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ABSTRACT

This thesis presents three essays in the topic of portfolio optimization and index tracking.
The first essay is a critique of the Tangency Portfolio (TP). The TP has paramount
theoretical importance in the Modern Portfolio Theory, however, its performance is far
from satisfactory. The TP presents unstable weights, what increases the portfolio turnover
and, consequently, its transaction costs. Furthermore, the denominator of the TP is
frequently close to zero, what can result in extreme weights, precluding the portfolio
from being well diversified. There is also the possibility that the TP’s denominator is
negative, causing an inversion of the allocation vector’s signal and the delivery of a poor
portfolio. This work compares the TP with other portfolios and finds that the TP always
comes at the bottom. The work also offers propositions that show that the TP can be
outperformed (in terms of utility) by other portfolios. The second essay provides an
explicit derivation to the equivalence between the minimum variance portfolio of excess
returns on a benchmark and the minimum Tracking Error volatility portfolio. This result
relies on the Sherman-Morrison formula. The essay also presents an equivalence of those
results to an OLS regression with constrained beta. Further, the essay uses the first
equivalence result to find a tracking portfolio using the approach of Kempf and Memmel
(2006). The third essay compares the performance of passive investment portfolio with a
small number of assets (sparse index tracking portfolios) using different feature selection
algorithms. To that end we provide an empirical examination with two datasets: one
American and one Brazilian. To isolate the effect of the selection methods, we separate the
asset selection and the asset allocation phase. In the asset allocation phase, we follow Liu
(2009), and select minimum Tracking Error volatility portfolios. The selection methods
used are the backward stepwise selection, forward stepwise selection, and the lasso. Our
results show that, in the Brazilian case, the lasso selection method is the best tracker. In
the American case, the lasso presents better risk-adjusted performance, but this is due to
higher mean returns, not lower volatility. This is undesirable in our case. One highlight of
this essay is that the best tracker for the American Dataset uses the backward iteration
algorithm (a simple method that receive little attention in the literature).
Key-words: Mean-Variance Analysis. Portfolio Optimization. Index Tracking. Perfor-
mance Evaluation.



RESUMO

A presente tese apresenta três ensaios com o tema de otimização de carteiras e index
tracking. O primeiro ensaio é uma critica ao Portfolio de Tangência (TP). O TP tem
grande importância teórica na Moderna Teoria do Portfólio; porém, o seu desempenho está
longe de ser satisfatório. O TP apresenta pesos instáveis, o que aumenta o turnover da
carteira e, consequentemente, os seus custos de transação. Além disso, frequentemente, o
denominador do TP é perto de zero, o que pode resultar em pesos extremos, o que impede
a boa diversificação dos pesos da carteira. Também há a possibilidade de o denominador
do TP ser negativo, o que causa a inversão do sinal do vetor de alocação, resultando em um
portfólio ruim. Este trabalho compara o TP com outras carteiras e chega a conclusão que
o TP tem um desempenho pífio. O trabalho também oferece proposições que mostram que
o TP pode ser superado (em termos de utilidade) por outras carteiras. O segundo ensaio
oferece uma derivação explícita da equivalência entre a carteira de variância mínima e a
carteira de mínima volatilidade do Tracking Error. Esse resultado depende da fórmula de
Sherman-Morrison . O ensaio também apresenta uma equivalência desses resultados com
uma regressão restringida de Mínimos Quadrados. Além disso, o ensaio usa a primeira
equivalência para achar uma carteira de tracking usando a abordagem de Kempf and
Memmel (2006). O terceiro ensaio compara a performance de carteiras de investimento
passivo com um número pequeno de ativos (carteiras esparsas de index tracking usando
diferentes algoritmos de feature selection. Para isso, oferecemos um estudo empírico
com duas bases de dados, uma americana e outra brasileira. Para isolarmos o efeito dos
métodos de seleção, nós separamos a fase de seleção de ativos da fase de alocação de ativos.
Na fase de alocação de ativos, seguimos Liu (2009) e selecionamos a carteira com a menor
volatilidade de Tracking Error. Os métodos de seleção utilizados são o backward stepwise
selection, o forward stepwise selection e o lasso. Nossos resultados mostram que, no caso
brasileiro, a seleção pelo método lasso é o melhor tracker. No caso americano, o lasso
apresenta melhor desempenho ajustado pelo risco, porém isto é devido a maiores retornos,
não a menor volatilidade, o que não é desejável no nosso caso. Um destaque deste ensaio
é que o melhor tracker para o caso americano é uma carteira que utiliza o algoritmo de
iteração backward (métodos simples que recebem pouca atenção na literatura).
Palavras-chaves: Média-Variância. Otimização de Carteiras. Index Tracking. Avaliação
de Desempenho.
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1 INTRODUCTION

It is reasonable to imagine that investors prefer to elevate their wealth while
minimizing the risks associated to any potential gain. To that end, professional wealth
managers use portfolio optimization on investment decisions. This optimization is an
important process of diversification in which the proportion of each financial asset kept on
a portfolio is determined to maximize the return contingent to a desired risk level. The
classic approach was introduced by Markowitz (1952, 1959), and perfected by Merton
(1972). It is known as the Modern Portfolio Theory (MPT) and it aims to optimize the
trade-off between risk and return of a portfolio. This mean-variance framework is the
basis to the subsequent development of portfolio optimization.

Since the seminal contributions of Markowitz (1952, 1959), mean-variance portfolio
optimization has become the cornerstone to several areas in quantitative finance, including
asset allocation, portfolio management of stocks, bonds, and other assets. This framework
defines the appropriate portfolio weights by solving an optimization problem. This problem
presents itself in three main forms: the first is to maximize return given a level of risk;
the second is to minimize risk given a level of return; and the third is to optimize an
objective (or utility) function. Even though this approach presents some deficiencies, one
of them being the sensibility of the optimal weights to the inputs (estimated means and
variances), the mean-variance optimization still is the mainstay of the Modern Portfolio
Theory. Hence, a solid understanding of this method allied with some intuition is essential
to the comprehension and to the successful implementation of any quantitative investment
strategies.

Before Markowitz’s work, the risk return interaction was treated in a rather ad hoc
manner, as Kolm, Tütüncü and Fabozzi (2014) point out. Since then, portfolio selection
and optimization is a fundamental problem of finance, both from the academic point of
view and from the market practitioner point of view. The MPT offers an answer to one of
finance’s most fundamental question: “How should an investor allocate his funds amongst
all the possible assets”?

Underlying Markowitz’s optimization problem there is a known economic problem:
the utility maximization, which arises from the definition of Economics. Markowitz’s
portfolio theory presupposes that the investor has a concave utility function that expresses
a risk-averse behavior. So, Markowitz formulates the portfolio selection with two criteria
at its base: mean and variance. One of the basic assumptions in economics is that the
economic agents want to allocate its resources in the most efficient way possible. Hence,
it is also legitimate that finance supposes that the investors want to allocate wealth in
the most efficient manner. They do this by trying to maximize return and minimize risk.
Ergo, the portfolio selection problem is a genuine economic problem that deserves the
researcher’s attention.
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However, it is prudent to highlight that the process of portfolio selection proposed
by Markowitz has its pitfalls. For example, it presents a high sensibility to the uncertainty
of its inputs. This is observed by Best and Grauer (1991), who show how changes in the
mean asset returns affect the return, risk, and composition of a given portfolio. Chopra
and Ziemba (1993) do something similar, they examine the relative impact on the portfolio
of estimation errors in the mean, variance, and covariance of assets.

This thesis is inserted in the context of portfolio selection and optimization, it
offers three different essays with this common theme. However, the essays differ in their
approaches and subthemes. Because this thesis is comprised of three different essays with
a common theme, it is inevitable to have some content overlap. Also, because we wanted
to make the essays the most self contained as possible, we had to allow those redundancies
in content throughout the text.

Finally, this thesis is comprised of five chapters. Beyond this introduction, there
are three essays, one for each chapter, and the thesis finishes in Chapter 5, with some final
considerations. The first essay offers a critique of the Tangency Portfolio (TP). 1 This
critique is due to the widespread misconception that the TP is the most efficient mean-
variance portfolio, as can be seen in DeMiguel, Garlappi and Uppal (2009) and Kempf
and Memmel (2006) among others. The second essay provides an explicit derivation of
the equivalence between the minimum variance portfolio and the minimum Tracking Error
volatility portfolio. This equivalence is much talked about in intuitive terms but seldom
demonstrated analytically, see Liu (2009) and DeMol (2016). The main contribution of
this essay, besides the direct analytical derivation, is to present the connection among
general portfolio optimization, index tracking portfolio optimization and OLS regressions.
The third essay is about feature selection in the context of index tracking. In it, we
make an empirical comparison of feature selection methods in the context of portfolio
optimization. The study of such methods is important, in view of the observation made
by Liu (2009) and Tu and Zhou (2011) that the majority of institutional managers are
benchmarked by an external index like the SP500.

1A preliminary version of this essay was accepted to the XIX Econtro Brasileiro de Finanças with the
title “Tangency Portfolio: A Critique”
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2 TANGENCY PORTFOLIO: A CRITIQUE

In the present essay we will offer evidence as to why the Tangency Portfolio (TP)
should not be used for empirical evaluations. We present an analytical study of the TP,
where we offer some propositions about the ex-ante performance (in terms of utility) of
the TP. Even though the propositions do not take uncertainty into account they reveal
an important fact: the TP can be outperformed (in terms of utility) in sample by other
portfolios. We also perform an empirical evaluation using the Kenneth French Data
Library. This data was also used in DeMiguel, Garlappi and Uppal (2009), Kirby and
Ostdiek (2012), but with a different time frame. Further, we use a Brazilian dataset of
asset prices with daily frequency from January 1999 to December 2010 (2970 days).

Our results show that the TP rarely outperforms other portfolios on in and out of
sample evaluations. This corroborates the work in Kirby and Ostdiek (2012). Further, our
propositions show that the TP can be outperformed in sample. This underperformance is
exacerbated in out of sample evaluations of the TP, as shown here and in other papers.
Hence, it is not that the TP is optimal with a bad out of sample performance. The TP is
not optimal in sample as well. To a lesser extent, our results also corroborates the work of
Clarke, Silva and Thorley (2006) about the performance of the Global Minimum Variance
Portfolio.

In Portfolio Theory, the Tangency Portfolio (TP) is of paramount importance and
has several meaningful properties, as stated by Roll (1977), Brandt (2010), Constantinides
and Malliaris (1995), and Best (2010). However, it presents a poor out of sample
performance, as shown in Kirby and Ostdiek (2012), Kritzman, Page and Turkington
(2010), and DeMiguel, Garlappi and Uppal (2009). Sometimes the TP is presented as
the best mean-variance efficient portfolio as in Kempf and Memmel (2006), Britten-Jones
(1999), and DeMiguel, Garlappi and Uppal (2009). This is inaccurate. The TP is optimal
under the criterion of Sharpe Ratio optimality, not mean-variance utility optimality. For a
portfolio to be optimal under a mean-variance utility, the optimization problem has to take
into account the investor’s risk-aversion, which the TP does not do. Furthermore, there
are other alternatives for mean-variance efficient portfolios that present less uncertainty
with more stable and less extreme weights, as Kirby and Ostdiek (2012) show.

Markowitz (1952) pioneered the research of the Modern Portfolio Theory by
establishing rules to select portfolios. One of its greatest innovations was the ability to
provide a quantitative method through which the diversification of investments could be
performed. With this method, the investor was able to directly solve the risk-return trade
off of a portfolio by maximizing the return given an acceptable level of risk, or minimizing
the risk given a wanted return. Merton (1972) derived the efficient frontier of portfolio
returns from Markowitz’s work. He did it by creating a function that finds the optimal
variance given an expected return of the combination of assets that form the optimal
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portfolio.
Further problems with the Tangeny Portfolio are aired by Kirby and Ostdiek (2012)

when they point out that: (a) if its denominator (A = e′Σ−1µ) is small, then the TP can
display extreme weights and hence extreme returns; (b) if the denominator is negative
(A < 0), it reverses the direction of the allocation vector, which can bring disastrous
consequences to the investor using such portfolio; (c) those undesirable values of A happen
more often than we would like. So, we can see that the values of A play a large role in
what the value of the TP will be.

With this in mind, Jobson and Korkie (1980) analyze the distribution of e′Σ−1µ

and show that it is very volatile. This volatility directly affects the TP’s weights, making
them unstable and extreme, which raises the TP’s turnover and, with it, its transaction
costs. This high transaction costs worsen the TP’s performance.

One of the components of A is µ. Several papers on parameter uncertainty like
Merton (1980) and Chopra and Ziemba (1993) indict µ as the main culprit of the volatility
of portfolio weights. They also point out that µ is one of the most volatile quantities to
be estimated in Portfolio Theory.

Dealing with parameter and estimation uncertainty, Kan and Zhou (2007) derive
rules for portfolio allocation that minimize estimation risk. In the beginning of their paper,
Kan and Zhou (2007) derive the optimal portfolio allocation when the investor knows,
with certainty, the vector of expected returns (µ) and the covariance matrix of returns

(Σ), and find that the maximum utility is given when w =
Σ−1µ

γ
. Later, they relax the

assumption of knowing µ and Σ with certainty and find rules for optimal allocation when
those quantities are not known with certainty. The derivation of those rules are based on
loss and risk functions, which are widely used in decision analysis and Bayesian choice
theory.

