

Conectando vidas Construindo conhecimento

XXXIII SIC SALÃO INICIAÇÃO CIENTÍFICA

Evento	Salão UFRGS 2021: SIC - XXXIII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2021
Local	Virtual
Título	Determinação de múltiplas micotoxinas presentes na cevada
	maltada e cerveja utilizando o método QuEChERS-LC-QToF-MS
	e calibração por superposição de matriz
Autor	ISABELA RAYMANN SCHERER
Orientador	JULIANE ELISA WELKE

Determinação de múltiplas micotoxinas presentes na cevada maltada e cerveja utilizando o método QuEChERS-LC-QToF-MS e calibração por superposição de matriz

Isabela Raymann Scherer (aluna de IC); Juliane Elisa Welke (orientadora)

Laboratório de Toxicologia de Alimentos, Instituto de Ciência e Tecnologia de Alimentos.

Universidade Federal do Rio Grande do Sul (UFRGS)

RESUMO

Micotoxinas são metabolitos tóxicos secundários produzidos por fungos filamentosos, também, conhecidos como deteriorantes de alimentos. As toxinas fúngicas apresentam efeitos nocivos à saúde como hepatotoxicidade. nefrotoxicidade, problemas reprodutivos, imunossupressão carcinogenicidade. As plantas gramíneas, cerais, são os grãos mais sensíveis à contaminação por fungos e, por conseguinte, mais suscetíveis a micotoxinas. Desta forma, os metabolitos tóxicos secundários podem ser facultados da cevada maltada para a cerveja tendo a possibilidade de contaminar o consumidor. Uma ampla variedade de micotoxinas pode ocorrer em produtos à base de cereais, incluindo malte e cerveja: aflatoxinas (B1, B2, G1 e G2), ocratoxina A (OTA), desoxinivalenol (DON), toxina T-2, toxina HT-2, fumonisina B1 (FB1) e zearalenona (ZEA), beauvericina (BEA), eniatinas (A, A1, B e B1), moniliformina (MON) е esterigmatocistina (STG). Para simultaneamente de forma mais eficaz as micotoxinas presentes foi desenvolvido um método baseado no uso de QuEChERS (rápido, fácil, barato, seguro, efetivo, robusto e seguro), cromatografia líquida acoplada a espectrometria de massas com analisador quadrupolo-tempo de voo (LC-QToF-MS) e calibração por superposição de matriz. O desempenho do método foi satisfatório exibindo linearidade (R² > 0,99) e recuperação (71-102%) adequadas. Os menores valores (em µg kg⁻¹) de limite de detecção (LOD, 0,01) e limite de quantificação (LOQ, 0,05) foram encontrados para as eniatinas, enquanto os maiores valores de LOD (15) e LOQ (50) foram relatados para a FB1. A repetibilidade e a precisão intermediária do método foram avaliadas a partir do coeficiente de variação (CV <10%) de análises feitas em dias diferentes e no mesmo dia, respectivamente e mostraram-se adequadas de acordo com as diferentes diretrizes de validação do método. O comportamento do método diante do experimento foi satisfatório pois permite avaliar as micotoxinas e analisar os parâmetros de regulação para um melhor acolhimento e proteção dos consumidores.