga para geração hidrelétrica, há um vazio na Lei. Ela diz em seu art. 12, §2º que esta outorga estará subordinada ao Plano Nacional de Recursos Hídricos quando este for aprovado na forma do disposto no inciso VIII do art. 35. Como este inciso foi VETADO, esta questão está em aberto.

Em seu art. 13 diz: "Toda Outorga estará condicionada às prioridades de uso estabelecidas nos Planos de Recursos Hídricos e deverá respeitar a classe em que o

corpo de água estiver enquadrado e a manutenção de condições adequadas ao transporte aquaviário, quando for o caso".

2.1.4 Esfera Estadual

Os Estados da União, gradativamente, estão se articulando no sentido de estabelecer as suas políticas estaduais de recursos hídricos para que, assim, possam administrar, de forma mais eficiente, as águas que lhes competem.

O primeiro Estado a regulamentar uma legislação sobre gerenciamento de recursos hídrico, foi São Paulo, em dezembro de 1991. O Estado do Rio Grande do Sul instituindo, em dezembro de 1994, o Sistema Estadual de Recursos Hídricos, integrado ao Sistema Nacional de Gerenciamento Recursos Hídricos. A Bahia, em 12 de maio de 1995 promulgou a Lei nº 6.855 que dispõe sobre a Política, o Gerenciamento e o Plano Estadual de Recursos Hídricos.

Neste processo hoje tem-se onze Estados mais o Distrito Federal que já incorporaram às suas constituições normas para a implantação de sistemas de gerenciamento dos recursos hídricos (Molinas, 1996). Segundo este autor, sete estados (SP, CE, SC, DF, MG, RS e BA) já sancionaram leis complementares que instituem e regulamentam sistemas de gestão dos recursos hídricos.

O Estado de São Paulo, através do art. 205 da Constituição Paulista (regulamentado pela Lei nº 7.663 de 30.12.1991), instituiu o seu Sistema Integrado de Gerenciamento de Recursos Hídricos e a Política Estadual de Recursos Hídricos, congregando órgãos estaduais, municipais e a sociedade civil.

Dentre os artigos que se referem à outorga de direito de uso dos recursos hídricos, podemos destacar o art. 9 que diz que a construção de qualquer empreendimento que necessite a utilização de mananciais hídricos, seja superficiais ou subterrâneos, a execução de obras ou serviços que alterem o regime desses mananciais, qualidade ou

quantidade, dependerá de prévia autorização, manifestação ou licença dos órgãos e entidades competentes.

Antes disto, o Decreto Estadual 27.576, de 1987, criou o Conselho Estadual de Recursos Hídricos (CRH) cujo principal objetivo era elaborar o primeiro Plano Estadual de Recursos Hídricos (CORHI).

Também dependerão de cadastramento e outorga do direito de uso qualquer derivação de água do seu curso ou depósito, seja superficial ou subterrâneo, para fins de utilização em abastecimento urbano, industrial, agrícolas e outros, bem como lançamento de efluentes nos corpos d'água, obedecida a legislação Federal e Estadual pertinentes e atendidos os critérios no regulamento. O art. 208 da Constituição Estadual de São Paulo proíbe o lançamento de quaisquer efluentes e esgotos urbanos ou industriais em corpos d'água, sem a apropriado tratamento.

Mais recentemente, em maio de 1993, o Decreto 36.787 promoveu a adaptação do CRH (Conselho Estadual de Recursos Hídricos) e do CORHI (Plano Estadual de Recursos Hídricos) (CBH-PCJ, 1996).

No Rio Grande do Sul, a constituição estadual em seu artigo 171 instituiu o Sistema Estadual de Recursos Hídricos, integrado ao Sistema Nacional de Gerenciamento desses recursos. Os seguintes órgãos fazem parte desse sistema:

- Conselho de Recursos Hídricos;
- Departamento de Recursos Hídricos;
- Comitê de Gerenciamento de Bacia Hidrográfica;
- Fundação Estadual de Proteção Ambiental (FEPAM).

Com base na Política Estadual de Recursos Hídricos, promulgada na forma da Lei nº 10.350 de 31/12/1994, qualquer empreendimento que altere a qualidade ou quantidade das águas, seja superficial ou subterrânea, dependerá de outorga do uso da água por parte do órgão competente.

Quando os usos alterarem apenas os aspectos quantitativos do manancial, a outorga será emitida pelo Departamento de Recursos Hídricos mediante autorização ou licença de uso. Uma vez que os usos afetem as condições qualitativas da água, a FEPAM se encarregará de emitir ou não a outorga. Em quaisquer casos de outorga, a mesma será condicionada às prioridades de uso estabelecidas no plano da bacia hidrográfica e no plano estadual de recursos hídricos.

Na Bahia, o art. 12 (Lei nº 6.855 de 12.05.1995) diz que a implantação, ampliação e alteração de projeto de qualquer empreendimento que demande a utilização de recursos hídricos, superficiais ou subterrâneos, bem como a execução de obras ou serviços que alterem seu regime, quantidade ou qualidade, dependerão de prévia outorga do órgão competente. Atendida a conveniência do interesse público e considerado o volume das derivações e funções sociais, a outorga dos direitos de uso da água poderá ser concedida mediante *permissão* ou *autorização*.

O art. 13 coloca que a derivação de água superficial ou subterrânea, para diversas utilizações, incluindo o lançamento de efluentes em corpos d'água, dependerá de cadastramento e da outorga da permissão e do direito de uso, obedecidas as legislações Federal e Estadual pertinentes e atendidos os critérios e normas estabelecidos em regulamento.

A Lei estabelece, em seu art. 5, que o órgão gestor dos recursos hídricos do Estado é a Superintendência de Recursos Hídricos, autarquia integrante da administração indireta da Secretaria de Recursos Hídricos Saneamento e Habitação. Uma das competências do órgão gestor é o incentivo aos usuários dos recursos hídricos a se organizarem sob a forma de comitês de bacias hidrográficas, destinados a discutir e propor ao órgão gestor sugestões de interesse das respectivas bacias.

O art. 7 da Lei nº 6.855 estabelece que o gerenciamento dos recursos hídricos estaduais obedecerá ao princípio da descentralização, visando a eficiência de suas

ações. O artigo 8, complementando o artigo anterior, diz que o território do Estado fica dividido em 10 Regiões Administrativas da Água - R.A.A.

2.2 PCH - Pequenas Centrais Hidroelétricas

As Pequenas Centrais Hidroelétricas (PCH's) foram definidas, segundo Müller (1995), através da Portaria DNAEE 109 de 24.11.82, pelas seguintes características:

- Operação em regime de fio d'água ou de regularização diária;
- Provisão de barragem e vertedouros com altura máxima de 10 m;
- Sistema adutor formado apenas por canais a céu aberto e/ou tubulações, não utilizando túneis;
- Suas estruturas hidráulicas de geração devem prever, no máximo, a vazão turbinável de 20 m³/s;
- Potência total instalada de até 10 MW.

Para a bacia em estudo (Rio Branco) as PCH's projetadas fazem captação a fio d'água, pois as vazões mínimas nos rios são maiores que as descargas necessárias para atender a demanda de geração hidroelétrica.

Segundo a Resolução do CONAMA 01 de 23.01.86, que trata do uso e implementação da avaliação de impacto ambiental, as PCH's são isentas destes estudos e dos respectivos Relatórios de Impacto Ambiental.

2.3 Impacto do uso consuntivo da água sobre a geração hidrelétrica

Trata-se de um sério problema de uso conflitivo da água uma vez que a irrigação impõe sérias restrições aos projetos hidroelétricos reduzindo as lâminas para as quais foram projetadas.

Lacorte et al. (1993) desenvolveram um cenário-base de irrigação para a bacia do São Francisco, objetivando a realização de um teste de verificação das interferências das derivações de água para irrigação sobre a capacidade de geração hidroelétrica.

Estes autores utilizaram dois modelos matemáticos para simular as demandas de água para irrigação (modelo PLANVASF) juntamente com a geração hidroelétrica (SIMULADIN). Foi concluído que as atividades de irrigação já estavam afetando levemente a geração de energia das usinas da CHESF (Companhia Hidroelétrica do São Francisco).

Acrescentou-se ainda que as metas estabelecidas pelo "Programa para Desenvolvimento de Irrigação" (período 1989-2000) criado pelo PLANVASF - Plano Diretor para o Desenvolvimento do Vale São Francisco - acarretariam crescimento das perdas anuais de geração. Este Programa prevê até o ano 2000 a utilização de 844.800 ha para irrigação contra os 90.809 ha existentes em 1987. As perdas de energia firme do sistema Norte/ Nordeste passariam de 1,2 a 10,2%.

A verdade é que até 1986, segundo Soares et al. (1993) não se considerava nenhuma retirada de água para irrigação nos estudos de planejamento da geração do setor elétrico. Esses fatos mostram que devem ser discutidas as necessidades de se realizarem estudos integrados dos recursos hídricos, quantificando os riscos e os benefícios, atuais e futuros, associados a um projeto em detrimento de outro.

Ainda que o trabalho com a bacia do Rio Branco trate os usos de forma sistêmica, escalonando níveis de prioridade a estes, a mesma faz parte de uma bacia maior (São Francisco). O modelo que a pesquisa propõe - de utilização otimizada da água -, principalmente para irrigação, afeta, mesmo que de forma insignificante, as captações para geração hidroelétrica das usinas da CHESF.

Portanto, é de se esperar que, para uma maior harmonização desta modelagem, também se faça um planejamento integrado do recursos hídricos globalizada para toda a bacia do São Francisco. Essa atitude torna-se importante para melhor definir

toda ordem de investimentos na bacia além de 'aposentar' a visão compartimentada e, inevitavelmente, conflitante dos usos que ainda insiste em se manter.

De acordo com o CBH-PCJ (1996), historicamente, a gestão de recursos hídricos no Brasil foi marcada pela hegemonia da produção de energia sobre os demais usos da água. Todo este processo foi, ou ainda tem sido, fruto do acompanhamento da demanda do desenvolvimento industrial imposto desde o início do século. O próprio vazio detectado na Lei nº 9.433, visto anteriormente, é um reflexo disso.

2.4 Modelagem Agro-Hidrológica

Os conhecimentos sobre as necessidades de água dos cultivos é de suma importância no que tange ao planejamento de projetos de irrigação, bem como para a gestão dos recursos hídricos das diversas áreas irrigadas numa bacia. As necessidades de água dos cultivos sofre bastante influência das condições locais, a citar : tipo de cultura, estágio do ciclo vegetativo clima, solos, umidade dos solos, radiação solar, ventos etc. Logo, o estabelecimento das necessidades de água para determinado plano de cultivo é atrelado a cálculos de balanço hídrico. Nesse balanço, são contabilizadas as disponibilidades hídricas da região, seja por pluviometria ou contribuição subterrânea, e as necessidades das culturas, a fim de se obter o máximo rendimento possível da planta.

A cultura, em seus diversos estágios de desenvolvimento, necessita de diferentes quantidades de água. A ocorrência de déficit agrícola se dá quando as necessidades são maiores que as disponibilidades. Nesse ponto, a irrigação deve ser efetuada até anulá-lo ou atenuá-lo.

Modelar matematicamente este tipo de processo, requer o envolvimento de fenômenos hidrológicos e o conhecimento das relações planta-solo-água-clima.

O processo hidrológico determina a separação da chuva em uma parcela que se infiltra e outra que escorre superficialmente, a movimentação da água no solo e a

evaporação do solo nu. Da relação planta-solo-água-clima resultam as necessidades de água da planta e a sua capacidade de extrair a água contida no solo, processá-la e eliminá-la por transpiração. Deve ser notado que a simulação matemática do primeiro processo, embora possa ser realizada somente de forma extremamente simplificada em relação à realidade, ainda é muito mais precisa do que a simulação do segundo processo, à luz dos conhecimentos atuais.

Para tal, é utilizado na presente pesquisa um modelo matemático simplificado destes processos que faz estimativas das necessidades de irrigação para um plano de cultura. O modelo apresentado, denominado BALHIDRO, foi originalmente desenvolvido pela Divisão de Hidrologia do Instituto Colombiano de Hidrologia, Meteorologia e Adecuación de Tierras, HIMAT (1985) apud Almeida, 1993. É uma versão traduzida e adaptada a microcomputadores da linha PC por Lanna & Almeida (1991).

Este modelo foi estudado por Almeida (1993) concluindo que o mesmo possui um bom desempenho para solos arenosos e estações secas e úmidas, próprios da região em estudo.

2.5 Alguns Parâmetros da Modelagem Agro-Hidrológica

2.5.1 Capacidade de Campo (Cc) e Ponto de Murcha (Pm)

De acordo com Lôu e Silva (1987), o solo deve ser concebido, para fins de irrigação, como um reservatório capaz de armazenar e ceder água para as plantas. Daí a necessidade de se conhecer a sua capacidade máxima e mínima para estocar água.

A capacidade de campo é, então, definida, segundo Dorfman (1989), como e estado de umidade que o solo consegue reter 24 a 72 horas após uma chuva pesada ou irrigação. Já o ponto de murcha, de acordo com o mesmo autor, é o estado de umidade que o solo retém e que as plantas não conseguem extrair e murcham. Estes

parâmetros podem ser medidos *in loco* ou em laboratório e variam com a classe de solo, particularmente com sua textura, manejo da terra e teor de matéria orgânica.

2.5.2 Excesso Hídrico

Quando a água que está no sistema solo-planta não é utilizada por esta última, temse excesso hídrico. Este excesso, por sua vez, tem, a princípio, três caminhos possíveis: evaporação, percolação (profunda ou sub-superficial) ou escoamento superficial.

A percolação é entendida como a água que se perde ao longo das camadas do solo quando o mesmo se encontra com a umidade acima da Capacidade de Campo (Almeida, 1993).

O excesso hídrico é indesejado, em culturas mesofíticas, por trazer inconvenientes físicos às mesmas e ainda configurar-se num desperdício de água para os casos de irrigação.

Krelling (1996) diz que uma das principais causas de excesso hídrico é devido a problemas mecânicos dos equipamentos de irrigação e/ou imperícia dos irrigantes, pois é muito comum o não monitoramento da umidade do solo com instrumentos (tensiômetros) na Região Oeste da Bahia. Além do que, o excesso hídrico pode provocar erosão do solo.

2.5.3 Stress Hídrico

Segundo Almeida (1993), o stress hídrico é interpretado como sendo a quantidade de água que necessita ser suplementada ao sistema solo-planta para a manutenção da transpiração a níveis adequados ao perfeito desenvolvimento da planta.

Sabe-se que a quantidade de água que o sistema solo-planta perde para a atmosfera, depende de diversos fatores, a citar: densidade da cobertura vegetal, profundidade

das raízes, condutividade hidráulica do solo, difusividade, ação do vento, radiação solar, pressão de vapor, etc.

Porém, existem as definições de transferência potencial e transferência real de água do sistema solo-planta para a atmosfera.

A transferência potencial de água é a evapotranspiração potencial (ETP) do sistema, a qual, segundo Reichardt (1987), é a quantidade de água evapotranspirada na unidade de tempo e área por uma cultura verde de porte baixo, altura uniforme e sem deficiência hídrica.

Por seu turno, a transferência real ou ETr é de difícil estimativa. Diversos autores apresentaram funções que relacionam a evapotranspiração relativa (ETr/ETP) com a umidade do solo com o fim de facilitar o cálculo da ETr. Oliveira (1995) e Almeida (1993) revisaram várias destas relações. A variação de metodologias é muito grande, indo desde funções lineares (Thornthwait e Matther), funções descontínuas (Veihmeyer e Hendrickson) e até funções logarítmicas (Pierce).

A figura 2.1 expõe algumas funções que relacionam a Evapotranspiração relativa (ETr/ETP) e a umidade do solo (Minhas et al., 1974) apud Oliveira (1995).

Não existe uma função universalmente aceita ou utilizada satisfatoriamente em qualquer situação. Segundo Denmead e Shaw (1962) apud Almeida (1993), a relação sugerida por Veihmeyer e Hendrickson é aplicável para situações com baixa demanda evaporativa, enquanto que a curva logarítmica atribuída a Pierce corresponderia à períodos de demanda moderada. A relação linear proposta por Thornthwait e Matther, utilizada nesta pesquisa pelo modelo BALHIDRO, corresponderia a condições com alta radiação solar e clima muito seco, próprios da região em estudo. Chega-se à conclusão, portanto, de que não pode ser definida uma função única, mas sim diversas funções que variem com as condições atmosféricas ou evapotranspirações potenciais.

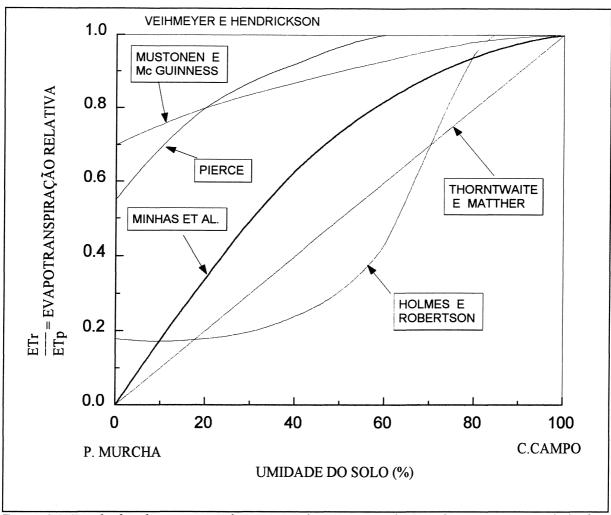


Figura 2.1: Resultados de vários estudos mostrando a variação da ET relativa com a Umidade do Solo (Minhas et al., 1974) apud (Oliveira, 1995).

2.6 Sistema Pivô-Central

De acordo com Bernardo (1989), o sistema pivô-central é um sistema de movimentação circular, autopropelido a energia elétrica ou hidráulica. Normalmente se constitui em linha de 200 a 800 metros de comprimento com vários aspersores acoplados em tubos de aço que se apoiam em torres munidas de rodas que giram em torno de um ponto central (pivô-central). Este serve de ancoragem e tomada d'água por bombeamento. Sua capacidade varia de 25 a 200 hectares por unidade.

Segundo o mesmo autor, o sistema apresenta vantagens e desvantagens sobre o sistema tradicional de irrigação por aspersão.

Vantagens:

- a) Economia de mão-de-obra para realizar a irrigação (principal vantagem);
- b) Economia de tubulação quando se usa água subterrânea (captação abaixo do pivôcentral);
- c) Alinhamento e velocidade de irrigação são mantidos;
- d) Após o fim da irrigação, o sistema estará de volta ao ponto de origem;
- e) Pode-se obter boa uniformidade de aplicação quando bem dimensionado.

Os problemas de dimensionamento em sistema de irrigação, principalmente pivôs centrais, podem trazer sérios problemas para o irrigante. Mohamond et al. (1992) disseram que os sistemas hoje existentes de pivô-central possuem certa ineficiência por não compatibilizarem bem as pressões de operação com o diâmetro molhado. Os efeitos disso são as altas taxas de energia consumida pelos equipamentos e a produção de, como já dito, escoamento superficial, favorecendo a erosão.

Estes autores desenvolveram um procedimento para otimizar o uso do pivô-central, baseando-se no tipo de solo, condições climáticas e tipos de culturas plantadas com a finalidade de encontrar o valor máximo de pressão de operação acima do qual há ocorrência de escoamento superficial.

Desvantagens:

- a) Dificuldade de mudança de área;
- b) Perda de 20% da área (exemplo: com um raio de 400 metros irriga-se de 50 a 54 hectares a de cada 64);
- c) Alta intensidade de aplicação na extremidade (20 a 50 mm/h), conduzindo a sérios riscos de escoamento superficial ("run-off");

2.7 Turno de Rega

Trata-se do intervalo de dias entre duas irrigações sucessivas. A sua determinação deve levar em conta a capacidade de retenção de água no solo, profundidade das raízes, clima e percentagem de superfície coberta (Bernardo, 1989).

Para o cálculo do turno de rega (TR), o mesmo autor propõe a equação 2.1.

$$TR = \frac{LRN}{ETP}$$
 (2.1)

onde,

LRN é a lâmina real necessária à planta;

ETP é a evapotranspiração potencial diária da região.

A equação 2.1 pode ser escrita como a equação 2.2.

$$TR = \frac{10*(Cc - Pm)*Da*Z*f}{100*ETP}$$
 (2.2)

onde,

Cc é a Capacidade de Campo (% peso);

Pm é o Ponto de Murcha (% peso);

Da é a densidade aparente do solo (g/ cm³);

Z é a profundidade efetiva das raízes (cm);

f é o fator de disponibilidade da água $(0.7 \ge f \ge 0.3)$;

ETP Evapotranspiração Potencial diária da região (mm/dia).

Tem-se $f \cong 0,3$ para culturas que respondem muito à irrigação (mamão, melão, melancia, etc.) e $f \cong 0,7$ para plantas que respondem pouco à irrigação.

Capítulo 3

Área de Estudo

3. ÁREA DE ESTUDO

3.1 Panorama dos Problemas

O desenvolvimento hora observado na região Oeste não surgiu de uma iniciativa isolada e pioneira de incorporação de produção agrícola nos cerrados. Segundo Pereira (1993), o primeiro plano de desenvolvimento dos cerrados data de 1972 através do Programa de Crédito Integrado - PCI, o qual visava as áreas do cerrado de Minas Gerais. Em 1975, ainda na linha de capitalização e modernização da agricultura dos cerrados de Minas, o governo do Estado criou o POLOCENTRO.

Dentro da mesma estratégia, em 1980, resultado de um acordo de cooperação entre Brasil e Japão, agora com uma visão cooperativista com empresas apoiadas em agricultura intensiva e com alto índice técnico, foi criado o PRODECER - Programa de Desenvolvimento dos Cerrados. Na sua segunda fase, em 1986 (PRODECER II), o mesmo tomou dimensões nacionais saindo do perímetro mineiro, expandindo-se para as regiões de cerrados do Mato Grosso, Mato Grosso do Sul, Goiás e Bahia.

A mesma autora faz a ressalva que o PRODECER II beneficiou, basicamente, as regiões agrícolas avançadas (sudeste) receptivas a adoção de tecnologias modernas. Isso, praticamente, resultou na seleção de colonos com bom potencial empresarial e predispostos às idéias. Enquanto isso, a Bahia fortaleceu sua posição com a troca de experiência com gaúchos, catarinenses e paulistas que chegaram à região impulsionados pelo Programa e interessados em investir.

Paralelamente, em janeiro de 1986 foi instituído pelo Governo Federal o PROINE - Programa de Irrigação para o Nordeste - através do Decreto 92.344 que planejou a implantação de 276.175 ha de área irrigada na Bahia entre 1986 e 1990. Em janeiro de 1989 o PROINE foi extinto transferindo-se as atividades para o Ministério da Agricultura através da Secretaria Executiva do Programa Nacional de Irrigação - PRONI. A mesma também foi extinta em 1990, sendo criada a Secretaria Nacional de Irrigação - SENIR. De acordo com a HYDROS (1993), em termos globais, foram

atingidos 40% das metas do PROINE apesar de terem sido investidos U\$ 875 milhões (25% do montante previsto). Esse resultado foi sustentado, praticamente, pela iniciativa privada.

A falta de legislação específica no trato dos recursos hídricos, dificultou a elaboração e implementação de diversas ações no passado. Hoje, com a Lei nº 6.855 de 12 de maio de 1995, que dispõe sobre a Política, o Gerenciamento e o Plano Estadual de Recursos Hídricos, englobando os planos diretores supracitados, a Bahia está entre os poucos Estados da União que regulamentou essa preocupação e que agora, legalmente, pode implementar diversos planos de ação.

Outro fator condicionante para o necessário planejamento dos recursos hídricos é a escassez de conhecimento acerca dos aspectos físicos, hidrológicos, econômicos etc. das bacias que compõem a região. De certa forma, esse parco conhecimento é atenuado com os Planos Diretores de Recursos Hídricos e com os estudos Companhia de Desenvolvimento e Ação Regional (CAR) da Secretaria de Planejamento, Ciência e Tecnologia do Estado da Bahia. A ampliação, reativação e implantação de postos para medições hidrometeorológicas, assim como o cadastramento dos diversos usos dos recursos hídricos, se fazem necessários na medida que os dados coletados são essenciais para proceder estudos de pesquisa, projetos para implantação de reservatórios, canais, transposições de bacias, estabelecimento de critérios mais realistas para outorga da água etc., bem como simulações matemáticas do "funcionamento" desses sistemas, garantindo, dessa forma, bases científicas para um gerenciamento eficiente.

Os diversos usos da água vêm se tornando conflitivos nessa região, principalmente nos períodos mais críticos. O uso concorrente entre os irrigantes e as atuais e futuras usinas hidroelétricas, é problemático diante da limitação dos recursos hídricos disponíveis superficialmente, apesar de abundantes em algumas partes, pois em diversos pontos de regiões circunvizinhas já se atingiu o limite de oferta natural da água.

O valor econômico da água nessa região vem se mostrando relevante, pois são notórias as fortes disputas pelas outorgas dos direitos de uso das águas, principalmente entre irrigantes. Constantemente, diversos pedidos de aumento dos valores de outorga, por parte dos usuários, vêm sendo requeridos no órgão gestor de recursos hídricos do Estado da Bahia (Superintendência de Recursos Hídricos). Os mesmos alegam que as outorgas poderiam ser em maior número e grandeza uma vez a vazão dos rios é considerada alta durante quase todo o ano.

De acordo com a CAR (1993) "Dentro da posição otimista de crescimento do Oeste, os produtores estão prevendo o plantio de quase toda a área disponível até o final do século, pois, atualmente, apenas cerca de 20% das terras aptas ao cultivo de grãos foram incorporadas ao processo produtivo." Além disso, está se tornando real a perspectiva de diversificação das culturas irrigadas (fruticulturas), implantação de agroindústrias, suinocultura, avicultura dentre outras atividades de transformação industrial. Vê-se, portanto, uma crescente demanda pela utilização dos recursos hídricos (irrigação, geração hidroelétrica, uso industrial, navegação, etc.) com riscos, inclusive, de degradação ambiental.

Segundo Pereira (1993) podem ainda ser enumerados alguns problemas de ordem ambiental que estão ocorrendo no Oeste da Bahia:

- Degradação da cobertura vegetal natural e transformação em campos antrópicos;
- Aceleração dos processos erosivos;
- Diminuição do potencial para exploração dos recursos hídricos;
- Eutrofização dos solos e das águas pelo uso de corretivos e fertilizantes;
- Exposição dos solos à insolação e ações eólicas nos períodos de entre-safra.

Recentemente, o Oeste tem experimentado uma diversificação nas suas produções redirecionando regiões conhecidas como sojicultoras para a fruticultura. De acordo com Carneiro (1993), a fruticultura poderá assumir papel importante na economia regional nos próximos anos devido à abundância de águas e terras, além de incentivos do Banco do Brasil e do Estado. Um exemplo disso pode ser visto nos

projetos da iniciativa privada (que conta com esses benefícios) que até 1993 investiu U\$ 70 milhões em 39.100 ha a partir de 376 pivôs centrais para a produção de soja, milho, feijão, arroz, melancia, uva, mamão, melão, abacaxi, maracujá e abóbora.

Porém, o Estado deve entrar nesta questão de forma enérgica, significativa e balisadora. Diante das demandas já identificadas em diversos mercados, inclusive no exterior, e das condições naturais favoráveis, o Estado deve atuar no sentido de ampliar a infra-estrutura viária, saneamento e energia a fim de que os mesmos não se transformem em componentes de custos pesados. Não menos importante é a atuação do governo para equilibrar a exploração econômica dos recursos naturais da região com a conservação ambiental de seus mananciais. Políticas de desenvolvimento que encerrem regras e limites de utilização desses recursos respeitando, também, as eventuais sazonalidades, devem ser priorizadas e devidamente implementadas.

Cunha e Nascimento (1993) lembram que quase 400 pivôs centrais no Oeste da Bahia receberam licença de operação. A significativa retirada de água e o uso conflitivo com a geração hidroelétrica comprometem os abastecimentos prioritários, o lazer e a própria existência do curso d'água (vazão ecológica). Segundo estes autores, a Constituição Estadual (art. 216) considera as nascentes/veredas do Oeste como "patrimônio estadual". As mesmas estão sendo usadas indevidamente, apresentando, inclusive, sinais de comprometimento devido ao uso inadequado.

3.1.1 Particularização para a Bacia do Rio Branco

No sub-item *Panorama dos Problemas*, foi exposto que as diretrizes apontadas pela política governamental visam o disciplinamento do uso da água, bem como a orientação dos órgãos públicos, de interesse, para a gestão da mesma. A necessidade de se estabelecerem critérios eficazes de outorga nesse ambiente de usos múltiplos (irrigação, geração de energia elétrica, abastecimento urbano e rural, etc.) é emergente dada as diversas situações conflitivas entre os mesmos. Segundo Luz (1994), não só critérios de outorga podem ser implementados, mas também, uma ação gerencial

conjunta que comporte, simultaneamente com a outorga, a cobrança pelo uso e poluição das águas, gestão participativa, monitoramento ambiental, fiscalização e controle das demandas hídricas, bem como eventuais medidas de racionamento, face às abstrações hídricas anárquicas que naturalmente surgem.

Outorgar, nesse âmbito, significa permitir, controladamente, o uso de cotas hídricas para determinado fim e determinado usuário, de forma racional, dentro das limitações ambientais e sistêmicas, atenuando, dessa forma, conflitos de toda ordem que inevitavelmente aparecem. A necessidade dessa postura deve-se ao fato de que a água, sendo um bem público, toda e qualquer pessoa, física ou jurídica, tem acesso à mesma de forma livre. E, por ser um bem sob o domínio da União ou dos Estados e cada vez mais escasso, todo e qualquer uso (público ou privado) deve passar pela esfera governamental responsável, pois sabe-se que as decisões individuais de consumo dos usuário impõem condicionantes e até limitações a outros usuários e/ou a outros sistemas a jusante no curso d'água. Portanto, a atitude do Estado de gerenciar os recursos hídricos não se constitui, apenas, numa faculdade legal, e sim, numa necessidade de controle.

A outorga no Estado da Bahia é dada por 12 anos em 3 períodos de 4 anos. Ao fim de cada um desses períodos, é avaliada a condição de fornecimento da bacia e se for constatada qualquer ameaça à manutenção da vazão ecológica, a mesma é automaticamente suspensa.

Caberá ao irrigante assumir os riscos decorrentes uma vez que os prejuízos financeiros são recuperáveis ao passo que os ambientais dificilmente o são. No documento de outorga, publicado em Diário Oficial do Estado, vem especificado o volume que o irrigante pode derivar por dia e o número de horas (geralmente 20h para a região) de operação do sistema. Ao ser constatada irregularidades nas instalações ou se as mesmas não forem efetuadas no prazo de 1 ano, a outorga também é suspensa imediatamente.

No Estado da Bahia, a emissão de uma outorga passa por 3 órgãos (Derschum, 1996):

- ◆ IBAMA (Instituto Brasileiro do Maio Ambiente): observância da área a ser desmatada (< 60% da propriedade).
- CRA (Centro de Recursos Ambientais): avaliação sucinta de impacto ambiental do projeto de irrigação.
- SRH (Superintendência de Recursos Hídricos): disponibilidade de água para irrigação.

A liberação de linha de crédito bancário para implantação do projeto e custeio agrícola está vinculada à apresentação de uma outorga. Atualmente, não é realizada uma análise econômica quando da emissão de uma outorga à determinado projeto de irrigação.

Oficialmente, desde 12.05.95, a Superintendência de Recursos Hídricos, órgão gestor desses recursos do Estado, vem adotando como critério de outorga até 80% da vazão mínima de 7 dias e 10 anos de tempo de retorno (Q_{7,10}) avaliada para o ponto de captação, subtraídas as outorgas a montante. A vazão mínima de 7 dias corresponde a um valor médio de vazão anotado no período mais crítico, durante 7 dias consecutivos, em cada ano de registro histórico. Esses valores são ajustados, por exemplo, à distribuição probabilística como a Distribuição Assintótica dos Extremos do tipo I para série de mínimos (Gumbel) a fim de se obter uma vazão que seja igualada ou inferiorizada, em média, uma vez a cada dez anos.

O que se nota, contudo, é que ocorrem vazões superiores à 80%Q_{7,10} durante a maior parte do tempo em diversos pontos da bacia. O resultado disso, são fortes pressões e inúmeros pedidos de maiores valores de outorga por parte dos usuários, principalmente irrigantes. Com base nesses fatos, Luz (1994), testou diferentes níveis de uso da água para irrigação na bacia do Rio Grande, da qual faz parte a bacia do Rio Branco. Os níveis adotados referem-se à possibilidade de critérios de outorga a serem adotados pelo órgão gestor, sendo eles :

- Utilização de até 80% da vazão mínima de 7 dias e 10 anos de tempo de retorno;
- Utilização de até 100% da vazão mínima de 7 dias e 10 anos de tempo de retorno;
- Utilização de até o valor correspondente à vazão com 95% de permanência;

- Utilização de até o valor correspondente à vazão com 90% de permanência;
- Utilização de até o valor correspondente à vazão com 85% de permanência.

No referido trabalho, foram adotados tais critérios de forma a estabelecer valores crescentes de vazão a serem outorgadas: $Q_{7,10}$, $Q_{95\%}$, $Q_{90\%}$ e $Q_{85\%}$ com o fim de se chegar a condições limites tendo um mínimo de falhas. Estudou-se, também, a percentagem de 80% da $Q_{7,10}$ da sub-bacia incremental, critério atualmente utilizado pelo órgão gestor. Na verdade, por detrás desse critério, há o interesse do órgão em preservar no leito do rio a *vazão ecológica* de 20% da $Q_{7,10}$ da sub-bacia total, estabelecida por razões desconhecidas.

O que se contesta, portanto, é que estabelecer um limite superior de vazão de captação no rio, pode não ser o mais adequado, teoricamente. Avaliar a vazão mínima necessária para manter o equilíbrio ecológico em dada região, podendo ser captada e repartida entre os usuários toda vazão que exceda essa *vazão ecológica*, é exercer - o que Luz (1994) chamou - a 'anti-outorga'. Em outros termos, isso significa que deverá *permanecer* no leito do rio a vazão de 20% da Q_{7,10}, cuja garantia da mesma e o controle policial dos demais usos será de responsabilidade do órgão gestor.

Acontece, porém, que pôr em prática esse modelo de outorga, vai de encontro à realidade do Estado, seja por vontade política, burocracia excessiva, entraves institucionais ou ainda parcos recursos financeiros, principalmente para fiscalização. A concretização, do ponto de vista técnico, passaria, também, por diversas exigências como : estudos hidrológicos mais precisos (o que esbarra na escassez de dados), monitoramento ambiental, obtenção de curvas-chave e instalação de réguas linimétricas nas seções de interesse a fim de possibilitar a fiscalização da manutenção da vazão ecológica pelos usuários.

Um outro problema, que poderia ser lembrado aqui, é que este modelo aumentaria em muito as captações majorando, também, as vazões de retorno, em forma de águas residuais, para o leito do rio comprometendo a sua biota e os usuários de jusante. Isso, acarretaria maiores incrementos de custos com tratamento, transporte e disposição (Garrido, 1991).

3.2 Caracterização da Bacia do Rio Branco

Parte das informações a seguir foi extraída do Plano Diretor de Recursos Hídricos da Bacia do Rio Grande (SRHSH/CRH, 1993).

3.2.1 Localização

A bacia do Rio Branco localiza-se na região oeste do Estado da Bahia, limitada pelas coordenadas 11°15′ e 12°15′ latitude sul e 44°45′ e 46°30′ longitude oeste. Ao norte, ela é limitada pela sub-bacia do Rio Preto e ao sul, pela sub-bacia do Rio de Ondas, ambos afluentes do Rio Grande o qual desagua no Rio São Francisco. A oeste, faz limite com a bacia do rio Tocantins, sendo este limite a divisa do estado da Bahia com Goiás e Tocantins. O Rio Branco, que dá nome à bacia, desagua no Rio Grande que é afluente do Rio São Francisco. A figura 3.1 localiza a área de estudo no Estado da Bahia.

3.2.2 Características físicas

<u>Indices fisiográficos</u>

A bacia do Rio Branco possui uma área de 8.195 Km², com 150 Km de extensão do rio principal, 556 Km de perímetro, 340 m de desnível, 1.105 Km de extensão dos cursos d'água e densidade de drenagem de 0,13 m/Km².

Índices hidroclimatológicos

O total anual precipitado tem valores decrescentes de oeste para leste. Este valores variam de 1.400 mm, na porção mais a oeste, até 1.000 mm na parte mais a leste (exutória da bacia). A época chuvosa nessa região ocorre entre os meses de outubro e abril, precipitando cerca de 94% do total anual. Isto significa que os meses entre maio e setembro são os mais secos captando apenas 6% de toda precipitação anual.

O déficit hídrico é bastante expressivo entre esses meses representando uma época de grandes abstrações hídricas para irrigação.

Figura 3.1 - Área de estudo.

A tabela 3.1 expõe os elementos climáticos representativos da região (médias mensais da cidade de Barreiras).

Tabela 3.1- Elementos climáticos.

Elemento climático	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
Temperatura (°C)	24,6	24,4	24,3	24	23	21,5	21,2	22,5	25,3	26,6	25,3	24,4
Umidade ralativa (%)	76	80	80	79	72	66	59	52	47	58	<i>7</i> 1	77
Evapotranspiração (mm)	189.1	170.8	173.6	135.0	133.3	123.0	136.4	167.4	201.0	207.7	189.0	189.1

Fonte : Silva (1996).

A média anual de horas de luz é de 2.739,6 h, representando uma percentagem de 31% em relação ao total de horas do ano (8.760 h). O mês mais ensolarado é agosto com uma média de 286,2 h, e o menos ensolarado é, em média, novembro com 188,6h.

A direção predominante dos ventos em todos os meses do ano é NE. Como em todo o Estado, a velocidade é baixa : média anual de 1,7 m/s.

A bacia dispõe de sete postos fluviométricos cujas vazões características estão relacionadas na tabela 3.2.

Devido às características lito-pedológicas da região, o escoamento de base é significativo inclusive nos períodos de pouca precipitação. Isto é resultado da regularização natural promovida pelo Sistema Aqüífero Urucuia (predominante na área) que contribui em média com 70% do escoamento superficial da bacia. O mesmo estende-se em forma de 'plateaux' tabuliformes até os limites com os Estados de Goiás e Tocantins. A recarga do mesmo é feita pela precipitação que cai sobre a própria bacia e, principalmente, próximo á cabeceira. Além disso, são escassas as informações sobre taxas de infiltração a fim de permitir a estimativa da recarga anual do mesmo. A profundidade média do aqüífero é de 100m com produção em torno de 13 m³/h.

Pode-se observar na tabela 3.2, portanto, a pequena diferença entre os valores médios das vazões mínimas e máximas diárias nos postos da região cujo período de observação é apresentado no anexo 3.

- Geomorfologia

A bacia do Rio Branco é caracterizada por relevos planos suavemente inclinados para leste, modelados sobre arenitos da Formação Urucuia. A variação altimétrica desses relevos é em média de 330 m (de 690 a 1020 m), onde as partes mais elevadas situam-se no oeste da bacia fazendo divisa com a bacia do Rio Tocantins.

Tabela 3.2 - Vazões características.

N°	Posto	Código	Área de drena- gem (Km²)	Vazões específicas (l/s.Km²)			Vazão média diária (m³/s)	Vazão mín. diária (m³/s)		Vazão máx. diária (m³/s)	
				mínima	média	máxima		histó-	média	histó-	média
								rica		rica	
1	Campão	46560000	2650	5,659	6,410	9,698	17,2	15,0	-	26,1	-
2	Ponte Serafim (mont.)	46570000	2040	4,196	<i>7,</i> 598	18,383	15,5	5,98	8,56	52,6	37,5
3	P. Acaba Vida	46582000	2000	3,690	6,750	19,350	13,5	6,1	7,38	44,3	38,7
4	Faz. Boa Fé	46585000	2850	4,561	7,298	22,912	20,8	10,6	13,0	83,3	65,3
5	Nova Vida (mont.)	4659000	6918	6,244	8,642	21,418	57,3	37,0	41,4	184,0	142,0
6	Cantinho	46593000	7600	4,513	6,329	12,132	48,1	29,1	34,3	106,0	92,2
7	Ponte Fortaleza Brasília	46595000	7600	4,197	5,908	11,737	44,9	30,2	31,9	95,8	89,2

Fonte: SRHSH/CRH, 1993.

A drenagem dos rios encontra-se embutida nos planos de topo e forma vales de bordas bem marcadas, com fundo plano e amplas várzeas. Esses vales são considerados especiais e chamados de *veredas*, onde aparecem cobertura de gramíneas e estratos arbustivos e arbóreos, incluindo, entre outros elementos, a existência de material turfoso que margeia os canais fluviais e vem sendo degradado por diversas atividades antrópicas. Essas veredas funcionam como 'esponjas' onde mina toda a água de alimentação dos rios. O desmatamento verificado na área tem atingido as nascentes dos principais rios, o que ocasiona interferência em suas dinâmicas.

- Qualidade das águas

As águas da bacia do Rio Branco (e de toda a Região Oeste) são de boa qualidade sendo indicadas para diversos usos. Segundo a classificação do "U.S. Salinity Laboratory", 83% das águas subterrâneas são do tipo C_2 S_1 e superficiais, C_1 S_1 . Embora os cursos d'água da bacia do Rio Branco não esteja enquadrada

oficialmente na resolução N° 20 do CONAMA (Conselho Nacional do Meio Ambiente), as análises feitas em setembro de 1993 propuseram classe 1 aos mesmos.

- <u>Solos</u>

O Latossolo Amarelo é a classe de solo mais importante da bacia devido a sua extensão territorial. É entrecortado por outras unidades as quais se distribuem ao longo dos vales, zonas de depressão e nos ressaltos ou escarpas. É nesse solo que se localizam os maiores projetos agrícolas, agro-industriais e silviculturais.

Tratam-se de solos porosos, permeáveis, com estrutura granular e não apresentam, normalmente, camadas ou horizontes adensados. São de drenagem livre classificada como fortemente drenada.

Esses solos ocorrem em relevo plano e suave ondulado, com declives entre 0 e 6%. Este fatores colaboram para que o solo tenha grande estabilidade física, em condições naturais.

São bons solos para a mecanização plena necessitando de práticas conservacionistas na agricultura como terraceamento e plantio direto a fim de que os mesmos não sejam erodidos e mantenham o teor de matéria orgânica mínimo às culturas. Não possuem boa fertilidade sendo necessário o uso intensivo de adubação e em muitos casos, a aplicação de corretivos. Enfim, esses solos apresentam boa aptidão para a agricultura irrigada, sendo desaconselhável para o plantio se sequeiros devido à baixa retenção de água. Segundo a classificação do U. S. Bureau of Reclamation, o Latossolo Amarelo possui classe 2, considerado irrigável com resultados econômicos decrescentes.

Existe um risco considerável, ainda não quantificado, de contaminação do aqüífero Urucuia dado que as zonas mais aptas à agricultura irrigada estão sobre os solos mais bem drenados. Isso faz com que os defensivos agrícolas e os diversos insumos usado na fertilização dos mesmos sejam carreados com certa facilidade para o

lençol. Atualmente, não estão sendo sentidos os efeitos desse fato. Porém, como se trata de uma região que ainda possui um grande potencial para ampliar a sua agricultura irrigada, a qualidade das águas subterrâneas e conseqüentemente das superficiais, estarão seriamente comprometidas.

Produção agrícola

A produção agrícola na bacia do Rio Branco é fundamentada na **melancia**, **abóbora**, **milho e feijão**. Nas bacias localizadas ao sul, tem-se ainda o plantio de soja cuja produção vem apresentando, desde 1980, um apreciável aumento nos índices de produtividade. Em 1989, a soja figurou como o principal produto agrícola da região, ocupando cerca de 75% das áreas plantadas. Porém, a partir de 1990, vem havendo uma pequena queda em sua produção, indicando que a região vem mostrando uma tendência à diversificação com a presença de novas culturas em expansão e uma maior parcela de pontos cultivados.

Como foi exposto anteriormente, o relevo bastante plano propicia boas áreas para a implantação de projetos de irrigação localizando-se, basicamente, na parte central e oeste da bacia. Atualmente, 30% da área da bacia do Rio Branco é destinada para fins de irrigação. Cerca de 10% dessa área é utilizada para o plantio de culturas perenes como café, manga e limão. O restante é explorado com culturas anuais ou bianuais como feijão, milho, melancia, abóbora, e em menor parte, inhame e maracujá.

Abaixo segue o plano de cultivo genérico adotado na região:

- Culturas perenes : qualquer época;
- Feijão: março a junho (plantio);
- Milho: julho a novembro (plantio);
- Melancia: janeiro a maio (plantio);
- Abóbora : agosto a novembro e fevereiro a março;
- Maracujá e Inhame : qualquer época do ano.

A tabela 3.3 mostra algumas informações econômicas sobre estes cultivos coletadas em julho de 1996.

Demanda de água para irrigação

A demanda de água que tem maior peso na bacia do Rio Branco é a de irrigação. Segundo dados da extinta CRH - Coordenação de Recursos Hídricos (1992) - hoje Superintendência de Recursos Hídricos - , AIBA (Associação dos irrigantes do oeste da Bahia) (1992) e a CODEVASF (Companhia de desenvolvimento do vale do São Francisco) (1991), a área de lavoura irrigada na bacia é de 4.232 ha e 3.335 ha em projeto.

Tabela 3.3 - Informações econômicas.

CULTURA	PREÇO DE MERCADO (R\$)	PRODUTIVIDADE (Kg/Ha)	CUSTO DE PRODUÇÃO (R\$/Ha)
Feijão (sc/60 Kg)	33,00	2.400	800,00
Milho (sc/60 Kg)	7,00	7.700	600,00
Abóbora Maranhão (t)	250,00	12.000	400,00
Melancia (t)	200,00	35.000	1.000,00
Abóbora Japonesa (t)	500,00	8.000	1.000,00
Maracujá (t)	500,00	15.000	800,00

Fonte: Silva (1996).

Aproximadamente, 99% das lavouras irrigadas utilizam a tecnologia do *Pivot-central*. Em geral são equipamentos em unidades de 100 ha que consomem cerca de 300 a 400 m³/h chegando a funcionar 22 a 24h nos dias de rega (Silva, 1996).

A SRHSH/CRH (1993) formula 2 cenários de demandas futuras para a bacia do Rio Branco. A primeira hipótese dá ênfase para a atividade hidro-agrícola estimando uma demanda para o ano de 2013 entre 24 e 32 m³/s. A segunda, dá ênfase à atividade hidroelétrica. Para a mesma é estimada uma demanda entre 7 e 44 m³/s.

A tabela 3.4 especifica alguns dados extraídos do cadastro de irrigantes fornecido pela AIBA (1991) e do inventário dos projetos de irrigação da CODEVASF (1991).

As regiões centrais dos platôs são utilizadas para plantação de sequeiros e há algumas iniciativas isoladas de utilização dos mananciais subterrâneos (custos mais altos). Isso ocorre, basicamente devido a dois fatores: limitação de ampliação do número ou magnitude das outorgas e distância elevada das captações.

Geração de energia elétrica

Encontram-se em fase de projeto quatro Pequenas Centrais Hidroelétricas (PCH) na bacia do Rio Branco cuja captação será feita a fio d'água. Estas centrais suprirão diversas demandas energética hoje existentes além dos aumentos previstos para a região, pois as altas relações benefício/custo para a irrigação iluminam um caminho de crescimento econômico regional apesar dos conflitos já existentes pelo uso da água.

Como os sistemas irrigados lançam mão da energia produzida por geradores a óleo diesel, a geração hidroenergética torna-se uma alternativa preferível, inclusive por questões ambientais, diante dos altos custos dos sistemas a óleo. A tabela 3.5 expõe as formas de geração elétrica com os custos associados às mesmas.

Existe um problema a ser lembrado: o uso conflitivo entre as centrais hidroelétricas e a irrigação. As PCH's projetadas situar-se-ão à jusante de grandes áreas irrigadas e/ou com vocação para irrigação. Como o uso da água para irrigação é consuntivo, os aproveitamentos hidroenergéticos serão comprometidos, pois haverá redução das vazões remanescentes a jusante dos pontos de captação para irrigação. As especificações técnicas estabelecidas para as PCH's foram calculadas com base na série histórica das vazões (correto até certo ponto), não levando em conta as prováveis abstrações hídricas para irrigação que surgirão a montante. Como exemplo, os PC's 9 e 13 (tabela 3.6) possuem suas vazões reguladoras (95%) próximas às dos rios. Isto certamente ocorrerá se forem mantidos os critérios atuais de outorga.

Porém, as simulações hidrológicas testadas aqui, levam em conta esse conflito conferindo uma prioridade maior para atendimento das demandas das atividades de irrigação em detrimento das PCH's, dada a sua predominância e os maiores rendimentos oriundos da mesma. O capítulo de metodologia detalha esta passagem.

Tabela 3.4 - Pontos característicos para irrigação.

Código	PC	Rio		E	xistente			Vazão Total (m³/s)				
				Sister irrig exist	ação	Áreas Irrigadas (ha)	Vazão (m³/s)	irriga	ma de ção de jeto	Áreas Irrigadas (ha)	Vazão (m³/s)	
-			Pivot	Outro			Pivot	Outros				
I23- GBJB	3	Balsas	4	-	240	0,240	-	-	-	-	0,240	
I24- GBJB	5	Balsas / Janeiro	11	-	1.210	1,21 0	_	-	-	•	1,210	
I25- GBJP	7	Ponta D'água	3	-	324	0,324	-	-	-	-	0,324	
I26- GBJBE	4	Entrudo		-	-	<u>-</u>	6	-	600	0,600	0,600	
I27- GBJ	1	Rio de Janeiro	-	-	-	-	3	-	300	0,300	0,300	
I28- GBJ	2	Rio de Janeiro	8	-	830	0,830	8	-	810	0,810	1,640	
I30-GB	9	Branco	5	-	520	0,520	6	-	605	0,605	1,125	
I31-GB	10	Branco	2	2	260	0,260	-	-	-	-	0,260	
	Tota	nis	41	2	4.232	4,232	33	-	3.335	3,335	7,567	

Fonte: SRHSH/CRH (1993).