Kan and Zhou (2007) never mention the TP per se, because the it is not the
solution of their maximization problem. But as Okhrin and Schmid (2006) point out, the
TP does not have moments higher or equal to one. This means that even if we wanted,
we could not compute the ex-post expected utility of the TP.

The rest of the essay is organized as follows. Section 2.1 presents the basics of
portfolio selection and the portfolios that we will use throughout this essay. Section 2.2
offers an analytical study with some Propositions that show in what situations the TP is
overperformed by other portfolios ex-ante. Section 2.3 describes our empirical evaluation
of the TP against other portfolios. Section 2.4 shows the results of our empirical evaluation.
Finally, Section 2.5 concludes.
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2.1 PORTFOLIO SELECTION

In this section, we present the basics of portfolio selection and the portfolios that
we will use throughout this essay. We observe T N -tuples of returns throughout time. We
denote the vector of returns of those assets in time t = 1, . . . , T by:

Rt = [Rt1, Rt2, . . . , RtN ]′.

This results in the following T ×N matrix:

R = (Rti)t=1,...,T,i=1,...,N =


R11 R12 . . . R1N

R21 R22 . . . R2N

...
... . . . ...

RT1 RT2 . . . RTN

 .

We assume that the returns follow a N -variate distribution with mean vector µ = E[Rt]

and covariance matrix Σ = Var[Rt], denoted as follows:

E(Rt) = µ =


µ1

µ2

...
µN

 , Var(Rt) = Σ = (σij)i,j=1,...,N =


σ11 σ12 . . . σ1N

σ21 σ22 . . . σ2N

...
... . . . ...

σN1 σN2 . . . σNN

 .

The covariance matrix of returns Σ = Var[Rt] has elements σii = σ2
i and σij = ρijσiσj (for

i 6= j), where σi is the standard deviation of Rit and ρij is the correlation coefficient of
assets Si and Sj (for i 6= j). Throughout this essay, we will assume that Σ is positive
definite so it can be invertible.

Portfolios

A portfolio is represented by a N -dimensional vector w,

w = [w1, w2, . . . , wN ]′ ,

where wi is the fraction of total wealth invested in asset i. The vector w can also be called
the allocation vector. We use the following portfolios: Equally Weighted (EW), Optimal
Unconstrained (OU), Tangency Portfolio (TP), Minimum Variance (MV), and Optimal
Constrained (OC), with formulas:
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wew = e/N, (2.1)

wou =
Σ−1µ

γ
, (2.2)

wtp =
Σ−1µ

e′Σ−1µ
, (2.3)

wmv =
Σ−1e

e′Σ−1e
, (2.4)

woc =
Cµ0 − A

D
Σ−1µ+

B − Aµ0

D
Σ−1e, (2.5)

where A, B, C, and D are Merton’s constants, which are equal to:

A = e′Σ−1µ, B = µ′Σ−1µ, C = e′Σ−1e, D = BC − A2. (2.6)

(MERTON, 1972, p. 1853) points out the fact that B > 0, C > 0 and D > 0, if Σ is
Positive Definite. For more information about the above portfolios, the reader should
consult Kirby and Ostdiek (2012), Brandt (2010), Constantinides and Malliaris (1995),
Merton (1972).

Portfolio Returns

Holding the portfolio wp,t for one period gives the out of sample return in t+ 1,

Rp,t+1 = w′p,tRt+1. (2.7)

With this formula, we find portfolio’s expected return µp, portfolio variance σ2
p, and

standard deviation σp:

µp = E[Rp] = E[w′Rt] = w′µ

σ2
p = Var[Rp] = Var[w′Rt] = w′Σw

σp =
√
w′Σw.

Also, with those definitions, we can define the mean-variance utility function of portfolio
w, as:

U(w) = µp −
γ

2
σ2
p = w′µ− γ

2
w′Σw. (2.8)

2.2 ANALYTICAL STUDY

In this section, we will present the ex-ante utilities of the following portfolios:
Equally-Weighted Portfolio (EW), Optimal Unconstrained Portfolio (OU), Tangency
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Portfolio (TP), Minimum Variance Portfolio (MV), and the Optimal Constrained Portfolio
(OC). Next, we will compare the Utility of the TP with other portfolios to find under
what conditions the TP has higher utility.

Even though the ideal comparison would be to proceed as Kan and Zhou (2007)
and compute ex-post expected utilities for the TP, Okhrin and Schmid (2006) point out
that the TP does not have moments higher or equal to one. Hence, finding the expected
utility of the TP is an impossible task. Still, our propositions present an interesting
result: In sample, the TP can be outperformed by other portfolios in terms of utility.
Consequently, the TP might not be the best portfolio choice.

Using equation (2.8), we may find the utilities of the portfolios listed above. This
results in:

Uew =
e′µ

N
− γ

2N2
e′Σe, (2.9)

Uou =
B

2γ
, (2.10)

Utp =
B

2A2
(2A− γ), (2.11)

Umv =
1

2C
(2A− γ), (2.12)

Uoc =
−γ2 + 2Aγ +D

2γC
, (2.13)

where e is a conformable vector of ones, and A, B, C, and D are Merton’s constants, as
shown in (2.6).

TP and OU

Comparing (2.11) with (2.10), we find:

Utp ≥ Uou

B

2A2
(2A− γ) ≥ B

2γ

γ(2A− γ) ≥ A2

−γ2 + 2Aγ − A2 ≥ 0

−(γ − A)2 ≥ 0

Unless γ = A, Utp ≤ Uou. This leads to our first proposition:

Proposition 1: Ex-ante, the utility of the OU is higher than the TP, except when γ = A,
in which case Uou = Utp.
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TP and OC

Comparing (2.11) with (2.13), we find:

Utp ≥ Uoc

B

2A2
(2A− γ) ≥ −γ

2 + 2Aγ +D

2γC

BCγ(2A− γ) ≥ −γ2A2 + 2A3γ + A2D

−γ2(BC − A2) + γA(2BC − 2A2)− A2D ≥ 0

−Dγ2 + 2ADγ − A2D ≥ 0

D is always positive, so we can divide both sides by it.

−(γ2 − 2Aγ + A2) ≥ 0

−(γ − A)2 ≥ 0

Again, unless γ = A, Utp ≤ Uoc. This leads to our second proposition:

Proposition 2: Ex-ante, the utility of the OC is higher than the TP, except when γ = A,
in which case Uoc = Utp.

TP and MV

Comparing (2.11) with (2.12), we find:

Umv ≥ Utp

1

2C
(2A− γ) ≥ B

2A2
(2A− γ)

A2(2A− γ) ≥ BC(2A− γ)

(A2 −BC)(2A− γ) ≥ 0

−D(2A− γ) ≥ 0

D is always positive, so we can divide both sides by it.

−2A+ γ ≥ 0

γ ≥ 2A

So for γ ≥ 2A, Umv ≥ Utp. Otherwise (γ < 2A), Utp > Umv. This leads to our
third proposition:

Proposition 3: The ex-ante utilities Umv and Utp depend on the values of γ with Umv >

Utp for γ > 2A and Umv < Utp for γ < 2A.
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The propositions above demonstrate that, even without uncertainty, the utility of
the TP can be lower than the other portfolios. They also demonstrate that the utilities
depend on what values we use for γ in relation to A. This is significant because the
portfolio literature treats the TP as being the best mean-variance portfolio (KEMPF;
MEMMEL, 2006; BRITTEN-JONES, 1999; DEMIGUEL; GARLAPPI; UPPAL, 2009).
This is falsified by our propositions above.

Further comparisons of utility values for different values of γ can be seen in the
Figure 2.1 below. In the figure, we can see that when γ = A, the OC, the OU, and the
TP have the same utilities. For values of γ different from A, the TP has lower utility than
the OU and the OC. The figures also show that the MV has lower utility than the TP
when γ is lesser than 2A, but the MV has higher utility when γ is greater than 2A.

2.3 EMPIRICAL EVALUATION

In this section, we will do an empirical evaluation to test the performance of the
Tangency Portfolio against alternative portfolios. This empirical evaluation consists in
forming the optimal portfolios from Section 2.1 in pseudo real time and evaluating the
out of sample performance of those portfolios against each other.

2.3.1 Data

The data for this empirical analysis consists of a total of three datasets. The
first two are of monthly raw returns (not in excess of the risk-free asset) drawn from the
Kenneth French library 1. They are the 10 Industry portfolios (FF10) and the 25 Size
and Book to Market portfolios (FF25). Versions of those datasets were used in DeMiguel,
Garlappi and Uppal (2009) and Kirby and Ostdiek (2012). The sample period used here
is from July 1963 to June 2018 (T = 660 months). The third dataset is a Brazilian one
and it consists of daily closing prices for 61 stocks traded in the Bovespa. The sample
period used here is from January 1999 to December 2010 (2970 days).

Rolling Windows Estimators

To estimate the parameters inputs, µ̂ and Σ̂ used in the portfolio policies, we adopt
a recursive estimation approach based on a rolling window time series of returns. With
this approach, at each point in time t = J, . . . , T , we use use the last J points of data and
estimate:
1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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µ̂t = J−1

J−1∑
j=0

Rt−j

Σ̂t = (J − 1)−1

J−1∑
j=0

(Rt−j − µ̂t)(Rt−j − µ̂t)′

This results in T − J − 1 estimates of expected return vectors and covariance matrices.
For the FF10 and FF25 datasets, we use window length equal to J = 120 (10 years of
monthly data). So, we have 479 estimates of covariance matrices and expected returns.
For the Brazilian dataset, we use window length equal to J = 250 (approximately one
year of daily data). So, we have 2719 estimates.

Allocation

Using the estimates above, we find the allocation vector using the policies of Section
2.1. They are the EW (equation (2.1)), TP (equation (2.3)), MV (equation (2.4)), and
the OC (equation (2.5)). For this last portfolio, Kirby and Ostdiek (2012) set the target
return, µ0, equal to the return of the EW to let the aggressiveness of the mean-variance
portfolio comparable to it. In this essay however, we use 1.1 times the mean return of the
MV as our target return. This happens because, in our data, the mean return of the EW
is smaller than the mean return of the MV , consequently, it is not efficient to use µew as
a target return. Also, in this way, we always have µ0 > A/C. By the end of this process,
we generate T − J − 1 allocation vectors for each policy, in each dataset.

2.3.2 Evaluation Measures

What we will evaluate are the out of sample returns of the portfolios. Using the
formula (2.7), we generate the time series {Rp,t}Tt=J+1 of out of sample returns for each
policy in each dataset. This time series is the subject of our analysis. Since the risk-return
tradeoff is at the core of the Portfolio Theory, any evaluation of portfolio performance has
to take this tradeoff into account. We do this by computing two measures: the Sharpe
Ratio and the certainty equivalent (CEQ), as defined below.

Sharpe Ratio (SR)

The first measure is the Sharpe Ratio (SR), that measures the amount of additional
return for each unit of risk incurred by the portfolio. The SR has the following formula:

ŜRp =
µ̂p
σ̂p
.
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Where µ̂p is the average of portfolio returns, and σ̂p is the standard deviation (volatility)
of portfolio returns, calculated as follows:

µ̂p = (T − J − 1)−1

T∑
t=J+1

Rpt,

σ̂p =

√√√√(T − J − 2)−1

T∑
t=J+1

(Rpt − µ̂p)2,

where Rpt is the portfolio return calculated with formula (2.7).
However, the SR does not take into account the investor’s specific risk aversion, nor

the amount of leverage the portfolio has. Hence, we use alternative measures to mitigate
this problem.

Certainty Equivalent (CEQ)

The second measure that we use is the certainty equivalent (CEQ) return. This
measure expresses the risk-free rate (return without risk) that the investor is willing to
accept in lieu of a particular risky portfolio strategy. It is also a measure of the investor’s
quadratic utility.

ˆCEQp = Ûp = µ̂p −
γ

2
σ̂2
p.

Here, we used γ = 1 and γ = 5 to evaluate the portfolios’ performance.

Transaction Costs

To get a sense of the amount of trading required to implement each portfolio
strategy, we compute the portfolio turnover. As Liu (2009) points out, the turnover can be
understood in the following way: in the moment prior to rebalancing, each dollar invested
in asset Si in the portfolio has changed its value from wi,t to wi,t(1+Ri,t+1). So, in general,
each dollar invested in the whole portfolio has changed from wt to wt(1 +Rt+1), where
wi,t is the i-th element of wt and the i-th element of Rt is denoted as Ri,t. Therefore, prior

to rebalancing, the weight on asset Si has changed from wi,t to wi,t
1 +Ri,t+1

1 + w′tRt+1

, meaning

the turnover rate in time t after rebalancing the portfolio can be defined as:

TOt =
N∑
i=1

∣∣∣∣wi,t+1 − wi,t
1 +Ri,t+1

1 +Rp,t

∣∣∣∣ .
We report the average of this rate throughout time.

