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ABSTRACT

The pseudo-potential method is applied to derive diverse propagating electron–hole structures in a nonthermal or j particle distribution
function background. The associated distribution function Ansatz reproduces the Schamel distribution of [H. Schamel, Phys. Plasmas 22,
042301 (2015)] in the Maxwellian (j!1) limit, providing a significant generalization of it for plasmas where superthermal electrons are
ubiquitous, such as space plasmas. The pseudo-potential and the nonlinear dispersion relation are evaluated. The role of the spectral index j
on the nonlinear dispersion relation is investigated, in what concerns the wave amplitude, for instance. The energy-like first integral from
Poisson’s equation is applied to analyze the properties of diverse classes of solutions: with the absence of trapped electrons, with a non-
analytic distribution of trapped electrons, or with a surplus of trapped electrons. Special attention is, therefore, paid to the non-orthodox case
where the electrons distribution function exhibits strong singularities, being discontinuous or non-analytic.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059613

I. INTRODUCTION

Although the usual treatment considers analytic distribution
functions, more appropriate for quiescent plasmas, in noisy or turbu-
lent plasmas such as fusion plasmas, it can be expected to have some
degree of singular distribution functions. Such systems require a non-
linear approach for which the derivation of coherent structures from
nonlinear methods is a welcome task.

Moreover, in the last decades, experiments have found the ubiq-
uitous appearance of hole structures, for instance electron holes, soli-
tary waves, and double layers in space plasmas as in the free solar
wind, at interplanetary shocks1–4 and collisionless laboratory plasmas,5

as recently reviewed in Ref. 6. In this context, Schamel has discussed
stationary electrostatic waves propagating with a nonzero speed in a
collisionless thermal plasma with singularities in the distribution func-
tion,7 see also Ref. 8. For this purpose, the method employed was the
pseudo-potential method, where, at first, the distribution function has
a supposed form in terms of constants of motion, automatically solv-
ing the Vlasov equation thanks to the Jean’s theorem. Afterward, the
number density is evaluated as a function of the electric potential, up
to a certain order so that the treatment is weakly nonlinear. Taking
into account the Poisson equation, it is possible to express the condi-
tions for a localized solution in terms of a nonlinear dispersion rela-
tion. Solitary or periodic and cnoidal waves can be, therefore,
described, with a focus on the impact of the singularities of the

distribution function. Interestingly, the singular character of the distri-
bution function with discontinuity at the separatrix or a non-analytic
trapped electrons distribution does not transfer to the hole solutions,
which are typically smooth. This is due to the fact that the singularities
are somewhat washed when integrating in velocity space in order to
obtain the charges number density, as apparent in Eq. (5) below.

However, frequently plasmas have not a Maxwellian equilibrium
velocity distribution, having instead a power-law distribution above
the thermal speed. This is a typical situation in both space and labora-
tory plasmas. Superthermal electrons are ubiquitous in the solar
wind,9 in Saturn’s magnetosphere,10 in beam–plasma interactions,11

and intense laser-matter experiments,12 besides numerical simula-
tions.13 These systems are better described by a j distribution (also
called generalized Lorentzian distribution). Moreover, hole solutions
in a non-strictly non-relativistic Maxwellian background are relevant
in some other cases, such as small-amplitude holes in a 3D
Fermi–Dirac distribution14 and large amplitude electron holes in rela-
tivistically hot plasma,15 see Ref. 16 for several extensions and observa-
tions in laboratory and space. Multi-dimensional kinetic structures
can be found by taking other conserved quantities (e.g., the angular
momentum or the canonical momentum).17

Our goal is to provide the generalization of Ref. 7 considering a
singular j velocity distribution, which reduces to a Maxwellian in the
thermal limit j!1 equilibrium. Using the pseudo-potential
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method, the Sagdeev potential is derived with an emphasis on the
impact of the singularities associated with trapping, and on the exis-
tence and behavior of diverse classes of hole solutions. As already
remarked in Ref. 7, a Maxwellian equilibrium tends to be more amena-
ble to analytical calculations. We show here how to overcome the odds
arising from a nonthermal equilibrium, thanks to the use of the gener-
alized j plasma dispersion function [see Eq. (15) below].