Tabela 3.5 - Formas de geração elétrica e custos associados.

Formas de geração	Custo da potência instalada (US\$ / kw)	Custo da geração de energia (US\$ / Mwh)		
Centrais a óleo diesel	700	190		
Centrais hidroelétricas	2500	30		
Linhas de transmissão	820	68		

Fonte: SRHSH/CRH (1993) apud Luz (1994).

A tabela 3.6 mostra os pontos característicos projetados para geração de energia.

Tabela 3.6 - Pontos característicos para geração de energia elétrica.

Código	PC	Rio Aprovei- tamento hidroelé- trico projetado		tamento reguladora d hidroelé- (95%) trico (m³/s)		Vazão do rio a 95% (m³/s)	Queda bruta (m)	Poté (K	Energia firme anual (Mwh)
							Firme	Insta- lada	
E11-GBJ	9	R. Janeiro	Cachoeira Acaba Vida II	7,0	11,0	80,0	4.300	12.900	37.668
E12-GBJ	12	R. Janeiro	Faz. Ponta D'água	3,7	32,1	27,0	2.216	4.450	11.421
E13-GB	13	Branco	Faz. Nova Vida	34,0	33,2	26,0	6.923	9.230	60.645
E14-GB	11	Branco	Cachoeira Rio Branco I	4,8	8,2	80,0	2.918	5.836	25.562

Fonte: SRHSH/CRH, 1993.

3.4 Dados Disponíveis

Inicialmente, este estudo lançou mão dos dados levantados por Luz (1994) e de alguns resultado das simulações feitas na bacia do Rio Branco. Este autor consistiu os dados de precipitação com o método do Vetor Regional (Hiez e Rancan, 1993) e definiu as chuvas e evapotranspirações médias diárias de cada uma das 18 sub-bacias incrementais. Para tal, foi usado o método de Thiessen/Monte Carlo o qual compreendeu um período de 20 anos (1970 a 1989). Daí foram gerados 20 anos de vazões médias mensais a partir dos parâmetros calibrados para o modelo chuva-vazão MODHAC (Lanna e Schwarzbach, 1989).

Luz também obteve as curvas de compromisso ("Trade-off") entre irrigação e PCH para a Bacia do Rio Branco. Estas curvas estabelecem para os 4 PC's onde são projetadas as PCH's uma função de compromisso entre potência instalada (Mw) e a área irrigada a montante (ha).

Portanto, os dados aproveitados são: valores médios mensais das demandas consuntivas e não consuntivas distribuídas nos quatorze pontos característicos identificados na bacia e vinte anos de dados médios mensais das diversas contribuições de vazão, inclusive incrementais, obtidos deterministicamente pelo MODHAC (Lanna e

Schwarzbach, 1989) no período de 1970 a 1989, com algumas percentagens de permanência, das dezoito sub-bacias que compõem a bacia do Rio Branco.

Adotou-se a mesma topologia para a bacia do Rio Branco utilizada por Luz (1994). A mesma consta de 18 sub-bacias contribuindo para 14 Pontos Característicos (PC's), dos quais 8 são de irrigação, 4 projetados para geração hidroelétrica e 2 são apenas confluência de rios.

Em segunda instância, foram coletados em campo dados sobre tipos e rotação de culturas plantadas, suas necessidades hídricas decendiais (configuradas nos valores de K_c), índices de rendimento agrícola (K_y), faixas operacionais de umidade do solo adequadas para cada espécie de cultivo, valores de Capacidade de Campo (Cc) e Ponto de Murchamento (Pm), valores decendiais de evapotranspiração potencial (ETP) e dados de precipitação.

No sub-item *Caracterização da bacia do Rio Branco* estão também apresentados dados econômicos (preço de mercado dos produtos, custo de produção dos cultivos, produtividade, consumo atual e projetado para irrigação e geração hidroelétrica).

No capítulo seguinte será esclarecida a necessidade dos dados agroclimáticos, uma vez que para modelar matematicamente as diversas fases de crescimento e necessidades hídricas dos cultivos, é requerido o envolvimento e a quantificação dos fenômenos hidrológicos e o conhecimento das relações planta-solo-água-clima.

Diante da qualidade dos dados disponíveis, a utilização do SAGBAH para esta pesquisa se limitará ao sub-módulo PROPAGA. Algumas modificações foram efetuadas no mesmo por Pereira (1996 e 1996b) a fim de incorporar níveis seqüenciais de atendimento às prioridades.

Capítulo 4

Metodologia

4. METODOLOGIA

4.1 Introdução

O intuito deste trabalho é encontrar índices otimizadores de uso da água, principalmente para irrigação, na bacia do Rio Branco. Em linhas gerais, quer-se pesquisar até quanto é possível aumentar as outorgas para irrigação, mesmo que ocorram falhas de atendimento, de forma ainda produtiva e que não comprometa usos mais nobres da água. Porém, é necessário, previamente, esclarecer alguns tópicos.

4.1.1 Identificação e Priorização das Demandas

Na rede de drenagem da bacia hidrográfica são identificados pontos característicos (PC) os quais representam locais onde se deseja estudar um determinado comportamento. Geralmente, estes PC's são confluência de rios, pontos de captação de água para irrigação, barragem, etc. Pode-se estudar, por exemplo, a capacidade natural de fornecimento de água a determinadas demandas quando a bacia estiver sujeita a algumas regras operacionais. Estas, por seu turno, são estabelecidas com base em características inerentes à bacia.

As demandas, aqui referidas, podem ser: abastecimento humano, industrial, dessedentação animal, vazão ecológica, geração hidroelétrica, navegação, irrigação, recreação, diluição de poluentes, etc. A depender da bacia que se esteja estudando, cada PC escolhido terá uma ou mais demandas a serem abastecidas.

Num segundo instante, procede-se a priorização destas demandas. O que se quer abastecer primeiro? Dentre as diversas demandas, quais as mais nobres e que, num último recurso, todos os outros fornecimentos devem cessar para que não comprometa o seu abastecimento? Estas perguntas devem ser claramente respondidas.

4.1.2 Simulações Hidrológicas

Uma vez priorizadas as demandas, passa-se para a simulação das mesmas com base em dados históricos e/ou gerados (determinística ou estocasticamente). Simula-se, então, a existência destas demandas sendo captadas, simultaneamente, em todos os PC's da bacia com o fim de verificar a susceptibilidade a falhas de abastecimento em cada uma.

Os valores que são adotados para estas demandas não possuem duração ou tempo de retorno específico. São apenas números que quantificam uma vazão a ser captada ou mantida no rio em dada posição (PC).

É possível obter a partir destas simulações: as vazões que efetivamente puderam ser fornecidas a cada demanda, as vazões que sobraram no rio a jusante de cada PC e a percentagem do tempo que cada prioridade foi atendida.

4.1.3 Simulações Agro-Hídrológicas

O aumento de outorga para uma demanda de irrigação significa, diretamente, aumento de áreas plantadas, logo, aumento de produção, na medida que não haja falhas de fornecimento. No momento em que estas falhas começam a existir, têm-se perdas de produtividade, mas que podem ainda serem compensadas com o aumento da produção, uma vez que as áreas aumentaram. Nesta evolução, haverá um ponto onde uma outorga maior será condenada por não compensar mais as perdas de produtividade da lavoura.

A quantificação destas perdas de produtividade de culturas decorrente de déficit hídrico, originário de outorgas que apresentam falhas de atendimento, podem ser feitas numa modelagem agro-hidrológica (descrita adiante).

4.1.4 Simulações Econômicas

Descontadas as perdas de produtividade é possível quantificar as produções alcançadas em cada cultura, cada PC, a partir de cada nível de outorga incremental testada durante um determinado número de anos de análise (série histórica).

Com estes dados, é possível dar um tratamento econômico aos mesmos. Como se trata de produção de bens de valor de mercado, esta análise econômica deve levar em consideração: custos fixos e variáveis de produção, custos de investimentos dos projetor de irrigação, preço médio de mercado, juros bancários para pagamento dos financiamentos, etc.

Por fim, a análise econômica (descrita adiante) dos fluxos financeiros obtidos produzirá subsídios técnicos para a definição das outorgas de irrigação que mais benefícios trazem para a bacia como um todo.

O tratamento econômico pode sinalizar para níveis de outorga de irrigação cuja percentagem de falhas de atendimento reduza a produtividade, mas que, ainda assim, tenha um saldo bastante positivo para o agricultor.

As eventuais ocorrência de falhas podem causar, em certos anos de simulação, perdas parciais ou até totais de produção, configurando uma situação de riscos altos para o irrigante. Isto certamente o desencorajará a usufruir de dada outorga.

É necessário, portanto, criar mecanismos econômicos que contornem estas situações de risco para o agricultor. A intenção é garantir produções agrícolas com o uso de águas eventuais, não garantidas 100%, ou seja, águas sujeitas a falhas de ocorrência. Trata-se de uma água que vai para o oceano e que poderia ser dada uma utilidade econômica.

Para não se chegar a uma solução "estanque" de valores de outorga que, certamente, terão seus riscos, esta pesquisa prevê a abordagem de cinco critérios econômicos os quais são frutos de simulações matemáticas dos fluxos financeiros obtidos.

Com exceção do primeiro (Valor Médio), estes critérios tentam sanear os riscos de perdas de produção totais ou parciais procurando regularizar uma *renda* para o agricultor. O procedimento de se "garantir" uma renda fixa a um irrigante, estimula a produção agrícola uma vez que se pode planejar investimentos a longo prazo, ainda que o irrigante conviva com falhas de fornecimento.

4.1.5 Esquema de Outorga

A metodologia propõe a utilização de uma outorga que vá além das que têm alta garantia, isto é, uma outorga da vazão eventual ou excedente. Porém, ainda assim procura-se assegurar o abastecimento integral dos usos mais nobres: abastecimento humano e vazão ecológica.

Segundo Pereira (1996c), "a vazão excedente é cotizada entre os usuários através de uma espécie de outorga que, já na sua emissão, especifica qual a sua prioridade de atendimento e, portanto, prevê a situação na qual terá seu atendimento parcial ou nulo". Com este esquema, uma prioridade (demanda) só terá falhas quando todas as inferiores tiverem anulados seus atendimentos.

Para cada um dos critérios econômicos são encontradas as outorgas "ótimas" discretizadas por cultura e por PC. Além de otimizadas, estas outorgas significam a máxima utilização permitida em dado PC para o plantio de dada lavoura. Acrescenta-se a isto o fato de que quando forem atingidos estes níveis, a bacia estará em sua capacidade máxima de utilização, de forma integrada, dos recursos hídricos superficiais.

4.2 Panorama da Modelagem Matemática

Para a bacia em questão, a pesquisa contará com a utilização de dois modelos matemáticos de simulação, visando o auxílio na definição de critérios de outorga dos direitos de uso da água.

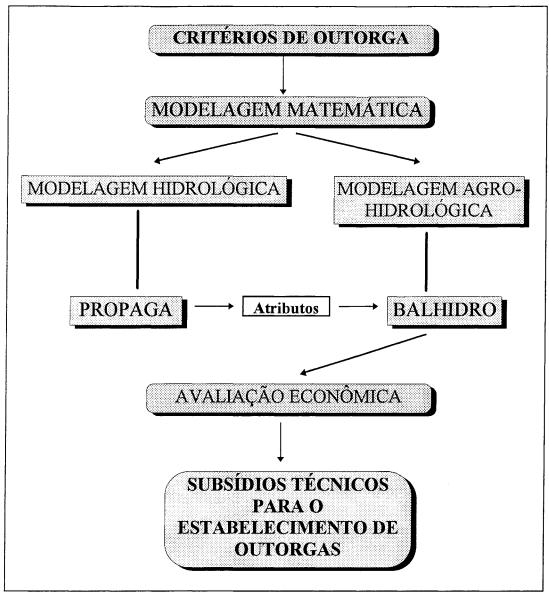


Figura 4.1 - Fluxograma geral da Modelagem Matemática.

Estes modelos podem simular as mais variadas situações de consumo, dentre os mais diversos usos existentes, a partir dos dados de disponibilidade hídrica da bacia, dados de consumo em geral e dados de necessidade hídrica das culturas. A figura 4.1 mostra o fluxograma geral da modelagem matemática.

O primeiro, PROPAGA, simula a propagação de vazões na bacia submetida a decisões operacionais relacionadas ao suprimento de demandas hídricas concentradas em diversos pontos da bacia (PC's). O mesmo retorna o percentual de

falhas (ao longo de 240 meses - 20 anos) e as vazões efetivamente atendidas associadas a cada demanda concentrada (primária, secundária,...).

O segundo, BALHIDRO, simula as necessidades hídricas de um plano de cultivo com base nas características hidroclimáticas da região, peculiaridades das plantas, limite físico de fornecimento de água para irrigação e condições de umidade do solo. Entenda-se como limite físico de fornecimento de água para irrigação, as vazões efetivamente atendidas as quais são fornecidas pelo PROPAGA. Como resultado, o BALHIDRO retorna as lâminas de irrigação necessárias e as perdas de produtividade dos cultivos (em %).

A utilização conjunta desses modelos propicia, em primeira instância, uma avaliação mais completa acerca das prioridades de demanda de água na bacia, como elas podem ser atendidas, seu percentual de falha, bem como a quantificação das perdas de produtividade em decorrência dos diversos níveis do outorga testados.

4.3 Modelagem Matemática para Subsídio à Outorga

4.3.1 Modelagem Hidrológica SAGBAH (Sistema de Apoio ao Gerenciamento de Bacias Hidrográficas)

Visando o auxílio na definição de critérios de outorga na Bacia do Rio Branco, onde se torna necessário o estabelecimento de diferentes cotizações dos recursos hídricos entre os diversos usos existentes, o presente estudo se apoia na utilização do *Sistema de Apoio ao Gerenciamento de Bacias Hidrográficas - SAGBAH* (Chaves, 1993).

Trata-se de um sistema computacional de apoio à decisões gerenciais voltado a analisar a adequação de políticas de gerenciamento de bacias hidrográficas (Lanna, 1995). A bacia é, então, considerada como um sistema de sub-bacias unidas por cursos d'água que representam, de forma segmentada, a rede de drenagem (ANEXO 1). Esse critério é adotado para identificar as áreas de contribuição para cada segmento de rio. As extremidades dessas áreas de contribuição são denominadas de *Pontos Característicos*

(PC). Esses pontos podem representar, por exemplo, uma captação hídrica para sistemas de irrigação existentes ou projetados, pequenas centrais hidroelétricas existentes ou previstas, confluência de rios, captação para abastecimento de cidades ou povoados, um reservatório, a exutória da bacia.

Cada ponto característico recebe contribuições de sub-bacias, identificadas por números. Em cada sub-bacia é processado o abastecimento das demandas difusas (demandas de pequena monta) com utilização do programa CONTRIB.

A chamada *Matriz de Contribuição* (tabela 4.1) estabelece quais sub-bacias drenam para os pontos característicos, compondo, assim, a topologia do modelo. É a topologia que descreve a forma como a bacia está dividida e como as partes se localizam no todo. A matriz de contribuição tem os pontos característicos representados nas linhas e as sub-bacias nas colunas.

Quando houver contribuição de uma sub-bacia a um ponto característico, haverá o algarismo "1" no cruzamento da linha e coluna correspondentes. Se uma sub-bacia contribui para mais de um ponto característico (PC), na linha referente ao PC será introduzida a fração da área da sub-bacia contribuinte a este PC. A soma das frações para cada sub-bacia deve ser igual à 1. A contribuição total difusa a cada PC em cada intervalo de tempo de simulação, será obtido por meio do produto matricial da Matriz de contribuição pela matriz coluna representativa da contribuição difusa de cada sub-bacia subtraída pela demanda difusa que nela é suprida, no mesmo intervalo de tempo.

Tabela 4.1 - Matriz de contribuição.

	Sub-bacias								
Pontos característicos	1	2	3	4	5	6	7	8	
1	1	1	0	0	0	0	0	0	
2	0	0	1	1	0	0	0	0	
3	0	0	0	0	0	0	1	1	
4	0	0	0	0	1	1	0	0	

A contribuição de cada ponto característico é dada pela seguinte equação 4.1

$$V[I,1] = MATRIZ[I,J] * (Q[J,1] - D[J,1])$$
(4.1)

onde,

V[I,1] é a matriz coluna com as contribuições de cada ponto característico;

MATRIZ[I,J] é a Matriz de Contribuições;

Q[J,1] é a matriz coluna com as contribuições difusas de cada sub-bacia;

D[J,1] é a matriz coluna com as demandas difusas atendidas em cada sub-bacia.

A orientação dos cálculos pertinentes aos pontos característicos é estabelecido pelas suas numerações e classificações hierárquicas por um arquivo de contribuições. As contribuições hídricas deverão ser computadas em ordem inversa da hierarquia : inicialmente pelos cursos de ordem 1, depois de ordem 2, etc. Diante disto, os cursos de água mais a montante terão ordem 1. Um ponto característico que receba vazão de outro com ordem n deverá ter ordem n+1. Quando existir mais de um ponto característico contribuinte, a ordem será aquela do de maior hierarquia mais 1.

Tanto as características hidrológicas como as econômicas, podem ser representadas no módulo Banco de Dados do SAGBAH. São armazenados, então, dados de chuva, vazão, evapotranspiração potencial e hidrometeorológicos.

Em pontos característicos controlados por reservatórios, a equação de propagação será a clássica de balanço hídrico de reservatório:

$$S(t+1) = S(t) + Q(t) - D(t) + R[D(t)] - X(t) - E[S(t+1),S(t)]$$
(4.2)

onde,

S(.) será o armazenamento no reservatório no início do intervalo (.) e

E[.] será a evaporação durante o intervalo de tempo.

Nesse caso, X[t] é uma descarga efluente do reservatório que é controlada pela política operacional do mesmo, a qual é estabelecida pelo usuário do sistema em sub-rotina específica.

4.3.1.1 Gerenciamento Quantitativo

A operação dos modelos de simulação e/ou de otimização representa o gerenciamento quantitativo do sistema. Para tal, abaixo seguem descrições resumidas dos sub-módulos do SAGBAH incluídos nesse gerenciamento:

Sub-módulo CONTRIB

Este programa adota o esquema topológico do SAGBAH para computar as vazões contribuintes efetivas aos trechos fluviais da sub-bacia. A operação matricial executada pelo CONTRIB é dada por :

$$Q = MATRIZ * [QD - D]$$
 (4.3)

onde,

Q é o vetor de contribuições efetivas com dimensão igual ao número de pontos característicos;

MATRIZ é a matriz de contribuição, já explicitada;

QD é o vetor de vazões produzidas em cada sub-bacia, calculado pelo MODHACX;D é o vetor de demandas difusas satisfeitas nas sub-bacias.

Sub-módulo PROPAGA

Relaciona-se à simulação distribuída da propagação dos escoamentos. O programa PROPAGAR simula a propagação de vazões na bacia, submetida a decisões operacionais relacionadas à descarga de reservatórios e ao suprimento de demandas hídricas concentradas. Supõe-se a topologia anteriormente descrita da bacia hidrográfica. Os pontos característicos são livres ou submetidos ao controle de reservatório. Eles recebem

uma afluência hídrica difusa, resultante do processo de transformação de chuva em vazão (fornecido pelo MODHACX), e de afluências hídricas concentradas, originadas de cursos de água a montante obtidas com as operações desenvolvidas com o programa CONTRIB.

As decisões operacionais são efetuadas em duas fases: o planejamento estratégico e a operação tática ou em tempo atual. Na primeira, são estabelecidas as políticas operacionais para todos os pontos característicos. Quando há pontos característicos submetidos ao controle de reservatórios, a política refere-se ao nível de atendimento às demandas hídricas a serem supridas no mesmo, enquanto que nos cursos sem esse controle, a política refere-se ao nível de atendimento às demandas hídricas a serem supridas no trecho de rio. A segunda fase consiste em verificar se as decisões estratégicas podem ser implementadas. As restrições e os elementos condicionantes de origem física (existência de água para atendimento a uma demanda ou descarga ambiental), ou de origem gerencial (haverá de fato racionamento caso não haja água para o suprimento de uma demanda?), são confrontadas neste instante.

O esquema de decisão hierárquico procede a simulação da situação real onde se planeja a operação mediante o conhecimento das afluências e, a partir desse conhecimento, avalia-se a oportunidade de implementá-las ou até retificá-las.

O sub-módulo PROPAGA possui uma sub-rotina chamada PLANEJ através da qual se introduz a estratégia operacional, enquanto que a tática operacional, para o caso de reservatórios, é introduzida pela sub-rotina OPERA. A forma com que essas sub-rotinas foram elaboradas, permite que o usuário altere-as de acordo com o seu problema.

Há uma limitação do programa no que se refere ao cômputo do tempo de escoamento dos fluxos. O PROPAGA supõe que as vazões afluentes no ponto característico mais a montante da bacia hidrográfica possa atingir o trecho mais a jusante no mesmo intervalo de tempo de simulação, isto é, ele não considera o tempo de escoamento da água nem o seu amortecimento natural. Essa limitação poderá ser verificada apenas em bacias hidrográficas onde o tempo de passagem da água seja superior a um mês.

Para aqueles pontos característicos onde não existe controle de reservatório, a equação de propagação é dada por :

$$X[t] = Q[t] - D[t] + R[D[t]]$$
 (4.4)

onde,

X[t] é a descarga defluente do ponto característico;

Q[t] é a contribuição afluente total, formada pelas contribuições difusas das bacias laterais, nos trechos de ordem 1 e a contribuição concentrada dos pontos característicos de montante, nos trechos de ordem superior a 1;

D[t] é a demanda concentrada suprida nesse ponto característico;

R[D[t]] é o retorno da água que eventualmente ocorra nessa demanda.

Nesse sub-módulo, as demandas hídricas são supostas apenas com suprimento em um único ponto característico, isto é, não é prevista a possibilidade de um centro consumidor ser abastecido por mais de um ponto característico. Quando ocorrer essa situação, será necessário estabelecer a divisão da demanda num número de partes igual ao número de pontos característicos.

O PROPAGA considera, originalmente, dois tipos de demanda: a prioritária e a não-prioritária. Durante a simulação, as falhas de atendimento a cada tipo são computadas. A vazão remanescente, somada à de retorno, aflui ao ponto característico de jusante. A simulação é realizada para todo período de análise. Os resultados são apresentados numa forma que permite a visualização da simulação e outra onde são criados arquivos que podem ser usados para plotagem de resultados.

Para o presente estudo, testaram-se modificações no PROPAGA que permitissem considerar a existência de várias prioridades simultaneamente. Essas modificações constaram no seguinte: quando uma prioridade superior (abastecimento humano, por exemplo) não é atendida, em dado intervalo de simulação, serão diminuídos os

atendimentos das prioridades inferiores localizados no PC's à montante. Isso é possível, pois as prioridades inferiores "suportam" mais as falhas de atendimento.

É possível estabelecer no programa escalas de desenvolvimento distintas para as demandas a serem supridas. O suprimento à irrigação é um exemplo típico. Conhecendo-se a necessidade de irrigação por hectare, pode-se estabelecê-la como a demanda unitária a ser suprida, multiplicada pela área irrigada que, neste caso, será o fator de escala a ser fornecido ao programa.

Sabe-se da existência de usos *consuntivos* (onde há retorno parcial ou nulo da água para o leito do rio) e *não-consuntivo* (retorno total da água ao leito). Quando a demanda em pauta for não-consuntiva, a fração de retorno ao curso d'água será 1.0. Quando totalmente consumida, 0.0. Nos casos intermediários o retorno estará entre estes limites. O programa cuida para que isto seja verificado.

Deve ser observado que o retorno das demandas de prioridade superior não pode ser utilizado para o suprimento de demandas inferiores, e vice-versa. É como se os retornos ocorressem à jusante da captação respectiva.

Os intervalos de tempo utilizados são: 5 em 5 dias, decendial (10 dias), quinzenal e mensal. O último intervalo de cada mês é ajustado para que seu fim coincida com o fim do mês. Assim, o último intervalo pentadial poderá ter 3 dias (fevereiro em um ano não bissexto), 4 (idem em um ano bissexto), 5 (abril, junho, etc. ...) ou 6 dias (janeiro, março, etc. ...). O programa identifica o tipo de intervalo utilizado em função do número de anos (KANO) e do número total de intervalos de simulação (M) (Lanna, 1995).

A evaporação de um reservatório é computada por polinômio do quarto grau do tipo:

$$EVAP = C^*(E - P)^*[a(1) + a(2)^*S + a(3)^*S^2 + a(4)^*S^3 + a(5)^*S^4]$$
(4.5)

onde,

EVAP é a evaporação em Hm3;

S é o armazenamento médio do reservatório entre o início e o fim do intervalo de simulação em Hm³;

a(i), i = 1,..., 5 são os coeficientes do polinômio,

C é uma constante de transformação de mm * Km2 em Hm3 e

E é a taxa de evaporação em mm,

P é a precipitação sobre o reservatório em mm durante o intervalo de simulação. O polinômio é ajustado à função área molhada (Km2) x volume armazenado no reservatório (Hm³). O armazenamento médio é ajustado por tentativas em um máximo de 10 iterações.

O primeiro arquivo traz informações gerais de execução do programa como hierarquia dos pontos característicos, "lay-out" das afluências etc. No segundo arquivo são introduzidas as séries de vazão afluente a cada ponto característico, geradas pelo Programa CONTRIB, o qual computa séries geradas por modelagens hidrológicas, ou obtidas em registros hidrométricos.

Existem mais dois arquivos que se referem às demandas consuntivas e não-consuntivas. O primeiro deles, usos consuntivos, corresponde às vazões referenciais para critérios de outorga produzidos nas sub-bacias incrementais à montante de cada ponto característico. O arquivo de demandas não-consuntivas inclui as demandas para geração de energia hidroelétrica em PCH's (Pequenas centrais hidroelétricas) ou valores de vazões mínimas a serem mantidas no rio por exigências de ordem ambiental. Nesse caso, as vazões são avaliadas com base na bacia total à montante do ponto característico. Para intervalos de simulação mensal, o formato do arquivo terá doze valores mensais de vazão não-consuntiva.

4.3.2 Modelagem Agro-Hidrológica - PROGRAMA <u>BALHIDRO</u>.

O BALHIDRO foi idealizado para realizar cálculos estatísticos das necessidades de água para irrigação de um ou mais cultivos. O balanço hídrico é realizado no intervalo de tempo diário. De acordo com o HIMAT (1985), há uma grande influência do intervalo de tempo sobre os cálculos das lâminas para irrigação.

Segundo o instituto, a passagem do intervalo mensal para o decendial, aumenta em 12% os valores para irrigação; do decendial para o diário, o aumento é de 21%.

O programa supõe que um plano de cultivo possa ser composto por diversas culturas, várias ocupações do solo, cujas épocas de plantio são pré-determinadas.

Tomando-se como base o intervalo de tempo decendial, as necessidades de água de cada tipo de ocupação do solo, cada cultura, variará decendialmente, da mesma forma que o coeficiente de cultivo K_c. Esta necessidade de irrigação é dada pela expressão K_c*ETP (produto do K_c pela Evapotranspiração Potencial).

No modelo BALHIDRO, são previstos dois tipos de irrigação de culturas: para as culturas mesofíticas (por exemplo, milho e soja) e culturas hidrofíticas (por exemplo, arroz, por inundação). Para o primeiro tipo, são supostos dois horizontes de solo (horizonte vegetal e horizonte profundo) onde são feitos os balanços hídricos entre as duas partes. A lâmina de irrigação a ser aplicada, dependerá do estado de umidade do horizonte superior o qual oscilará entre um limite máximo (capacidade de campo) e um mínimo (ponto de murcha). Quando essa camada atingir o limite mínimo de umidade, se inicia a aplicação da lâmina de irrigação até atingir a umidade máxima ou o limite operacional do sistema de recalque.

O programa procede o balanço hídrico diariamente, de forma sequencial, utilizandose dos dados meteorológicos (precipitação e evapotranspiração potencial), de cultivo (coeficiente de cultivo e de rendimento, profundidade média das raízes, umidades máxima e mínimas operacionais para planta, etc.) dentre outros disponíveis.

I - Separação da chuva

Apenas a irrigação e a chuva são as fontes de água para o solo. A parte da chuva que não é perdida por escoamento superficial nem por interceptação inicial e encharcamento do solo, é denominada de *chuva efetiva* (parte que infiltra), agronomicamente falando. O programa se utiliza do método do U.S. Soil

UFRGS BIBLIOTECA IPH Conservation Service para repartir a chuva real precipitada. Nesse ponto, as perdas iniciais são calculadas pela equação (4.6).

$$P_i(t) = 5080/NC - 50.8$$
 (4.6)

O escoamento superficial é computado por:

$$P_x(t) = [P(t) - P_i(t)]^2 / [P(t) + 4 . P_i(t)]$$
(4.7)

A chuva infiltrada será dada por:

$$P_{f}(t) = P(t) - P_{i}(t) - P_{x}(t)$$
(4.8)

onde:

- P(t) é a chuva precipitada durante o dia t (em mm/dia);
- $P_i(t)$ é a perda inicial durante o dia t (em mm/dia);
- $P_x(t)$ é a chuva excedente durante o dia t que escorre superficialmente (em mm/dia);
- $P_f(t)$ é a chuva infiltrada durante do dia t em mm/dia;

NC é o "curve number", valor admensional que varia entre 0 e 100.

O valor de NC (*curve number*) é encontrado em forma de tabelas que o relaciona aos tipos de solo (textura, estrutura, características do perfil), tipo de cobertura vegetal ou uso do solo, grau de antecedência, práticas agrícolas etc. Esse parâmetro tenta expressar o grau de produção de escoamento superficial que o sistema solo-planta é capaz de produzir retratando as condições de cobertura do solo. O valor nulo, representa uma área completamente impermeável, enquanto que o 100, totalmente permeável. Através desta análise diária o modelo modifica ou não o valor do NC.

O modelo BALHIDRO considera três condições de umidade antecedentes, a citar :

 ◆ Condição I - Condição de solo seco. Esta condição ocorre quando a chuva mais a irrigação dos cinco dias antecedentes não são maiores que 36mm no período com cultivo ou 12mm no período sem cultivo, o qual, no modelo, é caracterizado pelo coeficiente de cultivo ($K_c \le 0.3$).

- Condição II Condição intermediária onde a umidade do solo é próxima da capacidade de campo. Isto corresponde a uma entrada de água no sistema de 12 a 28mm para o período sem cultivo (K_c ≤ 0,3) e de 36 a 53mm para o período com cultivo (K_c > 0,3).
- Condição III Condição onde o solo está saturado ou próximo da saturação. Isto é
 caracterizado quando o aporte de água é superior a 28mm para os
 períodos sem cultivo ou maior que 53mm para os períodos com
 cultivo.

Abaixo seguem as equações que permitem a passagem do NC da condição II (padrão) para as condições I (NC_I) e III (NC_{III}). Isto foi feito através da análise dos dados das tabelas apresentadas na literatura. É suposto que as perdas iniciais distribuem-se em 25 % para interceptação e posterior evaporação, e 75 % para infiltração. Logo, a chuva efetiva para suprimento agrícola será:

$$P_e(t) = P_f(t) + 0.75 \cdot P_i(t)$$
 (4.9)

onde,

 $P_e(t)$ é a chuva efetiva durante o dia t em mm/dia.

Transição da condição II para I ou III (Almeida, 1993)

Para passar da condição II para a condição I:

Se NC_{II} < 30 então NC_{I} = 0,33 . $NC_{II}^{1,12}$ Se NC_{II} > 50 então NC_{I} = e^{a} , com a = 0,023 . NC_{II} + 2,3052 Se $30 \le NC_{II} \le 50$ então NC_{I} = e^{a} , com a = 0,0364. NC_{II} + 1,621

Para passar da condição II para a condição III:

Se
$$NC_{II} \ge 40$$
, então $NC_{III} = [43.9 . Ln(NC_{II})] - 101.63$

Se
$$NC_{II} < 40$$
, então $NC_{III} = 4,11$. $NC_{II}^{0,73}$

II - Balanço hídrico das camadas do solo

A umidade da camada superior do solo é acrescida pela chuva efetiva e pela irrigação. A evapotranspiração e a percolação para a camada inferior são as formas de perda da água dessa zona. A segunda camada, no entanto, perde água por percolação profunda. Para os períodos com irrigação, a evapotranspiração real será a máxima possível, enquanto que para os períodos sem irrigação a evapotranspiração real só será a máxima se houver umidade disponível no solo. De outra forma, terá o mesmo valor da umidade do solo.

A umidade da camada superior do solo é calculada por:

$$H(t) \cdot R(t) = H(t-1) \cdot R(t-1) + H_p(t-1) \cdot [R(t) - R(t-1)] + E_x(t) + A_d(t) - A_p(t)$$
 (4.10)

onde,

- H(t) é a umidade da zona superior do solo ao final do dia t;
- $H_p(t)$ é a umidade da zona inferior do solo ao final do dia t; (Ambos são dados em fração, limitada à Reserva Útil Volumétrica (RUV));
- RUV especifica a lâmina de água armazenada no solo quando este se acha na capacidade de campo, em percentual da profundidade do solo. Ex.: se RUV é 20 % e a profundidade do solo é 100 cm, a lâmina de água na capacidade de campo equivale a 20 cm;
- R(t) é a profundidade das raízes ao final do dia t, em mm;
- [H(t).R(t)] é, portanto, o conteúdo de água na camada superior do solo ao final do dia t;
- $E_x(t)$ é o excesso ou déficit agrícola durante o dia t, dado pela diferença entre a chuva infiltrada e a evapotranspiração, ou seja:

$$E_x(t) = P_e(t) - K_c(t)$$
. ETP(t) (4.11)

onde,

 $P_e(t)$ é a chuva efetiva durante o dia t em mm;

 $K_c(t)$ é o coeficiente de cultivo durante o dia t;

ETP(t) é a evapotranspiração potencial durante do dia t em mm;

A_d(t) é a lâmina de irrigação aplicada no dia t em mm;

 $A_p(t)$ é a percolação no dia t em mm.

A umidade da zona inferior do solo será dado por:

$$H_{p}(t) \cdot [R_{max} - R(t)] = H_{p}(t-1) \cdot [R_{max} - R(t-1)] + H(t-1) \cdot [R(t-1) - R(t)] + A_{p}(t) - A_{pp}(t)$$
(4.12)

onde,

 R_{max} é a profundidade total da zona inferior em mm;

 $A_p(t)$ é a percolação da zona superior, em mm;

 $A_{pp}(t)$ a percolação profunda, em mm.

Para ocaso de irrigação por inundação, tanto a camada inferior quanto a superior ficarão saturadas. RSAT > RUV será a lâmina de água que estará no solo saturado em percentagem da sua profundidade. A percolação será estimada por um valor previamente dimensionado, função das características do solo. Rmax será a profundidade até o horizonte impermeável do solo.

Durante os períodos em que existe cultivo o balanço de umidade é realizado nas duas zonas do solo, separadas pelo comprimento das raízes da cultura. Nos períodos sem cultivo considera-se que haja um redistribuição da umidade no solo tornando-a uniforme em ambas as zonas. O balanço de umidade será realizado na zona única até que se inicie um novo período de cultivo (Lanna e Almeida, 1995).

Ainda no que se refere à evapotranspiração, existem três situações que definem seus distintos processos. Eles ocorrem durante o período de irrigação com umidade do

solo superior a um limite mínimo sem que ocorra stress hídrico na planta, quando a umidade é inferior a este limite e, finalmente, durante os períodos sem cultivo.

Durante os períodos de cultivo, estando a umidade do solo acima de H_{inf} (umidade operacional inferior da planta), dado do problema, a planta poderá se suprir de toda água que necessita e a evapotranspiração real será igual a necessidade de água, dada por K_c * ETP. Nesta situação não haverá stress hídrico sobre a planta.

Quando a umidade do solo atingir valores inferiores a H_{inf}, a evapotranspiração será calculada iterativamente utilizando, alternativamente, a abordagem de evaporação de Viemeyer e Hendrickson, ou de Thornthwaite e Mather linearizado. O modelo de evaporação de Thornthwaite e Mather linearizado estabelece que a relação [evapotranspiração real/evapotranspiração potencial] será obtida com proporção idêntica à relação [umidade corrente do solo/umidade na capacidade de campo]. Já o modelo de Viemeyer e Hendrickson estabelece que enquanto a umidade do solo estiver acima do ponto de murcha permanente a evapotranspiração real será igual à potencial (Lanna e Almeida, 1995).

A chuva efetiva é a responsável por suprir, numa situação sem cultivo, a evapotranspiração. A chuva remanescente, para o caso da evapotranspiração ser totalmente satisfeita, irá encharcar o solo. Caso contrário, a umidade do solo irá suprir a evapotranspiração remanescente.

III - Perda de produtividade

Um dos principais pontos simulados pelo BALHIDRO é a estimativa das possíveis perdas de produtividade. Déficit ou excessos de água em determinadas fases de crescimento do cultivo interferem no tamanho e rendimento dos frutos (grãos). A complexidade que envolve a interferência da água no crescimento das culturas, levou diversos pesquisadores a formular modelos cada vez mais bem representativos dessa complexa realidade.

Segundo Doorenbos e Kassam (1979), o stress hídrico que um cultivo sofre pode ser quantificado pela relação da taxa de evapotranspiração real (ETr) e a taxa de evapotranspiração máxima possível do cultivo (ETm). Esta última é resultado do produto entre o coeficiente de cultivo (Kc) e a evapotranspiração potencial (ETP). Nesta linha, quando existe um atendimento total das necessidades hídricas da lavoura tem-se ETr = ETm = Kc*ETP.

Para cada cultura a forma com que a falta d'água, em determinado estágio de desenvolvimento, afeta o rendimento é diferente. Estes autores, através de experimentos, investigaram a relação entre a evapotranspiração relativa (ETr/ETm) e os rendimentos reais (Ya) e máximo (Ym) dos cultivos propondo, daí, as equações empíricas 4.13 e 4.14. Todas as variáveis se referem a cada dia de simulação.

Supõe-se que durante o período de cultivo não haverá perda de produtividade da cultura, em função de stress hídrico quando a evapotranspiração real for igual à necessidade de água da cultura, isto é, quando a água demandada pela cultura for totalmente atendida. Quando a primeira for inferior à segunda ocorrerá uma perda calculada por:

$$PER = K_v * \{1 - ETr / (Etm)\}$$
 (4.13)

onde,

PER representa as perdas percentuais ocorridas;

K_y é o coeficiente de rendimento do cultivo (fator de efeito do déficit hídrico sobre o rendimento dos cultivos);

ETr é a evapotranspiração real (mm);

ETm é a evapotranspiração potencial máxima do cultivo (mm) dado por Kc*ETP;

Kc é o coeficiente de cultivo e

ETP é a evapotranspiração potencial (mm).

As perdas totais são obtidas pela soma dos valores diários, considerando a seguinte equação de produtividade:

n n
$$\Sigma\{1-Y_a/Y_m\}=\Sigma\{PER(t)\}$$
 (4.14) t=1

onde,

 Y_m é a produtividade (rendimento) máxima obtida em condições ótimas (sem stress hídrico);

Y_a a produtividade (rendimento) real.

A formulação geral proposta por estes autores pode ser dada pela equação 4.15.

$$(1 - Y_a/Y_m) = K_v * (1 - ETr/ETm)$$
(4.15)

Diversos cultivos em diversos períodos de crescimento sob várias condições de umidade foram testados por este autores resultando na dedução dos valores de K_y . Pela equação 2.15 pode-se notar que estes procedimentos assumem uma relação linear entre rendimento relativo (Y_a/Y_m) e evapotranspiração relativa (ETr/ETm). De acordo com os mesmos autores, as estimativas dos K_y só são aceitáveis na medida em que o suprimento hídrico seja maior que 50 % das demandas.

Oliveira (1995) diz que a suposição de linearidade entre o rendimento das culturas e a evapotranspiração real é bastante discutida por muitos pesquisadores. Este autor inventariou diversos modelos de rendimento amplamente conhecidos da literatura científica. Vê-se nesta revisão estimativas de rendimento das culturas com base nos mais variados parâmetros, não convergindo para nenhum modelo universalmente aplicável a todas as culturas.

Neste trabalho, justifica-se a utilização do modelo de Doorenbos e Kassam pelo fato do mesmo compor uma recomendação técnica da ONU (Organização das Nações Unidas) e está inserida nas rotinas de cálculo do modelo BALHIDRO.

Um dos pontos chaves da equação 2.15 é o cálculo da evapotranspiração real (Etr) Dentre as metodologias existentes a mais comum é a que expressa a evapotranspiração relativa em função do teor de umidade do solo. A mais significativa vantagem deste método é a facilidade do cálculo da evapotranspiração real a partir apenas da umidade do solo e da evapotranspiração máxima da cultura.

Minhas et al. (1974) mostra o resultado de vários estudos relacionando a evolução da evapotranspiração relativa com a umidade do solo. As funções apresentadas no Capítulo 1 têm os mais diferentes aspectos, todas não-lineares, exceto as funções de Veihmeyer e Hendricson, e Thorntwaite e Matther. Os dois últimos também compõem as rotinas de cálculo do modelo BALHIDRO constituindo em opção do usuário por um ou outro método.

A figura 4.2 mostra a forma da função que relaciona a evapotranspiração relativa com a umidade do solo por Thorntwaite e Matther a qual é citada por Oliveira (1995) e Rhenals a Bras (1981).

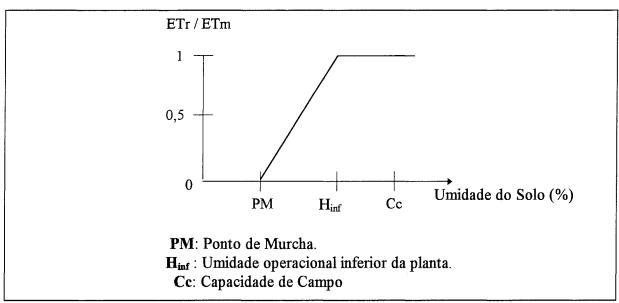


Figura 4.2 - Evapotranspiração Relativa x Umidade do solo segundo Thorntwaite e Matther.

4.4 Simulações com o PROPAGA

O modelo PROPAGA (sub-módulo do SAGBAH Sistema de Apoio ao Gerenciamento de Bacias Hidrográficas) toma, como uma das fontes de dados, diferentes valores de outorga (baseados na Q_{7,10}) para todos os PC's (Pontos Característicos onde ocorrem demandas hídricas concentradas), simultaneamente, envolvendo uma determinada ordem de prioridade de atendimento. Para a bacia do Rio Branco, as demandas identificadas são as seguintes: abastecimento humano, vazão ecológica, irrigação e geração hidroelétrica. Estas demandas sofrerão um escalonamento da seguinte forma:

- Abastecimento humano (demanda primária): sempre 10% Q_{7,10} (valor fixo para todos os PC's em cada simulação);
- Vazão ecológica (demanda secundária): Sempre 50% Q_{7,10} (idem);
- Irrigação (demanda terciária): níveis crescentes de outorgas explicitados como: 100; 110; 120...300. Trata-se de incrementos constantes de vazão a partir dos valores próximos dos atualmente praticados na bacia;
- Geração hidroelétrica (demanda quaternária): sempre as vazões reguladoras (95% de permanência) das PCH's (Pequenas Centrais Hidroelétricas).

A demanda de abastecimento humano, industrial e animal é pouco expressiva e, segundo projeções da SRHSH/CRH (1993), sofrerá aumentos pouco significativos nessa bacia até o ano 2013 (projeção de 20 anos do estudo). Daí, a outorga constante de 10% Q_{7,10} ser considerada mais que suficiente, apesar de pequena.

Atualmente, é adotada como 'outorga' para a vazão ecológica o valor de 20% $Q_{7,10}$, considerada a mínima necessária para manter o equilíbrio ecológico da região e atender pequenos consumos não computáveis. Este valor foi estabelecido na década de 80 pelo Governo de Estado da Bahia sem uma razão técnica concreta. De acordo com Silva (1996), esse valor poderia ser pelo menos o dobro, sugerindo, o mesmo, para esta pesquisa o valor de 50% $Q_{7,10}$.

Para a demanda de irrigação serão simulados aumentos sequenciais das outorgas a fim de avaliar, gradativamente, o comportamento da bacia do Rio Branco no que tange à susceptibilidade a falhas de atendimento a essa prioridade.

Estas falhas refletem uma percentagem média de não atendimento às demandas estipuladas pelas outorgas (dados do modelo). Uma das saídas do PROPAGA, como dito, são as vazões que podem ser atendidas em cada prioridade para cada PC e em cada intervalo de simulação. Esses atendimentos podem variar de 0,0 m³/s ao total estipulado (outorgado).

Como não existem reservatórios na bacia, as simulações considerarão apenas as demandas hídricas concentradas (irrigação, geração hidroelétrica), bem como a demanda de vazão ecológica (50% da $Q_{7,10}$) e abastecimento humano, lembrando que estas últimas são consideradas como prioritárias no decorrer das simulações.

Algumas modificações foram feitas no PROPAGA (Pereira, 1996) a fim de incorporarem níveis seqüenciais de atendimento às prioridades estendendo, assim, as possibilidades até então desenvolvidas pelo mesmo. A figura 4.3 expõe essas modificações e esclarece, num fluxograma, o encaminhamento do cálculos.

Na figura 4.2, o **Dem1** significa demanda 1 (prioridade 1) e o **Qdisp.**, a vazão disponível (rio) em determinado PC para atender todas as demandas.

O programa PROPAGA simula o suprimento de demandas hídricas em diversos níveis e apresenta como falhas de atendimento a(s) situação(ões) onde a vazão suprida é menor que 90% da projetada (outorgada), permitindo classificar como falhas condições bem distintas como, por exemplo: a demanda outorgada é igual a 1,000 m³/s e o suprimento efetivo é uma vazão entre 0,899 m³/s e 0,000 m³/s (ausência de suprimento). A apresentação dos resultados, no que concerne a falhas de abastecimento, é subdividida em grupos conforme nível de atendimento. Assim, o resultado é apresentado para cada ponto característico, informando o percentual dos intervalos de simulação a demanda outorgada foi atendida em mais de 90%. A tabela 4.2 mostra um quadro hipotético de atendimento às demandas fornecido pelo PROPAGA.

4.5 Simulações com o BALHIDRO

Uma das entradas do modelo BALHIDRO são as lâminas máximas diárias de irrigação (em mm) que podem ser fornecidas ao sistema. Essas lâminas, para a pesquisa, são derivadas das vazões que o PROPAGA apresenta como atendimento efetivo. Com base nas necessidades das culturas e em todos os outros condicionantes hidroclimáticos, o BALHIDRO calcula as possíveis perdas de produtividade (em %) para cada cultivo em cada ano de simulação. Dessa forma, tem-se um resultado de acordo com as disponibilidades inerentes ao sistema, decorrente de determinada outorga.

Tabela 4.2 - Nível de atendimento às demandas em 240 simulações (saída o PROPAGA).

Nível de outorga de 110					
PC	Demanda primária	Demanda secundária	Demanda terciária	Demanda Quaternária	
	≥ 90%	≥ 90%	≥ 90%	≥ 90%	
1	240	240	236	0	
2	240	240	240	218	
3	240	240	234	0	

As perdas de produção agrícola estão associadas, dentre outras causas, à falta d'água em determinado período de desenvolvimento da planta (o chamado *stress húdrico*). Logo, a depender da época e quantidade em que ocorra a falha no abastecimento, as perdas de produtividade podem variar de 0 a 100%. Portanto, torna-se importante o conhecimento de todos os períodos de consumo de água da planta a fim de que se possam quantificar as perdas de produção, caso haja falha de abastecimento nos mesmos.

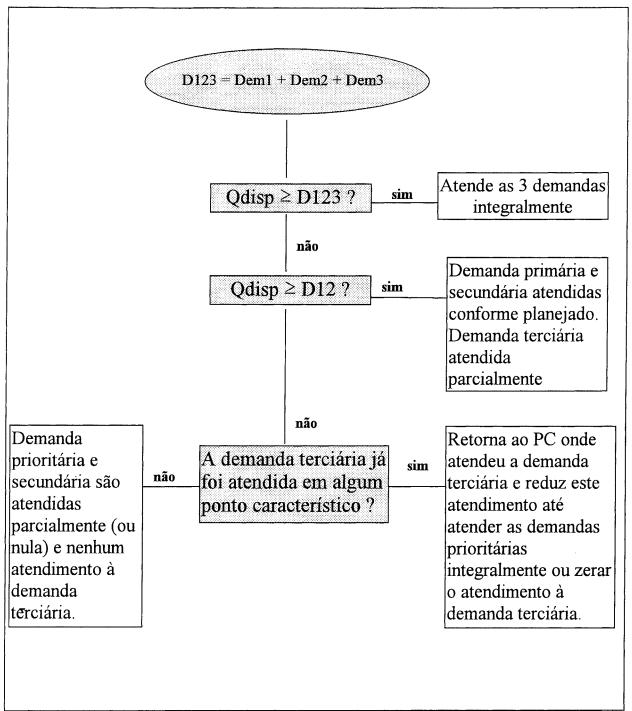


Figura 4.3 - Fluxograma do modelo PROPAGA.

A figura 4.4 esquematiza a evolução da produtividade de um determinado cultivo (em dado PC) quando o fornecimento de água sofre aumentos nos volumes captados. É de se esperar que quando o abastecimento for 100% garantido, a produtividade seja a máxima possível. Obviamente, excetuam-se casos de surgimento de pragas (como a mosca branca, comum na região), anomalias climáticas, manejo inadequado, enfim. Na medida que surjam falhas e as mesmas se

tornem mais frequentes, esta influência será traduzida numa perda progressiva de produtividade.

Porém, as falhas de abastecimento são função de uma série de fatores: valor da outorga conferida ao PC, outorgas conferidas às captações à montante, época do ano, sazonalidade das vazões do rio, tempo de recorrência das mesmas, etc., além de fatores que fogem ao escopo dessa pesquisa e que interferem na recarga do aqüífero (como desmatamento e regime de chuva). Os dois primeiros fatores (outorgas conferidas) são facilmente controlados nas simulações enquanto os demais são características inerentes à bacia.