Associated with the turnover there is the associated transaction costs of rebalancing
a portfolio. If the rebalancing is too frequent or too extreme, it can lead to overtrading.
According to Barber and Odean (2000), overtrading has negative effects on portfolio
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performance due to its associated transaction costs. To take into account the impact of
such costs we also evaluate the returns net of transaction costs, which have formula:

Rnet
p,t = (1 +Rp,t)(1− c× TO),

where c is the fee that must be paid for each transaction. We use c = 50bps like in
DeMiguel, Garlappi and Uppal (2009) and Kirby and Ostdiek (2012).

Implied Risk Aversion

Bodnar, Parolya and Schmid (2013) explore the relation between µ0 (the target
return) and γ (the investor’s risk aversion). They show for what values of γ those values
are the same, and the answer is:

γ =


s

µ0 −Rgmv

, for µ0 > Rgmv

∞, for µ0 = Rgmv,

where,

Rgmv =
A

C
, s = µ′Qµ, Q = Σ−1 − Σ−1ee′Σ−1

C
.

If µ0 < Rgmv = A/C, the solution does not lie on the efficient frontier. Representing γ in
terms of Merton’s constants:

γ =
D

Cµ0 − A
, for µ0 >

A

C
, (2.14)

µ0 =
A

C
+

D

γC
. (2.15)

With equations (2.14) and (2.15), we can find an implied risk aversion of the investor who
seeks target return µ0.

Weight Statistics

To gauge the amount of leverage in each portfolio, we report their Gross Exposure
and their Short Interest. The Gross Exposure is expressed in proportion of the notional
value of the portfolio (e.g. when the Gross Exposure is equal to one, it means that there
is no leverage; but a Gross Exposure of 1.1 means that the portfolio is leveraged with
10% of its notional value). The Short Interest expresses the size of the short positions
(weights smaller than zero) in the portfolio, it is expressed in percentage (e.g. when the
Short Interest is equal to zero, it means that there is no short-selling happening; but when
the Short Interest is equal to 10%, it means that the sum of of short positions are 10%).
These measures have the following formulas:
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Grosst =
N∑
i=1

|wi,t|

Shortt =

∑N
i=1 |wi,t| − 1

2
.

Hypothesis Testing

To verify if the Sharpe Ratio and the CEQ of each policy are statiscally different
from the benchmark (the TP), we use the framework laid out in Ledoit and Wolf (2008,
2011, 2018). Their framework relies on the fact that those performance measures are
smooth functions of population moments. We use the circular block bootstrap of Politis
and Romano (1992) with block length 2, 4, 6, 8, and 10 to find p-values of the differences
in performance measures.

2.4 RESULTS

In this section we present the results of our empirical analysis. We do not annualize
any performance measure due to the problem of time aggregation pointed out in Lo (2002).
So the performance measures are in monthly terms for the FF10 and FF25 datasets, and
in daily terms for the Brazilian dataset.

2.4.1 In Sample Results

Table 2.1 presents the in sample results for the Tangency Portfolio (TP), Minimum
Variance Portfolio (MV), Optimal Constrained Portfolio (OC), and the Equally Weighted
Portfolio (EW) for the FF10 (Panel A), the FF25 (Panel B), and for the Brazilian (Panel
C) datasets. The statistics shown are: the mean of the portfolio return (µ), the standard
deviation of the portfolio return (σ), the Sharpe Ratio of the portfolio returns (SR), the
quadratic utility of the portfolio returns for γ = 1 and γ = 10 (CEQ 1 and CEQ 10), and
the in sample implied risk-aversion of the portfolios (γ). The performance measures are
in monthly terms for the FF10 and FF25 datasets, and in daily terms for the Brazilian
dataset. The sample size is 479 for the FF10 and FF25 dataset and 2719 for the Brazilian
dataset.

The in sample results can be summarized as follows: the TP strategy has the
biggest SR in all datasets, but it does not have bigger CEQs, as in the case of the FF10
dataset. This fact can be explained by our propositions. The results also show the high
values of gross exposure and short interest of the TP strategy.
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2.4.2 Out of Sample Results

Table 2.2 presents out of sample results for the Tangency Portfolio (TP), Minimum
Variance Portfolio (MV), Optimal Constrained Portfolio (OC), and the Equally Weighted
Portfolio (EW) for the FF10 (Panel A), FF25 (Panel B), and Brazilian (Panel C) datasets.
The statistics shown are the same as in Table 2.1 with the exclusion of γ, and the inclusion
of the average turnover of the portfolio (TO). Also, the statistics to the right of the TO
column are for the returns net of transaction costs with 50bp. The performance measures
are in monthly terms for the FF10 and FF25 datasets, and in daily terms for the Brazilian
dataset. The sample size is 479 for the FF10 and FF25 dataset and 2719 for the Brazilian
dataset.

Tables 2.3, 2.4, and 2.5 show the p-values of the aforementioned hypothesis tests
of the SR, CEQ 1, and CEQ 10 statistics of the portfolios returns of each strategy. Tables
2.6, 2.7, and 2.8 show the p-values of the same statistics but it uses the net portfolio
returns. The benchmark of all tables is the TP strategy.

2.4.2.1 Without Transaction Costs

Without transaction costs the TP’s SR is the lowest of all datasets (0.10, 0.18,
−0.02 for the FF10, FF25, and Brazilian datasets), meanwhile the MV (0.29, 0.37, 0.10)
and OC (0.28, 0.38, 0.10) have the highest SRs. To verify the difference in the SRs, we
consult Table 2.3, in it we can see that the p-values hover around 5% for the MV and the
OC for the FF10 and FF25 datasets and 2% for the Brazilian dataset. Such a feature
does not happen to the EW strategy.

In terms of the CEQs, the results are not so clear. Without the transactions costs,
in the FF25 dataset, the TP is tied with the OC in terms of the CEQ 1 statistic with a
value of 1.39. This kind of result does not happen in the FF10 and the Brazilian dataset
where the TP has the lowest CEQ 1. In terms of CEQ 10, maybe because of the higher
risk aversion, the TP has the lowest values. However, it is important to point out that
the results are not statistically significant for any dataset or block length that we might
choose (see Tables 2.4 and 2.5).

2.4.2.2 With Transaction Costs

With transaction costs, the TPs SR and CEQ has the worst statistics with negative
values for all of them. Negative value for a statistic only happens again for the specific
case of the EW strategy in the Brazilian data for the CEQ 10 statistic. Also, the difference
of the statistics with the other strategies increase drastically.

Table 2.6 reports the statistical significance for the SR, with transaction costs. In
this table we can see that for the Brazilian data, the difference has significance below the
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level of 1% for the MV and OC strategies for all block lenghts. The EW strategy has
significance below the 5% level for all block lenghts. The FF10 and FF25 datasets do
not have such clear results. The FF10 dataset has significance below 10% for all block
lengths for the MV strategy, and below 15% for the OC strategy with some block lenghts
registering levels below 10%. The FF25 has the OC strategy with statistical levels below
5% for all block lengths and the MV strategy below 10% with some block lenghts below
5%.

The statistical significance for the CEQs with transaction costs are reported in
Tables 2.7 and 2.8. None of the results is below 30%. It is a noteworthy fact that such
differences are not statistically significant, this has to be due to the variance of the TP’s
CEQs.

2.5 CONCLUDING REMARKS

In our empirical evaluation, we showed that in the FF10 dataset, the MV portfolio
wins in the out of sample evaluation and the TP almost always come at the bottom. In the
FF25 dataset, the OC portfolio wins in the out of sample evaluation, and the TP almost
always come at the bottom. We also observe that, although the TP has the higher SR in
sample, this might not be true for the CEQ. We also observe that almost certainly this is
not true out of sample with and without transaction costs. The transaction costs greatly
degrade the TP’s performance, because it has the highest turnover of the portfolios.

The poor out of sample performance of the TP is already common sense in the
portfolio selection literature, what does not seem to be common sense is the results shown
in the Section 2.2. Those results show that the TP might be overperformed in sample by
other portfolios, they also show in what occasions they overperform the TP. Through those
propositions and the empirical illustration, we wish to show that it might be undesirable
to use the TP to practical ends. The TP’s weights not only present instability and
extreme weights, but they also might not be optimal in sample. In its stead we should use
alternative portfolios like the MV and the OC, depending on the investor’s risk aversion.
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Table 2.1 – In Sample Results
Mean SD SR CEQ 1 CEQ 10 Gamma Gross Short

Panel A: FF10 Dataset
TP 1.09 3.63 0.30 1.03 0.44 8.31 1.98 49.23
MV 1.02 3.50 0.29 0.96 0.41 Inf 1.67 33.32
OC 1.12 3.74 0.30 1.05 0.42 6.01 2.15 57.27
EW 1.02 4.23 0.24 0.93 0.13 147.48 1.00 0.00

Panel B: FF25 Dataset
TP 2.63 4.84 0.54 2.51 1.46 11.24 10.80 489.77
MV 1.31 3.41 0.38 1.25 0.73 Inf 6.15 257.63
OC 1.44 3.43 0.42 1.38 0.85 113.39 6.28 263.88
EW 1.20 5.05 0.24 1.08 −0.07 −141.46 1.00 0.00

Panel C: IBOV Dataset
TP 0.21 1.25 0.17 0.20 0.13 13.44 3.38 119.11
MV 0.11 0.90 0.12 0.10 0.07 Inf 1.96 47.89
OC 0.12 0.90 0.13 0.12 0.08 125.34 1.98 49.15
EW 0.10 1.51 0.07 0.09 −0.01 −229.44 1.00 0.00

Source: The author.

Table 2.2 – Out of Sample Results
Mean SD SR CEQ 1 CEQ 10 TO Gross Short SR CEQ 1 CEQ 10

Panel A: FF10 Dataset
TP 0.72 7.48 0.10 0.44 −2.08 146.56 3.92 145.86 −0.01 −0.98 −8.83
MV 1.04 3.57 0.29 0.98 0.41 16.16 2.34 67.00 0.27 0.90 0.32
OC 1.03 3.62 0.28 0.96 0.37 18.63 2.36 67.81 0.26 0.87 0.28
EW 1.02 4.23 0.24 0.93 0.13 2.46 1.00 0.00 0.24 0.92 0.12

Panel B: FF25 Dataset
TP 2.04 11.44 0.18 1.39 −4.50 1276.13 20.05 952.41 −0.05 −163.02 −1555.59
MV 1.40 3.82 0.37 1.33 0.67 79.32 7.48 323.83 0.26 0.92 0.27
OC 1.46 3.83 0.38 1.39 0.73 80.77 7.65 332.50 0.27 0.98 0.32
EW 1.20 5.05 0.24 1.08 −0.07 1.89 1.00 0.00 0.24 1.07 −0.08

Panel C: IBOV Dataset
TP −3.16 187.97 −0.02 −179.83 −1769.79 52.45 24.32 1165.84 −0.02 −180.12 −1770.33
MV 0.10 1.00 0.10 0.10 0.05 4.34 2.32 66.20 0.08 0.08 0.03
OC 0.10 1.00 0.10 0.10 0.05 4.35 2.32 66.18 0.08 0.08 0.03
EW 0.10 1.50 0.06 0.08 −0.02 0.41 1.00 0.00 0.06 0.08 −0.02

Source: The author.
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Table 2.3 – p-values for Difference of SR of Portfolio Returns
Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: FF10 Dataset
MV 19.58 0.82 1.30 2.26 3.02 3.70
OC 18.82 1.58 2.76 3.62 5.20 6.84
EW 14.60 4.88 6.18 6.72 8.10 8.74

Panel B: FF25 Dataset
MV 18.77 2.82 3.98 4.12 4.64 5.76
OC 20.34 2.30 2.72 3.00 3.90 3.54
EW 5.96 45.72 46.94 46.22 50.20 49.30

Panel C: IBOV Dataset
MV 11.96 1.18 1.56 1.54 1.76 1.52
OC 12.02 1.56 1.82 1.56 1.48 1.62
EW 8.07 7.44 8.68 8.10 8.04 8.74

Source: The author.

Table 2.4 – p-values for Difference of CEQ 1 of Portfolio Returns
Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: FF10 Dataset
MV 0.54 17.58 20.36 20.88 22.24 22.08
OC 0.52 21.52 22.20 23.04 24.56 24.76
EW 0.49 18.92 20.12 21.16 22.56 22.00

Panel B: FF25 Dataset
MV −0.06 91.34 91.52 91.48 90.32 91.64
OC 0.00 99.84 99.54 99.66 99.68 99.90
EW −0.31 60.14 60.84 60.80 63.18 61.42

Panel C: IBOV Dataset
MV 179.92 44.54 44.88 44.48 44.68 44.96
OC 179.92 44.78 45.20 44.24 45.92 45.32
EW 179.91 45.42 44.50 45.28 44.42 44.66

Source: The author.

