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“What you focus on, expands.“
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ABSTRACT

Software energy consumption is becoming an essential issue during software develop-

ment and evolution, in particular, due to several restrictions imposed by platforms and

application requirements. However, still little support exists to aid developers to under-

stand how some small factors can affect software energy efficiency. This mainly happens

because of the absence of appropriate abstractions to model and analyse software energy

behavior. This work proposes an approach to support the construction of energy behav-

ior models from code. For this, we developed a model called ELTS (Energy Labelled

Transitions System), which is a Labelled Transition System (LTS) augmented with en-

ergy information. To build this model from Java code, we created the concept of basic

energy unit (BET) that enables to associate parts of the code to elements of the ELTS.

With this, we aim to guarantee traceability, which enables the identification of possible

hotspots of energy in the code after an analysis of the model. We represent the semantics

of the code in the model through relations between BETs, namely sequence, conditional

and iteration. These relations enable a better understanding of the behavior when ana-

lyzing the model and represent the connections of its composing BETs, also facilitating

model construction. In addition, we propose how to locally change the abstraction level

of the model. Thus, a part of the model is only expanded if necessary, keeping the rest of

the model as it is. We describe three experiments to demonstrate how to model programs

using our approach, including basic model composition. This modelling strategy makes

it possible to improve the analysis of energy consumption, thus possibly leading to better

decisions regarding software energy efficiency.

Keywords: Behavior model. Model construction. Software energy consumption.



Modelando o Consumo Energético de Software

para Análise de Eficiência Energética.

RESUMO

O consumo de energia de software está se tornando uma questão essencial durante o de-

senvolvimento e evolução de software, em particular, devido às várias restrições impostas

pelas plataformas e requisitos de aplicativos. No entanto, ainda existe pouco suporte

para ajudar os desenvolvedores a entender como alguns pequenos fatores podem afetar a

eficiência energética do seu software. Isso acontece principalmente devido à ausência de

abstrações apropriadas para modelar e analisar o comportamento relacionado ao consumo

de energia de um software. Este trabalho propõe uma abordagem para a construção de

modelos de comportamento energético a partir de código. Para isso, propomos um mo-

delo chamado ELTS (Energy Labeled Transition System), que é um Labeled Transition

System (LTS) que contém informações de custos de energia. Para construir este modelo a

partir de código Java, criamos o conceito de unidade básica de energia (BET), que permite

associar partes do código a elementos do ELTS. Com isso, visamos a garantir a rastreabi-

lidade, que possibilita a identificação de pontos específicos de gasto de energia no código

após uma análise do modelo. Representamos a semântica do código no modelo por meio

de relações entre BETs, definidas como sequência, condicional e iteração. Essas relações

possibilitam um melhor entendimento do comportamento ao analisar o modelo e represen-

tam as conexões das BETs que o compõem, facilitando também a construção do modelo.

Além disso, propomos como alterar localmente o nível de abstração do modelo. Assim,

uma parte do modelo só é expandida se necessário, mantendo o restante do modelo como

está. Descrevemos três experimentos para demonstrar como modelar programas usando

nossa abordagem, incluindo uma composição básica de modelos. Essa estratégia de mo-

delagem possibilita melhorar a análise do consumo de energia, possivelmente levando a

melhores decisões em relação à eficiência energética do software.

Palavras-chave: Modelos de Comportamento. Construção de Modelos. Consumo de

energia de software..
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1 INTRODUCTION

Software is present in many devices and platforms that can bring with them restric-

tions regarding energy consumption, such as data centers, embedded systems and mobile

applications. Some of these applications may consume so much energy that batteries are

quickly drained, leading to their rejection by users (KHALID; SHIHAB; NAGAPPAN;

HASSAN, 2015). For this reason, energy consumption has become an important aspect

to be analyzed during software development and maintenance (ALBERS, 2010; LI et al.,

2016; SINGH; NAIK; MAHINTHAN, 2015).

Software energy efficiency has recently gained the attention of the research com-

munity (KHALID; SHIHAB; NAGAPPAN; HASSAN, 2015; LI; HALFOND, 2014; LIU;

PINTO; LIU, 2015; PINTO; CASTOR, 2017). The work described in (PEREIRA; SARAIVA;

TEC; LINCS; FERNANDES, 2016) focuses on finding excessive or anomalous energy

consumption in software. They use a methodology to optimise Java programs and de-

crease their energy consumption by replacing some data structures by their more energy-

efficient alternatives. The work presented in (SINGH; NAIK; MAHINTHAN, 2015)

shows how some choices of API (Application Programming Interface) during software

development can influence energy consumption, possibly saving up until 76% in com-

mon operations, such as file reading. Therefore, developers should have more knowledge

about the energy consumption of their software so as to being able to modify their code

to improve energy efficiency (LI; HALFOND, 2014).

In spite of the aforementioned work, among others that can be found in the lit-

erature, energy-consumption analysis has still little support, which makes it difficult to

produce and evolve systems based on energy costs. This happens, essentially, because

of the absence of software abstractions and tools (PINTO; CASTOR, 2017). It is even

worse when systems size and complexity increase, which may prevent the identification

of problems and potential improvements.

One possible way of analysing energy costs, whilst providing more support for

program understanding, is using behaviour models (UCHITEL; KRAMER; MAGEE,

2003). Using models, it is possible to analyze different components with different levels

of abstraction and to check whether properties of the system satisfy some requirements.

Models also allow for a more easily comparison of two versions of a system in case of

possible changes, even before implementation. In addition, behavior models may be used

to document the system’s behaviour, which can be used for many other analyses. All these
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possible analyses on an abstract model would be difficult to be carried out directly on the

source code due to its complexity (LUDEWIG, 2004; CORBETT et al., 2000).

Behaviour models have been used to abstract and analyze software energy con-

sumption in the work by Duarte, Alves, Maia e Silva (2019) and in the research by Baier,

Dubslaff, Klein, Klüppelholz e Wunderlich (2014). However, the authors, in both cases,

do not indicate how to build such a model from the source code that represents the actual

energy behaviour of the system. Knowing how to construct an intended model is essential

to guarantee more reliable results, as any analysis on a model that does not represent the

real behaviour of a system may be misleading (JACKSON; RINARD, 2000). Hence, an

appropriate representation of the behaviour of a system in terms of energy consumption

can directly affect the results of any analysis on this model. For this reason, there should

be some guidance on how to properly represent code elements as model constructs and

their corresponding energy costs.

1.1 Problem Definition

The model-based framework for analysing software energy consumption proposed

in (DUARTE; ALVES; MAIA; SILVA, 2019) consists on collecting energy information

using one of the available tools (LIU; PINTO; LIU, 2015; LI et al., 2009; BINKERT;

BECKMANN; AL., 2011), adding this information to a Labelled Transition System (LTS)

(KELLER, 1976) and analysing properties of interest using an existing tool. The frame-

work is composed of four phases: i) behaviour model specification; (ii) energy consump-

tion measurement; (iii) model annotation; (iv) energy-based property verification.

At the first step of the framework, a model must be constructed. The authors as-

sociate an energy cost to each transition of the LTS. Thus, a transition in the LTS model

contains a label with the name of a program element and the energy information to repre-

sent the energy cost of executing that specific element. To model and visualise the LTS,

the authors used a tool called LoTus (BARBOSA; LIMA; MAIA; COSTA, 2017), which

has been extended to include the representation and analysis of energy information. How-

ever, there is no definition on how to carry out this model construction with energy costs,

being the quality of the model essential for the subsequent steps of the framework.

The model construction is made in an ad hoc way and there is no guidance for the

software developers. Hence, each developer creates their own model, according to their

knowledge and defining what is relevant to be a modeled. According to the developer’s
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choices, the energy modeling may have inconsistencies with the real energy behavior.

Consequently, the produced model may generate an inaccurate representation, affecting

energy analyses based on it. Therefore, to reach reliable results, we need to construct an

accurate model; i.e., a closer representation of the real code, on the way that the results

are trustworthy to be analyzed and indicate actual hotspots of energy consumption. To do

so, it is necessary to provide directions to developers on how to build these models and

use them to support better decisions to achieve energy efficiency.

Without some guidance and a structured way of building a model, there are many

problems that can occur and prevent the adequate representation of the software en-

ergy behavior, in particular related to the developer’s lack of experience with models

and/or energy behavior. These problems affect the analyses and, thus, should be avoided.

Some work, such as (ALVES; FERREIRA; DUARTE; SILVA; MAIA, 2020), (DUARTE;

ALVES; MAIA; SILVA, 2019) and (ALVES; FERREIRA; DUARTE; MAIA, 2020),

highlight the need for steps to construct an energy behavior model to enhance energy-

based property verification. Based on the experiments conducted in these previous stud-

ies, we have identified some issues that can affect analysis results:

1. Inclusion of unnecessary information. A software developer may include be-

haviours not needed for the analyses or that do not add much information. Simi-

larly, developers may not model important behaviours, which can lead to incorrect

results during model analysis;

2. Traceability between model and code may be hard to guarantee. A developer

may construct a model that does not represent a precise relation between code and

model. It is crucial for any analysis to understand exactly to which code element

each model element corresponds. A model that does not correspond to the source

code may lead, for example, to the possible identification of false hotspots of en-

ergy;

3. Lack of a semantic relation between model elements and source code struc-

tures. The semantics of the code is essential to its behavior representation. If the

semantics is not considered, the corresponding model would be only a sequence of

actions, ignoring points of choice and iteration, which does not represent the flow

of execution of the code. Depending on what is executed, the overall energy con-

sumption can be affected, thus modelling the correct semantics has an important

effect on the energy behavior representation;

4. Impossibility of changing the level of abstraction of specific parts of the model,
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if necessary. The level of abstraction of the model can facilitate the interpretation

of data, which makes it easier to understand the energy behavior looking in detail

statements that may possibly affect energy consumption as a whole. In addition,

there should be a way of controlling multiple levels of abstraction using the same

model, what would make it possible to analyse only a specific part of the model.

This way, the developer would not have to change the level of abstraction of the

whole model, but could just investigate a part of interest.

As mentioned before, all these problems happen, essentially, due the absence of

some guidance on how to map source code to an energy behavior model. To overcome

these problems, this mapping should guarantee the inclusion of all necessary information

and traceability between model and code, consider the source code semantics and allow

local change of level of abstraction. Hence, given all the difficulties related to building

an accurate behaviour model with energy costs, our research question is: How to allow

even developers with little or no previous experience with models to build a model from

an existing source code which is as close as possible to the software’s energy behavior?

1.2 Proposed Approach and Our Contributions

This work describes an approach to guide a software developer, even with little or

no knowledge of modelling or energy behavior, to construct a behavior model with energy

cost information by defining basic energy units (BETs) to represent parts of the code

and their respective energy consumption. In addition, we determine a way to described

relations between these basic energy units, where these relations are used to represent the

semantics of the code. Moreover, traceability between code and model is easily achieved,

allowing that potential problems identified during analysis of the model can be traced back

to the corresponding element of the code, so that appropriated changes can be carried out.

Our modelling approach also offers the possibility of changing the level of abstraction

of parts of the model, supporting a better understanding of the energy behavior of the

system.

We conducted 3 experiments to demonstrate our approach. The two first experi-

ments model isolated components, one to send a file using the FTP protocol and another

that focuses on a file compressor. In the last experiment, we combined these two models

and evaluate the impact on energy costs. In all these experiments, we applied the step-by-
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step proposed in our approach, which enables us to show how to construct a model from

source code. The constructed models were useful to indicate the main energy hostposts,

allow traceability to the code and enable easy change of local abstraction level.

The main contributions of this work are:

• Demonstration of how to build a model with energy costs step-by-step based on the

definition of basic energy units (BETs) and their relations, consequently, generating

a model that describes as close as possible the real energy behavior of the system;

• Traceability between model elements and their respective constructs in the source

code, making it possible to easily identify which part of the software needs to be

modified to improve energy efficiency;

• Possible change of abstraction level of a part of the model to better understand

the energy consumption of the corresponding part of the code, identifying possible

points of interest and where to modify the code to improve energy efficiency.

1.3 Outline

The remainder of this dissertation is organized as follow. In Chapter 2, we present

the background theory about behaviour models, discussing tools and models to work with

software energy consumption. In Chapter 3, we discuss our approach to build behaviour

models with energy costs using different levels of abstraction. We evaluate and discuss

the model constructions presenting the results of some experiments in Chapter 4. Finally,

we discuss the related work in Chapter 5 and we present conclusions and possible future

work in Chapter 6.
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2 BACKGROUND

This chapter presents the background theory. Firstly, we describe the main tools

used to collect energy information, and next, the concepts related to behavior models and

how they can be used to model systems considering energy costs. The last part contains

background information about software energy analyses.

2.1 Collecting Energy Information

Nowadays, to aid the developers to collect the software energy consumption of

their systems, there exist some tools such as Gem5 (BINKERT; BECKMANN; AL.,

2011), McPAT (LI et al., 2009), jRAPL (LIU; PINTO; LIU, 2015), and pyRAPL 1. These

tools return quantitative values that describe the consumption of a part of the system or

that of the entire program.

Gem5 is an architecture simulator that enables the software developer to measure

the energy cost of a running software. It works with Python and C++ programming lan-

guages. The McPAT tool is a framework used to simulate an execution, using abstractions

to estimate the energy consumption. It uses an XML-based interface to configure and

specify the target clock frequency, the area, and power deviation of the optimization func-

tion and other architectural/circuit/technology parameters. Both tools work on the energy

consumption of the entire program.

Tools such as jRAPL and pyRAPL enable the developers to annotate on the source

code which parts they would like to measure energy costs. Hence, it is possible to choose

the point of interest and determine how much energy a code segment is spending. The

jRAPL works exclusively with Java programs and some architectures, and pyRAPL works

with Python programs and also only for a specific architecture. These two tools are sim-

pler to use compared with Gem5 and McPAT, since it is not necessary to specify low-level

parameters, only to determine which lines to collect the energy information from.

