
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JONATAS ADILSON MARQUES

Advancing Network Monitoring and
Operation with In-band Network Telemetry

and Data Plane Programmability

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Luciano Paschoal Gaspary

Porto Alegre
May 2022

CIP — CATALOGING-IN-PUBLICATION

Marques, Jonatas Adilson

Advancing Network Monitoring and Operation with
In-band Network Telemetry and Data Plane Programmability /
Jonatas Adilson Marques. – Porto Alegre: PPGC da UFRGS,
2022.

156 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2022. Advisor: Luciano Paschoal Gaspary.

1. Network Monitoring. 2. Software-Defined Networking.
3. Data Plane Programmability. 4. P4. 5. In-band Network
Telemetry. I. Gaspary, Luciano Paschoal. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

Modern communication networks operate under high expectations on performance and

resilience (e.g., latency, bandwidth, availability) mainly due to the continuous prolifera-

tion of non-elastic highly-distributed applications. In this context, closely monitoring the

state, behavior, and performance of networking devices and their traffic as well as quickly

troubleshooting problems as they arise is essential for the operation of network infras-

tructures. Unfortunately, existing tools and techniques fall short at providing the required

level of detail, enabling quick reactions, and keeping monitoring overhead from affecting

the network operation. Data Plane Programmability (DPP) along with In-band Network

Telemetry (INT), backed by the recent advances in Software-Defined Networking, emerge

in this context as promising platforms to meet these monitoring demands. INT enables

unprecedented monitoring accuracy and precision, but may lead to performance degrada-

tion if applied indiscriminately to all packet flows in a network. One alternative to avoid

this issue is to orchestrate telemetry tasks and use only a portion of traffic to monitor the

network via INT. The general problem consists, then, in assigning subsets of traffic to

carry out INT and provide full monitoring coverage while minimizing the overhead. To

achieve this goal, as a first step in this thesis, we introduce and formalize the In-band

Network Telemetry Orchestration (INTO) problem, prove that it is NP-Complete, and

propose polynomial computing time heuristics to solve it. In our evaluation using real

wide-area network topologies, we observe that the heuristics produce solutions close to

optimal to any network in under one second. We also observe that networks can be cov-

ered assigning a linear number of flows in relation to the number of device interfaces

and, finally, that it is possible to minimize telemetry load to one interface per flow for

most networks. Continuing our work, we investigate DPP capabilities further and design

INTSIGHT, a system for highly accurate and fine-grained detection and diagnosis of SLO

violations. The main contribution of INTSIGHT is, building upon in-band telemetry, in-

troducing path-wise computation of network metrics and selective generation of reports.

We show the effectiveness of INTSIGHT by way of two use cases. Our evaluation using

real networks also shows that INTSIGHT generates up to two orders of magnitude less

monitoring traffic than state-of-the-art approaches. Furthermore, its processing and mem-

ory requirements are low and therefore compatible with currently existing programmable

platforms. As a final step in this thesis, we shift our focus to quick reaction and propose

FELIX, a system for failure recovery that reroutes around failures at data-plane timescales

while still using the shortest available paths. Our evaluation shows that our approach can

recover from failures up to four orders of magnitude faster than existing SDN approaches

while making sensible use of data-plane resources. Finally, with the design of FELIX,

we introduce the Strategy-Tactic paradigm to enable data-plane timescale reactions with

control-plane decisions based on a global understanding of the network to general net-

work operation tasks. We argue the generality of this paradigm by discussing the main

challenges involved in modeling a promising use case.

Keywords: Network Monitoring. Software-Defined Networking. Data Plane Programma-

bility. P4. In-band Network Telemetry.

Avançando o Monitoramento e Operação de Redes com Telemetry In-band e

Programabilidade do Plano de Dados

RESUMO

As redes de comunicação modernas operam sob altas expectativas de desempenho e re-

siliência (por exemplo, latência, largura de banda, disponibilidade),isto principalmente

devido à contínua proliferação de aplicações não elásticas altamente distribuídas. Nesse

contexto, monitorar de perto o estado, o comportamento e o desempenho dos dispositivos

de rede e seus tráfegos, bem como solucionar rapidamente os problemas à medida que

estes surgem, são essenciais para a operação das infraestruturas de rede. Infelizmente, as

ferramentas e técnicas existentes são limitados no nível de detalhes oferecido, na rapidez

de suas reações e na capacidade de manter a sobrecarga de monitoramento baixa o sufi-

ciente para não afetar a operação da rede. A Programabilidade do Plano de Dados (do

inglês Data Plane Programmability – DPP) juntamente com a Telemetria de Redes no

modo In-band (In-band Network Telemetry – INT), respaldadas pelos recentes avanços

em Software-Defined Networking, surgem neste contexto como plataformas promissoras

para atender a essas demandas de monitoramento. A INT permite alcançar níveis de pre-

cisão e granularidade de monitoramento sem precedentes, mas pode levar à degradação

do desempenho significante se aplicada indiscriminadamente a todos os pacotes e fluxos

em uma rede. Uma alternativa para evitar esse problema é orquestrar tarefas de teleme-

tria e usar apenas uma parte do tráfego para monitorar a rede via INT. O problema geral

consiste, então, em atribuir subconjuntos de tráfego para realizar INT e fornecer cober-

tura total de monitoramento, minimizando o overhead. Para atingir este objetivo, como

primeiro passo nesta tese, apresentamos e formalizamos o problema In-band Network Te-

lemetry Orchestration (INTO), provamos que ele é NP-Completo e propomos heurísticas

polinomiais em tempo de computação para resolvê-lo. Em nossa avaliação usando topo-

logias de redes de larga escala reais, observamos que as heurísticas produzem soluções

próximas ao ótimo para qualquer rede em menos de um segundo. Observamos também

que as redes podem ser cobertas atribuindo um número linear de fluxos em relação ao

número de interfaces dos dispositivos e, por fim, que é possível minimizar a carga de tele-

metria para uma interface por fluxo para a maioria das redes. Continuando nosso trabalho,

investigamos ainda mais os recursos disponíveis na DPP e projetamos o INTSIGHT, um

sistema para detecção e diagnóstico altamente precisos de violações de SLO. A principal

contribuição do INTSIGHT é, com base na telemetria in-band, introduzir o cálculo de mé-

tricas de rede ao longo do caminho dos pacotes e a exportação seletiva de informações

para o plano de controle. Mostramos a eficácia do INTSIGHT por meio de dois casos de

uso. Nossa avaliação usando redes reais também mostra que INTSIGHT gera até duas

ordens de magnitude menos tráfego de monitoramento do que abordagens do estado da

arte. Além disso, seus requisitos de processamento e memória são baixos e, portanto,

compatíveis com as plataformas programáveis existentes. Como etapa final desta tese,

mudamos nosso foco para a reação rápida e propomos o FELIX, um sistema para recupe-

ração de falhas que redireciona o tráfego afetado em escalas de tempo de plano de dados

enquanto ainda usa os caminhos mais curtos dentre os disponíveis. Nossa avaliação mos-

tra que nossa abordagem pode se recuperar de falhas até quatro ordens de magnitude mais

rapidamente do que as abordagens SDN existentes, ao mesmo tempo em que faz o uso

sensato dos recursos do plano de dados. Finalmente, com o projeto de FELIX, introdu-

zimos o paradigma Estratégia-Tática para tarefas gerais de operação de rede que busca

permitir reações na escala de tempo de plano de dados com decisões no plano de controle

baseadas em uma compreensão global da rede. A generalidade desse paradigma é dis-

cutida considerando os principais desafios envolvidos na modelagem de um caso de uso

promissor.

Palavras-chave: Monitoramento de Redes, Redes Definidas por Software, Programabili-

dade do Plano de Dados, P4, In-band Network Telemetry.

LIST OF ABBREVIATIONS AND ACRONYMS

ASIC Application-Specific Integrated Circuit

BGP Border Gateway Protocol

BH Balance Heuristic

BMP Balance Mathematical Program

BPP Bin Packing Problem

CDF Cumulative Distribution Function

CH Concentrate Heuristic

CMP Concentrate Mathematical Program

CPU Central Processing Unit

DAG Directed Acyclic Graph

DARPA Defense Advanced Research Projects Agency

DCN Data Center Network

DDoS Distributed Denial-of-Service

DPP Data Plane Programmability

DSL Domain-Specific Language

ECMP Equal-Cost Multi-Path Routing

FA Full Assignment

FIFR Failure-Inferencing Fast Reroute

ForCES Forwarding and Control Element Separation

FPGA Field-Programmable Gate Array

IETF Internet Engineering Task Force

INT In-band Network Telemetry

INTO In-band Network Telemetry Orchestration

IP Internet Protocol

IPFIX IP Flow Information Export

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ITZ Internet Topology Zoo

IXP Internet Exchange Point

LAG Link Aggregation Groups

LUT Lookup Table

MAC Media Access Control

MSP Multiprocessor Scheduling Problem

MTU Maximum Transmission Unit

NP -Complete

NPU Network Processing Unit

NSH Network Service Header

NVMe Non-Volatile Memory Host Controller Interface Specification

OAM Operations, Administration and Management

OF OpenFlow

OM Opportunistic Merging

ONF Open Networking Foundation

OS Operating systems

OSPF Open Shortest Path First

OWAMP One-Way Active Measurement Protocol

RAM Random-Access Memory

RCP Routing Control Platform

RMT Reconfigurable Match-Action Tables

SDN Software-Defined Networking

SLF Switch-local failover

SLO Service-Level Objective

SNMP Simple Network Management Protocol

SRAM Static Random-Access Memory

SSD Solid State Disk

ST Strategy-Tactic

TBFF Tagging-Based Fast Failover

TCAM Ternary Content-Addressable Memory

TCP Transmission Control Protocol

TPP Tiny Packet Programs

TWAMP Two-Way Active Measurement Protocol

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

WAN Wide-Area Network

LIST OF FIGURES

Figure 1.1 Overview of this thesis with its main foundation blocks and contributions. .20

Figure 2.1 Traditional SDN architecture...28
Figure 2.2 SDN architecture extended with programmable data planes and P4.............29
Figure 2.3 P4 code sections, and mapping to the abstract forwarding model (Adapted

from Kim and Lee (KIM; LEE, 2016))...30
Figure 2.4 P4 header declaration examples...30
Figure 2.5 Architecture of the INT framework for in-band network telemetry (Adapted

from Thomas and Laupkhov (THOMAS; LAUPKHOV, 2016)).32

Figure 3.1 Example of full assignment. ..35
Figure 3.2 Concentrated assignment example. ...39
Figure 3.3 Example BPP reduction to INTO Concentrate. A BPP instance with

|A| = 3 items, bin capacity C = 4, and number of bins n = 2 is reduced
to an INTO Concentrate instance with 3 forwarding devices and 2 flows with
telemetry capacity equal to 4 items...41

Figure 3.4 Balanced assignment example. ..43
Figure 3.5 Example MSP reduction to INTO Balance. An MSP instance – with

|J | = 3 jobs, number of processors m = 2, and deadline n = 6 – is reduced
to an INTO Concentrate instance – with 3 forwarding devices and 2 flows
with telemetry capacity equal to 6. ...45

Figure 3.6 Processing times for the mathematical programming models.......................51
Figure 3.7 Processing times for the heuristic algorithms..52
Figure 3.8 Interface Coverage. ..54
Figure 3.9 Mean and confidence interval for flow packet load when the mean teleme-

try capacity is 35 items. ..56
Figure 3.10 Evaluation of flow load as telemetry capacity varies...................................56
Figure 3.11 Flow usage as a function of the number of interfaces in a network.58
Figure 3.12 Mean and confidence interval for information correlation when the

mean telemetry capacity is 35 items. ..58
Figure 3.13 Evaluation of information correlation as the telemetry capacity of flows

varies. ..59
Figure 3.14 Mean and confidence interval for information freshness with mean

telemetry capacity equal to 35 items...60
Figure 3.15 Information freshness as a function of the network diameter......................61

Figure 4.1 Overview of INTSIGHT’s main procedures in the data and control planes. ..69
Figure 4.2 Mapping a traffic flow to a register array index (FlowID) for metadata

storage and analysis. ...75
Figure 4.3 Example network for path tracing method. ...77
Figure 4.4 Examples field values for pinpointing contentions and suspects...................80
Figure 4.5 End-to-End Delay Case Study. A delay-sensitive flow A–H has its SLO

violated due to bursty flow E–G. ..86
Figure 4.6 Bandwidth Case Study. A bandwidth-sensitive flow A–H suffers per-

formance degradation from recurrent natural increases in demand for other
traffic sharing link N3 → N5. ...87

Figure 4.7 Report rate (packets per second)..89
Figure 4.8 Header space usage (bytes)..91

Figure 4.9 Comparison of monitoring techniques considering generated telemetry
traffic as a function of network resource usage...92

Figure 5.1 Failure recovery delay factors for SDN with OpenFlow approaches.100
Figure 5.2 Limitations to existing failover mechanisms and failure-inferencing ap-

proaches in the data plane. ..101
Figure 5.3 Example of FELIX’s approach to safeguard against and reroute around

an example link failure..103
Figure 5.4 Steps to reroute around a shared-risk failure. ..110
Figure 5.5 Downtime with varying detection delay values (entry installation delay

fixed at 1 ms)...116
Figure 5.6 Downtime with varying forwarding entry installation delay values (de-

tection delay fixed at 10 ms). ..118
Figure 5.7 Downtime factor cost breakdown. ...119
Figure 5.8 Main components of the Strategy-Tactic paradigm.....................................126
Figure 5.9 Steps to reroute around a shared-risk failure. ..130

Figure A.1 Sumário da tese com suas principais contribuições e fundamentos.152

LIST OF TABLES

Table 3.1 Summary of symbols...36
Table 3.2 Summary of the evaluation results. ...62

Table 4.1 Metadata fields maintained by IntSight at ingress devices, telemetry head-
ers, and/or egress devices for each flow. Path-wise fields are marked with an
asterisk (*)...71

Table 4.2 Metadata for the network topologies considered on the efficiency evaluation.84
Table 4.3 Device memory usage (Mb). ...90

Table 5.1 Summary of the conceptual comparison of existing approaches for fail-
ure recovery and FELIX. ...102

Table 5.2 Summary of the networks used for evaluation. ...115
Table 5.3 Summary of the scalability results. ...121
Table 5.4 Summary of the results for the opportunistic merging memory-minimization

procedure...125

CONTENTS

1 INTRODUCTION...17
1.1 Problem Statement..18
1.2 Hypothesis, Research Questions, and Contributions...19
1.3 Organization..23

2 BACKGROUND..25
2.1 Network Programmability ...25
2.2 Programmable Data Planes and P4...28
2.3 In-Band Network Telemetry ..31

3 ORCHESTRATING IN-BAND NETWORK TELEMETRY.................................33
3.1 Motivation..33
3.2 INTO ..35
3.3 Problem Variations ...38
3.3.1 INTO Concentrate..39
3.3.2 INTO Balance ..42
3.4 Heuristic Algorithms to Solve the INTO Problems ...46
3.4.1 Concentrate Heuristic Algorithm...46
3.4.2 Balance Heuristic Algorithm ...48
3.5 Evaluation..49
3.5.1 Mathematical Programming Models and Heuristic Algorithms............................50
3.5.2 Comparison of the INTO problem variations ..54
3.6 Related Work...62
3.7 Chapter Summary ..64

4 DIAGNOSING SLO VIOLATIONS WITH IN-BAND NETWORK TELEME-
TRY ...67

4.1 Motivation..67
4.2 INTSIGHT ..68
4.2.1 INTSIGHT Data Plane ..69
4.2.2 INTSIGHT Control Plane ...73
4.3 Design and Implementation ...74
4.3.1 Correlating Events in Time ..74
4.3.2 Storing Traffic Metadata Persistently...75
4.3.3 Tracing Packet Paths ..76
4.3.4 Encoding Paths...78
4.3.5 Pinpointing Contentions and Suspects...80
4.3.6 Monitoring SLO Compliance ..81
4.4 Evaluation..82
4.4.1 Experimental Setup..82
4.4.2 Functional Evaluation ..84
4.4.3 Performance Evaluation...88
4.5 Related Work...92
4.6 Additional Remarks..94
4.7 Chapter Summary ..98

5 RESPONDING TO NETWORK FAILURES AT DATA-PLANE SPEEDS99
5.1 Motivation..99

5.2 FELIX ...103
5.3 Design and Implementation ...105
5.3.1 Forwarding Packets in the Data Plane ...106
5.3.2 Handling Local Failures...107
5.3.3 Coordinating Network-Wide Rerouting...109
5.3.4 Planning for Failure Scenarios...111
5.4 Evaluation..114
5.4.1 Experimental Setup..114
5.4.2 Performance ...115
5.4.3 Scalability ..120
5.5 Related Work...122
5.6 Additional Remarks..123
5.7 On the Generality of the Strategy-Tactic Paradigm ..125
5.8 Chapter Summary ..132

6 FINAL CONSIDERATIONS ...133
6.1 Conclusions..133
6.2 Directions for Future Research..135
6.3 Achievements...137

REFERENCES...139

APPENDIX A — SUMMARY IN PORTUGUESE..149
A.1 Definição do Problema...150
A.2 Hipótese, Questões de Pesquisa e Contribuições...152

17

1 INTRODUCTION

Current networks operate with high expectations on performance (e.g., latency,

bandwidth, availability), especially with the emergence and proliferation of new applica-

tions (e.g., algorithmic trading, telesurgery, and virtual reality video streaming) with ar-

chitectures based on many interconnected components spread across multiple end-points

(BALAKRISHNAN, 2021). These applications and their users demand strict require-

ments, which to be met require defining clear goals for network performance, the so-

called service-level objectives (SLOs), and troubleshooting problems that may prevent

achieving such goals. Unfortunately, there is a myriad of problems that may impact the

correct and efficient operation of a network, ranging from traffic congestions all the way

to hardware failures. In this context, monitoring the state, behavior, and performance

of networking devices and their traffic is essential for the operation of today’s network

infrastructures. Nevertheless, network monitoring is an inherently hard task, sometimes

compared to searching for a needle in a haystack (ZHU et al., 2015; GUPTA et al., 2018)1.

Existing tools and techniques are not engineered to monitor networks and help

troubleshoot their problems with the required level of detail and accuracy. For example,

and regarding the collection of metadata and statistics, traditional passive monitoring tools

(e.g., SNMP (CASE et al., 1989) and NetFlow/IPFIX (CISCO, 2005; CLAISE; TRAM-

MELL; AITKEN, 2013)) operate at coarse timescales (dozens of seconds and up) and,

thus, lack adequate granularity to detect events such as short-lived traffic bursts (e.g., mi-

crobursts) that may be critical to modern applications. Active measurement techniques

(e.g., ping, traceroute, OWAMP (SHALUNOV et al., 2006), and TWAMP (HEDAYAT et

al., 2008)) also do not provide sufficient time resolution; additionally, there is no guar-

antee that the network will route and prioritize probes in the same way as production

packets. The consistent move towards heterogeneity in the treatment of traffic (JEYAKU-

MAR et al., 2014; HONG et al., 2013), multi-path routing (JAIN et al., 2013; KUMAR et

al., 2015), and flowlet load balancing (ALIZADEH et al., 2014; HE et al., 2015) exacer-

bates this limitation. As a second example, and regarding troubleshooting SLO violations,

approaches based on packet mirroring (e.g., NetSight (HANDIGOL et al., 2014), Planck

(RASLEY et al., 2014), Everflow (ZHU et al., 2015), and Stroboscope (TILMANS et

1(ZHU et al., 2015): “[Network troubleshooting] is not only akin to searching in the proverbial haystack
for needles, but for specific needles of arbitrary size, shape and color.” and (GUPTA et al., 2018): “[...]
telemetry queries often require finding ‘needles in a haystack’ where the fraction of total traffic or flows
that satisfies these queries is tiny.”

18

al., 2018)) can help give visibility into the network to understand how packets are being

processed and forwarded by devices. These approaches find their main challenge in keep-

ing the monitoring overhead (i.e., required bandwidth and processing) under reasonable

levels while still collecting fine grained data (TILMANS et al., 2018). Packet sampling,

their common method for addressing this challenge, inherently leads these techniques to

miss important events; deciding what and when to sample is hard.

Another challenge in meeting SLOs in modern times is the common dependency

and delay in communication between the mechanisms that detect problems and the ones

that find the solution to these problems. Consider, for example, the case of equipment

failures and their impact on network availability. Existing solutions depend on some type

of computation in control plane at the time of failure and subsequent reconfiguration of

forwarding tables. Computing the new forwarding entries for devices or, in broader terms,

the solution to the problem can take considerable time. As the delay in reacting to failures

leads to a significant number of packet drops, in the general case, the delay caused by the

use of long control loops to solve problems can lead to substantial performance and finan-

cial loss. Ideally, the data plane should be able to react immediately at the time of failure.

We note that the limitations and drawbacks presented by the existing monitoring tools and

techniques result from the low level of flexibility in defining how packets are to be pro-

cessed by the data plane in traditional networks. Even with Software-Defined Networking

(SDN) and OpenFlow (MCKEOWN et al., 2008), there is only support for standardized

protocols; there is no freedom to define customized protocols and procedures.

1.1 Problem Statement

As a result to the presented scenario, the networking community has sought for

more flexibility in the data plane, which recently culminated in the proposal of data plane

programmability (DPP) (BOSSHART et al., 2013; CHOLE et al., 2017; OZDAG, 2012).

DPP reshapes the SDN landscape by enabling network operators to reprogram forwarding

devices in-field to deploy novel networking protocols, customize the network behavior,

and consequently develop and support innovative services and applications. Protocols

and packet processing procedures, in this new paradigm, are defined via domain-specific

languages – e.g., P4 (BOSSHART et al., 2014) – with support for abstractions to spec-

ify customized protocol headers, parsing logic, and match-action tables, for example.

One interesting concept that gained traction with the introduction of programmable data

19

planes is In-band Network Telemetry (INT) (JEYAKUMAR et al., 2014; KIM et al.,

2015; THOMAS; LAUPKHOV, 2016). Within this concept, forwarding devices are pro-

grammed to annotate production packets with metadata regarding their state, behavior,

and performance (such as port utilization, matched forwarding entries, and queuing de-

lays). The annotated information is accumulated in a packet along its path and, at some

point in the network, extracted and reported to analyzer servers. These servers piece to-

gether the received information (as needed) to build an accurate and global view of the

network, as observed by its traffic.

INT-based techniques have shown to produce monitoring data with an unprece-

dented level of accuracy and fine granularity (KIM et al., 2015; ZHANG et al., 2017).

That is because instead of relying on active probes, which may be subject to forwarding

and routing behaviors different from those of the traffic of interest, the production packets

themselves can be used to probe the network. Moreover, metadata collection can be made

precisely during the instants when individual packets of interest are being processed at a

device. As a consequence, INT makes it possible to detect and pinpoint network events

that were previously imperceptible, such as microsecond congestions.

Although DPP brings greater flexibility to the development of monitoring mecha-

nisms, to operate at line rate on high-speed links, data plane programs are constrained to

a small time budget (dozens of nanoseconds) and a limited memory space (e.g., hundreds

of megabits of SRAM and dozens of megabits of TCAM) (BOSSHART et al., 2013). Re-

garding INT, since it involves modifying production packets traversing the network, the

amount of metadata that may be collected by a packet is limited by its original size and

the network maximum transmission unit (MTU). Additionally, some of the performed

actions may increase network load and impact performance. For example, embedding

telemetry data into packets increases the load on network links, and generating report

packets increases the load on forwarding devices and control channels. We argue that

these constraints and factors need to be carefully considered in order to enable the full

potential of data plane programmability to the discipline of network monitoring.

1.2 Hypothesis, Research Questions, and Contributions

This thesis seeks to bridge the gap to materializing the new opportunities for net-

work monitoring and operation brought up by Data Plane Programmability (DPP) and

In-band Network Telemetry (INT). Our hypothesis is that INT along with DPP can be

20

successfully applied to monitor and operate networks with per-packet granularity as well

as practicable overheads. We make eight valuable contributions that answer important

questions about effectively and efficiently managing networks in this new paradigm2.

Figure 1.1 summarizes our work, showing its main foundation blocks originated from

the emergence of Data Plane Programmability and In-band Network Telemetry as well

as its main contributions. These contributions are positioned as a result of three research

questions that we describe next.

Figure 1.1: Overview of this thesis with its main foundation blocks and contributions.

Custom
Headers

Stateful
Memory

Custom
Tables

Mathematical
Operations

Conditional
Execution

Data Plane Programmability

Packet
Replication

Metadata
Collection

Metadata
Reporting

In-band Network Telemetry

INTO (Ch. 3) IntSight (Ch. 4) Felix (Ch. 5)

INT Orchestration
Problem Formalization

INT Orchestration
Heuristics

Path-wise Metadata
Consolidation

SLO Violation
Detection Mechanism

Tactic-based Packet
Forwarding Pipeline

Failure Recovery
Coordination Protocol

Just-in-time Alternative
Routing Algorithm

Strategy-Tactic
Paradigm

Question 1. How can In-band Network Telemetry collection actions be orches-

trated across devices in a network to maximize measurement quality while minimizing

network and traffic overheads?

Our initial investigation into In-band Network Telemetry showed that when such

concept is applied unsystematically to collect metadata from each one of the devices vis-

ited by each of the traffic packets traversing the network, substantial burden is placed on

the traffic, network resources, and analysis servers. The overhead imposed by this burden

can arrive at the point of halting the operation of the network or its effective monitoring.

In Chapter 3, as our first contribution, we formalize what we call the In-band Net-

work Telemetry Orchestration (INTO) problem by means of Integer Linear Programming.

Our ultimate goal with INTO is to minimize monitoring overheads while still obtaining

high-quality data. We formalize two variations of the INTO problem as mathematical pro-

gramming models, each of them focusing on optimizing the usage of a specific resource:

the packet processing capacity of devices and the bandwidth of links, respectively. We

also prove that both variations of the orchestration problem are NP-Complete. Through an

extensive evaluation using real network topologies, we confirme that generating optimal
2In this thesis, we generally focus on greenfield deployments, that is, scenarios where all forwarding

devices in the network are P4-programmable. Nevertheless, where appropriate, we discuss opportunities
for brownfield deployment and the effects of legacy devices on the task at hand.

21

solutions takes prohibitive amounts of time.

As the second contribution, also in Chapter 3, we address the scalability limita-

tion of the mathematical programming models by designing heuristic algorithms. These

algorithms are capable of computing high-quality solutions in polynomial computing time

to the two variations of the INTO problem. Through our evaluation, we observe that the

proposed heuristics are able to generate close to optimal solutions for all of the consid-

ered topologies under a second. We also evaluate the quality and costs associated with

the proposed heuristics under different aspects and compare their results to identify what

types of networks each heuristic is better suited to monitor.