Table 2.5 – p-values for Difference of CEQ 10 of Portfolio Returns
Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: FF10 Dataset
MV 2.48 18.06 19.00 21.12 24.98 26.66
OC 2.45 18.72 18.98 23.14 25.24 26.82
EW 2.21 20.18 21.82 23.90 28.42 29.32

Panel B: FF25 Dataset
MV 5.17 14.00 14.74 16.86 21.58 23.28
OC 5.23 14.54 14.12 17.44 20.56 23.08
EW 4.43 16.84 16.38 19.00 21.86 23.42

Panel C: IBOV Dataset
MV 1769.85 44.50 44.96 43.88 45.32 45.46
OC 1769.85 43.90 45.78 44.86 46.30 44.38
EW 1769.78 43.78 44.82 44.14 43.76 45.32

Source: The author.
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Table 2.6 – p-values for Difference of SR of Net Portfolio Returns
Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: FF10 Dataset
MV 27.76 3.28 4.40 7.18 7.38 8.58
OC 26.68 6.70 9.16 11.42 13.22 14.56
EW 24.77 2.70 3.80 5.12 5.96 5.82

Panel B: FF25 Dataset
MV 30.80 2.12 3.98 5.30 5.94 7.28
OC 32.21 1.40 2.78 3.96 5.24 4.38
EW 28.35 13.76 14.14 17.54 18.46 19.84

Panel C: IBOV Dataset
MV 9.90 0.48 0.64 0.68 0.70 0.84
OC 9.95 0.76 0.84 0.74 0.74 0.78
EW 8.07 2.88 3.46 3.24 2.86 3.14

Source: The author.

Table 2.7 – p-values for Difference of CEQ 1 of Net Portfolio Returns
Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: FF10 Dataset
MV 1.88 37.14 37.92 39.04 38.94 39.80
OC 1.85 37.86 38.54 38.02 37.60 39.04
EW 1.91 38.38 38.30 38.26 38.80 38.16

Panel B: FF25 Dataset
MV 163.95 44.78 44.36 44.42 43.76 45.52
OC 164.00 44.62 43.72 45.48 43.72 44.46
EW 164.09 44.40 44.84 44.04 44.68 44.50

Panel C: IBOV Dataset
MV 180.19 44.54 44.88 44.48 44.68 44.96
OC 180.19 44.78 45.20 44.24 45.92 45.32
EW 180.20 45.42 44.50 45.28 44.42 44.66

Source: The author.

Table 2.8 – p-values for Difference of CEQ 10 of Net Portfolio Returns
Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: FF10 Dataset
MV 9.15 39.52 39.34 39.18 39.72 38.04
OC 9.11 40.32 39.20 41.08 39.94 38.80
EW 8.95 40.36 41.02 40.20 41.20 40.16

Panel B: FF25 Dataset
MV 1555.85 44.22 44.42 44.78 45.48 44.70
OC 1555.91 45.32 45.38 44.96 44.14 43.70
EW 1555.50 45.06 44.70 45.38 44.30 43.74

Panel C: IBOV Dataset
MV 1770.36 44.50 44.96 43.88 45.32 45.46
OC 1770.36 43.90 45.78 44.86 46.30 44.38
EW 1770.31 43.78 44.82 44.14 43.76 45.32

Source: The author.
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Figure 2.1 – Portfolio Utility for Different Risk-Aversions of the FF10 Data
(a) FF10 Data
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(b) FF25 Data
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(c) Brazilian Data
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3 ON THE EQUIVALENCE OF MINIMUM TRACKING ERROR AND
MINIMUM VARIANCE PORTFOLIOS

Minimum variance (MV) and minimum Tracking Error (MT) optimal portfolios of
excess returns on a benchmark are among the most used portfolio policies considered by
market practitioners and academics; see, for instance, Chan, Karceski and Lakonishok
(1999), Liu (2009), Brodie et al. (2009) and DeMol (2016). In short, the MV policy
consists in finding optimal portfolios that minimize the portfolio variance, whereas the
MT policy finds portfolios that minimize the variance of the difference with respect to a
given benchmark.

Existing literature often refers to these two portfolio policies as interchangeable,
that is, they are treated as being equivalent. However, to the best of our knowledge there
is no single reference that establishes an analytical derivation to find this equivalence
between the two portfolio problems. We, on the other hand, provide this derivation by
using the Sherman-Morrison formula (PETERSEN; PEDERSEN, 2012).

Furthermore, we provide a formal connection of our analytical result with the OLS
regression of the returns on a benchmark against the returns of risky assets. Also, we take
advantage of the equivalence between MV and MT portfolios to use the approach used
in Kempf and Memmel (2006) to find a Global Minimum Variance Portfolio (GMVP)
portfolio by means of a regression.

The essay is organized as follows. Section 3.1 describes the MV and MT portfolio
policies and provides an analytical expression for the equivalence between the two. Section
3.2 provides an equivalence result to OLS regression and an application to the result of
Kempf and Memmel (2006). Section 3.3 concludes.

3.1 TWO OF A KIND: MINIMMUM TRACKING ERROR AND MINIMUM VARI-
ANCE PORTFOLIOS

In this section, we establish the equivalence between two commonly used problems
in the portfolio selection literature: the minimum Tracking Error and minimum variance
portfolios of excess returns on a benchmark index. For that purpose, let us define the
excess returns of the risky assets on the benchmark as:

Re
t = Rt − eyt,

where R is the T ×K matrix of asset returns, y is the T -dimensional vector of returns of
the benchmark index, and e is a conformable vector of ones. The unconditional variance
of the excess returns is:

V (r) = Ω = V (Xt) + V (eyt)− 2cov(Xt, eyt)

V (r) = ΣXX + σyyee
′ − 2σXye

′,
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whereas the portfolio variance is:

V (rp) = w′V (r)w = w′Ωw

= w′(ΣXX + σ2
yee
′ − 2σXye

′)w

= w′ΣXXw + σ2
yw
′ee′w − 2w′σXye

′w,

where w is the vector of portfolio weights.

Remark: Even though the classic optimization problem considers the risk-free
asset as a benchmark, Tu and Zhou (2011) argue that portfolio managers are benchmarked
by a market index, like the S&P500. In that case, the return on the market index can be
viewed as the riskless asset to apply the same framework. It is also important to note
that in the case where the investor uses the GMVP with returns in excess of the risk-free
asset, he is tracking the risk-free asset.

We now turn our attention to formulation of the minimum variance (MV) portfolio
problem. The MV problem is defined as:

Min
w

w′ΣXXw + σ2
yw
′ee′w − 2w′σXye

′w (3.1)

s.t. e′w = 1.

And has FOC:

2ΣXXw − 2(σXye
′ + eσ′Xy)w + 2σyee

′w = λe

e′w = 1.

On the other hand, the minimum Tracking Error (MT) problem consists in
minimizing the variance of the difference between the portfolio Rp,t = w′Xt and the
benchmark, i.e.:

V ar(Rp,t − yt) = V ar(w′Xt) + V ar(y)− 2Cov(w′Xt, yt)

= w′ΣXXw + σ2
y − 2w′σXy.

Therefore, the MT problem can be stated as:

Min
w

w′ΣXXw + σ2
y − 2w′σXy (3.2)

s.t. e′w = 1.

And has FOC:

2ΣXXw − 2σXy = λe

e′w = 1.
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It is widely known in the literature (CHAN; KARCESKI; LAKONISHOK, 1999;
LIU, 2009; BRODIE et al., 2009; DEMOL, 2016) that the problems (3.1) and (3.2) are
equivalent once they are both minimization of a squared sum. However, they do not have
the same objective function, neither the same FOC. Here, we will show that it is only
because of the Sherman-Morrison formula (PETERSEN; PEDERSEN, 2012) that they
will have the same solution. Proposition 1 states the equivalence between the results of
the optimization problems in (3.1) and (3.2).

Proposition 1: The minimum variance portfolio and minimum Tracking Error portfolios
obtained upon solving optimization problems in (3.1) and (3.2), respectively, are equivalent.

Proof:
The Sherman-Morrison formula (PETERSEN; PEDERSEN, 2012) states that:

(A+ uv′)−1 = A−1 − A−1uv′A−1

1 + v′A−1u

where A is a N ×N matrix and u, v are column vectors of dimension N .
The solution to the MV problem in (3.1) is:

w∗MV =
A−1e

e′A−1e
[1− (e′A−1σXy)] + A−1σXy,

where A = ΣXX − eσ′Xy, and we find A−1 = Σ−1
XX +

Σ−1
XXeσ

′
XyΣ

−1
XX

1− σ′XyΣ
−1
XXe

using the Sherman-

Morrison formula (PETERSEN; PEDERSEN, 2012). After rearranging terms, we arrive
at:

w∗MV = wou + wmv(1− e′wou), (3.3)

where wou = Σ−1
XXσXy and wmv =

Σ−1
XXe

e′Σ−1
XXe

. wou is the vector of weights of the optimal
mean-variance unconstrained portfolio whereas wmv is the vector weights of the minimum
variance portfolio of the K assets.

The solution to the MT problem in (3.2) is:

w∗MT = Σ−1
XXσXy + (1− e′Σ−1

XXσXy)
Σ−1
XXe

e′Σ−1
XXe

(3.4)

= wou + (1− e′wou)wmv, (3.5)

which is equivalent to the solution of the MV portfolios in (3.3). �

3.2 REGRESSION BASED PORTFOLIOS

Another way to find an index-tracking portfolio is to regress the benchmark returns
against the risky assets returns. This problem is a regression with stochastic regressors,
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more details about this problem can be found in Rao et al. (2008) and Rencher and
Schaalje (2007). With this in mind, we now consider a regression-based approach to the
portfolio selection problem. To do this we define the following regression with intercept α,
slope β and constrain e′β = 1:

Min
β

(yt − α− βXt)
′(yt − α− βXt) s.t. e′β = 1. (3.6)

The solution to (3.6) is:

β∗ = βols + (1− βols)
(X ′X)1e

e′(X ′X)−1e
,

where βols = (X ′X)−1X ′y. If we use centered quantities of X and y, we arrive at:

β∗ = Σ−1
XXσXy + (1− e′Σ−1

XXσXy)
Σ−1
XXe

e′Σ−1
XXe

= wou + (1− e′wou)wmv,

which is equivalent to the result obtained in Proposition 1. Therefore, the equivalence of
the minimum variance and minimum Tracking Error portfolios can also be established by
means of a regression-based approach.

3.2.1 Kempf and Memmel (2006)

Because the index-tracking portfolio is equivalent to the GMVP, we can use the
approach presented in Kempf and Memmel (2006) to determine the weights wMV . In
their original approach, they rewrite the weights of the GMVP as regression coefficients.

First, they set up the problem by choosing the return of stock N to be the
dependent variable:

rtN = α + β1(rtN − rt1) + · · ·+ βN−1(rtN − rt,N−1) + εt, t = 1, . . . , T. (3.7)

Then, to solve this problem, they define βex, wexMW , r
ex
t as (N − 1) × 1 vectors. The

superscript ex indicates that the vector has no entry for asset N . Further, they define Ω

as the covariance matrix of regressors of equation (3.7):

Ω = var(ert,N − rext )

The regression coefficients βex are the standardized covariances of the regressors
and the dependent variable:

βex = Ω−1cov(ertN − rext , rtN) (3.8)

Now, we have to show that the weights wexMV of the GMVP correspond to the
regression coefficient βex. We can compute the weight wMV,N as 1− e′wexMV .
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To prove βex = wexMV , they consider an arbitrary portfolio P . Its return is
determined by the weght vector wexMV = (wP,1, . . . , wP,K)′ and the stock returns rext and
rt,N :

rtP = wexP
′rext + (1− wexP ′e)rtN

= rtN + wexP
′(rext − ertN)

The return variance of this arbitrary portfolio P

σ2
P = σ2

N + wexP
′ΩwexP − 2wexp

′cov(rtNe− rex, rtN) (3.9)

is a function of the weights wexP . To find the weights of the GMVP, we minimize equation
(3.9) with relation to portolio weights wexP . This miminization leads to:

2ΩwexP − 2cov(rtNe− rext , rtN) = 0

ΩwexP = cov(rtNe− rext , rtN)

and they find:

wexP = Ω−1cov(rtNe− rext , rtN) (3.10)

The weights (3.10) correspond to the regression coefficients (3.8).
If we substitute the returns of asset N at time t by the excess returns of asset N

on the benchmark y at time t, the solution will be a tracking portfolio and the results of
Kempf and Memmel (2006) will hold for our portfolio.

3.3 FINAL REMARKS

In this essay, we have shown the equivalence of a Tracking Error portfolio and
a minimum variance portfolio of excess returns on a benchmark. Here, we provided
an analytical derivation of the solutions to the problems above. The solution is a 2-
fund portfolio, very common in portfolio theory. The solutions are related both to OLS
regression with stochastic regressors and the Quadratic Utility formulation of portfolio
optimization.
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4 INDEX TRACKING WITH FEATURE SELECTION

In this essay, we compare the performance of different feature selection algorithms
applied to index tracking and portfolio optimization. More specifically, we study the
case where an investor has to track an Index and he rebalances his portfolio monthly,
bimonthly and quarterly (20, 40, and 60 days rebalancing). First, we select the assets with
the following strategies: backward iteration, forward iteration, lasso regression. Here, we
highlight the use of the backward and forward iteration algorithms that receive very little
attention in the literature. With the selected assets, we form portfolios by minimizing the
Tracking Error volatility. Then, we take the out of sample portfolio returns and analyze
those returns in comparison to the selected Index.