Each of these tools mentioned depends on the desired application. If it is necessary

to measure the consumption of the system as a whole, tools such as Gem5 and McPAT

support this goal. However, in case the software developer needs to obtain more details

on how much each part of the code is consuming, jRAPL and pyRAPL are better options.

Using the available tools, it is possible to obtain the energy consumption of the

1https://pyrapl.readthedocs.io/en/latest/.
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software and to provide to software developers a way to identify possible hotspots. The

tools only show how much is consumed, hence it is the software developer who has to

decide what should be done. Therefore, simply collecting the energy information may

not be enough, becoming crucial to use other artifacts to understand the energy behavior

of the system, and to visualize it in a clear way how some evolution/refactoring could

affect the consumption. One possibility of doing this is by using behavior models.

2.2 Behavior Models

A behavior model is an abstract representation used to describe the expected be-

havior of a system. Therefore, it is possible to a software developer to construct a model

leaving out unnecessary information and focusing only on important issues to facilitate

the analysis of a system. The level of abstraction can be changed by including or exclud-

ing some information, depending on the modeling purpose. Using behavior models, it

is possible to accomplish some analysis that would be difficult or impossible directly on

the source code, possibly reducing future costs of fixing the system later on (UCHITEL;

KRAMER; MAGEE, 2003).

Generally, the way of modelling behaviours is through finite-state machines. A

finite-state machine (FSM) is composed by a finite set of states Q = {q0, q1, ..., qn},

where each qi state, for 0 ≤ i ≤ n, represents a set of possible concrete states S =

{s1, s2, ..., sn} of a system, and a set T of transitions connecting these states. For exam-

ple, a transition t ∈ T from a state q0 to a state q1 may represent a transition from a set of

states S1 to a set of states S2 in the actual program. FSMs have mathematical foundations

that enable the analysis of several properties of a system (CLARKE; WING, 1996).

FSMs are the basis for multiple models, such as StateCharts (HAREL, 1987),

UML state diagram (SEIDL, 2015) and CFG (BöHM; JACOPINI, 1966), which can be

used to model the behaviour of a system. These models have the advantage of having a

graph-like structure, thus enabling the use of known graph-related algorithms to analyse

software behavior. Behaviour models based on state machines can be used not only for

the design and analysis of systems, but also during maintenance and evolution to enable

a better visualization of which parts of the system will be modified to obtain the desired

behaviour.

One model based on FSMs that is commonly used to model behaviour is Labelled

Transition System (LTS) (KELLER, 1976). An LTS is a type of action-based model
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(HANSEN; VIRTANEN; VALMARI, 2003) whose behaviour is given by the sequence

of actions that the system executes, where each transition of the model is associated with

one action.

Definition 2.2.1 (Labelled Transition System.). A Labelled Transition System (LTS)M =

(S, si,Σ, T ) is a model where:

• S is a finite set of states;

• si ∈ S represents the initial state;

• Σ is an alphabet (set of actions names);

• T ⊆ S × Σ× S is a transition relation.

Given two states s0, s1 ∈ S and an action a ∈ Σ, then s0
a→ s1 describes a

transition from state s0 to state s1 through the execution of an action with name a. Thus,

when an action occurs, a new transition is triggered, changing the current state.

An example using an LTS model is presented in 2.1. It models a microwave oven

system where actions switchedOff and swicthedOn are used to symbolized when the sys-

tem is on or off, respectively, while action cook indicates that some food is being cooked

and action done represents that the cooking process is finished. The leftmost transition,

without a label, points to the initial state of the model.

Figure 2.1: A LTS model that represents a microwave oven.

Adapted from: (DUARTE, 2007).

The states in the LTS model represent stopping points while the next event does

not occur. A transition indicates the occurrence of an event (action) and the change from

one state to another. Hence, the behavior is given by the sequence of occurred actions.

An advantage of using an LTS is the possibility of modeling concurrent and dis-

tributed behaviours and analysing systems with these behaviours. This is possible using

some type of parallel composition (MILNER, 1989).

The abstraction level is related to the amount of information represented by the

model. This information can be added or removed with the goal of enhancing the mod-

eling representation. The change of abstraction level can be done in states or transitions,
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where the information modeled by these elements can be subdivided, creating new states/-

transitions. If we decrease the abstraction level, more information is added, which makes

the model larger. On the other hand, when we increase the abstraction level, we reduce

the information represented, creating a more compact model. Therefore, it is important

to analyze which is the best level of abstraction to represent our system, because a model

with too much details can be large and difficult to analyze, and a too abstract model can

miss relevant information.

2.3 Software energy consumption analysis

Some studies, such as (DAYARATHNA; WEN; FAN, 2016) and (SINGH; NAIK;

MAHINTHAN, 2015), analyze how some decisions in design and coding stages may

generate a relevant software energy consumption, indicating that some small changes

can be performed to improve energy efficiency, and thus, achieve high performance with

lower costs. In (SINGH; NAIK; MAHINTHAN, 2015) they show how the increase of the

amount of data dealt with in a server-side impacts the software energy consumption and

how not only hardware setups can bring benefits, but also, software decisions contribute

to energy costs. These studies show how some changes in the source code can impact

energy consumption. However, it is still unclear to software developers how to produce,

evaluate and evolve their software considering energy costs.

Duarte, Alves, Maia e Silva (2019) suggested a way to collect and analyze the

software energy consumption, where the energy cost is collected using some tool, such

as those mentioned in Chapter 2.1, and inserted into an LTS model, associating an energy

cost value to each transition. Figure 2.2 shows the flow of each phase proposed by the

framework. They used the constructed model to understand where an energy bottleneck

could be. This approach consists of four phases:

1. Behavior model specification: They propose to associate each transition of the

LTS with a code element, where each element has an energy cost. Hence, a path of

execution would be a sequence of transitions showing the behavior of the system

with respect to energy consumption. The total cost of a path would be the sum of

the costs of its composing transitions. Model construction could be done manually

or using some model extraction approach as proposed in (DUARTE; KRAMER;

UCHITEL, 2017), (WALKINSHAW; TAYLOR; DERRICK, 2013) or (MARIANI;
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PEZZè; SANTORO, 2017);

2. Energy consumption measurement: This phase indicates the use of a tool that

enables annotating directly the source code to select the desired elements to collect

the energy costs to be used in the model;

3. Model annotation: With energy costs collected in the previous phase, it is pos-

sible to annotate the model with these values, associating each transition with its

energy cost. From this, we have an LTS model with transitions labelled with values

representing energy costs;

4. Energy-based property verification: The last phase comprises carrying out anal-

yses on the model constructed in the previous phases, such as the most costly path

of execution, list of executions within a threshold of consumption, the average exe-

cution cost, among others.

Figure 2.2: The flow of model-based framework.

Source: (DUARTE; ALVES; MAIA; SILVA, 2019)

Based on the framework proposed by (DUARTE; ALVES; MAIA; SILVA, 2019),

work such as (ALVES; FERREIRA; DUARTE; SILVA; MAIA, 2020) and (ALVES; FER-

REIRA; DUARTE; MAIA, 2020) were developed using LTS models annotated with en-

ergy costs. In (ALVES; FERREIRA; DUARTE; SILVA; MAIA, 2020), it is modelled the

energy consumption of Java implementations of the Bubble Sort, Insertion Sort and Se-

lection Sort algorithms and performed a comparison of these different algorithms in terms

of energy costs. This analysis showed how to combine LTS and energy consumption to

help developers produce energy-efficient software.

In the research of Alves, Ferreira, Duarte e Maia (2020) it is proposed a set of

properties mixing the energy consumption with probabilities of execution. Depending

on the probability of a component occurring, the energy costs may be irrelevant if the

probability is very small.

These works above show the usability of LTS to model the energetic behavior of a

system. However, all this research highlights how the appropriate construction of a model

to describe the energy consumption is of paramount importance, because a misleading
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analysis might indicate false hotspots and lead to unnecessary changes.

The framework does not specify how to construct the LTS model with energy

information; i.e, the software developer has no guidance nor a structured way of building

a model. Without this support, there are many problems that can occur and prevent the

adequate representation of the software energy behavior (for instance, the ones mentioned

in 1.1). These problems affect the analyses and, thus, should be avoided. For this reason,

in this work we address how to construct a behavior model based on LTS that includes

energy information. We concentrate on phases 1 and 3 of the framework, considering

energy information gathering (phase 2), with the aim of producing a better model for

energy-based analyses (phase 4).
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3 MODELLING SOFTWARE ENERGY CONSUMPTION

In the work by Duarte, Alves, Maia e Silva (2019), the authors propose a model-

based framework to analyse software energy consumption. The framework is composed

of four phases: (i) Behaviour model specification; (ii) Energy consumption measure-

ment; (iii) Model annotation; and (iv) Energy-based property verification. Hence, the

goal of the framework is to enable model-based analysis of energy consumption. For the

analysis of software energy consumption, the authors suggest using one of the available

tools to collect energy information, such as (LIU; PINTO; LIU, 2015), (LI et al., 2009)

and (BINKERT; BECKMANN; AL., 2011), and then adding this information to an LTS

model.

To build this model, the authors propose to associate an energy cost to every tran-

sition of the LTS. Thus, each transition in this LTS model contains a label with the name

of an action, representing the execution of an element of the code, and a label with the

energy cost of executing that specific action. Hence, the proposed idea is simply associat-

ing an energy cost to each transition. However, there is no guidance on how to construct

an LTS model from the source code considering its association with energy information.

Creating a model that adequately represents the energy behavior of the code guar-

antees that results of analyses on the model can be assumed to reflect an analysis on the

actual code. Moreover, when mapping code to model, it is essential to keep track of which

element of the code corresponds to each element of the model. Without this clear rela-

tion, a developer could have difficulties identifying the actual points of possible energy

bottlenecks or hotspots after some analysis of the model.

Towards providing support for model-based energy analyses, we focus specifically

in the behaviour model specification and model annotation phases of the framework pro-

posed by Duarte, Alves, Maia e Silva (2019), but also involving the energy consumption

measurement and with the goal to use the produced model in the energy-based prop-

erty verification phase. We propose a step-by-step approach to model systems using an

LTS model augmented with energy information, denominated in this work Energy La-

belled Transition System (ELTS). We introduce a mapping from elements of the code to

elements of the model to create an appropriate representation of energy behavior of the

code, which also enables analyses on the model using different levels of abstraction. This

mapping between code and model and the use of different levels of abstraction allow the

identification of points of interest in the model and to trace it back to the corresponding
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elements in the source code. Thus, a developer can understand which parts of the code

could be improved in terms of software energy consumption and where to locate them.

An overview of the approach is presented in Figure 3.11. The gray rectangles

represent the requirements of a step. This approach consists of four steps: i) Definition of

energy elements; (ii) Energy cost gathering; (iii) Model construction; (iv) Model analysis.

The first step of the approach is to define the basic elements of the model, which we call

basic energy units (BET). A BET is used to refer, in a generic way, to a code element

which spends a certain amount of energy to execute. Hence, BETs constitute the building

blocks of an ELTS and are based on specific characteristics of the particular programming

language used. With the identification of the necessary energy elements, a tool should be

used to collect the energy information corresponding to each one of them. Having the

energy elements and their respective energy costs, an ELTS is built following some rules

based on a set of relations between energy elements in the code. After the model has been

built, a developer can carry out the model analysis step. In this step, a model evaluation

is executed aiming to identify possible energy hotspots or to check energy properties. In

the case where there is any part of the model that needs to be further investigated, it is

possible to change the level of abstraction of that part of interest by repeating the process

considering only the specific part of the model. The process ends when the developer

determines that no other analyses are required or when it is no longer possible to change

the abstraction level.

All these steps are presented in more detail next. We use the source code in Figure

3.2 as a running example while explaining each step. This program enables the user to

type in a sentence and checks whether there are more than 10 words in the sentence, in

which case the count stops. This example is only to show the basic ideas of our step-by-

step approach to build an energy behavior model.

3.1 Step 1: Definition of Energy Units

As an input to this step, it is necessary to have the source code, from which the de-

veloper will construct the model. To perform an accurate model construction we propose

a generic way to refer to a code element denominated basic energy unit (BET), which

enables the software developer to identify the points of interest to collect and model the

1The signal "+" was placed by the modeling tool used to create the flowchart and it indicates the exis-
tence of a subprocess (in this case, within the model analysis step).
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Figure 3.1: Flow chart of our approach.

Source: Author.

Figure 3.2: Running Example.

Source: Author.

energy consumption of their system. Thus, the purpose of using BETs is to help identify

possible hotspots of energy costs, keeping a clear mapping from code elements to model

elements.

A BET is defined as a sequence of one or more consecutive lines of a program

code, such that a line cannot belong to more than one sequence (i.e., there is no overlap of

BETs). Moreover, to identify BETs on the source code, we must consider the semantics of

the programming language used to build the code. This is necessary because the seman-
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tics of the language is directly linked to the energy behaviour of the program. We cannot,

for example, divide blocks of code such as selection and repetition statements, blocks of

statements, etc., which need to be analysed as a single BET. Otherwise, we could be alter-

ing the semantics of the code behaviour and, consequently, its energy-related behaviour

described in the model. Note that not every line needs to be part of a BET, which means

that the developer may choose to leave parts of the code out of the model, such as lines

with low cost or of no interest, thus simplifying the construction and analysis.