In the following part of this thesis, we continue this study on INT by bringing DPP

into focus and answering the following intriguing question.

Question 2. Given the flexibility in packet processing provided by Data Plane

Programmability, can monitoring data be pre-processed or consolidated by forwarding

devices before being reported to the control plane to further reduce overhead and with no

loss (or even improvement) to measurement quality?

One of the observations from our study of INT orchestration is that programmable

data planes have capabilities that could allow for monitoring actions beyond raw metadata

collection. Starting from this observation, in Chapter 4, we present INTSIGHT, a system

that fully exploits the capabilities of network programmability (BOSSHART et al., 2013;

BOSSHART et al., 2014) to monitor SLOs related to end-to-end delay and bandwidth

guarantees. In a nutshell, INTSIGHT discretizes time into sub-second, fixed-length slices

called epochs. Network and flow-of-interest traffic are monitored on a per-packet basis

by the data plane to track their state, behavior, and performance (e.g., routing, contention,

delay, packet drops, and provided bandwidth). Each production packet is instrumented

to carry essential information (in a telemetry header), which has its values systematically

updated (through in-network computation) as the packet moves towards the destination.

Egress forwarding devices consolidate this information temporarily in memory. At the

end of each epoch, the consolidated information kept for each flow of interest enables

detecting and diagnosing SLO violation events, their causes, victims, and culprits. As

a third contribution of this thesis, thus, we design and implement efficient data plane

procedures for gradually computing path-wise metadata such as paths, contention points,

end-to-end delays, and provided bandwidth. In our evaluation, we demonstrate the ben-

efits (regarding functionality, performance, and resource footprint) of path-wise in-band

network telemetry compared to state-of-the-art approaches, considering six representative

22

network topologies.

The positive answer to the second question – i.e., the success in pre-processing

and consolidating monitoring data directly in the data plane – motivates our last question.

Question 3. Can part of the analysis and reaction logic (traditionally placed

in the control plane) be offloaded to the data plane to enable detecting and reacting to

network problems in shorter timescales?

We describe cases in which we find the answer to this question to be positive.

First, as briefly mentioned, the consolidated information stored in forwarding devices un-

der INTSIGHT enables detecting and diagnosing SLO violation events. During the design

of INTSIGHT we observed that the way information is consolidated would enable the for-

warding devices themselves to detect epochs in which SLO violations are present. As a

result, our fourth contribution is an in-network, distributed, path-aware mechanism for

monitoring network traffic capable of fine-grained and timely detection of SLO violations

and other problems impacting performance (e.g., microbursts). In Chapter 4, when pre-

senting INTSIGHT, we describe how, at the end of each epoch, deviations from what is

expected from the network (e.g., SLO violations) are detected by egress forwarding de-

vices, which triggers the generation of reports. Control plane servers receive and analyze

the generated reports to identify the culprit traffic disrupting network operation. In our

evaluations, this approach to telemetry data reporting has shown to make judicious uti-

lization of control plane bandwidth and analysis server resources without significant loss

in accuracy and detail.

Following our work on INTSIGHT, in Chapter 5, we present another step taken

towards answering Question 3. We shift our focus to network equipment failures and

investigate ways for more efficient and resilient rerouting to meet availability SLOs that

arise in the context of SDN with programmable data planes. We propose FELIX, a novel

system that proactively computes forwarding tactics for the normal network state as well

as failure scenarios in the control plane and programs these tactics on data plane devices

along with a lightweight coordination protocol to immediately react to failures. In a sense,

the control plane acts as a strategist devising recovery tactics to handle failures, while the

data plane carries out these tactics accordingly when needed. This approach to the prob-

lem eliminates the need to wait for the control plane to compute and install new entries

upon a failure while also enabling the use of the best alternate paths to bypass failures in

general topologies. We make four main contributions with FELIX. As the fifth contribu-

tion of this thesis, we devise a packet processing pipeline with customized match-action

23

tables that forwards packets according to the current network state. The sixth contri-

bution is the design of a lightweight protocol running on the fast path of switches to

enable failure recovery coordination entirely in the data plane. The seventh contribution

is the development of algorithms that compute and install alternate forwarding entries

just in time to handle possibly-imminent failures. Through an extensive evaluation of

FELIX, we find that it considerably reduces reaction times while making sensible use of

data plane in-device memory. The eighth, and final, contribution is the proposal of the

Strategy-Tactic paradigm. This paradigm abstracts away FELIX’s elements to form an

overall architecture that can be instantiated to perform other network operation tasks. We

exemplify the generality of this paradigm by combining lessons learned from both FELIX

and INTSIGHT to sketch INTREACT, a system for SLO- and contention-aware rerouting

at data-plane timescales.

1.3 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we present the

fundamental concepts related to this thesis, which revolves around network programma-

bility, data plane programmability with the P4 language, and In-band Network Teleme-

try. In Chapter 3, we formally define the In-band Network Telemetry Orchestration

(INTO) problem by introducing two mathematical programming models. We also in-

troduce heuristic algorithms to both variations of the INTO problem to scale the ability

of solving these problems to the order of hundreds of forwarding devices and thousands

of packet flows. In Chapter 4, we introduce INTSIGHT, our SLO monitoring system that

makes use of data plane programmability constructs to detect violations in the data plane

and reduce analysis overheads. In Chapter 5, we present FELIX, our system for enabling

networks to react and reroute around network failures in data plane time scales, substan-

tially shortening downtime. In Chapter 6, we draw conclusions and directions for future

research.

24

25

2 BACKGROUND

Despite the increased research interest on network programmability in the past

few years, some of its concepts have been evolving over the last two or three decades.

This chapter provides a background on past and present research efforts that explored

and continue to explore network programmability1. In Section 2.1, we briefly revisit how

the concept of programmable networks evolved since its inception until nowadays. In

Section 2.2, we describe programmable data planes and the P4 language for programming

packet forwarding devices. In Section 2.3, we introduce the concept of In-band Network

Telemetry.

2.1 Network Programmability

The first research efforts in the direction of programmable networks emerged from

discussions about the future directions of networking in the early to mid-1990s (FEAM-

STER; REXFORD; ZEGURA, 2014). As the Internet began to support a wider range of

applications, interconnected systems within it also expanded, both in number and size.

The networking research community, led by the Defense Advanced Research Projects

Agency (DARPA), identified several problems with network technologies at that time

(CALVERT et al., 1998). Examples included difficulties in (i) integrating new technolo-

gies and standards into shared network infrastructures and (ii) introducing new protocols

and services into existing architectural models.

Active networking was proposed as a solution to these issues (TENNENHOUSE

et al., 1997). It envisioned that programming interfaces would provide abstractions of

individual network node’s resources (e.g., processing, packet queuing), just like program-

ming languages expose commodity server resources. Programs would then be developed

using these abstractions to define how data packets should be processed. There were two

main approaches to realize that vision:

• Programmable switch model: switch programs that parse and process packets would

1This chapter is based on the following publication:

• Weverton Luis da Costa Cordeiro, Jonatas Adilson Marques, Luciano Paschoal Gaspary. Data
Plane Programmability Beyond OpenFlow: Opportunities and Challenges for Network and
Service Operations and Management. Journal of Network and Services Management (2017)
(CORDEIRO; MARQUES; GASPARY, 2017).

26

be installed via out-of-band mechanisms (e.g., Mobile Agents (WHITE, 1993; GRAY,

1996), Script MIB (SCHOENWAELDER; QUITTEK, 2001)).

• Capsule-based system: flow forwarding is customized by higher level applications

through capsules (special packets that direct themselves using custom forwarding

routines), sent via programmable networking devices (active nodes) (WETHER-

ALL; GUTTAG; TENNENHOUSE, 1998; WETHERALL, 2002).

This effort to enable network programmability proceeded until around the late

1990s to early 2000s, but did not gain widespread adoption (FEAMSTER; REXFORD;

ZEGURA, 2014). That could be attributed mainly to (i) the lack of a clear path for de-

ployment and (ii) the insufficient support for fully decoupling network intelligence from

forwarding devices. Nonetheless, active networking offered some intellectual contribu-

tions and insights to network programming research. For example, projects like Alien

(ALEXANDER et al., 1997), ANTS (WETHERALL; GUTTAG; TENNENHOUSE, 1998;

WETHERALL, 2002), SwitchWare (ALEXANDER et al., 1998) and others (TENNEN-

HOUSE et al., 1997; CALVERT et al., 1998; BRUNNER; STADLER, 1999; SMITH

et al., 1999; QUITTEK; BRUNNER, 2003) were the first to put forward the notion that

the ability to program networks is key to allowing networking innovation. Additionally,

active networking research uncovered the challenges (e.g., providing security) and down-

sides (e.g., potential processing overload) involved in executing arbitrary code at packet

forwarding nodes inside the network.

In the early to mid-2000s, as networks continued to grow in size and traffic vol-

ume, control and management challenges became more complex and demanding. To

further complicate matters, existing infrastructures had a large base of deployed devices

and protocols (often legacy ones). Such scenario hampered adoption of innovative ap-

proaches, because of the reluctance to experiment them with production traffic and at

scale. With this problem in mind, the research community started a long-term effort to

build large scale facilities (like GENI and FIRE) for experimenting novel approaches and

architectures (FEAMSTER; REXFORD; ZEGURA, 2014).

In parallel, some investigations (YANG et al., 2004; FEAMSTER et al., 2004;

LAKSHMAN et al., 2004) evidenced the limitations (related, for example, with scala-

bility and reliability) of mechanisms and protocols employed to assist with control plane

tasks. They argued that these limitations where inherent to the distributed way (e.g.,

decentralized decision process, information flooding) in which those mechanisms and

protocols operated. Given this perspective, two complementary lines of research where

27

explored: (i) standardization of interfaces between the control and forwarding planes –

for example, Linux Netlink (SALIM et al., 2003), Forwarding and Control Element Sepa-

ration (ForCES) (YANG et al., 2004) – and (ii) logical centralization of network control –

for example, Routing Control Platform (RCP) (FEAMSTER et al., 2004) and SoftRouter

(LAKSHMAN et al., 2004). An open and standardized interface between the compo-

nents that implement the functionality of those planes would eliminate the tight coupling

of their designs, enabling a higher degree of innovation in both planes. In its turn, a

logically centralized control would provide controller applications with a complete net-

work view, enabling the simplification and improvement of their decision process (e.g.,

choosing a route for a packet).

As it was the case with active networking, the adoption of the proposals above

remained small. Vendors had no incentive to support interfaces like ForCES (YANG et

al., 2004), as it would only lower the entry barrier for new competitors, without providing

clear product advantages (FEAMSTER; REXFORD; ZEGURA, 2014). Other initiatives

had limited scope, thus becoming less interesting. One example is RCP (FEAMSTER et

al., 2004), which reused BGP (REKHTER; HARES; LI, 2006) functionality to facilitate

deployment on existing devices, but was limited to routing. Nevertheless, some research

principles and concepts on control and data plane separation (e.g., mechanisms for dis-

tributed state management) remained as key contributions and were later revisited.

By 2005, Greenberg et al. proposed 4D (GREENBERG et al., 2005), a more

conceptual research effort towards separating the control and data planes. It focused on

the realization of network control and management tasks (other than routing) based on

a clean slate architecture, i.e., without requiring any architectural models or interoper-

ability with existing protocols or services. The 4D architecture was followed by projects

Tesseract (YAN et al., 2007), SANE (CASADO et al., 2006), and Ethane (CASADO et

al., 2007), and had direct influence on some important subsequent work on network pro-

grammability like OpenFlow (MCKEOWN et al., 2008) and NOX (GUDE et al., 2008).

Later in 2008, while 4D was still under investigation, McKeown et al. (MCK-

EOWN et al., 2008) established the Software-Defined Networking (SDN) paradigm by

introducing OpenFlow (MCKEOWN et al., 2008). OpenFlow is a protocol whose initial

goal was enabling almost immediate research in a more specific type of infrastructure,

namely campus networks. Figure 2.1 illustrates the concept. In McKeown et al.’s SDN

paradigm, control plane applications (which run on top of network OSes such as NOX

(GUDE et al., 2008)) implement functions like IP routing, monitoring, etc. These apps

28

populate packet forwarding rules on switches, using OpenFlow. The set of rules an app

can configure into switches has to observe both the OpenFlow version in use, and the

set of TCP/IP protocols supported by switches. OpenFlow is highly pragmatic in design,

which means that switch vendors can support it (i) without exposing internal working of

their switches, and (ii) in coexistence with their proprietary management interfaces. As a

result, SDN (and OpenFlow) became the first network programmability approach to reach

widespread adoption. Its success led to the formation of the Open Networking Founda-

tion2 (ONF), an organization dedicated to fostering open networking standards that has

substantially grown in the last decade and hosts projects across all areas of networking.

In the next section, we will describe programmable data planes and P4, one of the most

recent and groundbreaking projects hosted and supported by ONF.

Figure 2.1: Traditional SDN architecture.

Monitor
App

Router
App

Gateway
App

Network Operating System
(e.g., NOX, POX, Floodlight, Ryu)

OpenFlow
Switch

OpenFlow
Switch

Control Plane

Data Plane

...

Installing/querying
forwarding rules
through OpenFlow

Source: Adapted from (BOSSHART et al., 2014).

2.2 Programmable Data Planes and P4

Taking a step back from the timeline presented in the previous section, with SDN,

a notion that became popular was “programming” the data plane (FOSTER et al., 2010;

TOOTOONCHIAN; GANJALI, 2010; MACEDO et al., 2015; DABBAGH et al., 2015),

that is, populating switch tables with rules on how to forward flows in the data plane.

Although not incorrect, this simplistic, yet pragmatic approach ended up revealing a more

complex problem: that networking evolution is also hampered by inability of operators

to properly program switch behavior. In other words, operators are constrained by the set

of features and protocols supported by fixed-function ASIC switches, and cannot design

2www.opennetworking.org

29

custom packet headers and packet parsing routines. Another related issue is that support-

ing novel Layers 1, 2, and 3 protocols requires a complex and time-consuming pipeline,

which includes protocol standardization (by bodies like IETF) with support from some

switch vendor, and the release of an OpenFlow version that supports the protocol header

fields. This process can take from months to years, thus considerably hindering the pro-

posal and adoption of innovative protocols.

In the mid-2010s, one concept that emerged to solve the problem above is data

plane programmability. It reshapes the SDN landscape by enabling network operators to

reprogram forwarding devices in-field to deploy novel networking protocols, customize

network behavior, and consequently develop innovative services (e.g., (KIM et al., 2015;

DANG et al., 2016)). Figure 2.2 illustrates the concept. In a programmable data plane, op-

erators can write switch code that specifies custom header fields and define packet header

matching and parsing semantics. By using a vendor supplied compiler, operators can

compile the code and deploy the resulting program into the switch, thus truly reshaping

what protocols it supports and how it behaves. Then P4Runtime, an open interface similar

in purpose to OpenFlow, can be used to populate forwarding rules built upon customized,

programmed switch features. Data plane programmability is quickly gaining attention

and momentum, as it represents an important step beyond SDN.

Figure 2.2: SDN architecture extended with programmable data planes and P4.

Monitor
App

Router
App

Gateway
App

Network Operating System
with P4 support

Programmable
Switch

Programmable
Switch

Control Plane

Data Plane

...
.p4

.p4info

.switch_code

P4 Compiler

2. Installing/querying
forwarding rules
through P4Runtime

1. Installing/updating
switch code
through P4Runtime

Source: Adapted from (BOSSHART et al., 2014).

In a programmable data plane-enabled environment, flow rule specification is no

longer determined/restricted by the switch/OpenFlow specification. Instead, operators

can use domain-specific languages (DSLs) to effectively program network behavior, from

control plane applications to forwarding devices. P4 (BOSSHART et al., 2014) is the de-

facto, high-level DSL to program packet processing by individual forwarding devices. P4

is target independent, i.e., suitable for describing the behavior of various types of devices,

30

going from fixed-function ASICs, passing through NPUs and FPGAs, and all the way to

software switches. The language abstracts packet parsing and processing, by providing

a generalized forwarding model. P4 code is logically organized into (a) data declaration,

(b) parser logic, and (c) match+action tables and control flow sections. Each of them is

mapped to specific elements of the forwarding model (see Figure 2.3).

Figure 2.3: P4 code sections, and mapping to the abstract forwarding model (Adapted
from Kim and Lee (KIM; LEE, 2016)).

header_type ethernet_t { ... }
header_type l2_metadata_t { ... }

header ethernet_t ethernet;
header vlan_tag_t vlan_tag[2];
metadata l2_metadata_t l2_meta;

Parser Logic

Data Declaration

parser parse_ethernet {
 extract(ethernet);
 return switch(ethernet.etherType)
{
 0x8100 : parse_vlan_tag;
 0x0800 : parse_ipv4;
 0x8847 : parse_mpls;
 Default: ingress;
 }
}

table port_table { ... }

control ingress {
 apply(port_table);
 if(l2_meta.vlan_tags == 0) {
 process_assign_vlan();
 }
}

Match+Action Tables and Control Flow

D
e
p
a
r
s
e
r

P
a
r
s
e
r

Header/Metadata Bus

Ingress
Table1

Egress
Tablem

Ingress
Tablen

Egress
Table1

Packet
Queuing

Replication
and

Scheduling

Header/Metadata Bus

... ...

Program.p4

Figure 2.4: P4 header declaration examples.

header ethernet_h {
bit<48> dst_addr;
bit<48> src_addr;
bit<16> ether_type;

}

(a) Ethernet header.

header custom_protocol_h {
bit<16> src_tag;
bit<16> dst_tag;
bit<16> next_protocol;

}

(b) Custom protocol header.

The data declaration section defines packet header format and meta-data infor-

mation that can be used for its parsing. This section is mapped into a header and meta-

data bus that carries this information through all the processing stages. Header types are

declared similarly to structs in C, i.e., fields are defined in a specific order and with a

predetermined length. Figures 2.4a and 2.4b illustrate the declaration of the standard Eth-

ernet header and of an arbitrary custom protocol that uses tags as source and destination

identifiers, respectively.

31

The parser logic section specifies how, when, and in what order each of the head-

ers are to be parsed. This section of a P4 program is mapped to the parser and deparser

elements of the forwarding model (see Figure 2.3). These elements are then responsible

for extracting the header field from packets on their ingress (parser) and serializing their

(possibly) updated values back to the packets on their egress (deparser).

The last program section, match+action tables and control flow, specifies lookup

tables capable of matching on arbitrary header fields and modifying packet headers (and

meta-data) through custom defined actions. It also expresses control functions that define

in which order and circumstances each table should be executed. This section is mapped

to configurable match+action capable elements in both ingress and egress pipelines. The

ingress pipeline carries out (egress-agnostic) packet modification and also stipulates egress

intentions (e.g., which port to forward a packet). The egress pipeline realizes further nec-

essary packet modifications, e.g., rewriting an Ethernet header source address field with

the egress port MAC address of the switch.

2.3 In-Band Network Telemetry

Data plane programmability makes feasible a novel method of collecting and

transmitting network measurements, called In-band Network Telemetry (INT) or in-situ

OAM (BROCKNERS et al., 2017). This method consists of recording operations, admin-

istration, and maintenance information within a data packet as it traverses a network. Sev-

eral frameworks and techniques have been proposed to realize in-band network teleme-

try, e.g., TPP (JEYAKUMAR et al., 2014) and INT (KIM et al., 2015), and Cisco iOAM

(CISCO, S.a.). These put forward the idea of allowing data packets to query instantaneous

switch-internal state metrics – such as queue sizes, queuing latency, and link utilization –

and to store this information on telemetry purposed headers.

Figure 2.5 depicts the execution flow of INT (KIM et al., 2015), the currently

most prominent in-band telemetry framework that can be readily implemented using P4.

The INT architecture abstraction is composed of a remote monitoring controller and of

source, transit, and sink nodes, each of which represents a role in its instantiation. Each

programmable switch within the path of a packet (as it is transmitted through the network)

may assume one or more roles. The figure illustrates a scenario where End-Host 1 sends

a traditional data packet to End-Host 2 through a network of INT-capable switches.

Source nodes (in our example, Switch 1) are responsible for embedding measure-

32

Figure 2.5: Architecture of the INT framework for in-band network telemetry (Adapted
from Thomas and Laupkhov (THOMAS; LAUPKHOV, 2016)).

ment instructions (typically in the form of header values) into regular or probing packets.

Transit nodes execute the instructions and append measured values into the packets. In

our example, Switches 1, 2, and 4 assume the role of transit nodes, since the packet path

is End-Host 1 → Switch 1 → Switch 2 → Switch 4 → End-Host 2. Lastly, sink nodes

(in our example, Switch 4) retrieve the results of the instructions and report (appropri-

ate subsets of) them to a controller. Examples of metadata that can be collected at each

switch are the switch ID, the ingress/egress port ID, timestamp, byte count, drop count,

and link utilization, as well as a queue ID, occupancy, congestion status, and average

length. In-band Network Telemetry provides a way for monitoring networks and services

with unprecedented levels of accuracy and detail (JEYAKUMAR et al., 2014; KIM et al.,

2015).

33

3 ORCHESTRATING IN-BAND NETWORK TELEMETRY

Considering Question 1 introduced in Section 1.2 – i.e., how to orchestrate in-

band network telemetry collection efficiently and effectivelly? – in this chapter, we for-

malize the challenge of orchestrating In-band Network Telemetry actions as an optimiza-

tion problem1. We start, in Section 3.1, by further contextualizing and motivating this

work. In Section 3.2, we introduce the INTO problem context and variables along with

its general optimization goal. In Section 3.3, we present two variations of the INTO

problem, propose mathematical programming models to solve them and prove that both

are NP-Complete problems. In Section 3.4, we propose heuristic algorithms to produce

high-quality solutions for realistic network topologies in a timely fashion. In Section 3.5,

we evaluate and compare the proposed optimization models and heuristic algorithms. Fi-

nally, in Section 3.7, we summarize our findings and present our final remarks on the

INTO problem.

3.1 Motivation

As previously discussed in Section 2.3, In-band Network Telemetry (INT) enables

monitoring networks and their services with high accuracy and level of detail. Despite

these benefits in achievable quality, because it uses production traffic, it is crucial to con-

sider constraints imposed by the traffic and potential impacting factors to perform INT

effectively and efficiently. The primary constraint of INT is that packets cannot exceed

the network MTU. Therefore, the length of the telemetry data that can be embedded in a

packet is limited by the difference between its original size and the MTU. The smaller the

packet, the larger its telemetry capacity (i.e., the number of metadata items it can trans-

port). Any proposed orchestration strategy has to comply with this constraint, which may

limit the number of interfaces that can be monitored in a network. Next, we present and

discuss the main factors related to INT that may lead to network performance degradation.

1This chapter is based on the following publication:

• Jonatas Adilson Marques, Luciano Paschoal Gaspary. Explorando Estratégias de Orquestração
de Telemetria em Planos de Dados Programáveis. XXXVI Brazilian Simposium on Computer
Networks and Distributed Systems (SBRC 2018) (MARQUES; GASPARY, 2018).

• Jonatas Adilson Marques, Marcelo Caggiani Luizelli, Roberto Irajá Tavares da Costa Filho, Luciano
Paschoal Gaspary. An Optimization-based Approach for Efficient Network Monitoring using
In-band Network Telemetry Journal of Internet Services and Applications (2019) (MARQUES et
al., 2019).

34

(a) Embedding telemetry data into packets causes their size to increase along their

paths. Making packets increase in size may cause jitter in their transmission. Jitter

may degrade the QoS of many applications, especially of non-elastic ones (e.g.,

VoIP, virtual reality video streaming).

(b) Packet forwarding devices have limited processing capacity. The generation of

telemetry report packets uses this capacity, thus, forwarding too many reports may

saturate devices.

(c) Monitoring sinks and analyzers have limited processing capacity. Receiving

too many report packets and too many telemetry data may saturate these machines,

which could impair their capacity to monitor the network correctly.

(d) Network links have limited bandwidth. The telemetry data transported in pro-

duction packets uses the bandwidth of links in the network. If too much data is

inserted into packets and reported to sinks, the growth in data volume may saturate

links and devices.

The level of impact of the factors mentioned above is intrinsically related to the

assignment of INT tasks to the traffic in the network. Figure 3.1 illustrates the “full”

assignment of telemetry tasks, which is the straightforward method to carry out INT pro-

posed in its original designs (JEYAKUMAR et al., 2014). The network in Figure 3.1 is

composed of five forwarding devices and has endpoints to four other networks (e1 − e4).

Moreover, there are four packet flows of the same traffic type: f1 : e1 ↔ e4, f2 : e1 ↔ e2,

f3 : e2 ↔ e3, and f4 : e3 ↔ e4. The full assignment represents a scenario where every

flow in the network would collect (and transport) metadata items from all device inter-

faces in its path. For example, the packets of flow f4 collect information about interfaces

J, K, M, and N, as it is indicated by the orange circles in the figure.

The full assignment has significant drawbacks. First, it is not aware of telemetry

demands and capacities. For example, consider the case where interfaces J, K, M, and N

had each four telemetry items to be collected, and the telemetry capacity of flow f4 was 12

items (according to the typical size of packets). In this case, the full assignment would be

unfeasible, because by the time packets coming from e3 arrived at interface N they would

not have enough space to collect the four items from it. Therefore, the full assignment

does not guarantee that, in practice, flows will cover all interfaces in their paths.

Second, all flows are subject to the performance degradation factors discussed

previously in this section, as the full assignment is not selective in its choices. Third, all

telemetry supporting tasks (i.e., telemetry header creation and extraction, report packet

35

Figure 3.1: Example of full assignment.

e1

e3

e2

e4

f1

f3

f4

f2
A B

E F

C D

G H
I

J

K

L

M

N

generation and transmission) tend to be executed by edge devices, increasing their proba-

bility of being saturated. Fourth, device interfaces are often monitored by multiple flows,

each of them collecting the instantaneous value of the same metadata items. Previous

work (KIM et al., 2015; ZHANG et al., 2017) has shown that it is possible to obtain instan-

taneous metadata with microsecond granularity using only one out of all flows traversing

an interface or forwarding device. Furthermore, since all flows in our example scenario

are of the same traffic type, behavioral and performance metadata (e.g., forwarding rules,

queue delay) is expected to be similar. Finally, in this assignment, the INT overhead is

highly influenced by the level of activity in the network (i.e., the number of flows). Thus,

an increase in network activity may inadvertently saturate its links and devices.

In summary, we advocate that network monitoring through INT requires some sort

of task orchestration to be viable in practice. In the next sections, we present our proposed

solution, starting, next, with the formalization of INT orchestration as an optimization

problem.