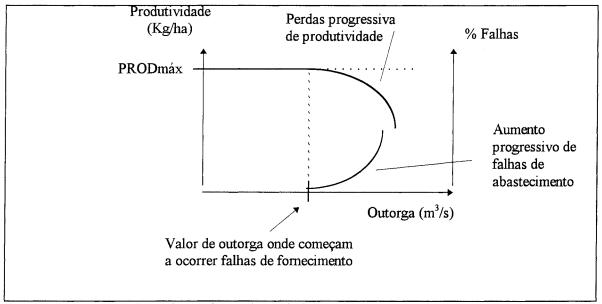


Figura 4.4 - Esquema de evolução da produtividade agrícola sujeita a aumentos de outorga.

Teoricamente, a outorga conferida a determinado PC (Q_{OUT} .) é única (por exemplo, $120\%Q_{7,10}$) com a ressalva de que esse valor está sujeito a falhas de X% em seu atendimento. Essa falha, como dito, é traduzida pelos valores de vazão que efetivamente podem ser garantidos longo do período de simulação, mas que são inferiores à outorgada. A figura 4.5 mostra, de forma simplificada, um esquema de perda de produtividade de uma cultura num PC em decorrência de déficit hídrico devido, basicamente, aos dois primeiros fatores supracitados..

O BALHIDRO quantifica as possíveis perdas de produtividade (PER, em %) para cada cultura de um plano de cultivo que apresentar períodos com fornecimento

insuficiente de água. Esse tipo de simulação é feito para cada cultivo, cada PC que se tem demanda de irrigação, em cada um dos 20 anos de análise e todos a partir de cada nível de outorga (100, 110, ..., etc.). Como são 4 culturas diferentes (melancia, feijão, milho e abóbora), 8 PC's, 20 anos de análise (1970 a 1989) e 21 níveis de outorga (100 a 300), chega-se a um total de 13.440 simulações, apenas com modelagem agro-hidrológica. De certa forma, tem-se com essa gama de simulações uma cobertura não total mas bastante ampla das possibilidades de alocação de recursos hídricos para irrigação na bacia.

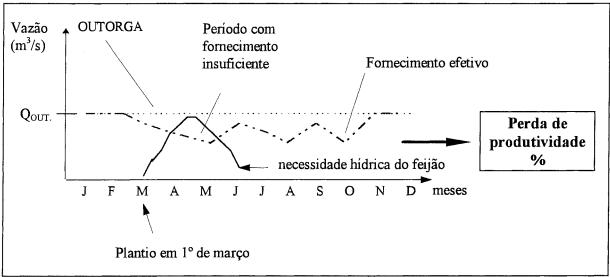


Figura 4.5 - Esquema de perda de produtividade devido a déficit hídrico.

A máxima produtividade (PRODmáx) de determinada cultura é um valor conhecido e peculiar da região. A figura 4.4 é obtida multiplicando PRODmáx por (1 - PER/100)

O caminho percorrido entre o estabelecimento de um valor de outorga e o cálculo da produtividade atingida é o seguinte:

NÍVEL DE OUTORGA \Rightarrow % FALHA (PROPAGA) \Rightarrow PERDAS DE PRODUTIVIDADE (BALHIDRO) \Rightarrow PRODUTIVIDADE (Kg/ha) = PRODmáx * (1 - PER/100).

A tabela 4.3 mostra, num exemplo hipotético, valores dessa seqüência para o PC-1, cultivo: feijão.

Tabela 4.3 - Seqüência outorga → produtividade para o PC-1, cultivo: feijão (exemplo).

Nível de Outorga	% Falha (PROPAGA)	Perdas de Produtividade (%) (BALHIDRO)	Produtividade (Kg/ha)
110	0	0	PRODmáx
150	3.5	5.6	0,944 * PRODmáx
170	11.7	13.4	0,866 * PRODmáx

4.6 Avaliação dos benefícios

Simulações preliminares com o PROPAGA mostraram que diversas outorgas atualmente praticadas pelo Órgão Gestor de recursos hídricos do Estado são bastante conservadoras e estão aquém, em diversos PC's, da capacidade de fornecimento natural de água da bacia ao passo que em outros pontos já se chegou ao limite de oferta natural.

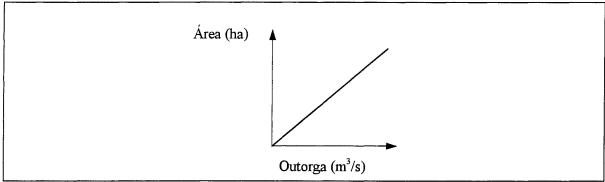


Figura 4.6 - Relação entre área plantada e outorga.

Uma vez que, em âmbito geral, as disponibilidades hídricas da região oferecem condições para manter os projetos de irrigação hoje existentes, uma forma encontrada de ampliar a pesquisa é admitir aumentos das outorgas, concomitantemente, com aumento das áreas plantadas em cada PC a fim de se fazer um uso mais completo dessas ofertas naturais de água, sem, contudo, comprometer o abastecimento humano e a vazão ecológica. A idéia, portanto, é que outorgas

maiores podem irrigar áreas, proporcionalmente, maiores, obviamente, sujeitas à ocorrência crescente de falhas de fornecimento.

Para efeito dos cálculos, é considerado que a vazão de irrigação vale 1,0 l/s/ha (figura 4.6). Esse valor serve de base para determinar a área que pode ser irrigada a partir de determinada outorga. Por exemplo, uma outorga de 1,05 m³/s é admitida irrigando uma área de 1.050 ha. Na realidade, as simulações com o BALHIDRO são feitas levando em consideração os incrementos de áreas plantadas decorrente do aumento de outorga. Apesar disso, a figura 4.3 continua válida em sua representação.

O produto do gráfico de produtividade (figura 4.4) pelo gráfico de área plantada (figura 4.6), resulta num gráfico de **produção x área plantada**. A seguir tem-se um exemplo hipotético de como os PC's devem ser trabalhados a fim de maximizarem seus benefícios. A tabela 4.4 mostra a evolução (hipotética) da produção agrícola de um determinado PC sujeito a aumentos sucessivos de outorgas e, paralelamente, áreas plantadas. No mesmo, é admitido o plantio de feijão, cuja a máxima produtividade conseguida na região é de 2.400 Kg/ha e o custo de produção é de R\$ 800,00/ha.

A figura 4.7 mostra o comportamento da produção agrícola em função do aumento da área plantada (fruto do aumento da outorga). Pode-se afirmar que, necessariamente, esse tipo de curva passa por um máximo geral o qual corresponde a uma área ótima (do ponto de vista da produção, apenas).

Tabela 4.4 - Evolução (hipotética) da produção agrícola.

	Outorga (m³/s)	Produtividade (Kg/ha)	Área plantada (ha)	Produção (Kg)
Outorgas	0,1	2.400	100	240.000
sem	0,2	2.400	200	480.000
falhas	0,3	2.400	300	720.000
	0,4	2.160	400	864.000
Outorgas	0,5	1.920	500	960.000
com falhas	0,6	1.680	600	1008.000
crescentes	0,7	1.440	700	1008.000
Crescentes	0,8	1.200	800	960.000
	0,9	960	900	864.000

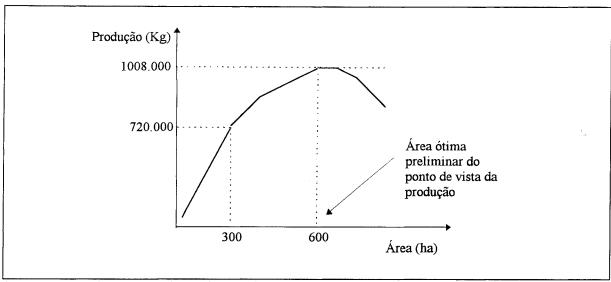


Figura 4.7 - Produção agrícola em função da área plantada.

Para este PC, a melhor outorga naquele ano de simulação, do ponto de vista da produção de feijão, é 0,6 m³/s. Caso todos os anos de simulação fossem iguais e esse valor de outorga fosse adotado, nada impediria que o irrigante utilizasse um valor menor de vazão para irrigar uma área menor a fim de garantir um abastecimento sem falhas e uma maior produtividade. Contudo, certamente sua produção final seria menor.

Um outro fator que deverá ser levado em conta são os custos de produção agrícola de cada cultura. Esses custos são variáveis com o tipo de cultivo e com a área plantada. Até determinada ordem de grandeza, é possível admitir os custos de produção aumentando linearmente com a área. A figura 4.8 esboça esta função.

Consideram-se também os custos de investimento os quais se traduzem nas amortizações que devem ser pagas ao longo de determinado número de anos. Estes últimos deverão ser descontados da receita bruta a fim de se obter os rendimentos líquidos possíveis.

A partir dos preços médios de mercado dos produtos é possível transformar a curva de produção (figura 4.7) em Receita Bruta e, com isso, abatê-la da curva de custos de produção (figura 4.8) e amortizações, já que as mesmas possuem a área plantada como eixo das abcissas, resultando numa curva chamada aqui de *curva teórica de benefícios* (figura 4.9). Para os casos estudados nesse trabalho, essa curva resultante, necessariamente, passará por um máximo geral, significando a condição que retorna os maiores benefícios financeiros, ainda que ocorram falhas no fornecimento.

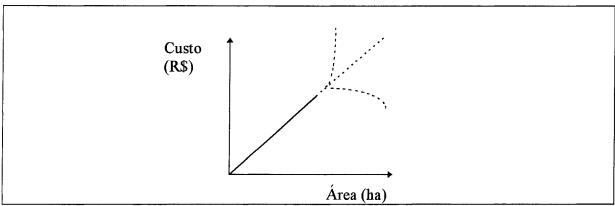


Figura 4.8 - Custos de produção agrícola x área plantada.

Vale ressaltar que, não necessariamente, a área ótima sinalizada na figura 4.6 é a melhor para a situação. Tomando-se como base a análise individual de cada cultivo em cada PC, deve-se partir para a consideração dos custos de produção, investimento e pagamento das amortizações dos mesmos. Após considerar os cálculos destes itens é que se chega aos benefícios líquidos (BL) de cada cultura a partir de dada outorga. Na verdade, tem-se fluxos econômicos de 20 anos de benefícios líquidos, os quais são abordados no próximo tópico.

Esse tipo de análise deve ser realizado com cada cultivo, em cada PC, em cada ano de análise, a partir de determinado nível de outorga. Esses resultados, por sua vez, recebem um tratamento específico o qual é detalhado no item a seguir.

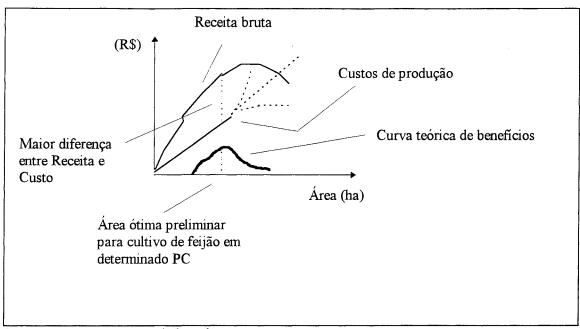


Figura 4.9 - Curva teórica de benefícios.

4.7 Tratamento dos Fluxos Econômicos

Com os procedimentos citados anteriormente, obtém-se diversos fluxos de benefícios líquidos anuais (séries de 20 anos) a partir de cada valor de outorga para cada cultivo. Com esses dados pode-se montar uma tabela que agrupe os benefícios líquidos de cada cultura ocorridos em cada ano de simulação a partir das diversas outorgas. A tabela 4.5 expõe, com valores hipotéticos, esses itens. A média, o desvio padrão e o total dos benéficos obtidos com cada outorga ao longo dos anos, também são mostrados. Observam-se, eventualmente, alguns valores negativos. Estes representam perdas totais de produção em decorrência de falhas significativas no abastecimento.

Busca-se com a análise desses fluxos econômicos a escolha de uma outorga que majore os benefícios líquidos anuais ao mesmo tempo que minimize das perdas. Trata-se de um problema multi-objetivo onde se busca não o máximo valor de todos os benefícios e o mínimo dos custos, mas valores tais que os compensem num sentido positivo e que sejam de ordem prática para a bacia.

O maior valor médio de cada série pode significar o maior benefício esperado com dada outorga. A minimização das perdas pode ser representada pelo menor valor de desvio padrão do fluxo.

A escolha da outorga (para PC/cultivo) que retorna os maiores benefícios globais pode passar por uma decisão subjetiva. Pode-se supor que o agente econômico (irrigante) tenha aversão ao risco, o que seria razoável admitir (Sachs-Larrain, 1995). Se o agente econômico adotar tal comportamento, o melhor valor de outorga pode ser aquela que produzir o fluxo com maior média e ainda não tenha nenhum ano com perdas totais de produção (se existir).

Tabela 4.5 - Benefícios Líquidos (hipotéticos) do feijão no PC-1.

	Benefício Líquido (R\$) - PC 1, Feijão				jão
Ano de simulação	Nível de Outorga				
	100	110	120	•••	300
1970	158.700,00	163.100,00	164.200,00	•••	138.200,00
1971	138.700,00	156.000,00	168.900,00	•••	-129.900,00*
•••		•••	•••	•••	•••
1989	152.600,00	160.600,00	-165.700,00*	•••	-141.500,00*
Média	147.520,00	152.200,00	164.350,00	•••	-136.740,00*
Desvio	6.532,00	12.796,80	26.542,76	•••	105.689,76
Padrão					
Soma	2.950.400,00	3.044.000,00	3.286.000,00	•••	-2.734.800,00*

^{*} Perdas totais de produção.

Por outro lado, outorgas um pouco maiores que as escolhidas pelo critério anterior podem ter médias maiores apesar de apresentarem anos com perdas parciais ou totais (prejuízos). Ou mesmo terem média menor, apresentarem alguns anos com perdas totais, e ainda assim possuírem fluxos financeiros altos que compensem os déficits.

Trata-se, portanto, de uma questão que oferece margem à discussão uma vez que posturas diferentes podem ser tomadas por pessoas ou agentes diferentes e que a presença de uma agência financiadora, seguradora ou mesmo subsidiadora pode

significar a continuidade da produção de determinado irrigante ante uma seqüência de anos de estiagem.

Para a presente pesquisa foram estabelecidos 5 diferentes critérios de análise desses fluxos financeiros onde cada um sinaliza para determinado(s) valor(es) de outorga que maximiza(m) os benefícios líquidos. Sejam eles a seguir:

1- Valor Médio:

Este critério baseia-se, simplesmente, na observação do valor médio esperado de cada fluxo. Obviamente, este critério não garante anualmente ao produtor a renda anunciada pela média, uma vez que podem ocorrer diversos anos consecutivos de grandes perdas. A princípio, este critério só beneficia os agentes econômicos já capitalizados e com capacidade financeira de suportar eventuais seqüências de anos com prejuízo. Neste são selecionados apenas os valores médios de cada fluxo dentro de cada PC. Posteriormente, os mesmos são alinhados pelos níveis de outorga e somados seus totais (este procedimento será descrito mais adiante). As maiores somas representarão as outorgas a serem praticadas com esse critério.

2- Renda Fixa com Depósito Inicial:

A idéia desse critério é dispor ao irrigante uma Renda Fixa ao longo de dado período de análise (no caso, 20 anos). Pode-se entender este critério como um esquema de *auto-seguro*. O irrigante se compromete a cada ano depositar no *seguro* a diferença positiva entre o benefício líquido e a renda fixa estabelecida previamente. As quantias depositadas serão corrigidas anualmente a uma dada taxa de juros bancários. Os fundos poderão ser sacadas nos anos em que os benefícios sejam menores que a renda fixa, a fim apenas de completar este valor.

A depender do fluxo financeiro do irrigante, ao fim do período de análise, o mesmo poderá dispor de saldo positivo no fundo o qual poderá ser sacado. Um ponto importante neste critério é que a renda fixa é estabelecida de forma a não ocorrer

saldos negativos. Diversas simulações mostraram que na maioria dos casos torna-se necessário um depósito inicial.

A renda fixa é obtida com o uso de simulações de fluxos econômicos onde maximiza-se a renda fixa. Este procedimento mostra como resultado a maior **Renda Fixa** que pode ser regularizada para o irrigante, o valor de um possível depósito inicial a ser feito e o fluxo dos saldos no fundo que estarão disponíveis para os eventuais saques. A outorga que possuir o fluxo de benefícios que resultar no *maior valor presente dos benefícios líquidos* (VPL) será adotada previamente como ótima para dado cultivo em dado PC. A figura 4.10 exemplifica uma situação onde se tem 20 anos de fluxo de benefícios líquidos financeiros e se chegou, através de um algoritmo de simulação econômica desenvolvido para o estudo, a uma determinada renda regularizada. Neste exemplo, a renda fixa regularizada é de R\$ 671.308,00, o VPL correspondente é de R\$ 8.161.839,00.

Este algoritmo tem como dados de entrada uma série de benefícios líquidos anuais e a taxa de juros que promove os reajustes dos depósitos. Inicialmente, adota-se a média aritmética dos benefícios como a renda fixa do seguro. Em seguida busca-se o depósito inicial que zere os eventuais saldos negativos oriundos do fluxo. Independente de depósito inicial, a máxima renda fixa será sempre média aritmética. Para a situação em que não haja depósito inicial e existirem períodos com saldos maiores que zero, busca-se, então, um aumento apenas da renda fixa até que seja zerado pelo menos um saldo (em qualquer período da série).

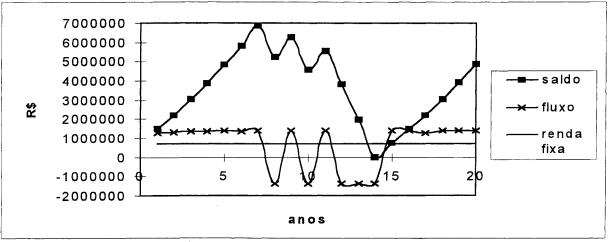


Figura 4.10 - Regularização de Renda Fixa pelo critério 2.

3- Renda Fixa sem Depósito Inicial:

Este critério possui a mesma base teórica do anterior com a ressalva de serem admitidos saldos negativos reajustados a juros que podem ser diferenciados. Este procedimento permite a utilização dos eventuais saldos residuais, comuns na situação anterior, que ocorrem próximos ao fim do período de análise. Este aproveitamento faz com que o saldo do último ano seja sempre zero.

A figura 4.11 exemplifica a regularização por esse critério. Para este caso a renda fixa regularizada é de R\$ 732.666,00 e o VPL desse critério, para o exemplo, é de R\$8.907.842,00 contra os R\$ 8.161.839,00 do critério ulterior.

Para ambos exemplos utilizados nos critérios 2 e 3 os fluxos adotados foram os mesmos. Especificamente para estes casos o critério 3 retornou os maiores VPL traduzindo-se na melhor escolha.

Tanto para o critério 2 como para o 3, o irrigante precisaria de uma estrutura maior (Estado ou Bancos) para garantir a renda fixa a fim de que o mesmo não seja forçado a desistir do seu empreendimento caso passe por 3 anos consecutivos de prejuízos (por exemplo).

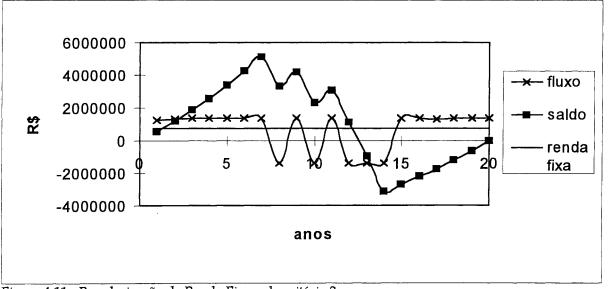


Figura 4.11 - Regularização de Renda Fixa pelo critério 3.

4- Seguro:

O objetivo do Seguro é o mesmo dos critérios 2 e 3 na medida em que se tenta regularizar uma renda fixa mínima ao irrigante. O que o diferencia dos demais é o pagamento de um determinado Prêmio à empresa seguradora com o fim da mesma fazer a cobertura necessária nos anos de prejuízo. Para tal, também foram utilizados os fluxos financeiros de 20 anos num algoritmo desenvolvido especialmente para este fim. A partir dos fluxos e das taxas de juros o programa retorna a renda fixa regularizável, o valor do prêmio e o VPL passível de ser obtido.

A figura 4.12 exemplifica a regularização da renda fixa pelo critério do seguro. Para este caso, a renda mínima garantida pelo seguro é de R\$ 249.673,00 e o VPL obtido é de R\$8.907.842,00 (mesmo valor do critério 3) com um prêmio de R\$ 482.993,00. A diferença é que o irrigante só se obriga a pagar, no máximo, o valor do prêmio apropriando-se de todo o montante excedente nos anos em que isto for possível.

O algoritmo idealizado busca, a partir de dado fluxo financeiro e dada taxa de desconto, o valor de renda mínima (RM) que iguala, no presente, os déficits e excessos dos fluxos em relação a mesma. Entenda-se déficit como os valores de fluxo inferiores à renda mínima e excesso os iguais ou maiores a esta. Após a determinação da renda mínima, toma-se o VPL dos déficits (ou excessos) e transforma-os em pagamentos fixos anuais, os quais são traduzidos pelo prêmio (Pr) da seguradora. Obviamente, o segurado pagará integralmente o Pr nos anos em que o mesmo obtiver benefícios líquidos ≥ RM + Pr. Para benefícios < RM a seguradora completará o déficit até a RM. E, finalmente, para RM < benefício < RM + Pr o segurado pagará apenas o equivalente à diferença entre o benefício obtido e a RM.

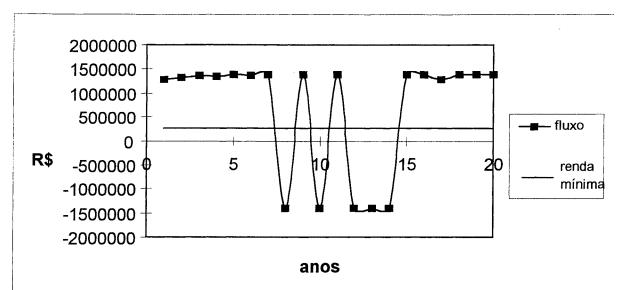


Figura 4.12 - Regularização de Renda Fixa pelo critério 4 (seguro).

O fato de se igualar excessos e déficits presentes significa que no horizonte de n anos todos os fluxos positivos conseguem cobrir os negativos surgidos da regularização da RM.

O algoritmo permite, a depender da taxa de juros, chegar a situações onde os VPL dos pagamentos dos prêmios são próximos às coberturas feitas pela seguradora traduzindo-se num esquema de lucro mínimo para a mesma (próprio de órgãos subsidiadores).

Mais uma vez, este critério exige uma estrutura de apoio ao irrigante. Nos três exemplos anteriores a taxa de juros utilizada foi de 6% ao ano.

5- Risco Mínimo:

Trata-se do critério onde o irrigante não necessita de apoio governamental ou de bancos para ter garantias de renda mínima. Neste, são tomadas as outorgas cujos riscos de se perder a produção ocorrem um a cada 20 anos em média. Obviamente, poderão ocorrer valores com recorrência menor (10 ou até 5 anos), mas será a situação mais favorável. Como dito anteriormente, neste critério supõe-se que o irrigante tenha aversão ao risco levando à adoção da outorga que produzir o fluxo

com maior média e ainda não tenha nenhum ano com perdas totais de produção (caso seja possível).

A maior limitação dos critérios 2, 3 e 4 é que os mesmos são altamente dependentes da seqüência cronológica dos fluxos econômicos. Fluxos onde os primeiros anos apresentam prejuízos, certamente precisarão de altos depósitos iniciais, altos prêmios e/ou regularizarão valores menores de renda fixa, ou, ainda, não seja possível regularizar uma renda positiva.

Uma forma de contornar esta limitação, não abordada nesta pesquisa, é a geração de um grande número de séries estocásticas sintéticas com as mesmas características estatísticas de cada fluxo financeiro original. Este procedimento testará os muitos outros possíveis fluxos com a possibilidade de associar níveis de confiança às rendas fixas obtidas a partir, por exemplo, das distribuições empíricas de probabilidade com que as mesmas se apresentam nas séries geradas.

4.8 Análise Global

Depois de pesquisadas as melhores outorgas para cada ponto característico e cada cultivo, deve-se realizar uma análise global da bacia, no que tange às outorgas para irrigação. Deverão ser pesquisados, portanto, valores de vazão que caiam dentro do mesmo critério de outorga adotado ou, caso contrário (que é mais fácil acontecer), que as mesmas sejam escalonadas de forma que no máximo cresçam de montante para jusante, do contrário, se estaria consumindo a montante uma água destinada a jusante.

Uma vez escalonadas as vazões, chega-se a um esquema de outorga sazonal, onde cada PC tem um valor máximo e ao mesmo tempo otimizado (em termos globais) de vazão que pode captar em cada safra. É oportuno lembrar que para cada critério exposto haverá um esquema de outorga sazonal.

A tabela 4.6 dá um exemplo hipotético desse esquema. No capítulo de Resultados serão apresentadas tabelas mais completas e com os índices verdadeiramente obtidos com a pesquisa.

Tabela 4.6 - Esquema de outorga sazonal (hipotético).

	Outorga (m³/s)					
PC \ Safra	Melancia	Feijão	Milho	Abóbora		
1	1,178	1,116	0,754	1,116		
2	5,339	4,777	4,496	5,058		
•••	•••	•••	•••	•••		
7	2,200	2,000	1,840	2,000		
8	0,850	0,800	0,800	0,900		

Os valores de outorga apontados pelo esquema da tabela 4.6 exemplificam a máxima utilização permitida dos recursos hídricos superficiais da bacia para irrigação sem o comprometimento das prioridades humanas e ambientais. A isto deve ser acrescido o fato de que quando for atingido esse grau de utilização os benefícios líquidos globais da bacia serão os mais relevantes.

Porém, se em determinado PC for captada uma vazão maior que a estabelecida haverá diminuição dos benefícios líquidos dos PC's de jusante. Mesmo que, eventualmente, este PC aumente seus rendimentos, a bacia como um todo estará aquém dos seus máximos benefícios.

Por outro lado, captações inferiores às pré-estabelecidas em determinado PC não prejudicarão os demais a jusante, mas certamente seus benefícios serão minorados, com exceção de alguns casos.

Por fim, montam-se 5 planilhas, uma para cada critério, onde são totalizados os VPL's de cada PC para cada cultura nos diversos níveis de outorga. Neste instante são feitas separações por sub-bacias com a finalidade de tirar o máximo proveito das potencialidades de cada uma delas. As sub-bacias adotadas são as formadas pelos seguintes PC's: sub-bacia 1 (PC 1, 2 e 5), sub-bacia 2 (PC 3, 4 e 5), sub-bacia 3 (PC 7), sub-bacia 4 (PC 9 e 10). Os anexos 8, 9, 10 e 11 apresentam todas as planilhas obtidas.

Num segundo instante podem ser montadas tabelas onde condensam informações globalizadas para a bacia. Nestas podem ser apresentadas as vazões otimizadas (com as respectivas $%Q_{7,10}$ incremental e total) para cada cultura e cada PC, áreas plantadas, % de falhas de abastecimento, prêmios do seguro, depósitos iniciais, valor presente dos benefícios líquidos passíveis de serem obtidos e benefícios anuais regularizados, benefícios mínimos e desvio padrão.

Um fato importante que deve ser levado em conta é que é possível, em diversos pontos da bacia, outorgar valores maiores de cotas hídricas, desde que aconteça nas épocas em que haja essa disponibilidade no leito e, também, seja possível implementar uma fiscalização eficiente. O controle policial feito pelo Estado nos pontos de captação, principalmente em períodos de estiagem, torna-se imperioso.

O que se busca com esse tipo de abordagem é um uso flexível dos recursos hídricos, onde as abstrações hídricas sejam coerentes com as disponibilidades e que as áreas plantadas, por exemplo, se comportem de forma elástica, aumentando e diminuindo ao longo do tempo, sazonalmente, de acordo com as ofertas naturais de água.

4.9 Análise econômica

Nesse tipo de pesquisa onde são envolvidos preços e custos de produção agrícola, ampliação de áreas irrigadas e conhecimento dos riscos de perdas de produtividade, dentre outros, figura-se necessária uma análise econômica de todo o processo de otimização do uso dos recursos hídricos.

A fim de complementar as abordagens até então desenvolvidas, serão verificados, também, os fluxos de benefícios e custos ao longo da vida útil dos projetos de irrigação. Dentro desse enfoque, a análise econômica será feita com base em projetos com pivô central de 100 ha, pois o mesmo representa 99% das áreas irrigadas da bacia (Neto, 1996).

As áreas apontadas pelo esquema de outorga sazonal devem servir de base para toda a análise, uma vez que as suas magnitudes determinarão a ordem de grandeza dos investimentos, as quantidades produzidas, os retornos econômicos, etc.

Como visto, estas áreas são as máximas e ao mesmo tempo ótimas, teoricamente falando, apontadas pela pesquisa, a serem praticadas na bacia numa situação futura de utilização das águas superficiais. Com isso, a análise econômica realizada com as mesmas revela um estado de maximização dos benefícios e minimização de diversas ordens de conflitos e perdas.

Para esta abordagem, um elenco de pontos devem ser considerados, a citar:

- Custo de aquisição e instalação do equipamento (pivô central);
- Custo do consumo de energia elétrica;
- Custo de desmatamento e correção do solo;
- Custo de produção das culturas;
- Custos administrativos;
- Custos de operação e manutenção;
- Vida útil do equipamento;
- Preços de mercado médios dos produtos;
- Taxa de juros bancárias para investimento e custeio agrícola;
- Tempo de carência;
- Prazo para pagamento do investimento e custeio.

Tanto para o quadro atual da bacia como para a situação proposta por esta pesquisa, o encaminhamento da análise econômica será a mesma com a finalidade de se comparar os respectivos ganhos.

4.9.1 Balanço anual

Inicialmente, somam-se as áreas de cada cultura nos 8 PC's identificados como irrigação. Para o quadro futuro, essas áreas serão as apontadas pelo esquema de

outorga sazonal. Associando com as respectivas produtividades atingidas, é possível estimar as produções e a partir dos preços médios de mercado chegar a valores, aproximados, de renda bruta para toda a bacia.

A renda bruta obtida anualmente, deverá ser abatida inicialmente de quatro custos, a citar: produção agrícola, manutenção dos equipamentos, custos de energia e custos administrativos. Os custos de manutenção são uma percentagem anual do preço do equipamento e os custos administrativos são uma percentagem da renda bruta obtida. Numa segunda instância são descontadas as amortizações dos investimentos fixos em infra-estrutura.

Uma vez contabilizados todos os custos, chega-se ao benefício total anual obtido pela bacia. O capítulo APLICAÇÃO esclarece estes procedimentos.

4.9.2 Análise inter-anual

Essa análise estabelece os fluxos financeiros ao longo da vida útil do equipamento, levando, agora, em consideração os custos de investimento, cujos pagamentos serão efetuados ao longo de um prazo (7 anos) a partir de um determinado período de carência (2 anos). Esses fluxos geralmente são expressos em um eixo onde a parte superior, representando ganhos efetivos, estão os benefícios anuais (Bi) e na inferior as amortizações (Ai) calculadas a partir do investimento inicial e dos juros bancários.

A partir dessa análise, tanto para a condição atual como para o cenário proposto, é possível calcular a Taxa Interna de Retorno (TIR) desse fluxo financeiro, para os projetos implantados na bacia. Segundo Lanna (1995b), trata-se de um critério muito utilizado, aconselhado pelo Banco Mundial, na avaliação da rentabilidade de projetos. Sendo a TIR maior que a rentabilidade requerida, expressa pela taxa de descontos (no caso, juros bancários), o projeto é considerado financeiramente viável.

Capítulo 5

Aplicação

5. APLICAÇÃO

5.1 Utilização do PROPAGA

Na bacia do Rio Branco foram identificados 14 pontos característicos (PC-1 a PC-14) os quais representam locais onde estão projetadas Pequenas Centrais Hidroelétricas (PCH's), confluências de rios e captações para projetos de irrigação. Essa topologia define, portanto, 18 sub-bacias incrementais. A forma com que essas sub-bacias contribuem para os PC's pode ser verificada na tabela 5.1 da Matriz de Contribuição da bacia do Rio Branco.

Tabela 5.1 - Matriz de Contribuição da bacia do Rio Branco.

PC							3	SU	В-В	ACI	AS							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1																	
2		1																
3			1															
4						1	1											
5					1						1							
6													1					
7								1										
8														1	1			
9				1														
10										1								
11												1						
12									1							1		
13																	1	
14																		1

Esta topologia é melhor entendida ao se observar o mapa da bacia do Rio Branco no ANEXO 1.

Para as simulações com o PROPAGA, partiu-se das vazões aproximadamente iguais às utilizadas nos PC's de irrigação e às projetadas para as PCH's, com 95% de permanência para as últimas. As vazões destinadas à irrigação sofreram aumentos regulares proporcionais às vazões naturais nos pontos de captação. A tabela 5.2 mostra os valores atualmente outorgados para irrigação (e projetadas para as PCH's) e mais duas vazões referenciais a fim de criar sensibilidade em relação às suas magnitudes.

As variações experimentadas nas outorgas dos PC's de irrigação são apresentadas na tabela 5.3 e graficadas na figura 5.1.

Tabela 5.2 - Vazões outorgadas e de referência.

PC	Uso	Outorga	Q (95%) (m³/s)	Q média
		(m^3/s)		(m³/s)
1	Irrigação	0,49	1,30	2,10
2	Irrigação	2,25	5,80	9,39
3	Irrigação	0,37	0,77	1,34
4	Irrigação	0,84	2,77	4,3 3
5	Irrigação	1,868	9,97	14,90
6	Hidroelétrica	7,0	11,02	14,95
7	Irrigação	1,13	0,85	1,62
8	Confluência	•••	15,33	22,04
9	Irrigação	2,60	2,30	3 <i>,</i> 77
10	Irrigação	0,65	2,90	4,80
11	Hidroelétrica	4,8	8,18	13,65
12	Hidroelétrica	3,7	32,10	36,59
13	Hidroelétrica	34,0	33,19	38,02
14	Confluência	•••	35,89	43,21

Fonte: Luz (1994) e Silva (1996).

Em todos os PC's foram consideradas captações para abastecimento humano e manutenção da vazão ambiental na ordem de 10 e 50% Q_{7,10} total, respectivamente.

A tabela de valores de vazões referenciais (anexo 6) detalha a totalidade dos PC's com informações sobre áreas contribuintes (totais e incrementais), vazões referenciais totais e incrementais e vazão média.

O sub-módulo PROPAGA foi executado a partir do nível de outorga 100 até o nível 300 mantendo as outorgas das PCH's. Em todos os níveis o modelo retornou as *vazões efetivamente atendidas* para cada prioridade e cada PC em 240 valores (240 meses - 20 anos).

Tabela 5.3 - Variações das outorgas nos PC's.

		Vazões Outorgadas (m³/s)							
Nível de outorga		PC de Irrigação							
	1	2	3	4	5	7	9	10	
100	0,620	1,907	0,370	1,050	2,755	0,580	0.600	0,650	
110	0,682	2,098	0,407	1,155	3,050	0,638	0.800	0,850	
120	0,744	2,289	0,444	1,260	3,344	0,696	1.000	1,050	
130	0,806	2,480	0,481	1,365	3,639	0,754	1.200	1,250	
140	0,868	2,670	0,518	1,470	3,934	0,812	1.400	1,450	
150	0,930	2,861	0,555	1,575	4,228	0,870	1.600	1,650	
160	0,992	3,052	0,592	1,680	4,523	0,928	1.800	1,850	
170	1,054	3,243	0,629	1,785	4,818	0,986	2.000	2,050	
180	1,116	3,434	0,666	1,890	5,112	1,044	2.200	2,250	
190	1,178	3,624	0,703	1,995	5,407	1,102	2.400	2,450	
200	1,240	3,815	0,740	2,100	5,702	1,160	2.600	2,650	
210	1,302	4,006	0,777	2,205	5,997	1,218	2.800	2,850	
220	1,364	4,197	0,814	2,31	6,292	1,276	3.000	3,050	
230	1,426	4,388	0,851	2,415	6,587	1,334	3.200	3,250	
240	1,488	4,579	0,888	2,520	6,882	1,392	3.400	3,450	
250	1,550	4,770	0,925	2,625	7,177	1,450	3.600	3,650	
260	1,612	4,961	0,962	2,730	7,472	1,508	3.800	3,850	
270	1,674	5,152	0,999	2,835	7,767	1,566	4.000	4,050	
280	1,736	5,343	1,036	2,940	8,062	1,624	4.200	4,250	
290	1,798	5,534	1,073	3,045	8,357	1,682	4.400	4,450	
300	1,860	5,725	1,110	3,150	8,652	1,740	4.600	4,650	

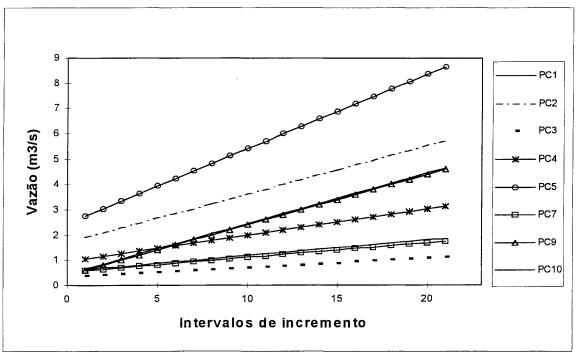


Figura 5.1 - Variação dos incrementos de vazão aos PC's de irrigação.

Estas vazões serviram de dados de entrada ao BALHIDRO os quais são traduzidos como disponibilidades hídricas para cada plano de cultura no PC. Essas disponibilidades variam inter e intra-anualmente, representando a dinâmica natural da rede de drenagem da bacia quando submetida a decisões de outorgas.

Como coeficientes de retorno (retorno das águas ao rio) foram considerados, nas simulações do PROPAGA, o valor de 70% para o consumo humano, 0% para irrigação e 100% para a vazão ambiental e geração hidroelétrica.

Tabela 5.4 - % Falha x Nível de Outorga aos PC's de Irrigação.

Nível de	PC 1	PC 2	PC 3	PC 4	PC 5	PC 7	PC 9	PC 10
Outorga	101	102						
100	0	0,4	0	0	0,0	1,7	0	1,7
110	0	0,8	0	0	0,5	2,5	1,3	3,8
120	0	1,7	0	0	2,8	5	2,5	5,4
130	0	3,8	0	0	4,9	7,9	3,8	12,1
140	0,4	6,7	0,4	1,3	7,4	10,8	5	23,8
150	0,8	10	0,8	2,1	10,7	13,3	5,8	37,1
160	1,7	13,8	1,7	3,3	15,1	16,7	9,6	57,5
170	3,8	17,1	2,1	5,4	19,0	20,4	15,4	<i>7</i> 5
180	5,4	21,3	4,6	7,1	23,7	24,6	23,3	84,6
190	9,2	<i>27,</i> 5	7,9	10,4	28,6	30,8	30	88,8
200	10,4	33,3	10	12,5	33,9	37,5	42,1	90,8
210	14,2	37,9	13,3	16,3	38,8	42,1	52,9	94,2
220	16,7	44,2	15,4	19,6	42,6	47,9	63,3	96,3
230	20,4	48,8	18,3	22,1	46,8	50,8	<i>7</i> 5	97,9
240	25,8	54,6	23,3	27,5	51,0	56,3	81,7	98,3
250	29,2	58,8	27,5	31,7	53,2	61,3	86,3	98,8
260	35	65	32,9	<i>37,</i> 5	55, 3	65,4	87,9	99,2
270	37,9	68,3	<i>37,</i> 5	40	57,2	69,6	90,4	99,2
280	43,3	73,3	42,1	46,7	58,6	74,2	90,8	99,2
290	47,5	76,7	45,8	48,8	60,5	79,2	92,9	99,6
300	51,3	82,5	50	53,3	61,6	83,8	94,6	99,6

Foram computadas também as falhas percentuais de não atendimento dessas demandas de acordo com os níveis de outorga (Tabela 5.4). Isto permitiu a elaboração da figura 5.2 que descreve a susceptibilidade dos PC's de irrigação a falhas de abastecimento quando submetidos a diversos níveis de outorga.

A figura 5.2 retrata o comportamento da bacia do Rio branco, em seus pontos de irrigação, no que se refere às chances de ocorrência de falhas quando submetidos a crescentes níveis de outorga. Observa-se que alguns PC's são mais sujeitos a falhas que outros chegando rapidamente aos níveis de 90 e 100% de falha.

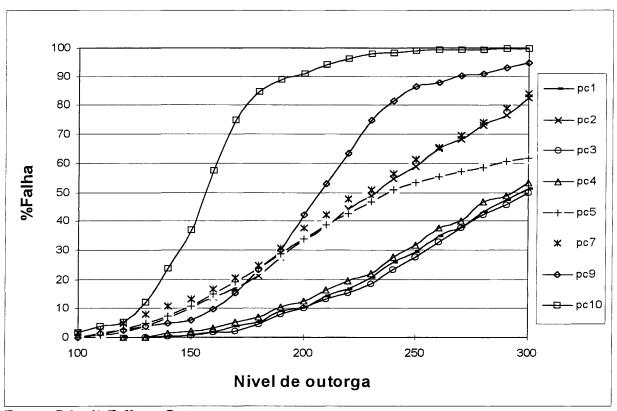


Figura 5.2 - % Falha x Outorga.

As simulações no PROPAGA podem ter os mais diferentes critérios de outorga. Um deles, por exemplo, é conceder outorgas para determinados PC's com base no número de pedidos de aumento ou de novas outorgas. Poderia se pensar em valores de outorga proporcionais às bacias incrementais (entre os PC's), ou ainda conceder outorgas em áreas hora devolutas,

Sem dúvida, o critério adotado influenciará nas produções agrícolas finais em cada PC. Partes das bacia serão beneficiadas em maior ou menor grau, pois as abstrações hídricas feitas na mesma são dependentes e influenciam toda ordem de usuários tanto a jusante como a montante do PC.

5.2 Utilização do BALHIDRO

Para a utilização do modelo BALHIDRO, é necessário estabelecer, em primeira instância, as culturas e o calendário agrícola da região. De acordo com Silva (1996) e CAR (1993), a região oeste permite o cultivo de, em média, 2,5 lavouras por ano. Particularmente para esta pesquisa, foi admitido o cultivo de 2 culturas por ano.

Para a bacia do Rio Branco o cultivo de melancia, feijão, milho e abóbora representa grande importância econômica. No que se refere a análise de projetos de irrigação para obtenção de crédito agrícola é admitida uma seqüência de 8 anos dessas culturas de acordo com a tabela 5.4. Trata-se, portanto, de uma prática fito-sanitária para prevenção de pragas de lavoura.

A seqüência apresentada na mesma foi aplicada no modelo BALHIDRO em 20 anos de simulação. As entre-safras são, no mínimo de 35 a 40 dias.

É importante salientar que devido a problemas genéticos os agricultores evitam o plantio de melancia logo após abóbora ou vice-versa, pois as mesmas pertencem à mesma família (*corcubitáceas*), fazendo com que o plantio de uma iniba o perfeito desenvolvimento da outra.

Tabela 5.5 - Calendário agrícola

Ano	Culturas Plantadas	Período (meses)
1	Feijão e Milho	abr-jun / ago-dez
2	Melancia e Milho	fev-mai / jul-dez
3	Abóbora e Feijão	abr-jun / ago-nov
4	Milho e Melancia	mar-jun / ago-dez
5	Feijão e Abóbora	abr-jun / nov-fev
6	Milho e Melancia	mar-jun / ago-dez
7	Feijão e Milho	abr-jun / ago-dez
8	Feijão e Abóbora	abr-jun / ago-nov

O BALHIDRO toma diversos dados, apresentados nas tabelas seguintes, como representativos de períodos de 10 dias e interpola-os para valores diários onde são

feitas as simulações pertinentes. O decêndio é um período bastante utilizado na área agronômica e adotado no modelo como um dos padrões de resultados.

Alguns dados referentes às culturas como coeficiente de cultivo (Kc), coeficiente de rendimento (Ky) e comprimento do sistema radicular (H), juntamente com as evapotranspirações potenciais médias da região, foram também necessários ao modelo, sendo fornecidos em valores decendiais. Os mesmos estão apresentados por cultura nas tabelas 5.6 a 5.9.

Os valores de Capacidade de Campo (Cc) Ponto de Murcha (Pm), Curve Number (NC) e umidade das camadas superior e inferior do solo, necessários ao modelo, foram obtidos para cada PC de irrigação através de Silva (1996) e Neto (1996). Paralelamente, as umidades operacionais inferior e superior de cada cultura foram levantadas e introduzidas nas simulações do BALHIDRO.

Tabela 5.6 - Dados agronômicos decendiais da cultura Melancia.

Decêndio	Kc	Ky	H (cm)
1 (plantio)	0.4	0.45	5
2	0.7	0.6	10
3	0.75	0.7	20
4	0.8	0.7	20
5	0.8	0.75	20
6	0.8	0.75	20
7	0.85	0.75	20
8	0.9	0.8	20
9	1.05	0.8	20
10	1.05	0.8	20
11	0.9	0.3	20
12 (colheita)	0.5	0	5

Fonte: Neto (1996).

Tabela 5.7 - Dados agronômicos decendiais da cultura Feijão.

Decêndio	Kc	Ky	H (cm)
1 (plantio)	0.4	0.2	5
2	0.5	0.6	10
3	0.6	0.9	20
4	0.8	0.9	20
5	0.95	0.9	20
6	1.05	0.75	20
7	0.95	0.6	20
8	0.7	0.2	20
9 (colheita)	0.3	0	5

Fonte: Neto (1996).

Na região em estudo em média 3,6 a 5,2% de água são retidas em Areias Quartzosas e 7,6 a 9,2% em Latossolos à pressão de 0,33 e 15 atm., respectivamente (Cc e Pm) (Neto, 1996). Em média a água armazenada na camada arável é suficiente para manter o crescimento das plantas por 8 dias.

Como foi dito no capítulo 3 há uma estação chuvosa bastante significativa. Apesar disso, são comuns os "veranicos" com até duas semanas de duração. Segundo Goedert (1993), estes "veranicos" constituem a probabilidade de ocorrência de déficits hídricos mesmo no período chuvoso. Tal fato apresenta-se prejudicial à medida que coincide com as fases mais críticas de necessidade hídrica dos cultivos em decorrência da pouca retenção de água no solo.

Tabela 5.8 - Dados agronômicos decendiais da cultura Milho.

Decêndio	Kc	Ky	H (cm)
1 (plantio)	0.4	0.4	5
2	0.5	0.7	10
3	0.6	0.7	20
4	0.7	0.75	20
5	0.85	0.8	30
6	0.95	0.8	40
7	1.05	0.85	40
8	1.10	0.9	40
9	1.10	0.9	40
10	1.15	0.9	40
11	1.20	0.95	40
12	1.20	0.95	40
13	1.20	0.9	40
14	0.9	0.2	40
15 (colheita)	0.55	0	5

Fonte: Neto (1996).

Tabela 5.9 - Dados agronômicos decendiais da cultura Abóbora.

Decêndio	Kc	Ky	H (cm)
1 (plantio)	0.4	0.45	5
2	0.7	0.6	10
3	0.8	0.7	10
4	0.8	0.8	20
5	0.8	0.8	20
6	0.8	0.8	20
7	1.05	0.8	20
8	1.05	0.8	20
9	1.05	0.8	20
10	0.9	0.8	20
11	0.8	0.3	20
12 (colheita)	0.5	0	5

Fonte: Neto (1996).

Os dados de precipitação consistidos e coincidentes com o período de análise (1970 a 1989) foram considerados com base nos postos da região (anexo 2).

As vazões efetivamente fornecidas à demanda de irrigação, geradas pelo PROPAGA, foram transformadas em lâminas para aplicação em lavoura com base na equação 5.1.

$$Lm\acute{a}x = (Q_{EFET}/Q_{OUT}) * 8.6$$
 (5.1)

onde,

L_{MÁX} é a máxima lâmina que poderá ser aplicada no dia de rega;

Q_{EFET} é a vazão efetivamente atendida em determinado PC num dado mês de simulação;

 \mathbf{Q}_{OUT} é a vazão outorgada àquele PC (tabelas 5.2 e 5.3) e

8.6 é a máxima lâmina que os pivôs de 100 ha são capazes de aplicar em 24 horas de operação com 100% de eficiência. Obviamente, este valor (8,6) corresponde também à razão de aumento de áreas a partir da Q_{OUT} (1 l/s/ha) exposta no capítulo 4. Porém, segundo Krelling (1996), é prudente adotar uma eficiência de 70% minorando a lâmina diária para 6 mm.

Tabela 5.10 - Evapotranspirações potenciais médias decendiais da região.

Decêndio	ETP(mm)	Decêndio	ETP(mm)	Decêndio	ETP(mm)	Decêndio	ETP(mm)
1	64.0	11	45.0	21	47.3	31	63.4
2	63.5	12	44.8	22	49.3	32	62.6
3	61.6	13	44.7	23	56.7	33	63.0
4	57.5	14	44.5	24	61.4	34	63.0
5	57.0	15	44.1	25	65.2	35	62.1
6	56.3	16	39.3	26	67.8	36	64.0
7	58.2	17	40.4	27	68.0		
8	58.0	18	43.3	28	70.2		
9	57.4	19	44.0	29	69.5		
10	45.2	20	45.1	30	68.0		

Fonte: Neto (1996).

De posse dos dados necessários, o BALHIDRO foi executado individualmente para cada PC. O modelo procedeu os balanços hídricos pertinentes ao plano de cultivo proposto durante 20 anos de análise diária. Dentre os diversos resultados que forneceu, as eventuais perdas decendiais de produção agrícola foram as de maior interesse para esta pesquisa. Elas traduziram as reduções de produtividade agrícola devido ao *stress hídrico* (capítulo 2).

Uma das entradas do modelo é a lâmina máxima diária possível de ser aplicada na lavoura. Caso não houvesse limite máximo para a lâmina de irrigação (L_{MÁX} ilimitado), as perdas de produtividade, a princípio, seriam zero (sem *stress hídrico*) enquanto as produtividades seriam as máximas alcançadas na região. Obviamente, pressupõe-se um manejo adequado da terra, dos insumos e defensivos agrícolas, a inexistência de pragas de lavoura e anomalias climáticas.