To illustrate the use of a BET, consider the program bellow:

1 i n t a = 1 ;

2 a ++;

3 i f ( a == 2) {

4 p r i n t ( " a i s e q u a l t o 2 " ) ;

5 a = a − 1 ; }

Initially, we could consider the whole program as a unique BET, from line 1 to

line 5, which is the more abstract model. Another possible way of dividing this code into

BETs would be to define a BET B1 considering the statements between lines 1 and 2 and

a BET B2, including lines 3 to 5, or any other division of the set of lines. Note, however,

that we could not define a BET B1 involving lines 1 to 3 and another BET B2 including

lines 4 and 5, as this would mean splitting the parts of the selection statement of lines 3

to 5, thus violating the semantics of the code.

When creating a model, it is desirable that it is the most abstract possible represen-

tation of the system behavior, so that analyses on it are easier to carry out and visualization

is facilitated. The same applies when defining BETs. When a BET is abstract enough to

be subdivided into other smaller BETs, we say it is a composite BET (i.e., BETs involving

more than one line of code). BETs containing only one independent line of code are de-

nominated atomic BETs because they can not be subdivided. For instance, in the previous

example, a BET involving line 1 would define an atomic BET, as it contains only a single

line of code, whereas a BET involving lines 1 and 2 would be a composite BET, since

we could then split it into two separate atomic BETs. Note, that lines 3 to 5 necessarily

define a composite BET, as lines 4 and 5 depend on line 3 to execute.

Applying the idea of BETs to our running example of Figure 3.2, we could divide

it into the BETs presented in Table 3.1. This table exemplifies the definition of BETs

following all the presented rules.
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Table 3.1: Table with BETs of the running example.
BET Lines
B1 1-2
B2 3-11
B3 12

3.2 Step 2: Energy Cost Gathering

Given the BETs selected in the previous step, we now need to collect their re-

spective energy costs. To accomplish it, we need a tool (e.g., jRAPL, pyRAPL, Gem5 or

MCPAT) that can measure energy costs according to the level of abstraction of the defined

BETs. In this work, we concentrate only on the model construction, hence it is the user’s

responsibility to choose the adequate tool to obtain energy costs considering the desired

level of abstraction.

To associate a given BET to its respective cost, we define a cost function where,

given a BET, it returns the energy consumed to execute the part of the code represented

by the BET. More formally, this function is defined as:

Definition 3.2.1 (BET cost function δ.). Let be a program Prog and a BET b ∈ Prog.

The BET cost function is defined as δ : b → n, where n ∈ R is the cost of executing the

portion of the code represented by b.

In practice, the implementation of this function depends on the tool used to collect

the software energy consumption. Hence, for each execution, the value of energy cost

may vary and the developer should use a more representative value, such as the average

cost, to guarantee only one cost n is associated to each BET b in a given program. The

unit in which n is measured also depends on the used tool and should be the same for all

costs pertaining to the same model.

Table 3.2 shows an example of associating energy costs to BETs considering the

code in Figure 3.2. These values are fictitious and only used as part of the example to

present a complete description of the model construction.

Table 3.2: Table with BETs of the running example with energy costs.
BET Lines Cost
B1 1-2 2
B2 3-11 8
B3 12 1
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3.3 Step 3: Model Construction

Having defined the BETs and collected their respective energy costs, then we can

build the model. The model can be constructed manually or by using some visual tool,

such as LoTuS (BARBOSA; LIMA; MAIA; COSTA, 2017). To construct this model, we

use the same basic concepts as the original definition of LTS presented by Keller (1976)

and Milner (1999). However, we define a guideline to build LTS models focusing on

better representing the energy behaviour of a system. For this reason, we have extended

the standard LTS to an ELTS (Energy Labelled Transition System). In this ELTS model,

each BET is mapped to a transition and its cost is used to label this transition according

to the BET cost function δ. States only represent a boundary between BETs. Hence, the

selection of BETs and their costs impact directly the model. Formally, an ELTS can be

defined as follows:

Definition 3.3.1 (Energy Labelled Transition System.). An Energy Labelled Transition

System (ELTS) M = (S, si,Σ, T, δ) is a model where:

• S is a finite set of states;

• si ∈ S represents the initial state;

• Σ is an alphabet (set of BETs);

• T ⊆ S × Σ× S is a transition relation;

• δ: is the BET cost function from Definition 3.2.1, associating an energy cost to

each element of Σ.

Given two states s0, s1 ∈ S, a BET b ∈ Σ and δ(b) = x, then s0
b{x}→ s1 describes

a transition from state s0 to state s1 through the execution of BET b with energy cost x.

Thus, when the system is in state s0 and BET b is executed, the transition to s1 is triggered

with the cost of x units of energy.

Using these definitions, we propose a guideline for modeling software energy be-

haviour, where we establish a mapping between a source code and an ELTS model. At a

first sight, the ELTS could be seen as simply a sequence of BETs. However, this approach

cannot accurately represent the richer semantics and structure of a source code regarding

software energy behavior, such as points of choice and iterations. For this reason, we

define types of relations between BETs to reflect these elements. These definitions are

similar to the basic algorithmic structures used in programming languages (MICHAEL-

SON, 1990).
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In this work, these structures will be used to model energy behaviour and to in-

dicate how to analyze energy information. Thus, the use of these relation definitions

enables the representation of the semantics and basic structures of the source code. We

classify relations between BETs into three types: sequence relation, conditional relation

and iteration relation. Next, we detail each one of them.

3.3.1 Sequence Relation

In a sequence relation, a given BET B2 can only occur after a previous BET

B1 has been executed. However, they execute independently, which means the result of

executing B1 does not prevent B2 from occurring. The total energy cost of a sequence

of BETs is represented by Equation 3.1, where δ(Bi) is the cost of executing BET Bi.

Therefore, if there is a sequence of BETs 〈B1B2B3〉, then the total cost of this sequence

would be δseq(B1, B2, B3) = δ(B1) + δ(B2) + δ(B3).

δseq(B1, ..., Bn) =
n∑

i=1

δ(Bi) (3.1)

In some cases, a sequence of BETs B1 and B2 can be seen as a single, more

abstract BET B, where δ(B) = δseq(B1, B2). This may be useful when a developer can

abstract a part of the model which is not relevant for some analysis, thus, reducing the

cost of running such analysis.

Figure 3.3a presents a code example with method calls a, b, c and d in a sequence.

In this example, we consider each method call as a separate BET and transform each one

of them into a transition with its respective energy cost (step 2 of the diagram presented

in Figure 3.1). Line 1 maps to a transition representing method call a(), identified as BET

B1 in the model with its respective energy cost. Similarly, lines 2, 3 and 4 are mapped to

BETsB2, B3 andB4, respectively. With all the BETs mapped, we build the ELTS model

presented in Figure 3.3b. Each BET is represented by a transition in the model and their

respective energy costs are indicated between braces (e.g., the transition between states 0

and 1 corresponds to BET B1, which has an associated cost of x). The total energy cost

for this sequence is δseq(B1, B2, B3, B4) = x+ y + t+ z.

As mentioned before, BETs B1, B2, B3 and B4 could be modelled as a unique,

composite BET, as presented in Figure 3.3c. This model contains only BET B1, whose

cost is w = x+ y + t+ z.



29

Figure 3.3: Sequence Relation between methods.

(a)

(b)

(c)

Source: Author.

We apply the idea of sequence relations to our running example, as presented in

Figure 3.4. In this example, one can note the separation of BETs, following the definition

presented in Chapter 3.1. In principle, we could have considered each line as a sepa-

rate BET. However, the corresponding ELTS would be larger and would not follow the

requirements of a BET, for example, breaking apart the selection statement between lines

3 and 11. Hence, we chose these BETs such that we do not break the selection statement.

To simplify the model, we defined a composite BET containing both lines 1 and 2 (if

necessary, later we could break it into two atomic BETs). The respective ELTS model

is shown in Figure 3.5. BET B1 represents lines 1 and 2, whilst B2 is used to represent

lines 3 to 11, and finally, B3 maps line 12.

Using this ELTS, we can build a model such that traceability between source code

and model can be maintained. This can be done through BETs, which are parts of code

mapped to model transitions. Therefore, identifying the a relevant transition of the model
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and its respective BETs, it is possible to determine which part of the code is represented

by that BET, thus indicating where modifications should take place, if necessary.

Note that the code contains other types of relations, but here we focus only on

sequence relations as a first step. Next, we will detail the other relations and how to use

them.

Figure 3.4: Running Example with Sequence Relation.

Source: Author.

Figure 3.5: ELTS model of sequence relation.

Source: Author.

3.3.2 Conditional Relation

A conditional relation is defined when a set of BETs may occur as the next step

of an execution depending on the evaluation of a given expression. The evaluation of this

expression enables the execution of only one of the BETs in the set. For example, suppose

a conditional relation between two BETs B1 and B2: in case the expression evaluation

enables the execution of B1, then B2 is not executed; if B2 is enabled, then B1 is not

executed.

The energy cost of a conditional relation of BETs is represented by the equation



31

3.2, where δ(Bi) is the cost of executing BET Bi, e is the expression evaluated and x and

z are possible valuations of e. Therefore, the total cost of executing this part of the code

would be given by a function defining an association between each possible value of an

expression e and the cost of executing the corresponding BET, as presented in Equation

3.2.

δcond(B1, .., Bn) =


δ(B1) if e = x

... if ...

δ(Bn) if e = z

(3.2)

δcond(B1, .., Bn, e) = δ(e) +


δ(B1) if e = x

... if ...

δ(Bn) if e = z

(3.3)

In case the software developer needs to consider the energy costs of the conditional test,

equation 3.3 should be used, which is the same equation as 3.2 but with the addition of

cost of the conditional test.

An example of conditional relation is a selection statement if − else, where only

one of the alternative blocks of code will be executed depending on the condition tested

at the beginning of the statement. In the model, a conditional relation is represented by

multiple outgoing transitions from the a source state leading to the same target state.

Figure 3.6a shows an example of this relation, where BET B1 is represented

by lines 1-3 and BET B2 refers to lines 4-6. Hence, depending on the evaluation of

condition, either B1 or B2 will executed and, thus, produce the corresponding energy

cost. In this example, no matter which BET executes, the code in line 7 will be executed

next.

If there is a condition with only one BET to be executed (e.g, when exists an

if statement without an else statement), we introduce an empty transition (a transition

labelled with a symbol ε and with cost 0) to show the possibility of not executing the

associated BET. Hence, this representation describes a choice of executing a certain BET

or not depending on the evaluated condition.

Figure 3.6b presents the ELTS model built from the code of Figure 3.6a, where,

from state 0, only one of the outgoing transitions (representing BETs B1 and B2) is

executed, leading to state 1. The transition labelled with B3 represents the BET involving

a set of lines starting in line 7 of Figure 3.6a. Figure 3.6c represents the situation when

there exists only one block of commands that can be executed depending on a condition.
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If the block is not executed, it is used the label ε with costs zero to represent this situation,

where nothing is executed.

Figure 3.6: Conditional Relation Examples

(a)

(b)

(c)

Source: Author.

An instance of a conditional relation using our running example is presented in

Figure 3.7 between lines 3 to 8 and 9 to 11. In this example, the remaining BETs do

not change, therefore, the only modification is the newly identified relation. Thus, the

updated ELTS model representing our running example is expanded only in the transition

referring to B2, as shown in Figure 3.8. In this case, BET B2.1 will only be executed if

the condition is true; otherwise, B2.2 will be executed.

In the model represented by Figure 3.5, we had considered only the execution of

BET B2.1, assuming it was the most probable option. Possibly a better way to represent

this situation would be to identify the probabilities of execution and to consider only the
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costs of the BET with the highest probability of being executed.

Figure 3.7: Running Example with Conditional Relation.

Source: Author.

Figure 3.8: ELTS model of conditional relation.

Source: Author.

As in a conditional relation only one of the BETs involved will be actually exe-

cuted, the cost of an execution involving a conditional relation will take into account only

one possible path in the model. In the case of the running example, we could choose to

consider an execution of B2.1 (with cost 8) or B2.2 (with cost 2), depending on the type

of analysis we were interested in.
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3.3.3 Iteration Relation

An iteration relation is characterized by a set of BETs that can occur iteratively

until a condition is met, as in a loop. For example, if a BET B1 is a part of an iteration

relation, it may be repeatedly executed until the required condition occurs. This repetition

of execution can be seen as B1 occurring after another occurrence of B1 itself, such as

in a sequence relation. The main difference is that the BETs in this sequence are all the

same. Moreover, the number of repetitions is determined by the associated condition, as

in a conditional relation, but the condition is repeatedly tested.

The evaluation of the energy consumption in an iteration relation is given by equa-

tion 3.4. In the equation, δ(B) represents the energy of one execution of the BET B in-

volved in the iteration relation. To obtain the total energy cost (i.e., the sum of the costs

of each iteration), we only multiple the energy cost of one iteration by the number of

iterations.

The value of δ(B) could be based on one single execution of B, an average cost

of executing B, the highest/lowest cost of executing B, or even it could represent the total

energy cost to execute all the necessary iterations. This choice is up to the developer and

the analysis of the model should take this into account. As the number of times the BET

will be executed depends on the evaluation of a condition, the user has to define a value

for N according to their need or evaluate multiple possibilities.

δiter(B) = δ(B) ∗N (3.4)

δiter(B) = (δ(B) + δ(e)) ∗N (3.5)

Similar to the costs of conditional tests, when we handle iteration tests the energy

costs can be obtained with the equation 3.5, where we consider the costs to realize the

conditional loop plus the costs of the internal BET.

