UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA 3
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

JESSICA IMLAU DAGOSTINI

Performance Improvements Applied in an
Electromagnetic Inversion Application
Focused on Homogeneous and
Heterogeneous Computational
Environments

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Advisor: Prof. Dr. Lucas Mello Schnorr

Porto Alegre
March 2022

CIP — CATALOGING-IN-PUBLICATION

Imlau Dagostini, Jessica

Performance Improvements Applied in an Electromagnetic
Inversion Application Focused on Homogeneous and Heteroge-
neous Computational Environments / Jessica Imlau Dagostini. —
Porto Alegre: PPGC da UFRGS, 2022.

78 .0 il

Thesis (Master) — Universidade Federal do Rio Grande do Sul.
Programa de Pés-Graduagao em Computagdo, Porto Alegre, BR—
RS, 2022. Advisor: Lucas Mello Schnorr.

1. HPC, mCSEM, MPI, Load Balancing, Oil/Gas. 1. Mello
Schnorr, Lucas. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos André Bulhdes

Vice-Reitora: Prof*. Patricia Pranke

Pré-Reitor de Pos-Graduagao: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informatica: Prof*. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung

Bibliotecdria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

“Success is to be measured not so much by the position that one has reached in
life, as by the obstacles which he has overcome while trying to succeed.”

— BOOKER T. WASHINGTON

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Prof. Lucas Mello Schnorr, for the oppor-
tunity of working together and all guidance during these past two years. It was not two
ordinary years for all of us, where we faced challenges that we never expected to have to
do. Even though, we adapt our work to this “new normal” and execute it with our best.
I am really glad for all support and knowledge you shared with me during this period of
my life.

I would also like to express my gratitude to the Federal University of Rio Grande
do Sul (UFRGS) and the Institute of Informatics (INF) for the opportunity of conducting
my research within its infrastructure (even no being in person due to the restrictions im-
posed by the pandemic). It was amazing to have the opportunity to be part of and interact
with this scientific community.

I want to express my warm thanks to my parents, Adelar and Elaine, for their
support and patience. It was not two regular years for them as well, but they supported
me and were my strength in moments where I did not believe in myself. Without them,
I wouldn’t be what I am today, and because of them, I'm here. I also want to thank my
boyfriend, Jean, for adding to my life during this important period. You were my friend,
advisor, and support, and I am really grateful for having you in my life.

I also want to thank my colleagues Ana Soldrzano, Valéria Girelli, and Jessica
Muller for the fantastic support network we build. I am sure that these two past years
would not be the same without our group. Thanks for all meetings where we planned
activities to bring more women to our community and for all chatting regarding any other
topic. Thanks for also presenting me to the Supercomputing community, where I could
learn a lot and discover opportunities that I never even imagined. I can not forget to
also thank Vinicius Garcia, that was not only a colleague but an unofficial advisor. All
our discussions, your support of my ideas, and all your help were really decisive to the
execution of my research.

This research was financed by Petrobras (2018/00263-5) and in part by the Coor-
denacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance
Code 001. The experiments were executed in INF/UFRGS’s PCAD, <http://gppd-hpc.

inf.ufrgs.br>.

http://gppd-hpc.inf.ufrgs.br
http://gppd-hpc.inf.ufrgs.br

ABSTRACT

Physical oil exploration executed by the oil and gas industry usually requires amounts
of money in the order of millions. This industry resorts to numerical and computational
methods that help correctly map areas in the ocean with a higher probability of oil and
gas incidence and avoid unnecessary drilling operations. One of such methods is the ma-
rine Controlled Source Electromagnetic (mCSEM), which uses maritime receivers fixed
in a specific region on the seafloor to gather electromagnetic data from such region. An
electromagnetic emitter linked to a ship emanates a low-frequency signal and move over
this predetermined area. After the electromagnetic waves traverse the subsurface under
the seabed and reflect, the receivers measure the field and store this data. We then need
an inversion process to recover the resistivity imprinted by the underground materials.
Once that oil and gas have known resistivity values, we can better estimate if the region
has oil reservoirs and where they are placed. All these processes are computationally
expansive, requiring that the application be as optimized as possible to deliver results as
fast as possible. This work studies an inversion application that uses finite direct equa-
tions and the common mid-point technique to deal with data collected from the mCSEM
method. This application has three main steps: forward, linear system solution, and cor-
rection, where the first is parallelized to deliver better performance. We found space for
computational improvements in our application with a load imbalance analysis once we
identified an issue from the original workload scheduling policy. We implement and eval-
uate load balancing heuristics to improve the scalability in different cluster configurations
in homogeneous and heterogeneous environments. We improved 44% in homogeneous
environments and 78% in heterogeneous environments with our implemented solutions
compared against the original. Furthermore, we develop a capacity planning for this ap-
plication. We designed a tool that uses traces from previous controlled executions with
a specific study case and predicts the application’s behavior to a set of given machine
combinations. Such a tool helps in this planning by allowing users to manipulate this

simulated data using interactive visualization.

Keywords: HPC, mCSEM, MPI, Load Balancing, Oil/Gas.

Melhorias de Desempenho com Foco em Ambientes Computacionais Homogéneos e

Heterogéneos Aplicadas em uma Aplicacido de Inversao Eletromagnética

RESUMO

A exploragdo fisica de petréleo executada pela industria de petréleo e gas costuma deman-
dar valores da ordem de milhdes de délares. Esta industria entdo recorre a métodos numé-
ricos e computacionais para ajudar a mapear corretamente as dreas oceanicas com maior
probabilidade de incidéncia de petrdleo e gds e evitar operagdes de perfuracdo desneces-
sarias. Um desses métodos € o marine Controlled Source Electromagnetic (mCSEM),
em Portugués, Método Eletromagnético Marinho de Fonte Controlada. Este método uti-
liza receptores maritimos fixados em uma regido especifica do fundo do mar para coletar
dados eletromagnéticos dessa regido. Um emissor eletromagnético ligado a um navio se
move sob esses receptores e emana um sinal eletromagnético de baixa frequéncia. Depois
que as ondas eletromagnéticas atravessam a subsuperficie sob o fundo do mar e refletem,
os receptores medem o campo em questao e armazenam esses dados. Precisamos entio de
um processo de inversao de dados para recuperar a resistividade impressa pelos materiais
subterrdneos. Uma vez que o petrdleo e o gis possuem valores de resistividade conheci-
dos, podemos estimar melhor se a regido possui reservatérios deste materiais e onde eles
estdo localizados. Todos esses processos sdo computacionalmente caros, exigindo que a
aplicacdo seja o0 mais otimizada possivel para entregar resultados o mais rapido possivel.
Este trabalho estuda uma aplicacao de inversdo de dados que utiliza equacoes diretas fi-
nitas e a técnica do ponto médio comum, do inglés Common Mid-Point, para lidar com
dados coletados a partir do método mCSEM. Esta aplicacdo possuli trés etapas principais:
modelagem direta, resolucdo do sistema linear e corre¢io, onde a primeira € paralelizada
para oferecer melhor desempenho. Encontramos espaco para melhorias computacionais
em nossa aplicagdo com uma andlise de desequilibrio de carga, uma vez que identificamos
um problema na politica original de distribui¢do de carga. Implementamos e avaliamos
heuristicas de balanceamento de carga para melhorar a escalabilidade em clusters ho-
mogéneos e heterogéneos. Melhoramos o tempo de execucdo da aplicacdo em 44% em
ambientes homogéneos e em 78% em ambientes heterogéneos. Além disso, desenvol-
vemos um planejamento de capacidade de execucdo, do inglé€s capacity planning, para
esta aplicacdo. Projetamos uma ferramenta que utiliza rastros de execugdes controladas

anteriores com um caso de estudo especifico para prever o comportamento da aplicagdo

para um conjunto determinado de combinagdes de maquinas. Tal ferramenta auxilia neste
planejamento ao permitir que os usudrios manipulem esses dados simulados utilizando

uma visualizacdo interativa.