We use two different datasets. The first is a Brazilian dataset of asset prices with
daily frequency from January 1999 to December 2010 (2970 days). The second is an
American dataset of asset prices with daily frequency from January 2010 to October 2017
(1950 days).

Our results show that, in general more active positions in the portfolio helps index
tracking performance. That was already expected. Other general conclusion is that the
quarterly rebalancing delivers better performance. Now for the more specific results, in
the Brazilian case, the lasso selection method, specially the portfolio with at most 20

active positions, better tracks the Bovespa index. Note that this is due only to asset
selection, not to the shrinkage of the portfolio weights that results from the constraints
of the problem. This happens because the asset allocation method is the same for all
portfolios. More on the shrinkage of portfolio weights can be found in Fan, Zhang and
Yu (2012), Jagannathan and Ma (2003), Brodie et al. (2009). In the American case,
the backward iteration portfolio with at most 40 assets and quarterly rebalancing is the
portfolio that better tracks the benchmark. And even though the lasso method tracks the
benchmark well in terms of mean returns, it presents more volatility. But, because our
primary goal is to minimize Tracking Error volatility, this kind of risk-return tradeoff is
not desirable in our case. This has to be highlighted, because those simple methods of
feature selection receive too little attention in portfolio literature, even though they might
bring good results.

Tu and Zhou (2011) and Liu (2009) point out that the majority of institutional
investors are benchmarked by an index, e.g. the SP500. So, their performance has to
be evaluated in relation to that index. Consequently, having to choose index tracking
portfolio is closer to the practical life of an institutional investor. Index tracking can
be defined as a quantitative method of trading and of passive portfolio management
(MCWILLIAMS; MONTANA, 2010; WU; YANG; LIU, 2014). The most popular way to
use this strategy is to form a portfolio of assets to mimic the performance of an externally
specified index that, usually, is a market index such as the SP500. This performance takes
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into account the risk-return profile of the specified benchmark.
There are two main ways of maintaining a fund that tracks an index; one is the

full replication and the other is the partial replication. Full replication is the simplest one;
it consists on maintaining all the assets with the same relative weights of the index being
tracked. However, despite being possible to achieve a perfect replication with it, the full
replication presents some disadvantages: (i) it results in small weights, which increase
transaction costs; (ii) it presents instability of the weights, which means frequent revisions
of them; (iii) its portfolio rebalancing can become complicated; and (iv) price fluctuation
bring too many additions and subtractions of assets to the index.

It is also possible to try to replicate an index with a portfolio that contains only a
small proportion of all the available assets, this is the partial replication. But this method
also presents some problems: (i) the initial selection of the small number of assets to
be included in the portfolio can be hard, and (ii) the need to estimate optimal weights
(allocation) complicates the problem.

To implement an index tracking strategy, the investor has to solve two intercon-
nected problems associated with it. The first is the asset selection problem, where the
investor selects p assets from a universe of N assets. The second is the asset allocation
problem, where the investor decides the relative weights of each selected asset.

The benefits of this two phase method are twofold. First, it isolates the effect of the
selection methods, so the differences in performance may be attributed to differences in
asset selection methods. Second, we make use of the Global Minimum Variance Portfolio
(GMVP) in the second phase. The GMVP has several desirable properties discussed in
Jagannathan and Ma (2003) and Clarke, Silva and Thorley (2006). As the goal of this
essay is to compare the performance of the selection algorithms applied to index tracking
and portfolio selection, this separation of phases is very suitable to our needs.

Next, we list papers that evaluated different methods of asset selection and portfolio
optimization to implement index tracking and we compare their works to ours. Liu (2009)
selects portfolios that track the SP500 by minimizing Tracking Error volatility without
regard for the size of mean of the Tracking Error. In that paper, the asset selection
phase is solved by only using the 30 assets in the Dow Jones Industrial Average (DJIA).
Jansen and Dijk (2002) use index tracking with small portfolios by asset selection methods.
McWilliams and Montana (2010) mention the possibility that the problems of asset
selection and portfolio optimization can be put in the form of variable selection. They
implement the asset selection with methods of penalized regression. Thus, we can use
other methods of variable selection to choose the assets that will enter our portfolio. Here,
we will use some methods listed in James et al. (2014).

Santos (2015) selects minimum variance portfolios using cardinality constraints
to form portfolios with few assets and assesses their performance. Sant’Anna, Filomena
and Borenstein (2014) select Index Tracking portfolios with cardinality constraints to
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form portfolios with few assets and track the Bovespa Index. This paper resembles those,
because we will form portfolios with few assets; however, we will use a different method.
We will not use cardinality constraints, but feature selection algorithms. This can be
justified by the lower computational cost of those algorithms. We will use only regressions
to select the portfolio assets, the optimization of portfolios weights will occur in a different
phase.

Other related works are Wu, Yang and Liu (2014) e Wu and Yang (2014), which
use non-negative lasso and elastic net regressions to select assets. Those works use non-
negative least-squares for portfolio optimization (weight selection). Yet another related
work is Medeiros, Vasconcelos and Freitas (2015), which uses lasso regression to select
variables to forecast inflation. This work differs from that in terms of the goal for which
we use the lasso regression. Here we use it to form portfolios to track a financial Index.

Beyond this introduction, this essay is organized as follows. Section 4.1 presents
the basics of portfolio selection that will be used throughout the essay. Section 4.2 presents
the algorithms used to apply feature selection in the dataset. Section 4.3 presents the
methodology of the empirical study. Section 4.4 shows the results obtained in the empirical
study. Finally, Section 4.5 concludes.

4.1 BASIC DEFINITIONS

In this section, we present the basics of portfolio selection that we will use through-
out this essay. We start by considering an investment universe with N risky assets. Each
asset has a price in time t denoted by Pt,i. By holding asset i from t− 1 to t, the investor
earns the return

Xt,i =
Pt,i
Pt−1,i

− 1. (4.1)

Let’s denote the N × 1 vector of future and uncertain returns of those assets in
time t by Xt, where

Xt = [Xt1, Xt2, . . . , XtN ].

We will assume that the returns have mean vector E[Xt] = µX and covariance matrix
V [Xt] = Σ. We also denote the future and uncertain return of the index by yt. We assume
that the index return have mean E[yt] = µy and variance V [yt] = σ2

y.
With those definitions, we can define the excess returns of the risky assets on the

index as:

Xe
t = Xt − 1yt.

where 1 is a conformable vector of ones. We assume that Xe
t has mean vector and

covariance matrix
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E[Xe
t ] = µX − 1µy = µ

V [Xe
t ] = Σ + σ2

y11
′ − 2Cov(Xt, yt)1

′ = Ω.

Porfolio Returns

Next, we define portfolio and portfolio returns. A portfolio of the N risky assets is
represented by a N × 1 vector w, where

w = [w1, w2, . . . , wN ]′ ,

and wi is the fraction of total wealth invested in asset i. The vector w can also be called
the allocation vector.

Holding the portfolio wt from t to t+ 1 yields the out of sample return in t+ 1,

Xp,t+1 = w′tXt+1. (4.2)

Xp,t+1 is a weighted average of the asset returns selected to the portfolio with weights wi
for i = 1, . . . , N .

Xp,t+1 = wt,1Xt+1,1 + · · ·+ wt,NXt+1,N =
N∑
i=1

wt,iXt+1,i = w′tXt+1.

Evolution of weights

Liu (2009) points out that in the moment prior to rebalancing, each dollar invested
in asset i in the portfolio has changed its value from wt,i to wt,i(1 +Xt+1,i), where wt,i is
the i-th element of wt and the i-th element of Xt is denoted as Xt,i. Also, in general, each
dollar invested in the whole portfolio has changed from wt to wt(1 +Xp,t+1). Therefore,
prior to rebalancing, the weight on asset i has changed from wi,t to

w+1
t,i = wt,i

1 +Xt+1,i

1 + w′tXp,t+1

.

More generally, we can express equation the changed vector of weights as

w+1
t = wt �

1 +Xt+1

1 +Xp,t+1

, (4.3)

where � denotes the Hadamard (direct) product. Compounding another period, the
portfolio wt in t+ 2 will have changed to

w+2
t = wt �

(1 +Xt+1)� (1 +Xt+2)

(1 +Xp,t+1)× (1 +Xp,t+2)
.

Following this logic, we reach a equation for h periods:

w+h
t = wt �

(1 +Xt+1)� · · · � (1 +Xt+h)

(1 +Xp,t+1)× · · · × (1 +Xp,t+h)
. (4.4)
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Tracking Error

The Tracking Error may be defined as a measure of the difference between the
index tracking portfolio return, Xp,t and the index return, yt. So, we have the following
expression for the Tracking Error:

TEt+1 = w′tXt+1 − yt+1 = Xp,t+1 − yt+1, (4.5)

where wt is the allocation vector of our portfolio.
With the expression of the Tracking Error above, we can see that, if the weights

are restricted to sum up to one (w′1 = 1), then the excess return of a portfolio on a
benchmark is the same as the Tracking Error:

Xe
p,t+1 = w′tX

e
t+1 = w′(Xt+1 − 1yt+1)

= w′tXt+1 − w′1yt+1

Xe
p,t+1 = Xp,t+1 − yt+1 = TEt+1. (4.6)

Hence, if the weights sum up to one (w′1 = 1), minimizing the variance of the Tracking
Error is equivalent to minimizing the variance of the excess returns of a portfolio on a
benchmark. Note that the restriction is important.

4.2 FEATURE SELECTION ALGORITHMS

Here, we present the methods through which we will select the assets, they are:
forward stepwise selection, backward stepwise selection, and lasso regression. More
information about these methods can be found in James et al. (2014). The methods of
asset selection used here depend heavily on the Ordinary Least Squares (OLS) Regression.
Below, we offer more details about these methods, beginning with some notes on the OLS
Regression.

4.2.1 Ordinary Least Squares (OLS) Regression

By regressing the index returns against the asset returns with the portfolio weights
being parameters to estimate, we have a regression problem with stochastic regressors,
more details about this problem can be found in Rao et al. (2008) and Rencher and
Schaalje (2007). We may represent this problem as:

yt = α +Xtβ + εt.

Note that the intercept α is necessary to let E[εt] = 0, so we can have V [εt] = E[ε2
t ].

The OLS regression has the goal to minimize the sum of squared residuals, which
is expressed as:
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RSS(β) =
T∑
t=1

ε2
t =

T∑
t=1

(yt − α−Xtβ)2. (4.7)

where εt is the residual of the regression.
By minimizing RSS(β) in equation (4.7), we find βols:

βols = (X ′X)−1(X ′y) (4.8)

where X is the T ×N matrix of asset returns, and y is the T × 1 vector of index returns.

4.2.2 Forward Stepwise Selection

The forward stepwise selection uses a series of OLS regressions to select the assets
that will enter the investor’s portfolio, i.e. the columns that will enter the matrix X. It
starts with a null model with no predictor, then we add one predictor at a time to the
model until all predictors are added. More specifically, at each step the variable that
provides the best fit is added to the model.

4.2.3 Backward Stepwise Selection

In opposition to the forward stepwise selection, the backward stepwise selection
starts with the full OLS model, which contains all N predictors available. Then the least
useful predictors are removed, one at a time, until we reach a model with the desired p
predictors.

The forward and backward stepwise selections result in a set of models, each of
which contains a subset of p predictors. Usually, the researcher determines which of the
models in the set of models is the best. Here, however, we want a predefined number of
assets in our portfolios. So we just choose the model with the predefined number p of
assets with the smaller RSS and bigger R2. To implement both of those algorithms, we
use the R software (R Core Team, 2019) with the leaps package of Lumley (2017).

4.2.4 Lasso

To fit the least squares regression, we estimate the values of α, β1, · · · , βp that
minimize the RSS, as in equation (4.7). The lasso regression has a similar form, with its
coefficients minimizing the RSS plus a penalty:

T∑
t=1

(
yt − α−

p∑
j=1

βjxtj

)2

+ λ

p∑
j=1

|βj| = RSS + λ

p∑
j=1

|βj|. (4.9)
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That is, the lasso is a penalized regression. In the equation above, λ ≥ 0 controls the
amount of regularization in the regression. When λ = 0, we have the least squares
regression. The bigger the value of λ, the bigger the amount of regularization and tighter
the variable selection will be. Thus, we have to fit λ in a convenient way to suit our
objectives. In this essay we use the glmnet package of Friedman, Hastie and Tibshirani
(2010) of the R Core Team (2019) software. Because the betas in the algorithms above
might not sum to one, we only use the algorithms to select the assets. Wu, Yang and Liu
(2014) and Wu and Yang (2014) also segregate the asset selection phase and the asset
allocation phase by doing different regressions for each phase. Another reason to do this
is that by using the same equation for all the portfolios’ allocation, we can isolate the
effect of the asset selection strategies.