An iteration relation is characterized by a condition that is tested to check whether

the BET will continue to execute or not. To represent this condition test, we use an

empty transition (denoted by symbol ε) to reach the state that enables the BET execution,

which leads back to the state where the condition test is represented, thus simulating the

execution of a new iteration. We neglect the energy cost of the condition test, focusing

only on the execution of the BET, assigning a cost value of 0 to the empty transition.
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Hence, when the condition is false, then the BET does not execute and the flow of the

program continues to the next BET. This means that, if the condition is initially false, the

BET will not be executed at all. However, in some cases, the BET may occur at least once

before the condition test (such as in a do-while structure), as shown in the code in Figure

3.9b. In these cases, we model the initial execution of the BET as a transition occurring

before the condition test and then leading to same idea as discussed before.

As an example of iteration relation, we present the code in Figure 3.9a, which can

be represented by the model in Figure 3.9c, where BET B1 is executed with cost x while

the condition continues to be true. Note that the ELTS model in Figure 3.9c contains a

shaded transition with BET B1 (as represented by the code shown in Figure 3.9b) to rep-

resented the situation mentioned before, where the BET involved in the iteration relation

occurs at least once.

Figure 3.9: Iteration relation examples

(a)

(b)

(c)

Source: Author.

An instance of an iteration relation using our running example is presented in

Figure 3.10 between lines 5 and 7. We expand only BET ofB2.1 from the ELTS presented
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in Figure 3.8, where the internal relations are detailed in BETsB2.1.1 (sequence relation)

and B2.1.2 (contains an iteration relation), as shown in Figure 3.11. Note that line 3

contains the condition associated to B2 and we do not consider its cost. However, if

necessary, its cost could be obtained by calculating δ(B2.1)− (δ(B2.1.1) + δ(B2.1.2)).

This information can be necessary when the software developer is analyzing the energy

consumption of their system and notice that the internal BETs do not contain an energy

hotspot, indicating that, in this case, the tested condition may have a great influence on

the total cost.

Figure 3.10: Running Example with Iteration Relation.

Source: Author.

3.4 Step 4: Model Analysis

This step consists of an analysis of the model built in the previous step to check

whether there is anything that could be modified to improve energy efficiency. The devel-

oper can analyze whether energy requirements are satisfied by the system, which could

not be done directly on the actual system. For instance, we may apply the energy-based

property verification proposed in (DUARTE; ALVES; MAIA; SILVA, 2019) or discover

energy bottlenecks of our application simply inspecting the model. In addition, the ELTS
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Figure 3.11: ELTS model of iteration relation.

Source: Author.

may possibly allow a better visualization of the system energy behavior, providing doc-

umentation of this aspect, also supporting evolution of the system in terms of energy

consumption.

Based on the analysis step, the software developer may decide to end the process

("Model Evaluation" in Figure 3.1). This may occur because they did not find any energy

problem (e.g., no hotsposts), there was not any part of interest or all energy requirements

were satisfied ("No" path from the decision point "Any further analysis required" in Figure

3.1, which leads to the "End" node).

On the other hand, the developer may want to analyze further some part of the

energy behavior ("Yes" path from the decision point "Any further analysis required" in

Figure 3.1). In this case, they should select what part of the model needs to have its level

of abstraction changed. This change in the abstraction level is not mandatory, hence the

developer has to define when the level should be changed. The criteria to change the level

depend on the properties of interest to be analyzed. In this work, for the experiments, we

considered points of high consumption as a criterion to modify the level of abstraction.

When the software developer chooses to change the abstraction level of a part of the

model, it is necessary to check whether it is possible to do it. This check depends on

the type of the involved BET: if the BET is a composed BET, it is possible to change the

abstraction level, looking into internal BETs; in case the BET is atomic, there is nothing

else to be done using the model, leaving to the developer to try to change the system at

the code level for a more energy-efficient alternative.

If the BET is a composed BET, the developer has to check whether the tool used to

collect energy costs supports that level of granularity. If it does not, the process stops and

the developer should try to use a different tool. However, if the tool supports the required
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level of abstraction, then they can proceed with the changing of abstraction level. Hence,

taking the "Yes" path from the decision point "Any further analysis required" in Figure

3.1 depends on being possible to expand the necessary BET and having a tool to collect

the necessary energy costs.

In this process, a composite BET will be decomposed into its internal BETs, and

their costs should represent their part in the total cost of the previous level represented

("Change of abstraction level" in Figure 3.1), which leads to the "End" node). Therefore,

the change of abstraction level enables the expansion of parts of the model for better com-

prehension, identifying more accurately energy hotspots, and so, improving the analysis

step. Note that only the part of interest is changed, keeping the rest of the model as it

is. That part is refined (i.e., the BET is expanded) and the developer can analyse it using

the previous steps (BET definition, energy cost collection, model construction and model

analysis). This process occurs iteratively until either the developer determines that it is

not necessary to apply any more modifications or they have arrived at a situation where it

is not possible to proceed.

To represent the different abstraction levels in our approach, we have adopted a

notation to model a composite BET that has been broken into smaller BETs: internal

BETs are identified by the same numeric identification of their high-level BET followed

by a "." and another number identifying that BET as part of a composite BET. For in-

stance, an internal BET of a BET B1 would be B1.1. Following this idea, a second BET

inside B1 would be identified as B1.2. An internal BET of B1.1 would be B1.1.1, an

internal BET ofB1.1.1 would beB1.1.1.1, and so on. Hence, the longer the identifier, the

more levels of abstraction are involved. These notations were chosen to define a pattern

of representation in the model and make it easier to identify different abstraction levels.

However, the software developer can use their own notations according to their projects.

An example of the change of abstraction level is BETB2 represented in Figure 3.4,

where we identified this BET as a conditional relation and subdivided it into BETs B2.1

and B2.2 as illustrated in Figure 3.7. BET B2.2 is an atomic BET, not being possible

to alter its abstraction level. In this case, the developer should try to change the print

command to improve energy efficiency. BET B2.1 contains other relations that may be

expanded (in this case, a sequence and iteration relation, labeled B2.1.1 and B2.1.2 as

represented in Figure 3.10), which means that it could be further analyzed.

A BET that occurs iteratively, such as B2.1.2, could be a probable energy bottle-

neck. In this case, we could look into its internal BETs or analyze whether the number of
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iterations could be a problem. If there is a need to understand better the energy behavior

of BET B1, we could split it into two other BETs, at which point we would arrive at a

level where it is not possible to carry out any more changes of abstraction level. This

analysis can be done due to the traceability established between the BETs and their re-

spective parts of the code. In this case, the highest consumption identified in the model in

Figure 3.8 was in transition/BETB2.1, which represents lines 3 to 8. When we expanded

it, we found the energy interest point represented by BET B2.1.2, which is an iteration

relation.

Therefore, we decrease the level of abstraction, detailing the internal BETs, to

provide to the software developer a better visualization of possible energy bottlenecks

and points of interest. These evaluations help the developer improve energy efficiency

due to the traceability between model and code. It is possible to go back to the source

code and identify if the BET is composed or atomic, and so, change the abstraction level

and also define which part of the code has to be modified.
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4 RESULTS

In this chapter, we present some experiments using the approach proposed in the

previous chapter. In these experiments, we show how to construct a model to repre-

sent the energy behavior of the system, keeping the traceability between source code and

model. Furthermore, we can use different levels of abstraction, based on the relations de-

fined in Chapter 3.3, to better understand the energy behaviour of a program and identify

which specific parts significantly affect energy consumption. We used the LoTuS tool

(BARBOSA; LIMA; MAIA; COSTA, 2017) to manually create the models and collected

energy information using the jRAPL library (LIU; PINTO; LIU, 2015).

We performed the evaluation of possible scenarios in practice, executing all steps

that we have proposed to construct ELTS models and carried out the analysis of these

models. These experiments were carried out using a PC with a processor Core i5 3 GHz,

with 8 GB of RAM. The energy cost of each action (represented between curly brackets

in the transition label) consists of an average value based on 10 executions and its value

is presented in Watts (W).

The experiments are used to show how to construct an ELTS model from a source

code, keeping the traceability between code and model. To demonstrate this, the selected

experiments are used to identify the basic energy units of the programs and their relation-

ships, also how to change the abstraction level to a better understanding regarding energy

behavior. We have chosen programs that implement algorithmic tasks that demand a sig-

nificant energy consumption to be analyzed. These programs are available online with

open access, making it possible to reproduce our results. These are real applications, be-

ing used in a server environment, and, the program was developed in Java language due

to the jRAPL library enabling to collect of energy costs in different granularities. For

these experiments, we use the equations 3.2 and 3.5, where we ignore the conditional and

iterations test.

4.1 FTP Program

The File Transfer Protocol (FTP) (POSTEL; REYNOLDS, 1985) involves two

entities (client and server), where the user wants to transfer files to a remote host. To es-

tablish communication, the user provides their identification and password. With the user

authorized, it is possible to transfer files between both sides (KUROSE; ROSS, 2007).
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We used the Apache Commons Library1 and we have adapted the code of the

FTP implementation from a repository of Java codes and tutorials2 that uses this library.

The FTP program implements the transmission of a file using the FTP protocol. In our

experiment, we upload a file of 15 MB from a client to a server, given the IP address, port

number, username, and password, and evaluate the software energy consumption of this

operation. The original code includes two approaches to submit a file, which are executed

in sequence. However, to better analyze the differences between the two approaches, we

have adapted the code where the user can choose which approach will be used to send the

file.

The purpose of this experiment was to model the energy consumption from the

client side using the defined modelling ideas to generate the ELTS model and compare

the two approaches to identify which one has lower consumption. As the code was im-

plemented in Java, we used the jRAPL library to annotate and collect the energy costs

according to the chosen BETs.

4.1.1 Model Construction

The source code of the adapted FTP protocol program is presented in Figure 4.1.

This program initially defines the IP address, port number, username, password, and in-

stantiates an FTP client. Line 3 refers to this part of the code and we leave it out because

it does not affect our analysis. After that, the program creates a connection using the

provided information and the user chooses which approach will be adopted to submit the

file. The software developer has two alternatives to submit the file: one using storeFile

(the input file is sent as a whole using the command described in line 12) or through of

OutputStream (the input file is sent byte by byte, as described in lines 23 to 25). If an

error occurs, the catch block in lines 33 to 34 is triggered. Regardless of occurred before

(complete execution of the try block or error) the finally block in lines 35 to 44 executes

and ends the FTP connection.

In general, the goals when building a model are: 1) to get the smallest number of

BETs possible to facilitate the analysis step and enable us to expand only parts of interest,

if necessary; 2) to obtain an overview of the system behavior good enough to conduct an

initial analysis, respecting the semantics of the code. Therefore, we should seek a balance

1https://commons.apache.org/
2Available at <https://www.codejava.net/java-se/ftp/java-ftp-file-upload-tutorial-and-example>

https://www.codejava.net/java-se/ftp/java-ftp-file-upload-tutorial-and-example
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Table 4.1: BET table of FTP program.
BET Lines Energy Consumption
B1 3-4 0.0613
B2 5-32 1.4181
B3 33-34 0.0000
B4 36-43 0.0013

between 1) and 2), i.e, construct a model that covers the general behavior of the system

with a minimum number of BETs. Then, we should expand only the parts of the model

that we have to in order to do further analyses.

Considering this, we selected the main basic energy units and their relationships

from the source code presented in Figure 4.1 and created a table to represent the mapping

from code to BETs. This table delimits the set of statements of each BET, which should

have their energy costs collected to build the corresponding ELTS model. Using the table

4.1, we mapped parts of interest and associated a label and an energy cost to them.

To construct the table, we analyzed the basic energy units contained in the source

code. Lines 3 and 4 of the code are only used to set up some parameters and to instan-

tiate the FTP Client. Therefore, we consider them as a single BET, named B1. Next,

we identify that lines 5 to 32 represent a try block and lines 33 to 34 represent a catch

block. Hence, the semantics (in this case, the Java semantics) represented by these blocks

indicates a possibility of an execution of either the try block or the catch block). There-

fore, we consider each block as a separate BET (B2 and B3, respectively) and define a

conditional relation between them. Because the finally block executes regardless of which

block occurs before, we define a BET B4 to represent lines 35 to 44 and consider it as

having a sequence relation with the BETs B2 and B3.

In the context of the FTP program, we could model the whole program as a unique

BET or consider a BET B1 between 3 and 4 and another BET involving lines 5 to 44.

However, this approach does not provide a view of the system where it is possible to

identify the energy consumption for each relevant part. For this reason, we chose to

group the BETs for tasks/blocks that bring with them some meaning involved This, we

select the task executed in try block, where will be representing by BET B2, next, the

cath block case occur some error in try block, being representing by BET B3, and so, the

finally block that disconnect the connection establish, used the BET B4.

Starting from Table 4.1, created with each BET defined before, we built the ELTS

model presented in Figure 4.2. In this model, we describe a view of the system in a

high level of abstraction, thus having a more compact model, which facilitates an initial
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Figure 4.1: FTP program source code.