Palavras-chave: HPC, mCSEM, MPI, Balanceamento de Carga, Petréleo.

LIST OF ABBREVIATIONS AND ACRONYMS

ABE Area-Bound Estimation

ANOVA Analysis Of Variance

CMP Commom Mid-Point

CpPU Computing Process Unit

CSV Comma-separated values

EM Electromagnetic

FDFD Finite-Difference Frequency-Domain

GPU Graphic Process Unit

HEFT Heterogeneous Earliest Finish Time

HPC High Performance Computing

mCSEM marine Controlled Source Electromagnetic
MPI Message Passing Interface

ODE Ordinary Differential Equations

PCAD Parque Computational de Alto Desempenho
PCAM Partitioning, Communication, Agglomerations, and Mapping
PDE Partial Differential Equations

PSNR Peak Signal-To-Noise Ratio

S-R Source-Receiver Pairs

LIST OF FIGURES

Figure 1.1 Example of an imbalanced execution with traces collected from our ex-

periments with the application studied in this WOrk.cccooveiiiiiiniiiiniiiiiene, 15
Figure 2.1 A synthetic load characterizing number partitioning.cceeeveereveenneenne 21
Figure 2.2 A synthetic distribution with the Round Robin heuristic.c...ccccceveeneene. 21
Figure 2.3 An homogeneous load distributed with the Round Robin heuristic. 22
Figure 2.4 Synthetic distribution with Sorted-Greedy approach.ccccoeeeeriiiennenn. 22
Figure 2.5 A synthetic distribution with HEFT approach............ccccoceviiniinnincnnenn. 24
Figure 3.1 The mMCSEM eXPlOration.cc.eeiiuiiiriieeniieniieeriee ettt siee s 26
Figure 3.2 3D synthetic model with 1.5 kilometer of water layer. Target regions

LS)1 1 (<10 I OO PO SO UPPRP 27
Figure 3.3 Survey data (red triangles are receivers, small blue squares are emitters),

combined with the 2D grid of CMPs (CIrcles).oovuieenieeniiiiniiinieeieeeeeeee, 28
Figure 3.4 Example of an output model after the inversion process. It is an slice at

the depth of 1614 meters collected from iteration 99 of the application. 29
Figure 3.5 Data inversion with MCSEM.cccccoiiiiiiiiiiiiiieiiceee e 29
Figure 3.6 Workflow diagram of the application in study........c.c.cccceevveriiirieeniennennennn. 30
Figure 3.7 A synthetic load characterizing the behavior of the original distribution

PTOCESS ..ttt ettt et e ettt e ettt ettt e e abe e e st e ettt e e ab e e e bt e e eabe e e st e e ea bt e e abbeeeabbeeeabeeebbeenaneeeanee 31
Figure 5.1 Methodology steps executed in this contribution.cccceecverieenieniennenne. 38
Figure 5.2 Number of S-R pairs associated for each CMP of the studied model. 40
Figure 5.3 Temporal data collected in one execution with three iterations. Colors

represent different operations detected during eXecution.ccecceeevueeerveenneennne 40
Figure 5.4 Execution behavior of the application executing only with MPI, pre-

senting the timespace of the three main regions of the inversion algorithm........... 41
Figure 5.5 Behavior of the original distribution — it divide the cells among workers,

disregarding its own heterogeneous Weight.c.ccecveevieriinieenienicnieenecnecneeen 42
Figure 5.6 The number of S-R combinations explains processing time.c....ccc..c.... 42

Figure 6.1 Methodology applied to this contribution. We used the intrumentation

made previously to analyze the results provided from our distribution algorithms.45
Figure 6.2 Theoretical distribution of load with 1 up to the number of CMP cells

of the study case, presenting the distance from ideal mean from these settings

(top) and the maximum load allocated to some worker (bottom)...........ccccceevueenne 47
Figure 6.3 The distance from ideal load balance for every worker considering five

total number of workers (columns) and the CMP scheduling policies (rows)........ 48
Figure 6.4 Space/time view of the forward step of 100 iterations for the Original,

Round-robin, and Greedy allocation pOliCies.ccovveeriiiienieeniieinieceieeeieeeae 50

Figure 6.5 Speedup of 1 up to 112 MPI processes. We run three iterations of the
application. The baseline is Original with one process. The dashed black line
represents the 1deal SPeedUP........c.ceiviiiiiiiiiiiiiiieeee e 51

Figure 6.6 Speedup of many MPI processes from 1 up to 212 using two different
partitions with the same processor’s frequency. We also run the application
with three iterations, and the baseline is Original with one process. Dashed
black line represents the ideal speedup.coceevierieniiniiiieeneceeeceee 52

Figure 6.7 Average time of execution of one iteration in each scheduler running on
different heterogeneous CONfIGUIAIONS.eerveeiriiiiniiiaiieeriee et 55

Figure 6.8 The distance from ideal load balance for every worker considering the
three different heterogeneous scenarios (columns) and the new scheduling

POLICIES (TOWS)..veeeuviieeiiieeiiieeiie ettt e eite ettt e et e etaeesbeeeateesnseeesseesnseesnnseesnseeennsens

Figure 6.9 Average makespan with execution of 100 iterations for each scheduler

in two different heterogeneous SCENATIOS.cccueeruiirriieeriiieiiieeeiee e
Figure 6.10 Model output from all schedulers.cccooviiiiiiiiiiiiiniiiice,

Figure 7.1 Figure with methodology........cccceiiiiiiiiiiiiiiiiceeeee e

Figure 7.2 Workflow diagram of the simulator developed for the capacity planning
Figure 7.3 Screen capture of the interactive plot with all possible scenarios of ma-
chine’s combination. The colors of the plot represent the different algorithms,
and the different size of points indicates how many cores each scenario is

COMPOSEA OF . .ttt ettt es

Figure 7.4 Validation of results from our R simulator code. We validate our sim-
ulation with HEFT algorithm. The blue points represent the average runtime

OF TEAL EXECULIONS. «.eeiiieeeiiieieeeeee et e ettt eeeeeeeeeteteraarseaeeseeeeeresesnanaessseeeenenes

Figure 7.5 Makespan with combination scenarios involving different quantities of

Optimizer machines running HEFT distribution heuristic..........ccccecuveeevniieenne.

Figure 7.6 Examples of CMP allocation in two scenarios, one using two Optimizer
machines and other using four new machines. We can identify that, when

using four machines, some workers did not receive any load to compute.........

Figura A.1 Exemplo de execu¢do com distribui¢do desbalanceada, gerado a partir

de dados coletados da execucdo da aplicacdo em estudo.........ccceevcveeveeneeennnnne

..... 57
..... 58

..... 62

..... 63

..... 65

LIST OF TABLES

Table 6.1 Specification of machines used in the eXecutions.cccceeevveeriieeeneeenneenne 46
Table 6.2 Setting of the three different case studies for algorithms comparison. 55

CONTENTS

1 INTRODUCTION.....

1.1 Motivation...
1.2 Contributions

1.3 Document Structure

2 BACKGROUND
2.1 Parallel Environments......

2.2 Load Balancing

2.2.1 Round RODIN ...c..coiiiiiiiiiiiiiiiiiiciceececeeee e
2.2.2 SOTtEA-GIEEAYeeeeeriieeeiiiee ettt ee ettt e e e e s siaeee s e aaeeeeas
2.2.3 Area Bound Estimation - Guided Approach........ccccccoeeeenieinnieeniiennne.
2.2.4 Heterogeneous Earliest Finish Time..........ccccoooiiiiiiiiiiiiniiiiiceeeee,

3 THE MCSEM INVERSION APPLICATION .

3.1 mCSEM Method ...