O aumento sucessivo das outorgas resulta em vazões efetivamente atendidas cada vez menores e mais interrompidas as quais refletem diretamente nas L_{MÁX}'s. Nessa evolução, em diversos momentos surgiram situações onde a lâmina de irrigação aplicada foi inferior a 50% da necessidade agrícola estimada pelo BALHIDRO. Nesses casos, como foi dito no final do capítulo 2, o cálculo da perda de produção tornou-se inconsistente. Como atitude conservadora, foi considerada perda total da produção quando da ocasião de deficiências hídricas nessa ordem de grandeza.

A figura 5.3 mostra uma das principais saídas do BALHIDRO. Este tipo de resultado serviu de base para a estimativa das perdas de produtividade dos cultivos segundo o modelo linearizado proposto por Doorenbos e Kassam visto no capítulo 2.

Execução	o do	BALHIDRO I	oara a Bacia			- Nível de o	utorga 150)
RESULTAI	os i	DECENDIAIS	DO BALHIDRO	EM 720 D	ECÊNDIOS		
DECEN	SUP	CHUVA	CHUVA EFET	LAM.REGA	EVAP.POT	EVAP.REAL	PERCOLAÇÃO
		******	**** Valores omi	tidos ******	******	***	
163	1	.0000	.0000	23.5882	22.0058	22.0058	.9540
164	1	.0000	.0000	25.8426	27.0600	27.0600	.7561
165	1	.0000	.0000	36.0189	33.1100	33.1100	.2354
166	1	.0000	.0000	39.7663	41.9570	41.9570	.0684
167	1	.0000	.0000	60.0000	53.8650	53.8650	.0032
168	1	.0000	.0000	60.0000	64.4700	64.4700	.0000
169	0	.0000	.0000	60.0000	78.2400	15.2348	.0000
170	0	10.0000	10.0000	60.0000	61.0151	8.9132	.0000
171	1	.0000	.0000	.0000	37.3975	2.4704	.0000
172	1	9.6000	9.6000	.0000	28.0800	28.0800	.0000
173	1	41.8000	34.3152	.0000	48.6442	48.6442	.0000
174	1	48.4000	48.2243	35.5636	54.4000	54.4000	.0000
175	1	87.6000	60.3855	24.0880	50.7200	50.7200	.0394
****	**************** Valores omitidos ************************************						

Figura 5.3 - Saída do BALHIDRO.

A figura 5.3 retrata uma simulação agro-hidrológica feita no PC1 ao nível de outorga de 150. Especificamente, trata-se dos cultivos plantados no 5° ano do calendário agrícola apresentado anteriormente (feijão e abóbora).

Na primeira coluna da figura 5.3 estão alguns dos 720 decêndios (20 anos) simulados no PC1. A segunda coluna diz se foi possível (1) ou não (0) o suprimento hídrico (seja com chuva efetiva e/ou irrigação) acima de 50% do necessário. Esse *flag* foi implementado no modelo durante a realização da presente pesquisa a fim de facilitar os cálculos das perdas de produtividade dos cultivos. Trata-se de um parâmetro importante pois, de acordo com o que foi dito no capítulo 2, qualquer avaliação torna-se inconsistente se for feita nos decêndios onde o suprimento é inferior a 50%. Para estes casos admite-se perda total de produção.

As colunas 2 e 3 referem-se à chuva total e a efetivamente aproveitável pela planta, sendo esta última calculada pelo método SCS (capítulo 2). Os decêndios de 171 a 173 apresentam lâmina de rega iguais a zero, significando o período de entre-safra

(feijão abóbora) daquele ano. Os demais valores representam as lâminas que efetivamente puderam ser aplicadas na lavoura.

Com as colunas 6 e 7, os dados dos coeficiente de rendimento (Ky) apresentados e a equação 2.13, procederam-se os cálculos das perdas de produtividade total de cada decêndio. Os valores de Evap.Pot. da coluna 7 na realidade significam a evapotranspiração potencial de referência (mm) dado por Kc*ETP. A coluna 8 (percolação) não foi utilizada diretamente neste estudo.

Após o cálculo das perdas decendiais de produtividade e adotando o procedimento descrito na tabela 4.2 com as informações econômicas da tabela 3.3, partiu-se para as primeiras inferências acerca dos benefícios financeiros líquidos de cada cultivo, em cada PC a partir de dada outorga.

5.3 Quantificação dos Benefícios Financeiros Líquidos

Uma vez obtidos os resultados das perdas percentuais de produtividade de cada cultivo em cada PC para cada ano de simulação, procedeu-se a avaliação das produções. Os valores outorgados foram tomados como base para o cálculo da área possível de ser plantada (figura 4.5).

A partir das produções (kg) de cada cultivo e dos preços médios de mercado (tabela 3.3), obteve-se uma estimativa das rendas brutas.

Com o fim de se avaliar os benefícios líquidos anuais, alguns dos mais importantes custos variáveis e fixos associados aos projetos de irrigação foram considerados. As tabelas 5.11 e 5.12 revelam estes custos.

Tabela 5.11 - Custos variáveis.

Item	Custo
Produção agrícola (varia com o cultivo)	Tabela 3.3
Administração	20% da renda bruta
Consumo de energia (centrais de óleo diesel)	R\$ 0,19 / Kwh *
Consumo de energia elétrica	R\$ 0,07 / Kwh
Operação e Manutenção	2,5% do equipamento ao ano

Fonte: Neto (1996).

Para uma quantificação mais completa dos benefícios líquidos foi necessário levantar, também, os custos fixos de investimento. Os mesmos devem ser computados, pois as amortizações decorrentes se somam aos custos de produção dos cultivos, constituindo-se em parte das obrigações financeiras de pagamento dos irrigantes ao longo dos anos.

Tabela 5.12 - Custos fixos de investimento.

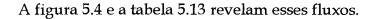
Item	Preço médio unitário (mil R\$)	Preço por ha (R\$/ha)
Pivô-Central (100 ha)	180	1800
Desmatamento e	76	760
correção do solo		
Trator	60	600
Pulverizador	10	100
Indek	10	100
Galpão (600 m²)	48	480
Residência (100 m²)	12	120
Casa de técnicos (80 m²)	12.8	128
Caminhão graneleiro (10t)	30	300
Eixo sem fim	5	50
veículo	12	120
Tubulações	variável	variável
Caixa d'água (15.000 l)	7	70
Acessórios: cabos, chaves	28	280
Kit de reposição	6.5	65
Terreno (250 ha)	45	450
Outros	variável	variável
TOTAL	542,3	5.423,00

^{*} Valor de consumo de energia utilizado na pesquisa.

A tabela 5.12 traz os preços médios de alguns dos custos fixos mais importantes para a implantação de um sistema de irrigação por pivô-central de 100 ha na região em estudo.

De acordo com Silva (1996), o custo de investimento de ≈ R\$6.000,00/ha representaria o *ideal* em termos de infra-estrutura. Porém, os valores mais comumente praticados na região oscilam em torno de R\$ 4.000,00/ha. Devido às significativas flutuações constatadas nos preços pesquisados e para introduzir o fator segurança nas futuras análises econômicas, será mantido o orçamento de R\$6.000,00/ha como custo fixo de investimento (CFI) em infra-estrutura para os projetos de irrigação.

Com base apenas nos custos de investimentos pôde-se estimar as amortizações pagas. De acordo com os sistemas de crédito agrícola normalmente praticados na região, o irrigante tem uma carência de 2 anos até começar pagar as amortizações supracitadas (item 4.6.2). A taxa de juros bancários praticada e adotada neste estudo é de 8% ao ano.


O valor da amortização (A) por hectare calculado pela equação 5.1 é de R\$ 1.245,00 o qual deverá ser pago 7 vezes.

$$A = CFI^{*}(1+0,08)^{*}[0,08^{*}(1+0,08)^{7}] / [(1+0,08)^{7}-1]$$
(5.1)

A essa análise somaram-se custos de manutenção dos equipamentos (2,5% do pivôcentral ao ano) e os custos administrativos (20% da receita bruta), sendo estes últimos variáveis com as quantidades produzidas.

Resumindo, a receita bruta obtida a partir da produção e dos preços médios de mercado (tabela 3.3) foi abatida dos custos totais e das amortizações calculadas e, assim, calculados os benefícios financeiros líquidos.

Apenas para título de comparação e aferição das análises, foi calculada a Taxa Interna de Retorno (TIR) dos projetos de irrigação com base nos dados pesquisados. Como referência foram adotados 20 anos cumprindo o calendário agrícola da tabela 5.5. O valor da TIR encontrado para uma produtividade media de 75% foi de 28%.

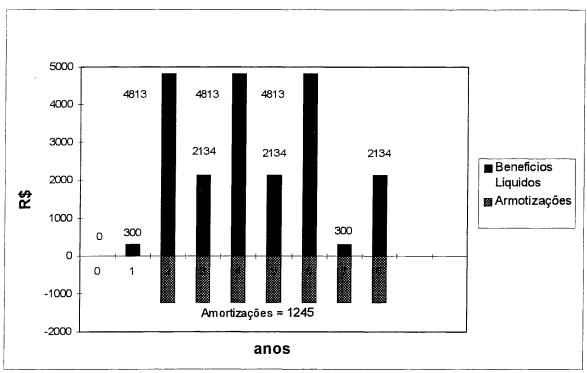


Figura 5.4 - Fluxo Financeiro para projeto de 8 anos (análise por ha).

Tabela 5.13 - Fluxo financeiro para cálculo da TIR.

Tabela J.13 -		,				
TIR (8 anos)=	39%	28%	15%	9%	7 %	-3 %
	Benefícios	Benefícios	Benefícios	Benefícios	Benefícios	Benefícios
	Prod.100%	Prod. 75%	Prod. 50%	Prod. 40%	Prod. 37,5%	Prod. 25%
Investimento	-6000	-6000	-6000	-6000	-6000	-6000
inicial						
	300	225	150	120	113	75
	4813	3610	2407	1925	1805	1203
	2134	1601	1067	854	800	534
	4813	3610	2407	1925	1805	1203
	2134	1601	1067	854	800	534
	4813	3610	2407	1925	1805	1203
	300	225	150	120	113	<i>7</i> 5
	2134	1601	1067	853,6	800	534

Segundo HYDROS (1993), o Plano Estadual de Irrigação hierarquizou diversos projetos de irrigação com pivô-central em todo o Estado da Bahia, ficando as Regiões Administrativas da Água (RAA's) I e J (Região Oeste da Bahia) com TIR = 30% (mínimo de 12 e máximo de 38%) em média para os seus 13 projetos catalogados.

De certa forma a proximidade dos resultados mostra aderência entre as inferências feitas nesta pesquisa e os dados calculados pelo Governo do Estado.

5.4 Tratamento dos Benefícios Financeiros Líquidos

Os fluxos de benefícios financeiros líquidos foram obtidos, então, com os procedimentos vistos anteriormente. O estudo produziu 32 tabelas com 21 fluxos financeiros (21 níveis de outorga) cada, cobrindo os 8 PC's e os 4 cultivos. A tabela 5.14 mostra um desses fluxos calculados para o PC2, cultivo de abóbora. Todos os fluxos financeiros obtidos com a metodologia proposta estão apresentados no anexo 7.

Tabela 5.14 - Fluxos de Benefícios Financeiros Líquidos do PC2, cultura abóbora (parcial).

											
					N	ível de Outor	ga				
ANO	100	110	120	130	140	150	160	170	180	190	200
1970	4266324	4318453	4711039	5103627	5496213	5888800	6281387	6673973	7066560	74 5 9146	7851733
1971	4266324	44673 95	4873522	<i>527</i> 9649	<i>56857</i> 76	6091903	6498029	6904156	7310283	7716410	8122537
1972	4266324	4594426	5012101	5429776	5847451	6265126	6682802	7100477	7518151	7935827	8352987
1973	4266324	4556796	4971050	5385305	5799559	6213813	6628067	7042322	74 5 6576	7870830	8285084
1974	4266324	4692956	5119588	5546221	<i>59728</i> 53	6399486	6826118	725275 0	7441530	-8200229	-8631820
1975	4266324	4649152	5071803	5494452	5649646	5686456	-6905456	-7337047	-7768638	-8200229	-8631820
1976	4266324	4692956	5119588	5546221	<i>5972</i> 853	6399486	6791583	6861028	7013511	7383730	7751887
1977	4266324	-4747501	-5179092	-5610683	-6042274	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820
1978	4266324	4692956	5119588	5546221	<i>5972</i> 853	6399486	682 6118	725275 0	7401983	7643309	7744266
1979	4266324	-4747501	-5179092	-5610683	-6042274	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820
1980	4266324	4692956	5119588	5546221	<i>5972</i> 853	6399486	6826118	725275 0	7679383	-8200229	-8631820
1981	4266324	-4747501	-5179092	-5610683	-6042274	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820
1982	4266324	-4747501	-5179092	-5610683	-6042274	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820
1983	4266324	-4747501	-5179092	-5610683	-6042274	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820
1984	4266324	4692956	5119588	5546221	6002470	6411972	6673890	6765144	-7768638	-8200229	-8631820
1985	4266324	4692956	5119588	5546221	<i>5972</i> 853	6399486	6826118	725275 0	7711684	8121832	8523653
1986	4266324	4344443	4739392	5134341	5529290	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820
1987	4266324	4692956	5119588	5546221	-6042274	-6473865	-6 905456	-7337047	<i>-7768</i> 638	-8200229	-8631820
1988	4266324	4692956	5119588	5546221	<i>5972</i> 853	6399486	6826118	7252750	76 793 83	8106015	7904943
1989	4266324	4692956	5119588	5546221	<i>5</i> 9 72 853	6399486	6826118	7204006	762 57 93	-8200229	-8631820
BARTINE A	4268324	2271488	2477987	2684486	2278337	1801871	1263441	1805924	599 3 55	-1808282	1052227
MEDIA											-195 223 7
DESV. P. TOTAL	0,0 85326473	41 <i>59224</i> 45429765	4537335 49559744	4915447 53689723	5590632 45566735	6233261 36037415	6844398 25268819	7242129 26118482	7767694 11987095	8033639 -36165647.67	8395242 -39044747,11

TOLOM

A tabela 5.14 dá uma idéia de como se comportam, ao longo de 20 anos de análise, os benefícios financeiros líquidos dos irrigantes quando submetidos a diferentes níveis de outorga. A observação das tabelas 5.3 e 5.4 amplia o entendimento desses fluxos. Por exemplo, vazões acima de 3,434 m³/s (nível de outorga 180) provocam falhas de abastecimento superiores a 21,3% (tabela 5.4). Esses números significam o limite onde ainda é possível obter benefícios líquidos positivos.

Porém, este nível de outorga não é a que retorna os maiores benefícios. Apenas observando o valor médio e o total acumulado em 20 anos, o melhor nível é o 100 com vazão 1,907 m³/s e um patamar de falha de abastecimento da ordem de 0,4%.

Pode-se notar, também, que o nível de outorga de 130 oferece mais de perdas de produção, porém nos anos em que se tem ganhos benefícios líquidos positivos os valores são mais significativos que no nível de outorga 100.

Como foi discutido no capítulo 4 a escolha das melhores outorgas para irrigação pode passar por diversas esferas de postura econômica. A seguir são apresentados algumas formas de resultados dos 5 critérios estabelecidos para análise dos fluxos de benefícios.

5.4.1 Critério do Valor Médio

A figura 5.5 apresenta as planilhas montadas para o cultivo da melancia com os totais médios separados por sub-bacias contribuintes.

		Bene	eficios Liquido	s (R\$)					
Nível de							Nível de		
Outorga	PC 1	PC 2	PC 5	TOTAL			Outorga	PC 7	
100	1107940	3408101	4918355	9434396	-		100	1036460	-
110	1218734	3408101	5450212	10077046			110	1140106	
120	1329528	3748911	5976802	11055241			120	1243752	
130	1440322	4089721	6503393	12033435			130	1347398	
140	1551116	4430531	7029983	13011630			140	1450099	
150	1661910	4771341	7556574	13989824			150	1552321	
160	1772704	5108082	8083164	14963950			160	1644464	
170	1883498	5433580	8602902	15919981			170	1498817	
180	1994292	5757150	7761032	15512474			180	1579785	
190	2105086	6056687	8164682	16326365			190	1383725	
200	2214116	5439875	7062622	14716613			200	1453935	
210	2322568	3812419	5993709	12128696			210	1522299	
220	2425139	4003040	6221752	12649931			220	1574349	
230	2527368	4193661	4731836	11452864			230	1319135	
240	2612090	4337595	3238690	10188376			240	1025904	
250	2720927	3355716	-390405	5686238			250	682426	
260	2419984	3467771	-32275967	-26388211			260	692671	
270	1673163	3563217	-32275967	-27039587			270	304459	
280	1735132	2308889	-32275967	-28231945			280	303548	
290	1781537	1082374	-32275967	-29412055			290	-537354	
300	1834773	-334095	-32275967	-30775288			300	-1022653	
Nivel de					Nível de				
Outorga	9	10	TOTAL		Outorga	PC 3	PC 4	PC 5	
Outorga 100	1072200	1161550	2233750		Outorga 100	661190	1876350	4918355	745589
Outorga 100 110	1072200 1429600	1161550 1295825	2233750 2725425		Outorga 100 110	661190 727309	1876350 2063985	4918355 5450212	745589 824150
Outorga 100 110 120	1072200 1429600 1787000	1161550 1295825 1600725	2233750 2725425 3387725		Outorga 100 110 120	661190 727309 793 4 28	1876350 2063985 2251620	4918355 5450212 5976802	745589 824150 902185
Outorga 100 110 120 130	1072200 1429600 1787000 2143384	1161550 1295825 1600725 1905625	2233750 2725425 3387725 4049009		Outorga 100 110 120 130	661190 727309 793428 859547	1876350 2063985 2251620 2439255	4918355 5450212 5976802 6503393	745589 824150 902185 980219
Outorga 100 110 120 130 140	1072200 1429600 1787000 2143384 2134300	1161550 1295825 1600725 1905625 1829900	2233750 2725425 3387725 4049009 3964200		Outorga 100 110 120 130 140	661190 727309 793428 859547 925666	1876350 2063985 2251620 2439255 2626890	4918355 5450212 5976802 6503393 7029983	745589 824150 902185 980219 1058253
Dutorga 100 110 120 130 140 160	1072200 1429600 1787000 2143384 2134300 2439200	1161550 1295825 1600725 1905625 1829900 1649176	2233750 2725425 3387725 4049009 3964200 4088376		Outorga 100 110 120 130 140 150	661190 727309 793428 859547 925666 991785	1876350 2063985 2251620 2439255 2626890 2814525	4918355 5450212 5976802 6503393 7029983 7556574	745589 824150 902185 980219 1058253 1136288
Dutorga 100 110 120 130 140 160	1072200 1429600 1787000 2143384 2134300 2439200 2744100	1161550 1295825 1600725 1905625 1829900 1649175 331307	2233750 2725425 3387725 4049009 3964200 4088375 3075407		Outorga 100 110 120 130 140 150 160	661190 727309 793428 859547 925666 991785 1057904	1876350 2063985 2251620 2439255 2626890 2814525 3002160	4918355 5450212 5976802 6503393 7029983 7556574 8083164	745589 824150 902185 980219 1058253 1136288 1214322
100 110 120 130 140 160 170	1072200 1429600 1787000 2143384 2134300 2439200 2744100 3049000	1161550 1295825 1600725 1905625 1829900 1649175 331307 -1183898	2233750 2725425 3387725 4049009 3964200 4088375 3075407 1865102		Outorga 100 110 120 130 140 150 160 170	661190 727309 793428 859547 925666 991785 1057904 1124023	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3189795	4918355 5450212 5976802 6503393 7029983 7556574 8083164 8602902	745589 824150 902185 980219 1058253 1136288 1214322 1291672
100 110 120 130 140 160 170 180	1072200 1429600 1787000 2143384 2134300 2439200 2744100 3049000 3348072	1161550 1295825 1600725 1905625 1829900 1649175 331307	2233750 2725425 3387725 4049009 3964200 4088375 3075407		Outorga 100 110 120 130 140 150 160	661190 727309 793428 859547 925666 991785 1057904 1124023 1190142	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3189795 3377430	4918355 5450212 5976802 6503393 7029983 7556574 8083164 8602902 7761032	745589 824150 902185 980219 1058253 1136288 1214322 1291672
Dutorga 100 110 120 130 140 160 170 180 190	1072200 1429600 1787000 2143384 2134300 2439200 2744100 3049000 3348072 3634897	1161550 1295825 1600725 1905625 1829900 1649175 331307 -1183898 -4294913 -4294913	2233750 2725425 3387725 4049009 3964200 4088375 3075407 1865102 -946840 -660016		Outorga 100 110 120 130 140 150 160 170 180	661190 727309 793428 859547 925666 991785 1057904 1124023 1190142 1286281	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3189795 3377430 3565065	4918355 5450212 5976802 6503393 7029983 7556574 8083164 8602902 7761032 8164682	745589 824150 902185 980219 1058253 1136288 1214322 1291672 1232860
Dutorga 100 110 120 130 140 160 160 170 180 190 200	1072200 1429600 1787000 2143384 2134300 2439200 2744100 3049000 3348072	1161550 1295825 1600725 1905625 1829900 1649176 331307 -1183898 -4294913	2233750 2725425 3387725 4049009 3964200 4088375 3075407 1865102 -946840		Outorga 100 110 120 130 140 150 160 170 180	661190 727309 793428 859547 925666 991785 1057904 1124023 1190142	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3189795 3377430	4918355 5450212 5976802 6503393 7029983 7556574 8083164 8602902 7761032	745589 824150 902185 980219 1058253 1136288 1214322 1291672 1232860 1213770
100 110 120 130 140 160 170 180 190 200 210	1072200 1429600 1787000 2143384 2134300 2439200 2744100 3049000 3348072 3634897 2545115 2995952	1161550 1295825 1800725 1905625 1899900 1649175 331307 -1183898 -4294913 -4294913 -4294913	2233750 2725425 3387725 4049009 3964200 408376 3075407 1865102 -946840 -660016 -1749798		Outorga 100 110 120 130 140 150 160 170 180 190 200 210	661190 727309 793428 859547 925686 991785 1057904 1124023 1190142 126221 1322380 1386116	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3189795 3377430 366066 3752700 3940335	4918355 5450212 5976802 6503393 7029983 7556574 8083164 8602902 7761032 8164682 7062622 5993709	745589 824150 902185 980219 1058253 1136288 1214322 1291672 1232860 1213770 1132016
Dutorga 100 110 120 130 140 160 160 170 180 190 200	1072200 1429600 1787000 2143384 2134300 2433200 2744100 3049000 3348072 3634807 2545115	1181550 1295825 18007725 1905625 1829900 1649175 331307 -1183898 -4294913 -4294913	2233750 2725425 3387725 4049009 3964200 4083376 3075407 1865102 -946840 -660016 -1749798 -1298961		Outorga 100 110 120 130 140 150 160 170 180 180	661190 727309 793428 859547 925666 991785 1057904 1124023 1190142 1286261 1322380	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3189795 3377430 366606 3752700	4918355 5450212 5976802 6503393 7029983 7556574 8083164 8602902 7761032 8164682 7062622	745589 824150 902185 980219 1058253 1136286 1214322 1291672 1232860 1213770 1132016 1178701
Dutorga 100 110 110 120 130 140 150 160 170 180 190 200 210 220	1072200 1429600 1787000 2143384 2134300 2439200 2744100 3049000 3348072 3634897 2545115 2995952 516498	1181550 1295825 1800725 1905625 1829900 1649176 331307 -1183898 -4294913 -4294913 -4294913 -4294913 -4294913	2233750 2725425 3387725 4049009 3964200 4083375 3075407 1865102 -946840 -660016 -1749798 -1298961 -3678415		Outorga 100 110 110 120 130 140 150 160 170 180 130 200 210 220	661190 727309 793428 859547 925666 991785 1057904 1124023 1190142 1286281 1322380 1386116 1449792	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3188795 3377430 366066 3752700 3940335 4115473	4918355 5450212 5976802 6503393 7029983 7556574 8063164 8602902 7761032 8164882 7062622 5993709 6221752	745589 824150 902185 980219 1058253 1136288 1214322 1291672 1232860 1213770 1132016 1178701 1051613
Dutorga 100 110 120 130 140 160 170 180 190 200 210 220 230 240	1072200 1429600 1787000 2143384 2134300 2439200 2744100 3049000 3348072 3634897 2545115 2995952 616498 -204096	1161550 1295825 1800725 1905625 1829900 1649176 331307 -1183898 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913	2233750 2725425 3387725 4049009 3964200 4083375 3075407 1865102 -946840 -660016 -1749798 -1298961 -3678415 -4499009		Outorga 100 110 120 130 140 150 160 170 180 200 210 220 230	661190 727309 793428 859547 925666 991785 1057904 1124023 1190142 126261 1322380 1386116 1449792 1509815	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3189795 3377430 3566066 3752700 3940335 4115473 4274487	4918355 5450212 5976802 6503393 7029983 7556574 8083164 8602902 7761032 8164882 7062622 5993709 6221752 4731836	745589 824150 902185 980219 1058253 1136288 1214322 1291672 1232860 1213770 1132016 1178701 1051613 862058
Dutorga 100 110 120 130 140 150 160 170 180 190 200 210 220 230	1072200 1429600 1787000 2143384 2134300 2744100 3049000 3348072 3634897 2545115 2995952 616498 -204096 -1191654	1161550 1295825 1800725 1906625 1809900 1649176 331307 -1183898 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913	2233750 2725425 3387725 4049009 3964200 4083376 3075407 1865102 -948840 -660016 -1749798 -1298961 -3678415 -4499009 -5486567		Outorga 100 110 110 120 130 140 150 160 170 180 190 200 210 220 230 240	661190 727309 793428 859547 925686 991785 1057904 1124023 1190142 1266261 1322380 1386116 1449792 1509815 1568823	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3189795 3377430 366806 3752700 3940335 4115473 4274487 3813074	4918355 5450212 5976802 6503393 70598574 8083164 8602902 7761032 8164882 7062622 75993709 6221752 4731836 3238890	745589 824150 902185 980219 1058253 1136288 1214322 1291672 1232860 1213770 1132016 1178701 1051613 862058
Dutorga 100 110 110 120 130 140 150 150 190 220 230 240 250	1072200 1429600 1787000 2143384 2134300 2439200 2744100 3049000 3348072 3634897 2545115 2995952 516498 -204096 -1191654	1181550 1295825 1800725 1905625 1829900 1649176 331307 -1183898 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913	2233750 2725425 3387725 4049009 3964200 4083375 3075407 1865102 -946840 -660016 -1749798 -1298961 -3678415 -4499009 -5486567 -5486567		Outorga 100 110 110 120 130 140 150 160 170 180 130 200 210 220 230 240 250	661190 727309 793428 859547 925666 991785 1057904 1124023 1190142 1286281 1322380 1386116 1449792 1509815 1568823 1680267	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3188795 33777430 3565065 3752700 3940335 4115473 4274487 3813074 3958796	4918355 5450212 5976802 6503393 7029983 7556574 8083164 8602902 7761032 3194882 7062625 5993709 6221752 4731836 338690 -390405	TOTAL 745589 824150 902185 980219 1055253 1136288 1214322 1291672 1232860 123880 1178701 1051613 862058' 5198655 -2740295
Dutorga 100 110 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260	1072200 1429600 1787000 2143384 2134300 2439200 2744100 3049000 3348072 3634897 2545115 2995952 616498 -204096 -1191654 -1191654	1161550 1295825 1800725 1905625 1829900 1649175 331307 -1183898 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913	2233750 2725425 3387725 4049009 3964200 408375 3075407 1865102 -946840 -660016 -1749798 -1298961 -3678415 -4499009 -5486567 -5486567		Outorga 100 110 120 130 140 150 160 170 180 200 210 220 230 240 250 260	661190 727309 793428 859547 925666 991785 1057904 1124023 1190142 1256261 1322380 1386116 1449792 1509815 1668823 1630267 1445823	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3188795 3377430 3566066 3752700 3940335 4115473 4274487 3813074 3958796 3427192	4918355 5450212 5976802 6503393 7029983 7556574 8083164 8602902 7761032 8164882 7062822 5993709 6221752 4731836 3238690 380405 -32275967	745589 824150 902185 980219 1058253 1136288 1214322 1291672 1232860 1213770 1132016 1178701 1051613 862058 5198656 -2740298
Dutorga 100 110 120 130 140 15	1072200 1429600 1787000 2143384 2134300 2744100 3049000 3348072 3634897 2545115 2995952 616498 -204096 -1191654 -1191654 -1191654	1161550 1295825 1800725 1906625 1809900 1649176 331307 -1183898 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913	2233750 2725425 3387725 4049009 3964200 4083376 3075407 1865102 -948840 -660016 -1749798 -1298961 -3678415 -4499009 -5486567 -5486567 -5486567		Outorga 100 110 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270	661190 727309 793428 859547 925686 991785 1057904 1124023 1190142 1266261 1322380 1386116 1449792 1509815 1568823 1630267 1445823 1259886	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3189795 3377430 366806 3752700 3940335 4115473 4274487 3813074 3958796 3427192 3543282	4918355 5450212 5976802 6503393 70598574 8083164 8602902 7761032 8164882 7062622 4731836 3238690 -390405 -32275967 -32275967	745589 824150 902185 980219 1058255 1136288 12414322 1291672 123286 123860 123860 113671 1132016 1178710 11051613 862058' 519865' -2740298'
Dutorga 100 110 120 130 140 140 15	1072200 1429600 1787000 2143384 2134300 2744100 3049000 3348072 3634897 2545115 2995952 616498 -204096 -1191654 -1191654 -1191654 -1191654	1181550 1295825 1800725 1905625 1829900 1649176 331307 -1183888 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913 -4294913	2233750 2725425 3387725 4049009 3964200 4983376 3075407 1865102 -948840 -660016 -1749798 -1298961 -3678415 -4499009 -5486567 -5486567 -5486567 -5486567		Outorga 100 110 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280	661190 727309 793428 859547 925666 991785 1057904 1124023 1190142 1286261 1322380 1386116 1449792 1509815 1568823 1630267 1445823 1259886 1035482	1876350 2063985 2251620 2439255 2626890 2814525 3002160 3188795 33777430 3565065 3752700 3940335 4115473 4274487 3813074 3958796 3427192 3543282 3667423	4918355 5450212 5976802 6503393 7029983 7556574 8083164 8602902 7761032 3164682 7062622 5993709 6221752 4731836 3238690 -390405 -32275967 -32275967	745589 824150 902185 980219 1058255 1136288 1214322 1291672 1232866 1238800 1213777 1051613 862058 519865 -2740294 -274773

Figura 5.5 - Critério do Valor Médio para o cultivo da melancia.

A aplicação desse critério revela que os níveis de outorga 190 (para os PC's 1, 2, 3, 4 e 5), 160 (para o PC 7) e 150 (para os PC's 9 e 10) são os que retornam os maiores benefícios para a bacia como um todo e não necessariamente para os PC's isoladamente.

A figura 5.6 mostra as *curvas teóricas de benefícios* representando a evolução dos benefícios líquidos obtidos com a melancia a partir de diversos níveis de outorga em 2 sub-bacias contribuintes: PC's 1,2 e5 e PC's 3,4 e5.

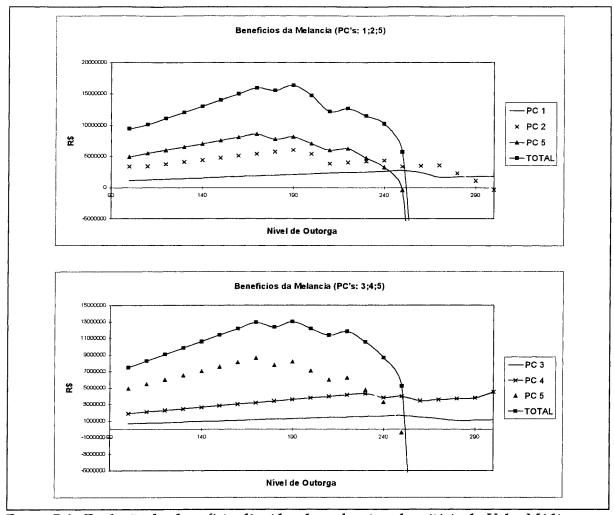


Figura 5.6 - Evolução dos benefícios líquidos da melancia pelo critério do Valor Médio.

5.4.2 Critério da Renda Fixa com Depósito Inicial

Esse critério também foi aplicado nos 672 fluxos de benefícios com a finalidade de regularizar uma renda fixa com ou sem depósito inicial. Porém, o parâmetro de escolha das outorgas foi o VPL (Valor Presente do Benefícios Líquidos) decorrente da aplicação desse critério. Foram utilizados os juros de 6% ao ano para computar os rendimentos dos saldos.

A figura 5.7 mostra, parcialmente, a aplicação do algoritmo de Renda Fixa com Depósito Inicial sobre a cultura abóbora do PC1.

Da mesma maneira que ocorreu com o critério do Valor Médio (figura 5.5) os diversos Valores Presentes de Benefícios Líquidos (sexta coluna da figura 5.7) foram calculados, agrupados por sub-bacias e totalizados.

A figura 5.8 apresenta as planilhas com os VPL's da cultura abóbora para a escolha dos níveis de outorga que retornam as maiores rendas para a bacia como um todo. Como pode ser observado, os níveis de 100 (para os PC's 1, 2, 3, 4, 5, 9 e 10) e 150 (para o PC 7) foram os adotados por esse critério como os mais rentáveis.

A figura 5.9 mostra, também, as curvas teóricas de benefícios líquidos da abóbora por este critério.

5.4.3 Critério da Renda Fixa sem Depósito Inicial

A aplicação deste critério resultou na regularização de uma renda fixa com a ressalva da não necessidade de depósito inicial e da possibilidade de ocorrerem saldos negativos. A figura 5.10 dá um exemplo da aplicação desse algoritmo sobre a cultura abóbora no PC7.

Para a simulação deste critério foram utilizados os juros de 6% tanto para rendimentos dos saldos positivos quanto para a taxação sobre saldos negativos que freqüentemente ocorrem. Na verdade diferenciando essas taxas chega-se a uma situação onde a operadora do critério (banco, governo, etc.) teria algum lucro decorrente. Diante do desconhecimento das margens de lucro admissíveis para esse tipo de operação, preferiu-se adotar taxas iguais de juros.

UFRGS BIBLIOTECA IPH

```
APLICAÇÃO DO ALGORITMO DE RENDA FIXA COM DEPOSITO INICIAL AO FLUXO DE
BENEFÍCIOS DA CULTURA ABÓBORA NO PC1.
Arquivo de origem: pclabo.prn - Taxa de Juros = 6 %
Numero de iteracoes : 43240
                   Dep.Inicial
                                 Arm.Final
                                              Renda Fixa
                                                              VPL
Serie
        Media
                                 4869089.94
                                               671307.85
                                                            8161839.04
        671307.85
                     814429.04
                                                            8978022.52
                                  5355998.94
                                                738438.60
        738438.60
                     895872.18
                     977315.13
                                  5842907.93
                                                805569.35
                                                            9794206.00
 3
        805569.35
                                                872700.15
                                                           10610390.09
                                  6329816.59
        872700.15
                    1058757.84
 5
6
                    1140200.79
                                  6816725.59
                                                939830.90
                                                           11426573.56
        939830.90
                    1221643.50
                                  7303634.24
                                               1006961.70
                                                           12242757.65
       1006961.70
                                               1074092.50
                                                           13058941.74
       1074092.50
                    1303086.92
                                  7790544.08
                                 8277453.08
                                               1141223.25
                                                           13875125.22
 8
       1141223.25
                    1384529.87
                                                           12673098.17
                                  4296090.54
                                               1042357.03
        952414.05
                          0.00
        998307.95
                          0.00
                                  4490538.67
                                               1094818.86
                                                           13310935.19
 10
                                  3646933.11
                        0.00
                                               1003524.13
                                                           12200963.26
 11
        779654.45
                          0.00
                                  4574759.31
                                                691817.06
                                                            8411192.41
12
        539867.70
                          0.00
                                                            8742898.91
                                  4783753.54
                                                719099.78
        559289.80
13
                                                495152.78
                                                            6020125.24
        258967.15
                          0.00
                                 5529450.99
14
                 Media Negativa !!!
 15
                 Media Negativa !!!
 16
                 Media Negativa !!!
 17
                 Media Negativa !!!
 18
                 Media Negativa !!!
 19
                 Media Negativa !!!
 20
                 Media Negativa !!!
 21
                                    Valores da Serie
                 Armazenamentos
Serie (1)
                  814429.04
Dep. Inicial=
            1468247.94
                                       1276261.00
s(1) =
             2205313.96
                                       1320279.00
s(2) =
s(3) =
             3024145.95
                                       1357821.00
                                       1346700.00
s(4) =
             3880986.86
s(5) =
             4829478.22
                                       1386940.00
                                      1373994.00
             5821933.06
s(6) =
                                      1386940.00
s(7) =
             6886881.20
                                     -1403060.00
             5225726.22
s(8)
                                      1386940.00
             6254901.94
s(9) =
                                     -1403060.00
              4555828.21
s(10) =
              5544810.05
                                      1386940.00
s(11) =
                                     -1403060.00
              3803130.80
s(12) =
              1956950.80
                                      -1403060.00
s(13) =
                    0.00
                                      -1403060.00
s(14) =
              715632.15
                                      1386940.00
s(15) =
              1474202.23
                                      1386940.00
s(16) =
                                      1283942.00
              2175288.51
s(17) =
                                       1386940.00
              3021437.97
s(18) =
                                       1386940.00
s(19) =
              3918356.40
              4869089.94
                                       1386940.00
s(20) =
                 Armazenamentos
                                     Valores da Serie
Serie ( 2 )
Dep. Inicial=
                   895872.18
                                       1403887.00
             1615072.91
s(1) =
                                       1452306.00
             2425844.69
s(2) =
                                       1493603.00
             3326559.77
s(3) =
 ********* Valores Omitidos **********
```

Figura 5.7 - Aplicação do algoritmo Renda Fixa com Depósito Inicial ao PC1 (abóbora).

		Valor Present	e dos Beneficio	s Liquidos (R\$)				
lível de							Nível de		
Dutorga	PC 1	PC 2	PC 5	TOTAL.			Outorga	PC 7	-
100	8161839	61870464	74856174	134888477			100	6048634	
110	8978023	27617018	82950902	119545942			110	6653497	
120	9794206	30127654	90965484	130887344			120	7258361	
130	10610390	32638296	88697679	131946365			130	7831248	
140	11426574	30314606	74709709	116450889			140	8390715	
150	12242758	28178758 19686300	68427325 53534756	108848840 86279998			160	8943627	
160 170	13058942 13875125	20498884	48082664	82456673			160 170	5391676	
180	12673098	14151408	50643497	77468003			170	4229736	
190	13310935	14 10 1400	50043497	13310935			180	4360305	
200	12200963			12200963			190 200		
210	8411192			8411192			210	İ	
220	8742899			8742899			220	ł	
230	6020125			6020125			230		
240	0020120			0020120			240		
250							250		
260							260		
270							270		
280							280		
290							290	ļ	
300							300		
100 110 120 130 140 150 160 170 180 190 200 210 220 240 250	16318623,96 10531404 13164257 15743369 14600151 16685887 18771622 18750330 10899253	17678609 11151552 10950113 9752029 7117357	3397133,24 21682956 24114369 25495398 21717507 16685887 18771622 18750330 10899253		100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250	1063161 5357852 5844929 6332007 6819083 7306162 7793239 8280316 8732958 9166484 7288006 5020659 5240646 5311632 3696595	28567592 15204715 16586962 17930333 15330158 16425170 17520181 18615192 19597802 20612632 21587577 12831817 10090799 10184602 10412865	74856174 82950902 90965484 88697679 74709709 68427325 53534756 48082664 50643497	1134769 10351344 1133973 1129600 9685895 9215865 7884817 7497817 7897425 2977911 2887558 178523 178523 1410946
260 270 280 290 300					260 270 280 290 300				

Figura 5.8 - Critério da Renda Fixa com Depósito Inicial para a abóbora.

A figura 5.11 mostra a evolução do benefícios líquidos para a cultura melancia no PC7 pelo critério da renda fixa sem depósito inicial.

5.4.4 Critério do Seguro

Para este critério também foram utilizados os juros de 6% ao ano para os reajustes pertinentes.

A figura 5.12 apresenta a simulação do algoritmo de Seguro aplicado à cultura melancia no PC9. A quinta coluna desta figura apresenta o valor do Prêmio que deverá ser pago à seguradora para a mesma manter uma renda mínima da coluna 3. As duas últimas colunas mostram, em valores atualizados no presente, os montantes

que a seguradora paga (cobertura) e recebe (prêmios) do irrigante ao longo dos 20 anos de análise.

Devido à igualdade das taxas de juros, os números dessas duas colunas são iguais representando uma situação sem lucro para a operadora.

As séries de fluxos dos benefícios financeiros líquidos 11, 12 e 13 da figura 5.12 possuem renda fixa nula porque só valores iguais ou menores a zero de renda mínima é que conseguiram igualar os déficits e excessos no presente (ver capítulo 4). Como essa situação é adversa, ocorrem valores diferenciados entre pagamentos e recebimentos por parte da seguradora. Para médias negativas dos fluxos, optou-se pela não realização das simulações.

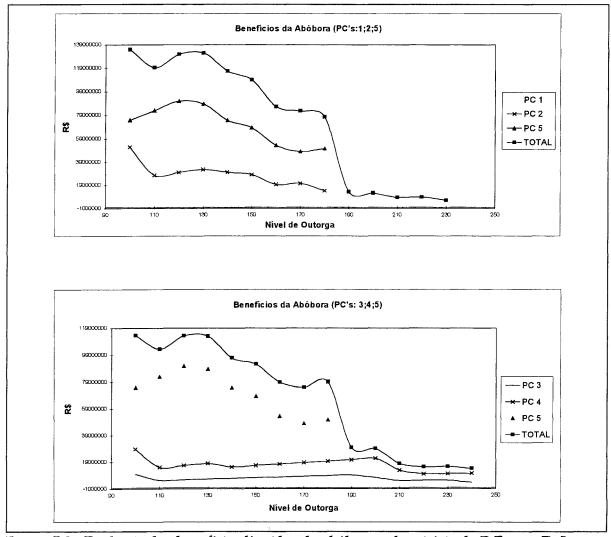


Figura 5.9 - Evolução dos benefícios líquidos da abóbora pelo critério da R.F. com D. I.

```
APLICAÇÃO DO ALGORITMO DA RENDA FIXA SEM DEPOSITO INICIAL AO PC7
CULTURA MELANCIA
Arquivo de origem: pc7mel.prn - Juros: de Poupanca = 6 % Empréstimo = 6 %
Numero de iterações : 40071
           Media
                     Arm.Final Renda Fixa
                                                  VLP
                          0.011036460.0012601401.420.011140106.0013861541.56
      1036460.00
     1140106.00
     1140106.00
1243752.00
1347398.00
                         0.01
 3
                                1243752.00 15121681.70
     1347398.00
                          0.01
                                 1347398.00 16381821.84
          ******* Valores Omitidos *********
                  0.01 632177.31 7686085.33
0.01 637861.20 7755190.75
       304458.60
 18
 19
       303547.80
 20
                Media Negativa !!!
                Media Negativa !!!
 21
Serie ( 1 ) Saldos
                          Valores da Serie
Renda Fixa : 1036460.00
              0.00 1036460.00
s(1) =
s(2) =
                  0.00
                          1036460.00
s ( 3 ) =
                  0.00
                          1036460.00
                  0.00
                          1036460.00
s(4) =
          ****** Valores Omitidos ********
          0.01 1036460.00
0.01 1036460.00
s(18) =
s(19) =
                   0.01
                          1036460.00
s(20) =
         ******* Valores Omitidos *********
Serie ( 5 ) Saldos
                          Valores da Serie
Renda Fixa: 1450356.51
s(1) =
               687.49 1451044.00
            1416.23 1451044.00
2188.70 1451044.00
s(2) =
s(3) =
         ******* Valores Omitidos *********
           -648.57 1451044.00
s(19) =
                  0.01
                          1451044.00
s(20) =
```

Figura 5.10 - Aplicação do algoritmo Renda Fixa sem Depósito Inicial ao PC7 (melancia).

5.4.5 Critério do Risco Mínimo

Neste critério, como dito, buscou-se níveis de outorga que trouxessem os maiores benefícios possíveis com um mínimo de risco de perda de produção. Não foi necessária a elaboração de nenhum programa de simulação para esse fim. Apenas a análise visual dos fluxos financeiros de cada cultura em cada PC.

No capítulo 6 (resultados) serão, também, apresentados os resultados da aplicação desse critério na bacia do Rio Branco.

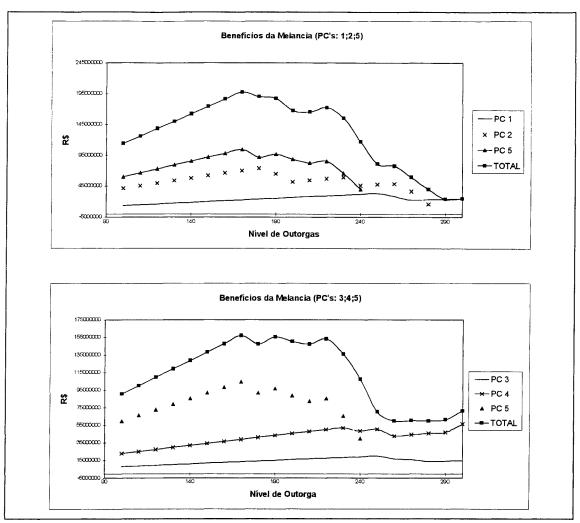


Figura 5.11 - Evolução dos Benefícios Líquidos da melancia pelo critério da R.F. sem D.I.

APLI	CAÇÃO DO ALGO	RITMO SEGURO	À CULTURA M	ELANCIA NO	PC9	
	ivo de dados:					
Taxa	de juros: 6	% Taxa de	e juros da se	guradora:	6 %	
	34 11	B 1- Bi	IIDI	5 . 6. :	-	- 1
Seri	e Media	Renda Fixa	VPL	Prêmio	Paga	Recebe
1	1072200.00	1072200.00	13035932.50	0.00	0.00	0.00
2	1429600.00	1429600.00	17381243.34	0.00	0.00	0.00
3	1787000.00	1787000.00	21726554.17	0.00	0.00	0.00
4	2143383.80	2141194.21	26051541.00	1534.15	17118.21	17118.21
5	2134300.00	1342453.85	23067175.84	554811.72	6190653.85	6190653.85
6	2439200.00	1534232.97	26362486.67	634070.54	7075032.97	7075032.97
7	2744100.00	1726012.09	29657797.51	713329.36	7959412.09	7959412.09
8	3049000.00	1917791.21	32953108.34	792588.18	8843791.21	8843791.21
9	3348072.45	2105679.05	36196868.56	871498.26	9724279.05	9724279.05
10	3634897.20	2281199.47	39276788.30	949299.95	10592399.47	10592399.47
11	2545114.85	0.00	23748134.24	2141031.41	21480340.37	20923056.66
12	2995952.00	0.00	28475736.36	2361309.78	23132674.24	23075709.25
13	616497.55	0.00	14088598.66	3566919.63	43888890.13	28298380.25
14	-204096.40	0.00	0.00	0.00	0.00	0.00
15	-1191654.40	0.00	0.00	0.00	0.00	0.00
16	-1191654.40	0.00	0.00	0.00	0.00	0.00
17	-1191654.40	0.00	0.00	0.00	0.00	0.00
18	-1191654.40	0.00	0.00	0.00	0.00	0.00
19	-1191654.40	0.00	0.00	0.00	0.00	0.00
20	-1191654.40	0.00	0.00	0.00	0.00	0.00
21	-1191654.40	0.00	0.00	0.00	0.00	0.00

Figura 5.12 - Aplicação do algoritmo Seguro à cultura melancia no PC9

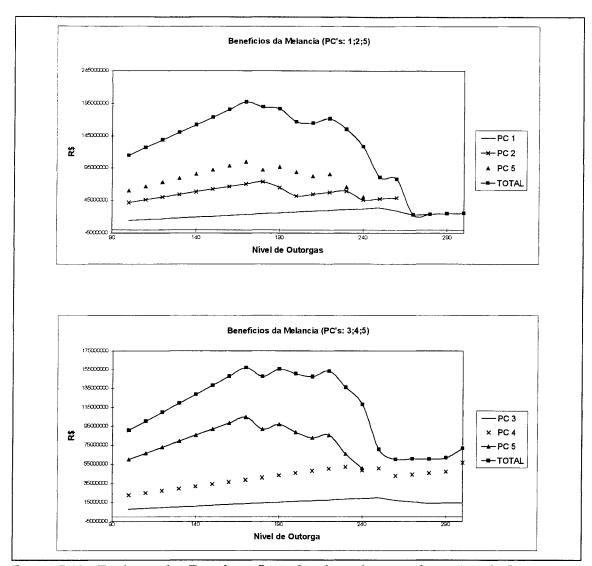


Figura 5.13 - Evolução dos Benefícios Líquidos da melancia pelo critério do Seguro.

Capítulo 6

Resultados
e
Discussão

6. RESULTADOS E DISCUSSÃO

A aplicação da metodologia proposta gerou uma variada gama de resultados cuja interpretação pode ser feita em diversas esferas de entendimento.

O objetivo deste estudo foi atingido na medida que obtiveram-se os índices otimizadores de utilização dos recursos hídricos em todas as suas prioridades. A seguir são apresentados os níveis de outorga otimizados para irrigação, o valor presente dos benefícios financeiros líquidos dos projetos de irrigação com base nos 5 critérios preestabelecidos, os níveis de falhas de fornecimento, as áreas máximas para cultivo, rendas fixas regularizáveis, depósitos iniciais, saldos finais, prêmios do seguro, as percentagens das vazões referenciais Q_{7,10} total e incremental dos pontos de captação e os desvios padrão dos fluxos financeiros referentes aos níveis de outorga selecionados.

Inicialmente, é apresentada nas figuras 6.1 e 6.2 os valores de outorga para irrigação que maximizam os benefícios globais da Bacia do Rio Branco tendo como base o critério do *Valor Médio*. Estas tabelas trazem as outorgas máximas para cada PC de irrigação e alguns dos itens expostos acima discretizados por cultura. A primeira tabela traz os resultados para as culturas de melancia e feijão e a segunda, milho e abóbora. Para todos os critérios estabelecidos na pesquisa esta separação foi aplicada.