3.2 INTO

In general terms, the problem under study – entitled In-Band Network Telemetry

Orchestration (INTO) problem – consists in monitoring network device interfaces effec-

tively (covering all monitoring demands) and efficiently (minimizing resource consump-

tion and processing overheads). We start the problem definition by formally describing

the input and output of our optimization models. For convenience, Table 3.1 presents the

36

complete notation used in the formulation.

Table 3.1: Summary of symbols.

Symbol Definition

G = (D, I) Physical infrastructure G.
D Set of programmable forwarding devices.
I Set of device interfaces.

δ(i)
Interface i telemetry demand. The number of teleme-
try items to be collected from interface i.

F Set of active flows in G.

ρ(f)
Set of interfaces through which packets from flow f
are forwarded.

κ(f)
Flow f telemetry capacity. The maximum number of
items packets from flow f may transport.

Φ : I → F
An assignment function of device interfaces I to net-
work flows F .

xi,f
Binary variable which indicates whether flow f is as-
signed to cover interface i ∈ I .

yf

Binary variable of the INTO Concentrate optimiza-
tion model which indicates whether flow f is a
telemetry-active flow.

The INTO problem considers a physical network infrastructure G = (D, I) and

a set of network aggregate flows F . For this formalization, we assume that the set of

active aggregate flows is mostly stable in the network. Set D in network G represents

the programmable forwarding devices D = {1, 2, ..., |D|}. Each device d ∈ D has a set

of network interfaces that are connected to other devices in the network. We denote the

interface of a device da that is connected to a device db by the tuple (da, db). Similarly,

the interface of db that is connected to da is denoted by (db, da). The set of all device

interfaces in the network is denoted by I . For each interface i ∈ I , there is an associ-

ated monitoring demand, a fixed number of telemetry items δ(i) ∈ N+ that need to be

collected periodically by flows in F . The interface telemetry demands are determined by

monitoring policies, which are influenced by, for example, the level of activity of each

interface or a previously detected event of interest. The telemetry items that can be col-

lected include any information that can be made readily available for reading on a P4

program. These include (but are not limited to) the metadata defined in the specification

for INT (GROUP, 2018) (e.g., node and interface IDs, ingress and egress timestamps,

37

hop latency, link utilization, queue occupancy), flow and packet counters, and stateful

registers. We note that stateful registers enable implementing streaming and sketching al-

gorithms, which can be designed for many different purposes such as calculating entropy

of frequencies (LAPOLLI; MARQUES; GASPARY, 2019) and finding the most frequent

items (SIVARAMAN et al., 2017).

The set F represents a group of aggregate packet flows of the same traffic type that

are active in the network. In the case where the operator wants to monitor different types

of traffic (e.g., scientific computing, video streaming, VoIP), a separate problem instance

could be created for each one with their respective flows. This is done because the meta-

data values observed by a flow may be different from the values observed by other flows,

specially for performance-related metadata (LEE; DUFFIELD; KOMPELLA, 2010). For

example, if a network prioritizes forwarding VoIP traffic in detriment of Web traffic, the

queueing time observed by packets of each type may be different. Thus, if an operator

wants to obtain metadata that is highly consistent with a specific type of traffic, the best

approach to guarantee this would be to create a problem instance for each type of traffic.

We note that the INTO problem definition and our solutions do not preclude operators

from treating all traffic as a single type. Creating separate instances is therefore a recom-

mendation for the obtention of more consistent monitoring data.

Each flow f ∈ F has two endpoints (ingress and egress) and is routed within

the network infrastructure G using a single path. We denote the path ρ(f) of a specific

flow f as a list of interfaces through which its packets are forwarded. For example,

a network flow f from endpoint s to t routed through forwarding devices 1, 3, and 4

has ρ(f) = (1, s), (1, 3), (3, 1), (3, 4), (4, 3), (4, t). The first forwarding device interface

visited is that of device 1 connected to the ingress endpoint (s), and the last is that of

device 4 connected to the egress endpoint (t). Associated with each flow f is also a

telemetry capacity κ(f) ∈ N+, which is the maximum number of items each packet

of the flow may transport. The capacity of the flows is determined by factors such as

forwarding protocols (e.g., IPv4, IPv6, NSH (QUINN; ELZUR; PIGNATARO, 2018)),

packet sizes, and network monitoring policies. The telemetry capacity may differ from

packet to packet in a single flow, but we expect that the distribution of sizes is stable to be

estimated with historic data. The capacity of (aggregate) flows can be defined according

to percentile values of the distribution of sizes in order to guarantee that most (e.g., 90%)

of the packets will have enough space to collect the metadata of the interfaces they are

assigned to cover.

38

Given the problem input, an INTO optimization model will try to find a feasible

assignment Φ : I → F that optimizes a specific objective function, where Φ(i) = f

indicates that flow f ∈ F should cover interface i ∈ I . A feasible assignment is one

where (i) each interface is covered by exactly one of all flows in F that pass through it

and (ii) no flow f ∈ F is assigned to cover more interfaces than its capacity allows, i.e.,

the sum of demands from all interfaces covered by a flow does not exceed its capacity.

We highlight two important design decisions in our models. First, assignment

function Φ does not enable partitioning the demand of an interface across multiple flows.

We chose this type of assignment because some of the items to be collected on an inter-

face are interdependent. For example, when collecting the transmission utilization it is

also necessary to collect the ID of the respective interface. Enabling items to be balanced

in different flows would require adjusting the models to assign flows to cover individual

items instead of interfaces and introducing additional restrictions to force certain assign-

ments in order to satisfy interdependency requirements. At this point, it is not clear that

enabling such granularity in assignment would bring advantages enough to counter the

complexity that would be introduced to the models, but we do consider further investigat-

ing this possibility in a future work.

Second, our model assigns a single aggregate flow per interface. We observe that,

in some cases, it may be useful to introduce limited assignment redundancy. For example,

to guarantee coverage and reduce the number of necessary configuration updates in a

scenario of highly frequent changes in the set of flows. In our work, this redundancy is

implicitly achieved through the employment of the “grain” of aggregate flows traversing a

network core, which tend to present small and few changes over time. We leave exploring

alternative options for both of these design decisions for future work.

3.3 Problem Variations

In view of the key traffic constraint and performance influencing factors discussed

in Section 2.3, we define two optimization problems, namely, INTO Concentrate and

INTO Balance. Next, we present these problems by describing their objective functions,

proposing optimization models to solve them and proving that they are NP-Complete

problems.

39

3.3.1 INTO Concentrate

The number of flows participating in monitoring the network via INT dictates

the number of telemetry report packets generated periodically since a report is sent for

each packet of each telemetry-active flow. As previously discussed, creating too many

report packets may saturate the forwarding devices that are tasked with their generation

and the machines tasked with their analysis. Therefore, one possible optimization goal

is minimizing the number of telemetry-active flows. That is the objective of the INTO

Concentrate problem.

Example Assignment

Figure 3.2 shows an example “Concentrated assignment”, i.e., an assignment that

uses the optimal number of telemetry-active flows for our running example previously

presented in Figure 3.1. The example assignment shows that it is possible to cover all

device interfaces using only three out of the four flows in the network. Flows f1 and f3

are assigned to cover six interfaces each, {A, B, E, H, L, N} and {J, I, G, F, C, D}. Flow

f4 is assigned to monitor the remaining two uncovered interfaces K and M, while flow f2

is not assigned to cover any interface.

Figure 3.2: Concentrated assignment example.

e1

e3

e2

e4

f1

f3

f4

f2
A B

E F

C D

G H
I

J

K

L

M

N

Optimization Model

The proposed optimization model to solve INTO Concentrate is presented next as

an integer linear program. Variable xi,f indicates whether flow f should cover interface

40

i ∈ I . The values of all variables xi,f define the assignment function Φ, i.e., xi,f = 1 →

Φ(i) = f . Variable yf indicates whether flow f is a telemetry-active flow (i.e., if it covers

at least one interface). This second set of variables is necessary to compute the objective

function of the problem, the number of telemetry-active flows (Equation 3.1).

min Φc =
∑
f∈F

yf (3.1)

s.t.
∑
f∈F

xi,f = 1, ∀i ∈ I, δ(i) > 0 (3.2)

∑
i∈ρ(f)

xi,f · δ(i) ≤ yf · κ(f), ∀f ∈ F (3.3)

xi,f ∈ {0, 1}, ∀i ∈ I,∀f ∈ F (3.4)

yf ∈ {0, 1}, ∀f ∈ F (3.5)

The objective function (Equation 3.1) defines the minimization of the number of

telemetry-active flows by the sum of the y variables. Constraint set in Equation 3.2 en-

sures that all interfaces i ∈ I with positive demand are covered by some flow f ∈ F .

Constraint set in Equation 3.3 bounds the number of telemetry items each flow f ∈ F

can be assigned to collect and transport according to its capacity κ(f). Equation 3.3

also activates yf when any telemetry item is assigned to flow f ∈ F . Constraint sets in

Equations 3.4 and 3.5 define the domains of variables xi,f and yf , which are binary.

Proof of NP-Completeness

We will now prove that the decision version of the INTO Concentrate problem is

an NP-Complete problem. Given a network infrastructure G = (D, I), the set of network

flows F , and an integer number n; the goal of the decision version of the problem is to

determine whether there exists a feasible assignment Φ where no more than n flows are

used to transport telemetry items.

Lemma 1. INTO Concentrate belongs to the class NP. We prove that the decision

version of the INTO Concentrate problem is in NP by way of a verifier. Given any assign-

ment Φ : I → F , the verifier needs to check three conditions. First, that the number of

telemetry-active flows is indeed at most n (in O(|F |) time). Second, that every interface

is covered (in O(|I|) time). Third, that no flow collects more telemetry items than its

capacity (inO(|I||F |)). For a yes instance (G,F, n), the certificate is any feasible assign-

41

ment using n flows in F ; the verifier will accept such an assignment. For a no instance

(G,F, n), it is clear that no assignment using n flows of F will be accepted by the verifier

as a feasible assignment.

Lemma 2. Any Bin Packing problem instance can be reduced in polynomial time

to an instance of the INTO Concentrate Decision problem. An instance of the Bin Packing

Problem (BPP), which is a classical NP-Complete problem (GAREY; JOHNSON, 1979),

comprises a set A of items, a size sa for each item a ∈ A, a positive integer bin capacity

C, and a positive integer n. The decision version of the BPP asks if its possible to pack

all items into n bins, i.e., if there is a partition of A into n disjoint sets (B1, B2, ..., Bn)

such that the sum of sizes of the items in each subset is at most C. The INTO Concentrate

problem is a generalization of the BPP where bins may have different capacities and each

item may only be put on a specific subset of all bins. We reduce any instance of the

BPP to an instance of the INTO Concentrate problem using the following procedure. The

reduction has polynomial time complexity O(n|A|).

Figure 3.3: Example BPP reduction to INTO Concentrate. A BPP instance with |A| = 3
items, bin capacity C = 4, and number of bins n = 2 is reduced to an INTO Concentrate
instance with 3 forwarding devices and 2 flows with telemetry capacity equal to 4 items.

2 2 3

Items: 3 Bins: 2

2 3

1 2 3 1 2

es et
0 0 02 2 3

Devices: 3 Flows: 2

Capacity: C = 4

Telemetry Capacity: 4
1

1. An infrastructure G is created with |A| forwarding devices and two endpoints es

and et. See example in Figure 3.3, device numbers are shown in bold. The devices

are connected in line, i.e., device a ∈ A is connected to device b = a + 1, b ∈ A.

Devices a = 1 and a = |A| are also connected to endpoints es and et, respectively.

The interface of each device a = 1, 2, ..., |A| that is connected to the next device

(or to endpoint et in the case of device a = |A|) has telemetry demand equal to

sa, while the other interface has no telemetry demand. The interface demands are

shown in italics in the figure.

42

2. Next, n flows (B1, B2, ..., Bn) are created. Each flow has endpoints es and et and

is routed through a path comprising all forwarding device interfaces in G, i.e.,

ρ(Bi) = (1, es), (1, 2), (2, 1), ..., (|A|, et), i = 1, 2, ..., n. The telemetry capacity

of all flows is C.

Theorem 1. The INTO Concentrate decision problem is NP-Complete.

Proof. By the instance reduction presented, if a BPP instance has a solution using n bins,

then the INTO Concentrate problem has a solution using n flows. Consider that each item

a of size sa packed into a bin Bi corresponds to the coverage of the interface of device a

with positive telemetry demand by flow Bi. Conversely, if the INTO Concentrate problem

has a solution using n flows, then the corresponding BPP instance has a solution using

n bins. Covering the positive demand interface of device a with flow Bi corresponds to

packing an item of size sa into bin Bi. Lemmas 1 and 2 complete the proof.

3.3.2 INTO Balance

The number of telemetry items to be collected by each flow determines how much

a packet will grow in size during its forwarding inside the network. If too many telemetry

items are concentrated into one flow, the links through which its packets are forwarded

may be saturated by significant growth in data volume. Consequently, another optimiza-

tion goal would be to balance the telemetry demands among as many flows as possible.

This assignment strategy would minimize the probability of saturating any single link

because the variation in data volume becomes minimal for each flow. The INTO Bal-

ance objective is to minimize the maximum number of telemetry items transported (i.e.,

telemetry load) by any single flow.

Example Assignment

Figure 3.4 illustrates a possible Balanced assignment, i.e., one that achieves the

optimal telemetry load balance, for the example scenario previously presented in Fig-

ures 3.1 and 3.2. This example assignment shows that it is possible to cover all device

interfaces in the network while assigning no more than four interfaces (i.e., collecting

4 × 4 = 16 items) per telemetry-active flow. The optimal load balance value is deter-

mined by three factors: (i) the maximum telemetry demand per single interface, (ii) the

fraction between the sum of all interface demands and the number of flows, and (iii) the

43

Figure 3.4: Balanced assignment example.

e1

e3

e2

e4

f1

f3

f4

f2
A B

E F

C D

G H
I

J

K

L

M

N

different flow to interface assignment options. In the example, all interfaces have equal

demand of four items. The total sum of demands 14 interfaces × 4 items = 56 items di-

vided by the four flows equals 14 items per flow. Since a flow must collect all (or none) of

the items of an interface, the optimal load balance is found when two flows are assigned to

collect 16 items each (i.e., cover four interfaces) and the other two are assigned to collect

12 items (i.e., three interfaces). The assignment shown in Figure 3.4 follows this distribu-

tion. Flows f2 and f3 are assigned to four interfaces each, {A, B, D, F} and {C, G, I, J}.

Likewise, f1 and f4 are assigned to three interfaces each, {E, H, L} and {K, M, N}.

The objective function (Equation 3.6) defines the minimization of k, the maximum

telemetry load of each flow. Constraint set in Equation 3.7 ensures that all interfaces i ∈ I

(with positive demand) are covered by some flow f ∈ F . Constraint set in Equation 3.8

bounds the number of telemetry items each flow f ∈ F can be assigned to collect and

transport according to its capacity κ(f). Constraint set in Equation 3.9 guarantees that k

is at least the maximum number of items to be collected by any single flow. Constraint set

in Equation 3.10 defines the domains of variables xi,f , which are binary. The constraint

in Equation 3.11 defines the domain of variable k.

Optimization Model

Next, we present the integer linear program to solve the INTO Balance optimiza-

tion problem. Variable xi,f indicates whether flow f ∈ F should cover interface i ∈ I .

As was the case with the Concentrate model, the values of variables xi,f define the assign-

ment function Φ, i.e., xi,f = 1 → Φ(i) = f . Variable k indicates the maximum number

44

of telemetry items assigned to be collected and transported by a single flow.

min Φb = k (3.6)

s.t.
∑
f∈F

xi,f = 1, ∀i ∈ I, δ(i) > 0 (3.7)

∑
i∈ρ(f)

xi,f · δ(i) ≤ κ(f), ∀f ∈ F (3.8)

∑
i∈ρ(f)

xi,f · δ(i) ≤ k, ∀f ∈ F (3.9)

xi,f ∈ {0, 1}, ∀i ∈ I,∀f ∈ F (3.10)

k ≥ 0 (3.11)

Proof of NP-Completeness

We now prove that the decision version of the INTO Balance problem is an NP-

Complete problem. Given a network infrastructure G = (D, I), the set of network flows

F , and an integer number n; the goal of the decision version of the problem is to determine

if there exists a feasible assignment Φ where no flow is assigned to transport more than n

telemetry items.

Lemma 3. INTO Balance belongs to the class NP. Similarly to Lemma 1, we prove

that the decision version of the INTO Balance problem is in NP by way of a verifier. Given

any assignment Φ : I → F , the verifier needs to check two conditions. First, that no flow

collects more than n telemetry items and than its capacity (in O(|I||F |)). Second, that

every interface is covered (in O(|I|) time). For a yes instance (G,F, n), the certificate

is any feasible assignment where each telemetry-active flow transports at most n items;

the verifier will accept such an assignment. For a no instance (G,F, n), it is clear that no

assignment making each telemetry-active flow collect at most k items will be accepted by

the verifier as a feasible assignment.

Lemma 4. Any Multiprocessor Scheduling problem instance can be reduced in

polynomial time to an instance of the INTO Balance Decision problem. An instance of

the Multiprocessor Scheduling Problem (MSP), which is a known NP-Complete problem

(GAREY; JOHNSON, 1979), comprises a set J of jobs, a length lj for each job j ∈ J , a

set of m processors, and a deadline n (a positive integer). The goal of the decision version

of the MSP is to decide whether there exists a scheduling of jobs on the m processors

45

(P1, P2, ..., Pm) such that all jobs finish before elapsed time n. We reduce any instance of

the MSP to an instance of the INTO Balance problem using the following procedure. The

reduction has polynomial time complexity O(m|J |).

1. An infrastructure G is created with |J | forwarding devices and two endpoints es and

et. See example in Figure 3.5, device numbers are shown in bold. The devices are

connected in line, i.e., device j ∈ J is connected to device k = j+1, k ∈ J . Devices

1 and |J | are also connected to endpoints es and et, respectively. The interface of

each device j = 1, 2, ..., |J | that is connected to the next device (or to endpoint et

for device |J |) has telemetry demand equal to lj , while the other interface has no

telemetry demand. The interface demands are shown in italics in the figure.

2. Next, m flows P1, P2, ..., Pm are created. Each flow has endpoints es and et and is

routed through a path comprising all device interfaces in G, i.e., ρ(Pi) = {(1, es),

(1, 2), (2, 1), ..., (|J |, et)}, i = 1, 2, ...,m. The telemetry capacity of all flows is n.

Figure 3.5: Example MSP reduction to INTO Balance. An MSP instance – with |J | =
3 jobs, number of processors m = 2, and deadline n = 6 – is reduced to an INTO
Concentrate instance – with 3 forwarding devices and 2 flows with telemetry capacity
equal to 6.

5

3

4

Jobs: 3 Processors: 2

1 2 3

1

2

3

1

2

es et
0 0 05 3 4

Devices: 3 Flows: 2

Deadline: n = 6

Telemetry Capacity: 6

Theorem 2. The INTO Balance decision problem is NP-Complete.

Proof. By the instance of the reduction presented, if an MSP instance has a solution

schedule where all jobs finish within n time units, then the INTO Balance problem has a

solution with no more than n items assigned to be transported by any single flow. Consider

that each job j of length lj scheduled to a processor Pi corresponds to the coverage of the

interface of device j (with positive telemetry demand) by flow Pi. Conversely, if the

INTO Balance problem has a solution where each flow is assigned to collect no more

46

than n telemetry items, then the corresponding MSP instance has a solution where every

job complete within n time units. Covering the positive demand interface of device j

with flow Pi corresponds to scheduling a job of length lj to process Pi. Lemmas 3 and 4

complete the proof.

3.4 Heuristic Algorithms to Solve the INTO Problems

In this section, we propose and formalize two heuristic algorithms (Concentrate

and Balance) designed to produce high-quality solutions to the two optimization problems

(INTO Concentrate and INTO Balance, respectively) in a timely manner.

3.4.1 Concentrate Heuristic Algorithm

As mentioned in Section 3.3.1, given the challenge of optimizing in-band teleme-

try orchestration, one possible strategy is to minimize the number of flows that will be

used to transport telemetry data. In this section, we propose Concentrate, a heuristic

algorithm focused on minimizing this number. Algorithm 1 shows the pseudo-code of

Concentrate. Next, we detail its procedures.

The algorithm has two input parameters: the set I of all active device interfaces

and the set F of all packet flows in the network. The algorithm maintains two main data

structures, CoveredBy and Monitors, that indicate which flow covers each interface (i.e.,

function Φ) and which interface is to be monitored by each flow, respectively. These data

structure also constitute the algorithm’s output that is used to generate packet processing

rules and configure a network. Initially, no flow has been assigned to monitor any interface

yet; in Lines 1-2, CoveredBy and Monitors are initialized to reflect this.

The algorithm also maintains four other auxiliary variables: κr (Line 3), NIFs

(Line 4), SIFs (Line 5), and UFs (Line 6). Variable κr indicates the remaining telemetry

capacity available for each flow. It is initialized with the telemetry capacity κ of the flows

and is updated as assignments are made by the algorithm. NIFs indicates, for each flow,

the number of interfaces not yet covered in its path. Variable SIFs keeps a sorted list

of the interfaces in the path of a flow ordered non-decreasingly by the number of flows

passing through them (and by the telemetry demand in case of a tie). Set UFs consists of

all currently unassigned flows, initially UFs = F . Lines 7-16 contain the main repeat loop

47

Algorithm 1 Concentrate heuristic pseudocode.
Input: I, F

1: CoveredBy(i)← Null, ∀i ∈ I

2: Monitors(f)← ∅,∀f ∈ F

3: κr(f)← κ(f),∀f ∈ F

4: NIFs(f)← |ρ(f)|,∀f ∈ F

5: SIFs(f)← SORT(i ∈ ρ(f), |FLOWS(i)|, δ(i)),∀f ∈ F

6: UFs← F

7: while UFs ̸= ∅ and ∃i ∈ I, CoveredBy(i) = Null do
8: fmax ← MAX(f ∈ UFs,NIFs(f), κ(f))

9: UFs← UFs− fmax

10: for i ∈ SIF(f) do
11: if CoveredBy(i) = Null and δ(i) <= κr(fmax) then
12: CoveredBy(i)← fmax

13: Monitors(fmax)← Monitors(fmax) ∪ i

14: κr(fmax)← κr(fmax)− δ(i)

15: for f ∈ FLOWS(i) do
16: NIFs(f)← NIFs(f)− 1

Output: CoveredBy, Monitors

of the algorithm. At each iteration of the outermost loop, the algorithm first selects the

unassigned flow fmax with the maximum number of interfaces still not covered in its path

(Line 7) and removes it from UFs (Line 8). In case of a tie, the algorithm selects any of the

flows with the maximum telemetry capacity. After finding fmax from F , it is assigned to

monitor every interface still uncovered in its path following the ordering given by SIF(f)

(Lines 10-13) and respecting its telemetry capacity (Lines 11). The remaining telemetry

capacity is updated after each assignment (Line 14). For every assignment, the value of

NIFs of all flows traversing the interface just covered is decreased by one (Lines 15-16),

as the interface is no longer uncovered and new flows cannot be assigned to monitor it.

The main loop is repeated until every flow has been considered or all interfaces have been

covered by the solution.

The worst-case computational complexity of this algorithm is given by O(n) +

O(m) +O(m · n · log n) +O((n+m) · (n ·m)) = O(n2 ·m+ n ·m2), where n is the

number of interfaces in I and m is the number of flows in F . Therefore, the algorithm

runs in polynomial time to the number of interfaces and flows in the network.

48

3.4.2 Balance Heuristic Algorithm

In this subsection, we formalize the Balance algorithm, which strives to minimize

the maximum number of telemetry items to be transported by any single flow. Algo-

rithm 2 shows the pseudo-code of Balance. Balance has the same input parameters and

output data structures of Algorithm 1. Algorithm 2 also maintains the same κr and NIFs

variables of Concentrate, which indicate the remaining telemetry capacity and the num-

ber of interfaces not yet covered in the path of each flow, respectively. Balance has two

additional variables: NFs and NCIFs. NFs indicates, for every interface, the number of

flows with available capacity passing through it. NCIFs is the set of all intefaces that are

not yet covered by any flow.

Algorithm 2 Balance heuristic pseudocode.
Input: I, F

1: CoveredBy(i)← Null, ∀i ∈ I
2: Monitors(f)← ∅,∀f ∈ F

3: κr(f)← κ(f),∀f ∈ F

4: NIFs(f)← |ρ(f)|,∀f ∈ F

5: NFs(i)← |FLOWS(i)|,∀i ∈ I
6: NCIFs← I

7: while NCIFs ̸= ∅ and ∃f ∈ F, κr(f) > 0 do
8: imm ← MINMAX(i ∈ NCIFs,NFs(i), δ(i))

9: NCIFs← NCIFs− {imm}
10: IFFs← {f : f ∈ FLOWS(imm) and κr(f) ≥ δ(imm)}
11: fmin ← MIN(f ∈ IFFs, κ(f)− κr(f),NIFs(f))

12: CoveredBy(imm)← fmin

13: Monitors(fmin)← Monitors(fmin) ∪ {imm}
14: κr(fmin)← κr(fmin)− δ(imm)

15: for f ∈ FLOWS(imm) do
16: NIFs(f)← NIFs(f)− 1

17: if κr(fmin) = 0 then
18: for i ∈ ρ(fmin) ∩NCIFs do
19: NFs(i)← NFs(i)− 1

Output: CoveredBy, Monitors

Lines 7-19 contain the main repeat loop of the algorithm. At each iteration of the

outermost loop, the algorithm first selects the uncovered interface imm with the minimum

number of flows with available capacity passing through it (Line 8) and removes it from

NCIFs (Line 9). In case of a tie, any of the interfaces with maximum telemetry demand

49

may be chosen. Next, from all flows traversing imm, the fmin flow collecting the least

amount of telemetry items (i.e., κ(f) − κr(f)) out of those with available capacity is se-

lected (Lines 10-11). In case of a tie, the flow with the minimum number of interfaces

still not covered in its path is chosen. If the tie persists, the algorithm selects any one

of the flows that tied in both of the steps. When imm and fmin have been found, flow

fmin is assigned to monitor interface imm (Lines 12-13). After the assignment, some ad-

justments are made to variables κr, NIFs, and NFs. The remaining capacity κr of flow

fmin is decreased by the demand δ of interface imm (Line 14). The number of uncov-

ered interfaces NIFs is decreased by one for every flow passing through interface imm

(Lines 15-16). If fmin has used all its capacity (Line 17) after been assigned to monitor

imm, then it is necessary to update the NFs value for every interface through which fmin

passes (Lines 18-19). This procedure is repeated until all active device interfaces in the

network are covered, or there is not any flow with available capacity.

The worst-case complexity of this algorithm is given byO(n+m)+O((n+m) ·

(n +m)) = O(n2 +m2), where n is the number of interfaces in I and m is the number

of flows in F .