3.2 The model ...

3.3 Inversion Process...

3.4 Parallelization

4 RELATED WORK ...

4.1 Algorithm and Numerical Improvements Focus.....

4.2 Computational Improvements Focus...

4.3 Discussion ..

5 CONTRIBUTION FINDING THE IMBALANCE

5.1 Methodology

5.2 Mapping Data to the Model
5.3 Problem Identification.....

5.4 Final Remarks.......

6 CONTRIBUTION: APPLYING HEURISTICS TO THE PROBLEM

6.1 Materials and Methods....

44

6.2 Theoretical Analysis on a Homogeneous Environment.....

6.3 Heuristics in Homogeneous Environments...
6.4 Heuristics in Heterogeneous Environments..

6.5 Numerical Accuracy

7 CONTRIBUTION: CAPACITY PLANNING

7.1 Materials and Methods....

7.2 Simulating Real Executions

7.3 Simulation Validation

7.4 Hypothetical Test...

7.5 Final Remarks

8 CONCLUSION

8.1 Publications

REFERENCES..

APENDICE A — RESUMO EXPANDIDO EM PORTUGUES
A.1 Motivacao...

A.2 Contribuic¢oes

A.3 Conclusoes..

A3
..14
..16
.17
18
A8
19

21
22
23
23

.25
w25
.26
.28
.30
33
33
.35
.36
...38
.38
.39
...40
.43

44

.46
47
.51
.57
..59
.59
.60
.62
..63
...64
.66
.67
.68
.73
.. 73
..76
7

13

1 INTRODUCTION

One of the main challenges in the oil and gas industry is to correctly map areas in
the ocean where there is a higher probability of oil and gas incidence. Physical oil explo-
ration usually requires amounts of money in the order of millions of dollars. To help on
this task, scientists and companies recur to computational simulations to reduce the inci-
dence of unsuccessful drilling operations, thus saving time and money. Various numerical
and computational methods can be applied to this exploration involving electromagnetic
and seismic data.

One of the electromagnetic surveys to simulate and computationally investigate
ocean lands is the marine Controlled Source Electromagnetic (mCSEM) (SOUZA, 2007).
This method uses maritime receivers fixed in a specific region of the ocean floor to gather
electromagnetic data from such regions. A ship carrying an electromagnetic emitter
moves in this predetermined area, and the receivers measure the field after the electro-
magnetic waves traverse the subsurface under the seabed and reflect. This electromagnetic
surveying is applied to recognize the seafloor’s aspects, thus giving relevant information
about the resistivity of the explored region.

To interpret this electromagnetic data, we need to use numerical methods to apply
a mathematical inversion to approximate a matching subsurface model quickly and, this
way, have a better comprehension of it. Such subsurface model is referenced here as the
resistivity model and has an initial guess of the resistivities of the region in analysis. The
data inversion technique is commonly used in oil/gas computational applications since oil
and gas have known signatures compared to other materials (KEY, 2009).

We studied an inversion application that uses direct equations and the common
mid-point technique to deal with data collected from the mCSEM method. This applica-
tion maps data from the survey to the initial resistivity model’s points in the initialization.
Then, in a forward phase, the application runs numerical equations based on Maxwell
and Levenberg-Marquardt methods to evolve the model iteratively. These equations are
the most expensive step of the inversion process once it performs most of all numerical
equations of the method. To run such an application in a reasonable time, we need to split
the load of the most expensive steps of it among parallel workers.

High-performance clusters are crucial to the processing speeds required from these
significant volumes of data and processes. In these environments, we use machines that

have a powerful process to run expensive applications. However, only using these envi-

14

ronments is not enough to mitigate computational costs. We need to use cluster machines
as best as possible, guaranteeing that all resources are being used at their maximum and
balanced. Each resource must receive enough load to compute in a similar duration. This
distribution gave the application a load balance characteristic, one key point to its speed.

We found space for improvements in our application with a load imbalance anal-
ysis. We identify that the issue comes from the original workload scheduling policy,
directly impacting the parallelized forward phase. We then implement and evaluate load
balancing heuristics to improve the application, considering the necessity of distributing
such data according to the resistivity map given. We aim to enhance the application speed
by better using the available resources and improving its scalability in different cluster
configurations in homogeneous and heterogeneous environments. Furthermore, we de-
velop capacity planning for this application. We designed a tool that uses traces from
previous controlled executions with a specific study case and predicts the application’s
behavior to a set of given machine combinations. Such a tool helps in this planning by

allowing users to manipulate this simulated data using interactive visualization.

1.1 Motivation

A computational perspective in any scientific application is always essential. There
is no complex area of science that does not use computers for modeling (GOLUB; OR-
TEGA, 1993). This way, it is essential that not only mathematicians correctly model the
numerical equations — needed to solve each specific problem — but also that computer
scientists model the application according to their knowledge regarding performance and
computability. We aim to bring a computational perspective by proposing and executing
a practical performance evaluation using state-of-the-art tools for the mCSEM inversion
application studied.

Load balance techniques guarantee the efficient resource usage on high perfor-
mance applications and increase applications’ speed and scalability to mitigate this issue.
Guarantee such efficiency is critical for today’s parallel applications, once it can mean
that thousands of cores are allocated to executions but can be idle (PEARCE et al., 2012).
There are a considerable number of load balancing strategies studied in the literature.
Applying such load balancing solutions to real-world problems can contribute to the evo-
lution of this research area.

Search for a load imbalance on an application requires instrumentation of the code

15

and place time marks to know how long each parallel worker is taken to execute a task.
When the application’s traces show that some workers take more time to complete a task
than others, we have a load imbalance. Figure 1.1 demonstrates this concept with our
application scenario. We depict the results of the first three iterations out of a run with
100 iterations, presenting the execution time in seconds on the X-axis and the parallel
workers on the Y-axis. In these traces, the first worker finishes their tasks 2.3 x faster than
the nineteenth worker. These results motivate us to apply computational improvements to

our investigated application.

Figure 1.1 — Example of an imbalanced execution with traces collected from our experiments
with the application studied in this work.

60 ~

40

201

Parallel Workers

T T T T
0 100 200 300 400
Time [sec]
Source: Author

Improvements on mCSEM applications have some other reports in the literature.
(ZHAO; YU; QIN, 2018) and (SILVA et al., 2012) presented works regarding numeri-
cal improvements on the inversion process. The first applied a total-field algorithm to
the inversion process, using a 3D layered model and the METIS library for the domain
partitioning. The second divided the inversion application into two components and used
a multilevel partitioning method, applying the MUMPS library for parallelization and a
hybrid MPI+OpenMP code. Otherwise, (LONG et al., 2020) and (da Piedade et al., 2021)
discuss the benefits of using the Pardiso library to achieve computational speed gains.
Paradiso is a software for solving large sparse linear systems on shared and distributed-
memory (ALAPPAT et al., 2020). However, no work focused on load balancing strategies
for improving performance. We applied state-of-the-art load balancing heuristics in our

work and proposed a capacity planning with such strategies.

16

1.2 Contributions

This research proposes and executes performance analysis and improvement of
a real-world mCSEM inversion application. We search for possible computational bot-
tlenecks that originate an imbalanced execution in the forward step. We found out that
the strategy initially used to distribute the load among workers disregards the actual load
of the grain to distribute. We demonstrate that this load is static and irregular, present-
ing a similar duration throughout iterations and not showing load difference across the
application’s execution.

We then proposed load balance improvements regarding homogeneous and het-
erogeneous environments and applied state-of-the-art solutions to mitigate it with minor
changes to existing code. We find four heuristics that we applied to our problem: a Round
Robin, Sorted-Greedy, Area Bound Estimation based solution, and Heterogeneous Earli-
est Finish Time approaches. We adapted such heuristics to our needs and execute tests to
validate the performance benefits.