Abaixo de cada uma das tabelas destas figuras são totalizados os mais importantes itens da análise: área total de plantio (ha), benefício anual (R\$) regularizado ou mínimo e o VPL (R\$) total (base de 20 anos) alcançável pela cultura em determinado PC.

É oportuno lembrar que o critério do *Valor Médio* foi adotado para ser criada uma sensibilidade em relação à magnitude dos outros critérios que serão vistos em seguida. Os seus resultados são apenas valores máximos esperados numa série de 20 anos consecutivos de análise. Na realidade os outros critérios não conseguem regularizar valores maiores que os apontados pela média dos fluxos dos benefícios financeiros líquidos.

As figura 6.3 e 6.4 mostram os resultados referentes à aplicação do critério da *Renda Fixa com Depósito Inicial (R. F. c/ D. I.)*. Nestes resultados vale ressaltar, além dos VPL's , a renda fixa regularizável, os eventuais depósitos iniciais necessários e armazenamentos finais (saldos residuais) que poderão ser sacados ao fim de 20 anos (os valores estão atualizados).

De modo semelhante, as figuras 6.5 e 6.6 apresentam os resultados da aplicação do critério da *Renda Fixa sem Depósito Inicial (R. F. s/ D. I.)*. Diferente do critério anterior este sempre tem o armazenamento final nulo e são permitidos saldos negativos.

		Critério das M	IÉDIAS					
MELANCIA	Outorga máx.]				Beneficio anual	Nivel de	Desvio
PC	(m3/s)	%Q7,10 total	% Q7,10 incr.	Àrea (ha)	% Falha	médio (R\$)	Outorga	Padrão (R\$
1	1,178	190	190	1.178	9,2	2.105.086	190	0
2	3,624	106	129	3.624	27,5	6,056.587	190	250.530
3	0,703	190	190	703	7,9	1.256.261	190	0
4	1,995	140	190	1.995	10,4	3.565.065	190	0
5	5,407	106	2.163	5.407	28,6	8.164.682	190	633.911
7	1,102	190	190	1.102	16,7	1.644.464	160	62.036
9	1,600	80	80	1.600	5,8	2.439.200	150	187.829
10	1,650	66	330	1.650	37,1	1.649.175	150	317.348
Área Plantada total (ha) enefício anual médio total (R\$) VPL Total (R\$)		17.259 26.880.520 335.197.967						
enefício annal médio total (R\$) VPL Total (R\$)	Outorga máx.	26.880.520				Beneficio anual	Nivel de	Desvio
vPL Total (R\$)		26.880.520	%Q7,10 incr.	Area (ha)	% Falha	Beneficio anual médio (R\$)	Nível de Outorga	
enefício anual médio total (R\$) VPL Total (R\$) <u>FEIJĀO</u>	Outorga máx.	26.880.520 335.197.967	% Q7,10 incr.	Area (ha)	% Falha 5,4			
eneficio anual médio total (R\$) VPL Total (R\$) <u>FEIJĀO</u> PC	Outorga máx. (m3/s)	26.880.520 335.197.967 %Q7,10 total	The state of the s			médio (R\$)	Outorga	Padrão (R
enefício anual médio total (R\$) VPL Total (R\$) FEIJĀO PC 1	Outorga máx. (m3/s) 1,116	26.880.520 335.197.967 %Q7,10 total 180	180	1.116	5,4	médio (R\$) 170.748	Outorga 180	Padrão (R
eneficio annal médio total (R\$) VPL Total (R\$) FEIJÃO PC 1 2	Outorga máx. (m3/s) 1,116 3,434	26.880.520 335.197.967 %Q7,10 total 180 100	180 122	1.116 3.434	5,4 21,3	médio (R\$) 170.748 525.233	Outorga 180 180	Padrão (R. 0 0
eneficio anual médio total (R\$) VPL Total (R\$) FEIJĀO PC 1 2 3	Outorga máx. (m3/s) 1,116 3,434 0,666	26.880.520 335.197.967 %Q7,10 total 180 100 180 133 100	180 122 180 180 2.045	1.116 3.434 666	5,4 21,3 4,6	médio (R\$) 170.748 525.233 101.898	Outorga 180 180 180	Padrão (R: 0 0 0 0
PC 1 2 3 4	Outorga máx. (m3/s) 1,116 3,434 0,666 1,890 5,112 1,102	26.880.520 335.197.967 %Q7,10 total 180 100 180 133 100	180 122 180 180 2.045	1.116 3.434 666 1.890	5,4 21,3 4,6 7,1 23,7 30,8	médio (R\$) 170.748 525.233 101.898 289.170	Outorga 180 180 180 180	Padrão (R: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PC 1 2 3 4 5 5 7 7 9 9	Outorga máx. (m3/s) 1,116 3,434 0,666 1,890 5,112	26.880.520 335.197.967 %Q7,10 total 180 100 180 133 100 190 60	180 122 180 180 2.045 190 60	1.116 3.434 666 1.890 5.112	5,4 21,3 4,6 7,1 23,7	médio (R\$) 170.748 525.233 101.898 289.170 782.239	Outorga 180 180 180 180 180	Padrão (R: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PC 1 2 3 4 5 5 7 7	Outorga máx. (m3/s) 1,116 3,434 0,666 1,890 5,112 1,102	26.880.520 335.197.967 %Q7,10 total 180 100 180 133 100	180 122 180 180 2.045	1.116 3.434 666 1.890 5.112 1.102	5,4 21,3 4,6 7,1 23,7 30,8	médio (R\$) 170.748 525.233 101.898 289.170 782.239 168.606	Outorga 180 180 180 180 180 180	Padrão (R. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figura 6.1 - Resultado da aplicação do critério das médias sobre as culturas de melancia e feijão.

VALOREST	E OTTOPCA PARA	IRRICAÇÃO OUR I	WAYIMIZAM OS	RENEWICTOR	CLOBAIS DA	BACIA DO RIO BRAN	JCO.	
VALORES	L OUI ORGA I ARA	IRRIGAÇÃO QUE	MAXIMIZAM OS	DENEFICIOS	GLOBALS DA	BACIA DU KIU BRAI	100	
		Critério das M	TÉDIAS					
MILHO								
	Outorga máx.	1				Beneficio annal	Nível de	Desvio
PC	(m3/s)	%Q7,10 total	%Q7,10 incr.	Area (ha)	% Falha	médio (R\$)	Outorga	Padrão (R\$)
1	0,744	120	120	744	0,0	148.097	120	0
2	2,289	67	81	2.289	1,7	462.921	120	0
3	0,407	110	110	407	0,0	78.877	110	134
4	1,155	81	110	1.155	0,0	235.420	110	0
5	3,344	66	1.338	3.344	2,8	598.561	120	4.192
7	0,696	120	120	696	5,0	128.895	120	0
9	0,800	40	40	800	1,3	158.607	110	1.438
10	0,850	34	170	850	3,8	163.004	110	0
Beneficio anual médio total (RS) VPL Total (RS) ABÓBORA		1.974.382 24.620.388	1					
	Outorga máx.					Beneficio anual	Nivel de	Desvio
PC	(m3/s)	%Q7,10 total	%Q7,10 incr.	Area (ha)	% Falha	médio (R\$)	Outorga	Padrão (R\$)
1	0,620	100	100	620	0,0	671.308	100	122.920
2	1,907	56	68	1.907	0,4	4.266.324	100	0
3	0,370	100	100	370	0,0	827.690	100	0
4	1,050	74	100	1.050	0,0	2.348.850	100	0
5	2,755	54	1.102	2.755	0,0	6.156.889	100	0
7	0,870	150	150	870	13,3	735.610	150	181.750
9	0,600	30	30	600	0,0	1.342.200	100	0
10	0,650	26	130	650	1,7	1.454.050	100	0
Área Planta da total (ha)		8.822]					
Benefício anual médio total (RS)		17.802.921	4					
VPL Total (RS)		222.001.022	J					

Figura 6.2 - Resultado da aplicação do critério das Médias sobre as culturas de milho e abóbora.

		C	ritério da Ren	BA FIXA COI	n Deposi	io mudal				
<u>MELANCIA</u>	Outorga máx.	1					Renda Fixa	Dep. Inicial	Arm Final	Nivel
PC	(m3/s)	%Q7,10 total	%Q7,10 incr.	Àrea (ha)	% Falha	VPL (R\$)	(R\$)	(R\$)	(R\$)	Outorg
1	1,054	170	170	1.054	9,2	22,899,788	1.883.498	0	0	170
2	3,243	95	115	3.243	27,5	70.091.632	5.765.007	0	59.253	170
3	0,629	170	170	629	7,9	13.666.003	1.124.023	0	0	170
4	1,785	126	170	1.785	10,4	38.781.899	3.189.795	0	0	170
5	4,818	94	1.927	4.818	19,0	104.624.491	8.605.321	0	9.135	170
7	0,928	160	160	928	16,7	20.017.325	1.646.417	0	67.191	160
9	1,600	80	80	1.600	5,8	29.656.078	2.439.200	7.528.302	14.179.197	150
10	1,650	66	330	1.650	37,1	20.050.862	1.649.175	6.946.344	13.798.019	150
Benefício anual re VPL Total (RS)	egularizado (R\$)	Ė	15.707 26.302.436 319.788.078	}						
			26.302.436							
VPL Total (RS) <u>FEIJÃO</u>	Outorga máx.		26.302.436 319.788.078	}			Renda Fixa	Dep. Inicial	Arm Final	Nivel d
VPL Total (RS)	Outorga máx. (m3/s)	%Q7,10 total	26,302.436 319.788.078 %Q7,10 incr.	Ārea (ha)	% Falha	VPL (R\$)	(R\$)	(RS)	(R\$)	Outorg
VPL Total (RS) FEIJÃO PC 1	Outorga máx. (m3/s) 1,116	180	26.302.436 319.788.078 %Q7,10 incr.	1.116	5,4	2.075.974	(R\$) 170.748	(RS)	(R\$)	Outorg 180
VPL Total (RS) FEIJÃO PC 1 2	Outorga máx. (m3/s) 1,116 3,434	180 100	26.302.436 319.788.078 %Q7,10 incr. 180 122	1.116 3.434	5,4 21,3	2.075.974 6.385.844	(R\$) 170.748 525.233	(RS) 0 0	(R\$) 0 0	Outorg 180 180
FEIJÃO PC 1 2 3	Outorga máx. (m3/s) 1,116 3,434 0,666	180 100 180	26.302.436 319.788.078 %Q7,10 incr. 180 122 180	1.116 3.434 666	5,4 21,3 4,6	2.075.974 6.385.844 1.238.888	(R\$) 170.748 525.233 101.898	(RS) 0 0 0	(R\$) 0 0 0	Outorg 180 180 180
PC 1 2 3 4	Outorga máx. (m3/s) 1,116 3,434 0,666 1,89	180 100 180 133	26.302.436 319.788.078 %Q7,10 incr. 180 122 180	1.116 3.434 666 1.890	5,4 21,3 4,6 7,1	2.075.974 6.385.844 1.238.888 3.515.763	(R\$) 170.748 525.233 101.898 289.170	(RS) 0 0 0	(R\$) 0 0 0 0	Outorg 180 180 180 180
PC 1 2 3 4 5 5	Outorga máx. (m3/s) 1,116 3,434 0,666 1,89 5,112	180 100 180 133 100	26.302.436 319.788.078 9/Q7,10 incr. 180 122 180 1.80 2.045	1.116 3.434 666 1.890 5.112	5,4 21,3 4,6 7,1 23,7	2.075.974 6.385.844 1.238.888 3.515.763 9.510.553	(R\$) 170.748 525.233 101.898 289.170 782.239	(RS) 0 0 0 0	(R\$) 0 0 0 0 0 0 0	Outorg 180 180 180 180 180
FEIJÃO PC 1 2 3 4 5 7	Outorga máx. (m3/s) 1,116 3,434 0,666 1,89 5,112 1,102	180 100 180 133 100 190	26.302.436 319.788.078 %Q7,10 incr. 180 122 180 180 2.045	1.116 3.434 666 1.890 5.112 1.102	5,4 21,3 4,6 7,1 23,7 30,8	2.075,974 6.385,844 1.238,888 3.515,763 9.510,553 2.049,931	(R\$) 170.748 525.233 101.898 289.170 782.239 168.606	(RS) 0 0 0 0 0 0 0 0	(R\$) 0 0 0 0 0 0 0 0 0 0	Outorg 180 180 180 180 180 180
FEIJÃO PC 1 2 3 4 5 7 9	Outorga max. (m3/s) 1,116 3,434 0,666 1,89 5,112 1,102	180 100 180 133 100 190 60	26.302.436 319.788.078 %Q7,10 incr. 180 122 180 180 2.045 190 60	1.116 3.434 666 1.890 5.112 1.102 1.200	5,4 21,3 4,6 7,1 23,7 30,8 3,8	2.075.974 6.385.844 1.238.888 3.515.763 9.510.553 2.049.931 2.232.230	(R\$) 170.748 525.233 101.898 289.170 782.239 168.606 183.600	(RS) 0 0 0 0 0 0 0 0 0 0 0 0	(R\$) 0 0 0 0 0 0 0 0 0 0 0 0 0	Outorg 180 180 180 180 180 190 130
FEIJÃO PC 1 2 3 4 5 7	Outorga máx. (m3/s) 1,116 3,434 0,666 1,89 5,112 1,102	180 100 180 133 100 190	26.302.436 319.788.078 %Q7,10 incr. 180 122 180 180 2.045	1.116 3.434 666 1.890 5.112 1.102	5,4 21,3 4,6 7,1 23,7 30,8	2.075,974 6.385,844 1.238,888 3.515,763 9.510,553 2.049,931	(R\$) 170.748 525.233 101.898 289.170 782.239 168.606	(RS) 0 0 0 0 0 0 0 0	(R\$) 0 0 0 0 0 0 0 0 0 0	Outorg 180 180 180 180 180 190
FEIJÃO PC 1 2 3 4 5 7 9 10	Outorga max. (m3/s) 1,116 3,434 0,666 1,89 5,112 1,102	180 100 180 133 100 190 60	26.302.436 319.788.078 %Q7,10 incr. 180 122 180 180 2.045 190 60	1.116 3.434 666 1.890 5.112 1.102 1.200	5,4 21,3 4,6 7,1 23,7 30,8 3,8	2.075.974 6.385.844 1.238.888 3.515.763 9.510.553 2.049.931 2.232.230	(R\$) 170.748 525.233 101.898 289.170 782.239 168.606 183.600	(RS) 0 0 0 0 0 0 0 0 0 0 0 0	(R\$) 0 0 0 0 0 0 0 0 0 0 0 0 0	Outorg 180 180 180 180 180 190 130
FEIJÃO PC 1 2 3 4 5 7 9	Outorga máx. (m3/s) 1,116 3,434 0,666 1,89 5,112 1,102 1,2	180 100 180 133 100 190 60	26.302.436 319.788.078 %Q7,10 incr. 180 122 180 2.045 190 60 250	1.116 3.434 666 1.890 5.112 1.102 1.200	5,4 21,3 4,6 7,1 23,7 30,8 3,8	2.075.974 6.385.844 1.238.888 3.515.763 9.510.553 2.049.931 2.232.230	(R\$) 170.748 525.233 101.898 289.170 782.239 168.606 183.600	(RS) 0 0 0 0 0 0 0 0 0 0 0 0	(R\$) 0 0 0 0 0 0 0 0 0 0 0 0 0	Outorg 180 180 180 180 180 190 130

Figura 6.3 - Resultado da aplicação do critério das R. F. c/ D. I. sobre as culturas de melancia e feijão.

	VALORES DE O		ritério da Ren			to Inicial				
MILHO										
	Outorga máx.	1					Renda Fixa	Dep. Inicial	Arm. Final	Nível de
PC	(m3/s)	%Q7,10 total	%Q7,10 incr.	Area (ha)	% Falha	VPL (R\$)	(R\$)	(RS)	(R\$)	Outorga
1	0,744	120	120	744	0,0	1.800.581	148.097	0	0	120
2	2,289	67	81	2.289	1,7	5.628.247	462.921	0	0	120
3	0,407	110	110	407	0,0	958.996	78.877	232	566	110
4	1,155	81	110	1.155	0,0	2.862.264	235.420	0	0	110
5	3,344	66	1.338	3.344	2,8	7.277.374	598.561	4.905	14.065	120
7	0,696	120	120	696	5,0	1.567.120	128.895	0	0	120
9	0,8	40	40	800	1,3	928.356	158.606	2.482	6.071	110
10	0,85	34	170	850	3,8	1.981.822	163.004	0	0	110
Área total (ha) Benefício anual r VPL Total (R\$)	egularizado (R\$)		10.285 1.974.381 23.004.760]						
Beneficio anual r	egularizado (R\$)	į	1.974.381]						
Beneficio anual r VPL Total (R\$)]	1.974.381				Renda Fixa	Dep. Inicial	Arm. Final	Nível de
Beneficio anual r VPL Total (R\$)	Outorga máx. (m3/s)	%Q7,10 total	1.974.381	Area (ha)	% Falha	VPL (R\$)	Renda Fixa (R\$)	Dep. Inicial (R\$)	Arm. Final (R\$)	
Beneticio anual r VPL Total (R\$) <u>ABÓBORA</u>	Outorga máx.	%Q7,10 total 100	1.974.381 23.004.760	Area (ha)	% Falha 0,0	VPL (R\$) 8.161.839				
Beneficio anual r VPL Total (R\$) <u>ABÓBORA</u> PC	Outorga máx. (m3/s)		1.974.381 23.004.760 23.004.760 %Q7,10 incr.	The second second second			(R\$)	(R\$)	(R\$)	Outorga
Beneficio anual r VPL Total (R\$) ABÓBORA PC 1	Outorga máx. (m3/s) 0,62	100	1.974.381 23.004.760 23.004.760 %Q7,10 incr. 100	620	0,0	8.161.839	(R\$) 671.308	(R\$) 814.429	(R\$) 4.869.090	Outorga 100
Beneficio anual r VPL Total (R\$) ABÓBORA PC 1 2	Outorga máx. (m3/s) 0,62 1,907	100 56	1.974.381 23.004.760 %Q7,10 incr. 100 68	620 1.907	0,0 0,4	8.161.839 51.870.464	(R\$) 671.308 4.266.324	(R\$) 814.429 0	(R\$) 4.869.090 0	Outorga 100 100
Beneficio anual r VPL Total (R\$) ABÓBORA PC 1 2 3	Outorga máx. (m3/s) 0,62 1,907 0,37	100 56 100	1.974.381 23.004.760 %Q7,10 incr. 100 68 100	620 1.907 370	0,0 0,4 0,0	8.161.839 51.870.464 10.063.151	(R\$) 671.308 4.266.324 827.690	(R\$) 814.429 0	(R\$) 4.869.090 0	Outorga 100 100 100
Beneficio anual r VPL Total (R\$) ABÓBORA PC 1 2 3 4	Outorga máx. (m3/s) 0,62 1,907 0,37 1,05	100 56 100 74	1.974.381 23.004.760 %Q7,10 incr. 100 68 100	620 1.907 370 1.050	0,0 0,4 0,0 0,0	8.161.839 51.870.464 10.063.151 28.557.592	(R\$) 671.308 4.266.324 827.690 2.348.850	(R\$) 814.429 0 0	(R\$) 4.869.090 0 0	Outorga 100 100 100 100
Beneficio anual r VPL Total (R\$) ABÓBORA PC 1 2 3 4 5	Outorga máx. (m3/s) 0,62 1,907 0,37 1,05 2,755	100 56 100 74 54	1.974.381 23.004.760 %Q7,10 incr. 100 68 100 100 1.102	620 1.907 370 1.050 2.755	0,0 0,4 0,0 0,0 0,0	8.161.839 51.870.464 10.063.151 28.557.592 74.856.174	(R\$) 671.308 4.266.324 827.690 2.348.850 6.156.889	(R\$) 814.429 0 0 0	(R\$) 4.869.090 0 0 0 0	Outorgs 100 100 100 100 100
Beneficio anual r VPL Total (R\$) ABÓBORA PC 1 2 3 4 5 7	Outorga máx. (m3/s) 0,62 1,907 0,37 1,05 2,755 0,87	100 56 100 74 54 150	1.974.381 23.004.760 %Q7,10 incr. 100 68 100 100 1.102 150	620 1.907 370 1.050 2.755 870	0,0 0,4 0,0 0,0 0,0 0,0 13,3	8.161.839 51.870.464 10.063.151 28.557.592 74.856.174 8.943.627	(R\$) 671.308 4.266.324 827.690 2.348.850 6.156.889 735.610	(R\$) 814.429 0 0 0 0 493.295	(R\$) 4.869.090 0 0 0 0 6.635.795	Outorg: 100 100 100 100 100 100 150
Beneficio anual r VPL Total (R\$) ABÓBORA PC 1 2 3 4 5 7 9	Outorga máx. (m3/s) 0,62 1,907 0,37 1,05 2,755 0,87 0,6	100 56 100 74 54 150 30	1.974.381 23.004.760 %Q7,10 incr. 100 68 100 1.102 1.50 30	620 1.907 370 1.050 2.755 870 600	0,0 0,4 0,0 0,0 0,0 0,0 13,3 0,0	8.161.839 51.870.464 10.063.151 28.557.592 74.856.174 8.943.627 16.318.623	(R\$) 671.308 4.266.324 827.690 2.348.850 6.156.889 735.610 1.342.200	(R\$) 814.429 0 0 0 0 493.295 0	(R\$) 4.869.090 0 0 0 0 6.635.795	Outorg: 100 100 100 100 100 100 100 100 150

Figura 6.4 - Resultado da aplicação do critério das R. F. c/ D. I. sobre as culturas de milho e abóbora.

As figuras 6.7 e 6.8 referem-se à aplicação do critério do Seguro. Da mesma forma que nos dois últimos critérios, chegou-se a uma regularização de renda com a diferença de que esta é a mínima que o irrigante tem garantida pela seguradora.

		C	Critério da Ren	ou like sei	и вером				

<u>MELANCIA</u>	Outorg a máx.	ר					Renda Fixa	Nível de	Desvio
PC	(m3/s)	%Q7,10 total	%Q7,10 incr.	Area (ha)	% Falha	VPL (R\$)	(R\$)	Outorga	Padrão (R
1	1,054	170	170	1.054	3,8	22.899.788	1.883,498	170	0
2	3,243	95	115	3.243	17,1	70.111.216	5.766.618	170	86.671
3	0,629	170	170	629	2,1	13,666,003	1.124.023	170	0
4	1,785	126	170	1.785	5,4	38.781.899	3.189.795	170	1 0
5	4,818	94	1.927	4.818	19,0	104.627.510	8.605.569	170	30.644
7	1,044	180	180	1.044	24,6	20.113.961	1.654.365	180	122.346
9	1,2	60	60	1.200	3,8	26.051.541	2.142.728	130	4,544
	1,25	50	250	1.250	12.1	20.595,693			146.741
Area total (ha) Beneficio anual re VPL Total (R\$)		[15.023 26.060.583 316.847.611	1.230	12,1	20.393.693	1.693.987	130	140./41
Área total (ha) Benefício anual re	gularizado (RS)	[15.023 26.060.583	1.230	12,1	20.595.693			
Área total (ha) Beneficio anual re VPL Total (RS) <u>FEIJÃO</u>	gularizado (R\$) Outorga máx.	[15.023 26.060.583 316.847.611		,		Renda Fixa	Nível de	Desvio
Área total (ha) Beneficio anual re VPL Total (RS) <u>FEIJÃO</u> PC	gularizado (R\$) Outorga máx. (m3/s)	%Q7,10 total	15.023 26.060.583 316.847.611 %Q7,10 incr.	Area (ha)	% Falha	VPL (R\$)	Renda Fixa (R\$)	Nível de Outorga	Desvio Padrão (R.
Área total (ha) Beneficio anual re VPL Total (RS) FEIJÃO PC 1	gularizado (R\$) Outorga máx. (m3/s) 1,116	%Q7,10 total 180	15.023 26.060.583 316.847.611 %Q7,10 incr.	Area (ha)	% Falha 5,4	VPL (R\$) 2.075.974	Renda Fixa (R\$) 170.748	Nível de Outorga 180	Desvio Padrão (R:
Área total (ha) Beneficio anual re VPL Total (RS) FELJÃO PC 1 2	Outorga máx. (m3/s) 1,116 3,434	%Q7,10 total 180 100	15.023 26.060.583 316.847.611 %Q7,10 incr. 180	Area (ha) 1.116 3.434	% Falha 5,4 21,3	VPL (R\$) 2.075.974 6.385.844	Renda Fixa (R\$) 170.748 525.233	Nível de Outorga 180	Desvio Padrão (R:
Área total (ha) Beneficio anual re VPL Total (RS) FELJÃO PC 1 2 3	Outoga máx. (m3/s) 1,116 3,434 0,666	%Q7,10 total 180 100 180	15.023 26.060.583 316.847.611 %Q7,10 incr. 180 122 180	Area (ha) 1.116 3.434 666	% Falha 5,4 21,3 4,6	VPL (R\$) 2.075.974 6.383.844 1.238.888	Renda Fixa (R\$) 170.748 525.233 101.898	Nível de Outorga 180 180	Desvio Padrão (R:
Área total (ha) Beneficio anual re VPL Total (RS) FEIJÃO PC 1 2 3 4	Outorg a máx. (m3/s) 1,116 3,434 0,666 1,89	%Q7,10 total 180 100 180 133	15.023 26.060.583 316.847.611 %Q7,10 incr. 180 122 180	Area (ha) 1.116 3.434 666 1.890	% Falha 5,4 21,3 4,6 7,1	VPL (R\$) 2.075.974 6.385.844 1.238.888 3.515.763	Renda Fixa (R\$) 170.748 525.233 101.898 289.170	Nível de Outorg a 180 180 180	Desvio Padrão (R: 0 0 0 0 0 0
Área total (ha) Beneficio anual re VPL Total (RS) FEIJÃO PC 1 2 3 4 5	Guiarizado (R\$) Outorga máx. (m3/s) 1,116 3,434 0,666 1,89 5,112	%Q7,10 total 180 100 180 133 100	15.023 26.060.583 316.847.611 %Q7,10 incr. 180 122 180 2.045	Area (ha) 1.116 3.434 666 1.890 5.112	% Falha 5,4 21,3 4,6 7,1 23,7	VPL (R\$) 2.075.974 6.383.844 1.238.888 3.515.763 9.510.553	Renda Fixa (R\$) 170.748 525.233 101.898 289.170 782.239	Nível de Outoga 180 180 180 180	Desvio Padrão (R: 0 0 0 0 0
Área total (ha) Beneficio anual re VPL Total (RS) FEIJÃO PC 1 2 3 4 5 7	Outorga máx. (m3/s) 1,116 3,434 0,666 1,89 5,112 1,102	%Q7,10 total 180 100 180 133 100 190	15.023 26.060.583 316.847.611 %Q7,10 incr. 180 122 180 180 2.045	Area (ha) 1.116 3.434 666 1.890 5.112 1.102	% Falha 5,4 21,3 4,6 7,1 23,7 30,8	VPL (R\$) 2.075.974 6.385.844 1.238.888 3.515.763 9.510.553 2.049.931	Renda Fixa (R\$) 170.748 525.233 101.898 289.170 782.239 168.606	Nível de Outorga 180 180 180 180 190	Desvio Padrão (R: 0 0 0 0 0 0 0
Área total (ha) Beneficio anual re VPL Total (RS) FELJÃO PC 1 2 3 4 5 7 9	Outorga máx. (m3/s) 1,116 3,434 0,666 1,89 5,112 1,102	%Q7,10 total 180 100 180 133 100 190	15.023 26.060.583 316.847.611 %Q7,10 incr. 180 122 180 180 2.045 190 60	Area (ha) 1.116 3.434 666 1.890 5.112 1.102	% Falha 5,4 21,3 4,6 7,1 23,7 30,8 3,8	VPL (R\$) 2.075.974 6.385.844 1.238.888 3.515.763 9.510.553 2.049.931 2.232.230	Renda Fixa (R\$) 170.748 525.233 101.898 289.170 782.239 168.606 183.600	Nível de Outorga 180 180 180 180 190 130	Desvio Padrão (R: 0 0 0 0 0 0 0 0
Área total (ha) Beneficio anual re VPL Total (RS) FEIJÃO PC 1 2 3 4 5 7	Outorga máx. (m3/s) 1,116 3,434 0,666 1,89 5,112 1,102	%Q7,10 total 180 100 180 133 100 190	15.023 26.060.583 316.847.611 %Q7,10 incr. 180 122 180 180 2.045	Area (ha) 1.116 3.434 666 1.890 5.112 1.102	% Falha 5,4 21,3 4,6 7,1 23,7 30,8	VPL (R\$) 2.075.974 6.385.844 1.238.888 3.515.763 9.510.553 2.049.931	Renda Fixa (R\$) 170.748 525.233 101.898 289.170 782.239 168.606	Nível de Outorga 180 180 180 180 190	Desvio Padrão (R: 0 0 0 0 0 0 0
Área total (ha) Beneficio anual re VPL Total (RS) FELJÃO PC 1 2 3 4 5 7 9	Outorga máx. (m3/s) 1,116 3,434 0,666 1,89 5,112 1,102	%Q7,10 total 180 100 180 133 100 190	15.023 26.060.583 316.847.611 %Q7,10 incr. 180 122 180 180 2.045 190 60	Area (ha) 1.116 3.434 666 1.890 5.112 1.102	% Falha 5,4 21,3 4,6 7,1 23,7 30,8 3,8	VPL (R\$) 2.075.974 6.385.844 1.238.888 3.515.763 9.510.553 2.049.931 2.232.230	Renda Fixa (R\$) 170.748 525.233 101.898 289.170 782.239 168.606 183.600	Nível de Outorga 180 180 180 180 190 130	Desvio Padrão (R: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Os valores de renda fixa obtidos por este critério são garantidos mediante pagamento de determinado prêmio a uma agência seguradora. Observam-se diversos valores nulos para prêmio e, simultaneamente, para o desvio padrão correspondente. Isto significa que a tentativa de estabelecer um seguro para aquela cultura e naquele PC é inútil porque os riscos de perda de produção para aquelas condições é, pelo menos, menor que 1 a cada 20 anos.

As figuras 6.9 e 6.10 mostram os resultados do critério *Risco Mínimo*. Este critério apresenta os benefícios que podem ser regularizados a partir de uma postura econômica avessa ao risco. Dentro deste esquema as outorgas selecionadas representam o máximo de ganho com o mínimo de chance de perda de produção. A observação dos desvios padrão sinaliza positivamente para esta afirmação.

Quanto às vazões destinadas à geração hidroelétrica as simulações com o PROPAGA produziram situações com percentagem de falhas inferiores a 5%, em todas as 4 PCH's projetadas, com a adoção das outorgas de quaisquer dos critérios. Configurase, portanto, um quadro de perdas mínimas cujos cálculos foram desconsiderados em vista das altas compensações financeiras para a bacia obtidas com a irrigação.

<u>MILHO</u>									
	Outorg a máx.	7					Renda Fixa	Nível de	Desvio
PC	(m3/s)	%Q7,10 total	%Q7,10 incr.	Area (ha)	% Falha	VPL (R\$)	(R\$)	Outorga	Padrão (R
1	0,744	120	120	744	0,0	1.800.581	148.097	120	0
2	2,289	67	81	2.289	1,7	5.628.247	462.921	120	0
3	0,407	110	110	407	0,0	958.938	78.872	110	1.273
4	1,155	81	110	1.155	0,0	2.862.264	235.420	110	0
5	3,344	66	1.338	3.344	2,8	7.276.824	598.516	120	4.192
7	0,696	120	120	696	5,0	1.567.120	128.895	120	0
9	0,8	40	40	800	1,3	1.927.732	158.555	110	1.438
10	0,85	34	170	850	3,8	1.981.822	163.004	110	0
	egularizado (RS)		10.285 1.974.280 24.003.528						
		, !	1.974.280				D anda Fira	Mind do	Dovido
VPL Total (R\$) <u>ABÓBORA</u>	Outorg a máx.	9407 10 total	1.974.280 24.003.528	Area (ha)	% Falks	VDI (B.¢)	Renda Fixa	Nível de	Desvio
VPL Total (R\$) <u>ABÓBORA</u> PC	Outorg a máx. (m3/s)	%Q7,10 total	1.974.280 24.003.528 %Q7,10 incr.	Area (ha)	% Falha	VPL (R\$)	(R.\$)	Outorga	Padrão (R
VPL Total (R\$) ABÓBORA PC 1	Outorga máx. (m3/s) 0,806	130	1.974.280 24.003.528 24.003.528 %Q7,10 incr.	806	0,0	11.580.194	(R\$) 952.466	Outorga 130	Padrão (R 159.796
PC 1 2	Outorg a máx. (m3/s) 0,806 2,48	130 72	1.974.280 24.003.528 24.003.528 %Q7,10 incr. 130 88	806 2.480	0,0 3,8	11.580.194 35.621.478	(R\$) 952.466 2.929.852	Outorg a 130 130	Padrão (R 159.796 491.544
ABÓBORA PC 1 2 3	Outorg a máx. (m3/s) 0,806 2,48 0,37	130 72 100	1.974,280 24.003.528 24.003.528 %Q7,10 incr. 1.30 8.8 100	2.480 370	0,0 3,8 0,0	11.580.194 35.621.478 10.063.151	(R\$) 952.466 2.929.852 827.690	Outorg a 130 130 130 100	Padrão (R 159.796 491.544
PC 1 2 3 4	Outorg a máx. (m3/s) 0,806 2,48 0,37 1,05	130 72 100 74	1.974.280 24.003.528 24.003.528 %Q7,10 incr. 130 88 100 100	370 1.050	0,0 3,8 0,0 0,0	11.580.194 35.621.478 10.063.151 28.557.592	(R\$) 952.466 2.929.852 827.690 2.348.850	Outorga 130 130 100 100	Padrão (R 159.796 491.544 0
PC 1 2 3 4 5 5	Outorg a máx. (m3/s) 0,806 2,48 0,37 1,05 3,639	130 72 100 74 71	1.974,280 24.003.528 24.003.528 %Q7,10 incr. 1.30 8.8 100	2.480 370	0,0 3,8 0,0 0,0 4,9	11.580.194 35.621.478 10.063.151	(R\$) 952.466 2.929.852 827.690	Outorg a 130 130 130 100	Padrão (R 159.796 491.544
PC 1 2 3 4	Outorg a máx. (m3/s) 0,806 2,48 0,37 1,05	130 72 100 74	1.974.280 24.003.528 24.003.528 %Q7,10 incr. 1.30 8.8 1.00 1.00 1.456	806 2.480 370 1.050 3.639	0,0 3,8 0,0 0,0	11.580.194 35.621.478 10.063.151 28.557.592 90.487.005	(R\$) 952,466 2,929,852 827,690 2,348,850 7,442,518	Outorg a 130 130 100 100 130	Padrão (R. 159.796 491.544 0 0 365.748

Figura 6.6 - Resultado da aplicação do critério das R. F. s/ D. I. sobre as culturas de milho e abóbora.

VALORES DE OUTORGA PARA IRRIGAÇÃO QUE MAXIMIZAM OS BENEFÍCIOS GLOBAIS DA BACIA DO RIO BRANCO Critério do SEGURO **MELANCIA** Outorga máx. (m3/s) Renda Fixa Prêmic Nível de %Q7,10 total %Q7,10 incr. VPL (R\$) Area (ha) % Falha (R\$) (R\$) Outorga 1.116 1.772.704 1,116 180 180 24.246.834 170 0 3,434 100 122 3.434 21,3 73.819.170 5.741.869 24.749 4,6 7,1 0,666 180 180 666 14.469.885 1.124.023 170 1,89 133 180 1.890 41.063.187 3.189.795 0 170 19,0 67.062 5,112 8.601.511 170 100 2.045 5.112 104,627,510 120 5,0 1.243.752 120 696 1.567.120 120 0,696 0 60 1.200 26.051.541 2.141.194 130 10 50 250 1.250 20.595.693 1.198.620 495.368 15.364 Área total (ha) 25.013.468 Beneficio mínimo regularizado (RS) 306.440.940 VPL Total (R\$) <u>FEIJÃO</u> Outorga máx. Renda Fixa Nível de %Q7,10 total %Q7,10 incr. VPL (R\$) PC Area (ha) % Falha (m3/s)(R\$) (R\$) Outorga 1 1,116 180 180 1.116 5,4 21,3 2.075.974 170,748 0 180 6 385 844 525 233 3,434 100 122 3.434 0 180 4,6 7,1 0,666 180 180 666 1.238.888 101.898 0 180 1.890 133 180 3.515.763 289,170 0 180 4 1,89 23,7 9.510.553 5,112 100 2.045 5.112 782.239 0 180 190 30,8 1,102 190 1.102 2.049.931 168.606 0 190 30 0,0 1.116.115 91.800 100 0,6 26 130 650 1.209.125 99.450 0 100 14.570 Área total (ha) Benefício mínimo regularizado (RS) 2,229,144 27.102.193 VPL Total (RS)

Figura 6.7 - Resultado da aplicação do critério do Seguro sobre as culturas de melancia e feijão.

	VALORES DE O	UTORGA PARA I	RRIGAÇÃO QUE N	IAXIMIZAM O	S BENEFICIO	S GLOBAIS DA B	ACIA DO RIO BI	RANCO	
			Crit	ério do SEC	GURO				
MILHO									
PC	Outorga máx. (m3/s)	%Q7,10 total	%Q7,10 incr.	Area (ha)	% Falha	VPL (R\$)	Renda Fixa (R\$)	Prêmio (R\$)	Nível de Outorga
1	0,744	120	120	744	0,0	1.800.581	148.097	0	120
2	2,289	67	81	2.289	1,7	5.628.247	462.921	0	120
3	0,407	110	110	407	0,0	958.938	78.839	33	110
4	1,155	81	110	1.155	0,0	2.862.264	235,420	0	110
5	3,344	66	1.338	3.344	2,8	7.276.824	597.279	1.237	120
7	0,696	120	120	696	5,0	1.567.120	128.895	0	120
9	0,8	40	40	800	1,3	1.927.732	158.204	351	110
10	0,85	34	170	850	3,8	1.981.822	163.004	0	110
	o regularizado (R\$)	<u> </u>	10.285 1.972.659 24.003.528						
eneficio minim	o regularizado (R\$))		1.972.659						·····
Beneficio minim VPL Total (RS) ABÓBORA	o regularizado (R\$)) Outorga máx.	[]	1.972.659 24.003.528	Assa (ha)	9/ Fall-a	VDI (D4)	Renda Fixa	Prêmio	Nível de
Seneficio minim VPL Total (RS) ABÓBORA PC	o regularizado (R\$) Outorga máx. (m3/s)	%Q7,10 total	1.972.659 24.003.528 24.003.528 %Q7,10 incr.	Area (ha)	% Falha	VPL (R\$)	(R\$)	(R.\$)	Outorga
Seneficio minim VPL Total (RS) ABÓBORA PC 1	o regularizado (R\$)) Outorga máx. (m3/s) 0,806	%Q7,10 total	1.972.659 24.003.528 24.003.528 %Q7,10 incr.	806	0,0	11.580.194	(R\$) 324.575	(R\$) 627.891	Outorga 130
Seneficio minim VPL Total (RS) ABÓBORA PC 1 2	Outorga máx. (m3/s) 0,806 2,48	%Q7,10 total 130 72	1.972.659 24.003.528 %Q7,10 incr. 130 88	806 2.480	0,0 3,8	11.580.194 35.621.478	(R\$) 324.575 998.414	(R\$) 627.891 1.931.437	Outorga 130 130
ABÓBORA PC 1 2 3	Outorga máx. (m3/s) 0,806 2,48 0,37	%Q7,10 total 130 72 100	1.972.659 24.003.528 %Q7,10 incr. 130 88 100	806 2.480 370	0,0 3,8 0,0	11.580.194 35.621.478 10.063.151	(R\$) 324.575 998.414 827.690	(R\$) 627.891 1.931.437 0	130 130 100
PC 1 2 3 4	Outorga máx. (m3/s) 0,806 2,48 0,37 1,05	%Q7,10 total 130 72 100 74	1.972.659 24.003.528 %Q7,10 incr. 130 88 100 100	806 2.480 370 1.050	0,0 3,8 0,0 0,0	11.580.194 35.621.478 10.063.151 28.557.591	(R\$) 324.575 998.414 827.690 2.348.850	(R\$) 627.891 1.931.437 0	130 130 130 100
ABÓBORA PC 1 2 3 4 5	Outorga máx. (m3/s) 0,806 2,48 0,37 1,05 3,639	%Q7,10 total 130 72 100 74 71	1.972.659 24.003.528 %Q7,10 incr. 130 88 100 100 1.456	806 2.480 370 1.050 3.639	0,0 3,8 0,0 0,0 4,9	11.580.194 35.621.478 10.063.151 28.557.591 90.487.005	(R\$) 324.575 998.414 827.690 2.348.850 6.801.663	(R\$) 627.891 1.931.437 0 4 0 640.855	130 130 130 100 100 130
ABÓBORA PC 1 2 3 4 5 7	Outorga máx. (m3/s) 0,806 2,48 0,37 1,05 3,639 0,87	%Q7,10 total 130 72 100 74 71 150	1.972.659 24.003.528 %Q7,10 incr. 130 88 100 100 1.456 150	806 2.480 370 1.050 3.639 870	0,0 3,8 0,0 0,0 4,9 13,3	11.580.194 35.621.478 10.063.151 28.557.591 90.487.005 10.613.951	(R\$) 324.575 998.414 827.690 2.348.850 6.801.663 126.939	(R\$) 627.891 1.931.437 0 640.855 746.054	Outorg: 130 130 100 100 130 150
ABÓBORA PC 1 2 3 4 5 7 9	Outorga máx. (m3/s) 0,806 2,48 0,37 1,05 3,639	%Q7,10 total 130 72 100 74 71	1.972.659 24.003.528 %Q7,10 incr. 130 88 100 100 1.456	806 2.480 370 1.050 3.639	0,0 3,8 0,0 0,0 4,9	11.580.194 35.621.478 10.063.151 28.557.591 90.487.005	(R\$) 324.575 998.414 827.690 2.348.850 6.801.663	(R\$) 627.891 1.931.437 0 4 0 640.855	130 130 130 100 100 130
ABÓBORA PC 1 2 3 4 5 7	Outorga máx. (m3/s) 0,806 2,48 0,37 1,05 3,639 0,87 0,6	%Q7,10 total 130 72 100 74 71 150 30	1.972.659 24.003.528 %Q7,10 incr. 130 88 100 100 1.456 150 30	806 2.480 370 1.050 3.639 870 600	0,0 3,8 0,0 0,0 4,9 13,3 0,0	11.580.194 35.621.478 10.063.151 28.557.591 90.487.005 10.613.951 16.318.623	(R\$) 324.575 998.414 827.690 2.348.850 6.801.663 126.939 1.342.200	(R\$) 627.891 1.931.437 0 4 0 640.855 746.054	Outorg 130 130 100 100 130 150
ABÓBORA PC 1 2 3 4 5 7 9 10	Outorga máx. (m3/s) 0,806 2,48 0,37 1,05 3,639 0,87 0,6 0,65	%Q7,10 total 130 72 100 74 71 150 30	1.972.659 24.003.528 %Q7,10 incr. 130 88 100 100 1.456 150 30	806 2.480 370 1.050 3.639 870 600	0,0 3,8 0,0 0,0 4,9 13,3 0,0	11.580.194 35.621.478 10.063.151 28.557.591 90.487.005 10.613.951 16.318.623	(R\$) 324.575 998.414 827.690 2.348.850 6.801.663 126.939 1.342.200	(R\$) 627.891 1.931.437 0 4 0 640.855 746.054	Outorgs 130 130 100 100 130 150 100
ABÓBORA PC 1 2 3 4 5 7 9 10 Area total (ha)	Outorga máx. (m3/s) 0,806 2,48 0,37 1,05 3,639 0,87 0,6 0,65	%Q7,10 total 130 72 100 74 71 150 30 26	1.972.659 24.003.528 %Q7,10 incr. 130 88 100 100 1.456 150 30 130	806 2.480 370 1.050 3.639 870 600	0,0 3,8 0,0 0,0 4,9 13,3 0,0	11.580.194 35.621.478 10.063.151 28.557.591 90.487.005 10.613.951 16.318.623	(R\$) 324.575 998.414 827.690 2.348.850 6.801.663 126.939 1.342.200	(R\$) 627.891 1.931.437 0 4 0 640.855 746.054	Outorgs 130 130 100 100 130 150 100

Figura 6.8 - Resultado da aplicação do critério do Seguro sobre as culturas de milho e abóbora.

As figuras 6.11 a 6.14 resumem em forma de gráfico de barras os níveis de rendimento globais que podem ser obtidos com a aplicação desta metodologia. Para efeito de comparação são apresentados os níveis atuais de rendimentos financeiro na bacia.

Os rendimentos atuais foram calculados com base nas áreas de lavoura hora ocupadas: 10.586 ha (Silva, 1996). Para estes cálculos foram adotados os mesmos procedimentos até então praticados nesta pesquisa.

Nestas figuras, praticamente, em todas as situações os níveis de rendimento financeiro obtidos são superiores aos atuais. Na verdade trata-se de uma conclusão um tanto óbvia uma vez que diversas áreas de plantio sugeridas pelo estudo são maiores que as atuais. O importante é saber o quanto crescer estas áreas, de forma equalizada e respeitando o atendimento às prioridades superiores.

Observam-se alguns casos onde sinaliza-se para uma redução de área plantada da ordem de 1.750 ha. Apesar disto, os benefícios regularizados e VPL's são, em sua maioria, superiores aos atuais. Poderia-se perguntar: "Como uma área total plantada de 10.586 ha dá menos retorno financeiro que uma de 8.822 ha para uma mesma cultura na mesma bacia ?". A resposta está na *forma* com que as outorgas estão distribuídas atualmente a qual peca pela falta de uma abordagem sistêmica, econômica e ambiental mais completa.

Existem também os casos onde a redução da área plantada é tal que os rendimentos financeiros são minorados, como no cultivo da abóbora pelo critério do *risco mínimo*.

O presente estudo, portanto, "corrige" algumas distorções no que tange aos valores praticados de outorga para irrigação, geração hidroelétrica e garantia da manutenção das demandas prioritárias: abastecimento humano, animal e vazão ecológica.

As figuras 6.11 e 6.12 reportam-se à comparação dos VPL's totais obtidos atualmente com cada critério testado na pesquisa, todos separados por cultivo.

		Critéri	o do RISCO M	ÍNIMO				
<u>MELANCIA</u>		1					>7' 1 1	Desvio
PC	Outorga máx. (m3/s)	%07,10 total	%Q7,10 incr.	Area (ha)	% Falha	Beneficio Regularizado (R\$)	Nível de Outorga	Padrão (R\$
1	0,992	160	160	992	1.7	1.772.704	160	0
2	2.861	83	102	2.861	10,0	4.771.341	150	0
3	0,592	160	160	592	1,7	1.057.904	160	0
4	1,68	118	160	1.680	3,3	3.002.160	160	0
5	4,523	89	1.809	4.523	15,1	8.083.164	160	0
7	0,754	130	130	754	7,9	1.347.398	130	1 0
9	0,6	30	30	600	0,0	1.072.200	100	0
10	0,65	26	130	650	1.7	1.161.550	100	0
FEIJÃO								
ILIOITO	Outorga máx.	1				Beneficio	Nível de	Desvio
PC	(m3/s)	%Q7,10 total	%Q7,10 incr.	Area (ha)	% Falha	Regularizado (R\$)	Outorga	Padrão (R\$
1	1,116	180	180	1.116	5,4	170.748	180	0
2	3,434	100	122	3.434	21,3	525.233	180	0
3	0,666	180	180	666	4,6	101.898	180	0
4	1,89	133	180	1.890	7,1	289.170	180	0
5	5,112	100	2.045	5.112	23,7	782.239	180	0
	1,102	190	190	1.102	30,8	168.606	190	0
7			30	600	0,0	91.800	100	
7 9	0,6	30						0
7	0,6 0,65	26	130	650	1,7	99.450	100	0

Figura 6.9 - Resultado da aplicação do critério do Risco Mínimo sobre as culturas de melancia e feijão.