This work is organized as follows. In Sec. II, the Schamel distribu-
tion function originally proposed for electrostatic waves in a thermal
equilibrium is adapted to a j background. The appropriate rescaling
to non-dimensional variables is applied. In Sec. III, the electron’s num-
ber density is evaluated in the small amplitude limit, together with the
corresponding pseudo-potential. The nonlinear dispersion relation
compatible with localized structures is derived. In Sec. IV, special clas-
ses of solutions are discussed, with an emphasis on the singular aspects
of the trapping: solutions in the complete absence of trapping, with a
non-analytic trapped electrons distribution, and with an excess of trap-
ping. Section V is reserved to the conclusions.

II. ONE-DIMENSIONAL SUPERTHERMAL DISTRIBUTION

Our starting point is the conventional one-dimensional (1D) j
distribution function for electrons

f ðvÞ ¼ n0

ðpjh2Þ1=2
CðjÞ

Cðj� 1=2Þ 1þ v2

jh2

� ��j

; (1)

where

h2 ¼ 2j� 3
j

� �
jBT
m

� �
; j > 3=2; (2)

as proposed in Refs. 18 and 19. It appears from the three-dimensional
(3D) j distribution after integration over two velocity components.
Note the dependence on the inverse power of j, while in the 3D ver-
sion it is jþ 1. In Eqs. (1) and (2), n0 is the equilibrium number den-
sity, C is the gamma function, j is the spectral index, h is the thermal
speed, m is the electron mass, jB is the Boltzmann constant, and T is
the temperature, as defined from the second moment of the distribu-
tion function,

1
n0

ð1
�1

f ðvÞv2dv ¼ jBT
m

: (3)

Our interest will be on propagating electrostatic structures, station-
ary in the wave frame. In this case, the stationary Vlasov equation, as is
well known, is solved by a function of the constants of motion, namely,

� ¼ mv2

2
� e/ ; r ¼ sgnðvÞ; (4)

where e is the electron charge and / ¼ /ðxÞ is the scalar potential. The
sign of the velocity r ¼ rðvÞ is a constant of motion for untrapped elec-
trons. Without loss of generality, the separatrix separating passing and
trapped electrons is set at � ¼ 0. In addition, an homogeneous ionic
background is also included, so that the Poisson equation reads

@2/
@x2
¼ e

e0
ðn� n0Þ ; n ¼

ð1
�1

f ðvÞdv; (5)

where e0 is the vacuum permittivity.

From the j distribution (1), replacing v!
ffiffiffiffiffiffiffiffiffiffiffi
2�=m

p
and after a

few more elementary adjustments, the shifted j distribution is then

f ¼ n0 ð1þ k20W=2Þ
ðpjh2Þ1=2

CðjÞ
Cðj� 1=2Þ

� Hð�Þ 1þ 1

jh2
r

ffiffiffiffiffi
2�
m

r
þ v0

 !2
0
@

1
A
�j

2
64

þ aHð��Þ 1þ v20
jh2

� ��j

1þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� �

mjh2

r
� b �

mjh2

 !375; (6)

where v0 is the phase velocity in the electrons lab frame and Hð�Þ is
the Heaviside function. It consists of two parts: the first one for
untrapped electrons and the second for trapped electrons containing
the parameters a, b, and c. In the limit of a ¼ 1, c ¼ 0, and small
amplitudes, it would be the j version of the Schamel distribution20

adapted to a Maxwellian equilibrium, apart from the normalization
constant choice. At this point, k0 and W are dimensionless variables,
where W is proportional to the electrostatic potential amplitude and k0
is related to the wavenumber of oscillatory solutions, whose role is to
be better specified later. Instead of the spectral index j, which is more
popular in the Space Physics community, one could have chosen the
Tsallis index q ¼ 1� 1=j, which is more popular in the Statistical
Physics community. Both choices are equivalent, with the Maxwellian
limit provided by either j!1 or q! 1 as discussed, e.g., in Ref. 21,
see also Ref. 22 for the correct definition of the nonthermal distribu-
tions. Also note that Ref. 23 considers a nonthermal distribution,
which is nonsingular and defined in terms of q.