Furthermore, due to the static characteristic of the input load in each environment
where it was executed, we also propose a capacity planning to help in the execution’s
plan in larger clusters. We developed a feature that helps determine how much time the
application will take to execute in a diverse set of resource combinations. Such a feature
brings a versatile and decisive step in the application’s running, allowing us to anticipate
how our execution will behave in a determined setup. Such predictions support a better
scheduling of resources.

In summary, these are the main contributions:

* Proposal of a practical performance analysis, with a deeper investigation of the
application’s code and its instrumentation and the identification of the main regions
of the application according to the numerical method that led us to identify a load
imbalance in such application and its reasons (Chapter 5).

* Study and implementation of load balance heuristics to homogeneous and heteroge-
neous environments, expanding execution possibilities in different scenarios. where
we achieved a performance improvement of 44% in homogeneous clusters and 78%
in heterogeneous clusters (Chapter 6).

* Development of a capacity planning to such application, based on the input data

and the target platform where it can be executed (Chapter 7).

17

1.3 Document Structure

This document is organized as follows. Chapter 2 introduces some important con-
cepts regarding parallel programming and load balancing, and presenting the five heuris-
tics applied in this work. Chapter 3 presents the marine Controlled-Source application,
discussing its numerical method, the characteristics of its input data, how the inversion
process occurs, and how this application is parallelized. Chapter 4 discusses related work
regarding improvements on other existing mCSEM applications and their characteristics.
We then start talking about our contributions in Chapter 5, demonstrating how our practi-
cal performance analysis led us to find the imbalance in the application. We then follow
to present the results of the load balance heuristics in homogeneous and heterogeneous
environments in Chapter 6. We present our capacity planning as our last contribution in

Chapter 7. Finally, in Chapter 8 we conclude this work and discuss future work.

18

2 BACKGROUND

Parallel programming is a crucial approach nowadays. We have improved artifacts
that collect much more data to be correctly synthesized to give information. We need as
much processing power as possible to deal with all this data and use multiple resources
to achieve it. Many applications use parallel processes to achieve better performance,
mainly those that perform a considerable quantity of numerical computation.

However, we do not need to only care about using parallel mechanisms on appli-
cations, but it is also essential to guarantee that such parallelization efficiently uses all
available resources. The application’s strategy to distribute the load among the parallel
workers is vital in achieving this efficient resource usage. It directly determines if all
resources will take similar times to execute each task and deliver a faster application.

In this chapter, we present a background of parallelism and load balancing, high-
lighting some important concepts, such as parallel programming levels and different par-
allel environments. Section 2.1 presents fundamental concepts regarding parallelism, fol-
lowed by Section 2.2 where we discuss concepts regarding load balancing. Section 2.2

will also present the five load balancing heuristics applied in this work.

2.1 Parallel Environments

Parallelism can be achieved at the programming level as also as hardware level.
We can exploit different models on parallel programming, such as in a thread-level and
a process-level (RAUBER; RUNGER, 2013). When working with parallel applications,
we aim to break its execution into small pieces that different cores can execute. One
famous methodology to parallelize an application is the PCAM, acronym for Partition-
ing, Communication, Agglomerations, and Mapping (FOSTER; FOSTER, 1995). In an
ideal scenario, we hope that a parallelized application with PCAM uses an undetermined
quantity of process units efficiently.

There are two main programming models that we can use to run applications in
parallel. The first is the Shared-Memory model, where we assume that the parallel re-
sources are using the same memory device, i.e., using a single node. It must provide ways
for starting up threads, assigning work to them, and coordinating their accesses to shared
data, including ensuring that certain operations are executed by only one thread at a time,

without racing conditions (TROBEC et al., 2018). OpenMP and Pthreads are parallel

19

programming interfaces that implement the Shared-Memory model.

The second model uses distributed memory machines, where we need to use a
message-passing interface to communicate among the processes. This model assumes
that the program runs in resources that have their own private memory space, thus not
accessing the information in a shared space. Message-passing approaches must provide a
mechanism to initiate and manage all procedures and send and receive messages and data
among the different processes. The community developed the MPI standard, which offers
a set of more than 120 operations for parallel programming (TROBEC et al., 2018). Open-
MPI and MPICH are examples of interfaces that implement this programming model.

Alongside these models, we have different machine clusters to execute applica-
tions in parallel. In homogeneous environments, every machine on a cluster has the same
settings and speed. They are all built with the same processor unity, memory, and com-
munication settings. On the other hand, a heterogeneous system is composed of machines
with different characteristics. Nowadays, most Top500 supercomputers employ an intra-
node heterogeneity in their configurations, once each cluster node contains at least one
type of accelerator (DONGARRA et al., 2017). We can also have a cluster with system-
level heterogeneity, where different computational node types can exist. Typically, we
characterize such heterogeneity by differences in the design of the machines, where they
have different process units, memory size, and speed and communications buses (NESI;
LEGRAND; SCHNORR, 2021).

However, none of these parallel paradigms or types of clusters are enough to guar-
antee that an application will be improved when parallelized. We must pay attention to
how efficient is the usage of our resources by our parallel applications, mainly when split-
ting an application’s load. The correct load distribution ensures that all workers are taking
a similar time to compute without any resource slowing down the application. Determine

the efficiency of this distribution is a crucial metric to consider in parallel applications.

2.2 Load Balancing

The capability of a parallel program to compute equally in all resources is what
we call load balance (ALAKEEL; ALAKEEL, 2010). A load of an application can be
classified as static or dynamic and as regular or irregular. A static load does not change
during the application’s execution, while dynamic load means changing on execution.

When an application’s load present both static and irregular characteristics, we say that

20

the application has a spatial load imbalance. In this scenario, we can use static solutions
executed prior to the actual execution of the application. Otherwise, when the application
is dynamic and irregular, we say that it suffers from temporal load imbalance and that it
is necessary to apply adaptative solutions to mitigate it (TESSER, 2018).

There are many details to take care of when trying to achieve a balanced applica-
tion. We need to understand if the workload characteristics will be a complex or straight-
forward load grain (composed of different structures that can dictate its weight). We also
need to know the environment characteristics where we aim to execute the application
—i.e. if the machines have the same or different settings or speeds. We have different
approaches to achieve load balance according to this set of configurations.

To know how much we could improve an application by running it in parallel,
we need to gather metrics and analyze its results. Instrumentation of code is a technique
to get this information. We define regions on the program to capture the time it starts
and ends to execute. This data can then be analyzed and determine some application’s
metrics, such as its makespan and speedup, alongside the load balance. The former mea-
sure indicates how much time an application takes to execute from its beginning until its
end. The second determines a factor by which the parallel program’s execution time is
faster than the sequential program. It is based on Amdahl’s Law, which states that the
overall application’s performance improvement is limited by the fraction of the code that
can be parallelized (CASANOVA; LEGRAND; ROBERT, 2008). The following formula

formally describes the speedup:

Tseq(n)

2.1
Tpar (pa n) ()

Sp(n) =

where n is the size of the problem, and T, (n) and T, (p, n) are the makespan in se-
quential and parallel environments, respectively.

In the context of this work, we will focus on load balancing strategies to spatial
load imbalances. We will use the synthetic load depicted by Figure 2.1 to help with the
explanations. Here we have a heterogeneous load, composed of eighteen tasks with dif-
ferent sizes, from 320 to 1200 units. Our goal is to distribute this load among different
workers without splitting each task. This problem can increase when we consider dis-
tributing the tasks among heterogeneous workers. For this, we need to consider the tasks
heterogeneity and the different worker’s capability. Both heterogeneous characteristics
increase the complexity of the balancing algorithms once we have two heterogeneous lev-

els to take care of. To solve these scenarios, we need to use different strategies. With all

21

the former reasons, we will better describe four distribution heuristics that we applied in

this work: Round Robin, Sorted-Greedy, Area-Bound Estimation (ABE), and the Hetero-
geneous Earliest Finish Time (HEFT).