		Critério	o do RISCO M	IİNIMO				
<u>MILHO</u>								
РC	Outorg a máx. (m3/s)	%Q7,10 total	%Q7,10 incr.	Area (ha)	% Falha	Beneficio Regularizado (R\$)	Nível de Outorga	Desvio Padrão (RS
1	0,62	100	100	620	0,0	119.970	100	0
2	1,907	56	68	1.907	0,4	369.036	100	0
3	0,37	100	100	370	0,0	74.841	100	0
4	1,05	74	100	1.050	0,0	203,446	100	0
5	2,755	54	1.102	2.755	0,0	536.026	100	0
7	0,696	120	120	696	2,5	126.083	110	0
9	0,6	30	30	600	0,0	119.196	100	0
10	0,65	26	130	650	1,7	129,128	100	0
Área total (ha) Benefício anual re VPL Total (R\$)	egularizado (R\$)	E	8.648 1.677.726 20.397.988]				
Benefício anual re			1.677.726					
Beneficio anual re VPL Total (RS) <u>ABÓBORA</u>	Outorg a máx.]	1.677.726 20.397.988			Beneficio	Nível de	Desvio
Beneficio anual re VPL Total (R\$) ABÓBORA PC	Outorg a máx. (m3/s)	%Q7,10 total	1.677.726 20.397.988 %Q7,10 incr.	Area (ha)	% Falha	Regularizado (R\$)	Outorga	Padrão (R
Beneficio anual re VPL Total (R\$) ABÓBORA PC 1	Outorg a máx. (m3/s) 0,62	100	1.677.726 20.397.988 %Q7,10 incr.	620	0,0	Regularizado (R\$) 671.308	Outorga 100	Padrão (R. 122.920
Beneficio anual re VPL Total (R\$) ABÓBORA PC 1 2	Outorg a máx. (m3/s) 0,62 1,907	100 56	1.677.726 20.397.988 %Q7,10 incr. 100 68	620 1.907	0,0 0,4	Regularizado (R\$) 671.308 4.266.324	Outorga 100 100	Padrão (R: 122.920 0
Beneficio anual re VPL Total (RS) ABÓBORA PC 1 2 3	Outorg a máx. (m3/s) 0,62 1,907 0,37	100 56 100	1.677.726 20.397.988 %Q7,10 incr. 100 68 100	620 1.907 370	0,0 0,4 0,0	Regularizado (R\$) 671.308 4.266.324 827.690	Outorga 100 100 100	Padrão (R. 122.920 0 0
Beneficio anual re VPL Total (R\$) ABÓBORA PC 1 2 3 4	Outorg a máx. (m3/s) 0,62 1,907 0,37 1,05	100 56 100 74	1.677.726 20.397.988 %Q7,10 incr. 100 68 100	620 1.907 370 1.050	0,0 0,4 0,0 0,0	Regularizado (R\$) 671.308 4.266.324 827.690 2.348.850	Outorga 100 100 100 100	Padrão (R.S. 122.920 0 0 0 0
Beneficio anual revVPL Total (R\$) ABÓBORA PC 1 2 3 4 5	Outorg a máx. (m3/s) 0,62 1,907 0,37 1,05 2,755	100 56 100 74 54	1.677.726 20.397.988 %Q7,10 incr. 100 68 100 100	620 1.907 370 1.050 2.755	0,0 0,4 0,0 0,0 0,0	Regularizado (R\$) 671.308 4.266.324 827.690 2.348.850 6.156.889	Outorg a 100 100 100 100 100 100	Padrão (R. 122.920 0 0 0 0 0 0
Beneficio anual revVPL Total (R\$) ABÓBORA PC 1 2 3 4 5 7	Outorg a máx. (m3/s) 0,62 1,907 0,37 1,05 2,755 0,58	100 56 100 74 54 100	1.677.726 20.397.988 %Q7,10 incr. 100 68 100 1.102 100	620 1.907 370 1.050 2.755 580	0,0 0,4 0,0 0,0 0,0 0,0	Regularizado (R\$) 671.308 4.266.324 827.690 2.348.850 6.156.889 497.498	Outorg a 100 100 100 100 100 100 100	Padrão (R.S. 122.920 0 0 0 0 0 121.611
Beneficio anual re VPL Total (R\$) ABÓBORA PC 1 2 3 4 5	Outorg a máx. (m3/s) 0,62 1,907 0,37 1,05 2,755	100 56 100 74 54	1.677.726 20.397.988 %Q7,10 incr. 100 68 100 100	620 1.907 370 1.050 2.755	0,0 0,4 0,0 0,0 0,0	Regularizado (R\$) 671.308 4.266.324 827.690 2.348.850 6.156.889	Outorg a 100 100 100 100 100 100	Padrão (I 122.920 0 0 0 0

Figura 6.10 - Resultado da aplicação do critério do Risco Mínimo sobre as culturas de milho e abóbora.

As figuras 6.13 e 6.14 referem-se à comparação dos benefícios financeiros regularizados ou garantidos anualmente a partir de cada critério. É curioso observar o valor regularizado pelo seguro para o cultivo da abóbora na figura 6.14. Ele é nitidamente inferior inclusive ao critério do risco mínimo. A princípio poderia parecer um contra senso, mas trata-se do benefício mínimo que o seguro garante. Em diversos momentos da análise econômica feita por este critério, valores maiores de benefícios são obtidos pelo irrigante. Isto pode ser verificado com a observação da figura 6.12, cultura abóbora, onde o valor presente dos benefícios financeiros líquidos (VPL) do seguro é maior que o do risco mínimo, eliminando a dúvida.

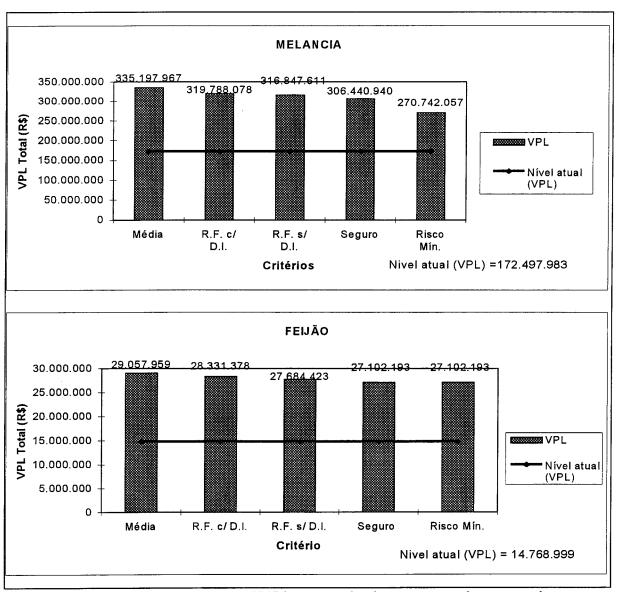


Figura 6.11 - Comparação entre os VPL's totais obtidos com a melancia e o feijão.

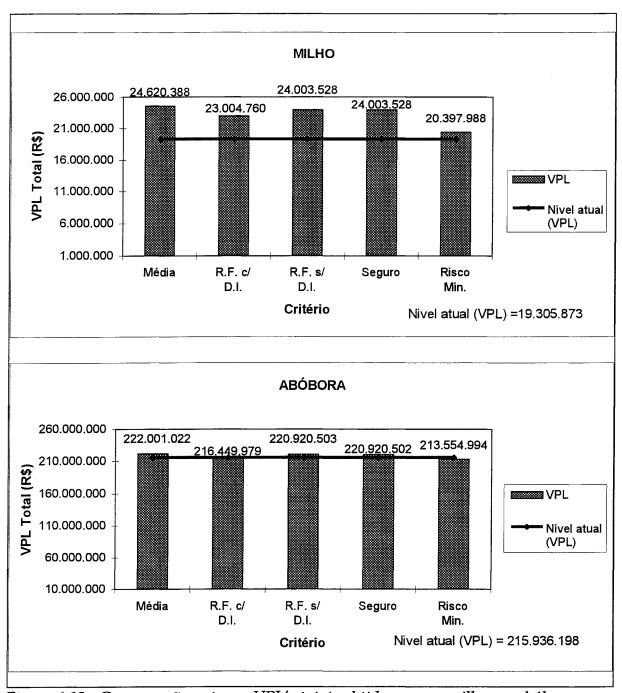


Figura 6.12 - Comparação entre os VPL's totais obtidos com o milho e a abóbora.

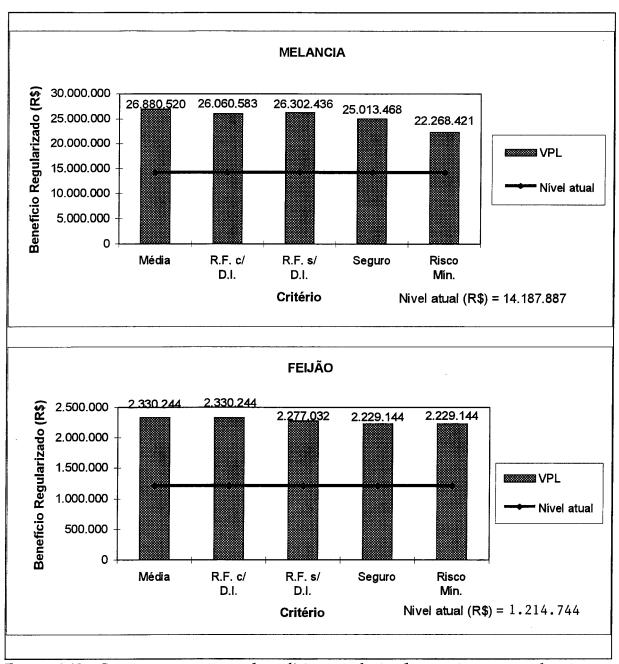


Figura 6.13 - Comparação entre os benefícios regularizados totais com a melancia e o feijão.

6.1 Avaliação das incertezas

Um ponto que deve ser levantado com propriedade nesta pesquisa refere-se à confiabilidade destes resultados.

Como foi colocado nos capítulos 4 e 5, tornou-se necessária a determinação de diversos custos, preços de mercado e taxas de descontos. Ao longo desta pesquisa alguns valores de custos experimentaram variações de até 25%, na região. Optou-se, portanto, pelos valores médios que os mesmos apresentaram. Certamente, isto configura-se um quadro de possíveis flutuações nos resultados, porém, da maneira com que foram conduzidos os cálculos este fator não interfere na proporcionalidade existente entre estes. Se houve situações de aumento de 91,8 % nos rendimentos líquidos ou redução de 1,1%, estes números serão mantidos nesta ordem de grandeza caso se experimentem os outros valores de custo possíveis.

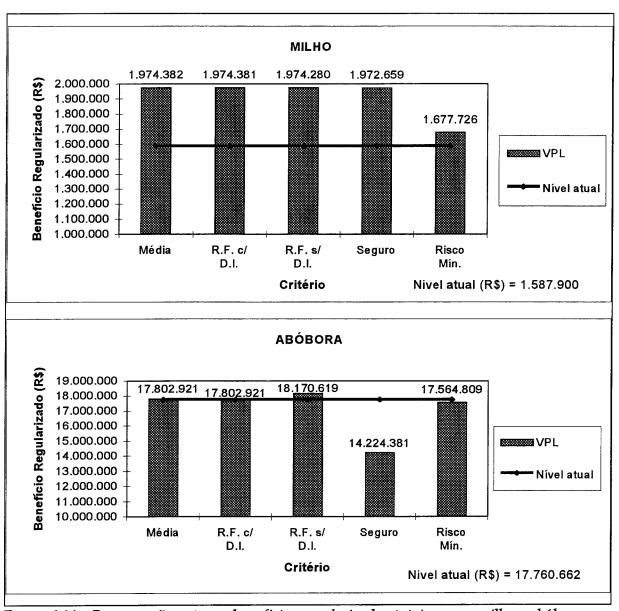


Figura 6.14 - Comparação entre os benefícios regularizados totais com o milho e abóbora.

Capítulo 7

Comentários

7. COMENTÁRIOS

7.1 Influência da cobertura do solo na infiltração

Um aspecto importante neste trabalho é que novas áreas irrigadas pressupõem novos desmatamentos os quais afetam diretamente a infiltração de água no solo. As áreas desmatadas que não são destinadas à agricultura irrigada, servem a uma prática comum entre alguns irrigantes da região: a criação de gado em pastagens para aproveitamento integrado dos estercos e dos restos das colheitas. Nesse caso, o aqüífero Urucuia, que mantém as vazões de base dos rios na época de seca e é recerregado na própria área da bacia na estação das chuvas, sofre com a mudança de cobertura do solo (cerrado para cultivo e áreas devolutas). Isso certamente interfere nos processos de recarga, podendo causar secas mais severas e, possivelmente, enchentes mais proeminentes.

Portanto, o aumento das outorgas com a implantação dessa metodologia deverá estar condicionado a este fato e, principalmente, a futuros estudos sobre estas influências, sob pena do sistema entrar em colapso uma vez que as falhas de fornecimento serão, a princípio, imprevisíveis.

A presente pesquisa se restringiu, portanto, à discussão desse problema uma vez que a quantificação dessas interferências envolve uma equipe multidisciplinar num estudo mais amplo e com um aprofundamento muito maior.

Além das propriedades de cada tipo de solo, a intensidade da chuva e do estado inicial de umidade, a cobertura do solo tem papel importante no controle ou condicionamento da taxa de infiltração de água no solo.

Como dito, o sistema aqüífero Urucuia é que mantém vazões de base significativas nas estiagens. Os novos usos que estão sendo dados aos solos da bacia vêm comprometendo a recarga. Os desmatamentos não impedem que a chuva caia diretamente sobre o solo. Na ausência da vegetação, para atenuar o impacto das

gotas de chuva, ocorre o fenômeno de *selagem* da superfície do solo, diminuindo, assim, a infiltração, favorecendo o escoamento superficial.

A condição inicial da superfície (cultivo, grama, mata ou solo nu) tem grande influência neste fato. Segundo Skaggs (1979), o selamento e encrustamento da superfície tem significativo, talvez dominante, efeito sobre a infiltração em solos descobertos ou desprotegidos, com especial atenção para culturas plantadas em linha (possuem partes descobertas), principalmente na época de plantio e estação de crescimento.

Paralelamente, ocorre um outro processo: a erosão hídrica. O impacto da chuva sobre o solo dá, também, início ao fenômeno da degradação devido à grande quantidade de energia cinética que existe na mesma. Após a saturação, muitas vezes mais rápida que a de um solo protegido, o transporte das partículas desagregadas começa a ocorrer.

A figura 7.1 esboça a relação entre a cobertura do solo e a erosão relativa do mesmo.

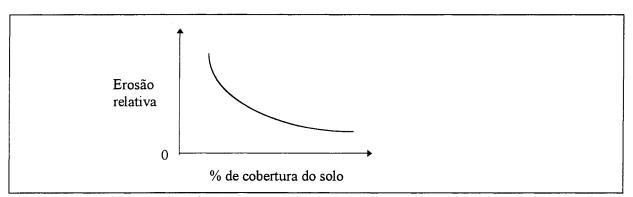


Figura 7.1 - Cobertura do solo vs. erosão relativa.

Uma cultura que fornece uma maior cobertura dos solo o protege melhor da erosão. A tabela 7.1 mostra o efeito do tipo de cultura sobre a erosão do solo.

Tabela 7.1 - Efeito da cultura sobre a erosão do solo.

Tipo de cultura	Perdas	s anuais
	Solo (t/ha)	Água (% chuva)
Floresta	0,004	0,7
Pastagem	0,4	0,7
Cafezal	0,9	1,1
Algodão	26,6	7,2

Fonte: Cogo (1996).

O manejo do solo aumenta também a erosão, pois desagrega o mesmo e diminui a rugosidade superficial.

Outro fator, não menos importante, é o manejo dos restos das culturas. Segundo Cogo (1996), a resteva da cultura pode ter diferentes fins: deixada na superfície (plantio direto), queimada ou enterrada. A tabela 7.2 mostra o efeito desses manejos sobre a erosão do solo.

Tabela 7.2 - Efeito do manejo dos resíduos sobre a erosão do solo.

Tipo de manejo do resíduo	Perda	s anuais
	Solo (t/ha)	Água (% chuva)
Palha queimada	20	8
Palha enterrada	14	6
Palha na superfície	6	2

Fonte: Cogo (1996).

Enfim, todos esses aspectos levantados, além de outros não citados, mas não menos importantes, devem ser considerados nos planos de ocupação e exploração da região em estudo, aliás, de qualquer região.

Os índices de utilização otimizada do uso dos recursos hídricos superficiais da bacia do Rio Branco, apontados por esta pesquisa, podem, caso adotados, comprometer seriamente a bacia se diversos cuidados não forem adotados pelos órgãos competentes e até pelos próprios irrigantes.

Devem ser cobrados dos proprietários de terras usuários de água para irrigação, práticas que minimizem o desgaste do solo: rotação de culturas, adubação verde (matéria orgânica), plantio direto, sistemas mais eficientes de irrigação, uso de sensores de umidade do solo, terraceamento, proteção do leito dos rios etc.

O comprometimento dos índices, dito acima, reporta-se ao fato de que é de crucial importância manter a recarga do aqüífero Urucuia através da manutenção das taxas atuais de infiltração do solo. Caso não seja cumprida tal determinação (necessidade), a rede de drenagem e as diversas captações correm sério risco de entrar em colapso, uma vez que os leitos não terão as vazões para as quais as demandas foram projetadas. É desnecessário lembrar que a biota também estará ameaçada.

7.4 Irrigar ou não irrigar?

Dorfman (1991) cita que o que impede uma maior popularização da irrigação no país é a inexistência de uma política de irrigação clara e objetiva, preços mínimos dos produtos, créditos adequados e que os projetos devam passar necessariamente por análises econômicas e financeiras. A isto pode-se acrescentar a importação de grãos (queda nos preços) e a atual dificuldade de obtenção de crédito agrícola, os quais respondem diretamente pelos 40% dos pivôs que atualmente estão fora de operação na região oeste do Estado da Bahia.

O mesmo autor lembra que estes projetos são, muitas vezes, dependentes de uma loteria climática. As previsões hidrológicas, a flutuação dos preços de mercado e as funções de produção dos cultivos com a água impõe dificuldades às avaliações financeiras do projeto requerendo, assim, estudos mais sofisticados e caros.

A presente pesquisa também experimentou estas dificuldades tornando-se, muitas vezes, penoso o levantamento de dados econômicos mais definitivos e confiáveis. A verdade é que, atualmente, a agricultura passa por momentos de instabilidade e descrédito.

7.5 Ocupação da Região Oeste da Bahia

CAR (1993) diz que a ocupação econômica do Oeste não incorporou, em seus primeiros momentos, a variável ambiental e que está longe de se ter um controle efetivo. O que há é uma prioridade no caráter econômico do uso dos recursos naturais, baseando-se em critérios de rentabilidade privada dos investimento.

As transformações foram bruscas, gerando inclusive conflitos sociais com a expulsão de pequenos proprietários e posseiros de áreas rurais. A isto se adicionou a redução do uso da mão-de-obra permanente e sazonal em decorrência das lavouras irrigadas. Estas propiciam alta produtividade, estabilidade de produção, alta qualidade dos produtos e média de 2,5 cultivos por ano.

O mapeamento da região, via imagens de satélite, registrou uma exponencial evolução no uso do sistema pivô-central, passando de 10 unidades em 1987 para 376 em 1993.

Atualmente, em toda região Oeste existem pouco mais de 40.000 ha cultivados com sistema pivô-central. As estimativas da CAR (1993) sinalizam que os mananciais existentes podem atingir 96.000 ha irrigados.

Capítulo 8

Conclusões e Recomendações

8. CONCLUSÕES E RECOMENDAÇÕES

Conclusões

Com a aplicação da metodologia proposta nesta pesquisa foi possível chegar aos índices otimizadores de utilização racional dos recursos hídricos na Bacia do Rio Branco.

Os resultados apresentados no capítulo 6 representam a máxima utilização "permitida" desse recurso para a irrigação e geração hidrelétrica. Mais que isto, quando for atingido este grau de utilização os benefícios financeiros globais da bacia serão os mais relevantes possíveis, pelo menos em tese (!). Neste instante as demandas prioritárias (abastecimento humano/animal e vazão ambiental) serão mantidas nos níveis expostos no item 4.1.

A abordagem realizada no estudo (atendimento às demandas em níveis decrescentes de prioridades) revelou-se importante na medida que impôs limites aos valores outorgáveis. A possibilidade de restringir determinado(s) uso(s) em favor de outro(s) mais nobres, quantificando-se todas as etapas, mostrou-se um instrumento de análise poderoso, pois permitiu perceber o quanto a bacia é susceptível a falhas originadas a partir de certas decisões operacionais.

Ao considerar critérios econômicos percebeu-se uma redução maior ainda dos tetos outorgáveis. O que ocorre é que os limites obtidos apenas com a abordagem em níveis decrescentes de prioridades (citado acima), encerram altos índices de falhas de fornecimento de água às prioridades inferiores. Isto tem grande repercussão nas produtividades das culturas e geração de energia e, conseqüentemente, nos retornos financeiros que se localizam nestas prioridades.

Para várias culturas em diversos pontos da bacia observou-se que é possível outorgar valores maiores de cotas hídricas para irrigação que os atualmente praticados. Porém, em outras situações sugeriu-se redução das mesmas. A

depender dos critérios utilizados, da cultura em análise e do PC, é possível outorgar até 190% da vazão referencial $Q_{7,10}$ total para irrigação. Em outros, este valor não passa de 26% $Q_{7,10}$ total. Houve situações onde o aumento dos rendimentos líquidos chegou a, aproximadamente, 92%. Já em outras, redução de 1% foi recomendada.

Com isso, verifica-se um cenário diferente do proposto pelo Órgão Gestor dos Recursos Hídricos do Estado da Bahia (Superintendência de Recursos Hídricos - SRH) que estabelece que todas as abstrações hídricas para irrigação não podem ser superiores a 80%Q_{7,10} para toda bacia, ou melhor, para todo Estado. A presente pesquisa mostrou que este critério fica aquém das reais potencialidades de alguns PC's, uma vez que nestes admitem-se índices maiores de outorga. Ao mesmo tempo 80%Q_{7,10} é um índice muito "exigente", causando problemas de escassez aos PC's que têm autorização do Estado para captá-lo.

Pelo teor desta pesquisa o critério adotado pelo Estado da Bahia revela-se pouco aderente às variações das disponibilidades hídricas e da própria sazonalidade das mesmas nos diversos pontos da bacia. Por outro lado, é de fácil determinação e fiscalização, uma vez que as cotas hídricas outorgadas serão únicas ao longo do tempo.

Esta pesquisa propõe, portanto, um *Esquema de Outorga Sazonal* onde ocorre o uso *flexível* dos recursos hídricos com abstrações coerentes com as disponibilidades sazonais. As áreas de lavoura, por conseguinte, se comportam de forma *elástica* aumentando e diminuindo ao longo do tempo de acordo com a oferta natural de água.

Conclui-se que o esquema proposto, independente do critério adotado, "corrige" algumas distorções hoje existentes na bacia, fazendo com que os retornos financeiros globais sejam maximizados e ainda assim garantidos os fornecimentos às demandas prioritárias, mitigando os conflitos, desperdícios e impactos ambientais.

Recomendações

É recomendada uma certa cautela no que tange à aceitação dos valores monetários expostos. Como dito no item 6.1 ocorreram variações de até 25% nos custos de alguns itens. Os resultados encontrados podem não ser exatamente compatíveis com a realidade, em vista dessas flutuações, mas certamente guardam proporcionalidade entre si. Porém, isto não compromete os valores de outorga e de áreas sugeridos.

A utilização dos critérios *Renda Fixa com Depósito Inicial, Renda Fixa sem Depósito Inicial e Seguro,* são altamente dependentes da seqüência cronológica dos fluxos financeiros. Para contornar esta limitação recomenda-se a geração de um grande número de séries estocásticas sintéticas com as mesmas características estatísticas dos fluxos econômicos originais. É possível que este procedimento aumente o alcance da análise na medida que testará os muitos outros fluxos igualmente possíveis. Isto trará a chance de associar níveis de confiança às rendas fixas, e VPL's obtidas.

A grande limitação da aplicação prática dos resultados desta pesquisa é a fiscalização dos pontos de captação. Controlar sazonalmente as vazões que são derivadas em todos os pontos da bacia exige um efetivo numeroso e instrumentos fortes de sanção, além de uma consciência sistêmica dos irrigantes.

Uma forma de aprimorar esta fiscalização é através da implantação de *Réguas Vermelhas*. Trata-se de réguas limnimétricas posicionadas no exutório da bacia onde são monitorados os níveis de vazão. A idéia é que enquanto a cota estiver acima de determinado valor todas as prioridades podem ser atendidas integralmente. Abaixo desta cota, mas acima de outra também predeterminada, varia-se linearmente o fornecimento, de 0 a 100%, à última prioridade. Abaixo desta segunda cota zera-se o atendimento à última prioridade e entra-se no escalonamento de fornecimento (0 a 100%) da penúltima e assim por diante. Nestes instantes reduz-se ou proíbe-se a captação de água para estas prioridades em favor das superiores.

Estas réguas funcionariam como sensores de utilização de água. No instante que o nível d'água atingisse determinada cota seria dado um alerta a toda a bacia de que o consumo não estaria compatível com as disponibilidades correntes, obrigando a uma ou mais demandas reduzirem ou até anularem suas derivações.

Devem ser cobrados dos irrigantes práticas conservacionistas que minimizem o desgaste do solo: rotação de culturas, adubação verde (matéria orgânica), plantio direto, sistemas mais eficientes de irrigação, uso de sensores de umidade do solo, terraceamento, proteção do leito dos rios etc., com o fim de proteger o meio ambiente e garantir a recarga dos sistemas aquíferos.

O aumento das áreas de plantio sugerido pelo estudo deverá estar condicionados a estas exigências e, principalmente, a estudos sobre suas influências, sob pena do sistema entrar em colapso uma vez que as falhas de fornecimento estarão, a princípio, fora de controle. A quantificação destas interferências envolve uma equipe multidisciplinar num estudo mais amplo e que poderia constar nos Planos Diretores de Recursos Hídricos promovidos pelo Estado.

Referências Bibliográficas

REFERÊNCIAS BIBLIOGRÁFICAS

- AIBA ASSOCIAÇÃO DOS IRRIGANTES DO OESTE DA BAHIA, 1991. Levantamento dos recursos hídricos da bacia do Rio Grande.
- Almeida, J. P. de. 1993. Estimativa de déficits e excessos hídricos em regiões de clima úmido através de diferentes modelos de balanço hídrico. Porto Alegre: UFRGS- Curso de Pós-Graduação em Recursos Hídricos e Saneamento. 212p. Diss.Mestr.Engenharia Civil.
- Bernardo, S., 1989. <u>Manual de Irrigação</u>. Universidade Federal de Viçosa. Viçosa. 5ª edição.
- Brasil. 1988. <u>Constituição da República Federativa do Brasil.</u> Salvador: Empresa gráfica da Bahia, 292p.
- Campelo, M. S. C., 1993. O gerenciamento dos recursos hídricos em bacias hidrográficas do Nordeste Semi-Árido Um desafio. In: X Simpósio Brasileiro de Recursos Hídricos, Gramado. ABRH. p 91-97.
- CAR, 1993. <u>Política de Desenvolvimento Regional para a Região Oeste da Bahia</u>. Série dernos da CAR, 1. Companhia de Desenvolvimento e Ação Regional; Secretaria do Planejamento, Ciência e Tecnologia: Governo do Estado da Bahia.
- Carneiro, R. A. F., 1993. O Oeste Baiano e a Dinâmica Agroindustrial. Salvador. Rev. BAHIA: ANÄLISE&DADOS, v.3, n.3, p. 48-50.
- Chaves, E. M. B., 1993. Propostas para o Planejamento do Rio Mosquito no Norte de Minas Gerais. Porto Alegre: UFRGS-Curso de Pós-Graduação em Recursos Hídricos e Saneamento. 212p. Diss.Mestr.Engenharia Civil.
- CODEVASF COMPANHIA DE DESENVOLVIMENTO DO VALE DO SÃO FRANCISCO, 1991. <u>Inventário dos Projetos de Irrigação</u> 2 ed. rev. e atual Brasília, 166p XX.
- CBH-PCJ: COMITÊ DAS BACIAS HIDROGRÁFICAS DOS RIOS PIRACICABA, CAPIVARI E JUNDIAÍ. 1996. <u>Implantação Resultados e</u> Perspectivas. Campinas: Arte Brasil. 76p.
- Conejo, J. G. L., 1993. A outorga de uso da água como instrumento de gerenciamento dos recursos hídrico. Revista de Administração Pública, 27(2), pag. 28-62. Rio de Janeiro.
- CRH COORDENAÇÃO DE RECURSOS HÍDRICOS, 1992. Relatório de Campo.
- Doorembos, J. E A. H. Kassan 1979. <u>Efectos del Agua sobre el rendimiento de los cultivos</u>. Estudio FAO: Riego y Drenaje, nº 33.

- Cunha C., Nascimento, D. Ma. C., 1993. <u>Resolução do CEPRAM</u>. Salvador. Rev. BAHIA: ANÄLISE&DADOS, v.3, n.3, p. 92-98.
- Derschum, M. W., 1996. [Comunicação verbal]. Gerente Regional do Centro de Recursos Ambientais (CRA) da Secretaria do Planejamento Ciência e Tecnologia do Estado da Bahia.
- Doorenbos, J., Kassam, A. H., 1979. <u>Yield response to water.</u> Rome: FAO. 193p. (FAO. Irrigation and Drainage Paper, 33)
- Dorfman, R. 1989. <u>Hidrologia Agrícola Problemas e soluções</u>. IPH/UFRCS. Porto Alegre.
- Dorfman, R. 1991. <u>Irrigar ou não: Eis a Questão!</u> In: IX CONIRD. Congresso Nacional de Irrigação e Drenagem. Anais. Vol.2 p. 1791-1810.
- EMATER-RS, 1992. <u>Programa Estadual de Microbacias Hidrográficas</u>. Governo do Estado do Rio Grande do Sul. Sec. da Agricultura a Abastecimento.
- FAO, 1968. <u>Irrigation Water Needs</u>. Rome. (Irrigation Water Management Training Manual 3).
- Ganem, N. 1987. A Irrigação e a Lei. Brasília: Editerra Editorial Ltda, 176p.
- Garrido, R. J. dos S. <u>A escassez dos recursos hídricos</u>. Revista Análise & Dados, vol. 1, nº 1, junho de 1991. Salvador.
- Goedert. W. J., 1983. <u>Management of the cerrado soils of Brazil: a Review.</u> Journal of Soil Science. p.405-528.
- Granzieira, M. L. M., 1993. <u>Direito de Águas e Meio Ambiente</u>. São Paulo: Ícones, Editoras. 136p.
- Hiez, G. L. G. Rancan, L. 1983. Aplicação do Método do Vetor Regional no Brasil. In: Simpósio Brasileiro de Hidrologia e Recursos Hídricos, V, 1983, Blumenau. Anais, Blumenau: Associação Brasileira de Recursos Hídricos.
- HIMAT 1985. <u>Calculo Estadistico de Requerimientos de Agua de Riego</u> Memoria de Utilizacion. Instituto Colombiano de Hidrologia, Meteorologia y Adequacion de Tierras. Bogotá.
- HYDROS, 1993. <u>Plano Estadual de Irrigação</u>.Bahia. Secretaria da Agricultura, Irrigação e Reforma Agrária.CIR. Salvador. HYDROS Engennharia e Planejamento Ltda. 120p.
- Kreling, J. A., 1996. [Comunicação verbal]. Diretor Técnico da AGROPAR Agropecuária Parizotto S.A.. Barreiras Bahia.

- Lacorte, A., Damázio, J. M., Costa, F. da S., 1993. <u>Cenário-Base de Irrigação para utilização no Inventário Hidroelétrico do Sub-Médio São Francisco.</u> In: X Simpósio Brasileiro de Recursos Hídricos, Gramado. ABRH. p 377-382.
- Lanna, A. E., 1995. <u>SAGBAH</u>, <u>Sistema de Apoio ao Gerenciamento de Bacias Hidrográficas</u>, versão 2. IPH / UFRGS, Porto Alegre.
- Lanna, A. E., 1995. Quantificação de Custos e Benefícios sob o ponto de vista Social Aspectos Práticos. Apostila da Disciplina HIDP04 Economia dos Recursos Hídricos e do Ambiente do Pós-Graduação em Recursos Hídricos e Saneamento da UFRGS. Porto Alegre.
- Lanna, A. E., Almeida, J. P. de, 1995. <u>Estimativa de necessidade de irrigação por balanço hídrico diário, Programa Balhidro</u> Manual do usuário, versão 2. IPH / UFRGS. 37p.
- Lanna, A. E., Schwarzbach, M., 1989. Modelo Hidrológico Autocalibrável Manual do Usuário. Recursos Hídricos 21. Porto Alegre: Instituto de Pesquisas Hidráulicas/UFRGS.
- Lôu, W.C.; SILVA, A. T., 1987. <u>Seminário em tecnologia de irrigação</u>. Universidade Federal de Alagoas (UFAL) Dept^o de engenharia eletromecânica/CTEC. Maceió. Alagoas. 195pp.
- Luz, L. D. da, 1994. Análise de critérios simplificados para outorga dos direitos de uso da água na Bacia do Rio Grande, Bahia : uma análise multiobjetivo. Porto Alegre: UFRGS Curso de Pós-Graduação em Recursos Hídricos e Saneamento. 108p. Diss.Mestr.Engenharia Civil.
- Manual do Usuário da Água, 1992. Secretaria de Recursos Hídricos, Saneamento e Habitação do Estado da Bahia (SRHSH).
- Minhas, B. S.; Parikh, K. S. e Sirinivasam, T. N., 1974. Toward the Structure of a Production Fuction for Wheat Yields With Dated Inputs of Irrigation Water. Water Resources Reserch. v.10, n.3, jun, p.383-393.
- Modelos para gerenciamento de recursos hídricos / autores Flávio Terra Berth ... [et al.]. -- São Paulo : Nobel : ABRH, 1987. (Coleção ABRH de Recursos Hídricos).
- Mohamond, Y.; McCarty, T. R. e Ewing, L. K., 1992. Optimum Center-Pivot Irrigation System Design With Tillage Effects. Journal of Irrigation and Drainage Engineering. v118, n.2, mar/abr. p. 291-305.
- Molinas, P. A., 1996. A Gestão dos Recursos Hídricos no Semi-árido Nordestino: a experiência cearense. Revista Brasileira de Recursos Hídricos / Associação Brasileira de Recursos Hídricos. Vol. 1, n. 1. São Paulo, p. 67-88.

- Müller, A. C., 1995. <u>Hidroelétricas, Meio Ambiente e Desenvolvimento.</u> In: O Potenciel Hidroelétrico Brasileiro. São Paulo. Markon Books e McGraw Hill.
- Neto, J. P. S., 1996. [Comunicação verbal]. Eng^o Agrícola da JS Assessorio Agronômica. Barreiras Bahia.
- Oliveira, J. A. de, 1995. <u>Otimização da Operação de um Sistema de Reservatórios para Irrigação e Abastecimento Humano.</u> Porto Alegre: UFRGS-Curso de Pós-Graduação em Recursos Hídricos e Saneamento. 108p. Diss.Mestr.Engenharia Civil.
- Pedreira, M. da S., 1993. <u>Políticas Públicas e Desenvolvimento Agrícola nos</u> Cerrados. Salvador. Rev. BAHIA: ANÄLISE&DADOS, v.3, n.3, p. 58-60.
- Pereira, J. dos S., 1996a. <u>SAGBAH Sistema de Apoio ao Gerenciamento de Bacias Hidrográficas</u>. Programa PROP_SI5.FOR. Modificação do Propagar. versão 2. IPH/UFRGS, Porto Alegre.
- Pereira, J. dos S., 1996b. Análise de Critérios de Outorga e de Cobrança pelo Uso da Água na Bacia do Rio dos Sinos, RS. Porto Alegre: UFRGS Curso de Pós-Graduação em Recursos Hídricos e Saneamento. 109p. Diss.Mestr.Engenharia Civil.
- Pereira, J. dos S., 1996c. <u>Análise de Critérios de Outorga dos Direitos de Uso da Água.</u> In: Simpósio de Recursos Hídricos do Nordeste. III, Salvador, <u>Anais</u>, vol.1. ABRH. p. 335-342.
- Pereira, J. W. P. 1993. O Planejamento dos Recursos Hídricos e Desenvolvimento Regional do Estado da Bahia: o caso da Bacia Hidrográfica do Rio Grande. In: Simpósio Brasileiro de Recursos Hídricos. X, Gramado, Anais, vol.1, Gramado. ABRH. p. 119-128.
- Pires, C. L. F., 1996. <u>A Outorga de Uso na Gestão de Recursos Hídricos.</u> In: Simpósio de Recursos Hídricos do Nordeste. III, Salvador, <u>Anais</u>, vol.1. ABRH. p. 319-325.
- <u>Plano Estadual de Recursos Hídricos</u>. Lei nº 6.855 de 12.05.1995. Constituição do Estado da Bahia.
- <u>Política Estadual de Recursos Hídricos.</u> Lei nº 10.350 de 30.12.1994. Constituição do Estado do Rio Grande do Sul.
- Rhenals, A. E., Bras, R. L., 1981. <u>The Irrigation Scheduling Problem and Evapotranspiration Uncertain.</u> Water Resources Research, Washington, v. 17, n. 5, p. 1328-1338.
- Reichardt, K., 1987. A Água em Sistemas Agrícolas. 1ª ed. São paulo, Ed Manole, 188p.

- Silva, J. J. S. e, 1996. [Comunicação verbal]. Eng^o Agrônomo da Superintendência de Recursos Hídricos Barreiras da Secretaria de Recursos Hídricos Saneamento e Habitação do Estado da Bahia.
- <u>Sistema Integrado de Gerenciamento de Recursos Hídricos</u>. Lei nº 7.663 de 30.12.1991. Constituição do Estado de São Paulo.
- Soares, F. G., Melo, P. A. de, Tavora, F. S., Cavalcanti, A. R. T., Azevedo, J. R. G. de, e Junqueira, R. A. C., 1993. <u>Avaliação do Impacto dos Programas de Irrigação na oferta de energia elétrica da Região Nordeste</u>. In: Simpósio Brasileiro de Recursos Hídricos. X, Gramado, <u>Anais</u>, vol.1, Gramado. ABRH. p. 383-392.
- SRHSH / CRH, 1993. <u>Plano Diretor de Recursos Hídricos da Bacia do Rio Grande</u>. Governo do Estado da Bahia. Salvador.
- Wurbs, R. A. 1995. Water Rights in Texas. Journal of Water Resource Planning and Management. v.121, n. 6, p.447.
- Wurbs, R. A. e Walls, W. B., 1989. Water Rights Modeling and Analysis. Journal of Water Resources Planning and Management. v.115, n.4, p. 416-430.

LISTA DE ENDEREÇOS

Engo Agro. João Alfredo Kreling

Diretor Técnico da AGROPAR - Agropecuária Parizotto S.A.

Rua Rui Barbosa, 1161 - Barreiras - Bahia

Telefone: (073) 811-3491, Fax: (073) 811-1254

Engo Agrícola M.Sc. Joaquim Pedro S. Neto

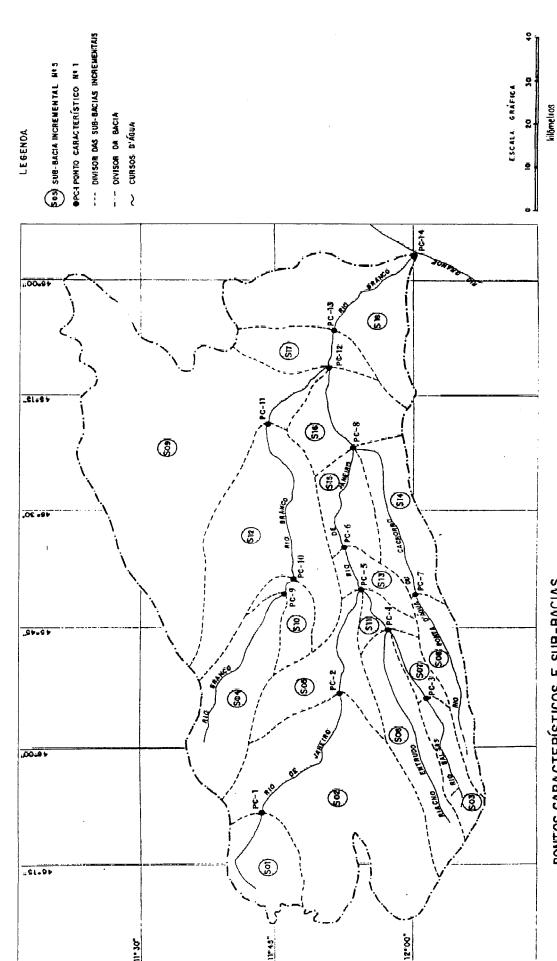
Engenheiro agrícola da JS Assessoria Agronômica

Praça Coronel Antônio Balbino, 145 - Barreiras - Bahia.

Telefax: (073) 811-1991.

Engo Agro. M.Sc. José Joaquim Santana e Silva

SRH - Superintendência de Recursos Hídricos - Barreiras

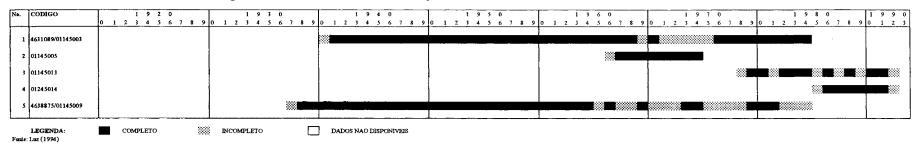

Av. Ahylon Macedo, 1500, prédio da EMBASA (Empresa Baiana de Saneamento) - Barreiras - Bahia.

Tel.: (073) 811-4813

Engo Maurício Werner Derschum

Gerente Regional do **CRA** - Centro de Recursos Ambientais (Barreiras - BA) Av. Barão de Cotegipe, 1129 - Vila Regina - Barreiras - Bahia Telefax: (073) 811-4280.

ANEXO

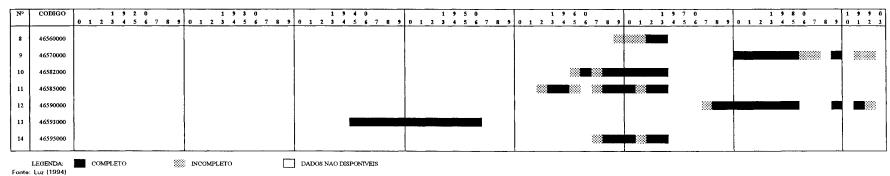

PONTOS CARACTERÍSTICOS E SUB-BACIAS (BACIA DO RIO BRANCO)

Relação dos postos pluviométricos

No.	CÓDIGO	NOME	MUNICIPIO	ENT.	LAT.	LONG.	ALT.(m)
1	01145003/4631089	CARIPARÉ	RIACHAO DAS NEVES	DNOCS	11o32'	45004'	505
2	O1145005	PTE.ACABA VIDA	BARREIRAS	DNAEE	11055'	45o25'	620
3	01145013	PTE.SERAFIM-MONT.	BARREIRAS	DNAEE	11045'	45039'	-
4	01245014	FAZENDA JOHA	BARREIRAS	DNAEE	12007'	45049'	726
5	01145009/4638875	FAZ.RIO DE JANEIRO	BARREIRAS	SUDENE	11055'	45o38'	721

Fonte: Luz (1994).

Diagrama de barras - Extensão das séries pluviométricas


Relação dos postos fluviométricos

N°	CODIGO	NOME DO POSTO	CURSO D'AGUA	AREA	ENT.	LAT.	LONG.
1	46560000	САМРАО	RIO BRANCO	2650	DNAEE	11o48'	45o13'
2	46570000	PTE.SERAFIM-MONTANTE	RIO DE JANEIRO	2040	DNAEE	11o55'	45 o 39'
3	46582000	PONTE ACABA VIDA	RIO DE JANEIRO	2000	DNAEE	11o54'	45o37'
4	46585000	FAZENDA BOA FE	RIO DE JANEIRO	2850	DNAEE	11051'	45o21'
5	46590000	NOVA VIDA-MONTANTE	RIO BRANCO	6630	DNAEE	11o52'	45o06'
6	46593000	CANTINHO	RIO BRANCO	7600	DNAEE	11 o 59'	44o58'
7	46595000	PTE.FORTALEZA BRASILIA	RIO BRANCO	7600	DNAEE	12000'	44o57'

Obs.: Areas em quilômetros quadrados

Fonte: Luz (1994)

Diagrama de barras - Extensão das séries fluviométricas

Valores de vazõe referenciais totais e incrementais por ponto característico Bacia do Rio Branco

				VAZ	DES CONSIDER	ANDO O TOTAL	DAS AREAS 'A		}	VAZÕES IN	CREMENTAIS I	INTRE SEÇÕES			
Ponto	Codigo/	Numero da	Area	Area da	Qmedia	80% Q7,10	Q7,10	Q95%	Q90%	Q85%	80% Q7,10	Q7,10	Q95%	Q90%	Q85%
Característico	observacoes	sub-bacia	incremen-	sub-bacia	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)
(PC)		afluente	tal (km2)	(montante)		<total></total>	<total></total>				<incr.></incr.>	<incr.></incr.>	<incr.></incr.>	<incr.></incr.>	<incr.></incr.>
1	127-GBJ	1	208	208	2,10	0,49	0,62	1,30	1,36	1,42	0,49	0,62	1,30	1,36	1,42
2	I28-GBJ	2	937	1145	9,39	2,74	3,43	5,80	6,46	6,92	2,25	2,81	4,50	5,10	5,50
3	I23-GBJB	3	125	125	1,34	0,30	0,37	0,77	0,85	0,91	0,30	0,37	0,77	0,85	0,91
4	126-GBJBE	7	84	475	4,33	1,14	1,42	2,77	3,10	3,44	0,84	1,05	2,00	2,25	2,53
	Confi. Entrudo/Balsas	6	266												
5	129-GBJ	5 e 11	215 e 101	1936	14,90	4,08	5,10	9,97	11,05	11,92	0,20	0,25	1,40	1,49	1,56
	I24-GBJ														1
	Confl. Balsas/Janeiro										1				
6	E-11	13	104	2040	14,95	4,51	5,64	11,02	11,92	12,60	0,40	0,50	-	-	
7	125-GBJBP	8	195	195	1,62	0,47	0,58	0,85	1,00	1,10	0,47	0,58	0,85	1,00	1,10
8	Confl. Pla.D'agua/Janeiro	15 e 14	450 e 487	3172	22,04	7,56	9,45	15,53	16,77	17,91	3,05	3,81	3,66	3,85	4,21
9	I30-GB	4	384	384	3,77	1,60	2,00	2,30	2,45	2,56	1,60	2,00	2,30	2,45	2,56
10	I31-GB	10	121	505	4,80	2,00	2,50	2,90	3,15	3,36	0,40	0,50	0,60	0,70	0,80
11	B-14	12	781	1286	13,65	5,47	6,84	8,18	9,22	9,93	3,47	4,34	-	-	-
12	E-12	9 e 16	1500 e389	6347	36,59	16,55	20,69	32,10	34,12	36,51	3,52	4,40		-	-
13	E-13	17	283	6630	38,02	17,24	21,56	33,19	35,28	37,40	0,70	0,87	-		-
14	Confl. Branco/Grande	18	1039	7669	43,21	19,77	24,71	35,89	38,49	40,75	2,52	3,15	2,70	3,21	3,35

Fonte: Luz (1994)

PC 1 - Beneficios Liquidos (R\$)

MELANCIA

						Nivel de Ou	torga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1971	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1972	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1973	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1974	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1975	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1976	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2364154	2319123	2360388	2458737	-5582356	-5797062	-6011768	-6226474	-6441180
1977	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	2901749	2837884
1978	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1979	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1980	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1981	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1982	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1983	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	-5797062	-6011768	6226474	6441180
1984	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1985	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1986	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1987	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2180609	2244545	2264208	2359512	2018402	2102502	2130450	-5797062	-6011768	-6226474	-6441180
1988	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
1989	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2215880	2326674	2437468	2548262	2659056	2769850	2880644	2991438	3102232	3213026	3323820
										_											
MEDIA	1107940	1218734	1329528	1440322	1551116	1661910	1772704	1883498	1994292	2105086	2214116	2322568	2425139	2527368	2612090	2720927	2419984	1673163	1735132	1781537	1834773
DESV. P.	. 0	0	0	0	0	0	0	0	0	0	7887	18365	41266	64645	154838	161290	1890990	3219645	3338892	3452125	3568551
TOTAL	22158800	24374680	26590560	28806440	31022320	33238200	35454080	37669960	39885840	42101720	44282329	46451351	48502786	50547351	52241798	54418539	48399686	33463260	34702640	35630743	36695464

PC 1 - Beneficios Liquidos (R\$)

FEIJÃO

						Nível de Ou	torga														
ANO _	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
. 1971	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1972	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1973	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1974	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1975	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1976	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	-1953558	-2025912	-2098266	-2170620
1977	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1978	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1979	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1980	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1981	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1982	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1983	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1984	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1985	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1986	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1987	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1988	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
1989	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	256122	265608	275094	284580
MEDIA	94860	104346	113832	123318	132804	142290	151776	161262	170748	180234	189720	199206	208692	218178	227664	237150	246636	145638	151032	156426	161820
DESV. P.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	494099	512399	530699	548999
TOTAL	1897200	2086920	2276640	2466360	2656080	2845800	3035520	3225240	3414960	3604680	3794400	3984120	4173840	4363560	4553280	4743000	4932720	2912760	3020640	3128520	3236400

PC 1 - Beneficios Liquidos (R\$)

MILHO

Nível de	Outorda
----------	---------

ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1971	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1972	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1973	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1974	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1975	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1976	119970	131985	148097	155448	76895	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840
1977	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1978	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1979	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1980	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1981	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	822840	-822840	-822840	-822840	-822840
1982	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1983	119970	131985	148097	155748	75787	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840	-825840
1984	119970	131985	148097	155348	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1985	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1986	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1987	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1988	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
1989	119970	131985	148097	155748	87246	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840	-822840
MEDIA	119970	131985	148097	155713	86156	-823140	-823140	-823140	-823140	-823140	-823140	-823140	-823140	-823140	-823140	-823140	-823140	-823140	-823140	-823140	-823140
DESV. P.	0	0	0	109	3361	923	923	923	923	923	923	923	923	923	923	923	923	923	923	923	923
TOTAL	2399400	2639700	2961940	3114260	1723110	-16462800	-16462800	-16462800	-16462800	-16462800	-16462800	-16462800	-16462800	-16462800	-16462800	-16462800	-16462800	-16462800	-16462800	-16462800	-16462800

PC 1 - Beneficios Liquidos (R\$)