3.5 Evaluation

In this section, we present computational experiments with the models and algo-

rithms introduced in the previous two sections of this chapter. We start by describing the

experimental setup and the dataset used in the experiments. Then, we detail two sets of

experiments. The first set of experiments evaluates the proposed mathematical program-

ming models and heuristic algorithms with regards to solution quality and processing

time. We refer to the models of Section 3.3 as CMP (Concentrate) and BMP (Balance)

and to the algorithms of Section 3.4 as CH (Concentrate Heuristic) and BH (Balance

Heuristic). The second set of experiments compares the heuristics with regards to the

performance factors introduced in Section 2.3. We also consider the “full assignment” as

a comparison baseline, refering to it as FA.

The experiments were carried out in a computer with an Intel Core i7-5557U CPU

running at 3.10GHz, 16GB of DDR3 1867MHz RAM, and Apple macOS 10.12 operating

system. The GLPK Solver2 4.65 was used to solve the mathematical programs. The

2GNU Linear Programming Kit Linear Programming/Mixed-Integer Programming Solver
(https://www.gnu.org/software/glpk/).

50

computation time limit to find a solution was set to 10 minutes. The proposed heuristic

algorithms were implemented in C++ and compiled with the Apple LLVM version 9.0.0

(clang-900.0.39.2) compiler.

The dataset used in the experiments is composed of 260 topologies of real wide

area networks catalogued by the Internet Topology Zoo (ITZ) project (KNIGHT et al.,

2011) and traffic matrices made available in Repetita (GAY; SCHAUS; VISSICCHIO,

2017). ITZ topologies range from 4 to 197 points-of-presence and from 16 to 880 inter-

faces. The maximum (minimum) network diameter is 37 (3) hops. To generate realistic

traffic matrices, Gay et al. (GAY; SCHAUS; VISSICCHIO, 2017) followed the random-

ized gravity model proposed in (ROUGHAN, 2005). We converted the available topolo-

gies to INTO problem instances. For every link in the topology, we considered there were

two interfaces, one in each extremity. Interface telemetry demands were randomly chosen

from the range from four to ten items following a uniform distribution. We choose this

range since four can be considered the minimum amount of items to identify the source

of a metadata field and its value (e.g., device ID + queue ID + queue ingress timestamp

+ queue delay) and ten is the number of common metadata fields that can be exported by

devices according to (GROUP, 2018). For each pair of network endpoints with positive

demands according to the traffic matrices, we considered there is a single aggregate net-

work flow (i.e., we differentiate flows by the pair of network entry point and exit point).

Flow telemetry capacities were randomly chosen following a normal distribution. Other-

wise stated, the mean telemetry capacity is equal to 35 items, and the standard deviation

is 5 items, which amounts for approximately 10% of the typical 1500-byte MTU being

available for transporting metadata in each packet.

3.5.1 Mathematical Programming Models and Heuristic Algorithms

To work in practice, a procedure to solve any variation of the INTO problem

should be able to provide high-quality solutions within short time intervals. This is nec-

essary so that the monitoring campaign can quickly adapt to network policy changes and

traffic fluctuation. In this first set of experiments, we evaluate the solution quality and pro-

cessing time of the algorithms introduced in Section 3.4, namely Concentrate Heuristic

(CH) and Balance Heuristic (BH), by comparing them to the mathematical programming

models.

We start by analyzing the processing times of the approaches. Figure 3.6 shows

51

the time taken by the GLPK Solver to run each of the INTO problem instances for the

mathematical programming models. As expected, it grows quickly with relation to in-

stance size for both models. We note that the time to process an instance is also subject to

other network characteristics besides size (e.g., diameter, degree of connectivity of nodes,

heterogeneity of paths). Thus, in the graphs, we can expect that some networks, although

smaller than other, take more time to be solved.

For the Concentrate Mathematical Program (CMP) model, the solver was not able

to find an optimal solution and check optimality for networks with more than 90 interfaces

(14 devices) within the 10-minute time limit. The solver was able to find the optimal

solution within the time limit for the INTO Balance instances with up to 252 interfaces

(56 devices) using the Balance Mathematical Program (BMP) model. From these results,

we conclude that solving CMP is generally harder than BMP. The difference in processing

time between the two approaches can be attributed in part to the fact that the mathematical

model CMP has more decision variables than BMP. Models with more variables tend to

have larger solution spaces and, thus, take longer to explore their totality in order to check

optimality. In summary, Figure 3.6 shows that solving both versions of the INTO problem

using the mathematical models takes considerable time, making their use impracticable

in real, highly dynamic scenarios.

Figure 3.6: Processing times for the mathematical programming models.

0 50 100 150 200 250
Number of Device Interfaces

0

100

200

300

400

500

600

Pr
oc

es
sin

g
Ti

m
e

(S
ec

on
ds

)

CMP
BMP

Figure 3.7 shows the processing time of the heuristic algorithms CH and BH as a

function of the network size. Both algorithms generate feasible solutions to all instances

of their corresponding INTO variation in less than one second. These results are up to

52

Figure 3.7: Processing times for the heuristic algorithms.

0 100 200 300 400 500 600 700 800 900
Number of Device Interfaces

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
oc

es
sin

g
Ti

m
e

(S
ec

on
ds

)

CH
BH

three orders of magnitude lower than the processing times required by the mathematical

models. The short processing times achieved by both heuristic algorithms argues in favor

of their adequacy to be applied in highly dynamic networks. Next, to confirm that they

are adequate, we also evaluate the quality of the solutions given by them.

To evaluate the quality of the solutions provided by the heuristics, we compare

their objective function values to lower bound models. We start by comparing the lower

bound models and the mathematical programming models to estimate how close to the op-

timal values are the lower bounds. Then, we compare the lower bounds with the heuristic

algorithms solutions considering the estimated gap. The lower bound for INTO Con-

centrate is computed by exchanging Equation 3.3 of the CMP model by Equation 3.12.

xi,f ≤ yf ,∀i ∈ I,∀f ∈ F (3.12)

The description of the variables can be found in Table 3.1. The original equation

had two purposes: (i) guarantee that no flow is assigned to collect and transport more

items then its capacity allows and (ii) activate the variable yf (which is used by the objec-

tive function of CMP to count the number of telemetry-active flows) when any telemetry

item is assigned to flow f ∈ F . With the new equation we assume a scenario where all

flows would have unlimited telemetry capacity. The new, simpler constraint presented in

Equation 3.12 does not consider telemetry demands and capacities (first purpose), elim-

inating a summation and making it quicker to compute. Only the second purpose of the

53

original equation is kept, i.e., all flows performing at least one telemetry action will be

accounted for in the objective function.

In our experiments, the solver was able to find feasible solutions for the CMP

model for 248 out of the 260 networks. Out of those 248 cases, the solver was able to

certify optimality for only 28 instances. No feasible solution was found for 12 problem

instances. The mean gap between the lower bound and CMP across all 248 feasible solu-

tions found by the solver was 12.62 flows (with standard deviation equal to 11.68 flows).

The minimum and maximum gap values were 0 and 50 flows, respectively. Compared

to the lower bound, the mean gap for CH was 9.82, and the standard deviation was 7.93.

The minimum and maximum gap values were 0 and 49 flows. Comparing the gaps, we

conclude that the solutions generated by CH are slightly better than the feasible solutions

provided by the CMP model within the 10-minute time limit. Thus, the CH algorithm

is not only able to generate solutions within one second but also provides high-quality

solutions.

To evaluate the quality of the solutions found to the INTO Balance variation, we

compute a lower bound for each instance as the maximum value between (i) the maximum

telemetry demand of a single interface and (ii) the sum of all demands divided by the total

number of flows.

Out of all 260 instances evaluated, for the BMP model, the solver was able to find

feasible solutions within the time limit for 223. The solver was able to certify optimality

for 174 out of these 223 cases. No feasible solution was found within 10 minutes for 37

instances. In our comparison, the optimal solution matched the lower bound in 171 out of

the 174 optimal cases. Considering all 223 feasible solutions found, the mean lower bound

to BMP gap was 0.84 items (with standard deviation equal to 2.37). The minimum and

maximum gap values were 0 and 14 items, respectively. Concerning the BH algorithm,

the mean gap to the INTO Balance lower bound was 0.09 items (the standard deviation

was 0.63). The minimum and maximum gap values were 0 and 5 items. The BH algorithm

was able to generate an optimal solution for all but 5 instances. Both BMP and BH have

solutions with object function values very close to the lower bounds.

From the experiments in this subsection we conclude that both of the proposed

algorithms, CH and BH, generate high-quality solutions within short processing times,

and, thus, are well suited to be applied in highly dynamic networks.

54

3.5.2 Comparison of the INTO problem variations

When optimizing the use of INT to perform monitoring, an operator may opt to

configure the network according to one of the two variations of the INTO problem. In

this remaining set of experiments, we compare the solutions generated by the proposed

heuristic algorithms (CH and BH) and the baseline full assignment (FA). To evaluate the

algorithms, we consider the main INT constraints and performance influencing factors

introduced in Section 2.3.

Maximizing Interface Coverage

As previously discussed, the telemetry capacity of flow packets in a network may

limit how many of the device interfaces can be monitored. In this subsection, we evaluate

how sensitive the INT orchestration strategies are regarding interface coverage.

For each of the assignment strategies, we set the initial mean packet telemetry ca-

pacity to 5 items (the standard deviation was kept at 5 items for the whole experiment).

We then calculated the interface coverage – i.e., the percentage of device interfaces cov-

ered by at least one flow – for every network of the Internet Topology Zoo (KNIGHT et

al., 2011). Finally, we increase the mean capacity in steps of 5 items until each assign-

ment strategy was able to provide a solution with full (100%) coverage for all networks.

Fig. 3.8 presents the results of this experiment as a CDF where the x-axis indicates cover-

Figure 3.8: Interface Coverage.

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Interface Coverage (%)

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f t
he

 N
et

wo
rk

s

FA (= 5)
FA (= 10)
FA (= 15)
FA (= 20)
FA (= 25)
FA (= 30)
FA (= 35)
CH (= 5)

CH (= 10)
CH (= 15)
CH (= 20)
BH (= 5)
BH (= 10)
BH (= 15)
BH (= 20)

55

age levels and the y-axis indicates percentages of the networks. For every pair of strategy

and capacity level, we plot a curve in the graph. For the full assignment (FA curves in

the plot), we report the real coverage levels that would be achieved without exceeding the

packet telemetry capacity.

The main conclusion from the results presented in Fig. 3.8 is that the proposed

heuristics (CH and BH) are more resilient to lower levels of telemetry capacity than the

full assignment (FA). Even when the capacity is at its lowest level (5 items), they can

achieve 100% interface coverage (full coverage) for about 25% of the networks. Further-

more, in the same scenario, about 80% of the networks have good coverage of at least

90% of interfaces. CH and BH present similar coverage for all capacity levels, with a

slightly better, yet noticeable result observed for the latter. While both of the heuristics

achieve full coverage when the mean telemetry capacity is 20 items, the full assignment

only achieve it when that capacity is at least 35 items.

In the following subsections, to avoid biasing or tainting the comparison, we will

only present and consider the results where each strategy was able to achieve full coverage

for all networks. That is, when the capacity is of at least 35 and 20 items for the full

assignment and heuristic algorithms, respectively. Next, we continue the evaluation by

considering quality and cost metrics related to the four performance factors introduced in

Section 2.3.

Minimizing Flow Packet Load

One of the INT factors that may influence network performance is intrinsically re-

lated to the extent to which packets vary in size along their paths. The number of telemetry

items flow packets collect from device interfaces (i.e., its telemetry load) determines this

variation. The best approach to avoid causing significant jitter or drift in transmission

times is to minimize the telemetry load of packets. Figure 3.9 presents the cumulative

distribution function of the mean flow packet load. For each orchestration strategy, the

figure presents a curve representing the distribution of values when the mean telemetry

capacity (κ̄) is 35 items. The figure also presents 95% confidence intervals as filled areas

in the graph.

The results in Figure 3.9 show that BH achieves the best possible telemetry load

per flow packet. The mean load is approximately seven items, which is also the mean

telemetry demand of interfaces. This value indicates that in its solutions, BH tends to

assign each telemetry-active flow to monitor one interface. The variability shown in the

56

Figure 3.9: Mean and confidence interval for flow packet load when the mean telemetry
capacity is 35 items.

5 10 15 20 25 30 35
Mean Flow Packet Load (Number of Telemetry Items)

0

10

20

30

40

50

60

70

80

90

100
Pe

rc
en

ta
ge

 o
f t

he
 N

et
wo

rk
s

FA (= 35)
CH (= 35)
BH (= 35)

Figure 3.10: Evaluation of flow load as telemetry capacity varies.

5 10 15 20 25 30 35 40 45
Mean Flow Packet Load (Number of Telemetry Items)

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f t
he

 N
et

wo
rk

s

FA (= 35)
FA (= 50)
CH (= 20)
CH (= 35)
CH (= 50)
BH (= 20)
BH (= 35)
BH (= 50)

graph for BH is due to the variation of the interface telemetry demands. In all cases, CH

and FA present higher load values than BH. CH presents higher values than BH because

when minimizing the number of telemetry-active flows it tends to use as much as possible

the capacity of (a small subset of) flows. CH also presents high variability for flow packet

load, which is due to its greedy rationale to flow assignment. Its heuristic causes a group

of flows to use most of their packet capacity while another group uses only a fraction to

cover the remaining interfaces.

57

Figure 3.10 illustrates the influence of the mean capacity of flow packets over the

mean telemetry load. It reveals that BH is not influenced by the capacity. This phe-

nomenon was expected since an increase in capacity has no impact in minimizing the

maximum flow packet load (i.e., the optimization goal of BH). CH presents small in-

creases in flow load as capacity increases. In turn, FA increases significantly the telemetry

load imposed on flows when more capacity is available, which aligns with its objective of

collecting as many items as possible with all flows. In a case where the telemetry capacity

is assumed to be infinite, the mean flow packet load of FA would be an approximation of

the mean telemetry demand of all flow paths in a network.

Minimizing Flow Usage

The limitation on the processing capacity of forwarding devices and monitoring

sinks (Section 2.3, Items (b) and (c)) prompts orchestration strategies to minimize the

number of telemetry reports generated periodically. This minimization has the objective

of alleviating the packet processing overhead on both forwarding devices and monitor-

ing sinks/analyzers. In this subsection, we evaluate the flow usage (i.e., the number of

telemetry-active flows) demanded by the strategies, as this number directly influences the

number of reports generated.

Figure 3.11 presents the flow usage as a function of the number of device interfaces

in a network. For every combination of strategy, telemetry capacity and network we plot

a point in the graph. We limit the y-axis to 1 800 flows to be able to compare the flow

usage of the proposed heuristics. The total number of flows for the largest tested network

(i.e., the one with 880 interfaces) is 38 612.

CH uses the minimum amount of flows across all strategies, which was expected

since its main optimization objective is to minimize this value. CH typically assigns each

telemetry-active flow to monitor about four interfaces, a 4:1 interface to flow ratio. BH

presents a direct relationship between the number of active flows and of interfaces, i.e.,

each flow covers a single interface (1:1 ratio). Thus, BH uses, in the general case, four

times more flows than CH. For a mean telemetry capacity of 35 items, CH uses 225 flows

to cover the largest network in the dataset, which has 880 forwarding device interfaces,

while BH uses 880 flows. For the same scenario, FA assigns all 38 612 flows (not shown

in the graph) in the network to carry out telemetry. Thus, both of the heuristics use up

to two orders of magnitude less flows then FA. CH is the most scalable of the strategies,

followed by BH with a multiplicative increase by a constant factor of about four.

58

Figure 3.11: Flow usage as a function of the number of interfaces in a network.

0 100 200 300 400 500 600 700 800 900
Number of Device Interfaces

0

200

400

600

800

1000

1200

1400

1600

1800

Nu
m

be
r o

f T
el

em
et

ry
-A

ct
iv

e
Fl

ow
s

FA (= 35)
FA (= 50)
CH (= 20)
CH (= 35)

CH (= 50)
BH (= 20)
BH (= 35)
BH (= 50)

Maximizing Information Correlation

In addition to minimizing the number of telemetry-active flows, the limited pro-

cessing capacity of monitoring sinks (Section 2.3, Item (c)) also motivates strategies to

maximize the correlation of the information contained in each telemetry report received

by the monitoring sinks, simplifying their analysis. In this evaluation, we consider the

percentage of interfaces a flow covers from its path as a measure of this correlation.

Figure 3.12: Mean and confidence interval for information correlation when the mean
telemetry capacity is 35 items.

High variability
in flow assignment

Information correlation
is 50% or more for

85% of the networks

Top 85% of
the networks

The results of the experiment are shown in Figures 3.12 and 3.13. Figure 3.12

59

presents the CDF of the mean information correlation for the networks. The graph has

a curve for each evaluated strategy showing the distribution of values when the mean

telemetry capacity is 35 items. The figure also presents the 95% confidence intervals as

filled areas in the graph. Figure 3.13 shows the effect of the telemetry capacity on the

mean correlation. For clarity, we omit confidence intervals in this second figure.

Figure 3.13: Evaluation of information correlation as the telemetry capacity of flows
varies.

Top 85% of
the networks

Information correlation
is 90% or more for

85% of the networks

The results in Figures 3.12 and 3.13 support the expected behavior of the heuris-

tics. According to Figure 3.12 CH presents the best results among the heuristics, with

(the top) 85% of networks having 50% or more information correlation. Note in the fig-

ure that the lower 15% of the networks (0%–15%) have an x-axis value below 50, while

the remaining 85% (15%–100%) have a value equal or above 50. This means that a typ-

ical report covers at least half the path of a flow. We highlight that the results for FA in

Figure 3.13 show that reaching high correlation is very costly in terms of packet telemetry

capacity. More specifically, to achieve 90% correlation for about 85% of the networks,

the mean telemetry capacity must be about 50 items per packet. Observe (in Figure 3.13)

that the lower 15% of the networks have an x-axis value below 90 for curve FA (κ̄ = 50),

while the remaining upper 85% have values above 90.

Going back to Figure 3.12, it also presents the significant variability in flow as-

signment (see filled area) regarding CH found previously in Figure 3.9. This behavior

confirms the previous conclusion that CH tends to assign a group of flows to cover (al-

most) their entire path, while another group covers only a few remaining interfaces each.

BH is not influenced by telemetry capacity variation. This is concluded by the fact that

60

all curves for BH in Figure 3.13, representing different levels of telemetry capacity, su-

perimpose each other. BH achieves at least 25% correlation for most of the networks in

all scenarios, i.e., flows tend to cover about one-fourth of their paths.

Optimizing Information Freshness

As the last aspect of our comparison, we consider the fact that network links have

finite bandwidth (Section 2.3, Item (d)). The limitation on link bandwidth argues for (i)

avoiding transporting telemetry data through too many links in a network and for (ii) dis-

tributing the origin of telemetry reports as much as possible among network devices. To

measure the extent to which strategies conform to this task we use the mean information

freshness, i.e., the mean number of hops the information collected at interfaces is trans-

ported in-band before being reported to a monitor sink. This metric is connected to the

bandwidth limitation since as information stays longer in a packet it losses its freshness

and leads to higher bandwidth consumption.

Figures 3.14 and 3.15 present the freshness results. Figure 3.14 shows the CDF of

the mean information freshness considering the three orchestration strategies. The filled

areas in the graph represent the 95% confidence intervals. Figure 3.15 shows the freshness

as a function of the network diameter (i.e., the length of the longest flow path).

Figure 3.14: Mean and confidence interval for information freshness with mean telemetry
capacity equal to 35 items.

0 2 4 6 8 10
Information Freshness

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f t
he

 N
et

wo
rk

s

FA (= 35)
CH (= 35)
BH (= 35)

BH keeps information freshness at the optimal value (zero) for most of the net-

works analyzed (Figure 3.14). A value zero for freshness indicates that most information

61

Figure 3.15: Information freshness as a function of the network diameter.

0 5 10 15 20 25 30 35 40
Network Diameter

0

1

2

3

4

5

6

7

8

9

10

11

In
fo

rm
at

io
n

Fr
es

hn
es

s

FA (= 35)
CH (= 35)
BH (= 35)

is reported to a monitoring sink immediately after being collected, which results in the

best possible monitoring traffic distribution across a network. Figure 3.15 indicates that

the network diameter has little to no effect on freshness for BH. FA typically causes flows

to transport telemetry information for about two hops before reporting it. The freshness

has slightly worse values for larger networks. CH presents the worst freshness values

among strategies and is significantly influenced by the network diameter. CH comes to

the point of making flows transport information up to 10 hops (in the mean case) for net-

works with a diameter of about 33 hops. Thus, CH tends to concentrate more the points

where reports are generated, which may lead to link saturation.

Summary of Results

Table 3.2 summarizes the results of our evaluation. Comparing the heuristics

against each other and with the baseline full assignment approach, we first observed that

both of the heuristics scale well with network size. This contrasts with the full assignment,

which causes considerable overhead on network traffic and devices. Furthermore, the

heuristics are also better at achieving full interface coverage. We also concluded that the

heuristic to solve INTO Concentrate (CH) performs well in minimizing the overhead on

forwarding devices and monitoring sinks. The number of telemetry reports that have to be

generated periodically is minimal, and the information reported to sinks has a significant

level of correlation to ease their analysis. As a consequence, CH is the most scalable of

62

Table 3.2: Summary of the evaluation results.

Approach Scalability
Interface
Coverage

Packet
Load

Flow
Usage

Information
Correlation

Information
Freshness

FA Poor – Fair # Fair # Poor – Best Fair #

CH Best Best Good G# Best Good G# Fair #

BH Good G# Best Best Good G# Fair # Best

the strategies and may be particularly recommended for medium to large networks. The

INTO Balance heuristic (BH) imposes the lowest telemetry load per monitoring-active

flow and results in the best distribution of the telemetry load among forwarding devices

and links in a network. It also provides data with the most freshness. These results sug-

gest that BH may be an adequate strategy for low latency networks or when monitoring

traffic highly sensitive to packet size changes.

3.6 Related Work

In this section, we review previous work that investigated the use of forward-

ing device mechanisms to monitor networks and services. NetSight (HANDIGOL et al.,

2014) has packet mirroring as its fundamental monitoring piece, which is available in both

OpenFlow (MCKEOWN et al., 2008) and traditional switches. In NetSight, every switch

in the path of a packet creates a copy of it, called postcard, and sends it to a logically

centralized control plane. The multiple postcards of a single packet passing through the

network are combined in the control plane to form a packet history that tells the com-

plete path the packet took inside the network and the modifications it underwent along the

way. Depending on the size and level of activity of the network, NetSight may generate

a considerable volume of monitoring data. To overcome this issue, Everflow (ZHU et al.,

2015) applies a match+action mechanism to filter packets and decide which ones should

be mirrored, thus reducing the overheads at the cost of monitoring accuracy and level of

detail. Stroboscope (TILMANS et al., 2018) also applies packet mirroring to monitor

networks. It answers monitoring queries by scheduling the mirroring of millisecond-long

slices of traffic while considering a budget to avoid network performance degradation.

Payless (CHOWDHURY et al., 2014) and AdaptiveSampling (CHENG; YU, 2017)

followed a different direction of the previous work. They make use of two OpenFlow-

enabled switch features to monitor a network: (i) the capability to store statistics related

63

to table entries (which may represent flows) and (ii) the possibility of exporting these

statistics via a polling mechanism. In these works, the polling frequency influences the

quality (e.g., freshness) of the monitoring data. The higher the frequency, the more fine-

grained the data. Payless and AdaptiveSampling dynamically and autonomously adjust

the polling frequency to achieve a good trade-off between monitoring quality and cost.

Another work in the context of software-defined measurement is DREAM (MOSHREF

et al., 2014). DREAM is a system that dynamically adapts resources (i.e., TCAM entries)

allocated to measurement tasks and partitions each of them among devices. DREAM sup-

ports multiple concurrent tasks and ensures that estimated values meet operator-specified

levels of accuracy. Payless, AdaptiveSampling, and DREAM have the goal of monitoring

traffic characteristics and keeping costs low. Assessing the network state (e.g., switch

queue occupancy) is outside their scope.

The idea of orchestrating monitoring data collection across multiple devices to

reduce costs is not completely new. Several investigations have been carried out with

that objective. For example, Cormode et al. (CORMODE et al., 2005) proposed config-

uring devices to monitor their local variables independently and only report their values

(to a centralized coordinator) when significant changes are observed. A-GAP (PRIETO;

STADLER, 2007) and H-GAP (JURCA; STADLER, 2010) organize measurement nodes

into a logical tree graph. When a significant change is observed for a local variable, the

node sends an update to its parent node. The latter is responsible for aggregating the val-

ues from multiple devices and sending updates up the tree upon significant value change.

The root node maintains network-wide aggregate values to be used for monitoring anal-

ysis. Tangari et al. (TANGARI et al., 2017) proposed decentralizing monitoring control.

The monitoring control plane is composed of multiple distributed modules, each capa-

ble of performing measurement tasks independently. Their approach logically divides the

network into multiple monitoring contexts, each with specific requirements. As a result,

monitoring data tends to be aggregated and analyzed close to the source, reducing the

communication overhead considerably. The rationale behind these works was conceived

before the emergence of programmable data planes without considering the opportunity

to program forwarding devices. As a consequence, in contrast to INTO, their solutions

are based on traditional coarse-grained counters or aggregate statistics, and their data ex-

change models operate at control plane timescales.

Another work which shares the context of INTO is Sonata (GUPTA et al., 2018), a

system that coordinates the collection and analysis of network traffic to answer operator-

64

defined monitoring queries. These queries consist of a sequence of dataflow operators

(e.g., filter, map, reduce) to be executed over a stream of packets. Sonata is based upon

stream processing systems and programmable forwarding devices, partitioning queries

across them. Similar to INTO, it has the goal of minimizing the amount of data that needs

to be sent to and analyzed by the control plane (i.e., stream processors). Sonata leverages

data plane programmability to offload as much as possible of each query to the forwarding

devices, considerably reducing the packet stream before sending it to stream processors

(i.e., analyzing servers). With the same goal in mind, TurboFlow (SONCHACK et al.,

2018), offloads as much as possible of a flow record generation procedure to forward-

ing devices, splitting responsibilities between their packet forwarding engine and their

local CPUs. Different from INTO – which targets monitoring the network condition –

Sonata and TurboFlow focus on the analysis of traffic characteristics. Furthermore, nei-

ther of these systems applies in-band network telemetry for metadata reporting. In the

next chapter, we will explore offloading (part of) monitoring tasks to the data plane with

the proposal of INTSIGHT.