Figure 2.1 — A synthetic load characterizing number partitioning.
1250

1000 4

5 750 4
]
o

—1 5004

0-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tasks
Source: Author
2.2.1 Round Robin

Round Robin is a well-known scheduler algorithm that considers the load as ho-
mogeneous to distribute in an offline mode. The algorithm’s behavior consists of assign-
ing load among the workers in circular order, from the first to the last worker, disregarding
the load already assigned to them. The time complexity of this algorithm is O(n). Figure
2.2 depicts the distribution of our synthetic load with Round-robin. The X-axis represents
the workers involved in the simulation, and the Y-axis presents the accumulated load for

each worker.

Figure 2.2 — A synthetic distribution with the Round Robin heuristic.

2500 |

2000 -
1500 1
1000
500
0- T T T T T T T T
1 2 3 4 5 6 7 8

Worker
Source: Author

Accumulated Load

Even presenting a more balanced distribution among workers, we can still iden-
tify load imbalance in this algorithm to heterogeneous load such as the one we simulate.
Round-robin is well effective with a homogeneous load, as a second example depicted by

Figure 2.3 demonstrates.

22

Figure 2.3 — An homogeneous load distributed with the Round Robin heuristic.

1500 -

1000 1
500 -
0- T T T T T T T T
1 2 3 4 5 6 7 8

Worker
Source: Author

Accumulated Load

2.2.2 Sorted-Greedy

Sorted-Greedy algorithm is a heuristic used to solve problems of independent
tasks that derive from number partitioning problems (MERTENS, 2006; GAREY; JOHN-
SON, 1979). It considers that every worker has the same capacity and speed but considers
the load already assigned to a worker before assigning a new task. For such characteris-
tics, this heuristic delivers a better distribution of heterogeneous load.

This algorithm schedules, at each step, the current task/load to the least-loaded
worker, where tasks are sorted in decreasing weight. To perform this approach, we need
to know all tasks/loads to schedule before starting the execution. For this reason, Sorted-
Greedy is called an offline algorithm. If we have five tasks, three of weight two and two
of weight three to be divided between two workers, Sorted-Greedy has a makespan of 7,
while optimal is 6, thus given a % approximation (CASANOVA; LEGRAND; ROBERT,
2008). Figure 2.4 demonstrates the behavior of this algorithm using the synthetical load
previously described. The algorithm will first distribute the load among all free workers
(first blocks in each worker). With no more free workers, the algorithm will select the

one with less load assigned, which will be worker 8 in this example. It will assign the

Figure 2.4 — Synthetic distribution with Sorted-Greedy approach.

2000 -
15001
1000
500
0- T T T T T T T T
1 2 3 4 5 6 7 8

Worker
Source: Author

Accumulated Load

23

task/load to this worker and go to the next, repeating it until having no more tasks to

distribute. This algorithm runs in O(n logn) time.

2.2.3 Area Bound Estimation - Guided Approach

The Area Bound Estimation (ABE) is a linear programming applied by (PINTO,
2018) to estimate the makespan for task-based applications in heterogeneous applications
(that uses CPU and GPUs). It does not consider dependencies among tasks/load. The

following equations define our linear programming

Minimize: 2.2)
makespan
subject to:
VteT: > =N, (2.3)
Vre R: Z Ney * Wy, < makespan x N, 2.4)
t
VieT,reR: ne, >0 (2.5)

where ¢ is a determined group of tasks 7" with the same size, r is the type of resource R
(that are the different machines where we are executing the code), and w; , is the meantime
which the determined group of tasks ¢ takes to execute in a determined resource. Such
linear programming provides the best makespan for each heterogeneous scenario and the

ideal allocation of each different task size to each resource that generates the makespan.

2.2.4 Heterogeneous Earliest Finish Time

The Heterogeneous Earliest Finish Time (HEFT) is also an algorithm applied to
the task scheduling problem. Its original implementation consists of a task prioritizing
phase, using a previous application benchmark in each available resource, and a processor
selection phase to schedule the tasks on its best processor (TOPCUOGLU; HARIRI; WU,
2002). This benchmark consists of executing the application in a way that we can gather

traces to use as a baseline of the application’s behavior in a specific resource. On the task

24

prioritizing phase, this priority is based on each task’s average computation and average
communication costs and its precedence constraints. The HEFT algorithm applies an
insertion-based policy that considers the earliest idle time slot available to schedule a task
to a processor in the selection phase. This heuristic iterates throughout all tasks, testing
the task insertion in all available resources, which gives us O(t x r) time complexity.
Considering its description, Figure 2.5 presents results of applying HEFT heuris-
tic in our synthetic example, using the same synthetic data former presented. The two
first workers present a speed factor of 1, workers 3, 4, and 5, a speed factor of 1.725,
and workers 6, 7, and 8 a speed factor of 1.783. The first workers received less load to
compute due to its low-speed factor, while the last workers had the most load due to its

best characteristics.

Figure 2.5 — A synthetic distribution with HEFT approach.

[Load 1880] [Load 1640] | [Load 1566] [Load 1566] [Load 1566] [Load 1691.28](Load 1722.6] [Load 1722.6]
ko]
g 2000 A
4
:8 1500
K]
> 1000 A
£
§ 500 A
0 -
T T T T T T T T
1 2 3 4 5 6 7 8
Worker

Source: Author

25

3 THE MCSEM INVERSION APPLICATION

Electromagnetic surveying is employed in both land and maritime contexts —
though these have developed almost independently, either actively or passively (CON-
STABLE; SRNKA, 2007). This survey generates a collection of electromagnetic data
used to identify different materials according to their known resistivities. The under-
ground materials imprinted their different conductivities onto the now-read electromag-
netic field values. Therefore, mCSEM applications aim to model back the resistivities of
these materials from the read values through an inversion method, matching the readings
to the most probable model of the subsurface substances that generated such readings.

In the next sections, we introduce how this inversion process happens in the stud-
ied application at this work. We start giving an overview of the marine Controlled Source
Electromagnetic (mCSEM) method in Section 3.1. We follow by understanding the model
that determines all the inversion processes in Section 3.2. Section 3.3 details the inversion
process and how the application executes the numerical processes. Finally, Section 3.4

reports the application’s organization and parallelization.

3.1 mCSEM Method

In the marine controlled source electromagnetism (mCSEM) method, an electro-
magnetic emitter source emanates a difusive electromagnetic field that traverses water
surface and deep into the seabed (CASTILLO-REYES; PUENTE; CELA, 2018) before
being captured by an array of receivers. Such receivers can be either placed on the seafloor
or also towed along with the source (WILT; ALUMBAUGH, 1998). Figure 3.1 depicts
the process using static receivers. These approaches aim to collect the electromagnetic
signal readings after they crossed the underlying salt and rock sequences, altering it and,
ultimately, imprinting its distinct characteristic onto the signal (CONSTABLE; SRNKA,
2007).

At each moment in time, the electromagnetic emitter is located in a different po-
sition underwater, thus defining a collection of virtual electromagnetic sources (one for
each emitter’s position). When crossing different substances with different resistivity, the
wave’s amplitude varies. The materials imprint their conductivities, and the receivers cap-
ture them, and its information is used as input data to understand the region. Since many

receivers capture the same electromagnetic field, it is necessary to establish how multiple

26

Figure 3.1 — The mCSEM exploration.

Source: Author

receivers’ information is combined.

Throughout this data, we can get the model updated with resistivities of the region
in analysis through an inverse method, matching the readings to the most probable model
of the subsurface substances that generated such readings. This process can use an input
to help on the fast numerical convergence. Such model can be composed in two different
ways: the first consist of an a priori geographic knowledge of the underlying substrate in
analysis, and the second can be an initial guess that does not use any a priori information.
The recovered information is then analyzed to search for known resistivity values of oil

and gas.