The distribution (6) exactly solves the stationary Vlasov equation
and corresponds to the singular distribution shown in Eq. (2) of Ref. 7,
which is adapted to a Maxwellian background. The parameter a is a
measure of the trapping strength, noting that a 6¼ 1 implies a jump
across the separatrix. Accordingly, a > 1 is associated with overpopu-
lated trapped electrons, while a < 1 has the opposite meaning. For the
trapped part, the more regular c ¼ 0 case implies an expansion in
powers of �� rather than in powers of

ffiffiffiffiffiffi
��
p

. Finally, b represents a
fine tuning of the inverse temperature of the trapped population. Our
choice is justified to have a close resemblance with the singular equilib-
rium in a Maxwellian background of Ref. 7 but now with superthermal
electrons. Certainly, higher singularities could be also included24

but here we keep to a bare minimum, for simplicity. Notice that
other j distributions used in studies of electron holes by means of
the pseudo-potential method do not reduce to the choice of Ref. 7
and not only because they are regular, nonsingular, but in view of
an intrinsic different form. For instance, see Eqs. (1) and (2) of
Ref. 25, where the electron’s distribution function actually is not a
function of the energy, or Eqs. (1) and (2) of Ref. 26, where it is
non-propagating (v0 ¼ 0).

To proceed, it is convenient to rescale variables according to

�x ¼ x=kD ; �v ¼ v=vT ; �v0 ¼ v0=vT ; �/ ¼ e/
jBT

;

�n ¼ n=n0 ; �f ¼ f
n0=vT

; �c ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j� 3
p ; �b ¼ b

2j� 3
;

(7)
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where vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jBT=m

p
and kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0jBT=n0e2

p
. With these choices

and dropping bars from now on, we have

f ¼ A 1þ k20W
2

� �
Hð�Þ 1þ 1

2j� 3
ðr

ffiffiffiffiffi
2�
p
þ v0Þ2

� ��j
"

þ aHð��Þ 1þ v20
2j� 3

� ��j

1þ c
ffiffiffiffiffiffi
��
p

� b �
� �#

; (8)

where

A ¼ CðjÞffiffiffi
p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j� 3
p

Cðj� 1=2Þ
; (9)

together with � ¼ v2=2� /; r ¼ sgnðvÞ. Moreover,

@2/
@x2
¼ n� 1 ; n ¼

ð1
�1

f ðvÞdv: (10)

Notice that in the Maxwellian limit j!1, one has A! 1=
ffiffiffiffiffi
2p
p

. In
addition, in the unperturbed case / ¼ 0;W ¼ 0, one has n¼ 1.

III. PSEUDO-POTENTIAL METHOD

Our job is to evaluate the electrons number density n ¼ nð/Þ
according to

n
A
¼ 1þ k20W

2

� � ð� ffiffiffiffi
2/
p

�1
dv 1þ 1

2j� 3
ð
ffiffiffiffiffi
2�
p
� v0Þ2

� ��j
"

þ
ð1 ffiffiffiffi

2/
p dv 1þ 1

2j� 3
ð
ffiffiffiffiffi
2�
p
þ v0Þ2

� ��j

þa 1þ v20
2j� 3

� ��j ð ffiffiffiffi
2/
p

�
ffiffiffiffi
2/
p dv 1þ c

ffiffiffiffiffiffi
��
p

� b�
� �#

: (11)

The electrons number density can be obtained from velocity integra-
tion followed by Taylor expansion in powers of

ffiffiffiffi
/
p

as in Refs. 27 and
28, or by first Taylor expanding and then performing the velocity inte-
gration as in Refs. 29–31 In both approaches, the result is

n ¼ 1þ k20W
2
þ 2

ffiffiffi
2
p

Aða� 1Þ 1þ k20W
2

� �
1þ v20

2j� 3

� ��j

ffiffiffiffi
/

p
þ a/þ b/

ffiffiffiffi
/

p
þ � � � ; (12)

valid up toOð/3=2Þ, where

a ¼ p
ffiffiffi
2
p

2
acA 1þ v20

2j� 3

� ��j

� 1
2

j� 1
j� 3=2

� �2 d
df

Z�r;j�1ðfÞ; (13)

b ¼ 4
ffiffiffi
2
p

A
3

ab 1þ v20
2j� 3

� ��j

þ 2j

ð2j� 3Þ2

"