In our work, we revisit the challenge of monitoring networks effectively and effi-

ciently. We identify the new opportunities for obtaining accurate and fine-grained infor-

mation about forwarding device state, behavior, and performance, considering the recent

advances in SDN. We provide a foundation to help to understand the trade-offs involved in

conducting network monitoring via a mechanism such as INT by identifying the key fac-

tors that impact performance associated with it. We formalize in-band network telemetry

orchestration as an optimization problem. We also prove that it is an NP-Complete prob-

lem, proposing integer linear programming models to solve it. Finally, we devise heuristic

algorithms to produce high-quality solutions within strict computational time.

3.7 Chapter Summary

This chapter introduced the In-band Network Telemetry Orchestration (INTO)

problem. It consists in minimizing monitoring overheads in the data, control, and man-

agement planes when using In-band Network Telemetry (INT) to collect the state and

behavior of forwarding device interfaces. We formalized two variations of the INTO

problem and proposed integer linear programming models to solve them. The first varia-

tion of the problem, INTO Concentrate, has the goal of minimizing the number of flows

used for telemetry. The second variation, INTO Balance, seeks to minimize the maxi-

65

mum telemetry load (i.e., the number of telemetry items transported) among packets of

distinct flows. We proved that both variations belong to the NP-Complete class of prob-

lems. Through our evaluation using real network topologies, we found that both of the

proposed models do indeed take a long time to solve the INTO problem. This result mo-

tivated us to design two heuristic algorithms to produce feasible solutions in polynomial

computational time to the network size and number of flows. Experimental results show

that the proposed heuristics produce high-quality solutions in under one second for all of

the real networks evaluated. When comparing the heuristics against each other, the INTO

Concentrate heuristic was found to be the most scalable, making it particularly useful for

medium- and large-scale networks. The INTO Balance heuristic, in its turn, was found

to be the most adequate strategy for low latency networks. We highlight that both heuris-

tics scale well with network size, contrasting them from the full assignment, as the latter

causes considerable overhead on network traffic and devices.

66

67

4 DIAGNOSING SLO VIOLATIONS WITH IN-BAND NETWORK TELEMETRY

In this chapter, we present our first step taken towards answering Questions 2 and 3

described in Section 1.2. These research questions relate to pre-processing and consol-

idating monitoring data in forwarding devices and using that data to detect and react

to network problems in short timescales. We propose a system that offloads the tasks

of aggregating and summarizing metadata and of detecting SLO violations to the data

plane1. This chapter is organized as follows. In Section 4.1, we further motivate the

need for fine-grained, accurate, and timely SLO monitoring in communication networks.

In Section 4.2, we present an overview of INTSIGHT, our proposed system for network

monitoring. In Section 4.3, we describe the design and implementation of INTSIGHT. In

Section 4.4, we present our evaluation, where we test the effectiveness of INTSIGHT’s

approach and compare it with existing monitoring techniques. In Sections 4.5 and 4.6,

we discuss the related work and INTSIGHT limitations, respectively. In Section 4.7, we

conclude the chapter with our main considerations and lessons learned.

4.1 Motivation

Consider a communication network that serves multiple traffic classes, each with

different performance expectations, i.e., service-level objectives (SLOs). An SLO might

prescribe, for example, that the end-to-end delay has to be less than 5milliseconds in 95%

of the cases for telesurgery traffic, or that the provided bandwidth has to be higher than

1Gbps at least 99% of the time (within a minute) for a video streaming traffic aggregate.

While it is possible to build a highly over-provisioned network that can satisfy all SLOs

simultaneously under worst-case conditions, such a network would be prohibitively ex-

pensive and inefficient. In practice, operators provision for the expected case. They rely

on mechanisms for routing, packet scheduling, traffic shaping and isolation, and load bal-

ancing (GOVINDAN et al., 2016) (to cite a few) to correct performance problems and

cater to fluctuations in demand. In this regime, it becomes imperative for network opera-

1This chapter is based on the following publication:

• Jonatas Adilson Marques, Kirill Levchenko, Luciano Paschoal Gaspary. IntSight: Diagnosing
SLO Violations with In-Band Network Telemetry. ACM International Conference on emerging
Networking EXperiments and Technologies (CoNEXT 2020) (MARQUES; LEVCHENKO; GAS-
PARY, 2020a).

68

tors to be able to detect and diagnose SLO violations quickly. Next, we discuss these two

requirements for network monitoring in more detail.

Requirement 1: Detect SLO Violations

This requirement refers to noticing violations whenever they happen inside the

network. In this work, we focus on violations of bandwidth and latency SLOs, arguably

the most commonly used and important ones after availability. Detecting a bandwidth

violation entails monitoring the instantaneous bandwidth provided to flows. For latency,

it requires inspecting the end-to-end delay of every packet subject to the SLO. In both

cases, aggregated or averaged values, although sometimes useful, limit the effectiveness

of the detection by hiding short-lived fluctuations in traffic (e.g., microbursts (ZHANG et

al., 2017)). In summary, detecting violations requires observing the network traffic with

very fine granularity, i.e., up to per-packet analysis.

Requirement 2: Diagnose SLO Violations

Given that a violation was detected, another essential requirement is to identify

its root cause. Diagnosing a bandwidth SLO violation boils down to identifying the hops

along the path of the affected flow where packets were dropped, and the competing traffic

at these points. The violation of an end-to-end delay SLO is diagnosed by identifying

hops where the flow of interest was substantially delayed, as well as the competing traffic

at these points. In short, diagnosing violations means pinpointing forwarding devices

experiencing contentions or even dropping packets, and identifying the flows with active

traffic on these devices.

4.2 INTSIGHT

In this section, we present an overview of INTSIGHT’s approach to detect and di-

agnose SLO violations, focusing on end-to-end delay and bandwidth SLOs. It is inspired

by in-band network telemetry (INT), but, in contrast to its classic approach of device-wise

metadata collection (KIM et al., 2015), INTSIGHT uses telemetry headers as workspaces

where forwarding devices compute path-wise metadata (e.g., path IDs, contention points,

and end-to-end delays) progressively. Detection in the data plane, then, becomes a matter

of comparing the computed values with SLO-defined ones. The proposed system enables

69

Figure 4.1: Overview of INTSIGHT’s main procedures in the data and control planes.

Conditionally
Generate
Flow Report

A

B

Nx

Nz

Update Ingress
Flow Metadata

Packet

Create and Insert
Telemetry Header

Update Path-Wise
Telemetry Fields

Update Path-Wise
Telemetry Fields

Update Path-Wise
Telemetry Fields

Extract Telemetry
Header

Update or Reset
Egress Flow
Metadata

Parse and Store
Flow Reports

w

Build and Analyze
Epoch-Wise View
of the Network

Pinpoint SLO
Violations and
Contentions

Identify Impacted
and Culprit Flows

2a

2b

2c

3a

4a 4b

4d4c

r

w

r

Ny

Compute and
Install Path ID
Updating Rules

Translate and
Install SLO
Thresholds

Configure
Epoch Length1a 1b

1c 1d

5a 5b

5c 5d

Config

Config

Config

Flow
Report

X
Define and Install
Contention and
Suspect Thresholds

Ingress Node2
Egress Node4

Intermediate Node3

Coordination1 Diagnosis5

Data Plane

Control Plane

forwarding devices to summarize monitoring data and selectively report events of interest

to the control plane, where SLO violation diagnosis takes place. In Section 4.2.1, we start

our overview by presenting how forwarding devices running INTSIGHT monitor packets

and report events of interest2. Then, in Section 4.2.2, we describe how INTSIGHT’s con-

trol plane application (i) coordinates the monitoring tasks in the data plane and how it (ii)

analyzes the information reported by data plane devices to diagnose SLO violations.

4.2.1 INTSIGHT Data Plane

Figure 4.1 illustrates INTSIGHT’s approach to network monitoring. It exemplifies

the trajectory of a data packet on a network monitored by INTSIGHT. For this example,

as well as for INTSIGHT’s general design, we consider all forwarding devices are capa-

ble (e.g., through data plane programmability) and engaged in monitoring the traffic3.

To guide the overview, we consider a flow of packets subject to SLOs for both end-to-

end delay and provided bandwidth. The packets of this SLO traffic class (henceforth

referred to simply as a flow) enter the network through end-point A, are routed through

path [Nx, Ny, Nz], and leave the network to reach end-point B. The upper section of the

figure shows the procedures executed by devices according to their roles, which can be an

ingress, intermediate, or egress-node role.

2We note that INTSIGHT does not replace or interfere with standard packet processing and forwarding
procedures.

3In Section 4.6, we discuss the effects of partial network support to INTSIGHT.

70

In our example, device Nx represents the ingress node, i.e., the first device in the

network to receive packets from our example flow. Ingress nodes have two main tasks:

(i) storing persistent metadata about the traffic entering the network through them and (ii)

bootstrapping the telemetry process for the packets. The first task is particularly important

since these devices observe the traffic as it enters the network, providing a more accurate

view of its demands. When device Nx receives a data packet coming from end-point A,

it follows the three steps described next. Initially, it updates the values of the metadata

fields (which are stored in arrays of registers, further explained in §4.3.2) associated with

the flow to which the packet belongs (Step 2a in Figure 4.1). Table 4.1 enumerates the

metadata fields that ingress nodes save for the flows. They are Epoch, RxPkts, and

RxBits. Field Epoch is set to the current epoch according to the clock of the device.

Fields RxBits and RxPkts are incremented by packet length and one, respectively.

Next, Nx creates and inserts a telemetry header into the packet containing fields such as

Epoch and E2EDelay (Step 2b). The full list of fields present in telemetry headers are

also presented in Table 4.1. These fields are initialized considering current flow metadata

and default values. For example, field Epoch is set to the same value stored in the node,

and field E2EDelay is set to zero.

Following the two previous steps (i.e., 2a and 2b), Nx updates the path-wise fields

(i.e., those marked with an asterisk in Table 4.1) in the telemetry header according to what

the packet observed in this node (Step 2c). More specifically, field PathID is updated

(according to a pre-configured lookup table) to reflect the forwarding decision made by

the device (see §4.3.3). Field ContentionPts is marked in the case contention was

observed in the device, characterized by high queue occupancy. Field SuspicionPts

is marked when the rate of the flow is held accountable for the high utilization of the

outgoing port or link considering its capacity. For both fields ContentionPts and

SuspicionPts, contention and suspicion are determined by comparing measured val-

ues with thresholds pre-configured in lookup tables (further explained in §4.3.5). Finally,

the delay the packet was subjected to on the device is added to field E2EDelay (§4.3.6).

Intermediate nodes (Ny in our example) take only a single step: they update the

path-wise fields in the telemetry header (Step 3a). This is equivalent to Step 2c on ingress

nodes. Compared to processing demands on ingress and egress nodes, the one on in-

termediate nodes is the simplest and least resource-intensive. For example, intermediate

nodes do not persistently store any metadata concerning the traffic they forward. This

exempts network core devices from having the same processing and memory capacity as

71

Table 4.1: Metadata fields maintained by IntSight at ingress devices, telemetry headers,
and/or egress devices for each flow. Path-wise fields are marked with an asterisk (*).

Metadata
Field

Description
Ingress
Device

IntSight
Header

Egress
Device

IntSight
Report

Epoch Most recent epoch in which a
packet of the flow entered the net-
work.

✓ ✓ ✓ ✓

RxPkts Number of flow packets received by
the network so far in the epoch.

✓ ✓ ✓ ✓

RxBits Number of flow bits received by the
network so far in the epoch.

✓ ✓ ✓ ✓

PathID* A tuple ⟨source, destina-
tion, length, code⟩ that uniquely
identifies the path traversed by
packets of the flow. (initially:
⟨ingress node, null, 0, 1⟩)

– ✓ ✓ ✓

ContentionPts* Bit array indicating the points of
contention in the path of a packet.
(initially: 0)

– ✓ ✓ ✓

SuspicionPts* Bit array indicating the points
where the traffic used a significant
percentage of a device/link capacity
in the epoch. (initially: 0)

– ✓ ✓ ✓

E2EDelay* Sum of delays of each hop observed
by a packet in its path. (initially: 0)

– ✓ – –

HighDelays Number of highly delayed flow
packets so far in the epoch.

– – ✓ ✓

TxPkts Number of flow packets transmitted
out of the network so far in the cur-
rent epoch.

– – ✓ ✓

TxBits Number of flow bits transmitted out
of the network so far in the epoch.

– – ✓ ✓

EgressEpoch Most recent epoch in which a
packet of the flow left the network.

– – ✓ ✓

FlowID Code number that uniquely identi-
fies a flow on a forwarding device.

– – – ✓

edge devices.

An egress node, i.e., the last device to process a packet before it leaves the network

(Nz in Figure 4.1), is tasked with the most important steps in the monitoring procedure.

After updating path-wise fields (Step 4a, same as Steps 2c and 3), it extracts the packet’s

telemetry header (Step 4b). This makes the packet return to its original format before

being forwarded to the end-point (B in our example). Next, the egress node updates the

persistent metadata fields regarding the flow (see Table 4.1) by considering the telemetry

field values of the extracted header (Step 4c). Similar to ingress nodes, egress nodes store

metadata fields in arrays of registers.

72

The update process is carried out as follows. Field Epoch is only updated when

a new epoch starts. Fields RxPkts and RxBits are updated with the maximum val-

ues between those contained in the telemetry header and those in the registers (avoid-

ing data corruption due to out-of-order packet arrivals, further discussed in §4.6). Field

PathID is compared to the stored value to check for path changes (potentially trig-

gering an additional path change report, see Section 4.3.4). Fields ContentionPts

and SuspicionPts are updated (bitwise OR operation) with the new contention and

suspicion points observed by the packet being processed. Field HighDelays is incre-

mented by one if the value of field E2EDelay exceeds the SLO-defined end-to-end delay

threshold (e.g., 10ms) for the flow (the SLO thresholds, further described in §4.3.6, are

stored and queried from lookup tables filled in advance by the control plane). Fields

TxPkts and TxBits are updated to account for the current packet being forwarded.

Field EgressEpoch is updated with the current epoch in the egress node.

In case the currently received packet indicates the start of a new epoch for its flow,

the egress node resets all fields to default values and then updates their values according

to the telemetry header just extracted. The last step in an egress node is to conditionally

generate flow reports (Step 4d), which are control packets with all the metadata stored for

the respective flow during a monitoring epoch. These reports also include field FlowID

(see Table 4.1), which indicates the unique index on the arrays of registers where the

metadata about the flow was stored in the reporting device (see §4.3.2). A report is gen-

erated if, and only if, both an epoch just ended and an event of interest was observed for

the flow. An event of interest can be an SLO violation, a device contention, or a flow

suspicion. Regarding our example SLOs, end-to-end delay violations are detected when

there were high delays during the epoch. In turn, bandwidth violations are detected when

the provided bandwidth falls below the SLO-defined value due to packet drops and con-

tentions. We further describe violation detection procedures in Section 4.3.6. Contentions

are indicated and detected via field ContentionPts. Similarly, suspicion is detected

by inspecting field SuspicionPts (§4.3.5). At the end of this step, the generated re-

port is sent to the control plane to be analyzed and inform problem diagnosis, as further

described next.

73

4.2.2 INTSIGHT Control Plane

INTSIGHT’s control plane application has two main tasks: monitoring coordina-

tion and problem diagnosis. The steps related to both tasks are depicted in the lower

section of Figure 4.1. We start our overview with the coordination task. For INTSIGHT-

enabled forwarding devices to effectively monitor traffic, some parameters and lookup

tables need to be configured and populated. INTSIGHT starts by configuring the same

epoch length for every device in the network (Step 1a). In Section 4.3.1, we detail the

work with epochs. For the moment, it suffices to know that having the same epoch length

along with clock synchronization across devices enables INTSIGHT to make temporal

correlations between events reported by different devices and flows. For path tracing,

data plane devices need to update the telemetry field PathID (of packets) based on their

forwarding decisions. More specifically, a lookup table is necessary in each device to

map forwarding decisions into PathID updates. INTSIGHT pre-computes the PathID

updating rules for every (active) path in the network and populates device lookup tables

appropriately (Step 1b). This procedure also generates a decoder to translate PathIDs to

the complete sequence of visited devices, as is explained in further detail in Section 4.3.3.

Another important information that needs to be installed onto devices is contention

and suspect thresholds (Step 1c). As previously mentioned, they are used in each switch

(as a maximum tolerable value) to locally detect contentions and pinpoint suspect flows.

Regarding coordination, egress nodes need to be configured with SLO thresholds to know

when a violation happened (Step 1d). INTSIGHT first receives service level objective val-

ues from the SDN control plane, then translates these values into epoch-wise values, and

finally installs them as thresholds onto devices. The procedures to identify contentions,

suspect flows, and detect SLO violations are further described in Sections 4.3.5 and 4.3.6.

While data plane devices process and forward packets, the INTSIGHT application

continually listens for flow reports coming from these devices and executes the following

diagnosing steps. First, it parses the received reports and stores their information in a

metadata database (Step 5a). This step persistently saves information, enabling both real-

time and historical analysis. The reports are stored in the database considering temporal

characteristics, i.e., their epoch. INTSIGHT regularly builds a global view of the network

for every epoch and analyzes its state, behavior, and performance looking for events of

interest (Step 5b).

When an event of interest (i.e., SLO violation, contention, or suspicion) is de-

74

tected, INTSIGHT uses the reported information to pinpoint where (i.e., in which devices)

such event happened (Step 5c). This step involves translating PathIDs into the sequence

of forwarding devices they represent (using the PathID decoder) and correlating those

with the points of contention indicated by field ContentionPts (a process further de-

tailed in Sections 4.3.3 and 4.3.5). Finally, INTSIGHT diagnoses the event of interest

by analyzing the behavior of all flows present in the pinpointed devices and indicating

the victims and culprits (Step 5d). This step considers the information stored in the report

database and involves inspecting fields such as SuspicionPts, RxPkts, and RxBits

(further explained in Sections 4.3.5 and 4.3.6).

4.3 Design and Implementation

INTSIGHT relies on multiple complementary mechanisms and abstractions to de-

tect SLO violations directly in the data plane and efficiently report them to the control

plane. In Section 4.2, we provided an overview of how these mechanisms interact and

how abstractions are applied. In this section, we individually describe these elements in

greater detail.

4.3.1 Correlating Events in Time

One of the main abstractions of INTSIGHT are epochs. The discretization of time

into epochs has three purposes. The first and main purpose is to enable INTSIGHT to

correlate in time events observed and reported for different flows. Second, it creates

the means to monitor bandwidth SLOs, which are based on intervals. Third, it allows

summarizing, into a single report, multiple packet-wise observations that were due to a

single event of interest, significantly reducing the overhead due to control traffic.

Forwarding devices determine the current epoch with the simple division t/α,

where t is the current timestamp according to the clock on the device, and α is the epoch

length (e.g., in milliseconds). The effects of time drifting on event correlation are tackled

by considering a time interval with earlier and later epochs, as presented in Equation 4.1.[
Epoch−

⌈ ϵ
α

⌉
,EgressEpoch+

⌈ ϵ
α

⌉]
(4.1)

75

Epoch and EgressEpoch are the field values reported for a flow packet, and ϵ

is the maximum clock divergence (e.g., in milliseconds) devices may have among them-

selves before being (re)synchronized. Note that since a packet may leave the network on a

later epoch (than that of when the packet entered it), recording both the ingress and egress

epochs enables INTSIGHT to more precisely identify when packets were in transit.

The appropriate epoch length α for a network depends on factors such as the

granularity of the SLOs, the capacity (bandwidth and processing) of links and nodes„ and

the control plane capacity. Consequently, a one-size-fits-all approach does not apply. The

first two factors usually call for epochs to be shorter, while the last one calls for longer

epochs. The longer epochs are, the more traffic oscillations are smoothed out, making

detection and diagnosis harder. Conversely, the shorter epochs are, the more fine-grained

oscillations become perceptible, making INTSIGHT more sensitive. The goal is to find

a compromise with good sensitivity and acceptable reporting costs. In Section 4.6, we

detail how each factor may influence the epoch length.

4.3.2 Storing Traffic Metadata Persistently

Existing programmable data plane platforms offer persistent storage in the form of

arrays of registers. INTSIGHT uses each register in the array (i.e., an index) to store meta-

data about a single flow. This is an essential building block for the data plane procedures

(§4.2.1) and is implemented by each edge forwarding device. Figure 4.2 exemplifies the

actions executed by INTSIGHT to find the appropriate index for each flow.

Figure 4.2: Mapping a traffic flow to a register array index (FlowID) for metadata storage
and analysis.

255 257

15689 14685 78468 48984
256 258Index

Packet

.

⟨src addr, dst addr, proto, src port, dst port ⟩

. . .

Match+Action Table

Example N-Tuple

Array of Registers

FlowID

Mapping Function

An INTSIGHT-programmed forwarding device first extracts (from the packet) the

76

subset of header fields used to identify flows, forming a tuple. In the figure, we con-

sider the case where five fields are used. However, INTSIGHT’s design does not im-

pose any restriction on the number and the fields that can be used for flow identification.

Right after, INTSIGHT applies a function over the identification tuple to obtain a unique

FlowID for the flow at that device. In P4, such mapping function can be implemented

as a match+action table, where the key is the tuple identification, and the value is the

FlowID itself. The latter is also the index where metadata for the flow is to be stored.

An edge device has an entry in such a table with a locally unique FlowID for each flow

entering or leaving the network through it. Flows are uniquely identified in the network

by the pair ⟨FlowID, DeviceID⟩, where DeviceID is the unique identifier of the device

that generated a given report.

4.3.3 Tracing Packet Paths

The path traversed by packets is essential information for diagnosing problems,

as it allows determining which flows in the network are sharing resources and compet-

ing for them. Not surprisingly, path tracing is one of the most important mechanisms

of INTSIGHT, which we implement as a coordinated effort between the data and con-

trol planes (§4.2.1 and §4.2.2). To avoid the unpredictability (w.r.t. packet space and

processing requirements) of appending, to the telemetry header, the identifiers of every

device through which a packet traverses, our proposed system uses a single, fixed-size

tuple – PathID in Table 4.1 – to identify different paths inside the network. PathID

tuples have the form ⟨source, destination, length, code⟩. Forwarding devices apply if-

this-then-that rules (pre-computed in the control plane) to update the PathID tuple of

an INTSIGHT header so that it may encode the path traversed by the respective packet.

For example, consider the network in Figure 4.3a. Packets from N1 to N10 can be routed

through four different paths, two of which comprise four hops each (i.e., P1 and P2) and

the other two five hops each (i.e., P3 and P4). Figure 4.3b presents the PathID updating

rules INTSIGHT installs in forwarding devices to identify the path taken by each packet.

Suppose, as shown in Figure 4.3b, that a packet is routed through Path P2 (N1, N4,

N5, N10). N1, the ingress node, is responsible for initializing the PathID; its initial value

is ⟨N1,–, 1, 1⟩. This value indicates that Node N1 is the source node, the destination (or

last hop) is still unknown, the path comprises a single hop (Node N1 in this case), and the

code of the path taken so far is 1 (since there is only a single path from a device to itself).

77

Figure 4.3: Example network for path tracing method.

N1

N2

N4

N6

N7

N8

N9

N10
N5

P1
P2

P4

P3

N3

(a) Network with four simple paths from N1 to
N10.

N2

N4

N6

N7
N9

N10

N3

if ⟨N1, –, 3, 1⟩

and next is N9:
 code = 2

N8

N5

if ⟨N1, –, 3, 1⟩

and next is N10:
 code = 2

Initialize
⟨N1,–,1,1⟩

N1

(b) Rules to initialize and update the PathID
tuple.

PathID Path Sequence of Devices

⟨N1, N10, 4, 1⟩ P1 N1, N2, N3, N10

⟨N1, N10, 4, 2⟩ P2 N1, N4, N5, N10

⟨N1, N10, 5, 1⟩ P3 N1, N6, N7, N9, N10

⟨N1, N10, 5, 2⟩ P4 N1, N6, N8, N9, N10

(c) PathID decoder dictionary.

When the packet arrives at N4, this node increments the PathID length field by one and

checks for PathID code updating rules. Since there are no rules in this node, no further

updates are carried out. Next, upon packet receipt, Node N5 executes the same procedure,

first incrementing the length field and then checking for code updating rules. At this

point, the value of the PathID tuple is ⟨N1,–, 3, 1⟩. As shown in Figure 4.3b, the rule

installed in Node N5 states that if the current value of the PathID tuple is ⟨N1, N5, 3, 1⟩

and the next hop of a packet is N10, then the PathID code should be updated to 2. At

the end of the path, Node N10, the egress node, updates the destination and length fields

appropriately such that PathID becomes ⟨N1, N10, 4, 2⟩. After the update, it extracts the

PathID tuple from the packet and saves it to memory (along with other flow metadata)

until the end of the epoch, when the path is reported to the control plane.

In the control plane, INTSIGHT decodes the PathID to the full sequence of

devices. For that purpose, it uses a dictionary as the example shown in Figure 4.3c.

INTSIGHT’s algorithm for generating the PathID updating rules and the decoder dictio-

nary is described in detail next.

78

4.3.4 Encoding Paths

As previously described, INTSIGHT uses PathID tuples in the form ⟨source, des-

tination, length, code⟩ to identify paths in a network. The first three fields in a PathID

are natural attributes of every path, i.e., every path has a source and a destination node,

as well as a length. For paths with the same values for these attributes, it is necessary to

assign a unique code to each. INTSIGHT pre-computes it (in the control plane), together

with the accompanying PathID code updating rules and a PathID decoder dictionary,

using Algorithm 3. Our algorithm is partly inspired by the Ball-Larus algorithm (BALL;

LARUS, 1996) for efficient path profiling and tracing of computer programs.

The algorithm receives as input a graph G that represents the network topology

with a set V of forwarding devices and a set E of links. It outputs the set Rules

of PathID code updating rules to be installed on each device in the network and a

Decoder that maps PathID tuples to device sequences. After variable initializing

procedures, in Line 8, for each device in the network, the algorithm gets a list of all

paths from it to all other devices according to externally-defined routing policies. We

recommend that the set provided to the algorithm includes the paths that could be used

for routing traffic during normal operation and upon the presence of link and node fail-

ures (considering methods such as ECMP, OSPF Loop-Free Alternates, and BGP Diverse

Paths are in place). We emphasize that INTSIGHT does not control how devices forward

packets but simply programs forwarding devices to update the PathID code of packets

according to decisions made by the network-specific routing protocols. While not ad-

dressed in this iteration of the work, a human operator could also be included in the loop

to refine the possible paths. Hence, whenever a flow is rerouted (e.g., due to failures or

re-optimization), INTSIGHT does not need to update existing (or create new) PathID

updating rules. In the event of nodes or links being added to the network topology, then

INTSIGHT requires to compute additional rules for the newly available paths.