1 p u b l i c c l a s s FTP {
2 p u b l i c vo id submitFTP ( l o c a l F i l e , r e m o t e F i l e ) {
3 . . .
4 FTPCl i en t f t p C l i e n t = new FTPCl i en t ( ) ;
5 t r y {
6 f t p C l i e n t . c o n n e c t ( s e r v e r , p o r t ) ;
7 f t p C l i e n t . l o g i n ( use r , p a s s ) ;
8 . . .
9 i n p u t S t r e a m = new F i l e I n p u t S t r e a m ( l o c a l F i l e ) ;

10 i f ( f i r s t A p p r o a c h ) { / / u s i n g an I n p u t S t r e a m
11 System . o u t . p r i n t l n ( " S t a r t u p l o a d i n g f i l e " ) ;
12 done= f t p C l i e n t . s t o r e F i l e ( r e m o t e F i l e , i n p u t S t r e a m ) ;
13 i n p u t S t r e a m . c l o s e ( ) ;
14 i f ( done ) {
15 System . o u t . p r i n t l n ( " Uploaded s u c c e s s f u l l y . " ) ;
16 }
17 }
18 e l s e { / / u s i n g an Outpu tS t r eam
19 i n p u t S t r e a m = new F i l e I n p u t S t r e a m ( l o c a l F i l e ) ;
20 o u t p u t S t r e a m = f t p C l i e n t . s t o r e F i l e S t r e a m ( r e m o t e F i l e ) ;
21 byte [ ] b y t e s I n = new byte [ 4 0 9 6 ] ;
22 i n t r e a d = 0 ;
23 whi le ( ( r e a d = i n p u t S t r e a m . r e a d ( b y t e s I n ) ) != −1) {
24 o u t p u t S t r e a m . w r i t e ( b y t e s I n , 0 , r e a d ) ;
25 }
26 i n p u t S t r e a m . c l o s e ( ) ;
27 o u t p u t S t r e a m . c l o s e ( ) ;
28 comple t ed = f t p C l i e n t . completePendingCommand ( ) ;
29 i f ( comple t ed ) {
30 System . o u t . p r i n t l n ( " Uploaded s u c c e s s f u l l y . " ) ;
31 }
32 }
33 } catch ( IOExcep t ion ex ) {
34 System . o u t . p r i n t l n ( " E r r o r : " + ex . ge tMessage ( ) ) ;
35 } f i n a l l y {
36 t r y {
37 i f ( f t p C l i e n t . i s C o n n e c t e d ( ) ) {
38 f t p C l i e n t . l o g o u t ( ) ;
39 f t p C l i e n t . d i s c o n n e c t ( ) ;
40 }
41 } catch ( IOExcep t ion ex ) {
42 ex . p r i n t S t a c k T r a c e ( ) ;
43 }
44 }
45 }
46 }

Adapted from: https://www.codejava.net/java-se/ftp/java-ftp-file-upload-tutorial-and-
example

Figure 4.2: Initial model of the FTP program.

Source: Author.
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model analysis. With this model, it is possible to determine that the BET consuming most

energy is B2. Using our approach, we must check whether is required/possible to change

the abstraction level, for a better understanding regarding the energy behavior. We can see

that B2 is a composite BET, therefore, it is possible to expand it and the energy costs of

B2 can be broken into smaller units. To do that, we keep the other BETs at their current

level of abstraction and expand only the unit of interest. Hence, we change the abstraction

level, mapping the internals BETs of B2. These new BETs are shown in Table 4.2, where

we identify the connection and login with the server represented by BETB2.1 (lines 6-9),

and the BETs to represent the if and else blocks, defined as B2.2 (lines 10-17) and B2.3

(lines 18-32), respectively.

Table 4.2: Second BET table of FTP program.
BET Lines Energy Consumption
B1 3-4 0.0613

B2.1 6-9 0.1806
B2.2 10-17 1.2375
B2.3 18-32 1.2674
B3 33-34 0.0000
B4 36-40 0.0013

Using the table, we constructed the respective ELTS model, presented in Figure

4.3. To do that, we kept the other BETs at their current level of abstraction and expanded

only the unit of interest. Considering that B2.2 and B2.3 corresponded the to if and else

blocks, they have a conditional relation. As B2.1 occurs before this conditional choice, it

has a sequence relation with both B2.2 and B2.3.

Figure 4.3: First expansion of the FTP model.

Source: Author.

Note that the model in Figure 4.3 shows that the two possibilities (represented by

BETs B2.2 and B2.3) to submit a file have almost the same energy cost. Therefore, we

could conclude that these two approaches do not differ in terms of energy consumption

and end our analysis. However, other criteria could be analyzed, such as time and space
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costs, probabilities of execution, etc., to determine the best option. The choice to continue

or to stop depends on the software developer, knowing that the larger the model the harder

to analyze it.

Although we could have stopped our analysis, we would like to understand the

code better and identify what could be changed in the source code. We started changing

the abstraction level of BET B2.2 to analyze the first approach for sending a file. We

subdivided B2.2 into B2.2.1 (used for submitting the file using FTP protocol, lines 11-

13) and B2.2.2 (shows a message if the process was successful, lines 14-16), as shown in

Table 4.3.

Table 4.3: Third BET table of FTP program.
BET Lines Energy Consumption
B1 3-4 0.0613

B2.1 6-9 0.1806
B2.2.1 11-13 1.2375
B2.2.2 14-16 0.0000
B2.3 18-32 1.2674
B3 33-34 0.0000
B4 36-40 0.0013

A new model represented by Figure 4.4 is constructed updating the abstraction

level of BET B2 presented in previous level. The transition B2.2.1 is the BET that con-

sumed more energy, where the representation in the source code is used to submit the file

in line 12, and the other lines that composed this BET (line 11 and 13) are used only to

print a message and to close the inputStream connection. After this, there is a test in line

14. The empty transition in the model indicates a failure in sending the file and the transi-

tion B2.2.2 represents the success to submit the file. The cost of B2.2.2 is 0 because the

energy cost is so small that the measure tool considered it as zero. Hence, the main point

of energy consumption is line 12. BET B2.2.1 is the call of method storeFile of library

Apache Commons. This is one of our termination criteria, since it is an external method,

being not possible to continue to expand the abstraction levels nor modifying something

in our code.

Now, we investigate the other method to send a file, represented by BET B2.3. In

this BET, we can see a group of configurations between lines 19 to 22, which is used to

define the size of the buffer. We labeled this new BET as B2.3.1. With these configu-

rations done, lines 23 to 25 contain the code to send the file byte by byte to the server,

defining BET B2.3.2. We have the closure of the FTP connection, represented by BET

B2.3.3, and in case of success in submitting the file, a message is printed for the user
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Figure 4.4: Second expansion of the FTP model.

Source: Author.

between lines 29 and 31 (BET B2.3.4). All these mappings are shown in table 4.4.

Table 4.4: Fourth BET table of FTP program.
BET Lines Energy Consumption
B1 3-4 0.0613

B2.1 6-9 0.1806
B2.2.1 11-13 1.2375
B2.2.2 14-16 0.0000
B2.3.1 19-22 0.0117
B2.3.2 23-25 0.0020
B2.3.3 26-28 0.1745
B2.3.4 29-31 0.0000

B3 33-34 0.0000
B4 36-40 0.0013

The ELTS of this other abstraction level is presented in Figure 4.5. This model

contains the expansion of BET B2.3, where we can see that BET B2.3.1 has a sequence

relation with BETB2.3.2, which represents an iteration relation, i.e., the energy costs will

occur iteratively and the costs can vary for each iteration, being the total consumed in one

iteration is equal to 0.0020 W. Finally, we have a sequence relation with BETsB2.3.3 and

B2.3.4, where the latter contains a condition relation.

At this point, we achieve an ELTS that does not allow us to change the abstrac-

tion level any more. Following our approach proposed in chapter 3, we could run some

analysis on the model, searching for possible energy problems, the path of execution with

highest cost, etc. to define which of the two methods to submitting a file using FTP

protocol would have the lower cost.

The points that represent the possible energy bottlenecks in our program would be

BETsB2.2.1 andB2.3.2, which are the ones with the highest costs. Using the traceability,
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Figure 4.5: Third expansion of the FTP model.

Source: Author.

we can identify that these BETs correspond to lines 11 to 13 and 23 to 25, respectively.

These BETs in the source code are exactly the two different methods to submit the file

using the FTP protocol. Here, the software developer could carry out a deeper analysis of

these BETs.

Using the model, we could study the two paths of execution with the highest en-

ergy costs: 1) B1 − B2.1 − B2.2.1 − B2.2.2/ε − B4, 2) B1 − B2.1 − B2.3.1 − ε −

(B2.3.2 − ε)∗ − B2.3.3 − B2.3.4/ε − B4. We identify that the first path has a cost of

1.4807W , representing the first alternative to submit a file through FTP. Evaluating the

cost of a single iteration in path 2, with a cost of 0.0020W , we would have a consid-

erably lower cost value for this path. However, to submit the whole file is necessary to

execute multiple iterations. In this case, the total cost to send the file of our experiment

is 1.0812W . Thus, the total energy consumed in this path would be 1.5106W , being the

second possibility of sending a file using FTP.

Considering the two possibilities, we could indicate that difference is too small

to determine which method is better, as the two methods consume practically the same

amount of to be executed. Nevertheless, we could compare further the two methods of

sending a file to determine which one is more energy-efficient. We could, for instance,

identify the possibilities of reducing the costs of some methods. Thus, a software devel-

oper could determine where to change to reduce the total consumption, if possible.

Based on the model of the third expansion of the FTP model (Figure 4.5), we could

compare different scenarios of consumption, depending on the size of the file, because the

semantics of the code does not change; i.e., the model remains the same, changing only

the energy costs according to the file size. Therefore, the larger the file, the more energy
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consumption will be needed to send it. This change could affect the energy efficiency of

the methods.

4.2 File Compression

We propose a modification of the FTP program, where before submitting a file, the

file is compressed. The idea of this evolution is to analyze the impact on the energy costs

of sending a compressed file instead of the original file. For this experiment, we used the

same file of 15MB from the previous example, which is compressed before it is sent. The

compression method produces a file with 9 MB. To do that, we use the library Zip from

the package java.util.zip, which enables us to compress a file into a .zip. The original FTP

code does not change: we first compress the file and then send the compressed file using

the code presented in Figure 4.6. Therefore, previously, we had only lines 3, 7 and 8.

Now, we have included lines 4 and 5 to perform the compressor code, before sending the

file using the FTP protocol.

Figure 4.6: Main class of program.

Source: Author.

In this context, note that we do not change the behavior of the FTP code. However,

we add a new component to our system, where this modification can affect the energy

consumption. Hence, to evaluate this situation, it is necessary to execute the FTP code

again. Although, the behavior keeps that same, i.e, the model will continue with the same

BETs of the model in Figure 4.5, due to the file being compacted, the costs in of executing

the FTP code can be affected.

Through this modification, we propose to identify, for example, which of the op-
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tions to submit a file using the FTP program has a gain in their energy consumption with

a compressed file. This can help decide, with this change, which method is a better option

to use. We could also analyze the size of the impact in the total energy consumption of the

system to check if the inclusion of the new component is worth it according to the gain in

the energy consumption.

The source code of the file compression program is presented in Figure 4.7, where

we create the output file in line 4. Next, the library ZipOutputStream uses the output

stream to create a zip output file and, in line 6, input stream is used to obtain the data

from the input file. Lines 9 to 11 write data to the new zip file.

Firstly, we built the ELTS model representing the source code of the compression

algorithm (represented by Figure 4.7), identifying the main BETs, i.e, following the con-

cept where we can model the general behavior of the system with the minimum number of

BETs possible. Next, we check if is necessary or possible to change the abstraction level

of part of the model to highlight a probable energy bottleneck. Lastly, we created a com-

posed model with the ELTS model that represents the FTP code. We analyzed the total

energy consumption of the path traveled to compress and submit the file, i.e, understand

how much energy consumption consumed more or less through this modification.

Figure 4.7: Code of the file compression program.

Source: Author.

The BET table that represents our first modeling is presented in Table 4.5. Lines 2

to 16 of the code are used to compress the file and lines 17 to 19 treat the event of an error.
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The ELTS that represents the initial modeling is in Figure 4.8. For a better understanding,

we initiate the labels from B5, following the sequence of labels started in the previous

experiment, so that there is no confusion when putting the models together. Analyzing

the ELTS, we can see that there exist two paths, B5 and B6, where only B5 has a cost

different from zero.

Using the traceability between model and source code, it is possible to change

the abstraction level of BET B5. As this initial model can be very abstract and does not

demonstrate the real software energy bottleneck, we expanded the model to identify if

there is an energy bottleneck.

Table 4.5: BET table of compressor
BET Lines Energy Consumption
B5 2-16 1.2250
B6 17-19 0.0000

Figure 4.8: Initial model of the compress code.

Source: Author.

Table 4.6 and Figure 4.9 shows the first expansion of compress code, where we

expand the BET B5 from previous level, transforming into BETs B5.1, B5.2 and B5.3.

In this experiment, we reach the model 4.9, where in this point, the BET B5.2 is

the hotspot of energy, being the respective lines represent the part of code that carries out

the compression and does not possible change the abstraction level. For better analysis,

we could evaluate the impact in the energy with different sizes and types of files, and so,

to indicate more precisely according to each file the energy impacted.
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Table 4.6: BET table of compressor code in the first expansion in compress code.
BET Lines Energy Consumption
B5.1 3-8 0.1165
B5.2 9-11 1.1039
B5.3 12-16 0.0046
B6 17-19 0.0000

Figure 4.9: ELTS compress with First Expansion in compress code.

Source: Author.

4.3 File Compression with FTP

In this experiment, we combine the models created in the two previous experi-

ments. We use this combination to evaluate the composition of models in terms of energy

consumption.

We compose the model in Figure 4.9 with the model in Figure 4.5 and obtain the

behavior model presented in Figure 4.10. In this model, we can visualize our evolution

and compare the energy values from the file with 15MB and the compressed file with

9MB. The model was constructed following the abstraction level presented in Figure 4.5

because this level allows for a more detailed view of the FTP program behavior. Note

that, according to the framework, firstly, a model must be constructed and then energy

costs are collected and annotated on the model. Therefore, it is recommended to compose

the models first, and after that, associate the energy costs for each BET of the composed

model.

Intuitively, adding the new feature to compress the file before submitting the file

should increase the costs. Indeed, we noted that the costs of the whole system have in-

creased. However, because the file size was smaller after the compression, the costs to

send it using the FTP program were lower than before, which led to a lower total cost than
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expected, considering the previous costs for each individual component. Analyzing the

main BETs (B2.2.1 and B2.3.2, which are the points corresponding to the two possibili-

ties of sending a file), we can note that in the previous level the costs were 1.2375W for

BET B2.2.1, and, with total costs to execute the loop of 1.0812W for BET B2.3.2. Now,

with this new component added, we have the following costs: 1.0633W for B2.3.2 and a

total of 0.9515W for BET of the loop. The reduction in the first method was 14%, while

the second method to send the file had a reduction of 12%.