3.2 The model

To get back the information collected through the mCSEM process, the applica-
tion studied in this work uses a representation of real-life as a model. This model has a
reasonable approximation of the resistivity in the region in analysis, which benefits the
inversion process to converge faster (CORREA; REGIS, 2017). This model consists of a
3D grid of cells, with its size modeling different regions according to the test case.

A synthetic example is shown by Figure 3.2, in a 3D fashion. The model maps
two target regions where specific resistivities are expected (i.e., the regions expected to
find petroleum reservoirs). The first target is a T shaped body placed at 1, 500m below the
sea bed; the second is a slab at a depth of 2, 500m below the sea bed. The model cover a
total area of 160km? and also maps regions of water that need to be considered (because

they have different resistivities). According to other collected information, each region is

27

set up with a priori resistivity information (i.e., seismic).

Figure 3.2 — 3D synthetic model with 1.5 kilometer of water layer. Target regions are in red.

(a) 3D model view

(b) Top view
Source: Corréa and Régis (2017)

The studied application uses the Common Mid-Point technique (MITTET, 2010)
to map the mCSEM data to its model. This is a 1D inversion scheme able to recover
2D structures. In this approach, the data from the 1D inversion is composed of measure-
ments from all source-receivers offsets in the 2D survey that share the same geographical
common mid-point. The mapping considers the geographical mid-point between the con-
trolled source and the fixed receivers on the seabed in a determined period of time. It
then perform the geographical approximation from all these mid-points with cells of the
model, which will be called as the Common Mid-Point cells (CMP cells). This data map
contains CMP cell with different quantities of S-R pairs allocated to each and is our vir-
tual model. Such method was improved with analytical derivates and lateral constraints to
invert data from 2D surveys by (Silva Crepaldi; Pereira Buonora; FIGUEIREDO, 2011)
and is used here to invert data from 3D surveys (CORREA; REGIS, 2017).

Figure 3.3 depicts a small subset of the resistivity model used in this work, using
gray circles with diverse sizes. Each gray circle represents a virtual column in the survey
region. The survey data’s fixed receivers and the multiple source coordinates are depicted

as red triangles (in five horizontal lines) and small blue squares (in four horizontal dashed

28

Figure 3.3 — Survey data (red triangles are receivers, small blue squares are emitters), combined
with the 2D grid of CMPs (circles).
Number of S-R Pairs @ 100 @ 200 @ 300 @ 400

A A A A A A A A A A A

@ o

2 9

E [V T U VU G U G WY G WR G W

5 2000 4

8

% - . . . - . Ao . = s s A

— 40004

5

5

@

PO S

g 6000

Z />399P~1»

I O = — — = e I) S T O

0 2500 5000 7500 10000

East-West direction (meters)
Source: Author

lines), respectively. The data collected by mCSEM can be mapped in multiple CMP cells,
where each S-R pair is assigned to different CMPs. Two cells of the 2D grid (circles
with numbers 93 and 399) are highlighted in green, representing the diverse quantity of
assigned pairs to each CMP cell.

After running the inversion process and recovering data, we have a 3D model to
help interpret data or to apply as a first guess in an actual 3D inversion process. Along-
side other collected data, such as seismic, geophysics can better map regions where oil
and gas can be found. Such an output model will have a more shaped region with specific
resistivities (that can be represented from different colors) that indicate where we can find
reservoirs in the surveyed region. Figure 3.4 presents an example of a slice of an out-
put model after the inversion process. The inversion successfully delimitates a potential

region with high resistivity.

3.3 Inversion Process

With the model and data defined, we go to the inversion process. Such a process
is a collection of different equations that are solved iteratively. This process executes an
algorithm based on three phases: forward, linear system solution, and correction (Silva
Crepaldi; Pereira Buonora; FIGUEIREDO, 2011). Figure 3.5 provides a general overview
of the numerical algorithm, starting from an initial resistivity model m describing the

resistivity of each grid point of the 3D inversion volume.

29

Figure 3.4 — Example of an output model after the inversion process. It is an slice at the depth of
1614 meters collected from iteration 99 of the application.

Slice at z = -1614.517578

y {m)

r T T 1
-10000 -5000 5000 10001

Source: Author

Figure 3.5 — Data inversion with mCSEM.

Initial resistivity model

m,

Survey data Forward Step

Updated
resistivity (m)

Misfit still
too large

Evaluate error
functional

Inversion Step

Misfit within tolerance

Final subsurface resistivity model (m)

Source: Author

In the first phase, we initialize the process by reading the model and the survey
data. We then proceed to the mapping of this data to the model using the CMP technique
previously described. It generates the heterogeneous distribution, where each CMP cell
can have different quantities of S-R pairs allocated to each. Figure 3.3 previously depicted
an example of this heterogeneity, with two examples of CMP cells with different sizes.

After mapping data, we go to the numerical equations. We have a Forward phase
where we analytically execute derivatives to calculate the field using Maxwell equations.
This is the region of the code that is most computationally expensive. The application also
uses the Levenberg-Marquardt (L-M) method (LEVENBERG, 1944; MARQUARDT,
1963; NOCEDAL; WRIGHT, 2006) and it requires solving a linear system at each it-

eration k£, where evaluations of Jacobian functions are applied. This method compares

30

the numerical field with the observed field and finds changes that need to be made, based
on the initial measures, to achieve the correct way of the results. On (DAGOSTINI et
al., 2021) more details regarding the specifications and the mathematical formalization of
such numerical functions are discussed.

The solution of the linear system itself is the next step of the process, where the
application run a Cholesky decomposition to solve it. The stopping criteria are the mini-
mum variation of a data misfit and minimum misfit after a specified number of iterations

(CORREA; REGIS, 2017). Finally, a correction phase is executed for the next iteration.

3.4 Parallelization

The application studied in this work performs a 1D inversion process using the
CMP domain for 3D data. It uses a coordinator/workers pattern and focuses on paralleliz-
ing two phases: the forward and the suavization — in the Cholesky step. Figure 3.6 helps
to understand each step of the process, where we have the top of the figure representing
the coordinator process and the bottom representing the workers. In the coordinator pro-
cesss, the application starts by reading all the data collected with the receivers, alongside

a configuration file containing execution parameters.

Figure 3.6 — Workflow diagram of the application in study.

Rgad‘ Broaldca’st Mapping Build Distribution o Get Build _and Distribute
project's —— project’s —— datato — — — forward —— Solve Linear —= Rho ;
Structures of load phase . p
data data the model output System adjustment !
H ¥ H
: i Suavization |
'' @ !
| Worker Thread s |
| v
: i
RecAe'v? Mapping Build Distribution Forward ARGl Receive Rho ||
project's —— datato — — — —— of forward N :
Structures of load phase adjustment |
data the model output]

Source: Author

After this reading, the coordinator broadcasts all its data to the workers. Inside
each worker (including the coordinator process), the application receive all data broad-
casted and executes the mapping according to the model and the parameters provided by
the template, using the Common Mid-Point technique. Once this mapping is done, the
application prepares the data structures to execute the forward phase and follow to the

load distribution. Each worker is responsible for setting their load. i.e., the distribution

31

strategy is executed in each parallel worker.

After finishing the distribution step, the application goes through the forward
phase. Now the application will execute the for loop that passes through each CMP
cell assigned to the worker and each S-R pair allocated to it. The Maxwell equations
are applied to each S-R point at this loop independently. Finishing this computation, all
workers apply a MPI_Reduce option to deliver the output of the forward phase back to
the coordinator process.

With the forward result, we go to the inversion step, where the application builds
and solves the linear equations system. This application uses a parallel version of the
Cholesky calculation from the SuiteSparse library (DAVIS; HU, 2011) for doing the
suavization. After that, the application verifies if it needs another iteration. All this is
done uniquely by the coordinator.