4.3 EMPIRICAL EVALUATION

In this section, we present the methodology of our empirical evaluation. The
goal of such evaluation is to evaluate the performance of the alternative asset selection
techniques against each other and the benchmark index. It is done in three steps. The
first step is the asset selection phase, which is done by using the algorithms from Section
4.2. The second step is asset allocation phase, where we form optimal portfolios in pseudo
real time. The third step is the out of sample performance evaluation of those portfolios
against each other and the benchmark.

4.3.1 Data

In this empirical analysis we have two different datasets. The first is the Brazilian
dataset; it consists of daily closing prices for 61 stocks traded in the Bovespa and a series
of daily closing prices for the Bovespa Index (IBovespa). The sample period used here is
from January 1999 to December 2010 (2970 days). The second dataset is the American
dataset; it consists of daily closing prices for 462 stocks and a series of daily closing prices
for the SP500 index. The sample period used here is from January 2010 to October 2017
(1950 days).

From the price and index series, we take the simple daily raw return of each asset,
according to equation (4.1). That will leave us with a total of N + 1 (N stocks plus one
index) series of raw returns, with length of T , each. With the raw return series (Xt),
we use the algorithms from Section 4.2 to select which assets will enter in our portfolios
(asset selection phase).
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Rolling Windows Estimators

Before we enter the asset allocation phase, we need to estimate the parameter
input, Ω̂ used in the portfolio policies, we adopt a recursive estimation approach based
on a rolling window time series of returns. With this approach, at each point in time
t = J, . . . , T , we use use the last J points of data and estimate:

µ̂t = J−1

J−1∑
j=0

Xt−j

Ω̂t = (J − 1)−1

J−1∑
j=0

(Xt−j − µ̂t)(Xt−j − µ̂t)′

This results in T−J−1 estimates of covariance matrices. For the Brazilian dataset,
we use window length equal to J = 250 (approximately one year of daily data). So, we
have 2719 estimates of covariance matrices. For the American dataset, we use window
length equal to J = 500 (approximately 2 years of daily data), because the American
dataset has more assets, and we need J > N for the covariance matrix to be invertible.
So, we have 1449 estimates of covariance matrices.

4.3.2 Allocation

After the covariance matrix estimation above, we enter the asset allocation phase.
To that end, we follow Liu (2009) and select portfolios that minimize the volatility of the
Tracking Error, without any regard for the size of the mean of the Tracking Error. To
achieve this, we find the portfolio that minimizes the variance of the excess returns on the
benchmark with a fully bought contraint (e′w = 1). The answer to the problem is:

wt =
Ω̂−1
t e

e′Ω̂−1
t e

(4.10)

where e is a N × 1 vector of ones and Ω̂t is the covariance matrix estimator of Ω using
information untill time t.

One clarification has to be made here, what the formula (4.10) finds is the portfolio
with the least variance of excess returns, without any regard for the mean. So, following
the index exactly and zeroing the Tracking Error is not a concern, only minimizing the
volatility of the Tracking Error. Using the equation (4.10) can be defended on the grounds
that it is the Global Minimum Variance Portfolio (GMVP). This portfolio achieves just
what we want and it offers several desirable properties as presented by Jagannathan and
Ma (2003) and Clarke, Silva and Thorley (2006). If we wanted to zero the Tracking Error,
we would have to optimize a different objective function and use different restrictions
in our portfolio. However, this portfolio would not have the properties of the GMVP
highlighted above.
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By the end of this process, we generate T − J − 1 allocation vectors for each asset
selection algorithm, in each dataset. With the allocation vectors, we compute the out of
sample portfolio returns with equation (4.2), which generates the time series {Xp,t}Tt=J+1.
This time series is the subject of our analysis.

4.3.3 Evaluation Measures

What we will evaluate are the out of sample portfolio returns in relation to the
benchmark index. Since the goal of index tracking portfolio is to closely follow the
series of interest, our evaluation has to consider how our portfolio performs in relation
to the benchmark. Note that, as Tu and Zhou (2011) and Liu (2009) point out, the
majority of institutional investors are benchmarked by an index, e.g. the SP500. So, their
performance has to be evaluated in relation to that index. Consequently, having to choose
index tracking portfolio is closer to the practical life of an institutional investor.

Transaction Costs

To get a sense of the amount of trading required to implement each portfolio
strategy, we compute the portfolio turnover and report its average through time. Turnover
in time t has the following formula

TOt = |wt+1 − w+1
t |, (4.11)

where w+1
t is the portfolio prior to rebalancing as defined in equation (4.3).
Associated with the turnover there is the associated transaction costs of rebalancing

a portfolio. If the rebalancing is too frequent or too extreme, it can lead to overtrading.
According to Barber and Odean (2000), overtrading has negative effects on portfolio
performance due to its associated transaction costs. To take into account the impact of
such costs we also evaluate the returns net of transaction costs, which have formula:

Xnet
p,t = (1 +Xp,t)(1− cTO)− 1, (4.12)

where c is the fee that must be paid for each transaction. We use c = 50bp like in DeMiguel,
Garlappi and Uppal (2009) and Kirby and Ostdiek (2012).

Weight Statistics

To gauge the amount of leverage in each portfolio, we report their Gross Exposure
and their Short Interest. The Gross Exposure is expressed in proportion of the notional
value of the portfolio (e.g. when the Gross Exposure is equal to one, it means that there
is no leverage; but a Gross Exposure of 1.1 means that the portfolio is leveraged with
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10% of its notional value). The Short Interest expresses the size of the short positions
(weights smaller than zero) in the portfolio, it is expressed in percentage (e.g. when the
Short Interest is equal to zero, it means that there is no short-selling happening; but when
the Short Interest is equal to 10%, it means that the sum of of short positions are 10%).
These measures have the following formulas:

Grosst =
N∑
i=1

|wi,t|

Shortt =

∑N
i=1 |wi,t| − 1

2
.

To assess how many assets our strategies select, we also report the average number
of assets in the portfolio.

Hypothesis Testing

To verify if the Mean, Variance, and Sharpe Ratio of each policy are statiscally
different from the benchmark index, we use the framework laid out in Ledoit and Wolf
(2008, 2011, 2018). Their framework relies on the fact that those performance measures
are smooth functions of population moments. We use the circular block bootstrap of
Politis and Romano (1992) with block length 2, 4, 6, 8, and 10 to find p-values of the
differences in performance measures.

4.4 RESULTS

In this section we present the results of our empirical analysis. We do not annualize
any performance measure due to the problem of time aggregation pointed out in Lo (2002).
So the performance measures are all in daily terms. Each row of the tables below presents
the statistics of a portfolio, and the first column of the rows presents the name of the
portfolios. In the tables, IBOV is the Bovespa Index and SP500 is the SP500 Index.
Also, in each table, bwd stands for the portfolio formed using the Backward Selection
Algorithm, fwd stands for the portfolio formed using the Forward Selection Algorithm,
and las stands for the portfolio formed using the Lasso Algorithm. The numbers after
the letters denote the maximum number of active positions allowed in each portfolio.

Tables 4.1 and 4.5 show statistics of the Brazilian and American datasets, respec-
tively. The presented statistics are: Mean, Standard Deviation (SD), Sharpe Ratio (SR),
and correlation with the benchmark index (CORR) for the raw and net portfolio returns
of each policy and each rebalancing frequency: monthly (Panel A), bimonthly (Panel B),
and quarterly (Panel C). For the net portfolio returns, we used transaction costs equal
to 50bp as in DeMiguel, Garlappi and Uppal (2009). The Tables also show the Turnover
(TO), Gross Exposure (Gross), Short Interest (Short), and Active Positions (Active).



43

The ideal result of an index tracking portfolio is to track the benchmark index
perfectly with zero difference in the mean and in the volatility. That would mean that
our SR would also match the index’s SR and we would have mimicked the index perfectly.
Our optimization problem, however, does not take the mean returns into account. It
only minimizes the mean squared differences of returns. So our results might have more
differences in the mean returns, but not in the volatility.

Apropos of those mean results, we have to remember that trading and rebalancing
the stocks in our portfolios generate transaction costs and those transaction costs will
diminish our mean returns (BARBER; ODEAN, 2000). In this way, we have to decide
what we really want to evaluate, raw portfolio returns, or net portfolio returns. On the
one hand, if we are evaluating raw portfolio returns and we have a difference of zero with
the benchmark, we must remember that the transaction costs will change that difference
to a negative number, when evaluating net portfolio returns. But if we have a positive
difference with raw returns, the transaction costs might be enough to bring that difference
to zero with net returns. Or, in a unlucky case, bring that difference to a negative number.
On the other hand, if we are evaluating net returns, we have more of a “what you see is
what you get” type o scenario, because we already accounted for the transaction costs.
With that said we only evaluate the p-value tables of the net return portfolios.

Tables 4.2, 4.3, and 4.4 show the p-values for the differences in the Sharpe Ratio,
Log-Variance, and Mean of the net portfolio returns of the Brazilian dataset using the
methodology developed in Ledoit and Wolf (2008, 2011, 2018). Tables 4.6, 4.7, and 4.8
show the p-values of those statistics for the American dataset.

Now, for the results that we are seeking to avoid. For the mean of returns, we
do not want a significant negative difference. Actually, we do not want any negative
difference at all, because it would mean that our portfolio has lower mean returns than the
benchmark’s. Acceptable results are nonnegative and nonsignificant differences. For the
volatility of returns, we do not want a significant positive difference, because that would
mean a higher volatitily than the benchmark’s. Acceptable results are nonpositive and
nonsignificant differences. For the Sharpe Ratio of returns, we do not want a significant
negative difference, because that would mean a lower Sharpe Ratio than the benchmark’s.
Acceptable results are nonnegative nonsignificant differences.

4.4.1 Brazilian Dataset

The test of differences in Sharpe Ratios are presented in Table 4.2. Regarding this
differences, there is no evidence of statistical significance for any portfolio. But we can
observe that the only portfolios to never present a negative value of the difference are the
las.15 and las.20 portfolios. Also, note that the bwd.10 and fwd.10 are never positive.

The test of difference with log variances are presented in Table 4.3. In it we can
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observe that the las.20 portfolio is the only portfolio that does not present evidence of
statistical significance. The las.20 portfolio present negative (lower variance than the
benchmark’s) nonsignificant differences. All the other portfolios present p-values lower
than 10%. Noteworthy portfolios are the bwd.15, fwd.15, bwd.20, and fwd.20 portfolios.
These portfolios present negative statistically significant differences, which means that
they have statistically significant lower variance than the benchmark.

The test of differences in mean portfolio net returns are presented in Table 4.4. In
this table no portfolio has p-value under 15%, which means that ther is no evidence of
statistical significance in the difference of mean net returns. Notwithstanding, it might be
worth to mention that the bwd.10 and fwd.10 portfolios do present negative (lower mean
than the benchmark’s) differences; whereas all other differences are nonnegative.

It would be interesting to see figures of the returns and volatility of all the portfolios.
However, that would take an inordinate amount of space. So, for the Brazilian dataset,
we only show a few selected figures of portfolios. The las.20 portfolio (Figure 4.1),
because this is the only portfolio to not have any evidence of statistical significance in
any difference. The bwd.10 portfolio (Figure 4.2), because it has the highest negative
difference in Sharpe Ratio. Finally, the bwd.20 portfolio (Figure 4.3), because it has the
highest negative difference in variance.

In summary, for the Brazilian dataset, the index tracking with asset selection
did not find portfolios with significant statistical difference in the means, but did find
portfolios with significant statistical differences in the log-variances. This, however, did
not translate into significant statistical differences in the Sharpe Ratio. The only portfolio
that did not present any statistically significant differences is the las.20 portfolio. Also,
we should point out that the quarterly rebalancing, for all portfolios, generally has a
higher mean (due to the diminished transaction costs) and lower variance.

4.4.2 American Dataset

The test of differences in Sharpe Ratios are presented in Table 4.6. In it, the only
portfolios that are consistently nonsignificant are the lasso portfolios, with the las.20

portfolio also being the only portfolio to have a consistently positive difference. In the
quarterly rebalancing frequency, all the differences are nonsignificant.

The test of difference with log variances are presented in Table 4.7. In it, we can
observer that all differences are positive (bigger variance than the benchmark’s). Also,
the only portfolios to have a p-value above 10% are the bwd.40 in the bimonthly and
quarterly rebalancing frequency and the bwd.30 in the quarterly rebalancing frequency.

The test of differences in mean portfolio net returns are presented in Table 4.8.
The lasso portfolios are consistently nonsignificant and nonnegative (mean portfolio net
return at least as good as the benchmark). In the quarterly rebalancing frequency, all
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differences are nonsignificant.
Once more, we only show the figures of a few selected portfolios to save space.

The las.20 portfolio (Figure 4.4), because it has the highest positive difference in the
variance and the Sharpe Ratio. The fwd.20 portfolio (Figure 4.5), because of its poor
performance. The bwd.40 portfolio (Figure 4.6), because in its quarterly rebalancing form
it is the one of the two portfolios to not show any evidence of statistical significance (in
this rebalancing frequency).