For each received path, the algorithm finds the first node not appearing in the same

order in the previously analyzed path (Lines 9–16). Right after, two main steps are taken.

First, a code is calculated for each remaining hop in the path (Lines 19–24). Second, a

new PathID updating rule is created for each device with a code different from the code

of the subpath from source to that hop (Lines 25–28). Line 34 registers the path with its

ID in the Decoder dictionary. The time complexity of Algorithm 3 is O(p · l) in the

worst case, where p is the total number of (configured) paths in the network and l is the

79

Algorithm 3 Path encoding algorithm.
Input: G(V,E) ▷ Network Topology Graph

1: Rules(v)← ∅,∀v ∈ V ▷ Path ID Updating Rules
2: Decoder← ∅ ▷ ID to Node Sequence Decoder
3: for source ∈ V do ▷ Source Node
4: paths← SORTED(GETPATHS(G, s))

5: prev_path← EMPTYPATH() ▷ Previous Path
6: last_code← SQUAREMATRIX(|E|,−1) ▷ Next Code
7: last_code(source, 0)← 0

8: for path ∈ paths do
9: prev_node← Null ▷ Previous Node

10: hop_num← 0 ▷ Hop Number in Current Path
11: node← FIRSTNODE(path) ▷ Current Node
12: while hop_num < LENGTH(path)
13: and prev_path(hop_num) = node do
14: prev_node← node
15: hop_num← hop_num + 1

16: node← path(hop_num)

17: path_code← 0 ▷ Code for Path
18: while hop_num < LENGTH(path) do
19: prev_code← 0 ▷ Prefix Subpath Code
20: if hop_num > 0 then
21: prev_code← last_code(node, hop_num− 1)

22: new_code← MAXVALUE(prev_code, last_code(node, hop_num) +1)
23: last_code(node, hop_num)← new_code
24: if new_code ̸= prev_code then
25: Add new rule to Rules(node):
26: “if PathID = ⟨source, –, hop_num, prev_code⟩
27: and next is node then assign new_code”

28: path_code← MAXVALUE(path_code, new_code)
29: prev_node← node
30: hop_num← hop_num +1

31: node← path (hop_num)

32: destination← LASTNODE(path) ▷ Destination Node
33: Decoder(source, destination, LENGTH(path), path_code)

Output: Rules, Decoder

length of the longest path. INTSIGHT uses the outputs of the algorithm for two purposes.

The set Rules is used to configure forwarding devices in the data plane, enabling them

to progressively compute the PathID of packets. The PathID Decoder is stored on

the control plane, allowing it to get the full sequence of devices from PathIDs calculated

80

for packets.

4.3.5 Pinpointing Contentions and Suspects

Another important task in INTSIGHT’s approach that is delegated to the data plane

(§4.2.1) is to pinpoint both devices observing contentions and flows with suspiciously

high demand. Regarding contentions, as previously described, detection is based on a

parameterizable threshold for queue occupancy. This threshold is stored on a lookup

table (implemented as a P4 match+action table in each device) and should be set to a value

that is a fraction of the queue depth (e.g., one-eighth of the depth (CHEN et al., 2019))

and that represents an undesirably high hop delay in the network, which varies across

different network speeds and types (MCKEOWN; APPENZELLER; KESLASSY, 2019).

Lower values for this threshold will cause more reports to be generated (i.e., reporting on

smaller queue buildups) while higher values cause only more sizable contentions to be

reported. When a forwarding device detects a contention in one of its queues, it marks the

ContentionPts field of the INTSIGHT header (see Table 4.1). The ContentionPts

field of a packet is a bit array where bit b indicates whether or not the packet observed

a contention on the (b + 1)th hop in its path. Figure 4.4a exemplifies a case where a

packet observed contentions at its first and third hops as indicated by bits zero and two,

respectively. When paired with the sequence of devices of a path, field ContentionPts

pinpoints the congested hops.

Figure 4.4: Examples field values for pinpointing contentions and suspects.
0 2 4 6

01 1 0 0 0 0 0

1 3 5 7

2 4 6 81 3 5 7

Bit

Hop

(a) ContentionPts

0 2 4 6

00 1 1 0 0 0 0

1 3 5 7

2 4 6 81 3 5 7

Bit

Hop

(b) SuspicionPts

Suspiciously high demands are also detected based on pre-configured parameteri-

zable thresholds for bitrate and packet rate. These thresholds should be set in proportion

to the queue rate that would not be expected to be utilized by a single flow, for example,

50%. These thresholds are stored and queried from a lookup table, implemented as an ad-

ditional P4 match+action table in each device. It maps each output queue to the respective

threshold value that reflects its capacity. When a device receives a packet, it inspects the

RxPkts and RxBits fields. If the value of (at least) one of these fields is higher than the

81

respective threshold, this means that the flow has already transmitted a significant amount

of traffic during the current epoch, potentially causing a contention, and, as such, should

be considered a suspect. Field SuspicionPts is used to indicate points where a flow is

a suspect; its structure is akin to the ContentionPts field. Figure 4.4b shows the case

where a packet was marked as belonging to a suspect flow in its third and fourth hops. In

INTSIGHT’s approach, the purpose of identifying suspect flows is to provide additional

information to the control plane to help find the root cause (in terms of competing traffic)

of contentions.

4.3.6 Monitoring SLO Compliance

As previously described in Section 4.2, in this chapter, we focus on monitoring

end-to-end delay and provided bandwidth SLOs. INTSIGHT also executes this task en-

tirely in the programmable data plane platform (§4.2.1). The end-to-end delay of a packet

inside a network is a factor of the propagation, transmission, queuing, and processing de-

lays. All of these delays are either available as standard metadata in programmable targets

or can be accurately estimated considering readily available packet, queue, and link infor-

mation on devices. To compute a packet end-to-end delay, INTSIGHT programs forward-

ing devices to progressively increment a path-wise telemetry header field (E2EDelay,

see Table 4.1) with the locally-observed latencies. At the end of the path, the edge device

compares the value stored on the telemetry header against the SLO-defined value, which

is queried from a match+action table using the FlowID of the packet. If the former is

higher, then the device increments by one the HighDelays field stored in its memory.

This procedure enables edge devices to report when and how many packet-wise delay

SLO violations were observed in an epoch.

Algorithm 4 Detecting violations for provided bandwidth.
1: if TxBits < SLO Bandwidth then
2: if (RxPkts −TxPkts) > 0 and ContentionPts > 0 then
3: SLO was violated in the last epoch
4: else
5: Demand was too low to allow meeting the SLO

6: else
7: SLO has been met during the last epoch

For SLOs related to provided bandwidth, an essential indicator to monitor is the

82

number of successfully transmitted bits by (and out of) the network. A violation happens

when the provided bandwidth falls below the agreed amount due to contentions and packet

drops inside the network. INTSIGHT uses Algorithm 4 at the end of each epoch in order to

detect bandwidth violations. TxBits represents the bandwidth provided to a flow (which

is computed by its egress node when forwarding its packets), term (RxPkts− TxPkts)

represents the number of packet drops, and condition ContentionPts > 0 checks

if the flow observed any contention. One important detail is that SLO-defined provided

bandwidth values are typically defined in bits per second (e.g., Mbps), while epochs have

sub-second length. A per-second requirement can be translated into a per-epoch value

by multiplying the original value by the epoch length in seconds. SLO-defined values for

bandwidth are stored and queried from a match+action table using the FlowID associated

with the traffic flow.

4.4 Evaluation

We evaluated INTSIGHT considering two complementary sets of experiments.

The first set demonstrates, by way of two use cases, the effectiveness of INTSIGHT’s

approach in detecting and diagnosing SLO violations (Section 4.4.2). The second set

compares INTSIGHT’s resource usage to state-of-the-art monitoring and debugging ap-

proaches (Section 4.4.3). Next, we describe the experimental setup used for the evalua-

tion.

4.4.1 Experimental Setup

Prototypes

We developed two prototypes of INTSIGHT, for the reference P4 software switch

(BMv2 – behavioral model version 2 (P4 LANGUAGEM CONSORTIUM, 2014)) and

the NetFPGA-SUME development board (ZILBERMAN et al., 2014). Our prototypes

are available at (MARQUES; LEVCHENKO; GASPARY, 2020b). In our functional eval-

uation, we focus on using the BMv2 prototype (as described next). For the performance

evaluation, we focus on the NetFPGA prototype.

83

Testbed

We used as testbed for the functional evaluation Mininet-emulated networks run-

ning on a dedicated Linux 4.4 server with 2x Intel Xeon Silver 4208 2.1GHz 8-core 16-

thread processors, 8x 16GB 2400MHz RAM, and 2TB of NVMe SSD storage. We car-

ried out a preliminary evaluation on the testbed to identify capacity limits that guarantee

consistent performance throughout the experiments. Considering the obtained results, we

chose to set forwarding device queue rates to 9000 pps, and queue depth to 1125 packets,

one-eighth of the queue rate. Link capacity was set to 100Mbps. Network traffic was

generated using tcpreplay and consisted of synthetic UDP traces. The performance eval-

uation was based on analytical modeling and the NetFPGA-SUME board.

Scenarios

The scenarios considered for the functional evaluation, including the network

topologies and the traffic between endpoints, are explained in more detail later, in each

use case. For the comparisons of the performance evaluation, we used the REPETITA

dataset (GAY; SCHAUS; VISSICCHIO, 2017), which consists of more than 260 WAN

topologies and demand matrices. We evaluated each monitoring approach considering all

available networks. In the interest of clarity, for this discussion, we selected six of the

most representative networks (the full results, considering all 260 networks, is available

(MARQUES; LEVCHENKO; GASPARY, 2020b)). Table 4.2 presents the number of

nodes and links, the total packet rate, and the average path length for each of the selected

networks. For this evaluation, we assumed approaches may need to monitor up to 512

different (aggregate) flows (i.e., classes of traffic) for each pair of source and destination

forwarding devices (since this information is not available in the dataset), which amount

to about 50 million different flows in the Sprintlink network (the largest of the selected

topologies).

INTSIGHT

For the functional evaluation, INTSIGHT was configured with an epoch length of

216 = 65,536microseconds (≈15 epochs per second). The contention threshold was set

to 140 packets (i.e., about one eighth of the queue depth, based on (CHEN et al., 2019)).

The threshold for marking traffic as suspicious for causing contentions was set to 50%

of the capacity of devices and links. For the performance evaluation, we considered an

84

Table 4.2: Metadata for the network topologies considered on the efficiency evaluation.

Network Label Nodes Links
Total

Demand (pps)
Avg. Path

Length

Bell Canada BC 48 130 831,790 5.3

US Signal US 61 158 1,493,550 6.0

VTLWavenet VW 92 192 994,565 13.1

TATA TT 145 388 1,849,113 9.9

Cogent CG 197 490 1,602,675 10.5

Sprintlink SL 315 1944 19,253,769 4.0

epoch length of 10ms4 (100 epochs per second).

Adaptating Existing Approaches

To enable the comparison to INTSIGHT, considering our problem constraints (i.e.,

no modification to end-hosts), we made the following adaptations to TPP (JEYAKUMAR

et al., 2014) and SwitchPointer (TAMMANA; AGARWAL; LEE, 2018). We adapted TPP

to extract the collected telemetry information at the end of a packet’s path and send it di-

rectly to an analyzer server. Similarly, we adapted Swithpointer’s approach by offloading

the summarization task to the data plane and leaving the telemetry data analysis to the

control plane. Forwarding devices, in this adapted SwitchPointer, report their summa-

rized data at the end of each epoch. We refer to these adaptations as A-TPP and A-SwP,

respectively. We emphasize that we have adapted the TPP and SwitchPointer approaches

to our problem constraints because both were designed for a different problem setting. As

such, our evaluation should not be viewed as a criticism of these algorithms. We include

these modified variants to show that a straightforward extension of existing approaches to

our problem setting offers room for improvement, as realized by INTSIGHT.

4.4.2 Functional Evaluation

In this section, we consider two use cases, one for the end-to-end delay and one

for the bandwidth SLO. With these, we were interested in assessing the functionality of

INTSIGHT and not its performance when executed on a large scale.

4Epoch lengths were selected considering the guidelines in Section 4.6.

85

End-to-End Delay

Consider the scenario presented in Figure 4.5a. The traffic between endpoints

A and H (Red flow), which has an associated end-to-end delay SLO of 20ms, has its

packets delayed by the bursty traffic from endpoint E to G. We carried out a measurement

experiment lasting 60 seconds to reproduce this scenario. The flow from E to G changed

its packet rate to about 6500 pps for 100ms around the 30th second of the experiment.

Figure 4.5b presents the reports generated by the forwarding devices during the

experiment. Some report fields are omitted for space. From the first two rows in the

table, we observe that INTSIGHT reported the end-to-end delay as violated for packets

from the Red flow that traversed the network between epochs 464 and 466. During these

epochs, the Red flow witnessed a contention in Node N3. From the remaining rows in

Figure 4.5b, we observe that other three flows (i.e., Orange, Green, and Teal) also wit-

nessed a contention in Node N3 during the same epochs (and in epoch 463). No report

was generated for the Blue flow. Furthermore, the Orange flow was marked as a suspect

by all nodes in its path (i.e., N3, N4, and N5) in the epochs leading up to the one where

only contention was observed. Note that the egress epochs (i.e., 465 and 466) match those

for which the Red flow was severely delayed.

Figure 4.5c shows the arrival rate of traffic at Node N3 in the moments before and

after the reported violations and contentions. Considering the data shown in the figure,

plotted by the control plane application based on the reports, INTSIGHT was able to ob-

serve the abnormal spike in the rate of the Orange flow, which caused the accumulated rate

to grow above the link transmission capacity. This unexpected short-lived event caused

buffering up on the output port of the forwarding device. Consequently, INTSIGHT was

able to diagnose the SLO violation as being caused by the Orange flow.

Provided Bandwidth

In our second use case, we considered the scenario shown in Figure 4.6a, in which

the Red flow between endpoints A and H had an associated provided bandwidth SLO of

25Mbps. It had a substantial number of its packets dropped due to a concurrent increase

in demand by other flows sharing one of the nodes in the path. Similarly to the previous

study, we carried out a measurement experiment lasting 60 seconds to reproduce this

scenario. The Red flow had a constant rate of 30Mbps throughout the whole experiment.

The Blue flow also had a constant rate of 30Mbps. The remaining flows (Orange, Green,

86

Figure 4.5: End-to-End Delay Case Study. A delay-sensitive flow A–H has its SLO
violated due to bursty flow E–G.

C

F

G H

N1

N2

N5

N3

N4

A B

D

E

(a) Network topology
and traffic routing for
the case study.

Traffic Epoch
Egress
Epoch

CPs* SPs*
High

Delays

Red 464 465 N3 - 39
Red 465 466 N3 - 19

Orange 462 464 - N3, N4, N5 -
Orange 463 465 N3 N3, N4, N5 -
Orange 464 466 N3 - -
Green 463 465 N3 - -
Green 464 466 N3 - -
Teal 463 465 N3 - -
Teal 464 466 N3 - -

*CPs = Contention Points, SPs = Suspicion Points

(b) Reports generated by IntSight for all traffic flows in the network.
Four traffic aggregates witnessed a contention in Node N3. The Or-
ange traffic was marked as suspiciously high demanding.

28 29 30 31 32
Experiment Second

0
1
2
3
4
5
6
7
8
9

10
11

Ar
riv

al
 R

at
e

at
 N

od
e

N
3 (

Kp
ps

)

Link Capacity

Suspicion Threshold

Green (E-F)
Teal (D-F)
Orange (E-G)
Red (A-H)

430 440 450 460 470 480
Epoch

(c) Packet arrival rate for traffic being forwarded by Node N3. A
significant spike in demand is observed for the Orange traffic around
the 30th second of the experiment.

and Teal) had each a specific initial rate of 10Mbps, 15Mbps, and 20Mbps, respectively.

Throughout the experiment, these flows progressively increased their demand, reaching

30Mbps at about 30 seconds in the experiment, and then progressively decreased their

demand back to the respective initial rates. Since all (but the Blue) flows converged in

Node N3 (directed to Node N5) on a link with a nominal capacity equal to 100Mbps,

contentions and packet drops were expected.

87

Figure 4.6: Bandwidth Case Study. A bandwidth-sensitive flow A–H suffers perfor-
mance degradation from recurrent natural increases in demand for other traffic sharing
link N3 → N5.

E

H

F

?

G

N1

N3

N5

N2

N4

N6

N7

A B

C

D

(a) Network topology
and traffic routing for
the case study.

10 15 20 25 30 35 40 45 50
22
24
26
28
30
32

Ba
nd

wi
dt

h
(M

bp
s)

SLO Threshold
Received
Transmitted

200 300 400 500 600 700
Epoch

10 15 20 25 30 35 40 45 50
Experiment Second

0
5

10
15
20
25

Pa
ck

et
 D

ro
ps

 (%
) 200 300 400 500 600 700

(b) Bandwidth and percentage of packet drops for Red Traffic. A
substantial drop in bandwidth characterizing a violation is observed
from the 27th to 37th second of the experiment.

10 15 20 25 30 35 40 45 50
Experiment Second

0

20

40

60

80

100

120

Ar
riv

al
 B

itr
at

e
at

 N
od

e
N

3 (
M

bp
s)

Link Capacity

Suspicion Threshold

Green (C E)
Teal (B E)
Orange (C G)
Red (A H)
Accumulated

200 300 400 500 600 700
Epoch

(c) Arrival rate (in Mb/s) for traffic being forwarded by Node N3.
All flows present increases in demand resulting in the saturation of
the outgoing link connected to the node.

Figure 4.6b presents the demanded and provided bandwidth of the Red flow and

the percentage of dropped packets for each epoch. The figure shows a decrease in the

provided bandwidth of up to 5Mbps starting around the 27th second of the experiment.

Furthermore, at around the 30th second of the experiment, the provided bandwidth falls

below the SLO threshold of 25Mbps. The stable curve for demanded bandwidth along

88

with the accompanying curve for packet drops indicate that the decrease is not due to a

decline in demand, but to a contention inside the network. This characterizes a provided

bandwidth SLO violation, and, for such, INTSIGHT generated 59 reports, one for each

epoch while the violation remained. All reports for the Red flow indicated a contention in

Node N3, and other three flows (Orange, Green, and Teal) witnessed a contention on the

same node.

Figure 4.6c shows the packet arrival rate of traffic at Node N3 during the experi-

ment, generated by the control plane application based on the received reports. INTSIGHT

was able to observe that all traffic was well behaved – as there was no individual flow

above the suspicion threshold – but that their nearly simultaneous increase in demand ex-

ceeded the capacity of the outgoing link. Consequently, INTSIGHT was able to correctly

diagnose the SLO violation as caused by typical demand fluctuations, and could suggest

moving the Red traffic to the alternative path (N1, N2, N4, N6, N7).

4.4.3 Performance Evaluation

One of the main concerns when monitoring a system is minimizing the overhead

imposed on it. In INT-based network monitoring, this process means a sensible use of

four main resources: (a) network bandwidth, (b) memory space, (c) header space, and (d)

computation time. In this part of the evaluation, we analyze the use of network resources

by INTSIGHT and compare it, when appropriate, to existing monitoring approaches.

Network Bandwidth

Figure 4.7 presents the report rate of each approach, i.e., the number of moni-

toring report packets sent out each second. INTSIGHT5 outperforms existing approaches

by generating up to two orders of magnitude fewer reports (order of thousand packets

per second) than Adapted SwitchPointer (A-SwP – i.e., the best among the contenders).

Mirroring-based systems generate up to one order of magnitude more packets than the

production traffic (one per hop of each production packet), making them impractical to

monitor all traffic in the network. Adapted TPP (A-TPP) generates one report for each

production packet, limiting its use to smaller networks. SwitchPointer achieves compar-

atively lower rates by reporting only once per epoch per monitored flow, but still reaches

5In the graph, we show the average (bar) and maximum (circle) number of reports that would be gener-
ated for an event of interest lasting for a second on any single device.

89

Figure 4.7: Report rate (packets per second).

Bell
Canada

US
Signal

VTL
WaveNet

TATA Cogent Sprintlink

Network

105

106

107

108

Re
po

rt
Ra

te
 (P

ac
ke

ts
 P

er
 S

ec
on

d) NetSight/Mirroring
A-TPP
A-SwP
IntSight

the order of a tenth of millions of packets per second due to lacking a mechanism to filter

reports in the data plane. INTSIGHT generates even less reports because it reports only

when events of interest are observed and once per epoch per flow.

Device Memory

Table 4.3 compares the memory requirements of A-SwP and INTSIGHT (mirroring

and A-TPP require a fixed amount of memory). We observe that A-SwP requires up to

4 times as much memory as INTSIGHT. SRAM is mainly used to store telemetry data.

The difference comes mainly from the fact that A-SwP stores paths as a sequence of node

IDs, while INTSIGHT only uses the small, fixed-size PathID tuple to trace paths. The

remainder is used to hold SLO, contention, and suspicion thresholds as well as FlowID

and PathID lookup tables. A-SwP and INTSIGHT consume the same amount of TCAM,

as this resource is used by both to extend forwarding tables with information to distinguish

flows. Thus, INTSIGHT’s memory requirements are well within the available resources

on current P4 programmable hardware6.

6For example, the Barefoot Tofino has 370Mb of SRAM and 40Mb of TCAM (BAREFOOT NET-
WORKS, 2020; BOSSHART et al., 2013). The NetFPGA-SUME board has 216Mb of SRAM (ZILBER-
MAN et al., 2014).

90

Table 4.3: Device memory usage (Mb).

Approach A-SwP IntSight
Network SRAM TCAM SRAM TCAM

Bell Canada 30.42 0.29 12.78 0.29

US Signal 40.80 0.37 16.41 0.37

VTL WaveNet 112.85 0.65 26.84 0.65

TATA 164.86 1.18 42.78 1.18

Cogent 224.39 1.61 58.23 1.61

Sprintlink 175.25 2.89 89.53 2.89

Header Space

We also evaluated how much header space is required to be reserved from the

network MTU to allow packets to carry telemetry data. Figure 4.8 presents the header

space demanded by each evaluated approach. NetSight and mirroring-based approaches

do not use any header space from production packets. For A-TPP and A-SwP, the bar

value shows the mean space required by all network packets instrumented with an INT

header, while the circle indicates the maximum value. The header space usage by both

approaches is proportional to the network diameter, and requires reserving up to 265 bytes

for telemetry data, what would amount to a 17.67% decrease in the maximum goodput

for the production traffic. Conversely, INTSIGHT adjusts its header to tailor each network,

i.e., its header has a fixed-size for all flows in a network. For example, INTSIGHT sets the

length of the ContentionPts field to the length of the longest path used in the network,

and that of the PathID source field to ⌈log2 n⌉, where n is the number of nodes in the

network (since a unique ID needs to be assigned to each node). The maximum required

size for the INTSIGHT header for all evaluated networks was 25 bytes, only 1.67% of an

Ethernet MTU.

Programmable Compute Resources

The computational resource requirements of INTSIGHT depend on the target plat-

forms. Perhaps the most demanding are platforms with fixed resources, namely FPGA and

ASIC switch implementations. To evaluate resource usage on such a fixed-resource target,

we used our prototype for the NetFPGA-SUME development board (ZILBERMAN et al.,

2014). Our prototype required 63,260 look-up tables (LUTs) and 136,334 registers. These

numbers represent, respectively, 14.6% and 15.7% of the available resources, which we

91

Figure 4.8: Header space usage (bytes).

Bell
Canada

US
Signal

VTL
WaveNet

TATA Cogent Sprintlink

Network

0

50

100

150

200

250

He
ad

er
 S

pa
ce

 (B
yt

es
)

NetSight/Mirroring
A-TPP
A-SwP
IntSight

deem a modest requirement. We expect comparable processing resource requirements for

similar targets.

Asymptotic Bounds for Resource Usage

To conclude this section, we analyze the trade-offs between the main resources

by discussing the asymptotic bounds for their usage by each monitoring approach. Fig-

ure 4.9 compares INTSIGHT and the most representative approaches to network perfor-

mance monitoring. Each graph in the figure presents the asymptotic amount of telemetry

traffic generated as a function of (a) computation time, (b) memory space, and (c) header

space. In the figure, d and f are, respectively, the number of forwarding devices and active

flows in the network, t is the average total network throughput (pps), and h is the aver-

age path length between end-points. All values represent the asymptotic exact bound Θ.

Figure 4.9a shows that Adapted SwitchPointer (A-SwP) involves processing (originally

implemented on end-hosts) that is linear to the length of packet paths, making it chal-

lenging to implement even on novel programmable data plane platforms. All remaining

techniques, including INTSIGHT, require constant-time processing. Figures 4.9b and 4.9c

show that INTSIGHT, by carefully using both memory and header space, generates con-

siderably less telemetry traffic than NetSight and Sampled Mirroring (mirroring-based

techniques) and also Adapted TPP (A-TPP, which only uses header space). Compared to

A-SwP, INTSIGHT requires less memory and header space to achieve the same telemetry

92

traffic rate.

Figure 4.9: Comparison of monitoring techniques considering generated telemetry traffic
as a function of network resource usage.

Te
le

m
et

ry
 T

ra
ffi

c
(R

ep
or

t R
at

e) th

t

f

Computation Time
(Time Complexity)

1 h

TPP

IntSight SwitchPointer

NetSight
&
Sampled
Mirroring

A-TPP

A-SwP

(a)
Te

le
m

et
ry

 T
ra

ffi
c

(R
ep

or
t R

at
e) th

t

f

Memory Space
(Table and Register Entries per Device)

0 f fh+d

TPP

IntSight SwitchPointer

NetSight
&
Sampled
Mirroring

A-TPP

A-SwP

(b)

T
e

le
m

e
tr

y
 T

ra
ffi

c
 (

R
e

p
o

rt
 R

a
te

)

Header Space

(Telemetry Headers per Packet)

0 1 h

th

t

f

NetSight

&

Sampled

Mirroring TPP

SwitchPointerIntSight A-SwP

A-TPP

(c)

4.5 Related Work

In this section, we present existing approaches that target at helping detect and

diagnose network problems, and contrast them with INTSIGHT.

Traditional Tools and Techniques

Traditional passive monitoring tools, such as SNMP (CASE et al., 1989) and Net-

Flow/IPFIX (CISCO, 2005; CLAISE; TRAMMELL; AITKEN, 2013), lack the appropri-

ate level of detail to detect and diagnose problems such as those described in our moti-

vation Section 4.1. These tools are limited to providing traffic counters aggregated over

93

coarse timescales (in the order of dozens of seconds or higher). Furthermore, they do not

monitor statistics crucial to detect and diagnose SLO violations, such as delays. In con-

trast, active measurement techniques (e.g., ping, traceroute, OWAMP (SHALUNOV et

al., 2006), and TWAMP (HEDAYAT et al., 2008)) can be used to estimate the mentioned

statistics. However, they are limited by the fact that the network may not necessarily route

and prioritize their probes in the same way as the traffic of interest. Moreover, achieving

granularity close to per-packet for these techniques requires injecting substantial mea-

surement probes into the network.