� 2jðv20 � 1Þ þ v20 þ 3
� �

1þ v20
2j� 3

� ��j�2#
: (14)

In Eq. (13), there is the presence of the real part for real argument of
the generalized j plasma dispersion function introduced in Ref. 18,

Z�jðfÞ¼
1

p1=2j3=2

Cðjþ1Þ
Cðj�1=2Þ

ð1
�1

ds
s� f

1þ s2

j

� ��j�1

; ImðfÞ> 0;

(15)

analytically continued for ImðfÞ < 0, where the argument is

f ¼ j� 1
2j� 3

� �1=2

v0; (16)

see also Refs. 32–35 for properties and applications. Among other
properties, the generalized plasma dispersion function reduces to the
usual well known Fried–Conte plasma dispersion function in the
Maxwellian limit j!1, which also implies f! v0=

ffiffiffi
2
p

. To express
the coefficient a in the form shown in Eq. (13), we employed the
property

� 1
2
dZ�jðfÞ
df

¼ 1� 1
4j2
þ j� 1=2

j

� �
jþ 1

j

� �3=2

fZ�jþ1

� jþ 1
j

� �1=2

f

" #
� FjðfÞ; (17)

demonstrated in Ref. 18. In what follows, for simplicity of notation,
only the real part of FjðfÞ defined in Eq. (17) for real argument is con-
sidered. Since the derivative of the generalized plasma dispersion func-
tion has a role in several of the following steps, we consider Fig. 1
showing aspects of the function FjðfÞ. Notice the limiting behaviors

Fjð0Þ ¼ 1� 1
4j2

> 0; (18)

FjðfÞ ¼ �
1
2

1� 1
2j

� �
1

f2
< 0 ; f� 1: (19)

where both inequalities are valid since j > 3=2.
In possession of the electrons number density in terms of /, it is

possible to derive the pseudo-potential V ¼ Vð/Þ, or Sagdeev poten-
tial, from

d2/
dx2
¼ n� 1 ¼ � @V

@/
; (20)

so that

FIG. 1. This is the behavior of FjðfÞ defined in Eq. (17) as a function of f for j ¼
2 (dotted curve), and j ¼ 100 (continuous curve).
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�V ¼ k20W/
2
þ 4

ffiffiffi
2
p

A
3
ða� 1Þ 1þ k20W

2

� �
1þ v20

2j� 3

� ��j

� /
ffiffiffiffi
/

p
þ a/2

2
þ 2b/2 ffiffiffiffi

/
p

5
þ � � � ; (21)

correct up to Oð/5=2Þ. Notice that the term proportional to k20W/3=2

usually is not written in the literature, in spite of being of the same
order Oð/5=2Þ ¼ OðW5=2Þ. This has no consequences, if a ¼ 1 (con-
tinuous distribution) or if ultimately the analysis is limited to a lower
order. With this proviso, the results are fully consistent with Ref. 7 in
the Maxwellian limit j!1.

A self-consistent solution be it oscillatory or of solitary wave kind
requires

(i) Vð/Þ < 0 in the interval 0 < / < W;
(ii) VðWÞ ¼ 0,

where the later corresponds to zero electric field at the
potential maximum. From it, we have

8
ffiffiffi
2
p

A

3
ffiffiffiffi
W
p ð1� aÞ 1þ k20W

2

� �
1þ v20

2j� 3

� ��j

¼ k20 þ aþ 4b
5

ffiffiffiffi
W
p

:

(22)

Equation (22) allows rewriting the pseudo-potential according to

�V ¼ 4
ffiffiffi
2
p

A

3
ffiffiffiffi
W
p ða� 1Þ 1þ k20W

2

� �
1þ v20

2j� 3

� ��j

� /3=2
ffiffiffiffi
W
p
�

ffiffiffiffi
/

p	 

þ k20/

2
ðW� /Þ þ 2b/2

5

ffiffiffiffi
/

p
�

ffiffiffiffi
W
p	 


:

(23)

The second term in Re. (23) corresponds to a monochromatic
solution / ¼ ðW=2Þð1þ cos k0xÞ, while the last term yields
/ ¼ w sech4

ffiffiffi
a
p

x=4
� �

solitary wave, taking into account the disper-
sion relation with a ¼ 1; k0 ¼ 0. These are the same conclusions as
from a Maxwellian plasma,7 but with modified coefficients.