As well as the FTP program, in this experiment of file compression with FTP

arrived at a point where it is not possible to expand the model any more. Therefore, we

can perform on this new model the same analysis we did on the previous model.

With the addition of the compression program, we have a new energy bottleneck,

represented by BET B5.2, which is the BET that executes the file compression. In ad-

dition, we still continue with BETs B2.2.1 and B2.3.2 to send the file. However, these

BETs now have a smaller file to send.

The model represented in Figure 4.10 continues with 3 paths of executions from

state 0, however, with a compression program, before can occur the path B5.1− B5.2−

ε − B5.3 or B6. In this case, we do not consider the execution of BET B6 and the path

B1−B3−B4, where interests us to analyze the energy consumed for the success of the

operation of compress and sent the file.

Hence, we have two execution paths considering a success situation: B5.1 −

B5.2 − ε − B5.3 − B1 − B2.1 − B2.2.1 − B2.2.2/ε − B4 and B5.1 − B5.2 − ε −

B5.3−B1−B2.1−B2.3.1−B2.3.1− ε−B2.3.3−B2.3.4/ε−B4. The total energy

consumed by the first path of execution is 2.5728W , while the second path consumed

2.6427W .

Figure 4.10: ELTS of compress code composite with FTP code.

Source: Author.
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The BETs presented in the model of Figure 4.5 remain the same; what changes

is the costs associated with them, where the costs will vary according to the scenario

represented. As the focus of this work is to show how to model the energy behavior, we

do not provide more detailed analyses, but only raise some points to be observed.

Analyzing only the submodel that depicts the FTP, from state 0 the energy costs

would be 1.3478W taking the first execution path, which has a lower than previously.

However, the execution of compress costs 1.2250W , which added with the FTP cost

results in a total of 2.5728W . Therefore, the compression code brings an impact of

1.2250W to the program energy consumption; i.e, the cost to compress the file is higher

than that of simply sending the original file. Hence, to conduct a more precise analysis in

this experiment, it would be necessary to evaluate different file sizes and types to check if

is worth the effort to compress.

4.4 Discussion

In this section, we will discuss some aspects regarding the application of our ap-

proach in the experiments, discussing advantages and limitations found.

We used the proposed mapping of energy behavior from source code to model,

where it was possible to begin at a higher-level abstraction and decrease this level to

identify more precisely energy hotspots. In addition, we demonstrated the usability of the

model conducting some analyses to indicate possible energy bottlenecks.

To guarantee the traceability between model and code, we used the concept of

BETs to associate lines of code to one transition in the model. Therefore, possible modi-

fications will be done at the correct point in the code, due to this mapping.

In the FTP experiment, we were able to construct the ELTS model, expanding this

model to better understand the energy behavior until we reached a point where it was not

possible or necessary to change abstraction levels. And so, with the model represented in

one level that allows some analyses we identified the main energy hotspots (BETSB2.2.1

and B2.3.2, that correspond to lines 11 to 13 and 23 to 25, respectively) and represent the

two methods to send a file using the FTP protocol. We determined the total cost of each

path and identified that the difference between them is very small.

A new experiment was done with the same file used by the previous experiment,

where this file of 15MB was compressed. We built the model following our approach,

where the model showed the energy point of interest, which was the BET that does the
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compression byte by byte.

Through these experiments, we composed the resulting models, where the com-

pression code was executed before the FTP code. We evaluated the impact of this evo-

lution. There was a reduction in the first method of the FTP of 14%, while the second

method to send the file got a reduction of 12%. However, the costs of the whole system

increased, where we conclude that it would be necessary more experiments with different

file sizes and types to check if this combination is energy efficient for a certain size or

type of file.

In the case of the compression code, represented by the model in Figure 4.10,

BET B6 represents that the file is not compressed. Hence, the file sent via FTP will

be of 15MB, i.e, the costs would be those presented in Figure 4.5. Therefore, we do

not change the original control and data flow of the program, but, depending on what

occurred previously, the costs of the next BETs represented in the model can be affected.

Still, with this evolution, the difference of energy costs between the two methods to send

the file continues to be very small.

Analyzing specifically for this evolution proposed, we noted that the cost to com-

press a file is higher than not to compress. To be more precise, the software developer

could use the same model presented in Figure 4.10 and change only the file size. With

this, they could better identify from which size it would be more rewarding to compress

before sending a file using FTP.

As we add some component to our system, the expected result is that the total

costs will increase. In the model represented by Figure 4.10 we can note that costs of

the system as a whole follow this pattern. However, if we analyze the part of the FTP

model in isolation, the costs are lower, because the input file is smaller than the original

file. Hence, specifically, the structure of the FTP model in Figure 4.10 does not change,

but due to adding the compress model the costs of FTP were affected. Based on this, we

identify the difference between operational behavior and energy behavior, where in this

experiment, the operational behavior (behaviour of the code in terms of its operations)

represented in the model was not affected, but the energy behavior changed.

Some limitations of our approach were identified during the experiments. For

example, we ignore the costs of testing a condition in a conditional or iteration structure,

considering only the costs of the internal code, as demonstrated in Figure 4.5 for BETs

B2.3.4 and B2.2.2. The costs are ignored because we assume the analysis is simple and,

thus, the costs are minimum. However, depending on the condition tested, this cost should
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not be neglected.

For each level of abstraction, the developer needs to collect the necessary energy

costs, which can be too much work and even not possible, due to tool limitations. Hence,

the change of level of abstraction is also limited by the possibility of obtaining the costs

at the desired level.

The case as the try-catch block may not be so well modeled, as shown in Figure

4.8 and Figure 4.2. The problem occurs when the try block is not completely executed. In

this case, the code executes until a point and an exception occurs, which means that the

code executed up to that point consumed energy, but this cost is not present in the model.

The label B6 of Figure 4.10 should be connected to the original model, where

the FTP deals with a file which is not compressed. In this case, there should be two

paths of possibilities: one where the file is compressed before sending, represented by B5

(state 11 connected to state 0) and another one where the file is sent without compression,

represented by B6 (state 9 would be connected to the initial state of the original FTP

model). However, we do not represent this second situation due to the model becoming

very large and the possibility of the file not being compressed has already been analyzed

when we discussed the FTP program alone.

Based on all the results presented in this chapter, we can highlight the following

advantages of our approach: 1 ) Direct traceability between model and source code, which

indicates to a software developer more accurately the BET that represents an energy bot-

tleneck or point of interest to be analyzed; 2) Easy local change of abstraction level, which

enables us to expand the model according to the necessary, i.e, the model initially is more

compact and we can expand it to understand parts of interest; 3) A simple model com-

positionality, which makes it easy to compose models. Hence, the developer can explore

different combinations of components and evaluate the impact of theses combinations.

For example, it could be used to analyze how a evolution of a component could affect the

system energy consumption.

This work proposed to provide a simple way to change the abstraction level of

parts of the model. Hence, the software developer must pay attention to which abstraction

level it is working on because the parts of the model contain different levels represented

and care must be taken to not conduct incorrect analyses.

In this work, we sought to answer to the research question presented in Chapter

1: “How to allow even developers with little or no previous experience with models to

build a model from an existing source code which is as close as possible to the software’s
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energy behavior?”. Due to the focus on software developers that might have little or no

knowledge about behavior models, we presented a simple way to construct these mod-

els from an existing code using the concept of BETs (e.g., as presented in the running

example and in the experiments).

We believe that our approach is simple for all types of developers considering the

following facts:

1. BETs are based on well-known ideas for developers (blocks of code, semantics

of programming languages and composition of commands), which makes the con-

struction process simple;

2. The ELTS has a graph structure and semantics based on state machines, which are

two familiar ideas for developers;

3. The change of abstraction level is local, such that each abstraction can be seen as a

single program, which means that the same model construction ideas apply to each

local modification;

4. The form of how the costs are inserted into the ELTS is simple, keeping the seman-

tics of LTS, enabling analyses of the model;

5. Traceability between model and source code is direct and it is easy to determine

which part of the model refers to the code, enabling the developer to identify points

of interest and resolve possible problems directly in the source code.

For this reason, the answer to the research question is that our approach can allow

the software developer with no experience to construct the behavior model with energy

costs with an adequate representation, which can lead to analyses with more precise and

reliable results.
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5 RELATED WORK

In this chapter, we present some of the related work. We focus essentially on the

aspects related to energy model representation and model construction.

Regarding energy model representation, the work presented in (DUBSLAFF; KLüP-

PELHOLZ; BAIER, 2014) describes a compositional modelling framework for dynamic

Software Product Lines (SPL) (CLEMENTS; NORTHROP, 2001). The authors used

Markov Decision Processes (MDP) (SEGALA, 2007) to model and analyze SPL behav-

iors, where the transition of the model is labeled with a decision (similar to an action

for an LTS) and a cost value, which can represent an energy cost. The authors present

the possibility of using a parallel operator to combine the operational behavior with all

features of modules constructed. The framework can deal with probabilistic and non-

deterministic choices and the produced model can be translated to the PRISM input lan-

guage (KWIATKOWSKA; NORMAN; PARKER, 2002), where analyses can occur.

The work proposed in (BAIER; DUBSLAFF; KLEIN; KLüPPELHOLZ; WUN-

DERLICH, 2014) used Markov chains to model energy behavior, where the PRISM tool

was used to conduct quantitative analyses based on probabilistic information. In PRISM,

the energy costs were modeled as costs/rewards associated to model elements. They use

Probabilistic Model Checking (PMC) (VARDI, 1985) in the analysis of low-level proper-

ties, where PMC is used to evaluate adaptive systems and their energy usage. The authors

created the concept of energy-utility ratio, which consists in identifying interference of

energy on restrictions of use. The value is represented as weight functions in the model.

The research in (ALSSAIARI; GINING; THOMAS, 2017) demonstrated how to

use model policies in scenario of servers, which use a Markovian process algebra. In

PEPA (Performance Evaluation Process Algebra) (HILLSTON, 1996) the modeled sys-

tem is characterized by activities and components. They establish policies to control the

power mode of parallel servers. Heuristics are applied using the policies with the goal

of power-saving and performance. Therefore, the focus of this work is on policies estab-

lished using PEPA, where the authors do not go into details about how the used model is

constructed. The authors assume that the energy cost when a server is on will be the same

for all servers, since their goal is to evaluate policies to manage energy costs with dynamic

servers. Because the energy costs are fixed, they suggest the creation of a more accurate

model to represent the behaviour of the system, as their models may be too abstract.

The work proposed in (DAMASO; ROSA; MACIEL, 2014) uses Colored Petri
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Nets (CPN)(JENSEN; KRISTENSEN, 2009) to evaluate energy consumption in wireless

sensor networks. The focus of this research is specifically to analyze the sensor’s lifetime.

To do that, they use a process represent an element and simulate its energy consumption.

To collect the energy consumption, they execute the whole code and get the entire cost

of this execution. This is converted into a transition label PwrConsumption in the model.

A tool called IDEA4WSN is used as an instrument for energy-awareness. To represent

the energy consumption, they use a node model (represented in the application layer)

with costs consumed by the entire application and connected with the network layer. The

energy consumed by nodes in application layer allows to evaluate the sensor lifetime.

In all studies cited above, they do not detail how to collect and construct the model

with the respective energy consumption, where their main focus is to use the model with

the resources only to analyze the energy impact. Hence, they only use the models as

means to accomplish specific analyses in their contexts. Therefore, there is no guidance

for a software developer to follow, as well as in (DUARTE; ALVES; MAIA; SILVA,

2019). Furthermore, none of them constructs the model from the source code, which may

make it difficult to maintain traceability. They also do not specify how to change the

abstraction level for enhancing the model representation.

About model construction, in (JUNIOR et al., 2006) it is proposed the use of Col-

ored Petri Nets (CPN) to analyze the software energy consumption in embedded systems.

The model is generated according to the occurrence of events and their probabilities.

These probabilities are chosen based on assumptions, where these assumptions are pro-

vided by the modeler. They mention the possibility of different abstraction levels in dif-

ferent micro-controllers as a contribution. However, they do not show evidence of how to

change the abstraction levels and how to deal with this. They collect energy information

using a test-board coupled in a PC computer, where it is possible to check the code present

in the micro-controller and, through a digital oscilloscope, connect with the test-board to

collect the consumption, which is represented as oscilloscope waveforms. The code to be

analyzed is implemented in Assembly, while to extract the annotations a C code is used.

Finally, a CPN model is obtained, which allows simulations to discover some information

of interest. The model can be visualized in the EZPetri (ALVES; ARCOVERDE; LIMA;

MACIEL, 2004) tool, where they extended the tool to include the energy information, de-

nominated EZPetri-PCAF (Power Cost Analysis Framework), allowing a set of analyses

on the model. However, they do not make it clear how to establish the traceability be-

tween model and code and indicate a real hotspot of energy. In addition, as the process is
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made automatically, the software developer does not have the possibility to choose which

parts of the model should be analyzed.

The research in (DUARTE; MAIA; SILVA, 2018) proposes to extract an LTS

model with probabilistic information based on execution traces produced by Java code.

The tool uses the idea of context (DUARTE; KRAMER; UCHITEL, 2017), which is a

combination of control-flow and values of the program to represent abstract states. The

traces are used to calculate the probabilities and construct the behavior model. The model

can be analyzed in PRISM to check properties about the represented behavior. As in our

work, they present an approach to construct a model from a Java source code. However,

the quantitative information used is probabilities, whereas we model energy costs, which

require a different approach. For instance, they do not present any information about

abstraction level in their approach, which means it is not possible to apply it to energy

information as ours can.