Measurement Based on Packet Mirroring

Recent research (HANDIGOL et al., 2014; RASLEY et al., 2014; ZHU et al.,

2015; TILMANS et al., 2018) explored the use of packet mirroring to estimate delays

and trace paths of production packets. Handigol et al. (HANDIGOL et al., 2014) pro-

posed NetSight, a monitoring system that has mirroring as its fundamental measurement

mechanism. NetSight configures the network so that every forwarding device in the path

of a flow creates payload-stripped copies (called postcards) of the packets it processes

and sends them to analysis equipment. All of the postcards generated for a single packet

are combined by the analysis servers to form a packet history reporting network state,

behavior, and performance as observed by the packet.

The main challenge when using NetSight is that meeting the requirements intro-

duced in Section 4.1 would involve generating postcards on every forwarding device for

every packet. Except for small networks, the monitoring load added to the control plane

(towards analysis equipment) would be prohibitively high, inhibiting timely detection, di-

agnosis, and, consequently, troubleshooting. To address the challenge faced by NetSight,

subsequent techniques also based on packet mirroring (RASLEY et al., 2014; ZHU et

al., 2015; TILMANS et al., 2018) rely on sampling methods to alleviate the monitoring

overhead w.r.t. both bandwidth and processing. Since sampling inherently misses events,

these techniques have as their challenge keeping monitoring granularity and accuracy

high. For example, if a packet is not sampled, then any problem it has witnessed will not

be detected (or diagnosed).

94

Monitoring Assisted by End-Hosts

TPP (JEYAKUMAR et al., 2014) and SwitchPointer (TAMMANA; AGARWAL;

LEE, 2018), techniques proposed in the context of data center networks, investigated

involving end-hosts in monitoring tasks such as analysis and storage of measurement

data. Since hosts lack visibility into the network, to pinpoint and diagnose problems,

these techniques build upon the concept of in-band network telemetry (INT) (KIM et al.,

2015). They instruct forwarding devices to annotate production packets with metadata

such as device IDs, queue IDs, processing delays, and matched forwarding rules. The

metadata contained in the packets is then used by the end-hosts to detect problems with

their flows. The detection then triggers the exchange of information between end-hosts to

diagnose the problem.

As mentioned, these techniques were designed for data center networks, and within

this setting, they can be used to detect and diagnose the SLO violations we discussed in

Section 4.1. In our work, we target not only those but also enterprise and internet ser-

vice provider networks. We assume operators either do not have control or do not want

to modify the networking stack of end-hosts. Adapting TPP and SwitchPointer to this

requirement is not straightforward. Furthermore, even when adapted (as we exercised in

Section 4.4), they do not fully exploit the capabilities and advantages possible with pro-

grammable data planes, i.e., they are not able to detect SLO violations directly in the data

plane and selectively report information to the control plane to minimize overheads.

4.6 Additional Remarks

To close our presentation of INTSIGHT, we discuss a few aspects that can be

potentially revisited and expanded upon for future work.

Selecting an Epoch Length

Since there is no silver bullet for epoch length, as mentioned in Section 4.3.1, in

this section, we aim at providing some guidance regarding the selection of an appropriate

α value for a network. Three main factors should be considered when selecting the epoch

length. Next, we describe each one of them. The first is related to the granularity of SLOs.

Along with a target value for a performance metric of interest, SLOs also establish how

often this target should be met (or, for how long it is reasonable it does not). For example,

95

consider the following SLO (also presented in the introduction): “Provided bandwidth has

to be higher than 1Gbps at least 99% of the time (within a minute) for a video streaming

traffic aggregate”. This indicates that the provided bandwidth can fall below the target

value for 1% of one minute with no penalty to the network provider. This percentage of

time imposes an upper bound on the epoch length, 0.6 seconds in the example. As the

specified SLOs become stricter (requiring more nines), the upper bound becomes smaller.

The upper bound is given by α ≤ t · (1 − p), where t is the SLO interval (e.g., one

minute) and p is the percentage (e.g., 99% or 0.99). Given the upper bound, in practice,

the network operator may want to select an epoch length that is a fraction of it so that

INTSIGHT has time to react to any problems after an epoch-wise violation report (and

before a penalty-inducing violation happens).

The second factor that needs to be considered when selecting the epoch length

is the bandwidth and processing capacity of links and nodes. As previously described

in Section 4.3.1, discretizing time into epochs enables INTSIGHT to correlate events in

time and view the network and its events through the lens of a group of packets. The

main goal is to diagnose congestions (i.e., pinpoint congested devices and identify the

competing flows). The faster a network is, the more short-lived congestions can be, and, as

a result, the shorter epochs may need to be to zero-in on the culprits of these congestions.

Naturally, at some point, making the epoch shorter on a given network may not lead to

significant improvements (while also risking saturating control plane analyzer servers;

see the next topic). With this rationale in mind, we propose that the epoch length be at

least smaller than the typical time necessary to transmit a full device buffer. For example,

a 12.5MB buffer transmitting via a 10Gbps link would suggest an epoch length of at

most 10 milliseconds. Buffer size choices and implications are extensively discussed in

(MCKEOWN; APPENZELLER; KESLASSY, 2019).

The third, and last, factor involves control plane resources and capabilities. The

control plane capacity, i.e., the bandwidth of links connecting data and control planes and

the report processing capacity of analyzer servers, contrasts with the other factors since it

establishes a lower bound on the epoch length. For example, considering INTSIGHT’s re-

ports have the minimum frame size of 64 bytes, a 1Gbps connection between each device

and the control plane would enable at most about two million reports to be transmitted

within a given second. This suggests that, for the given example, the epoch length should

not be less than R
B
= 64B

1Gbps
= 512 nanoseconds, where R is the report length and B is the

data-to-control plane bandwidth. Regarding the processing capacity of analyzer servers,

96

for contention diagnosis to be in real-time, no more reports should be sent in a second

than the number the server can process. For example, on a small 25-node network, with

a single 50Kpps-capable server dedicated to monitoring, and considering the worst-case

scenario where all nodes are generating reports, the epoch length should be no less than
n

m·C = 25
1·50Kpps

= 500 microseconds, where n is the number of nodes in the topology, m,

the number of monitoring servers, and C, the unit processing capacity of each server.

Pinpointing Contentions and Suspects with Thresholds

INTSIGHT currently uses thresholds to pinpoint device contentions and suspect

flows. This approach brings with it the challenge of setting the correct values to ade-

quately detect and report events of interest when they happen. A threshold is a logical fit

for detecting contentions since they consist of queue buildups in devices. However, for

suspicion, using a threshold on the traffic demand may not be enough to tell the whole

story. We consider INTSIGHT’s method for pinpointing suspect flows could be improved

by integrating a mechanism such as ConQuest (CHEN et al., 2019), which enables pro-

grammable devices to track how much of the queue occupancy is due to each different

flow being buffered on it. A more sophisticated approach to suspicion would consider

those flows representing a significant fraction of the packets in a congested queue. In

practice, these thresholds should be set empirically based on the desired volume of re-

porting traffic.

Fine-grained SLO Tracking and Violation Diagnosis

As previously presented in Section 4.3.2, INTSIGHT’s design enables traffic flows

to be defined as any set of packets sharing the same values for an arbitrary subset of header

fields. In theory, this approach allows monitoring flows with very fine granularity (e.g.,

TCP sessions). Nevertheless, currently existing forwarding devices do not have suffi-

cient memory (i.e., SRAM) to store metadata about all application-level flows traversing

them, especially in a backbone network, for example. To manage memory usage, we

recommend configuring INTSIGHT using the following method: discretize SLO-subject

traffic using high levels of detail (e.g., 5-tuple) while discerning between the remaining

traffic using broader definitions (e.g., UDP traffic from a source to a destination node).

This method allows precisely detecting SLO violations while pinpointing culprits with a

(potentially) coarser granularity. After initial detection, the network operator may install

97

additional finer-grained discretizing rules to zoom in on the culprit traffic and determine

more specific culprit flows. The limitation of this method is that installing additional rules

requires interaction with the control plane. Depending on how short-lived a problem is,

rules may not be installed in time to pinpoint the specific culprit. Nonetheless, in the

general case, we expect traffic to have its performance impacted by higher priority flows,

which would already be identified with fine granularity.

Dealing with Packet Drops and Out-of-order Arrival at Egress Nodes

When packets are dropped because of a link or node failure, INTSIGHT could

mistake it for a critical contention (although if that were the case, we would still ex-

pect that some of the surviving packets would signal a contention). Nevertheless, upon

a failure, we expect the control plane operating system to communicate it to applications

such as INTSIGHT, which can use this extra information when diagnosing performance-

impacting events. Regarding out-of-order packet arrival, it can happen within an epoch or

across epochs. To deal with the first case, INTSIGHT updates registers using commutative

operations (addition, bitwise OR, max), so that the order of packets does not change the

result. For the second case, nodes can be optionally configured to generate an exceptional

report when an old packet arrives after a new epoch has started. In the control plane,

INTSIGHT then uses this extra report to update the information previously reported for

the epoch.

Identifying the Next Hop of a Packet

As described in Section 4.3.3, INTSIGHT does not decide the next hop of packets.

It simply reads the device’s metadata field that indicates the output port (chosen by normal

forwarding logic) of a packet and updates the PathID field accordingly. For targets sup-

porting link aggregation groups (LAGs), INTSIGHT can discern between links depending

on the level of abstraction of the target’s output port metadata field. For example, in the

P4 Portable Switch Architecture (P4 ARCHITECTURE WORKING GROUP, 2018), the

output port metadata field indicates the actual device port, even if the forwarding decision

for the packet was made considering a LAG. Similarly, when a fast-failover mechanism

picks an alternate output port for packets, INTSIGHT is able to record the new path and

trigger a report for path change (as mentioned in Section 4.2.1).

98

Deploying INTSIGHT Gradually

For the design of INTSIGHT, we assumed all network devices are equipped with

monitoring capabilities (e.g., through data plane programmability). Its approach leverages

the visibility into network operation offered by in-band network telemetry to detect and di-

agnose performance problems accurately. In this context, legacy devices would represent

grey boxes, and their operation would have to be estimated by the monitoring-capable

devices. This approach translates into correspondingly less accurate data being made

available to INTSIGHT, making both detection and diagnosis more challenging tasks. A

detailed analysis of the partial deployment of INTSIGHT (and its effects on monitoring

coverage) is left as future work.

4.7 Chapter Summary

In this chapter, we proposed INTSIGHT, a system that explores in-band network

telemetry to monitor SLO compliance. End-to-end delay and bandwidth SLO violations

are detected directly in the data plane, whereas diagnosis (i.e., when, where, and affect-

ed/offender flows) occurs in the control plane, using reports sent by the former. As part of

this work, we have introduced an in-network, distributed path-aware mechanism for mon-

itoring network traffic capable of fine-grained, highly-accurate, and timely detection and

diagnosis of problems impacting performance. We also designed and implemented effi-

cient data plane procedures for gradually computing path-wise metadata such as path IDs,

contention points, and end-to-end delays. Finally, we have demonstrated the benefits (re-

garding functionality, performance, and resource footprint) of path-wise in-band network

telemetry compared to state-of-the-art approaches, considering six representative network

topologies and existing programmable data plane platforms. We understand our work as

an important contribution that can be positioned in the intersection of (i) down to packet-

level metadata SLO monitoring, (ii) modest resource footprint, and (iii) noninterference

of end-hosts in monitoring tasks.

99

5 RESPONDING TO NETWORK FAILURES AT DATA-PLANE SPEEDS

Following our work on INTSIGHT, in this chapter, we present another step taken

towards answering Question 3 described in Section 1.2, i.e., we further investigate offload-

ing part of the analysis and reaction logic to the data plane. We shift our focus to network

equipment failures and investigate ways in which data plane programmability can improve

how networks recover from such events. We propose an approach to failure recovery that

explores the question of where the line should be drawn to divide responsibilities between

the control and the data planes. We start this chapter by introducing, in Section 5.1, the

state-of-the-art in failure recovery and the drawbacks of existing approaches. In Sec-

tion 5.2, we present an overview of FELIX, our proposed system for network rerouting to

bypass failures. In Section 5.3, we describe the design and implementation of FELIX. In

Section 5.4, we present our evaluation, where we test the effectiveness and overheads of

FELIX’s approach and compare it with state-of-the-art approaches. In Section 5.5, we de-

scribe the related work. In Sections 5.6 and5.7, we discuss limitations as well as possible

extensions to FELIX. We conclude the chapter with our main takeaways in Section 5.8.

5.1 Motivation

As previously described in Chapter 1, communication networks need to be re-

silient to provide high levels of availability. Modern services and applications rely on

that as they are increasingly distributed into microservices and spread not only across one

but multiple networks, their edges, and end-points (BALAKRISHNAN, 2021). Among

events that may impact network operation are link and device failures. Recent measure-

ment studies show that such failures happen quite frequently (a few failures per hour) and

in all of the different types of network (e.g., enterprise (TURNER et al., 2012), data center

(GILL; JAIN; NAGAPPAN, 2011; GOVINDAN et al., 2016), backbone (MARKOPOULOU

et al., 2008), and WAN (TURNER et al., 2010; GOVINDAN et al., 2016)). Traditionally,

network operators could simply wait for the routing protocol to converge and reroute

around these failures. However, experience has shown that these protocols take consid-

erable time to fully recover from a failure (YEGANEH; TOOTOONCHIAN; GANJALI,

2013). This delay in reacting to failures leads to massive packet drops, especially as

networks grow larger and faster. In this section, we motivate the case for FELIX by de-

scribing the drawbacks and limitations of state-of-the-art approaches for network failure

100

resiliency.

SDN with OpenFlow (SDN-OF)

In the classic SDN model, the controller learns of network failures from switches.

It then recomputes the forwarding tables and updates them on each switch. Between the

time when a link fails and the controller updates the forwarding tables on an affected

switch, packets simply “fall of the wire.” Fig. 5.1 illustrates all of the delays that factor

into a recovery from a failure in a traditional SDN with OpenFlow scenario. Typically,

the downtime time is dominated by the time to compute the updated paths in the con-

troller, which can take from milliseconds to minutes depending on the network size. The

controller thinking time may be reduced by computing and caching forwarding entries

for possible failure scenarios ahead of time. Nevertheless, the delay to get the failure

notifications to the controller, propagate the new forwarding entries to data plane devices,

and install such entries on the fast path of these devices is still significant. Consequently,

even in the best-case scenario, where the necessary updated forwarding entries are already

computed and ready to go, there will be significant packet loss, especially as networks are

progressively upgraded to have higher bandwidth capacity.

Figure 5.1: Failure recovery delay factors for SDN with OpenFlow approaches.

IdleControl
Plane

Data
Plane

Computing
New Entries

Sending
Updates Idle

Notifying Waiting Updating
Tables Forwarding

Failure

Failure
Notification Forwarding

Updates
Failure
Detected

Forwarding

Computation Delay
(0.01–100 s)

Update Delay
(≈RTT/2 + 0.1–10 ms/entry)

Detection Delay
(Up to 100 ms)

Notification Delay
(≈RTT/2)

Total Downtime

...

...

Switch-local failover (SLF) mechanisms

Mechanisms such as OpenFlow Failover Groups (MCKEOWN et al., 2008; ONF,

2015) and PURR (CHIESA et al., 2019) seek to reduce packet loss. These mechanisms

enable the controller to configure switches with alternative next hops to be used in case the

interface to the primary next hop is down. Failover mechanisms are especially useful for

scenarios in which ongoing failures can be completely bypassed by alternative forwarding

carried out solely by switches local to these failures. Unfortunately, not all failures can

101

Figure 5.2: Limitations to existing failover mechanisms and failure-inferencing ap-
proaches in the data plane.

S T

W

Shortest Path

One of the Paths
in Practice

V

(a) FIFR approaches

S TW

Shortest-non-failed Path

Shortest Detour

(b) TBFF approaches

be bypassed in such a way, unless the network is engineered with that goal in mind (LIU

et al., 2013b). As previously mentioned, in general topologies, traffic may need to be

forwarded backwards for a few hops before it can resume moving towards the destination

through an alternative route.

Failure-inferencing fast reroute (FIFR) approaches

This line of work aptly represented by FIFR (LEE et al., 2004; ZHONG et al.,

2005; NELAKUDITI et al., 2007) executes forwarding based not only on the destination

of packets but also on their incoming interface. The main idea of this forwarding method

is that if a packet arrives a device through an interface that was actually supposed to be

the next hop of the packet, the device can infer that a failure is present down the main path

(making it be sent back). The packet should then be forwarded through an alternative next

hop. FIFR is more resilient to failure scenarios than switch-local failover mechanisms.

For example, in Fig. 5.2a, under FIFR, whenever forwarding device V receives a packet

with destination to T from W, it can infer that the shortest path (V→W→T) is not avail-

able and forward the packet through one of the alternative viable paths to T. The main

limitation of FIFR is that no state is stored on devices, so every packet would have to

go back and forth (once) on devices V and W before using an alternative path. In some

situations, this causes an imbalance when trying to perform equal-cost multi-path routing,

which can be detrimental to the flows relying on those paths. For example, in Fig. 5.2a,

the lack of state in devices makes some of the packets of the traffic from S to T subject to

a longer path than other packets.

102

Tagging-based fast failover (TBFF) approaches

Yet another line of work, represented by MRC (KVALBEIN et al., 2009) and

SPIDER (CASCONE et al., 2017), seeks to achieve better resiliency and path guaran-

tees (with data plane reaction) than their counterparts. These approaches pre-install a

small set of routing configurations on forwarding devices and tag packets whenever they

need to be forwarded through an alternative path due to a locally detectable failure. De-

vices receiving tagged packets forward them (and future packets in the flow) according to

the respective pre-installed configuration. MRC and SPIDER can guarantee only single-

node-or-link failure resiliency in bi-connected topologies (i.e., those that remain connect

when removing any single node). Furthermore, they generally select the shortest detour

from the point of failure to forward packets. Fig. 5.2b shows a case where shortest detour

rerouting results in unnecessary extra hops when a shorter, more direct path from S to T is

available in the network. An analysis we carried out using real-world wide-area networks

(WAN) from the REPETITA dataset (GAY; SCHAUS; VISSICCHIO, 2017) suggests that

path stretching in shortest detours is frequent and can be critical in typically sparse WAN

topologies.

We close this motivation section with Table 5.1, which summarizes this conceptual

review of the state of the art and compares it to FELIX. Our system FELIX seeks to fill the

gap left by existing approaches. By introducing a failure-aware packet processing pipeline

and a network-wide coordination protocol, we can send traffic along the shortest-non-

failed path as long as the network is a single connected component. This, in connection

with pre-planning control plane algorithms, allows FELIX to respond to failures in an

optimal way at data plane time scales.

Table 5.1: Summary of the conceptual comparison of existing approaches for failure re-
covery and FELIX.

Approach Timescale Resiliency Path Optimality

SDN-OF Control Plane # Any Failure Shortest Path

SLF Data Plane Local Failure # No Guarantee –
FIFR Data Plane Single Failure G# No Guarantee –
TBFF Data Plane Single Failure G# Shortest Detour #

FELIX Data Plane Any Failure Shortest Path

103

5.2 FELIX

In this section, we give an overview of how FELIX responds to network failures.

Next, in Section 5.3, we delve into the design and implementation details of FELIX. The

proposed architecture for FELIX is composed of two main components: (a) a failure-

aware routing (and strategist) application in the control plane and (b) a custom packet

processing pipeline running on forwarding devices. We note that although we focus on

a link failure in our example, FELIX is not limited to failures on single links, but can

also deal with switch failures, fiber cuts, and other failures involving multiple links in a

shared-risk group (see Section 5.3.3 for more details). We use Fig. 5.3 to illustrate the

following discussion.

Figure 5.3: Example of FELIX’s approach to safeguard against and reroute around an
example link failure.

, , ...,

G

C

E

D

F

A

B

(a) Planning for normal and one-more-failure
scenarios.

Node A
tactic dst nhop

Normal G B, D

D–G G B

Node B
tactic dst nhop

Normal G G...
...

Node C
tactic dst nhop

Normal G D

D–G G E

...

...

...

...

Node D
tactic dst nhop

Normal G G...
D–G G A...

Node E
tactic dst nhop

Normal G F...

Node F
tactic dst nhop

Normal G G...

(b) Forwarding entries for normal network
state and for when link D–G has failed.

G

C

E

D

F

A

B
!

tactic ← D–G
tactic ← D–G

!

(c) Locally handling the failure of link D–G.

G

C

E

D

F

A

B

, , ...,

(d) Coordinating network-wide rerouting in the
data plane and preparing for the future in the
control plane.

104

Planning for failure scenarios

FELIX takes a proactive approach to dealing with failures. The first step in FELIX’s

recovery workflow is carried out before any failures strike the network, when the network

is operating normally (Fig. 5.3a). In this step, the routing application computes how

packets should be forwarded by each switch in the network during normal operation and

installs the necessary forwarding entries on them. It also computes how packets would

need to be forwarded should any single network element (e.g., link, switch, optical cable)

fail and installs alternative forwarding entries on the switches (See Fig. 5.3b where entries

are shown to deal with the failure of link D–G). We refer to this approach to forwarding

entry computation as one more failure protection. Section 5.3.4 goes into further detail

why that is both effective and essential in real networks. Finally, the application also

installs instructions for transitioning between the different forwarding tactics, where a

tactic is a set of forwarding entries across multiple switches that handles a particular

failure scenario.

Handling local failures

The packet processing pipeline running inside switches is designed to detect fail-

ures to locally connected links and transition to the appropriate forwarding tactic (§5.3.2).

When a switch detects a failure, besides transitioning to another tactic, it will also notify

its neighbors and the routing application of it. Switch notification is done through a spe-

cially designed lightweight protocol that enables switches to both communicate observed

failures and synchronize their active forwarding tactic. Fig. 5.3c depicts a case where the

link between nodes D and G fails. Nodes D and G both transition to forwarding tactic

D–G (see call-outs) and notify their neighbors and the routing application of the failure

(see orange arrows).

Coordinating network-wide rerouting

Switches relay notifications in the network until all switches are aware of the fail-

ure, enabling the entire network to transition to a forwarding tactic appropriate to the new

state of the network (§5.3.3). We highlight that both of the procedures just described,

failure notification and tactic transition, are executed entirely in the data plane based on

pre-configured match-action tables. This approach frees the data plane from having to

wait for the control plane to make decisions upon a failure. No communication between

105

control and data planes is required when a new failure arises. The data plane is aware

of the actions that should be carried out ahead of time, enabling it to react to failures

independently and immediately.

Going back to our description of the failure recovery workflow, upon receiving a

notification, a neighbor switch will update its forwarding tactic and disseminate the noti-

fication to its own neighbors (see orange arrows in Fig. 5.3d). This procedure takes place

in the neighbor switch unless its is already aware of the failure, which can be due to hav-

ing detected the failure locally or having received the same notification previously from

other switches. In case the switch is already aware of the failure, it simply discards the

notification. In some situations, when updating its forwarding tactic, the neighbor switch

may need to make an additional tactic transition. These situations are due to a failure in-

volving multiple links in a shared-risk group (e.g., the set of links connected to a switch).

Whenever an additional transition is necessary, the switch updates the notification before

sending it to its neighbors. In Section 5.3.3, we describe these coordination procedures in

more detail.

Preparing for future failure scenarios

When the routing application is notified of a failure, it will start planning for the

event of one more failure to happen so that it can pre-configure the data plane to act

appropriately if and when the time comes. Fig. 5.3d exemplifies the routing application

planning for more failures in the new current network state (where link D–G has failed).

In this context, we highlight that the control plane has a strategic role, looking ahead and

preparing for failures, while the data plane has a tactical role, acting according to failures

when they happen, as proactively instructed by the routing application.

5.3 Design and Implementation

FELIX relies on multiple complementary components to prepare for, detect, and

reroute around failures in the data plane efficiently and effectively. In Section 5.2, we pro-

vided an overview of how these mechanisms interact and how abstractions are applied. In

this section, we describe each of these elements individually in greater detail following a

bottom-up approach. For the data plane procedures, we consider P4-programmable de-

vices as the target platform and provide design and implementation details in this context.

106

We start by describing how packets are forwarded under FELIX (§5.3.1). Next, we show

how data plane devices detect and handle local failures (§5.3.2) as well as coordinate

network-wide rerouting around these failures (§5.3.3). Finally, we describe how FELIX’s

routing application plans ahead for multiple failure scenarios (§5.3.4).

5.3.1 Forwarding Packets in the Data Plane

Packet forwarding is based on two complementary lookup tables, NORMALFWD

and ALTFWD, as well as a state variable, fwd_tactic. Algorithm 5 presents pseudocode

of the packet forwarding procedure. The variable fwd_tactic represents, by way of a

number, the current network operation state and forwarding tactic. A unique fwd_tactic

number is assigned for each failure scenario (see more in §5.3.4). The procedure starts

by identifying the normal output port for the packet (Line 2). NORMALFWD represents

a normal forwarding lookup table with a simple extension to indicate the switch that is

expected to be the last to forward the packet before it leaves the network (i.e., traffic egress

point). Next, the switch will check if the current network fwd_tactic is not normal (L.3,

i.e., a failure scenario is ongoing), in which case it will also check, by looking up table

ALTFWD, if an alternative output port must be used to forward the packet considering the

current fwd_tactic and dst_node (L.4). In case both checks pass, the switch replaces the

value of output_port, initially set by table NORMALFWD, with that defined by ALTFWD

(L.5) and then forwards the packet accordingly.

In our P4-based prototype, fwd_tactic is stored in a stateful register and each

lookup table is implemented as an independent match-action table. Assuming an IP net-

work, entries in NORMALFWD have the form ⟨dst_addr, output_port, dst_node⟩, where

dst_addr is the key in a longest-prefix match and output_port is the port connected to the

next hop during normal network operation. The additional field dst_node indicates the

target switch to send packets to in the case of one or more failures in the network. We

note that FELIX only extends the action part of the normal forwarding table that would

already be present in the switches. ALTFWD carries out alternative forwarding at the

topology-graph level. Entries have the form ⟨fwd_tactic, dst_node, output_port⟩, where

fwd_tactic and dst_node are the lookup keys in an exact match. Table ALTFWD has an

entry ⟨ft, dn, op⟩ if and only if an alternative next hop op is necessary to be able to reach

destination node dn under forwarding tactic ft. We describe, in Section 5.3.4, how these

tables are populated.