The present main focus is on the strong singularities induced by
a 6¼ 1 and c 6¼ 0, the later associated with a non-analytic trapped elec-
trons distribution. Hence, we follow the trend of Ref. 7 and consider
small enough amplitudes so that some terms can be neglected in
Eqs. (22) and (23), yielding

8
ffiffiffi
2
p

A

3
ffiffiffiffi
W
p ð1� aÞ 1þ v20

2j� 3

� ��j

¼ k20 þ a; (24)

�V ¼ 4
ffiffiffi
2
p

A

3
ffiffiffiffi
W
p ða� 1Þ 1þ v20

2j� 3

� ��j

/3=2
ffiffiffiffi
W
p
�

ffiffiffiffi
/

p	 


þ k20/
2
ðW� /Þ: (25)

Equations (24) and (25) are the ultimate tools for our consider-
ation of some special kinds of solutions, all found from the quadrature
of the energy-like first integral

1
2

d/
dx

� �2

þ Vð/Þ ¼ 0; (26)

set to zero without loss of generality taking VðWÞ ¼ 0. Equation (24)
is the nonlinear dispersion relation of the problem, relating phase

velocity v0, wavenumber k0, and amplitude W. The non-analytic con-
tribution from c 6¼ 0 is present in a defined in Eq. (13).

IV. SPECIAL SOLUTIONS
A. Absence of trapped electrons

In the case of a void in phase space with no trapped electrons (a
¼ 0), further specialized to k0 ¼ 0, one has from Eq. (25),

V ¼ 4
ffiffiffi
2
p

A

3
ffiffiffiffi
W
p 1þ v20

2j� 3

� ��j

/3=2
ffiffiffiffi
W
p
�

ffiffiffiffi
/

p	 

: (27)

Since V> 0 in the interval 0 < / < W, it is disqualified as pseudo-
potential. Equation (27) retrieves Eq. (12) of Ref. 7 in the j!1 limit.

However, still assuming a¼ 0 but with k0 6¼ 0, the nonlinear dis-
persion relation (24) becomes

8
ffiffiffi
2
p

A

3
ffiffiffiffi
W
p 1þ v20

2j� 3

� ��j

¼ k20 �
1
2

j� 1
j� 3=2

� �2 d
df

Z�r;j�1ðfÞ > 0;

(28)

which is certainly meaningful for sufficiently large k0. Equation (28)
retrieves Eq. (13) of Ref. 7 in the j!1 limit. Moreover, a small W is
assured for large enough v0. The inequality in Eq. (28) also holds, inde-
pendently of k0, provided f < f0, so that Fj�1ðfÞ > 0, where f0 is the
zero of Fj�1ðfÞ, or Fj�1ðf0Þ ¼ 0. In this context, a smaller phase
velocity would be preferable. The conclusions are that “only periodic
structures with sufficiently high phase velocities and short wavelengths
are admitted. Solitary waves cannot exist under zero trapping con-
ditions,” as quoted from Ref. 7, now adapted to kappa distributions.

It is relevant to examine the behavior of f0 as a function of j.
Numerically finding the root of Fj�1ðfÞ yields Fig. 2, where the corre-
sponding phase velocity is also shown. Asymptotically, one has f0 !
v0=

ffiffiffi
2
p
¼ 0:925 as j increases. Since f0 increases with j, the

Maxwellian limit allows satisfying the inequality in Eq. (28) irrespec-
tive of k0 in an easier way.

As a rule, the nonlinear dispersion relation (28) is satisfied by
larger amplitudes W as j increases, as seen in Fig. 3 for
k0 ¼ 2; v0 ¼ 1. Therefore, the more superthermal the plasma is, the
smaller is the amplitude of the electron–hole. For this set of parame-
ters, the Maxwellian limit j!1 is W ¼ 0:080.