As discussed in chapter 2, there are several other models that could be used to

model software energy consumption, as well as all research mentioned above. However,

none of these studies provides a step-by-step process to help model a system. We defined

the ELTS to use a model simple to understand and analyze. In addition, the approaches

that perform automatic model construction consider only probabilistic information. Our

work, like that presented in (JUNIOR et al., 2006), deals with energy information. Never-

theless, the authors use consumption from the code as a whole, preventing local analyses,

which is a valuable feature to detect specific spots of high energy consumption.

In Alves, Ferreira, Duarte, Silva e Maia (2020) they use LTS models to carry out

experiments using Java code implementing the algorithms Bubble Sort, Insertion Sort,

and Selection Sort. The purpose of this work is to use the jRAPL tool to collect energy

information and to use model analysis to discover interest properties. In their analysis,

they evaluate the total energy consumed by each data structure applied for the sorting

algorithms and check which are the better options. However, the parameters to construct

the models are not specified. In addition, they do not deal with multi-component systems

and do not mention change of abstraction levels.

Alves, Ferreira, Duarte e Maia (2020) present an approach to support the software

developer in the analysis of software energy consumption and the probability of occur-

rence of executions. They show how to use this information to discover possible aspects

of the system, enabling to check a trade-off between the probability of an execution and

its respective cost. The energy used is collected using the jRAPL tool and inserted into



60

an LTS. However, they assume that the model to be analysed exists and it has been con-

structed somehow. In this context, our models could be used as input to their approach if

probability information is added.

The approach proposed by Eder e Gallagher (2017) consists in building a transition

system through basic program constructs and associating with them the respective energy

costs. These basic program constructs are instructions or statements, such as blocks of

code. However, the authors do not specify clearly how to identify these basic software

constructs, which means that, when compared to BETs, their abstraction does not have

a clear definition and it is less tailored for describing energy units. Hence, traceability

between the source code and model can be difficult, not being mentioned by the authors.

The energy modeling is made using the instruction set architecture (ISA), which is an

interface of hardware and software. This interface enables the developer to collect the

energy consumed by operations in terms of hardware associated with basic program con-

structs. They apply static analysis to energy consumption, where the model represents the

program semantics. The energy costs are collected according to the programming lan-

guage and the hardware platform and associated with a basic software construct. They do

not present any result or information about model composition. About abstraction level,

the ISA interface is used to assign energy consumption at the hardware level to software

operations (instructions, statements, procedures, and functions). However, they do not en-

ter in details about how to change the abstraction level, which is important for pinpointing

energy hotspots.

Compared to related work, our approach provides a model defined to work with

energy information, allows different abstraction levels, maintains traceability between

code and model, and describes a step-by-step way of building the model. None of the

other approaches combine these features. Nonetheless, our approach does not deal with

probabilities, as other studies do. With this information added to the model, a new type

of analysis would be enabled to evaluate the aspect of probabilities, which would allow

identifying whether it is worthy to perform some change in the code to reach energy

efficiency, such as presented by Alves, Ferreira, Duarte e Maia (2020).
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6 CONCLUSION AND FUTURE WORK

This work proposed an approach to support the construction of energy behavior

models from code. To do that, we proposed a new model called ELTS (Energy Labelled

Transitions System), which is an LTS (Labelled Transition System) augmented with an

energy information label on its transitions. To build this model from Java code, we created

the concept of basic energy unit (BET), which associates a part of the source code to a

transition of the ELTS. This provides the necessary traceability for the identification of

possible hotspots of energy in the code after an analysis on the model. This allows a

developer to change parts of the code that have relevant consumption. We represent the

semantics of the code in the model through relations between BETs, defined as sequence,

conditional, and iteration. These relations enable a better understanding of the behavior

when analyzing the model and represent the connections of its composing BETs. In

addition, we propose how to change the abstraction level of parts of the model respecting

the code and the programming language semantics. This change is applied by expanding

composed BETS; i.e., BETs representing more than one line of code. A BET is only

expanded if necessary, keeping the rest of the model as it is. Hence, the change applies

only locally, to focus on the part of interest, thus keeping the model as abstract as possible.

Thus, based on our approach, a new step has been taken towards building accurate energy

behavior models for energy consumption analysis.

We demonstrate how to build a model with energy costs step-by-step based on

the definition of BETs and their relations, consequently, generating an accurate model,

i.e, a model that describes as closest as possible the real energy behavior of the system.

With this, we search to guarantee that unnecessary details are not included, improving

the precision of possible analyses. In addition, the mapping of the source code to the

model is intended to respect and represent the semantics of the code and the programming

language. The definition of BETs guarantees traceability, making it possible to easily

identify which part of the software needs to be modified to improve energy efficiency.

Through our approach, it is possible to change the level of abstraction of parts of interest,

i.e, we can expand the model only when and where it is necessary. Furthermore, the

inverse process can be done, which means the possibility of going back to a more abstract

level in case a determined part of the code is unnecessary for a subsequent analysis.

This work presents some limitations and points that could be improved, such as:

• Automated Model Construction. We intend to develop a tool to automatically
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build models following our approach, thus, avoiding that errors be inserted dur-

ing manual construction. This could be done, for example, using annotations by

the software developers in their code (similar to the idea proposed in (DUARTE;

KRAMER; UCHITEL, 2017)), where these annotations would define BETs, which

would then be used to construct the ELTS. However, the choice of BETs still con-

tinues to be a responsibility of the software developers, who knows their system and

main points to be considered as a BET and what should be modeled for the analysis

step.

• Our modelling does not include recursion representation. We do not consider

examples that use recursion, and so, it will be interesting to how to model recur-

sion. Initially, the purpose of BETs was to consider the main semantics used by

programming languages, and so, we model the most common compositions of code

components (sequence, conditional, and iteration) in a way that facilitates the model

analysis step. As an initial idea, recursion could be modeled as an iteration, due to

the similarity with this relation. However, the energy can be affected differently and

a different representation may be necessary to facilitate understanding.

• Loss of the energy cost when does not execute the try block. As mentioned for

the experiments, we consider the try block as a conditional statement, however, in

case the try block is running and occurs an exception, the costs consumed until

this point will be lost, therefore, will be interesting to find a way to represent this

possible loss of energy, i.e, the code executes the costs to execute until this point

and the costs consumed by the catch block.

• Our model composition approach needs more investigation. Model composition

was presented in a simple way, and we do not indicate a general procedure for

representing the real impact when models are composed.

• We have not evaluated the approach for other types of systems We do not ex-

plore some aspects that could contribute to energy analysis, such as parallel and

distributed systems, and to show how to occur communication and the energy con-

sumption between different components.

As future work, we intend to improve some aspects. For example, the addition of

other quantitative information, to check whether it is possible to follow the same approach

for other quantitative values, such as time and memory consumed. Also, we intend to find

a way to describe the number of iterations of a loop as part of the model, so that the user
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can represent this information.

Inclusion of probabilities in the model (as presented in the related work in (ALVES;

FERREIRA; DUARTE; MAIA, 2020), (BAIER; DUBSLAFF; KLEIN; KLüPPELHOLZ;

WUNDERLICH, 2014) and (JUNIOR et al., 2006)), given the system paths, if there is

a low probability that a certain path will occur, a developer could evaluate whether it is

worth performing changes to enhance energy efficiency. Therefore, would be interesting

to indicate how to include probabilistic information in the ELTS, and so, how to interpret

this combination (energy and probabilistic information), i.e, a combination ELTS and

PLTS (Probabilistic Labelled Transition System) (JOU; SMOLKA, 1990).

The results of this work could be combined with other studies, such as Alves, Fer-

reira, Duarte, Silva e Maia (2020) and (ALVES; FERREIRA; DUARTE; MAIA, 2020),

where the model constructed using our approach will be used as input to accomplish the

different types of analysis. Some of these analyses could be the possibility of a path ex-

ecution, choice of better options in terms of energy between algorithms, apply heuristics

that would not be trivial to perform.

In addition, it would be interesting to allow developers to use our approach and

give some feedback. This way, we could identify possible difficulties not detect during

this work.



64

REFERENCES

ALBERS, S. Energy-efficient algorithms. CACM, ACM, New York, NY, USA,
v. 53, n. 5, p. 86–96, maio 2010. ISSN 0001-0782. Disponível em: <http:
//doi.acm.org/10.1145/1735223.1735245>.

ALSSAIARI, A.; GINING, R. A. J.; THOMAS, N. Modelling energy efficient server
management policies in PEPA. In: ICPE 2017 - Companion of the 2017 ACM/SPEC
International Conference on Performance Engineering. L’Aquila, Italy: Association
for Computing Machinery, Inc, 2017. p. 43–48. ISBN 9781450348997.

ALVES, D. et al. Experiments on model-based software energy consumption analysis
involving sorting algorithms. Revista de Informática Teórica e Aplicada, v. 27, n. 3,
p. 72–83, 2020. ISSN 21752745. Disponível em: <https://seer.ufrgs.br/rita/article/view/
Vol27_nr3_72>.

ALVES, D. et al. Probabilistic model-based analysis to improve software energy
efficiency. In: Proceedings of the 34th Brazilian Symposium on Software
Engineering. Natal, Rio Grande do Norte, Brasil.: [s.n.], 2020. Disponível em:
<https://dl.acm.org/doi/10.1145/3422392.3422422>.

ALVES, G. et al. Ezpetri: A petri net interchange framework for eclipse based on pnml.
In: . [S.l.: s.n.], 2004. p. 143–149.

BAIER, C. et al. Probabilistic model checking for energy-utility analysis. In: . [S.l.: s.n.],
2014. v. 8464.

BARBOSA, D. M. et al. Lotus@runtime: A tool for runtime monitoring and verification
of self-adaptive systems. In: 2017 IEEE/ACM 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). [S.l.:
s.n.], 2017. p. 24–30.

BINKERT, N.; BECKMANN, B.; AL. et. The gem5 simulator. SIGARCH Comput.
Archit. News, ACM, New York, NY, USA, v. 39, n. 2, p. 1–7, ago. 2011. ISSN
0163-5964.

BöHM, C.; JACOPINI, G. Flow diagrams, turing machines and languages with only
two formation rules. Commun. ACM, Association for Computing Machinery, New
York, NY, USA, v. 9, n. 5, p. 366–371, maio 1966. ISSN 0001-0782. Disponível em:
<https://doi.org/10.1145/355592.365646>.

CLARKE, E.; WING, J. Formal methods: State of the art and future directions. ACM
Computing Surveys, v. 28, 12 1996.

CLEMENTS, P. C.; NORTHROP, L. Software Product Lines: Practices and Patterns.
[S.l.]: Addison-Wesley, 2001. (SEI Series in Software Engineering).

CORBETT, J. C. et al. Bandera: extracting finite-state models from java source code. In:
Proceedings of the 2000 International Conference on Software Engineering. ICSE
2000 the New Millennium. [S.l.: s.n.], 2000. p. 439–448.

http://doi.acm.org/10.1145/1735223.1735245
http://doi.acm.org/10.1145/1735223.1735245
https://seer.ufrgs.br/rita/article/view/Vol27_nr3_72
https://seer.ufrgs.br/rita/article/view/Vol27_nr3_72
https://dl.acm.org/doi/10.1145/3422392.3422422
https://doi.org/10.1145/355592.365646


65

DAMASO, A.; ROSA, N.; MACIEL, P. Using coloured petri nets for evaluating the
power consumption of wireless sensor networks. International Journal of Distributed
Sensor Networks, v. 10, n. 6, p. 423537, 2014.

DAYARATHNA, M.; WEN, Y.; FAN, R. Data center energy consumption modeling: A
survey. IEEE Communications Surveys Tutorials, v. 18, n. 1, p. 732–794, 2016.

DUARTE, L.; KRAMER, J.; UCHITEL, S. Using contexts to extract models from code.
Software & Systems Modeling, v. 16, p. 523–557, 05 2017.

DUARTE, L. M. Behaviour Model Extraction using Context Information. n. November,
2007.

DUARTE, L. M. et al. A Model-based Framework for the Analysis of Software Energy
Consumption. SBES - Simpósio Brasileiro de Engenharia de Software, 2019.

DUARTE, L. M.; MAIA, P. H. M.; SILVA, A. C. S. Extraction of probabilistic behaviour
models based on contexts. In: Proceedings of the 10th International Workshop on
Modelling in Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2018. (MiSE ’18), p. 25–32. ISBN 9781450357357. Disponível em:
<https://doi.org/10.1145/3193954.3193963>.

DUBSLAFF, C.; KLüPPELHOLZ, S.; BAIER, C. Probabilistic model checking for
energy analysis in software product lines. In: MODULARITY ’14. New York, NY,
USA: ACM, 2014. (MODULARITY ’14), p. 169–180. ISBN 978-1-4503-2772-5.
Disponível em: <http://doi.acm.org/10.1145/2577080.2577095>.

EDER, K.; GALLAGHER, J. P. Energy-aware software engineering. In: FAGAS, G. et
al. (Ed.). ICT - Energy Concepts for Energy Efficiency and Sustainability. Rijeka:
IntechOpen, 2017. cap. 5. Disponível em: <https://doi.org/10.5772/65985>.

HANSEN, H.; VIRTANEN, H.; VALMARI, A. Merging state-based and action-based
verification. In: . [S.l.: s.n.], 2003. p. 150– 156. ISBN 0-7695-1887-7.

HAREL, D. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, v. 8, n. 3, p. 231 – 274, 1987. ISSN 0167-6423. Disponível em:
<http://www.sciencedirect.com/science/article/pii/0167642387900359>.

HILLSTON, J. A Compositional Approach to Performance Modelling. USA:
Cambridge University Press, 1996. ISBN 0521571898.