For the American dataset, we can sum up the results as follows. Again, the
quarterly rebalancing, generally has a higher mean (due to the diminished transaction
costs) and lower variance and, in general, more assets in the portfolio enhance performance.
The bwd.40 portfolio with quarterly rebalancing tracks the SP500 index well, which is
not repeated by the other rebalancing frequencies. The lasso portfolios generally surpass
the performance of the index, but costing a higher volatility and tracking error.

4.5 CONCLUDING REMARKS

In this essay, we presented portfolios formed by methods of variable selection to
track a benchmark index. We used two different datasets for two different countries. One
is an American dataset to track the SP500 Index; the other is a Brazilian dataset to track
the Bovespa Index. In the empirical exercise, we segregated the asset selection and the
asset allocation phases to isolate the effect of asset selection for each method. In the asset
allocation phase we used the Global Minimum Variance Portfolio with returns in excess of
the benchmark to minimize the Tracking Error volatility of the portfolio, as in Liu (2009).

It should be pointed out that this optimization does not take the mean returns
into account. It only minimizes the mean squared differences of returns. So our results
might have more differences in the mean returns, but less differences in the volatility.
Further research should study the case where we predict the actual transaction costs and
stablish a margin of error just enough to zero the return difference.

In the results section we can observe that, for the Brazilian dataset, the las.20

portfolio is the portfolio that best tracks the Bovespa index, while for the American
dataset, the bwd.40 with quarterly rebalancing is the best tracker, but with an honorable
mention to the lasso portfolios. The positive performance of the portfolios leads us to
believe that simple variable selection methods can add value to index tracking portfolios.
By simple methods we mean methods that are not computationally costly as Integer
Quadratic Programming like in Santos (2015), Sant’Anna, Filomena and Borenstein
(2014).
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Table 4.1 – Out of Sample Rebalancing for the Index Tracking Portfolios (IBOV)
Mean SD SR CORR TO Gross Short Active Mean SD SR CORR

index 0.07 1.99 0.04 NA NA NA NA NA NA NA NA NA

Panel A: Monthly Rebalancing
bwd.10 0.07 2.02 0.04 0.96 2.13 1.00 0.04 10.00 0.06 2.02 0.03 0.96
fwd.10 0.08 2.02 0.04 0.96 2.18 1.00 0.12 10.00 0.07 2.02 0.03 0.96
las.10 0.08 2.09 0.04 0.96 1.40 1.01 0.37 9.99 0.08 2.09 0.04 0.96
bwd.15 0.08 1.96 0.04 0.96 1.99 1.02 1.25 15.00 0.07 1.96 0.04 0.96
fwd.15 0.08 1.96 0.04 0.96 2.08 1.02 0.83 15.00 0.07 1.96 0.03 0.96
las.15 0.08 2.02 0.04 0.96 1.41 1.01 0.27 14.93 0.08 2.02 0.04 0.96
bwd.20 0.08 1.93 0.04 0.97 1.96 1.08 4.02 20.00 0.07 1.93 0.04 0.97
fwd.20 0.08 1.94 0.04 0.97 2.00 1.07 3.30 20.00 0.07 1.94 0.04 0.97
las.20 0.08 1.99 0.04 0.97 1.44 1.01 0.57 19.95 0.07 1.99 0.04 0.97

Panel B: Bimonthly Rebalancing
bwd.10 0.08 2.02 0.04 0.96 1.46 1.00 0.00 10.00 0.07 2.02 0.03 0.96
fwd.10 0.08 2.03 0.04 0.96 1.41 1.00 0.24 10.00 0.07 2.03 0.03 0.96
las.10 0.09 2.08 0.04 0.96 1.01 1.01 0.48 9.99 0.08 2.08 0.04 0.96
bwd.15 0.08 1.95 0.04 0.96 1.36 1.03 1.36 15.00 0.07 1.95 0.04 0.96
fwd.15 0.08 1.96 0.04 0.96 1.41 1.02 1.04 15.00 0.07 1.96 0.04 0.96
las.15 0.09 2.02 0.04 0.96 0.98 1.01 0.30 14.97 0.08 2.02 0.04 0.96
bwd.20 0.08 1.93 0.04 0.97 1.35 1.09 4.29 20.00 0.07 1.93 0.04 0.97
fwd.20 0.08 1.93 0.04 0.97 1.34 1.07 3.56 20.00 0.07 1.93 0.04 0.97
las.20 0.08 1.98 0.04 0.97 1.01 1.01 0.49 19.93 0.08 1.98 0.04 0.97

Panel C: Quarterly Rebalancing
bwd.10 0.08 2.02 0.04 0.96 1.17 1.00 0.00 10.00 0.07 2.02 0.03 0.96
fwd.10 0.07 2.02 0.04 0.96 1.11 1.00 0.00 10.00 0.07 2.01 0.03 0.96
las.10 0.08 2.08 0.04 0.96 0.81 1.01 0.40 10.00 0.08 2.07 0.04 0.96
bwd.15 0.08 1.95 0.04 0.96 1.11 1.02 1.10 15.00 0.07 1.94 0.04 0.96
fwd.15 0.08 1.95 0.04 0.96 1.06 1.02 0.84 15.00 0.07 1.95 0.04 0.96
las.15 0.08 2.01 0.04 0.96 0.79 1.00 0.22 15.00 0.08 2.01 0.04 0.96
bwd.20 0.08 1.92 0.04 0.97 1.11 1.08 4.00 20.00 0.07 1.92 0.04 0.97
fwd.20 0.08 1.92 0.04 0.97 1.05 1.07 3.29 20.00 0.07 1.92 0.04 0.97
las.20 0.08 1.98 0.04 0.97 0.77 1.01 0.54 19.96 0.08 1.98 0.04 0.97

Source: The author.
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Table 4.2 – p-values for Difference of SR of Portfolio Net Returns for the Brazilian Dataset
Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: Monthly Rebalancing
bwd.10 −0.63 16.34 16.38 15.56 17.02 16.28
fwd.10 −0.46 31.38 31.06 30.08 30.94 30.60
las.10 −0.03 95.30 95.06 94.66 95.10 95.00
bwd.15 −0.13 74.64 74.50 74.32 74.96 74.72
fwd.15 −0.21 60.28 62.36 62.76 61.94 60.94
las.15 0.05 91.22 91.30 91.10 91.14 89.92
bwd.20 −0.12 76.92 75.58 75.32 75.42 75.88
fwd.20 −0.09 81.42 82.04 81.48 81.06 81.62
las.20 0.01 96.80 96.94 96.78 97.20 97.10

Panel B: Bimonthly Rebalancing
bwd.10 −0.31 47.72 48.48 47.14 48.02 48.90
fwd.10 −0.20 66.22 67.04 66.74 66.04 66.86
las.10 0.16 71.76 73.24 72.46 73.12 72.34
bwd.15 0.16 69.14 68.00 69.52 67.76 68.84
fwd.15 0.04 91.18 91.38 91.58 91.58 90.92
las.15 0.41 33.40 32.92 31.88 32.14 33.76
bwd.20 0.09 82.84 83.52 82.90 83.16 83.42
fwd.20 0.19 61.44 62.28 63.12 61.44 60.96
las.20 0.27 49.30 50.50 51.74 50.12 51.08

Panel C: Quarterly Rebalancing
bwd.10 −0.24 57.60 58.20 58.28 59.34 58.48
fwd.10 −0.40 35.48 35.98 36.82 36.08 35.94
las.10 0.17 72.14 71.72 71.64 71.84 72.20
bwd.15 0.09 82.70 82.10 82.50 82.28 82.50
fwd.15 0.07 86.82 86.26 86.76 86.72 86.58
las.15 0.23 60.42 60.06 61.46 58.70 59.64
bwd.20 0.10 82.36 80.68 81.48 80.62 81.14
fwd.20 0.16 68.12 69.46 70.00 71.32 70.04
las.20 0.17 67.24 66.68 66.36 67.28 67.76

Source: The author.
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Table 4.3 – p-values for Difference of Log Variance of Portfolio Net Returns for the
Brazilian Dataset

Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: Monthly Rebalancing
bwd.10 3.20 3.74 3.90 3.44 3.50 3.24
fwd.10 3.89 0.92 1.10 1.18 1.14 1.44
las.10 9.92 0.02 0.02 0.02 0.02 0.02
bwd.15 −2.91 4.26 4.62 5.62 4.48 5.02
fwd.15 −2.40 9.02 8.84 8.68 8.68 8.62
las.15 3.56 1.34 1.84 1.68 1.68 1.60
bwd.20 −5.59 0.02 0.02 0.04 0.02 0.02
fwd.20 −5.05 0.10 0.16 0.10 0.12 0.12
las.20 0.18 89.26 88.36 88.88 88.96 89.26

Panel B: Bimonthly Rebalancing
bwd.10 3.09 5.22 5.18 5.46 5.18 5.36
fwd.10 4.64 0.28 0.18 0.50 0.30 0.36
las.10 9.68 0.02 0.02 0.02 0.02 0.02
bwd.15 −3.74 1.20 1.18 1.34 1.22 1.52
fwd.15 −2.36 8.26 8.88 8.72 8.14 8.26
las.15 3.23 2.20 2.24 2.30 2.46 2.24
bwd.20 −5.94 0.04 0.06 0.02 0.02 0.02
fwd.20 −5.60 0.02 0.02 0.04 0.02 0.02
las.20 −0.29 82.74 82.64 82.00 83.52 82.16

Panel C: Quarterly Rebalancing
bwd.10 3.03 5.20 5.28 5.50 6.22 5.16
fwd.10 2.82 5.00 5.48 5.68 5.46 5.78
las.10 8.72 0.02 0.02 0.02 0.02 0.02
bwd.15 −4.21 0.70 0.84 0.78 1.00 0.92
fwd.15 −3.77 1.30 1.24 1.16 1.50 1.34
las.15 2.60 6.16 6.32 6.24 6.50 6.42
bwd.20 −6.77 0.02 0.02 0.02 0.04 0.02
fwd.20 −6.74 0.02 0.02 0.02 0.02 0.02
las.20 −0.98 46.32 46.44 46.96 47.16 46.40

Source: The author.
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Table 4.4 – p-values for Difference of Mean of Portfolio Net Returns for the Brazilian
Dataset

Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: Monthly Rebalancing
bwd.10 −0.01 19.96 20.96 19.34 18.94 19.86
fwd.10 −0.01 37.82 38.34 38.52 39.12 38.14
las.10 0.00 75.66 74.94 75.28 75.38 74.86
bwd.15 0.00 66.42 64.64 64.70 64.78 65.52
fwd.15 0.00 53.42 52.96 54.16 53.84 53.46
las.15 0.00 77.28 78.12 76.68 77.66 76.98
bwd.20 0.00 56.54 57.50 56.86 56.42 56.74
fwd.20 0.00 63.78 63.48 63.98 63.04 64.16
las.20 0.00 95.96 96.30 96.10 95.96 96.32

Panel B: Bimonthly Rebalancing
bwd.10 −0.01 55.88 53.20 56.84 56.60 57.24
fwd.10 0.00 81.60 80.02 80.50 81.00 80.98
las.10 0.01 46.96 47.22 47.22 48.42 47.68
bwd.15 0.00 81.20 82.38 80.90 81.84 82.12
fwd.15 0.00 99.76 99.82 99.94 99.94 99.86
las.15 0.01 23.80 24.78 24.94 25.42 25.72
bwd.20 0.00 95.44 94.94 95.26 95.44 95.54
fwd.20 0.00 81.10 81.66 81.52 82.88 82.54
las.20 0.01 48.18 46.68 48.64 49.08 48.90

Panel C: Quarterly Rebalancing
bwd.10 0.00 66.88 67.38 66.12 67.68 67.34
fwd.10 −0.01 43.44 44.24 43.98 43.12 43.38
las.10 0.01 48.92 47.16 46.92 48.02 47.98
bwd.15 0.00 96.80 97.22 97.18 97.06 96.76
fwd.15 0.00 99.66 99.62 99.56 99.66 99.66
las.15 0.01 52.30 51.26 51.24 50.74 51.48
bwd.20 0.00 95.12 95.38 95.52 95.50 96.10
fwd.20 0.00 93.72 93.84 93.96 94.60 94.02
las.20 0.00 68.74 69.74 68.62 68.40 69.50

Source: The author.
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Figure 4.1 – las.20 Portfolio (Brazilian Data)
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Figure 4.2 – bwd.10 Portfolio (Brazilian Data)
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Figure 4.3 – bwd.20 Portfolio (Brazilian Data)
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Table 4.5 – Out of Sample Rebalancing for the Index Tracking Portfolios (SP500)
Mean SD SR CORR TO Gross Short Active Mean SD SR CORR

index 0.05 0.77 0.07 NA NA NA NA NA NA NA NA NA

Panel A: Monthly Rebalancing
bwd.20 0.06 0.79 0.08 0.98 6.42 1.00 0.00 20.00 0.03 0.81 0.03 0.96
fwd.20 0.05 0.80 0.07 0.97 5.39 1.00 0.01 20.00 0.03 0.81 0.03 0.96
las.20 0.06 0.81 0.08 0.95 1.82 1.06 2.93 19.93 0.06 0.81 0.07 0.95
bwd.30 0.05 0.78 0.07 0.98 6.07 1.00 0.00 30.00 0.02 0.80 0.03 0.97
fwd.30 0.06 0.79 0.07 0.98 5.43 1.00 0.04 30.00 0.03 0.80 0.04 0.97
las.30 0.06 0.80 0.08 0.96 1.89 1.09 4.51 29.88 0.05 0.80 0.07 0.96
bwd.40 0.06 0.78 0.07 0.99 5.66 1.00 0.00 40.00 0.03 0.79 0.04 0.98
fwd.40 0.06 0.79 0.07 0.99 5.48 1.00 0.06 40.00 0.03 0.80 0.04 0.97
las.40 0.06 0.79 0.07 0.97 2.07 1.09 4.46 39.88 0.05 0.79 0.06 0.97