The Sagdeev potential satisfies

FIG. 2. Lower: the zero f0 so that Fj�1ðf0Þ ¼ 0, as a function of j, and the corre-
sponding phase velocity v0 (upper).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 072110 (2021); doi: 10.1063/5.0059613 28, 072110-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


�V ¼ � 4
ffiffiffi
2
p

A

3
ffiffiffiffi
W
p 1þ v20

2j� 3

� ��j

/3=2
ffiffiffiffi
W
p
�

ffiffiffiffi
/

p	 


þ k20/
2
ðW� /Þ

¼ k20
ffiffiffiffi
W
p

2
/

ffiffiffiffi
W
p
�

ffiffiffiffi
/

p	 

þ 1
4

j� 1
j� 3=2

� �2 d
df

Z�r;j�1ðfÞ

� /3=2
ffiffiffiffi
W
p
�

ffiffiffiffi
/

p	 

; (29)

where the nonlinear dispersion relation (28) was used for the last
expression.

The pseudo-potential (29) can be consistent with periodic solu-
tions, which can be seen from the arguments in Ref. 7, now adapted to
a nonthermal plasma. At the right, most critical border /! W�, one
has

�V ¼ 1
2

k20 þ
1
2

j� 1
j� 3=2

� �2 d
df

Z�r;j�1ðfÞ
 !

W3=2
ffiffiffiffi
W
p
�

ffiffiffiffi
/

p	 

:

(30)

The right hand side of Eqs. (29) and (30) should be positive to guaran-
tee the existence of a solution, together with a small amplitude, which
is assured for large enough v0, k0, or large phase velocity, say, of order
unity, and small wavelength. The overall conclusion is that solitary
structures cannot exist under zero trapping conditions, but periodic

waves can still be found. Figure 4 shows typical nonlinear oscillations
from the pseudo-potential (29), with wavelength approximately given
by 2p=k0. The details of these periodic solutions can be shown to be
sensitive to j, as expected.

B. Non-analytic trapped electrons distribution

In the absence of trapping, the parameter c corresponding to a
non-analytic trapped electrons distribution obviously plays no role. It
is important to examine the influence of c by itself, in the case of a
continuous distribution (a ¼ 1). In this case, the nonlinear dispersion
relation is

k20�
1
2

j� 1
j� 3=2

� �2 d
df

Z�r;j�1ðfÞ ¼�
p
ffiffiffi
2
p

cA
2

1þ v20
2j� 3

� ��j

: (31)

It is similar to (15) of Ref. 7 and (7) of Ref. 20, basically replacing the
Fried–Conte function by the generalized plasma dispersion function
and exp ð�v20=2Þ by its finite j power-law version. Though qualitatively
the same results from the Maxwellian case are recovered, the value of j
influences the details of the dispersion relation. This can be seen in
Fig. 5, which is for a nonsingular trapped distribution (c ¼ 0) and some
values of j, where x0 ¼ k0v0. The well-known thumb curve29 is
deformed in accordance with the spectral index, allowing the explora-
tion of smaller wavelengths (bigger k0), the more nonthermal the plasma
is. As in the thermal case, one has two branches: the fast Langmuir
branch and the slow electron acoustic branch. The non-analytic case
where c 6¼ 0 can give rise to similar deformations, as shown in Fig. 6.
We have not found a multitude of dispersion curves as related in Ref. 7,
where the thermal equivalent of the right-hand side of Eq. (31) was set
to constant values, when in fact it is a function of v0 ¼ x0=k0.

Notice that the sign of c is free. If c < 0, a non-negative trapped
distribution requires 1þ c

ffiffiffiffi
W
p

> 0.

FIG. 3. Dependence of the amplitude W on the spectral index j, from the nonlinear
dispersion relation (28), for parameters k0 ¼ 2; v0 ¼ 1.

FIG. 4. Numerical solution of Eq. (26), with pseudo-potential given by Eq. (30), for
j ¼ 2; k0 ¼ 2; v0 ¼ 1.

FIG. 5. The nonlinear dispersion relation (31) where x0 ¼ k0v0, with c ¼ 0 and
different values of j, as indicated.
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The Maxwellian limit with non-analytic trapped electrons distri-
bution is shown in Fig. 7.