ABÓBORA

livel de Outorga	
------------------	--

						MINEL OF	nui ya														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	1276261	1403887	1531513	1659139	1786765	1914391	2042017	2169643	2297269	2424895	2552521	2680147	2807774	2935400	3063026	3190652	3318278	3445904	3573530	3701156	3828782
1971	1320279	1452306	1584334	1716362	1848390	1980418	2112446	2244474	2376501	2508529	2640557	2772585	2904613	3036641	3168668	3300696	3432724	3564752	3696780	3828808	3960836
1972	1357821	1493603	1629385	1765167	1900949	2036731	2172513	2308295	2444077	2579859	2715642	2851424	2987206	3122988	3258770	3394552	3482559	3383598	3502394	-4068874	-4209180
1973	1346700	1481370	1616040	1750710	1885380	2020050	2154720	2289390	2424060	2558730	2693400	2828070	2962740	3097410	3232080	3366750	3501420	3636090	3770760	3905430	4040099
1974	1386940	1525634	1664328	1803022	1941716	2080410	2219104	2357798	2496492	2635186	2773880	2912574	3051268	3091159	-3367344	-3507650	-3647956	-3788262	-3928568	-4068874	-4209180
1975	1373994	1511394	1648793	1786193	1923592	2060992	2198391	2335790	2364012	2423528	2463716	-2946426	-3086732	-3227038	-3367344	-3507650	-3647956	-3788262	-3928568	-4068874	-4209180
1976	1386940	1525634	1664328	1803022	1941716	2080410	2219104	2357798	2496492	2635186	2773880	2912574	2982940	3023890	3036041	3162543	3284728	3402084	3523439	3516252	-4209180
1977	-1403060	-1543366	-1683672	-1823978	-1964284	-2104590	-2244896	-2385202	-2525508	-2665814	-2806120	-2946426	-3086732	-3227038	-3367344	-3507650	-3647956	-3788262	-3928568	-4068874	-4209180
1978	1386940	1525634	1664328	1803022	1941716	2080410	2219104	2357798	2496492	2635186	2773880	2912574	3051268	3163787	3083428	3211905	3301492	3298460	3124207	-4068874	-4209180
1979	-1403060	-1543366	-1683672	-1823978	-1964284	-2104590	-2244896	-2385202	-2525508	-2665814	-2806120	-2946426	-3086732	-3227038	-3367344	-3507650	-3647956	-3788262	-3928568	-4068874	-4209180
1980	1386940	1525634	1664328	1803022	1941716	2080410	2219104	2357798	2496492	2635186	2773880	2912574	3051268	3189962	-3367344	-3507650	-3647956	-3788262	-3928568	-4068874	~1209180
1981	-1403060	-1543366	-1683672	-1823978	-1964284	-2104590	-2244896	-2385202	-2525508	-2665814	-2806120	-2946426	-3086732	-3227038	-3367344	-3507650	-3647956	-3788262	-3928568	-4068874	-4209180
1982	-1403060	-1543366	-1683672	-1823978	-1964284	-2104590	-2244896	-2385202	-2525508	-2665814	-2806120	-2946426	-3086732	-3227038	-3367344	-3507 6 50	-3647956	-3788262	-3928568	-4068874	-4209180
1983	-1403060	-1543366	-1683672	-1823978	-1964284	-2104590	-2244896	-2385202	-2525508	-2665814	-2806120	-2946426	-3086732	-3227038	-3367344	-3507650	-3647956	-3788262	-3928568	-4068874	-4209180
1984	1386940	1525634	1664328	1803022	1941716	2080410	2219104	2357798	2508871	2644293	2752933	2848518	2927569	-3227038	-3367344	-3507650	-3647956	-3788262	-3928568	-4068874	-4209180
1985	1386940	1525634	1664328	1803022	1941716	2080410	2219104	2357798	2496492	2635186	2773880	2912574	3070983	3203380	3332647	3471507	3604985	3737936	3802398	3807731	3737742
1986	1283942	1412336	1540730	1669124	1797518	1925912	2054307	2182701	2311095	2374907	-2806120	-2946426	-3086732	-3227038	-3367344	-3507650	-3647956	-3788262	-3928568	-4068874	-4209180
1987	1386940	1525634	1664328	1803022	1941716	2080410	2219104	2357798	-2525508	-2665814	-2806120	-2946426	-3086732	-3227038	-3367344	-3507650	-3647956	-3788262	-3928568	-4068874	-4209180
1988	1386940	1525634	1664328	1803022	1941716	2080410	2219104	2357798	2496492	2635186	2773880	2912574	3051268	3189962	3328656	3467350	3606044	3296803	3354919	-4068874	-4209180
1989	1386940	1525634	1664328	1803022	1941716	2080410	2219104	2357798	2496492	2635186	2773880	2912574	3030755	3168106	-3367344	-3507650	-3647956	-3788262	-3928568	-4068874	-4209180
	•																				
MEDIA	671308	738439	805569	872700	939831	1006962	1074093	1141223	952414	998308	779654	539868	559290	258967	-745241	-776292	-812162	-884675,85	-939719,45	-2113687	-2588971
DESV. P.	1229203	1352123	1475043	1597964	1720884	1843804	1966724	2089645	2336817	2462327	2700774	2921039	3054890	3235709	3295615	3432932	3564225	3649836	3758170	3475146	3325030
TOTAL	13426157	14768772	16111387	17454003	18796618	20139234	21481850	22824465	19048281	19966159	15593089	10797354	11185796	5179343	-14904812	-15525845	-16243242	-17693517	-18794389	-42273733	-51779421

PC 2 - Benefícios Líquidos (R\$)

MELANCIA

								Nivel de Ou	torga												
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	9883491	10224302
1971	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	9883491	10224302
1972	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	9883491	10224302
1973	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	7825956	7596713	7321770	6891434	-18492617	-19153067	-19813518
1974	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	9883491	10224302
1975	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8774112	9111578	9135665	9451137	-19813518
1976	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5619506	5575535	-12548561	-13209012	-13869462	-14529913	-15190364	-15850814	-16511265	-17171715	-17832166	-18492617	-19153067	-19813518
1977	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	6904898	-15850814	-16511265	-17171715	-17832166	-18492617	-19153067	-19813518
1978	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	9883491	10224302
1979	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	-19153067	-19813518
1980	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	9883491	10092525
1981	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	9883491	-19813518
1982	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	-17832166	-18492617	-19153067	-19813518
1983	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	-13209012	-13869462	-14529913	-15190364	-15850814	-16511265	-17171715	-17832166	-18492617	-19153067	-19813518
1984	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8661520	8913148	8955342	9220035	9198840
1985	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	9883491	10224302
1986	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	9883491	10224302
1987	3408101	3748911	4089721	4430531	4771341	5030778	5065353	5235621	5133745	4789032	-13209012	-13869462	-14529913	-15190364	-15850814	-16511265	-17171715	-17832166	-18492617	-19153067	-19813518
1988	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	9883491	10224302
1989	3408101	3748911	4089721	4430531	4771341	5112151	5452961	5793771	6134581	6475391	6816201	7157011	7497821	7838631	8179441	8520251	8861061	9201871	9542681	9883491	10224302
MEDIA	3408101	3408101	3748911	4089721	4430531	4771341	5108082	5433580	5757150	6056587	5439875	3812419	4003040	4193661	4337595	3355716	3467771	3563216,84	2308889,33	1082374	-334095
DESV. P.	. 0	0	0	0	0	0	18195	86672	128775	250530	4250750	7336188	7702997	8069806	8419059	9853055	10251082	10642258	11941439	13148629	14169088
TOTAL	68162010	68162010	74978211	81794412	88610613	95426814	102161643	108671608	115143002	121131737	108797508	76248381,9	80060801	83873220,1	86751905,7	67114318	69355423,3	71264336,9	46177786,6	21647484,5	-6681891,9

PC 2 - Beneficios Líquidos (R\$)

FEIJÃO

							Nív	el de Outor	ga												
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1971	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1972	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1973	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1974	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1975	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1976	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	-13209011	-4673884	-4896450	-5119016	-5341582	-5564148	-5786714	-6009280	-6231846	-6231846	-6231846
1977	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	-5786714	-6009280	-6231846	-6231846	-6231846
1978	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1979	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1980	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1981	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1982	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	756880	756880	756880
1983	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	-13209011	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1984	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1985	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1986	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1987	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	-13209011	612771	641951	671131	700310	729490	-5786714	-6009280	6231846	-6231846	-6231846
1988	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
1989	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	6816201	612771	641951	671131	700310	729490	758669	787849	817029	817029	817029
MEDIA	291796	320976	350155	379335	408514	437694	466874	496053	525233	554412	3812419	348439	365031	381623	398216	414808	-223138	-231720,31	-243309,95	-243310	-243310
DESV. P.	. 0	0	0	0	0	0	0	0	0	0	7336187	1182132	1238424	1294716	1351008	1407300	2397885	2490112	2581076	2581076	2581076
TOTAL	5835919	6419511	7003103	7586694	8170286	8753878	9337470	9921062	10504654	11088245,8	76248377,4	6968774	7300620,03	7632466	7964313	8296159	-4462761	-4634406,1	-4866199,1	-4866199,1	-4866199,1

PC 2 - Beneficios Líquidos (R\$)

MILHO

Minan		Outorga	
NIVE	Ge.	Ulitorna	

							1911	ver de Outor	y e												
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1971	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1972	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1973	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1974	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1975	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1976	369036	405941	462921	483702	487164	463506	174346	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1977	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1978	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1979	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1980	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1981	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1982	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1983	369036	405941	462921	480308	514312	451290	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1984	369036	405941	462921	487096	473590	477081	164844	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1985	369036	405941	462921	487096	510919	472330	151270	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1986	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1987	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1988	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
1989	369036	405941	462921	487096	514312	477081	178418	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053
	•																				
MEDIA	369036	405941	462921	486587	510749	474875	176178	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053	-2879053,3	-2879053,3	-2879053	-2879053
DESV. P.	. О	0	0	1661	10645	6385	6639,3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	7380721	8118813	9258414	9731730	10214982	9497495	3523569	-57581066	-57581066	-57581066	-57581066	-57581066	-57581066	-57581066	-57581066	-57581066	-57581066	-57581066	-57581066	-57581066	-57581066

PC 2 - Fluxo de Beneficios Líquidos (R\$)

ABÓBORA

	Nível	de	Outorga
--	-------	----	---------

ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	4266324	4318453	4711039	5103627	5496213	5888800	6281387	6673973	7066560	7459146	7851733	8244320	8244320	8244320	8244320	8244320	8244320	8244320	8244320	8244320	8244320
1971	4266324	4467395	4873522	5279649	5685776	6091903	6498029	6904156	7310283	7716410	8122537	8528663	8528663	8528663	8528663	8528663	8528663	8528663	8528663	8528663	8528663
1972	4266324	4594426	5012101	5429776	5847451	6265126	6682802	7100477	7518151	7935827	8352987	8100769	8100769	8100769	8100769	8100769	8100769	8100769	8100769	8100769	8100769
1973	4266324	4556796	4971050	5385305	5799559	6213813	6628067	7042322	7456576	7870830	8285084	8699338	8699338	8699338	8699338	8699338	8699338	8699338	8699338	8699338	8699338
1974	4266324	4692956	5119588	5546221	5972853	6399486	6826118	7252750	7441530	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
1975	4266324	4649152	5071803	5494452	5649646	5686456	-6905456	-7337047	-7768638	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
1976	4266324	4692956	5119588	5546221	5972853	6399486	6791583	6861028	7013511	7383730	7751887	8118017	8118017	8118017	8118017	8118017	8118017	8118017	8118017	8118017	8118017
1977	4266324	-4747501	-5179092	-5610683	-6042274	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
1978	4266324	4692956	5119588	5546221	5972853	6399486	6826118	7252750	7401983	7643309	7744266	7614625	7614625	7614625	7614625	7614625	7614625	7614625	7614625	7614625	7614625
1979	4266324	-4747501	-5179092	-5610683	-6042274	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
1980	4266324	4692956	5119588	5546221	5972853	6399486	6826118	7252750	7679383	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
1981	4266324	-4747501	-5179092	-5610683	-6042274	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
1982	4266324	-4747501	-5179092	-5610683	-6042274	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
1983	4266324	-4747501	-5179092	-5610683	-6042274	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
1984	4266324	4692956	5119588	5546221	6002470	6411972	6673890	6765144	-7768638	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
1985	4266324	4692956	5119588	5546221	5972853	6399486	6826118	7252750	7711684	8121832	8523653	8772349	8772349	8772349	8772349	8772349	8772349	8772349	8772349	8772349	8772349
1986	4266324	4344443	4739392	5134341	5529290	-6473865	-6905456	-7337047	-1768638	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
1987	4266324	4692956	5119588	5546221	-6042274	-6473865	-6905456	-7337047	-7768638	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
1988	4266324	4692956	5119588	5546221	5972853	6399486	6826118	7252750	7679383	8106015	7904943	7598098	7598098	7598098	7598098	7598098	7598098	7598098	7598098	7598098	7598098
1989	4266324	4692956	5119588	5546221	5972853	6399486	6826118	7204006	7625793	-8200229	-8631820	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411	-9063411
MEDIA	4266324	2271488	2477987	2684486	2278337	1801871	1263441	1305924	599355	-1808282	-1952237	-2154238	-2154238	-2154238	-2154238	-2154238	-2154238	-2154237,6	-2154237,6	-2154238	-2154238
DESV. P.	0	4159224	4537335	4915447	5590632	6233261	6844398	7242129	7767694	8033639	8395242	8686068	8686068	8686068	8686068	8686068	8686068	8686068	8686068	8686068	8686068
TOTAL	85326473	45429765	49559744	53689723	45566735	36037415	25268819	26118482	11987095	-36165647.7	-39044747 1	-43084752	-43084752	-43084752	~43084752	-43084752	-43084752	-43084752	-43084752	-43084752	-43084752

PC 3 - Beneficios Liquidos (R\$)

MELANCIA

					Niv	el de outor	ga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1971	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1972	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1973	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1974	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1975	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1976	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1410866	1414945	1442245	1468491	-3331406	-3459537	-3587668	-3715799	-3843930
1977	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1731689	1747288
1978	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1979	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1980	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1662975	1719094	1785213	1851332	1917451	1983570
1981	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1982	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1983	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1768178	-3587668	-3715799	-3843930
1984	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1985	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1986	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1987	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1340845	1401849	1408096	1370805	1383298	1304175	-3459537	-3587668	-3715799	-3843930
1988	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
1989	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380	1388499	1454618	1520737	1586856	1652975	1719094	1785213	1851332	1917451	1983570
MEDIA	661190	727309	793428	859547	925666	991785	1057904	1124023	1190142	1256261	1322380		1449791,95		1568822,9			1259886,25	1035482	1063175,4	1097630,9
DESV. P.	0	0	0	0	0	0	0	0	0	0	0	,		33634,4853	,						
TOTAL	13223800	14546180	15868560	17190940	18513320	19835700	21158080	22480460	23802840	25125220	26447600	27722326	28995839	30196307	31376458	32605339	28916461	25197725	20709640	21263508	21952618

PC 3 - Beneficios Liquidos (R\$)

FEIJÃO

					Ni	vel de outor	ga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1971	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1972	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1973	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1974	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1975	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1976	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	-1165833	-1209012	-1252191	-1295370
1977	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1978	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1979	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1980	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1981	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1982	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1983	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1984	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1985	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1986	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1987	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1988	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
1989	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	152847	158508	164169	169830
MEDIA	56610	62271	67932	73593	79254	84915	90576	96237	101898	107559	113220	118881	124542	130203	135864	141525	147186	86913	90132	93351	96570
DESV. P.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	294865,812	305786,768	316707,724	327628,68
TOTAL	1132200	1245420	1358640	1471860	1585080	1698300	1811520	1924740	2037960	2151180	2264400	2377620	2490840	2604060	2717280	2830500	2943720	1738260	1802640	1867020	1931400

PC 3 - Beneficios Liquidos (R\$)

MILHO

					Ni	vel de outor	ga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1971	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1972	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1973	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1974	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1975	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1976	74841	78307	33843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1977	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1978	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1979	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1980	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1981	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1982	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1983	74841	78907	35843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1984	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	459984	-459984	-459984	-459984
1985	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1986	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1987	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1988	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
1989	74841	78907	38843	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
MEDIA	74841	78877	38443	-427128	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984	-459984
DESV. P.	0	134	1273	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	1496820	1577540	768860	-8542560	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680	-9199680

PC 3 - Beneficios Liquidos (R\$)

ABÓBORA

					Nís	vel de outorg	ga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	827690	837803	913967	990131	1066295	1142459	1218623	1294787	1370951	1447115	1523279	1599443	1675607	1751771	1827935	1904099	1980263	1980263	1980263	1980263	1980263
1971	827690	866699	945490	1024281	1103071	1181862	1260653	1339444	1418235	1497025	1575816	1654607	1733398	1812189	1890980	1969770	2048561	2048561	2048561	2048561	2048561
1972	827690	891344	972375	1053406	1134437	1215469	1296500	1377531	1458562	1539594	1620625	1701656	1782687	1863719	1944750	2025781	2106812	2106812	2106812	2106812	2106812
1973	827690	884043	964411	1044778	1125146	1205514	1285881	1366249	1446616	1526984	1607351	1687719	1768087	1848454	1928822	2009189	2089557	2089557	2089557	2089557	2089557
1974	827690	910459	993228	1075997	1158766	1241535	1324304	1407073	1489842	1572611	1655380	1738149	1820918	1844724	1921957	-2093275	-2177006	-2177006	-2177006	-2177006	-2177006
1975	827690	901961	983957	1065954	1147950	1229947	1311943	1393939	1410781	1446299	1470282	-1758351	-1842082	-1925813	-2009544	-2093275	-2177006	-2177006	-2177006	-2177006	-2177006
1976	827690	910459	993228	1075997	1158766	1241535	1324304	1407073	1489842	1572611	1655380	1738149	1811706	1804580	1836266	1889805	1962817	1962817	1962817	1962817	1962817
1977	827690	-921041	-1004772	-1088503	-1172234	-1255965	-1339696	-1423427	-1507158	-1590889	-1674620	-1758351	-1842082	-1925813	-2009544	-2093275	-2177006	-2177006	-2177006	-2177006	-2177006
1978	827690	910459	993228	1075997	1158766	1241535	1324304	1407073	1489842	1572611	1655380	1738149	1820918	1873637	1948822	1948125	1970245	1970245	1970245	1970245	1970245
1979	827690	-921041	-1004772	-1088503	-1172234	-1255965	-1339696	-1423427	-1507158	-1590889	-1674620	-1758351	-1842082	-1925813	-2009544	-2093275	-2177006	-2177006	-2177006	-2177006	-2177006
1980	827690	910459	993228	1075997	1158766	1241535	1324304	1407073	1489842	1572611	1655380	1738149	1820918	1903687	1986456	2014009	-2177006	-2177006	-2177006	-2177006	-2177006
1981	827690	-921041	-1004772	-1088503	-1172234	-1255965	-1339696	-1423427	-1507158	-1590889	-1674620	-1758351	-1842082	-1925813	-2009544	-2093275	-2177006	-2177006	-2177006	-2177006	-2177006
1982	827690	-921041	-1004772	-1088503	-1172234	-1255965	-1339696	-1423427	-1507158	-1590889	-1674620	-1758351	-1842082	-1925813	-2009544	-2093275	-2177006	-2177006	-2177006	-2177006	-2177006
1983	827690	-921041	-1004772	-1088503	-1172234	-1255965	-1339696	-1423427	-1507158	-1590889	-1674620	-1758351	-1842082	-1925813	-2009544	-2093275	-2177006	-2177006	-2177006	-2177006	-2177006
1984	827690	910459	993228	1075997	1158766	1241535	1324304	1407073	1498350	1578046	1657365	1702006	1757211	1762103	-2009544	-2093275	-2177006	-2177006	-2177006	-2177006	-2177006
1985	827690	910459	993228	1075997	1158766	1241535	1324304	1407073	1489842	1572611	1655380	1738149	1820918	1913127	1993317	2073263	2151349	2151349	2151349	2151349	2151349
1986	827690	842846	919468	996090	1072712	1149335	1225957	1302579	1379202	1417283	-1674620	-1758351	-1842082	-1925813	-2009544	-2093275	-2177006	-2177006	-2177006	-2177006	-2177006
1987	827690	910459	993228	1075997	1158766	1241535	1324304	1407073	1489842	1572611	-1674620	-1758351	-1842082	-1925813	-2009544	-2093275	-2177006	-2177006	-2177006	-2177006	-2177006
1988	827690	910459	993228	1075997	1158766	1241535	1324304	1407073	1489842	1572611	1655380	1738149	1820918	1903687	1986456	2069225	2151994	2151994	2151994	2151994	2151994
1989	827690	910459	993228	1075997	1158766	1241535	1324304	1407073	1489842	1572611	1655380	1738149	1820918	1903687	1972858	2054785	-2177006	-2177006	-2177006	-2177006	-2177006
MEDIA	827690	440681	480743	520805	560867	600929	640991	681053	718282	753939	466002	322283	335877	338943	157636	-48735	-483124	-483124	-483124	-483124	-483124
DESV. P.	0	806912	880268	953623	1026979,01	1100335	1173690	1247046	1318784	1389793	1612312	1743288	1824840	1897678,98	2011653	2098141	2129009	2129009	2129009	2129009	2129009
TOTAL	16553800	8813622	9614860	10416098	11217335	12018576	12819813	13621051	14365643	15078789	9320038	6445666	6717548	6778861	3152723	-974699	-9662474	-9662474	-9662474	-9662474	-9662474

PC 4 - Beneficios Liquidos (R\$)

MELANCIA

					Nin	vel de outor	ga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1971	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1972	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1973	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1974	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1975	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1976	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4003809	3927546	4088876	4163990	-9453990	-9817605	-10181220	-10544835	-1908450
1977	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	4914252	4806094
1978	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1979	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1980	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1981	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1982	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1983	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1984	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4002184	3950001	-8726760	-9090375	-9453990	-9817605	-10181220	-10544835	-1908450
1985	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1986	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1987	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4246912	4344282	4357438	4517159	4376387	4396644	4130399	-1908450
1988	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
1989	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4127970	4315605	4503240	4690875	4878510	5066145	5253780	5441415	5629050
MEDIA	1876350	2063985	2251620	2439255	2626890	2814525	3002160	3189795	3377430	3565065	3752700	3940335	4115473	4274487	3813074	3958796	3427192	3543282	3667423	3750881	4457277
DESV. P.	0	0	0	0	0	0	0	0	0	0	0	0	38467	115886	2953172	3074452	4406008	4571914	4739990	4898759	2749717
TOTAL	37527000	41279700	45032400	48785100	52537800	56290500	60043200	63795900	67548600	71301300	75054000	78806700	82309453	85489744	76261478	79175928	68543849	70865642	73348464	75017621	89145544

PC 4 - Beneficios Liquidos (R\$)

FEIJÃO

	Nivel de outorga																				
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1971	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1972	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1973	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1974	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1975	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1976	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	-3308445	-3430980	-3553515	-3676050
1977	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1978	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1979	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1980	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1981	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1982	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1983	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1984	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	-3308445	-3430980	-3553515	-3676050
1985	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1986	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1987	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1988	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
1989	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	433755	449820	465885	481950
MEDIA	160650	176715	192780	208845	224910	240975	257040	273105	289170	305235	321300	337365	353430	369495	385560	401625	417690	59535	61740	63945	66150
DESV. P.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1151825	1194485	1237145	1279805
TOTAL	3213000	3534300	3855600	4176900	4498200	4819500	5140800	5462100	5783400	6104700	6426000	6747300	7068600	7389900	7711200	8032500	8353800	1190700	1234800	1278900	1323000

PC 4 - Beneficios Liquidos (R\$)

					Nív	el de outo	ga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1971	203446	235420	250311	269998	110260	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1972	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1973	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1974	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1975	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1976	203446	235420	250311	263998	109250	4677	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1977	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1978	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1979	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1980	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1981	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1982	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1983	203446	235420	250311	259998	100250	3953	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1984	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1985	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1986	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1987	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1988	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
1989	203446	235420	250311	269998	110250	4977	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
MEDIA	203446	235420	250311	269198	109700	4911	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840	-1491840
DESV. P.	203440	200420	250311 N	2546	2235	235	-1481040	1491640	-1481840	-1481840	-1481840	71491840	-1491840	-1491840	-1491040	-1481840	-1451640	-14-51040	-1451040	~140104U	-1401040
TOTAL	4068920	4708400	5006220	5383960	2194000	98216	-29836800	-29836800	-29836800	-29836800	-29836800	-29836800	-29836800	-29836800	-29836800	-29836800	-29836800	-29836800	-29836800	-29836800	-29836800

PC 4 - Beneficios Liquidos (R\$)

					Nir	vel de outorg	ja														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	2348850	2377550	2593691	2809832	3025973	3242114	3458255	3674396	3890537	4106678	4322819	4538959	4755100	4971241	5187382	5403523	5619664	5835805	5835805	5835805	5835805
1971	2348850	2459551	2683147	2906742	3130338	3353933	3577529	3801124	4024720	4248316	4471911	4695507	4919102	5142698	5366293	5589889	5813484	6037080	6037080	6037080	6037080
1972	2348850	2529489	2759442	2989396	3219349	3449303	3679256	3909210	4139163	4369117	4599070	4829024	5058977	5288931	5518884	5748838	5897882	5901060	5901060	5901060	5901060
1973	2348850	2508771	2736842	2964912	3192982	3421052	3649122	3877192	4105262	4333333	4561403	4789473	5017543	5245613	5473683	5701753	5929823	6157894	6157894	6157894	6157894
1974	2348850	2583735	2818620	3053505	3288390	3523275	3758160	3993045	4227930	4462815	4697700	4932585	5167470	5235028	5454201	-5940375	-6177990	-6415605	-6415605	-6415605	-6415605
1975	2348850	2559619	2792311	3025004	3257696	3490389	3723082	3955774	4003568	4104361	4172422	-4989915	-5227530	-5465145	-5702760	-5940375	-6177990	-6415605	-6415605	-6415605	-6415605
1976	2348850	2583735	2818620	3053505	3288390	3523275	3758160	3993045	4227930	4462815	4697700	4932585	5141327	5121104	5211026	5362959	5570156	5769198	5769198	5769198	5769198
1977	2348850	-2613765	-2851380	-3088995	-3326610	-3564225	-3801840	-4039455	-4277070	-4514685	-4752300	-4989915	-5227530	-5465145	-5702760	-5940375	-6177990	-6415605	-6415605	-6415605	-6415605
1978	2348850	2583735	2818620	3053505	3288390	3523275	3758160	3993045	4227930	4462815	4697700	4932585	5167470	5358026	5433608	5528464	5591237	5754144	5754144	5754144	5754144
1979	2348850	-2613765	-2851380	-3088995	-3326610	-3564225	-3801840	-4039455	-4277070	-4514685	-4752300	-4989915	-5227530	-5465145	-5702760	-5940375	-6177990	-6415605	-6415605	-6415605	-6415605
1980	2348850	2583735	2818620	3053505	3288390	3523275	3758160	3993045	4227930	4462815	4697700	4932585	5167470	5402355	5637240	-5940375	-6177990	-6415605	-6415605	-6415605	-6415605
1981	2348850	-2613765	-2851380	-3088995	-3326610	-3564225	-3801840	-4039455	-4277070	-4514685	-4752300	-4989915	-5227530	-5465145	-5702760	-5940375	-6177990	-6415605	-6415605	-6415605	-6415605
1982	2348850	-2613765	-2851380	-3088995	-3326610	-3564225	-3801840	-4039455	-4277070	-4514685	-4752300	-4989915	-6227530	-5465145	-5702760	-5940375	-6177990	-6415605	-6415605	-6415605	-6415605
1983	2348850	-2613765	-2851380	-3088995	-3326610	-3564225	-3801840	-4039455	-4277070	-4514685	-4752300	-4989915	-5227530	-5465145	-5702760	-5940375	-6177990	-6415605	-6415605	-6415605	-6415605
1984	2348850	2583735	2818620	2989555	-3326610	-3564225	-3801840	-4039455	-4277070	-4514685	-4752300	-4989915	-5227530	-5465145	-5702760	-5940375	-6177990	-6415605	-6415605	-6415605	-6415605
1985	2348850	2583735	2818620	3053505	3288390	3523275	3758160	3993045	4227930	4462815	4697700	4953333	5177553	5400714	5627057	5828879	5898988	6035256	6035256	6035256	6035256
1986	2348850	2391859	2609301	2826742	3044184	3261626	3479067	3696509	3913951	4131393	4315958	4530863	-5227530	-5465145	-5702760	-5940375	-6177990	-6415605	-6415605	-6415605	-6415605
1987	2348850	2583735	2818620	3053505	3288390	3523275	3758160	3993045	4227930	4462815	4697700	-4989915	-5227530	-5465145	-5702760	-5940375	-6177990	-6415605	-6415605	-6415605	-6415605
1988	2348850	2583735	2818620	3053505	3288390	3523275	3758160	3993045	4227930	4462815	4697700	4932585	5167470	5402355	5637240	5872125	6107010	5875353	5875353	5875353	5875353
1989	2348850	2583735	2818620	3053505	3288390	3523275	3758160	3993045	4227930	4462815	4697700	4932585	5167470	5366036	5598627	5831112	-6177990	-6415605	-6415605	-6415605	-6415605
MEDIA	2348850	1250581	1364271	1474762	1260899	1350963	1441028	1531092	1611911	1695380	1775569	900667	442959	437390	441020	-723829	-1385381,8	-1481073,5	-1481073,5	-1481073,5	-1481073,5
DESV. P.	0	2289886	2498057	2704306	3082235	3302394	3522554	3742714	3956780	4172818	4387059	4936038	5263334	5478698	5702821	5918210	6023342	6201151	6201151	6201151	6201151
TOTAL	46977000	25011629	27285414	29495248	25217982	27019267	28820551	30621835	32238221	33907608	35511383	18013349	8859182	8747796	8820401	-14476583	-27707636	-29621470	-29621470	-29621470	-29621470

PC 5 - Beneficios Liquidos (R\$)

MELANCIA

					Ni	vel de outorg	a														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	4918365	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-31086939	-31086939	-31086939	-31086939
1971	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-31086939	-31086939	-31086939	-31086939
1972	4918355	5450212	5976802	6503393	7029963	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-31086939	-31086939	-31086939	-31086939
1973	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	9912928	9442899	-23828014	-24848486	-31528957	-31528957	-31528957	-31528957	-31528957
1974	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-31086939	-31086939	-31086939	-31086939
1975	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11653812	11771442	12261558	-31086939	-31086939	-31086939	-31086939	-31086939
1976	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	-17705184	-18725656	-19746127	-20766599	-21787071	-22807542	-23828014	-24848486	-32560331	-32560331	-32560331	-32560331	-32560331
1977	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	-22807542	-23828014	-24848486	-31086939	-31086939	-31086939	-31086939	-31086939
1978	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-31086939	-31086939	-31086939	-31086939
1979	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-31086939	-31086939	-31086939	-31086939
1980	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-31086939	-31086939	-31086939	-31086939
1981	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-31086939	-31086939	-31086939	-31086939
1982	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	-24848486	-31970974	-31970974	-31970974	-31970974	-31970974
1983	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	-24848486	-32029910	-32029910	-32029910	-32029910	-32029910
1984	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	-19746127	-20766599	-21787071	-22807542	-23828014	-24848486	-31086939	-31086939	-31086939	-31086939	-31086939
1985	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-31086939	-31086939	-31086939	-31086939
1986	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-31086939	-31086939	-31086939	-31086939
1987	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8472709	8471615	8086460	7522739	-20766599	-21787071	-22807542	-23828014	-24848486	-51125078	-51125078	-51125078	-51125078	-51125078
1988	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-3108693 9	-31086939	-31086939	-31086939
1989	4918355	5450212	5976802	6503393	7029983	7556574	8083164	8609755	9136345	9662936	10189526	10716117	11242707	11769298	12295888	12822479	-31086939	-31086939	-31086939	-31086939	-31086939
	•																				
MEDIA	4918355	5450212	5976802	6503393	7029983	7556674	8083164	8602902	7761032	8164682	7062622	5993709	6221752	4731836	3238690	-390405	-32275967	-32275967	-32275967	-32275967	-32275967
DESV. P.	0,05735393	0	0	0	0	0	0	30644	5995963	6339111	9187657	11533616	12075349	14136812	16033353	18413982	4456150	4456150	4456150	4456150	4456150
TOTAL	98367106,2	109004234	119536045	130067854,6	140599664,7	151131474,8	161663285	172058049	155220646	163293648	141252430,7	119874188,1	124435032,1	94636710,5	64773807,2	-7808096,6	-645519334	-645519334	-645519334	-645519334	-645519334,5

PC 5 - Beneficios Liquidos (R\$)

FEIJÃO

					Ni	vel de outorg	Įa.														
ANO	100	110	120	130	_140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1971	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1972	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1973	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1974	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1975	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1976	421101	466638	511724	556810	601896	646981	692067	737153	782239	-6310378	-6654268	-6998158	-7342048	-7685938	-8029827	-8029827	-8029827	-8029827	-8029827	-8029827	-8029827
1977	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	-7685938	-8029827	-8029827	-8029827	-8029827	-8029827	-8029827	-8029827
1978	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	10 52754
1979	°421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1980	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1981	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1982	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	975252	975252	975252	975252	975252	975252	975252
1983	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	-8029827	-8029827	-8029827	-8029827	-8029827	-8029827	-8029827
1984	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	-6654268	-6998158	-7342048	-7685938	-8029827	-8029827	-8029827	-8029827	-8029827	-8029827	-8029827
1985	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1986	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1987	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	-8029827	-8029827	-8029827	-8029827	-8029827	-8029827	-8029827
1988	421101	466638	511724	556810	601896	646981	692067	737153	78223 9	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
1989	421101	466638	511724	556810	601896	646981	692067	737153	782239	827325	872410	917496	962582	1007668	1052754	1052754	1052754	1052754	1052754	1052754	1052754
MEDIA	421101	466638	511724	556810	601896	646981	692067	737153	782239	470440	119743	125931	132119	-296373	-1221767	-1221767	-1221767	-1221767	-1221767	-1221767	-1221767
DESV. P.	0	0_	0	0	0	0	0	0	0	1596039	2316663	2436387	2556111	3184881	4032784	4032784	4032784	4032784	4032784	4032784	4032784
TOTAL	8422030	9332763	10234479	11136196	12037912	12939628	13841344	14743061	15644777	9408790	2394852	2518617	2642382	-5927458	-24435333	-24435333	-24435333	-24435333	-24435333	-24435333	-24435333

PC 5 - Beneficios Liquidos (R\$)

					Nŕ	vel de outorga	a														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	536026	601962	599887	222814	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1971	536026	601962	599887	222814	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1972	536026	601962	599887	222814	-3493355	-3493355	-3493355	-349335 5	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1973	536026	601962	599887	222814	-3493355	-3493355	-3493355	3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1974	536026	601962	599887	222814	-3493355	-3493355	-3493355	-3493355	-3 49335 5	-3493355	-3493365	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1975	536026	601538	583680	213973	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1976	536026	601962	599687	222814	-3493355	-3493355	-349335 5	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1977	536026	601962	599687	222814	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1978	536026	601962	599887	222814	-3493365	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1979	536026	601962	599887	222814	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1980	536026	601962	599887	222814	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1981	536026	601962	599887	222814	-3493355	-3493355	-3493365	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1982	536026	601711	599887	205133	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-349335 5	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1983	536026	601962	599887	222814	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1984	536026	601962	589574	222814	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1985	536026	601962	599887	222814	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1986	536026	601962	599887	222814	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493365
1987	536026	601962	599887	222814	-3493355	-3493355	-3493355	-3493355	-3493365	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1988	536026	601962	599887	222814	-3493355	-3493355	-3493355	-3493355	-3493355	-3493365	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
1989	536026	601962	599887	222814	-3493356	-3493355	-3493365	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
																				_	
MEDIA	536026	601928	598561	221488	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355	-3493355
DESV. P.	0	108	4192	4326	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	I 10720522.2	12038563.2	11971226.2	4429754,762	-69867096.96	-69867096.96	-69867097	-69867097	-69867097	-69867097	-69867097	-69867097	-69867096.96	-69867097	-69867097	-69867097	-69867097	-69867097	-69867097	-69867097	-69867096,96

PC 5 - Beneficios Liquidos (R\$)

					N	ivel de outorg	a														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11437048	12096244	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439
1971	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11437048	12096244	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439
1972	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11437048	12096244	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439
1973	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11437048	12096244	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439
1974	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11437048	-12236835	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692
1975	6156889	6822677	7481873	8141069	8800264	8948097	-10236262	-10903120	-11569977	-12236835	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692
1976	6156889	6822677	7481873	8141069	8800264	9459460	9892065	9962973	10417952	10989405	11573015	11573015	11573015	11573015	11573015	11573015	11573015	11573015	11573015	11573015	11573015
1977	6156889	6822677	7481873	7618094	-8902547	-9569405	-10236262	-10903120	-11569977	-12236835	-12903692	-1290369 2	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692
1978	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11023910	11402361	9588204	9588204	9588204	9588204	9588204	9588204	9588204	9588204	9588204	9588204	9588204
1979	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11437048	-12236835	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692
1980	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11437048	-12236835	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692
1981	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11437048	12096244	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439	12755439
1982	6156889	6822677	7481873	-8235690	-8902547	9569405	-10236262	-10903120	-11569977	-12236835	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692
1983	6156889	6822677	7481873	8141069	8800264	-9569405	-10236262	-10903120	-11569977	-12236835	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692
1984	6156889	6822677	7481873	8126363	-8902547	-9569405	-10236262	-10903120	-11569977	-12236835	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692
1985	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11459366	12007330	11884569	11884569	11884569	11884569	11884569	11884569	11884569	11884569	11884569	11884569	11884569
1986	6156889	6822677	7481873	8141069	8800264	9459460	8926468	-10903120	-11569977	-12236835	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692
1987	6156889	6822677	7481873	8141069	8800264	9459460	-10236262	-10903120	-11569977	-12236835	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692
1988	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11437048	12096244	10817508	10817508	10817508	10817508	10817508	10817508	10817508	10817508	10817508	10817508	10817508
1989	6156889	6822677	7481873	8141069	8800264	9459460	10118656	10777852	11357398	-12236835	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692	-12903692
MEDIA	6156889	6822677	7481873	7295347	6144843	5628119	3941242	3148768	3310111	-1381431,2	-1715006,04	-1715006,04	-1715006,04	-1715006	-1715006	-17 1500 6	-1715006,04	-1715006,04	-1715006,04	-1715006,04	-1715006,04
DESV. P.	0	0	0,081	3657487	6485382	7796993	9526141	10580661	11205112	12315685	12712135	12712135	12712135	12712134,8	12712134,8	12712134,8	12712134,8	12712134,8	12712134,79	12712134,79	12712134,79
TOTAL	123137782	136453538	149637455	145906932,3	122896853	112562381,7	78824831,7	62975357,7	66202214,2	-27628624	-34300120,8	-34300120,8	-34300120,8	-34300121	-34300121	-34300121	-34300120,8	-34300120,8	-34300120,8	-34300120,8	-34300120,8

PC 7 - Beneficios Liquidos (R\$)

MELANCIA

					Ni	vel de outor	ga														
ONA	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	_280	290	300
1970	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2798442	2902088	3005734	3109380
1971	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2798442	2902088	3005734	3109380
1972	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2798442	2902088	3005734	3109380
1973	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2479170	2237296	2312313	2173422	-5824766	-6025620
1974	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2798442	2902088	3005734	3109380
1975	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2770982	2815950	2877533	2973360
1976	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1675177	1695613	-3816226	-4017080	-4217934	-4418788	-4619642	-4820496	-6021350	-5222204	-5423058	-5623912	-5824766	6025620
1977	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2110332	2099894	-4820496	-5021350	-5222204	-5423058	-5623912	-5824766	-6025620
1978	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2798442	2902088	3005734	3109380
1979	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2798442	2902088	-5824766	-6025620
1980	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2798442	2902088	3005734	3017418
1981	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2798442	2902088	2916184	-6025620
1982	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	-5423058	-5623912	-5824766	-6025620
1983	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	-5021350	-5222204	-5423058	-5623912	-5824766	-6025620
1984	1036460	1140106	1243752	1347398	1432146	1507316	1380900	-3414518	-3615372	-3816226	-4017080	-4217934	-4418788	-4619642	-4820496	-5021350	-5222204	-5423058	-5623912	-5824766	-6025620
1985	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2761363	2902088	3005734	2911699
1986	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2798442	2902088	3005734	3109380
1987	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1799774	1829294	1873223	1880226	1730834	-4619642	-4820496	-5021350	-5222204	-5423058	-5623912	-5824766	-6025620
1988	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2798442	2902088	3005734	3109380
1989	1036460	1140106	1243752	1347398	1451044	1554690	1658336	1761982	1865628	1969274	2072920	2176566	2280212	2383858	2487504	2591150	2694796	2798442	2902088	3005734	3109380
MEDIA	1036460	1140106	1243752	1347398	1450099	1552321	1644464	1498817	1579785	1383725	1453935	1522299	1574349	1319135	1025904	682426	692671	304459	303548	-537354	-1022653
DESV. P.	0	0	0	0	4226	10593	62037	1156641	1223465	1778620	1871577	1964230	2053483	2560376	2999140	3378716	3505137	3848429	3984484	4429429	4643196
TOTAL	20729200	22802120	24875040	26947960	29001982	31046426	32889284	29976335	31595691	27674500	29078703	30445980	31486982	26382696	20518080	13648520	13853420	6089172	6070956	-10747071	-20453063

PC 7 - Beneficios Liquidos (R\$)

FEIJÃO

					Ni	vel de outor	ga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1971	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1972	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1973	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1974	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1975	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1976	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	-1353720	-1421406	-1489092	-1556778	-1624464	-1692150	-1759836	-1827522	-1895208	-1962894	-2030580
1977	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	-1827522	-1895208	-1962894	-2030580
1978	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1979	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1980	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1981	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1982	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	238401	-2030580
1983	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	221959	-1895208	-1962894	-2030580
1984	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	-1421406	-1489092	-1556778	-1624464	-1692150	-1759836	-1827522	-1895208	-1962894	-2030580
1985	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1986	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1987	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	-2030580
1988	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
1989	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	177480	186354	195228	204102	212976	221850	230724	239598	248472	257346	266220
MEDIA	88740	97614	106488	115362	124236	133110	141984	150858	159732	168606	100920	25578	26796	28014	29232	30450	31668	-71351,95	-180264	-187649,25	-422820
DESV. P.	0 1774800	0 1952280	0400760	u 2307240	0 40 4700	0	0	0	0	0	342387	494858	518423	541987	565552	589117	612681	756914	879748	910691	1079869
TOTAL	1774800	1952280	2129760	230/240	2484720	2662200	2839680	3017160	3194640	3372120	2018400	511560	535920	560280	584640	609000	633360	-1427039	-3605280	-3752985	-8456400

PC 7 - Beneficios Liquidos (R\$)

					Ni	vel de outor	ja														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1971	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1972	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1973	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1974	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1975	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1976	113648	126083	128895	67345	11987	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1977	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1978	113648	126083	128895	67860	12729	-772562	-7 7 2562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1979	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1980	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1981	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1982	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1983	113648	126083	128895	67860	12345	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1984	113648	126083	128895	63465	11543	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1985	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1986	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1987	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1988	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
1989	113648	126083	128895	67860	12729	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
MEDIA	113648	126083	128895	67615	12613	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562	-772562
DESV. P.	0	0	0	983	311	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	2272960	2521660	2577900	1352290	252268	-15451240	-15451240	-15451240	-15451240	-15451240	-15451240	-15451240	-15451240	-15451240	-15451240	-15451240	-15451240	-15451240	-15451240	-15451240	-15451240

PC 7 - Beneficios Liquidos (R\$)

					Nis	vel de outor	ga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	1193921	1313313	1432706	1552098	1671490	1790882	1910274	2029666	2149058	2268450	2387843	2507235	2507235	2507235	2507235	2507235	2507235	2507235	2507235	2507235	2507235
1971	1235099	1358609	1482119	1605629	1729139	1852649	1976159	2099669	2223179	2346689	2470199	2593708	2593708	2593708	2593708	2593708	2593708	2593708	2593708	2593708	2593708
1972	1270219	1397241	1524263	1651285	1778307	1905329	2032351	2159373	2286395	2413417	2506060	2461901	2461901	2461901	2461901	2461901	2461901	2461901	2461901	2461901	2461901
1973	1259816	1385798	1511779	1637761	1763742	1889724	2015706	2141687	2267669	2393650	2519632	2645614	2645614	2645614	2645614	2645614	2645614	2645614	2645614	2645614	2645614
1974	1297460	1427206	1556952	1686698	1816444	1946190	2075936	2205682	2261402	-2493826	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
1975	1285350	1413885	1542420	1618353	1672213	1728908	-2100064	-2231318	-2362572	-2493826	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
1976	1297460	1427206	1556952	1686698	1816444	1946190	2065433	2090852	2158854	2248466	2360589	2475352	2475352	2475352	2475352	2475352	2475352	2475352	2475352	2475352	2475352
1977	-1312540	-1443794	-1575048	-1706302	-1837556	-1968810	-2100064	-2231318	-2362572	-2493826	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
1978	1297460	1427206	1556952	1686698	1816444	1946190	2075936	2205682	2316265	2320902	2362327	2397960	2397960	2397960	2397960	2397960	2397960	2397960	2397960	2397960	2397960
1979	-1312540	-1443794	-1575048	-1706302	-1837556	-1968810	-2100064	-2231318	-2362572	-2493826	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
1980	1297460	1427206	1556952	1686698	1816444	1946190	2075936	2205682	2335428	-2493826	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
1981	-1312540	-1443794	-1575048	-1706302	-1837556	-1968810	-2100064	-2231318	-2362572	-2493826	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
1982	-1312540	-1443794	-1575048	-1706302	-1837556	-1968810	-2100064	-2231318	-2362572	-2493826	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
1983	-1312540	-1443794	-1575048	-1706302	-1837556	-1968810	-2100064	-2231318	-2362572	-2493826	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
1984	-1312540	-1443794	-1575048	-1706302	-1837556	-1968810	-2100064	-2231318	-2362572	-2493826	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
1985	1297460	1427206	1556952	1686698	1816444	1946190	2083110	2209986	2334728	2447019	2473717	2560713	2560713	2560713	2560713	2560713	2560713	2560713	2560713	2560713	2560713
1986	1201107	1321217	1441328	1561439	1681549	1788040	1676932	-2231318	-2362572	-2493826	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
1987	1297460	1427206	1556952	1686698	1816444	1946190	-2100064	-2231318	-2362572	-2493826	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
1988	1297460	1427206	1556952	1686698	1816444	1946190	2075936	2205682	2335428	2465174	2594920	2398749	2398749	2398749	2398749	2398749	2398749	2398749	2398749	2398749	2398749
1989	1297460	1427206	1556952	1686698	1816444	1946190	2075936	2205682	2319441	2447971	-2625080	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334	-2756334
MEDIA	497498	547247	596997	644117	690133	735610	366957	183889	186235	-304017	-591284	-651739	-651739	-651739	-651739	-651739	-651739	-651739	-651739	-651739	-651739
DESV. P.	1216120	1337732	1459344	1579205	1698461	1817506	2068586	2241844	2365896	2484362	2556093	2645113	2645113	2645113	2645113	2645113	2645113	2645113	2645113	2645113	2645113
TOTAL	9949952	10944947	11939943	12882337	13802656	14712192	7339133	3677781	3724699	-6080348	-11825673	-13034776	-13034776	-13034776	-13034776	-13034776	-13034776	-13034776	-13034776	-13034776	-13034776

PC 9 - Beneficios Liquidos (R\$)

MELANCIA

					Niv	rei de outorg	ya														
ANO	100	110	120	130	140	150	160	_170 _	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	1072200	1429600	1787000	2124076	-4848200	-5540800	-6233400	-6926000	-7618600	-8311200	-9003800	-9696400	-10389000	-11081600	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200
1971	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	-9003800	-9696400	-10389000	-11081600	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200
1972	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5718400	6075800	6075800	6075800	6075800	6075800	6075800	6075800
1973	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5647034	5417224	5417224	5417224	5417224	5417224	5417224	5417224
1974	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5718400	6075800	6075800	6075800	6075800	6075800	6075800	6075800
1975	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5718400	6075800	6075800	6075800	6075800	6075800	6075800	6075800
1976	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4077511	4127950	4434460	-10389000	-11081600	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200
1977	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4092747	9696400	-10389000	-11081600	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200
1978	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5718400	6075800	6075800	6075800	6075800	6075800	6075800	6075800
1979	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5718400	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200
1980	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5718400	5997492	5997492	5997492	5997492	5997492	5997492	5997492
1981	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5718400	5894783	5894783	5894783	5894783	5894783	5894783	5894783
1982	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	-11081600	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200
1983	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	-10389000	-11081600	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200
1984	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3814849	4022033	-9003800	-9696400	-10389000	-11081600	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200	-11774200
1985	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5718400	6075800	6075800	6075800	6075800	6075800	6075800	6075800
1986	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5718400	6075800	6075800	6075800	6075800	6075800	6075800	6075800
1987	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	4826980	4970951	4939838	4611939	4611939	4611939	4611939	4611939	4611939	4611939
1988	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5718400	6075800	6075800	6075800	6075800	6075800	6075800	6075800
1989	1072200	1429600	1787000	2144400	2501800	2859200	3216600	3574000	3931400	4288800	4646200	5003600	5361000	5718400	5908474	5908474	5908474	5908474	5908474	5908474	5908474
																	44040544	44040544	4404054.4	44040543	4404054.4
MEDIA	1072200	1429600	1787000	2143384	2134300	2439200	2744100	3049000	3348072,45	3634897,2	2545114,85	2995952	616498	-204096	-1191654,4	-1191654,4	-1191654,4	-1191654,4	-1191654,4 8871319	-1191654,4 8871319	-1191654,4 8871319
DESV. P.	0	0	0	4545	1643509,96	1878297	2113084	2347871	2581418	2812791	4980230	5572652	7392461	8191048	8871319	8871319	8871319	8871319	-23833088	-23833088	
TOTAL	L 21444000	28592000	35740000	42867676	42686000	48784000	54882000	60980000	66961449	72697944	50902297	59919040	12329951	-4081928	-23833088	-23833088	-23833088	-23833088	~_აიაასიი	- ∠ ანაა∪ინ	-23833088

PC 9 - Beneficios Liquidos (R\$)

FEIJÃO

					Niv	rel de outorg	a														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	91800	122400	153000	183600	-1633800	-1867200	-2100600	-2334000	-2567400	-2800800	-3034200	-3267600	-3501000	-3734400	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800
1971	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800
1972	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1973	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1974	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1975	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1976	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	-3501000	-3734400	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800
1977	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	-3734400	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800
1978	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1979	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1980	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1981	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1982	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1983	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800
1984	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	-3034200	-3267600	-3501000	-3734400	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800
1985	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1986	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1987	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800	-3967800
1988	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
1989	91800	122400	153000	183600	214200	244800	275400	306000	336600	367200	397800	428400	459000	489600	520200	520200	520200	520200	520200	520200	520200
seems 1	04400	400400	452000	400000	404400	420000	450000	474000	404400	200000	F 4000	50000	405000	255000	4050500	4050000	1050000	-1050600	-1050600	-1050600	-1050600
MEDIA	91800	122400	153000	183600	121800	139200	156600	174000	191400	208800	54600	58800	-135000	-355200	-1050600	-1050600	-1050600		2196250	2196250	2196250
DESV. P.	U 4000000	0	0	0	413225	472258	531290	590322	649354	708386	1056347	1137605	1450736	1733493	2196250	2196250	2196250	2196250 -21012000	-21012000	-21012000	-21012000
TOTAL	1836000	2448000	3060000	3672000	2436000	2784000	3132000	3480000	3828000	4176000	1092000	1176000	-2700000	-7104000	-21012000	-21012000	-21012000	-21012000	-2 10 12000	-21012000	-21012000