Panel B: Bimonthly Rebalancing
bwd.20 0.05 0.78 0.07 0.97 3.43 1.00 0.00 20.00 0.04 0.79 0.05 0.96
fwd.20 0.06 0.79 0.07 0.98 2.82 1.00 0.02 20.00 0.04 0.80 0.05 0.97
las.20 0.06 0.82 0.08 0.95 1.18 1.06 2.95 19.92 0.06 0.82 0.07 0.95
bwd.30 0.05 0.78 0.07 0.98 3.33 1.00 0.00 30.00 0.03 0.78 0.04 0.97
fwd.30 0.06 0.79 0.08 0.98 2.84 1.00 0.03 30.00 0.05 0.79 0.06 0.98
las.30 0.06 0.79 0.08 0.96 1.32 1.09 4.34 29.92 0.06 0.80 0.07 0.96
bwd.40 0.05 0.77 0.07 0.99 3.09 1.00 0.00 40.00 0.04 0.78 0.05 0.98
fwd.40 0.06 0.78 0.08 0.99 2.81 1.00 0.04 40.00 0.05 0.79 0.06 0.98
las.40 0.06 0.78 0.08 0.97 1.45 1.09 4.67 39.92 0.05 0.79 0.07 0.97

Panel C: Quarterly Rebalancing
bwd.20 0.06 0.78 0.08 0.98 2.49 1.00 0.00 20.00 0.05 0.79 0.07 0.97
fwd.20 0.06 0.80 0.07 0.97 2.06 1.00 0.00 20.00 0.05 0.80 0.06 0.97
las.20 0.06 0.81 0.08 0.95 1.05 1.06 2.87 19.96 0.06 0.81 0.07 0.95
bwd.30 0.06 0.77 0.08 0.98 2.30 1.00 0.00 30.00 0.05 0.77 0.07 0.98
fwd.30 0.06 0.79 0.08 0.98 2.08 1.00 0.01 30.00 0.05 0.79 0.06 0.98
las.30 0.06 0.80 0.08 0.96 1.10 1.09 4.52 29.92 0.06 0.80 0.07 0.96
bwd.40 0.06 0.77 0.08 0.99 2.11 1.00 0.00 40.00 0.05 0.77 0.07 0.98
fwd.40 0.06 0.78 0.08 0.99 2.04 1.00 0.02 40.00 0.05 0.78 0.06 0.98
las.40 0.06 0.79 0.08 0.97 1.17 1.08 4.22 39.88 0.05 0.79 0.07 0.97

Source: The author.
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Table 4.6 – p-values for Difference of SR of Portfolio Net Returns for the American Dataset
Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: Monthly Rebalancing
bwd.20 −3.29 0.02 0.02 0.02 0.02 0.02
fwd.20 −3.34 0.02 0.02 0.02 0.02 0.02
las.20 0.17 84.14 84.60 85.12 85.14 85.32
bwd.30 −3.63 0.02 0.02 0.02 0.02 0.02
fwd.30 −3.08 0.02 0.02 0.02 0.02 0.02
las.30 −0.11 87.54 88.58 88.54 86.60 88.04
bwd.40 −3.07 0.02 0.02 0.02 0.02 0.02
fwd.40 −2.90 0.02 0.02 0.02 0.02 0.02
las.40 −0.73 27.12 27.68 28.80 28.12 27.62

Panel B: Bimonthly Rebalancing
bwd.20 −1.88 0.94 0.84 0.94 1.12 0.86
fwd.20 −1.21 7.80 7.36 7.66 7.20 8.28
las.20 0.46 61.96 60.94 61.38 61.34 61.56
bwd.30 −2.32 0.04 0.04 0.10 0.02 0.10
fwd.30 −0.74 21.58 21.76 21.22 22.14 21.48
las.30 0.26 74.52 74.86 73.88 73.40 74.54
bwd.40 −1.82 0.08 0.16 0.18 0.20 0.20
fwd.40 −0.74 15.68 16.22 15.06 16.42 16.34
las.40 −0.04 95.40 95.74 96.00 95.42 95.46

Panel C: Quarterly Rebalancing
bwd.20 −0.03 96.22 96.10 96.16 95.82 96.26
fwd.20 −0.55 43.12 41.20 41.42 41.68 41.60
las.20 0.38 67.72 66.94 68.04 68.26 69.38
bwd.30 0.01 98.82 98.64 98.60 98.50 98.56
fwd.30 −0.18 76.02 76.48 74.96 75.80 76.54
las.30 0.29 69.66 70.06 70.18 70.52 69.64
bwd.40 0.20 68.48 69.76 68.68 69.24 68.00
fwd.40 −0.24 62.20 64.40 63.10 64.02 63.88
las.40 0.12 84.96 85.00 85.82 85.12 84.38

Source: The author.
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Table 4.7 – p-values for Difference of Log Variance of Portfolio Net Returns for the
American Dataset

Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: Monthly Rebalancing
bwd.20 9.29 0.02 0.02 0.02 0.02 0.02
fwd.20 11.09 0.02 0.02 0.02 0.02 0.02
las.20 11.28 0.02 0.02 0.02 0.02 0.02
bwd.30 6.84 0.02 0.02 0.02 0.04 0.04
fwd.30 8.47 0.02 0.02 0.02 0.02 0.02
las.30 6.90 0.02 0.02 0.02 0.04 0.02
bwd.40 5.04 0.14 0.16 0.08 0.16 0.12
fwd.40 7.17 0.02 0.02 0.02 0.02 0.02
las.40 5.56 0.04 0.04 0.08 0.04 0.08

Panel B: Bimonthly Rebalancing
bwd.20 5.08 0.30 0.22 0.26 0.36 0.42
fwd.20 7.58 0.02 0.02 0.02 0.02 0.02
las.20 11.89 0.02 0.02 0.02 0.02 0.02
bwd.30 3.50 2.14 1.98 1.70 1.46 2.48
fwd.30 5.64 0.02 0.04 0.02 0.04 0.02
las.30 6.66 0.02 0.08 0.06 0.12 0.02
bwd.40 2.00 14.32 14.10 15.72 15.08 15.02
fwd.40 4.28 0.04 0.06 0.06 0.14 0.14
las.40 3.98 0.84 0.82 1.30 1.02 1.36

Panel C: Quarterly Rebalancing
bwd.20 4.30 0.52 0.58 0.56 0.48 0.60
fwd.20 8.68 0.02 0.02 0.02 0.02 0.02
las.20 11.13 0.02 0.02 0.02 0.02 0.02
bwd.30 1.07 41.98 42.88 43.08 42.66 42.48
fwd.30 5.73 0.02 0.02 0.02 0.02 0.02
las.30 7.30 0.02 0.02 0.02 0.02 0.02
bwd.40 0.67 56.16 57.38 56.04 55.98 56.94
fwd.40 3.55 0.10 0.08 0.06 0.16 0.10
las.40 5.29 0.04 0.06 0.08 0.08 0.02

Source: The author.
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Table 4.8 – p-values for Difference of Mean of Portfolio Net Returns for the American
Dataset

Difference b = 02 b = 04 b = 06 b = 08 b = 10

Panel A: Monthly Rebalancing
bwd.20 −0.02 0.02 0.02 0.02 0.02 0.02
fwd.20 −0.02 0.02 0.02 0.02 0.02 0.02
las.20 0.00 53.82 55.42 54.70 55.34 55.46
bwd.30 −0.03 0.02 0.02 0.02 0.02 0.02
fwd.30 −0.02 0.02 0.02 0.02 0.02 0.02
las.30 0.00 87.22 87.20 87.86 86.38 87.54
bwd.40 −0.02 0.02 0.02 0.02 0.02 0.02
fwd.40 −0.02 0.02 0.02 0.02 0.02 0.02
las.40 0.00 40.02 39.84 41.18 40.56 40.00

Panel B: Bimonthly Rebalancing
bwd.20 −0.01 1.82 1.56 1.40 1.22 1.68
fwd.20 −0.01 13.62 13.80 13.30 14.84 13.92
las.20 0.01 32.84 33.04 33.06 33.12 34.38
bwd.30 −0.02 0.06 0.04 0.02 0.06 0.12
fwd.30 0.00 34.08 34.30 34.40 32.98 33.02
las.30 0.00 52.00 51.08 51.04 52.24 53.70
bwd.40 −0.01 0.06 0.08 0.16 0.10 0.14
fwd.40 0.00 25.62 24.66 25.30 26.04 27.30
las.40 0.00 88.58 89.02 88.68 88.84 88.96

Panel C: Quarterly Rebalancing
bwd.20 0.00 86.54 87.54 87.02 87.04 86.86
fwd.20 0.00 68.94 69.34 68.92 68.00 68.72
las.20 0.01 40.46 41.84 40.26 41.96 42.48
bwd.30 0.00 93.24 93.64 93.50 93.58 94.02
fwd.30 0.00 98.40 98.32 98.58 98.26 98.32
las.30 0.00 46.04 46.76 45.66 47.14 47.20
bwd.40 0.00 65.12 64.92 65.78 64.08 65.34
fwd.40 0.00 79.76 80.98 81.14 80.96 81.14
las.40 0.00 63.78 63.36 64.44 64.40 63.82

Source: The author.
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Figure 4.4 – las.20 Portfolio (American Data)
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Figure 4.5 – fwd.20 Portfolio (American Data)
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Figure 4.6 – bwd.40 Portfolio (American Data)
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5 FINAL CONSIDERATIONS

In this thesis, we presented three different essays in the context of portfolio
optimization and index tracking. The first essay offers a critique of the Tangency Portfolio
(TP).1 This critique is due to the widespread misconception that the TP is the most
efficient mean-variance portfolio as can be seen in DeMiguel, Garlappi and Uppal (2009)
and Kempf and Memmel (2006) among others. In that essay, we present three propositions
that show how the TP can be outperformed by other optimal portfolios. We also develop
an empirical evaluation by testing the performance (in and out of sample) of the TP
against other portfolios. The data used is from the Kenneth French database in the period
from July 1963 to June 2018. The result is that the TP delivers poor performance and is
outperformed by the other portfolios. This corroborates the work in Kirby and Ostdiek
(2012) and, to a lesser extent, the work of Clarke, Silva and Thorley (2006) about the
Global Minimum Variance Portfolio. The ultimate takeaway of that essay is that the TP
should not be used in empirical comparisons, seen as it will always come at the bottom of
the reap.

The second essay provides an explicit derivation of the equivalence between the
minimum variance portfolio and the minimum Tracking Error volatility portfolio. This
equivalence is much talked about in intuitive terms but seldom demonstrated analytically
(LIU, 2009; DEMOL, 2016). This derivation relies on the Sherman-Morison formula, that
shows how to invert the sum of two matrices with a certain structure. A further equivalence
of those portfolios to a restricted OLS regression is shown. Finally, a 2-fund portfolio result
of those portfolios is presented. The main contribution of this essay, besides the direct
analytical derivation, is to present the connection among general portfolio optimization,
index tracking portfolio optimization and OLS regressions.

The third essay is about feature selection in the context of index tracking. Index
tracking is an important subject in portfolio optimization because, as Liu (2009) and Tu
and Zhou (2011) point out, the majority of managers are benchmarked by broad market
indices like the SP500. In that essay, we provide an empirical study comparing different
feature selection algorithms in the context of portfolio optimization. The algorithms we
use are the backward iteration, forward iteration, and lasso regression. To isolate the
effect of the selection algorithms, we separate the asset selection phase from the asset
allocation phase. In the asset allocation phase we follow Liu (2009) and find portfolios
that minimize the Tracking Error volatility from a chosen benchmark index, without
regard for the size of the Tracking Error mean. We use two different datasets for the
empirical study; one is an American dataset from January 2010 to October 2017 where
we try to follow the SP500 Index; the other is a Brazilian dataset from January 1999 to
1A preliminary version of this essay was accepted to the XIX Econtro Brasileiro de Finanças with the
title “Tangency Portfolio: A Critique”
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December 2010 where we try to follow the Bovespa Index. The results we find is that for
the Brazilian case the lasso is the better tracker of the Bovespa Index. For the American
case, the lasso also delievers better risk-adjusted performance, but with higher volatility
than the other methods. So the better tracker is the backward iteration method with
quarterly rebalancing. It is important to highlight that the other methods do not receive
much attention in the literature, even though they deliver good results and have rather
simple ideas in their basis.
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