C. Surplus of trapped electrons

In the case of complete absence of trapped electrons, it will be
considered a > 1, representing a surplus of trapping. For simplicity
suppose k0 ¼ 0, so that Eqs. (24) and (25) become

p
ffiffiffi
2
p

acA
2

1þ v20
2j� 3

� ��j

� 1
2

j� 1
j� 3=2

� �2 d
df

Z�r;j�1ðfÞ ¼ �2S;

(32)

�V ¼ S/3=2
ffiffiffiffi
W
p
�

ffiffiffiffi
/

p	 

; (33)

where

S ¼ 4
ffiffiffi
2
p

Aða� 1Þ
3
ffiffiffiffi
W
p 1þ v20

2j� 3

� ��j

> 0; (34)

where the last inequality is necessary for V< 0 when 0 < / < W.
In spite of k0 ¼ 0, we have not a solitary wave but

/ ¼ w cos4
ffiffiffi
S
p

x

2
ffiffiffi
2
p

 !
: (35)

These are the nonthermal equivalent to the results of Ref. 7 with an
excess trapped population, now with a surplus parameter S adapted to
the non-Maxwellian background, recovering the previous findings
when j!1.

Assuming for simplicity the analytic case c ¼ 0, we can solve
Eq. (32) for the amplitude W and S as functions of j. This is shown in
Fig. 8, calculated for v0 ¼ 2. It is verified that S and, hence, the oscilla-
tions wavelength are not very sensitive to j, contrarily toW.

V. CONCLUSIONS

The pseudo-potential approach for a stationary plasma with non-
thermal or j� distributed electrons has been developed, starting from
the one-dimensional j distribution and adapting it to be a function of
the constants of motion. This is in complete analogy with Ref. 7 for
thermal plasmas. Having the Vlasov equation immediately solved and
evaluating the electrons number density in terms of the electrostatic
potential up to a certain order, the Poisson equation reduces to a
Newtonian-like equation with a conservative potential, or Sagdeev
potential. The conditions for solitary wave or oscillatory solutions
have been found, leading to a certain nonlinear dispersion relation
involving the wave amplitude, the phase velocity, and the wavenumber
of the propagating structure, besides the spectral index j. Following
the trend of Ref. 7, special attention has been paid to the case of a sin-
gular electrons distribution function, allowing for a discontinuity at

FIG. 7. The nonlinear dispersion relation (31) where x0 ¼ k0v0, with j!1 and
different values of c, as indicated.

FIG. 8. Amplitude W and parameter S from the nonlinear dispersion relation (32),
for c ¼ 0; v0 ¼ 2, as functions of j.

FIG. 6. The nonlinear dispersion relation (31) where x0 ¼ k0v0, with j ¼ 2 and
different values of c, as indicated.
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the separatrix or a non-analytic character. Some special classes of solu-
tions have been discussed. It has been found that in the total absence
of trapped electrons only periodic but not solitary wave solutions are
allowed. On the other hand, a continuous distribution has a nonlinear
dispersion relation modified by the parameter c, measuring the
strength of the non-analytic character. Finally, in the case of an excess
of trapped electrons, one can have a periodic solution. This multitude
of nonlinear solutions strongly depends on the j parameter.
Remarkably, the nonthermal aspects are found from the Maxwellian
results replacing the Fried–Conte function by the generalized plasma
dispersion function, among other adaptations.

For simplicity, the allowed non-analytic character was chosen to
be of the form proportional to

ffiffiffiffiffiffi
��
p

, where � < 0 is the single particle
energy of a trapped particle. Certainly, additional choices could be
made, such as those with the dependence on

ffiffiffiffiffiffi
��
p

ln ð��Þ, as treated
several times.24,36–38

It should be noted that the Vlasov–Poisson model is known to be
too restricted for the description of turbulent plasmas with intermit-
tence and eddies,24 deserving the inclusion of correlations, which tend
to produce smoother distribution functions. Likewise, the ion dynam-
ics is an essential ingredient ignored in the present communication.
Nevertheless, mathematical tools for more involved electrostatic holes
in nonthermal plasmas have been laid down.
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