PC 9 - Beneficios Liquidos (R\$)

					Niv	el de outorg	ga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1971	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1972	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1973	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1974	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1975	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1976	119196	152498	82643	3097	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1977	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1978	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1979	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1980	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1981	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1982	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1983	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1984	119196	158928	79564	3042	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1985	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1986	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1987	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1988	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
1989	119196	158928	83600	3201	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
MEDIA	119196	158606,5	83350,35	3187,85	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200	-1243200
DESV. P.	0	1438	916	41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	2383920	3172130	1667007	63757	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000	-24864000

PC 9 - Beneficios Liquidos (R\$)

					Niv	/el de outorg	a														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	1342200	1646788	2058485	2470182	2881879	3293576	3705273	3593602	-4978600	-5431200	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1971	1342200	1703585	2129482	2555378	2981274	3407170	3833067	4258963	4684859	5110756	5073636	5351826	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1972	1342200	1752027	2190034	2628040	3066047	3504054	3942060	4380067	4818074	5256080	5694087	6048417	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1973	1342200	1737677	2172097	2606516	3040935	3475354	3909774	4344193	4778612	5213032	5647451	6081870	6516290	6918942	7176788	7176788	7176788	7176788	7176788	7176788	7176788
1974	1342200	1789600	2237000	2684400	3131800	3579200	4026600	4474000	4921400	5202512	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1975	1342200	1772896	2216120	2659344	3102568	3545792	3989016	4242007	4506778	-5431200	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1976	1342200	1789600	2237000	2684400	3131800	3579200	4026600	4474000	4921400	5368800	5685956	5925303	5908344	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1977	1342200	-1810400	-2263000	-2715600	-3168200	-3620800	-4073400	-4526000	-4978600	-5431200	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1978	1342200	1789600	2237000	2684400	3131800	3579200	4026600	4474000	4921400	5368800	5608970	5799189	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1979	1342200	-1810400	-2263000	-2715600	-3168200	-3620800	-4073400	-4526000	-4978600	-5431200	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1980	1342200	1789600	2237000	2684400	3131800	3579200	4026600	4474000	4921400	5368800	5816200	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1981	1342200	-1810400	-2263000	-2715600	-3168200	-3620800	-4073400	-4526000	-4978600	-5431200	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1982	1342200	-1810400	-2263000	-2715600	-3168200	-3620800	-4073400	-4526000	-4978600	-5431200	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1983	1342200	-1810400	-2263000	-2715600	-3168200	-3620800	-4073400	-4526000	-4978600	-5431200	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1984	1342200	1789600	2237000	2596002	-3168200	-3620800	-4073400	-4526000	-4978600	-5431200	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1985	1342200	1789600	2237000	2684400	3131800	3579200	4026600	4474000	4953199	5383315	5814375	6132850	6386514	6446205	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1986	1342200	1656699	2070874	2485048	2899223	3313398	3727572	4141747	4521480	4930892	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-76942 00	-7694200
1987	1342200	1789600	2237000	2684400	3131800	3579200	4026600	-4526000	-4978600	-5431200	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1988	1342200	1789600	2237000	2684400	3131800	3579200	4026600	4474000	4921400	5368800	5816200	6263600	5691399	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
1989	1342200	1789600	2237000	2684400	3131800	3579200	4026600	4474000	4887978	-5431200	-5883800	-6336400	-6789000	-7241600	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200	-7694200
MEDIA	1342200	866204	1082755	1294886	1200856	1372407	1543958	1229828,95	896459	-87011	-1272436,3	-2038507,3	-4206072,7	-5849182,7	-6950650,6	-6950650,6	6950650,6	-6950650,6	-6950650,6	-6950650,6	-6950650,6
DESV. P.	0	1586068,05	1982585	2376474	2935462	3354813	3774165	4337828	4923082	5483976	5796366	6011560	5302321	4286456	3325254,01	3325254,01	3325254,01	3325254,01	3325254,01		3325254,01
TOTAL	26844000	17324072	21655092	25897710	24017126	27448144	30879162	24596579	17929180	-1740213	-25448725	-40770145	-84121453	-116983653	-139013012	-139013012	-1,39E+08	-1,39E+08	-139013012	-139013012	-139013012

PC 10 - Beneficios Liquidos (R\$)

MELANCIA

					MIN	rei de outorg	g a														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	1161550	-2943550	-3636150	-4328750	-5021350	-5713950	-6406550	-7099150	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750
1971	1161550	1518950	1876350	2233750	2591150	2948550	-6406550	-7099150	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750
1972	1161550	1518950	1876350	2233750	2591150	2948550	3305950	3663350	3678625	3678625	3678625	3678625	3678625	3678625	3678625	3678625	3678625	3678625	3678625	3678625	3678625
1973	1161550	1518950	1876350	2233750	2591150	2948550	2947607	-7099150	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750
1974	1161550	1518950	1876350	2233750	2591150	2948550	3305950	3663350	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750
1975	1161550	1518950	1876350	2233750	2591150	2948550	3305950	3627403	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750
1976	1161550	1518950	1876350	2233750	2591150	-5713950	-6406 550	-7099150	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7 7 91750	-7791750
1977	1161550	1518950	1876350	2233750	2591150	2948550	-6406550	-7099150	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750
1978	1161550	1518950	1876350	2233750	2591150	2948550	3305950	3663350	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750
1979	1161550	1518950	1876350	2233750	2591150	2948550	3305950	3663350	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750
1980	1161550	1518950	1876350	2233750	2591150	2948550	3305950	3663350	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-77 91750	-7791750
1981	1161550	1518950	1876350	2233750	2591150	2948550	3305950	3663350	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750
1982	1161550	1518950	1876350	2233750	2591150	2948550	3305950	-7099150	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750
1983	1161550	1518950	1876350	2233750	2591150	2948550	-6406550	-7099150	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750
1984	1161550	1518950	1876350	2233750	-5021350	-5713950	-6406550	-7099150	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750
1985	1161550	1518950	1876350	2233750	2591150	2948550	3305950	3663350	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750
1986	1161550	1518950	1876350	2233750	2591150	2948550	3305950	3663350	3424620	3424620	3424620	3424620	3424620	3424620	3424620	3424620	3424620	3424620	3424620	3424620	3424620
1987	1161550	1518950	1876350	2233750	2591150	2948550	2446423	-7099150	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-77 917 50
1988	1161550	1518950	1876350	2233750	2591150	2948550	3305950	3663350	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750	4020750
1989	1161550	1518950	1876350	2233750	2591150	2948550	3305950	3616845	-7791750	-7791750	-7791750	-7791750	-7791750	-779175 0	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750	-7791750
MEDIA	1161550	1295825	1600725	1905625	1829900	1649175	331307	-1183897,6	-4294912,8	-4294912,8	-4294912,8	-4294912,8	-4294912,8	-4294912,8	-4294912,8	-4294912,8	-4294912,8	-4294912,8	-4294912,8	-4294912,8	-4294912,8
DESV. P.	0	997845	1232632	1467420	2343078	3173486	4529977	5489559	5481834	5481834	5481834	5481834	5481834	5481834	5481834	5481834	5481834	5481834	5481834	5481834	5481834
TOTAL	23231000	25916500	32014500	38112500	36598000	32983500	6626130	-23677952	-85898255	-85898255	-85898255	-85898255	-85898255	-85898255	-85898255	-85898255	-858982 55	-85898255	-85898255	-85898255	-85898255

PC 10 - Beneficios Liquidos (R\$)

FEIJÃO

اهرينا	de	oi itoraa	

					Ni	vel de outor	ga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	99450	-991950	-1225350	-1458750	-1692150	-1925550	-2158950	-2392350	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750
1971	99450	130050	160650	191250	221850	252450	-2158950	-2392350	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-262575 0	-2625750
1972	99450	130050	160650	191250	221850	252450	283050	313650	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250
1973	99450	130050	160650	191250	221850	252450	283050	313650	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250
1974	99450	130050	160650	191250	221850	252450	283050	313650	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250
1975	99450	130050	160650	191250	221850	252450	283050	313650	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750
1976	99450	130050	160650	191250	221850	-1925550	-2158950	-2392350	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750
1977	99450	130050	160650	191250	221850	252450	-2158950	-2392350	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750
1978	99450	130050	160650	191250	221850	252450	283050	313650	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250
1979	99450	130050	160650	191250	221850	252450	283050	313650	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250
1980	99450	130050	160650	191250	221850	252450	283050	313650	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250
1981	99450	130050	160650	191250	221850	252450	283050	313650	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250
1982	99450	130050	160650	191250	221850	252450	283050	-2392350	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750
1983	99450	130050	160650	191250	221850	252450	-2158950	-2392350	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750
1984	99450	130050	160650	191250	208909	-1925550	-2158950	-2392350	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750
1985	99450	130050	160650	191250	221850	252450	283050	313650	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250
1986	99450	130050	160650	191250	221850	252450	283050	313650	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750
1987	99450	130050	160650	191250	221850	252450	-2158950	-2392350	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750
1988	99450	130050	160650	191250	221850	252450	283050	313650	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250	344250
1989	99450	130050	160650	191250	221850	252450	283050	-2392350	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750	-2625750
•																					
MEDIA	99450	73950	91350	108750	125502,95	-74250	-571650	-904050	-1289250	-1289250	-1289250	-1289250	-1289250	-1289250	-1289250	-1289250	-1289250	-1289250	-1289250	-1289250	-1289250
DESV. P.	0	250886,827	309919,022	368951,216	427840,87	797904,961	1195018,3	1381190,53	1515940,82	1515940,82	1515940,82	1515940,82	1515940,82	1515940,82	1515940,82	1515940,82	1515940,82	1515940,82	1515940,82	1515940,82	1515940,82
TOTAL	1989000	1479000	1827000	2175000	2510059	-1485000	-11433000	-18081000	-25785000	-25785000	-25785000	-25785000	-25785000	-25785000	-25785000	-25785000	-25785000	-25785000	-25785000	-25785000	-25785000

PC 10 - Beneficios Liquidos (R\$)

					Niv	el de outor	ga														
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1971	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1972	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1973	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1974	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1975	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1976	129128	163004	129463	45768	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1977	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-12876 00	-1287600	-1287600	-1287600	-1287600
1978	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1979	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1980	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1981	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1982	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1983	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1984	129128	163004	128574	44986	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1985	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1986	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1987	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1988	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
1989	129128	163004	129853	46328	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
MEDIA	129128	163004	129770	46233	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600	-1287600
DESV. P.	0	0	295	319	0	Đ	0	0	0	0	0	0	0	0	0	0	D	0	0	0	0
TOTAL	2582560	3260080	2595391	924658	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000	-25752000

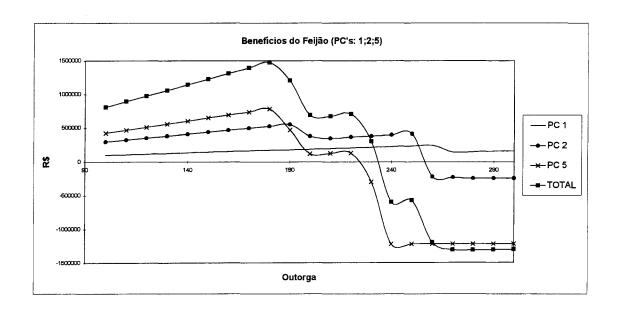
PC 10 - Beneficios Liquidos (R\$)

					Ní	vel de outor	ga												•		
ANO	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
1970	1454050	1749712	2161409	-2828750	-3281350	-3733950	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1971	1454050	1810059	2235956	2661852	3087748	-3733950	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1972	1454050	1861528	2299535	2737542	3175549	3613333	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1973	1454050	1846282	2280701	2715121	3149540	3583959	4018379	4452798	4544931	4544931	4544931	4544931	4544931	4544931	4544931	4544931	4544931	4544931	4544931	4544931	4544931
1974	1454050	1901450	2348850	2796250	3243650	3571203	-4186 550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1975	1454050	1883702	2326926	2770150	2882974	-3733950	-4186 550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1976	1454050	1901450	2348850	2796250	3243650	3362160	-41865 50	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	- 50917 50
1977	1454050	-1923550	-2376150	-2828750	-3281350	-3733950	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1978	1454050	1901450	2348850	2796250	3243650	3536268	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1979	1454050	-1923550	-2376150	-2828750	-3281350	-3733950	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1980	1454050	1901450	2348850	2796250	3243650	3592565	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1981	1454050	-1923550	-2376150	-2828750	-3281350	-3733950	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1982	1454050	-1923550	-2376150	-2828750	-3281350	-3733950	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1983	1454050	-1923550	-2376150	-2828750	-3281350	-3733950	-4186550	-463915 0	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1984	1454050	1838835	-2376150	-2828750	-3281350	-3733950	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1985	1454050	1901450	2348850	2796250	3243650	3684382	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1986	1454050	1760242	2174417	2588592	2980066	-3733950	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1987	1454050	1901450	2348850	2796250	-3281350	-3733950	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1988	1454050	1901450	2348850	2796250	3243650	3691050	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
1989	1454050	1901450	2348850	2796250	3221015	-3733950	-4186550	-4639150	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750	-5091750
MEDIA	1454050	917211	900642	802100	585400	-808624	-3776304	-4184552,6	-4609916	-4609916	-4609916	-4609916	-4609916	-4609916	-4609916	-4609916	-4609916	-4609916	-4609916	-4609916	-4609916
DESV. P.	0	1683336	2201596	2734031	3240508	3676382	1834678	2033021	2154827	2154827	2154827	2154827	2154827	2154827	2154827	2154827	2154827	2154827	2154827	2154827	2154827
TOTAL	29081000	18344210	18012844	16042007	11707992	-16172480	-75526071	-83691052	-92198319	-92198319	-92198319	-92198319	-92198319	-92198319	-92198319	-92198319	-92198319	-92198319	-92198319	-92198319	-92198319

Critério do VALOR MÉDIO

ANEXO 8.1

FEIJÃO


Beneficios Líquidos (R\$)

Nível de					Nível de	
Outorga	PC 1	PC 2	PC 5	TOTAL	Outorga	PC 7
100	94860	291796	421101	807757	100	8874
110	104346	320976	466638	891960	110	9761
120	113832	350155	511724	975711	120	10648
130	123318	379335	556810	1059463	130	11536
140	132804	408514	601896	1143214	140	12423
150	142290	437694	646981	1226965	150	13311
160	151776	466874	692067	1310717	. 160	14198
170	161262	496053	737153	1394468	170	1508
180	170748	626233	782239	1478220	180	1597
190	180234	554412	470440	1205086	190	16860
200	189720	381242	119743	690705	200	10092
210	199206	348439	125931	673576	210	2557
220	208692	365031	132119	705842	220	2679
230	218178	381623	-296373	303428	230	2801
240	227664	398216	-1221767	-595887	240	2923
250	237150	414808	-1221767	-569809	250	3045
260	246636	-223138	-1221767	-1198269	260	3166
270	145638	-231720	-1221767	-1307849	270	-7135
280	151032	-243310	-1221767	-1314045	280	-1802
290	156426	-243310	-1221767	-1308651	290	-1876
300	161820	-243310	-1221767	-1303257	300	-4228

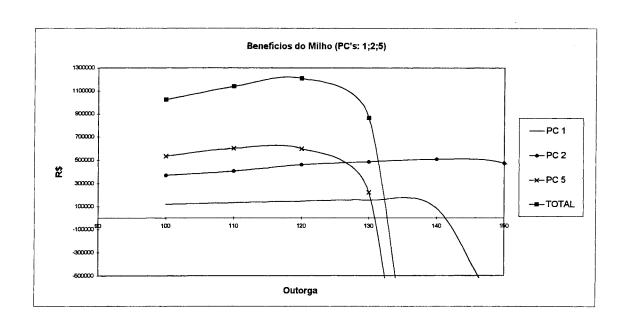
Nível de				Nível de				
Outorga	9	10	TOTAL	Outorga	PC 3	PC 4	PC 5	TOTAL
100	91800	99450	191250	100	56610	1606 50	421101	638361
110	122400	73950	196350	110	62271	176715	466638	705624
120	153000	91350	244350	120	67932	192780	511724	772436
130	183600	108750	292360	130	73593	208845	556810	839248
140	121800	125503	247303	140	79254	224910	601896	906060
150	139200	-74250	64950	150	84915	240975	646981	972871
160	156600	-571650	-415050	160	90576	257040	692067	1039683
170	174000	-90405 0	-730050	170	96237	273105	737153	1106495
180	191400	-1289250	-1097850	180	101898	289170	782239	1173307
190	208800	-1289250	-1080450	190	107559	305235	470440	883234
200	54600	-1289250	-1234650	200	113220	321300	119743	554263
210	58800	-1289250	-1230450	210	118881	337365	125931	582177
220	-135000	-1289250	-1424250	220	124542	353430	132119	610091
230	-355200	-1289250	-1644450	230	130203	369495	-296373	203325
240	-1050600	-1289250	-2339850	240	135864	385560	-1221767	-700343
250	-1050600	-1289250	-2339850	250	141525	401625	-1221767	-678617
260	-1050600	-1289250	-2339850	260	147186	417690	-1221767	-656891
270	-1050600	-1289250	-2339850	270	86913	5953 5	-1221767	-1075319
280	-1050600	-1289250	-2339850	280	90132	61740	-1221767	-1069895
290	-1050600	-1289250	-2339850	290	93351	6394 5	-1221767	-1064471
300	-1050600	-1289250	-2339850	300	96570	66150	-1221767	-1059047

 Cultura
 Outorga
 Ben. (R\$)

 Feijão
 130;180;190
 2330244

Critério do VALOR MÉDIO

ANEXO 8.2


MILHO

Beneficios Líquidos (R\$)

Nível de					Nivel de	
Outorga	PC 1	PC 2	PC 5	TOTAL	Outorga	PC 7
100	119970	369036	536026	1025032	100	113648
110	131985	405941	601928	1139854	110	126083
120	148097	462921	598561	1209579	120	128895
130	155713	486587	221488	863787	130	67615
140	86156	510749	-3493355	-2896450	140	12613
150	-823140	474875	-3493355	-3841620	150	-772562
160	-823140	176178	-3493355	-4140316	160	-772562
170	-823140	-2879053	-3493355	-7195548	170	-772562
180	-823140	-2 87905 3	-3493355	-7195548	180	-772562
190	-823140	-287905 3	-3493355	-7195548	190	-772562
200	-823140	-2879053	-3493355	-7195548	200	-772562
210	-823140	-287905 3	-3493355	-71 95 548	210	-772562
220	-823140	-2879053	-3493355	-7195548	220	-772562
230	-823140	-2879053	-3493355	-7195548	230	-772562
240	-823140	-287905 3	-3493355	-7195548	240	-772562
250	-823140	-2879053	-3493355	-7195548	250	-772562
260	-823140	-2879053	-3493355	-7195548	260	-772562
270	-823140	-2 87905 3	-3493355	-7195548	270	-772562
280	-823140	-2879053	-3493355	-7195548	280	-772562
290	-823140	-2879053	-3493355	-7195548	290	-772562
300	-823140	-2879053	-3493355	-7195548	300	-772562

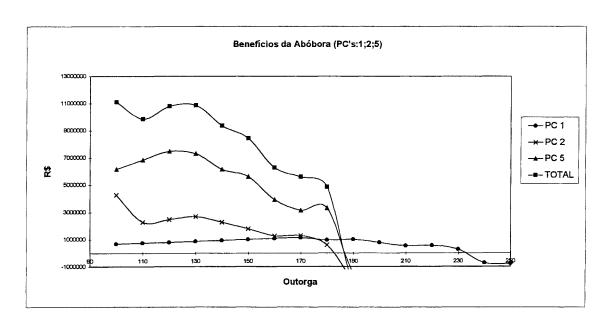
Nivel de				Nível de				
Outorga	9	10	TOTAL	Outorga	PC 3	PC 4	PC 5	TOTAL
100	119196	129128	248324	100	74841	203446	536026	814313
110	158607	163004	321611	110	78877	235420	601928	916226
120	83350	129770	213120	120	38443	250311	598561	887315
130	3188	46233	49421	130	-427128	269198	221488	63558
140	-1243200	-1287600	-2530800	140	-459984	109700	-3493355	-3843639
150	-1243200	-1287600	-2530800	150	-459984	4910,8	-3493355	-3948428
160	-1243200	-1287600	-2530800	160	-459984	-1491840	-3493355	-5445179
170	-1243200	-1287600	-2530800	170	-459984	-1491840	-3493355	-5445179
180	-1243200	-1287600	-2530800	180	-459984	-1491840	-3493355	-5445179
190	-1243200	-1287600	-2530800	190	-459984	-1491840	-3493355	-5445179
200	-1243200	-1287600	-2530800	200	-459984	-1491840	-3493355	-5445179
210	-1243200	-1287600	-2530800	210	-459984	-1491840	-3493355	-5445179
220	-1243200	-1287600	-2530800	220	-459984	-1491840	-3493355	-5445179
230	-1243200	-1287600	-2530800	230	-459984	-1491840	-3493355	-5445179
240	-1243200	-1287600	-2530800	240	-459984	-1491840	-3493355	-5445179
250	-1243200	-1287600	-2530800	250	-459984	-1491840	-3493355	-5445179
260	-1243200	-1287600	-2530800	260	-459984	-1491840	-3493355	-5445179
270	-1243200	-1287600	-2530800	270	-459984	-1491840	-3493355	-5445179
280	-1243200	-1287600	-2530800	280	-459984	-1491840	-3493355	-5445179
290	-1243200	-1287600	-2530800	290	-459984	-1491840	-3493355	-5445179
300	-1243200	-1287600	-2530800	300	-459984	-1491840	-3493355	-5445179

Cultura Milho Outorga 110;120 Ben. (R\$) 1974382

Critério do VALOR MÉDIO

ANEXO 8.3

ABÓBORA


Beneficios Líquidos (R\$)

Nivel de					Nível de	
Outorga	PC 1	PC 2	PC 5	TOTAL	Outorga	PC 7
100	671308	4266324	6156889	11094521	100	49749
110	738439	2271488	6822677	9832604	110	54724
120	805569	2477987	7481873	10765429	120	59699
130	872700	2684486	7295347	10852533	130	64411
140	939831	2278337	6144843	9363010	140	69013
150	1006962	1801871	5628119	8436952	150	73581
160	1074093	1263441	3941242	6278775	160	36695
170	1141223	1305924	3148768	5595915	170	18388
180	952414	599355	3310111	4861880	180	18623
190	998308	-1808282	-1381431	-2191406	190	-3040
200	779654	-1952237	-1715006	-2887589	200	-5912
210	539868	-215 42 38	-1715006	-3329376	210	-65173
220	559290	-215423 8	-1715006	-3309954	220	-65173
230	258967	-21 542 38	-1715006	-3610277	230	-65173
240	-745241	-2154238	-1715006	-4614484	240	-6517
250	-776292	-2154238	-1715006	-4645536	250	-65173
260	-812162	-2154238	-1715006	-4681406	260	-6517
270	-884676	-2154238	-1715006	-4753920	270	-65173
280	-939719	-2154238	-1715006	-4808963	280	-65173
290	-2113687	-2154238	-1715006	-5982930	290	-65173
300	-2588971	-2154238	-1715006	-6458215	300	-65173

Nivel de				Nív e l de				
Outorga	9	10	TOTAL	Outorga	PC 3	PC 4	PC 5	TOTAL
100	1342200	1454060	2796260	100	827690	2348860	6156889	9333429
110	866204	917211	1783414	110	440681	1250581	6822677	8513939
120	1082755	900642	1983397	120	480743	1364271	7481873	9326886
130	1294886	802100	2096986	130	520805	1474762	7295347	9290914
140	1200856	585400	1786256	140	560867	1260899	6144843	7966608
150	1372407	-808624	563783,2	150	600929	1350963	5628119	7580011
160	1543958	-3776304	-2232345	160	640991	1441028	3941242	6023260
170	1229829	-41 845 53	-2954724	170	681053	1531092	3148768	5360912
180	896459	-4609916	-3713457	180	718282	1611911	3310111	5640304
190	-87011	-4609916	-4696927	190	753939	1695380	-1381431	1067889
200	-1272436	-4609916	-5882352	200	466002	1775569	-1715006	5 265 65
210	-2038507	-4609916	-6648423	210	322283	900667	-1715006	-492055
220	-42060 73	-460991 6	-8815989	220	335877	4429 59	-1715006	-936170
230	-5849183	-4609916	-10459099	230	338943	437390	-1715006	-938673
240	-6950651	-4609916	-11560567	240	157636	441020	-1715006	-1116350
250	-6950651	-4609916	-11560567	250	-48735	-723829	-1715006	-2487570
260	-6950651	-4609916	-11560567	260	-483124	-1385382	-1715006	-3583512
270	-6950651	-4609916	-11560567	270	-483124	-1481074	-1715006	-3679203
280	-6950651	-4609916	-11560567	280	-483124	-1481074	-1715006	-3 67920 3
290	-6950651	-4609916	-11560567	290	-483124	-1481074	-1715006	-3 67920 3
300	-6950651	-4609916	-11560567	300	-483124	-1481074	-1715006	-3679203

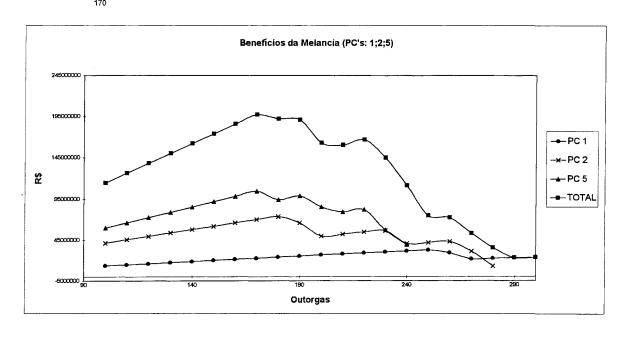
 Cultura
 Outorga
 Ben. (R\$)

 Abóbora
 110;120
 17802921

Critério da RENDA FIXA com DEPÓSITO INICIAL

ANEXO 9.1

MELANCIA


Valor Presente dos Beneficios Líquidos (R\$)

%Q7,10	PC 1	PC 2	PC 5	TOTAL			%Q7.10	PC7	
100	13470464	41436089	59797933	114704486			100	12601401	=
110	14817510	45579697	66264312	126661519			110	13861542	
120	16164556	49723304	72666655	138554516			120	15121682	
130	17511603	53866912	79069010	150447524			130	16381822	
140	18858649	58010520	85471352	162340521			140	17632091	
150	20205695	62122116	91873707	174201518			150	18877356	
160	21552742	66145252	98276050	185974043			160	20017325	
170	22899788	70091632	104624491	197615911			170	18646188	
180	24246834	73773742	94359532	192380109			180	19677998	
190	25593881	66138639	99267162	190999682			190	16823490	
200	26927052	50094365	85868173	162889590			200	17677113	
210	28255664	52599084	79641106	160495854					
220	29512111	55103801	82371926				210	18508289	
				166987838			220	19141120	
230	30728029	56950694	57530210	145208933			230	17516538	
240	31854043	40799183	39376373	112029599			240	12473060	
250	33181295	42161563	i	75342857			250	10013727	
260	29422451	43322004		72744455			260	10110945	
270	21985001	31477801		53462802			270	6123674	
280	22799261	13159627		35958888			280	6122125	
290	23394222			23394222			290		
300	24085433		ĺ	24085433			300	ĺ	
%Q7,10	PC9	PC10	TOTAL	-	%Q7,10	PC 3	PC 4	PC 5	TOTAL
100	13035933	14122260	27158192,71		100	8038825	22812882	59797933	90649640
110	17381243	15754791	33136034,64		110	8842708	25094170	66264312	100201190
120	21726554	19461801	41188355,19		120	9646590	27375458	72666655	109688703
130	26059510	23168811	49228321		130	10450473	29656746	79069010	119176229
140	25949068	22248137	48197205,4		140	11254355	31938035	85471352	128663742
150	29656078	20050862	49706939,62		150	12058238	34219323	91873707	138151267
160	33363087	4028063	37391150		160	12862120	36500611	98276050	147638781
170	37070097		37070097		170	13666003	38781899	104624491	157072393
180	40706255		40706255		180	14469885	41063187	94359532	149892604
190	44193504		44193504		190	15273768	43344476	99267162	157885405
200	30943803		30943803		200	16077650	45625764	85868173	147571587
210	36425133		36425133		210	16862786	47907052	79641106	144410944
220	7495449		7495449		220	17626739	50036396	82371926	150035061
230					230	18356511	51969713	57530210	127856435
240					240	19083717	47495300	39376373	105955390
250					250	19829845	49394967	300.00.0	69224812
260					260	17578485	41668205		59246690
270					270	15317844	43079637		58397480
280			!		280	13606010	44588958		
290					290		45603649		58194969
300			1			13961068			59564717
					300	14411405	55733182		70144587

 Cultura
 Outorga
 VPL (R\$)

 Melancia
 150;160
 319788078

 170
 319788078

Critério da RENDA FIXA com DEPÓSITO INICIAL

ANEXO 9.2

FEIJÃO

Valor Presente dos Beneficios Líquidos (R\$)

%Q7,10	PC 1	PC 2	PC 5	TOTAL	%Q7,10	PC 7
100	1153319	3547690	5119795	9820804	100	1078911
110	1268651	3902464	5673439	10844554	110	1186802
120	1383983	4257225	6221600	11862808	120	1294694
130	1499315	4611999	6769761	12881075	130	1402585
140	1614647	4966761	7317922	13899329	140	1510476
150	1729978	5321535	7866070	14917583	150	1618367
160	1845310	5676308	8414231	15935850	160	1726258
170	1960642	6031070	8962392	16954104	170	1834149
180	2076374	6385844	\$610663	17972371	180	1942040
190	2191306	6740606	5719663	14651574	190	2049931
200	2306638	5009437	1455840	8771914	200	1226997
210	2421970	4236353	1531079	8189401	210	310980
220	2537302	4438089	1606318	8581709	220	325789
230	2652634	4639825		7292458	230	340597
240	2767965	4841549		7609515	240	355406
250	2883297	5043285		7 9265 83	250	370215
260	2998629			2998629	260	38502 3
270	1770684			1770684	270	
280	1836265			1836265	280	
290	1901846			1901846	290	
300	1967426			1967426	300	

%Q7,10	PC9	PC10	TOTAL	%Q7,10	PC 3	PC 4	PC 5	TOTAL
100	1116115	1209125	2325240	100	688271	1953201	5119795	7761267
110	1488153	899093	2387246	110	757098	2148522	5673439	8579059
120	1860192	1110644	2970836	120	825925	2343842	6221600	9391367
130	2232230	1322195	3654425	130	894752	2539162	6769761	10203675
140	1480859	1525879	3006738	140	963579	2734482	7317922	11015983
150	1692410		1692410	150	1032406	2929802	7866070	11828279
160	1903961		1903961	160	1101234	3125122	8414231	12640587
170	2115512		2115512	170	1170061	3320442	8962392	13452895
180	2327064		2327064	180	1238888	3615763	9510553	14265203
190	2538615		2538615	190	1307715	3711083	5719663	10738460
200	663833		663833	200	1376542	3906403	1455840	6738784
210	714897		714897	210	1445369	4101723	1531079	7078171
220				220	1514196	4297043	1606318	7417557
230				230	1583023	449236 3		6075386
240				240	1651850	4687683		6339534
250				250	1720677	4883004		6603681
260				260	1789505	5078324		6867828
270				270	1056698	723833		1780532
280				280	1095835	750642	1	1846477
290				290	1134972	777451		1912423
300				300	1174109	804259		1978369

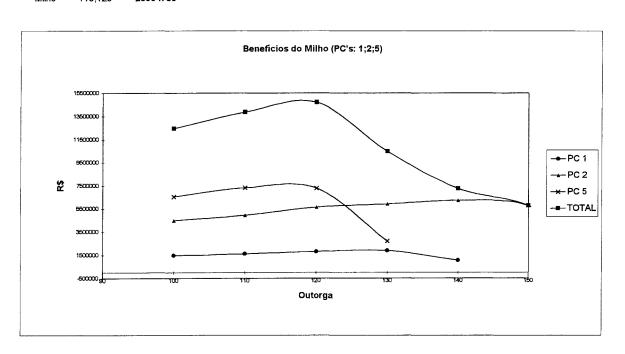
 Cultura
 Outorga
 VPL (R\$)

 Feijão
 130;180;19
 28331378

Beneficios do Feijão (PC's:3;4;5) 160000000 14000000 12000000 —PC 3 10000000 ----PC 4 & 8000000 -<u>→</u>-PC 5 6000000 ■--TOTAL 4000000 2000000 90 140 190 240 Outorga

Critério da RENDA FIXA com DEPÓSITO INICIAL

ANEXO 9.3


MILHO

Valor Presente dos Beneficios Líquidos (R\$)

%Q7,10	PC 1	PC 2	PC 5	TOTAL		%Q7,10	PC 7
100	1458609	4486783	6517067	12462458	-	100	1381746
110	1604689	4935478	7318314	13858481		110	1532932
120	1800581	5628247	7277374	14706202		120	1567120
130	1893177	5915980	2692876	10502033		130	822325
140	1047489	6209744		7257233		140	153355
150		5773587		5773587		150	
160		2146298		2146298		160	
170						170	
180						180	
190						190	
200						200	
210						210	
220						220	
230						230	
240						240	
250						250	
260						260	
270						270	
280						280	
290						290	
300						300	

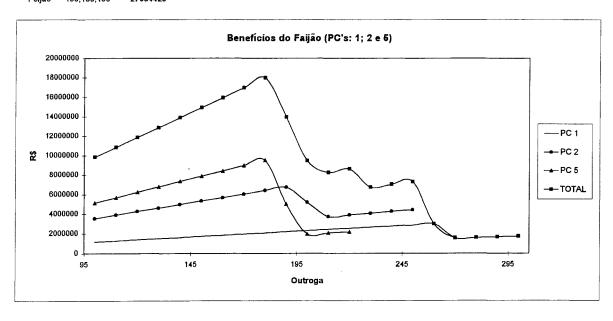
%Q7,10	PC9	PC10	TOTAL	%Q7,10	PC 3	PC 4	PC 5	TOTAL
100	449199	1569953	2019152	100	909926	2473520	6517067	9900512
110	928366	1981822	2910178	110	958996	2862264	7318314	11139673
120	13514	1577775	1591289	120	467394	3043310	7277374	10788079
130	38758	562105	600863	130		3272941	2692876	5965816
140				140		1333777		1333777
150				150		59706		59706
160			İ	160				
170				170				
180				180				
190				190				
200				200				
210				210				
220				220				
230				230				
240				240				
250				250				
260				260				
270			1	270				
280				280				
290			1	290				
300				300				

Cultura Milho Outorga 110;120 VPL (R\$) 23004760

Critério da RENDA FIXA sem DEPÓSITO INICIAL

ANEXO 10.1

FEIJÃO


Valor Presente	dos	Beneficios	Líquidos (R\$)
			- danage (1.14	,

Nível de							Ní∨ e l de		
Outorga	PC 1	PC 2	PC 5	TOTAL			Outorga	PC 7	
100	1153319	3547690	5119795	9820804	-		100	1078911	_
110	1268651	3902464	5673439	10844554			110	1186802	
120	1383983	4257225	6221600	11862808			120	1294694	
130	1499315	4611999	6769761	12881075			130	1402585	
140	1614647	4966761	7317922	13899329			140	1510476	
150	1729978	5321535	7866070	14917583			150	1618367	
160	1845310	5676308	8414231	15935850			160	1726258	
170	1960642	6031070	8962392	16954104			170	1834149	
180	2075974	6385844	9510553	17972371			180	1942040	
190	2191306	6740606	5026915	13958826			190	2049931	
200	2306638	5192992	1971794	9471425			200	1078387	
210	2421970	3723258	2073698	8218926			210	421192	
220	2537302	3900561	2175602	8613464			220	441249	
230	2652634	4077864		6730497			230	461306	
240	2767965	4255155		7023121			240	481363	
250	2883297	4432458		7315755			250	501420	
260	2998629			2998629			260	521476	
270	1556224			1556224			270		
280	1613862			1613862			280		
290	1671500			1671500			290		
300	1729138			1729138			300		
Nivel de					Nív e l de		,		
Outorga	9	10	TOTAL		Outorga	PC 3	PC 4	PC 5	Тот
100	1116115	1209125	2325240	•	100	688271	1953201	5119795	7761
110	1488153	459163	1947317		110	757098	2148522	5673439	8579
	1860192	567201	2427393		120	825925	2343842	6221600	9391
120	1000192	367201	242/383		120	623923	2343042	0221000	9391

Nivel de				Nível de				
Outorga	9	10	TOTAL	Outorga	PC 3	PC 4	PC 5	TOTAL
100	1116115	1209125	2325240	100	688271	1953201	5119795	7761267
110	1488153	459163	1947317	110	757098	2148522	5673439	8579059
120	1860192	567201	2427393	120	825925	2343842	6221600	9391367
130	2232230	675240	2907470	130	894752	2539162	6769761	10203675
140	756269	777554	1533823	140	963579	2734482	7317922	11015983
150	864307		864307	150	1032406	2929802	7866070	11828279
160	972345		972345	160	1101234	3125122	8414231	12640587
170	1080384		1080384	170	1170061	3320442	8962392	13452895
180	1188422		1188422	180	1238888	3515763	9510553	14265203
190	1296460		1296460	190	1307715	3711083	5026915	10045712
200				200	1376542	3906403	1971794	7254739
210			1	210	1445369	4101723	2073698	7620790
220				220	1514196	4297043	2175602	7986841
230				230	1583023	4492363		6075386
240				240	1651850	4687683		6339534
250			1	250	1720677	4883004		6603681
260			1	260	1789505	5078324		6867828
270				270	928714	980362		1909076
280				280	963111	1016672		1979783
290				290	997508	1052981		2050489
300			1	300	1031905	1089291		2121196

 Cultura
 Outorga
 VPL (R\$)

 Feijão
 130;180;190
 27684423

Critério da RENDA FIXA sem DEPÓSITO INICIAL

ANEXO 10.2

MILHO

Valor Presente dos Beneficios Líquidos (R\$)

Nivel de					Nível de	
Outorga	PC 1	PC 2	PC 5	TOTAL	Outorga	PC 7
100	1458609	4486783	6517067	12462458	100	1381746
110	1604689	4935478	7318283	13858450	110	1532932
120	1800581	5628247	7276824	14705652	120	1567120
130	1893214	5916595	2693605	10503414	130	822743
140	1048078	6214500		7262577	140	153533
150		5776762		5776762	150	
160		2149025		2149025	160	
170					170	
180					180	
190					190	
200					200	
210					210	
220					220	
230					230	
240					240	
250					250	
260					260	
270					270	
280					280	
290					290	
300					300	

Nível de					Nível de				
Outorga	9	10	TOTAL		Outorga	PC 3	PC 4	PC 5	TOTAL
100	1449199	1569953	3019152	•	100	909926	2473520	6517067	9900512
110	1927732	1981822	3909554		110	958938	2862264	7318283	11139484
120	1013959	1577927	2591886		120	467326	3043310	7276824	10787460
130	38774	562273	601047		130		3273749	2693605	5967354
140					140		1335039		1335039
150					150		59819		59819
160					160				
170					170				
180					180				
190					190				
200					200				
210]		210				
220					220				
230					230				
240					240				
250					250				
260					260				
270					270				1
280					280				
290					290				
300					300				

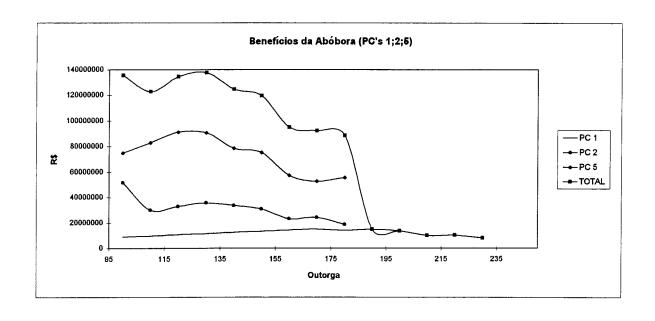
 Cultura
 Outorga
 VPL (R\$)

 Milho
 110;120
 24003528

Critério da RENDA FIXA sem DEPÓSITO INICIAL

ANEXO 10.3

ABÓBORA


Valor Presente dos Beneficios Líquidos (R\$)

Nível de					Nivel de	
Outorga	PC 1	PC 2	PC 5	TOTAL	Outorga	PC
100	8907842	51870464	74856174	135634480	100	7178
110	9798625	30141249	82950902	122890776	110	7896
120	10689409	32881361	90965484	134536253	120	8614
130	11580194	35621478	90487005	137688677	130	9293
140	12470977	33712840	78593529	124777346	140	9955
150	13361762	30957875	75177092	119496729	150	10613
160	14252546	23231473	57426156	94910174	160	6728
170	15143329	24272917	52728199	92144446	170	5494
180	14093012	18569775	55568118	88230905	180	5700
190	14795117			14795117	190	
200	13406322			13406322	200	
210	9923210			9923210	210	
220	10323992			10323992	220	
230	7847681			7847681	230	
240					240	
250					250	
260					260	
270					270	
280					280	
290					290	
300					300	

Nível de				Nível de				
Outorga	9	10	TOTAL	Outorga	PC 3	PC 4	PC 5	TOTAL
100	16318623,95	17678509	33997133	100	10063151	28557592	74856174	113476917
110	11493988	12184667	23678655	110	5847567	16594445	82950902	105392914
120	14367487	12995987	27363474	120	6379163	18103032	90965484	115447679
130	17201884	10069558	27271442	130	6910760	19583332	90487005	116981098
140	17327983	8994223	26322206	140	7442356	18194382	78593529	104230268
150	19803409		19803409	150	7973955	19493981	75177092	102645028
160	22278836		22278836	160	8505551	20793580	57426156	86725287
170	20746461		20746461	170	9037148	22093178	52728199	83858526
180	13759074		13759074	180	9523821	23254610	55568118	88346548
190				190	10004156	24455648		34459803
200			i	200	8006953	25619281		33626235
210				210	5922837	16221162		22144000
220				220	6186953	13044019		19230972
230				230	6310318	13280488		19590806
240				240	4837582	13655134		18492716
250				250				
260				260				
270			1	270				
280			i	280				
290				290				
300				300				

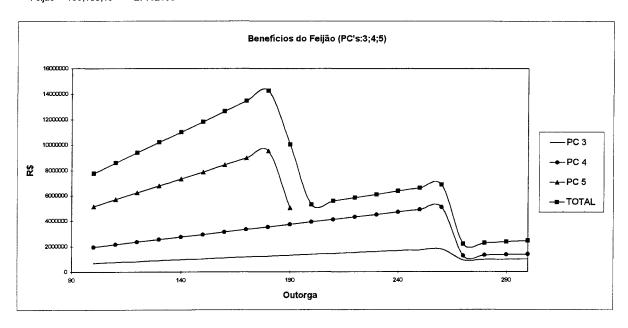
 Cultura
 Outorga
 VPL (R\$)

 Abóbora
 110;130,150
 220920503

Critério do SEGURO

ANEXO 11.1

FEIJÃO


Valor Presente dos Benefícios Líquidos (R\$)

Nível de					Nível de	
Outorga	PC 1	PC 2	PC 5	TOTAL	Outorga	PC 7
100	1153319	3547690	5119795	9820804	100	1078911
110	1268651	3902464	5673439	10844554	110	1186802
120	1383983	4257225	6221600	11862808	120	1294694
130	1499315	4611999	6769761	12881075	130	1402585
140	1614647	4966761	7317922	13899329	140	1510476
150	1729978	5321535	7866070	14917583	150	1618367
160	1845310	5676308	8414231	15935850	160	1726258
170	1960642	6031070	8962392	16954104	170	1834149
180	2075974	6386844	9510553	17972371	180	1942040
190	2191306	6740606	5026915	13958826	130	2048831
200	2306638	5192992		7499630	200	1078387
210	2421970	3723258		6145228	210	
220	2537302	3900561		6437863	220	
230	2652634	4077864		6730497	230	
240	276796 5	4255155		7023121	240	
250	2883297	4432458		7315755	250	
260	2998629			2998629	260	
270	1556224			1556224	270	
280	1613862			1613862	280	
290	1671500			1671500	290	
300	1729138			1729138	300	

Nivel de				Nível de				
Outorga	PC9	PC10	TOTAL	Outorga	PC 3	PC 4	PC 5	TOTAL
100	1116115,09	1209125	2326239,78	100	688271	1953201	5119795	7761267
110	1488153		1488153	110	757098	2148522	5673439	8579059
120	1860192		1860192	120	825925	2343842	6221600	9391367
130	2232230		2232230	130	894752	2539162	6769761	10203675
140				140	963579	2734482	7317922	11015983
150				150	1032406	2929802	7866070	11828279
160				160	1101234	3125122	8414231	12640587
170			İ	170	1170061	3320442	8962392	13452895
180			1	180	1238888	3515763	9610663	14265203
190				190	1307715	3711083	5026915	10045712
200				200	1376542	3906403		5282945
210				210	1445369	4101723		5547092
220				220	1514196	4297043		5811239
230				230	1583023	4492363		6075386
240				240	1651850	4687683		6339534
250				250	1720677	4883004		6603681
260				260	1789505	5078324		6867828
270			į	270	928714	1254747		2183461
280				280	963111	1301219		2264330
290				290	997508	1347691		2345199
300				300	1031905	1394163		2426068

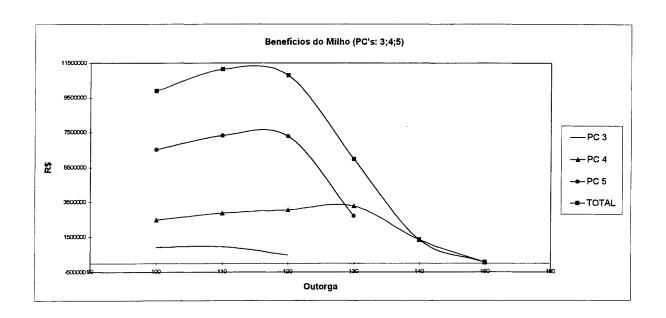
 Cultura
 Outorga
 VPL (R\$)

 Feijão
 100;180;19
 27102193

Critério do SEGURO

ANEXO 11.2

MILHO


Valor Presente dos Beneficios Líquidos (R\$)

Nivel de					Nivel de	
Outorga	PC 1	PC 2	PC 5	TOTAL	Outorga	PC 7
100	1458609	4486783	6517067	12462458	100	1381746
110	1604689	4935478	7318283	13858450	110	1532932
120	1800581	5628247	7276824	14705652	120	1567120
130	1893214	5916595	2693605	10503414	130	822743
140	1048078	6214500		7262 577	140	153533
150		5776762		5776762	150	
160		2149025		2149025	160	
170					170	
180					180	
190					190	
200					200	
210					210	
220					220	
230					230	
240				}	240	
250					250	
260					260	
270					270	
280					280	
290				1	290	
300					300	

Nível de				Nível de				
Outorga	9	10	TOTAL	Outorga	PC 3	PC 4	PC 5	TOTAL
100	1449199	1569953	3019152	100	909926	2473520	6517067	9900512
110	1927732	1981822	3909654	110	968938	2862264	7318283	11139484
120	1013959	1577927	2591886	120	467326	3043310	7276824	10787460
130	38774	562273	601047	130		3273749	2693605	5967354
140				140		1335039		1335039
150				150		59819		59819
160				160				
170				170				
180				180				
190			1	190				
200				200				
210]	210				
220				220				
230			1	230				
240				240				
250			1	250				
260				260				
270			1	270				
280				280				
290			1	290				
300				300				

 Cultura
 Outorga
 VPL (R\$)

 Milho
 110;120
 24003528

Critério do SEGURO

ANEXO 11.3

ABÓBORA


Valor Presente dos Beneficios Líquidos (R\$)

Nível de					Nível de	
Outorga	PC 1	PC 2	PC 5	TOTAL	Outorga	PC 7
100	8907842	51870464	74856174	135634480	100	7178735
110	9798625	30141249	82950902	122890776	110	7896609
120	10689409	32881361	90965484	134536253	120	8614483
130	11580194	35621478	90487005	137688677	130	9293050
140	12470977	33712840	78593529	124777346	140	9955122
150	13361762		75177092	88538853	160	1061395
160	14252546		57426156	71678702	160	
170	15143329			15143329	170	
180	14093012			14093012	180	
190	14795117			14795117	190	
200					200	
210					210	
220					220	
230					230	
240					240	
250					250	
260				ĺ	260	
270					270	
280					280	
290					290	
300					300	

Nível de				Nível de				
Outorga	9	10	TOTAL	Outorga	PC 3	PC 4	PC 5	TOTAL
100	16318623,96	17678609	33997133,24	100	10063161	28557531,92	74856173,69	113476917
110	11493988	12184667	23678655	110	5847567	16594445	82950902	105392914
120	14367487	12995987	27363474	120	6379163	18103032	90965484	115447679
130	17201884		17201884	130	6910760	19583332	90487005	116981098
140	17327983		17327983	140	7442356	18194382	78593529	104230268
150	19803409		19803409	150	7973955	19493981	75177092	102645028
160	22278836		22278836	160	8505551	20793580	57426156	86725287
170				170	9037148	22093178	ļ	31130326
180				180	9523821	23254610		32778431
190			1	190	10004156	24455648		34459803
200	1		1	200		25619281		25619281
210				210			1	
220			ļ	220]	
230				230			1	
240			1	240				
250				250			1	
260			1	260				
270			Ī	270				
280			1	280			ļ	
290	İ			290				
300				300			ŀ	

 Cultura
 Outorga
 VPL (R\$)

 Abóbora
 100;130;15
 220920502