The main parallel region of this application is forward. Its parallelization origi-
nally applies a hybrid combination of MPI and OpenMP libraries. The load ditribution
originally applied in the application consists by the division of the total quantity of CMP
cells of the model by the total number of workers. The result of this division is the num-
ber of cells that each worker will be responsible to execute. As each of these cells is
independent (Silva Crepaldi; Pereira Buonora; FIGUEIREDO, 2011), we can run this
phase in parallel without many constraints. Figure 3.7 depicts, with a synthetic load, such
distribution strategy. We have 18 “cells” to distribute among eight workers. The X-axis
represents the parallel workers, and the Y-axis represents each worker’s accumulated load

using the original distribution policy.

Figure 3.7 — A synthetic load characterizing the behavior of the original distribution process.

B
S 3000
el — —
& 20001 . .
S
(&)
< = - =
1 2 3 4 5 6 7 8
Worker

Source: Author

Then, inside the forward loop, the application will parallelize its process using
the OpenMP strategy. As previously explained, the forward loop iterates through each
source-receiver pair associated with the cell. This way, each OpenMP thread will deal

with the forward math for each S-R pair.

32

In this work, we focused our attention on the parallelization of the forward step.
Due to the way that the application outperforms the distribution of tasks, we find space
for improvements in this step related to the distribution of load among the MPI workers.
Figure 3.7 help us understand the problem we faced. We can see that, with the original
strategy of distribution, the actual load assigned to different workers present significant

differences.

33

4 RELATED WORK

In the last few decades, marine 3D CSEM modeling has been gaining attention
inside the Petroleum and Gas market due to the possibility of conducting a sensitive anal-
ysis of subsurface resistivity models. Most mCSEM models require a high computational
cluster to execute. Therefore, a significant quantity of work has been made to improve the
numerical accuracy of inversion applications and achieve a faster convergence to improve
its speed. However, few works focus on improving the application’s makespan and scal-
ability on a computational science focus, disregarding numerical changes. The next two
Sections focus on reported works that aim to improve EM inversion applications. Section
4.1 presents works that apply a combination of algorithms and numerical process changes
to achieve better scalability and makespan. In contrast, Section 4.2 present works that
only apply computational efforts in existing well-prooved numerical algorithms. Addi-

tionally, in Section 4.3, we justify our work’s fit scenario and explain its motivation.

4.1 Algorithm and Numerical Improvements Focus

Significant effort was made to focus on different numerical solutions to the CSEM
inversion problem. This effort was motivated due to the rapid industrial adoption of this
offshore exploration method worldwide (KEY, 2012). The mCSEM method became an
essential technique in geophysics exploration (CONSTABLE, 2010). A diverse set of
numerical solutions was proposed, decreasing its high computational cost.

There are two main approaches that most of the inversion applications apply to
their algorithms: Finite Difference and Finite Elements. Both methods convert Ordinary
Differential Equations (ODE) or Partial Differential Equations (PDE) into a system of
linear equations that matrix algebra techniques can solve. The Finite Element method
minimizes an extremum principle over a family of functions defined by each piece. In
contrast, the Finite Difference uses a discrete approximation to integrals and derivates
occurring in balance equations (KEY; KRIEG, 1973).

Most works in this topic propose new implementations of such numerical algo-
rithms and changes on the numerical process that brings quality and time reduction to the
inversion processes. On (STREICH, 2009), it is implemented a marine CSEM modeling
based on a finite-difference frequency-domain (FDFD) approach. Her code relies on the

MUMPS direct-matrix solver (AMESTOY et al., 2000) to solve the system of equations

34

using up to 12 MPI processes on a small cluster platform. This solution applies some
geographical considerations to use 1D background models to generate 3D outputs. The
results present speedup, but the scaling behavior is not good due to memory usage.

The usage of the MUMPS library is not an exclusive characteristic of the previous
work. In (WANG; MORTEN; SPITZER, 2018), and (SILVA et al., 2012), the usage of the
MUMPS library for solving the linear systems on such applications is reported. The first
applies a direct solver with a Gauss-Newton inversion process, using an unstructured mesh
to model the seafloor. The second uses Hankel transformations in its inversion process
and multilevel partitioning method. In the last, the authors used OpenMP to calculate the
primary field. They could achieve a 7.40 speedup using eight threads OpenMP.

Other works implement a 2.5D inversion algorithm using a 3D model based on a
direct solver to interpret CSEM data (GRAY VER; STREICH; RITTER, 2013). Its inver-
sion process implements a fully distributed application that relies on the PETSc library
(BALAY et al., 2019) for distributed memory linear algebra operations and to access the
MUMPS solver to the forward phase. The problem is also parallelized over the primary
electric field and frequencies. Even being a more numerical-focused work, this was one
of only ones works that take care of load balancing once the workload is statically simi-
larly partitioned to all processes. They do not make explicit which strategy was used for
such load distribution. According to reports, the application achieved a performance from
2000s in sequential to =~ 750s parallel with ~ 250 cores, using 64 cores for 4 frequencies
of a given study case, presenting a 2.6 speedup.

On (ZHAO; YU; QIN, 2018) work, they formulate their forward problem employ-
ing the goal-oriented adaptive finite element method based on the unstructured hexahedral
mesh (REN et al., 2013; GRAYVER; BiiRG, 2014). They implemented the code using
L-BFGS techniques, a numerical quasi-Newton method. They used the library METIS to
partition the mesh among the workers. The focus is on improving the math equations to
gain performance, not in terms of a computational approach.

A more complete end-user application is presented by (KEY, 2016), which is
called MARE2DEM. It is a 2D inversion application that uses a grid of arbitrarily shaped
polygons composed of unstructured triangular or quadrilateral grids. The inversion method
used in this application also has a forward phase, implemented with an adaptive finite-
element method that automatically generates and refines unstructured triangular grids
throughout the iterations, ensuring accurate responses as the model conductivity changes.

The MARE2DEM is an application of the adaptive mesh refinement (AMR) technique

35

which seeks to minimize the relative error in the EM responses (KEY, 2016). They pro-
pose a new Occam inversion approach that they improved numerically and the ScalLA-
PACK library for linear programming. This work is one of only that presents a load distri-
bution solution that takes care of balancing. The manager processor of the MARE2DEM
code keeps a queue with all ready-to-run tasks and assigns the next available task to the
next available worker. This dynamic distribution offers a better load balancing to the ap-
plication once it guarantees that no worker will be idle. This work is a more complete
solution from related work found. They present a more robust numerical solution that
converges with fewer iterations and takes care of computational characteristics, such as
correct parallelization and load distribution.

All of the works mentioned above focus their efforts on combining numerical
process changes to achieve a better makespan. Most use simple models to execute the
inversion process, scoped to grid and cells models. On the other hand, some works apply
unstructured meshes to achieve better numerical results. However, only one work brings
a discrete discussion regarding load balancing or the study of computational concepts that
could benefit their works. Even discussing it, its primary goal is to discuss and present
the numerical improvements applied to the application. It is the main characteristic of all

related works presented in this section.

4.2 Computational Improvements Focus

From another point of view, some works aim to improve the time spent in the mC-
SEM inversion process taking care of computational improvements. Most of them already
have verified numerical methods but cannot correctly use the computational resources or
extend them to new devices and accelerators.

Two recent works relate the parallelization of the forward step of the inversion
process into GPUs. In (SOMMER et al., 2013), they present an implementation of a 3D
marine CSEM modeling on GPUs, focusing on the parallelization of the forward step
from a finite difference method. The original application was executed on one standard
CPU kernel and could take up to 1 hour to run complex models. Their approach achieves
significant speedups using standard libraries such as CUBLAS and CULA, where the
latter provides an optimized GPU QR algorithm. They could achieve a speedup of 9 to
SLDM and 35+ in Eigensolver in GPU. CULA-library presented an improvement from
the parallelized CPU version of the LAPACK eigensolver by a factor of 10.