JACKSON, D.; RINARD, M. Software analysis: A roadmap. In: . [S.l.: s.n.], 2000. p.
133–145.

JENSEN, K.; KRISTENSEN, L. M. Coloured Petri Nets: Modelling and Validation
of Concurrent Systems. Dordrecht: Springer, 2009. ISBN 978-3-642-00283-0.

JOU, C.-C.; SMOLKA, S. A. Equivalences, congruences, and complete axiomatizations
for probabilistic processes. In: BAETEN, J. C. M.; KLOP, J. W. (Ed.). CONCUR ’90
Theories of Concurrency: Unification and Extension. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1990. p. 367–383. ISBN 978-3-540-46395-5.

https://doi.org/10.1145/3193954.3193963
http://doi.acm.org/10.1145/2577080.2577095
https://doi.org/10.5772/65985
http://www.sciencedirect.com/science/article/pii/0167642387900359


66

JUNIOR, M. N. O. et al. Analyzing software performance and energy consumption of
embedded systems by probabilistic modeling: An approach based on coloured petri nets.
In: DONATELLI, S.; THIAGARAJAN, P. S. (Ed.). Petri Nets and Other Models of
Concurrency - ICATPN 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p.
261–281. ISBN 978-3-540-34700-2.

KELLER, R. M. Formal verification of parallel programs. Commun. ACM, ACM, New
York, NY, USA, v. 19, n. 7, p. 371–384, jul. 1976. ISSN 0001-0782. Disponível em:
<http://doi.acm.org/10.1145/360248.360251>.

KHALID, H. et al. What do mobile app users complain about? IEEE Software, IEEE,
v. 32, n. 3, p. 70–77, 2015. ISSN 07407459.

KUROSE, J.; ROSS, K. Computer networking: A top-down approach (6th edition). In: .
[S.l.: s.n.], 2007.

KWIATKOWSKA, M.; NORMAN, G.; PARKER, D. PRISM: Probabilistic symbolic
model checker. In: KEMPER, P. (Ed.). International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation (TOOLS 2012). [S.l.:
s.n.], 2002. p. 200–204.

LI, D. et al. Software energy consumption estimation at architecture-level. In: 2016 13th
International Conference on Embedded Software and Systems (ICESS). [S.l.: s.n.],
2016. p. 7–11.

LI, D.; HALFOND, W. An investigation into energy-saving programming practices for
android smartphone app development. 3rd International Workshop on Green and
Sustainable Software, GREENS 2014 - Proceedings, 06 2014.

LI, S. et al. McPAT: An Integrated Power, Area, and Timing Modeling Framework
for Multicore and Manycore Architectures. In: 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). [S.l.: s.n.], 2009. p.
469–480.

LIU, K.; PINTO, G.; LIU, Y. D. Data-oriented characterization of application-level
energy optimization. In: EGYED, A.; SCHAEFER, I. (Ed.). Fundamental Approaches
to Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. p.
316–331. ISBN 978-3-662-46675-9.

LUDEWIG, J. Models in software engineering - an introduction. Inform., Forsch.
Entwickl., v. 18, p. 105–112, 04 2004.

LUNT, S. J. FTP Security Extensions. RFC Editor, 1997. RFC 2228. (Request for
Comments, 2228). Disponível em: <https://www.rfc-editor.org/info/rfc2228>.

MARIANI, L.; PEZZè, M.; SANTORO, M. Gk-tail+ an efficient approach to learn
software models. IEEE Transactions on Software Engineering, v. 43, n. 8, p. 715–738,
2017.

MICHAELSON, G. Concepts of programming languages. [S.l.: s.n.], 1990. v. 32.
230 p. ISSN 09505849. ISBN 9780131395312.

http://doi.acm.org/10.1145/360248.360251
https://www.rfc-editor.org/info/rfc2228


67

MILNER, R. Communication and Concurrency. USA: Prentice-Hall, Inc., 1989. ISBN
0131149849.

MILNER, R. Communicating and Mobile Systems: The pi-Calculus. USA:
Cambridge University Press, 1999. ISBN 0521658691.

PEREIRA, R. et al. The Influence of the Java Collection Framework on Overall. 2016.

PINTO, G.; CASTOR, F. Energy efficiency: A new concern for application software
developers. Commun. ACM, ACM, New York, NY, USA, v. 60, n. 12, p. 68–75, nov.
2017. ISSN 0001-0782. Disponível em: <http://doi.acm.org/10.1145/3154384>.

POSTEL, J. RFC0765: File Transfer Protocol Specification. USA: RFC Editor, 1980.

POSTEL, J.; REYNOLDS, J. K. RFC 959: File Transfer Protocol. 1985. Obsoletes
RFC0765 (POSTEL, 1980). Updated by RFC2228 (LUNT, 1997). Status: STANDARD.
Disponível em: <ftp://ftp.internic.net/rfc/rfc2228.txt,ftp://ftp.internic.net/rfc/rfc765.
txt,ftp://ftp.internic.net/rfc/rfc959.txt,ftp://ftp.math.utah.edu/pub/rfc/rfc2228.txt,ftp:
//ftp.math.utah.edu/pub/rfc/rfc765.txt,ftp://ftp.math.utah.edu/pub/rfc/rfc959.txt>.

SEGALA, R. Modeling and verification of randomized distributed real -time systems. 03
2007.

SEIDL, M. UML@Classroom: An introduction to object-oriented modeling. [S.l.:
s.n.], 2015. v. 1555. 4–5 p. ISSN 16130073. ISBN 9783898647762.

SINGH, J.; NAIK, K.; MAHINTHAN, V. Impact of developer choices on energy
consumption of software on servers. Procedia Computer Science, v. 62, p. 385–394, 12
2015.

UCHITEL, S.; KRAMER, J.; MAGEE, J. Behaviour model elaboration using partial
labelled transition systems. ACM SIGSOFT Software Engineering Notes, v. 28, p. 19,
09 2003.

VARDI, M. Y. Automatic verification of probabilistic concurrent finite-state programs.
In: FOCS. IEEE Computer Society, 1985. p. 327–338. ISBN 0-8186-0644-4. Disponível
em: <http://dblp.uni-trier.de/db/conf/focs/focs85.html#Vardi85>.

WALKINSHAW, N.; TAYLOR, R.; DERRICK, J. Inferring extended finite state machine
models from software executions. In: 2013 20th Working Conference on Reverse
Engineering (WCRE). [S.l.: s.n.], 2013. p. 301–310.

http://doi.acm.org/10.1145/3154384
ftp://ftp.internic.net/rfc/rfc2228.txt, ftp://ftp.internic.net/rfc/rfc765.txt, ftp://ftp.internic.net/rfc/rfc959.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc2228.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc765.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc959.txt
ftp://ftp.internic.net/rfc/rfc2228.txt, ftp://ftp.internic.net/rfc/rfc765.txt, ftp://ftp.internic.net/rfc/rfc959.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc2228.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc765.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc959.txt
ftp://ftp.internic.net/rfc/rfc2228.txt, ftp://ftp.internic.net/rfc/rfc765.txt, ftp://ftp.internic.net/rfc/rfc959.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc2228.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc765.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc959.txt
http://dblp.uni-trier.de/db/conf/focs/focs85.html#Vardi85


68

APPENDIX A — RESUMO EXPANDIDO

O consumo de energia de software está se tornando uma questão essencial durante o de-

senvolvimento e evolução de software, em particular, devido às várias restrições impostas

pelas plataformas e requisitos de aplicativos (KHALID; SHIHAB; NAGAPPAN; HAS-

SAN, 2015). Por esta razão, consumo energia de software está se tornando um importante

aspecto para ser analisado durante o desenvolvimento e a manutenção do software. Por-

tanto, desenvolvedores necessitam mais conhecimento sobre o consumo de energia para

melhorarem a eficiência energética de seu software. No entanto, ainda existe pouco su-

porte para ajudar os desenvolvedores a entender como alguns pequenos fatores podem

afetar a eficiência energética. Isso acontece, principalmente, devido à ausência de ab-

strações apropriadas para modelar e analisar o comportamento relacionado ao consumo

de energia.

Uma maneira de abstrair e analisar melhor os custos energéticos é utilizando mod-

elos de comportamentos (UCHITEL; KRAMER; MAGEE, 2003). Com esses modelos,

é possível analisar diferentes componentes em diferentes níveis de abstração e verificar

propriedades do sistema que dificilmente poderiam ser verificadas diretamente no código.

Além disso, os modelos podem ser usados como documentação do software, em caso de

mundanças, possibilitando comparações entre versões.

No trabalho de Duarte, Alves, Maia e Silva (2019), um framework baseado em

modelos para análise do consumo energético de software é proposto. O framework con-

siste em coletar as informações de energia, adicioná-las em um Labelled Transition Sys-

tem (LTS) (KELLER, 1976) e analisar propriedades de interesse, tais como: custo de uma

execução, lista de execuções que atedem a um limite de energia, valor médio de todas ex-

ecuções com desvio padrão e variação, entre outras. Contudo, os autores não descrevem

como construir o modelo com custos energéticos a partir do código fonte tal que repre-

sente o comportamento real do sistema. Portanto, o modelo é construído de acordo com o

próprio conhecimento do desenvolvedor, definindo o que é relevante para ser modelado.

Porém, dependendo das escolhas do desenvolvedor, os custos de energia modelados po-

dem ter inconsitências, não garantindo resultados confiáveis, pois qualquer análise sobre

um modelo que não represente o comportamento real de um sistema pode ser enganosa

(JACKSON; RINARD, 2000). Por isso, é necessário a construção de um modelo acurado,

ou seja, de um modelo que represente tão fielmente quanto possível o comportamento do

código real, de forma que os resultados sejam confiáveis e indiquem verdadeiros pontos
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de consumo de energia que impactam no sistema. Nesse sentido, é necessário direcionar

os desenvolvedores em como construir esses modelos e usá-los para auxiliar em melhores

decisões a respeito dos custos energéticos de seu sistema.

Este trabalho propõe uma abordagem para apoiar a construção de modelos de com-

portamento energético a partir de código. Para isso, desenvolvemos um modelo chamado

ELTS (Energy Labeled Transition System), que é um LTS com a adição de informações de

custos de energia. Para construir este modelo a partir de código Java, criamos o conceito

de unidade básica de energia (basic energy unit - BET, em inglês), que permite associar

partes do código a elementos do ELTS. A proposta da BET é auxiliar a análise de pos-

síveis pontos de energia de interesse mantendo rastreabilidade, de forma a simplificar a

identificação de qual parte do código corresponde à parte do modelo que requer atenção,

de acordo com análises no modelo. Representamos a semântica do código no modelo por

meio de relações entre BETs, definidas como sequência, condicional e iteração. Essas

relações possibilitam um melhor entendimento do comportamento ao analisar o modelo

e representam as conexões das BETs que o compõem, facilitando também a construção

do modelo de maneira composicional. Além disso, propomos como alterar localmente o

nível de abstração do modelo. Assim, podemos expandir somente uma parte do modelo,

mantendo o restante como está, tornando simples mudar localmente o nível de abstração.

Para mostrar a aplicabilidade da abordagem foram realizados 3 experimentos. Os

dois primeiros, modelam componentes isolados, um para enviar um arquivo utilizando

o protocolo FTP e outro focado na compressão de arquivos. No último experimento, os

modelos dos dois primeiros experimentos são combinados e é avaliado o impacto nos cus-

tos energéticos. Por meio desses experimentos, foi aplicado o passo a passo da abordagem

proposta, que possibilitou construir modelos a partir do código fonte. Nos 3 experimentos

foi possível encontrar os maiores pontos de consumo energético e suas respectivas linhas,

ou seja, o usuário saberia exatamente quais linhas estariam provocando o maior consumo

e poderia tentar realizar alguma modificação. No primeiro experimento, o gargalo era

nas funções de envio do arquivo, enquanto que, no segundo, a iteração que comprimia o

arquivo causava o maior consumo. No exemplo utilizando composição, percebe-se que o

consumo energético como um todo aumentou, porém, se analisar isoladamente somente

o modelo que representa o FTP o consumo diminiu, portanto, em um cenário em que o

arquivo seria comprimido somente uma única vez, seria uma boa opção. Contudo, se a

compressão for realizada para cada envio, torna-se energeticamente muito custoso.

A mudança do nível de abstração de parte do modelo é realizada conforme o pos-
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sível ou necessidade do desenvolvedor de descobrir o real ponto energético de maior

consumo. O uso da mudança de níveis de abstração permite identificar pontos específicos

de consumo e, em um cenário real, serviria para guiar possíveis alterações no software.

Além disso, é possível combinar dois modelos construídos independentemente e usar este

modelo composto para obter informações relevantes sobre o sistema resultante da combi-

nação, conforme demonstrado nos experimentos.

Por meio dos resultados apresentados neste trabalho, obteve-se uma melhor demon-

stração de como construir um modelo com custos de energia passo a passo com base na

definição de BETs e suas relações, consequentemente gerando um modelo que descreva o

mais próximo possível o real comportamento energético do sistema. Além disso, este tra-

balho forneceu a possibilidade de alteração do nível de abstração de uma parte do modelo

para entender melhor o consumo de energia da parte correspondente do código, identifi-

cando possíveis pontos de interesse e onde modificar o código para melhorar a eficiência

energética. Como trabalho futuro, seria interessante investigar como combinar e construir

informações probabilísticas com energia, e realizar análises mais profundas, com intuito

de descobrir informações que não seriam triviais. Temos de investigar melhor a questão

de composição de modelos e suas implicações. Também seria interessante automatizar

o processo da construção do modelo, facilitando para os desenvolvedores nesta etapa e,

evitando possíveis erros que poderiam ocorrer.
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