36

The second GPU-related work is (YANG, 2021). Using the Finite Differences
Time Domain method, they implemented this new solver with CUDA, designing the ap-
plication to precompute every detail before porting the code to the GPU step. They used a
shared memory with a tiled algorithm to improve the usage of the L1 cache. Their solution
did not scale well using OpenMP. They used a GTX860M to conduct experiments. Using
a 1D model data, they compared their work with (KEY, 2009) and against a version of
their application implemented with CPU/OpenMP. They achieved a makespan from 723s
on a single thread to 18.1s on GPU, representing a 40 x speedup.

Some works rely on applying a mix of computational efforts to improve the appli-
cation’s performance. They use existing and well-known parallelized libraries and tools
and change other parts of the algorithms to run in parallel. This is the case of (LONG et
al., 2020) and (da Piedade et al., 2021). Both works used different versions of the Pardiso
library (ALAPPAT et al., 2020), a parallel direct solver to perform linear system execu-
tions. The second work compared the behavior of two finite methods, one using Nodal
and the other using Vector FEs. With deeper analysis, they concluded that the Vector
solution brings the advantage of avoiding difficulties when there are discontinuities in the
EM field found with nodal.

A more similar solution to the proposed contributions from this work was done
by (PETHICK; HARRIS, 2016). They developed a Java software that did not interfere
with source mCSEM codes. The application englobe an mCSEM algorithm and dis-
tribute the load among the workers in execution that can also scale in a grid of computers.
The key point of their work is that it considers inversion applications only composed by
forward and inversion steps, without any other step further. They also applied this macro-
parallelization with other electromagnetic surveys similar to mCSEM. They focus their

efforts on distribution strategies implemented in a macro-parallelization method.

4.3 Discussion

The previously presented works bring us the idea from two perspectives: mixing
improvements on numerical methods to achieve performance and focusing on computa-
tional efforts. The first scenario presents works that their typical strategy relies on stan-
dard parallel linear algebra solvers like MUMPS. Meanwhile, no one presents a discussion
about the impact of the workload partition on parallelization.

Our work fits the second scenario, where we aim to apply load balancing tech-

37

niques to improve application performance. The present work focuses on computational
science improvements, disregarding numerical changes in the inversion process. We could
achieve significant results by applying minor changes to an existing code and partition-
ing the load among homogeneous and heterogeneous workers, alongside applying correct
heuristics to do such distributions.

So far, no work focused on applying load balancing techniques exclusively to
an mCSEM application was found. The closer work presented was the one done by
(PETHICK; HARRIS, 2016), discussed in Section 4.2. However, they did not pay specific
attention to this distribution’s possible load imbalance issues or report any specific study
related to load balance solutions once they considered it as an embarrassingly parallel
problem. Our work identifies severe load imbalance issues in the studied application,
resulting from the problem domain’s intrinsic unbalanced partition. Our contributions
aim to show how well-known load balancing techniques from literature can impact this

real-life application.

38

5 CONTRIBUTION: FINDING THE IMBALANCE

Our first contribution presents the origin of the application’s load imbalance. To
find this lack of performance, we apply a performance evaluation with code instrumen-
tation and statistical analysis. We generated traces that allow us to precisely define what
composes the load of the application and the reason for the load imbalance. The results
presented here are the baseline for the following two contributions, that are the chosen
load balance heuristics described on Chapter 6, and the capacity planning proposal on
Chapter 7, due to these definitions.

We present how we perform this investigation in Section 5.1. Next, we discuss
how the mapping method impacts applications execution in Section 5.2. We then show
how we identify the problem in Section 5.3. We finish this chapter presenting final re-

marks regarding this contribution on Section 5.4.

5.1 Methodology

To execute our investigation, we applied the following methodology shown by
Figure 5.1. We instrument the application’s code to capture traces of the application’s
execution and implemented user regions instrumentations to get the duration of each in-
version step described in Chapter 3. We use Score-P (KNuPFER et al., 2012), an open-
source library for code instrumentation in C, C++, Fortran, and Python languages. Our

goal is to find the origins of the application’s bottlenecks.

Figure 5.1 — Methodology steps executed in this contribution.

Experimental
Script

P [t]

Instrumentation Application’s —
output

m POSt-ExeCUtion

Source: Author

Application Application Execution Traces Traces Analysis

With the code regions identified, we create an experimental script to execute. We

use machines present in the Parque Computational de Alto Desempenho, PCAD, from the

39

Institute of Informatics at UFRGS. We utilize four nodes of the Draco cluster, composed
of two Intel Xeon E5-2640 v2 2.00GHz per node, with eight cores per processor. Each
node has 64GB DDR3 RAM, connected by a 1Gbit/s network. All nodes run the Debian
10 operating system, with Linux kernel version 4.19.0-10-amd64. The application was
compiled using OpenMPI 3.1.4 and GCC 8.3.0 with the following compiler flags -c -O3
-g -funroll-loops -static.

As input data, we exploit one synthetic study case, which consists of a resistivity
model with 41x11x89 (width, length, depth) cells, for a total of 451 CMPs, approxi-
mating a volume of 20x7.5x4.2 cubic kilometers. The survey data consists of 1,061,046
data points from 189 fixed receivers and 176,841 controlled-source positions and contains
values associated with three frequencies for each S-R pair.

After running the application, we collect OTF2 traces generated by Score-P and
convert them to CSV using the ot £22csv converter (SCHNORR, 2019). We then read
and sanitize the data, generating output data ready for analysis. We use a science workflow
implemented with the R language (R Core Team, 2020) with the tidyverse (WICKHAM
et al., 2019), and ggplot2 (WICKHAM, 2016) packages to analyze the results.

5.2 Mapping Data to the Model

As previously stated, the studied application executes a nonlinear function with
the electromagnetic field in an independent fashion for each CMP cell. To be considered
in some aggregation to be allocated in a CMP cell, each geographical common mid-point
of each S-R pair must match a cell in a resistivity model. With this strategy, we have the
mapping setup as previously depicted by Figure 3.3.

The application executes such a combination in the initialization phase. For each
S-R pair, the application computes the mid-point and then finds the closest cell of the
resistivity model by relying on their geographical coordinates. This combination of the
application parameters and the survey data results in an imbalanced number of S-R pairs
allocated for each model cell.

To better understand this unbalancing matching process, we instrumented the code
to gather information regarding the organization of the cells. We generate outputs that
extract the quantity of S-R pairs allocated to each CMP cell for the studied model. Figure
5.2 depicts this unbalancing, with the number of pairs on the Y-axis associated with each

cell of the resistivity model in the X-axis. We can see a four-time difference between cells

40

with more pairs allocated to those with fewer in this model.

Figure 5.2 — Number of S-R pairs associated for each CMP of the studied model.
(%]

'%400' :-". :"'. :'-'.. ':-'..
@ 300+ H 'z,-‘: 3 H .-i"'s" 3
o SRV VI SR O A W
%5 200- : T U : : AU 3
N H kS 7 \
101 /NN /\ A VA
E
=) -
Z O T T T T T
0 100 200 300 400

CMP Index
Source: Author

5.3 Problem Identification

The temporal traces gathered from the application introduced the load imbalance
among machines. Figure 5.3 shows the results, where the X-axis is the time in seconds,
and the Y-axis represents the parallel workers involved in this execution. We run the
application with 14 MPI workers with 8 OpenMP threads per worker, having 112 parallel
threads. The colors of the plot represent the different operations being executed in each
second of execution. We can see that the regions identified as OpenMP operations take

different durations to execute throughout the workers. This difference is what we consider
as load imbalance.

Figure 5.3 — Temporal data collected in one execution with three iterations. Colors represent
different operations detected during execution.

[EEY
N
1

(o2}
1

Parallel Workers
[o0]

o -
al
o

100 150
Time [sec]

Operation ® Forward/OpenMP [MPI

Source: Author

Investigating the code deeper, we noticed that the OpenMP region corresponds to

the forward phase of the inversion alg