107

Algorithm 5 Forward a data packet.
Input: Data pkt

1: state fwd_tactic
2: output_port, dst_node← NORMALFWD.get(pkt.dst_addr)
3: if fwd_tactic is not NORMAL then
4: if ALTFWD.hit(fwd_tactic, dst_node) then
5: output_port← ALTFWD.get(fwd_tactic, dst_node)

Output: Send pkt via port output_port

Packet forwarding in FELIX was designed considering the type and availability of

memory resources in modern programmable targets. For example, RMT (BOSSHART

et al., 2013) makes available Ternary Content-Addressable Memory (TCAM) and Static

Random-Access Memory (SRAM) units. SRAM is usually present in larger quantity

since it is cheaper than TCAM. The authors of RMT propose it to have a total of 370Mb

of SRAM and 40Mb of TCAM. When programming in P4, TCAM is used to store lookup

keys when match-action tables require ternary matching, while action data is stored in

SRAM. Tables with exact matching are mapped completely to SRAM (BOSSHART et

al., 2013). With that background in mind, and to minimize memory costs, FELIX’s design

focuses on utilizing solely SRAM. More specifically, the ALTFWD is an exact-match ta-

ble totally mapped to SRAM, both for keys and for action data. FELIX extension to the

NORMALFWD table only changes the action data part of it, limiting the additional mem-

ory usage to SRAM. We evaluate FELIX memory usage in Section 5.4.3. In Section 5.6,

we also discuss the mapping of match-action tables to memory in further detail.

5.3.2 Handling Local Failures

In addition to a procedure to forward packets, in FELIX each switch is also pro-

grammed with procedures to deal with local failures and coordinate network-wide rerout-

ing with other switches. We will describe rerouting coordination in the following section.

In this section, we focus on how switches detect and reroute around local failures. Algo-

rithm 6 presents a pseudocode for this procedure.

The procedure is executed for every data packet received by switches and starts by

checking if the switch port status has changed (Line 4). The metadata field port_status1 is

a bitstring that indicates at each bit i, whether the i-th switch port is active (1) or not (0). If
1In line with the work by Chiesa et al. (2019), we assume the port status to be readily available as

standard metadata to the P4 program.

108

Algorithm 6 Detect and reroute around a local failure.
Input: Data pkt

1: metadata port_status, switch_ID
2: state prev_port_status, fwd_tactic,
3: n_transitions, transition_TS
4: if port_status ̸= prev_port_status then
5: element← ELEMENT.get(prev_port_status, port_status)
6: fwd_tactic← TACTICS.get(fwd_tactic, element)
7: prev_port_status← port_status
8: n_transitions← n_transitions +1

9: transition_TS← CURRENTTIMESTAMP()
10: Create and send a new failure notif :
11: ⟨fwd_tactic, n_transitions, switch_ID, element⟩

Output: Continue pkt processing

the port_status has changed since the last check, the switch will make a forwarding tactic

transition. To do so, first, it uses a special lookup table ELEMENT to determine the link

which is connected to the port that is now down, breaking the communication to one of

its neighbors (L.5). Next, the switch will update its tactic by way of table TACTICS (L.6),

which considers the current fwd_tactic and the locally connected failed element. We note

that the broken communication can be due to a failure of the link connected on the node

port or of the neighbor device on the other side of the link. However, at this point, the

switch cannot discern between the two with its local view but needs to coordinate with

other switches in the network to do so, which we describe in Section 5.3.3.

To conclude the procedure, Lines 7-9 update the stateful variables needed for fu-

ture calls (packets) as well as to create a new failure notification to be sent to neighbor

switches and the routing application (L.10-11). The original data pkt is processed and for-

warded normally and, in our prototype, also cloned to create the failure notification packet

(since P4 only has replication but no packet creation primitives). Failure notifications have

the form ⟨new_fwd_tactic, n_transitions, announcer, element⟩, where new_fwd_tactic is

the new forwarding state after the failure, n_transitions is the number of state transitions

so far, announcer is the switch ID of the node creating the notification, and element is the

element ID of the link (or shared-risk group) that is now down.

109

Algorithm 7 Reroute around a remote failure.
Input: Failure notif

1: metadata switch_ID
2: state fwd_tactic, n_transitions, transition_TS
3: if notif .new_fwd_tactic = fwd_tactic
4: or notif .n_transitions < n_transitions then
5: Discard the failure notification notif
6: else
7: elapsed← (notif .ingress_TS − transition_TS)
8: if elapsed ≤ THRESHOLD and
9: SFTACTICS.hit(fwd_tactic, notif .element) then

10: notif .new_fwd_tactic, transitions←
11: SFTACTICS.get(fwd_tactic, notif .element)
12: notif .n_transitions← notif .n_transitions + transitions
13: notif .announcer← switch_ID

14: fwd_tactic← notif .new_fwd_tactic
15: n_transitions← notif .n_transitions
16: Propagate the failure notification notif

Output: Either discard (L5) or propagate (L16) notif

5.3.3 Coordinating Network-Wide Rerouting

In this section, we detail how FELIX-enabled devices coordinate among them-

selves using failure notifications to reroute around failures. We start by describing how

they communicate to deal with single-link failures and then show how to extend the ap-

proach to deal with multi-link failures under shared-risk events.

Single-link failures

As described in Section 5.3.2, when a switch detects a failure to a link directly con-

nected to one of its ports, it sends a failure notification message to its neighbor switches.

Algorithm 7 presents the procedure run by switches when they receive a failure notifica-

tion.

The procedure starts by checking whether the switch is already aware of the failure

(Line 3) or whether the notification is outdated (L.4), in which cases the notification is

simply discarded (L.5). Otherwise, the switch will update its state variable fwd_tactic

and propagate the notification to its neighbors, as shown in Lines 14-16. This procedure

results in switches in the network progressively disseminating the notification until all of

110

Figure 5.4: Steps to reroute around a shared-risk failure.

A B

D

A–C failed

C–D failed

C

!
!

(a)

A B

D

C–D failed

A–C
failed

C

(b)

A B

C failed

C failed

C D

(c)

A B

D

C failed

C

(d)

them are aware of the failure and, thus, can correctly and efficiently reroute traffic to avoid

it.

Switch and other shared-risk multi-link failures

The procedure as just presented enables data plane switches to handle single link

failures. Next, we describe how FELIX reroutes around shared-risk failures involving

multiple links (e.g., due to a node failure). The rerouting happens in two stages. In

the first, switches deal with their locally-observable failures. In the second, switches

communicate to handle all failures in the shared-risk group. Fig. 5.4 exemplifies the main

steps in the rerouting coordination. Consider the failure of Switch C in the figure. In

Fig. 5.4a, when Switch A can’t reach C, it will assume link A–C failed, transition to the

appropriate forwarding tactic, and notify its neighbor B. Similarly, switch D will assume

link C–D failed and proceed accordingly. Switch B will receive the notifications sent

from both A and D and propagate them to the respective other neighbor (Fig. 5.4b), after

having updated its own tactic. Upon receiving the failure notification created by Switch

D, since A has observed another local failure recently, it will conclude that Switch C

failed, and not only link A–C. Consequently, it will transition to the appropriate tactic and

send an updated notification to B indicating C as failed (Fig. 5.4c). Switch D will proceed

similarly. After receiving the updated notifications, Switch B will update again its tactic

as instructed by A and D (Fig. 5.4d).

Lines 7-13 in Algorithm 7 formalize how switches process failure notifications to

detect shared-risk failures and transition to the appropriate forwarding tactic. As shown

previously in Algorithm 6, Lines 5-6, when a switch detects a failure it transitions into

a new fwd_tactic that assumes only a single link failure. Additionally, it also saves a

timestamp of the transition (Alg. 6, L.9). In view of that, in Algorithm 7, whenever a

valid notification is received, the procedure will also verify whether the notification was

111

received within a reasonably short amount of time of the previously detected local failure

(Lines 7-8). According to measurement studies (GOVINDAN et al., 2016; TURNER et

al., 2012; GILL; JAIN; NAGAPPAN, 2011; TURNER et al., 2010; MARKOPOULOU et

al., 2008), the majority of times, when two links fail simultaneously, they belong to the

same shared-risk group. With that observation in mind, whenever a switch is aware of

two single-link failures happening in a short period in time, it will transition to a tactic

that handles the shared-risk group to which the two links belong by looking up table SF-

TACTICS (L.9-11). Finally, Lines 12-13 update the notification currently being processed,

before propagating it to neighbor switches, which will transition to the new tactic.

5.3.4 Planning for Failure Scenarios

In this section, we start by presenting how FELIX plans for a single failure sce-

nario and then describe its approach to efficiently plan for many possible future failure

scenarios.

Single failure scenario

Algorithm 8 presents the pseudocode for computing the necessary table entries

to handle a failure scenario (or event). The algorithm can be split in two parts. The

first (Lines 1-7) calculates the alternative forwarding entries while the second (L.8-17)

determines strategy entries to transition to the correct forwarding tactic for the scenario.

The procedure starts by generating a new unique ID for the network state (and respective

tactic) where elements in the set event_elements are those that would be failed in that

event (in addition to those that failed previously, L.1). Next, it creates a graph representing

such failure state and computes the (shortest-non-failed-path) next hops between all node

pairs (L.2-5). FELIX only needs to save the alternative entries that are different from the

normal forwarding (considering the non-failed network topology graph, L.6-7), since the

latter can be used to forward packets correctly during failure. Consequently, for each

failure scenario, FELIX installs only the necessary additional entries in the data plane,

substantially saving data plane device memory.

In its second part, the algorithm checks whether the failure event involves only

a single link (Line 8), in which case it will prepare tactic transition entries for the two

nodes connected to such link (L.9-11). The tactic transition entries are populated in the

112

Algorithm 8 Plan for one failure scenario.
Input: Network topology graph, current fwd_tactic, currently failed_elements, would be failed

event_elements
1: fs← GETTACTICID(failed_elements ∪ event_elements)
2: fgraph← graph − (failed_elements ∪ event_elements)
3: for each src in fgraph.switches do
4: for each dst in fgraph.switches do
5: nh← SHORTESTPATHNEXTHOPS(fgraph, src, dst)
6: if nh ̸= SHORTESTPATHNEXTHOPS(graph, src, dst) then
7: ALTFWD[src].set(fs, dst, nh)

8: if |event_elements| = 1 then ▷ Single-link
9: element← failed_elements.getSingleElement()

10: TACTICS[element.nodeA].set(fwd_tactic, element, fs)
11: TACTICS[element.nodeB].set(fwd_tactic, element, fs)
12: else ▷ Share-fate group
13: for each ea in event_elements do
14: fsa← GETTACTICID(failed_elements ∪ {ea})
15: for each eb in event_elements −{ea} do
16: SFTACTICS[ea.nodeA].set(fsa, eb, fs, |event_elements| − 1)
17: SFTACTICS[ea.nodeB].set(fsa, eb, fs, |event_elements| − 1)

Output: ALTFWD, TACTICS

TACTICS table of data plane devices. Whenever the failure event involves multiple links,

i.e., a shared-risk group, special SFTACTICS tactic transition entries are created (Lines

13-17). For every pair of links ⟨ea, eb ⟩ that are part of the failure event, entries are

created on the nodes connected to ea such that they transition to the appropriate shared-

risk tactic whenever they receive a notification of eb having failed after having detected

ea’s failure locally. See Section 5.3.3 for more details on how this process takes place at

runtime.

The worst-case computational complexity of Algorithm 8 is determined by the

procedure to compute next hops between all switch pairs. For example, if implemented

with Dijkstra’s algorithm for shortest path, the algorithm complexity is given by O(m +

n · log n) where n is the number of switches and m is the number of links in the network

infrastructure. Other algorithms, such as (QIU et al., 2019), could be applied to achieve

lower average complexity. After having computed the entries for a failure scenario, FE-

LIX’s routing application needs to install them into the data plane to prepare the network

to tackle such scenario, which we will describe next. We evaluate, in Section 5.4.3, the

time FELIX takes to prepare for possible future failures.

113

Algorithm 9 Continuously plan for failure scenarios.
Input: Network topology graph

1: Compute and populate entries for the normal forwarding tables NORMALFWD of data plane
switches.

2: while true do
3: for each fe in the set of possible next failure events do
4: Plan for the failure of fe.elements (Algorithm 8)

5: Populate ALTFWD tables with new alternative entries
6: Remove outdated alternative entries from ALTFWD

7: Wait to receive a new failure notif
8: Remove failed element from graph

Many failure scenarios

Successfully planning for multiple failure scenarios involves tackling two chal-

lenges: the large number of possible such scenarios in real networks and the limited

amount of memory available in programmable switches to store forwarding entries. More

specifically, the number of possible failure scenarios in a network with n elements (e.g.,

links, switches, optical devices) is given by
∑n

i=1

(
n
i

)
= 2n − 1. Consequently, com-

puting alternative forwarding entries for all possible failure scenarios would both take

an impractically long time and require prohibitive amounts of memory. Despite that,

network measurement studies (GOVINDAN et al., 2016; TURNER et al., 2012; GILL;

JAIN; NAGAPPAN, 2011; TURNER et al., 2010; MARKOPOULOU et al., 2008) show

that although failures happen frequently (a few minutes apart), it is very unusual for two

elements (e.g., links, switches, optical-fiber cable) to fail at the “same time”, unless they

belong to the same shared-risk group. For example, two links connected to the same

switch are perceived as failed whenever the switch itself fails.

FELIX’s routing application leverages this fact about failure correlation to imple-

ment what we refer to as the one-more-failure approach to plan for failure scenarios. In

other words, in any given point in time during network operation, FELIX pre-computes

and installs only the entries necessary to handle a single additional failure event, which

may consist of a single link or multiple links in shared-risk group. Algorithm 9 presents

an example pseudocode for the one-more-failure approach. The algorithm starts by cre-

ating normal routing entries (Line 1) and, then, repeatedly plans for additional failures

(L.3-6), receives failure notifications (L.7), updates the topology graph (L.8) and goes

back to planning for failures.

114

5.4 Evaluation

This section seeks to answer two main questions: a) How much faster can net-

works recover from failures using FELIX when compared to traditional SDN with Open-

Flow approaches? and b) How well does FELIX scale to large networks? We start by

describing our experimental setup in Section 5.4.1. Next, we present and discuss our

experimental results in Sections 5.4.2 and 5.4.3.

5.4.1 Experimental Setup

Scenarios

For the evaluation, we focused on two types of topologies: data center (DCN)

and wide-area networks (WANs). For data center, we consider fat-tree topologies with

progressively larger number of switches. The workload consists of symmetric traffic be-

tween all host pairs, which is load-balanced via Equal-Cost Multi-Path (ECMP) routing.

For WAN, we use the REPETITA dataset (GAY; SCHAUS; VISSICCHIO, 2017), which

consists of more than 260 real-world topologies and traffic matrices. We evaluated each

approach considering all available networks. In the interest of clarity, we selected three

of the most representative networks of each type with varying sizes. Table 5.2 presents

the metadata (type, label, number of nodes, and number of links) for each of the selected

networks.

Testbed

We developed prototypes2 of FELIX targeting the reference P4 software switch

(BMv2 – Behavioral Model version 2 (P4 LANGUAGEM CONSORTIUM, 2014)) and

the NetFPGA-SUME3 board (ZILBERMAN et al., 2014). We used as testbed for the

functional evaluation Mininet-emulated networks running on a dedicated Linux 4.4 server

with 2x Intel Xeon Silver 4208 2.1GHz 8-core 16-thread processors (32 total threads), 8x

16GB 2400MHz RAM, and 2TB of NVMe SSD storage. The BMv2 prototype is mainly

targeted at enabling us to evaluate FELIX in a high-fidelity environment via Mininet

2Our prototypes will be made available upon publication.
3This second prototype is not fully functional due to the (current) lack of support for port status metadata

and packet replication in the NetFPGA P4 libraries.

115

Table 5.2: Summary of the networks used for evaluation.

Network Type Label Nodes Links

FatTree8 DCN FT8 80 256

FatTree16 DCN FT16 320 2048

FatTree32 DCN FT32 1280 16,384

Bell Canada WAN BC 48 64

CogentCo WAN CG 197 243

SprintLink WAN SL 315 972

(LANTZ; HELLER; MCKEOWN, 2010), but limited to scaled-back scenarios. We also

designed an analytical model of the system to enable us to evaluate FELIX in larger scale

scenarios. To examine overheads on device memory, we assume the RMT/Tofino archi-

tecture (BOSSHART et al., 2013; BAREFOOT NETWORKS, 2020) as hardware targets.

We use our NetFPGA-SUME prototype to evaluate the computational resource require-

ments of FELIX on fixed-resource platforms.

5.4.2 Performance

The main performance indicator for a failure rerouting approach is the time it

takes to recover completely from a failure, i.e., its downtime. In this section, we compare

FELIX’s downtime with that of existing rerouting approaches. We limit the scope of our

comparison to approaches that, like FELIX, provide shortest-non-failed routing. Namely,

we consider the two SDN-OpenFlow approaches described in Section 5.1: one that com-

putes alternative forwarding entries only upon failure and another that pre-computes and

caches in the control plane the forwarding entries necessary for each failure scenario. We

refer to the first approach as Standard SDN (S-SDN) and to the second as Pre-Compute

SDN (PC-SDN). As shown previously in Fig. 5.1, the total downtime can be decomposed

into four delay factors, which we now formalize in Equation 5.1.

T = Tdetection + Tnotification + Tcomputation + Tupdate (5.1)

Each one of the factors in Equation 5.1 can vary depending on the mechanisms

and steps involved in their procedure. With regards to Tdetection, existing mechanisms are

able to detect failures in the order of milliseconds or lower (KATZ; WARD, 2010). In

our evaluation, we consider three possible values for the expected detection delay: 0.1,

116

Figure 5.5: Downtime with varying detection delay values (entry installation delay fixed
at 1 ms).

FT8 FT16 FT32
Network

10 4

10 3

10 2

10 1

100

101

102

Do
wn

tim
e

(s
)

(a) DCN

BC CG SL
Network

10 4

10 3

10 2

10 1

100

101

102

Do
wn

tim
e

(s
)

S-SDN (100us)
S-SDN (1ms)
S-SDN (10ms)

PC-SDN (100us)
PC-SDN (1ms)
PC-SDN (10ms)

Felix (100us)
Felix (1ms)
Felix (10ms)

(b) WAN

1, and 10 ms. Tnotification is defined by the communication delays between data plane

devices and the SDN controller (or the other forwarding devices in the network in the

case of FELIX). Consequently, this delay varies according to the network under study.

The computation delay is a function of the network size and the controller processing

capacity. In our analysis of S-SDN, we consider the runtime of a parallel implementation

of Dijkstra’s algorithm for shortest paths for all pairs, running with 30 parallel threads on

our dedicated testbed server, to be the value of Tcomputation. For the same delay in PC-SDN,

we consider only a fixed 10ms delay for cache lookup. We consider this small, fixed

lookup delay seeking to understand the best case scenario of what is possible with PC-

SDN. For FELIX, the data plane coordinates failure recovery independently of the control

117

plane, so the computation delay does not factor into the downtime. Finally, Tupdate is

influenced by communication delays and the time it takes to install entries on forwarding

devices. Based on recent measurement studies (HUANG; YOCUM; SNOEREN, 2013;

KUŹNIAR; PEREŠÍNI; KOSTIĆ, 2015), we use three different values for the update

delay: 0.1, 1, and 10 milliseconds. Each of these three values represents an update rate of

10,000, 1000, and 100 entries per second, respectively. We note that the third and fourth

delays do not factor into FELIX’s downtime, since it does not defer to the controller to

install alternative entries at the time of failure.

We evaluate the effect of variations in the detection time in the total downtime.

For this purpose, we vary the detection time while keeping the entry installation time

fixed at the middle value of 1ms (i.e., 1000 entries/s). Fig. 5.5 presents the results for the

two SDN-OpenFlow approaches and FELIX. Each bar4 in the figure represents the aver-

age downtime among all possible network failures for a specific combination of recovery

approach, detection delay, and network topology. In Fig. 5.5, we observe that the detec-

tion delay has a clear influence on FELIX’s downtime. In DCN topologies (Fig. 5.5a),

the downtime is closely approximated by the detection delay value. These results are ex-

pected since the remaining factor, Tnotification, is dictated by the network communication

delays, which in DCNs is at around the same order of magnitude of the minimum detec-

tion delay of 0.1ms. In WANs (Fig. 5.5b), this correlation is not as evident due to the

communication delays being in the order of several milliseconds, slightly masking the

effect of the detection delay. Compared to S-SDN, FELIX reduces downtime by a fac-

tor of at least 17 times in the BC network with Tdetection set to 10ms. The speedup can

reach up to 5 orders of magnitude (in FT32 with Tdetection set to 0.1ms). Compared to

PC-SDN, FELIX’s downtime speedups range from about 4.4 times to about 2000 times,

in the same scenarios as S-SDN, respectively. These speedup results show the benefits of

FELIX’s approach to failure recovery. The comparison to S-SDN demonstrates the ben-

efits of eliminating the need to compute alternative entries in reaction to a failure, while

the comparison to PC-SDN shows the additional gains possible by not having to install

those entries at the time of failure.

Next, we focus on the effect of the entry installation delay in the downtime. For

this part of the evaluation, we fix the detection delay at 1ms. Fig. 5.6 presents the results

obtained for these new scenarios. As expected, FELIX is not impacted by variations of

the entry installation delay since no new entries need to be installed at the time of failure.

4Whiskers show the confidence interval with 99% confidence level.

118

Figure 5.6: Downtime with varying forwarding entry installation delay values (detection
delay fixed at 10 ms).

FT8 FT16 FT32
Network

10 4

10 3

10 2

10 1

100

101

102

Do
wn

tim
e

(s
)

(a) DCN

BC CG SL
Network

10 4

10 3

10 2

10 1

100

101

102

Do
wn

tim
e

(s
)

S-SDN (100us)
S-SDN (1ms)
S-SDN (10ms)

PC-SDN (100us)
PC-SDN (1ms)
PC-SDN (10ms)

Felix (100us)
Felix (1ms)
Felix (10ms)

(b) WAN

We note that in contrast to FELIX, both of the SDN-OpenFlow approaches show variation

in downtime as a result of the variation in installation delay, but especially PC-SDN. The

downtime speedup of FELIX can reach up to four orders of magnitude when compared

to S-SDN and three orders of magnitude when compared to PC-SDN. These perceived

variations for the SDN-OpenFlow approaches suggest that the downtime for S-SDN is

mainly dominated by the computation delay, while the update delay tends to represent a

large fraction of the downtime for PC-SDN.

Seeking to further understand the effect of each delay factor on the downtime, in

Fig. 5.7, we breakdown the downtime of each approach into its four factors5. For this

5Note that we clip the S-SDN-FT32 bar to avoid flattening the graph.

119

Figure 5.7: Downtime factor cost breakdown.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Downtime (s)

FT8
FT16
FT32

BC
CG
SL

FT8
FT16
FT32

BC
CG
SL

FT8
FT16
FT32

BC
CG
SL

Ne
tw

or
k

22.14 seconds

S-SDN PC-SDN Felix
Detection
Notification
Update
Computation

Detection
Notification
Update
Computation

Detection
Notification
Update
Computation

analysis we set the Tdetection to 10ms and the installation delay to 1ms. We observe that,

for FELIX, the detection delay accounts for the majority of the downtime for four of the

six evaluated network topologies, namely, BC, FT8, FT16, and FT32. In the other two

topologies, CG and SL, a significant portion of the downtime is also explained by the

notification delay, which, in turn, is explained by the communication delays in these large

WAN topologies. Fig. 5.7 confirms our suspicion that the downtime for S-SDN is mainly

a function of the computation delay. It accounts from about 75% (CG) of the S-SDN

downtime to about 98% (FT32) in the evaluated topologies. The figure also confirms our

expectation that the update delay represents a large fraction of the PC-SDN downtime.

This fraction ranges from about half of the PC-SDN downtime for the smallest topologies

evaluated (FT8 and BC) to about nine-tenths (or 90%) in the largest topology (FT32).

Finally, we evaluate how this reduction in downtime provided by FELIX translates

into fewer packet drops. In this analysis we focus our comparison to S-SDN to observe the

benefits of joint pre-computation and data plane caching of alternative forwarding entries.

We carried out experiments to measure the amount of packets lost by each approach on

two network topologies. Representing DCNs, we chose the well known 4-port fat-tree

topology containing 20 nodes and 32 links. Representing WANs, we chose the Abilene

continental-wide backbone topology with 11 nodes and 14 links. In line with recent

works in the area of programmable data planes (HSU et al., 2020), we choose smaller

topologies to guarantee consistent performance in the emulated environment, without loss

of generality. The measurement results underline our previous findings, with S-SDN

losing on typically 6 times (Abilene) or 13 times (FatTree4) as many packets as FELIX.

120

In the worst case for S-SDN, a link failure between nodes in the aggregation and core

layers in the FatTree4 topology, it loses about 112 times more packets than FELIX. The

results and discussions presented in this section show the benefits of FELIX approach

(bringing independence from the control plane in the time of a failure), which grows as

networks get larger, faster, and with lower communication delays.

5.4.3 Scalability

Next, we evaluate how well FELIX scales on different network types and sizes.

Memory usage

One of the sources of overhead introduced by FELIX is the additional memory

used to cache alternative forwarding entries that handle the failure scenarios. The over-

head is mostly due to the alternative forwarding entries, but some overhead is also due

to the NEIGHBOR and TACTICS tables. As previously described, FELIX implements the

alternative forwarding table in SRAM, since it is both more plentiful and more energy

efficient than TCAM. Table 5.3 shows FELIX memory usage when applying the one-

more-failure approach to planning for future failures. The results show that FELIX makes

sensible use of device memory resources. For the evaluated topologies, it allocates at most

7.44Mb of SRAM (FatTree32 topology, Column “SRAM Usage Mbits”). This amounts

to only 2% (Column “SRAM Usage Util”) of the SRAM available in the RMT/Tofino

chips, which have 370Mb of SRAM (BOSSHART et al., 2013). For the WAN topolo-

gies, the memory usage stays well under 1%, with the maximum utilization at 0.53%, or

only about 2Mb of SRAM for the SprintLink network.

Packet processing resources

FELIX’s computational resource requirements depend on the target platforms, of

which the most demanding are platforms with fixed resources (e.g., FPGAs and ASICs).

To evaluate resource usage on such a fixed-resource target, we used our prototype for

the NetFPGA-SUME development board (ZILBERMAN et al., 2014). Our prototype re-

quired 74,645 lookup tables (LUTs) and 204,775 registers. These numbers represent, re-

spectively, 17.2% and 23.6% of the available resources. When compared to the resources

demanded by a baseline IP-destination forwarding pipeline (which we implemented for

121

Table 5.3: Summary of the scalability results.

Network SRAM Usage # Alt Entries Planning
Label Mbits Util Total /Node Runtime

FT8 0.66 0.18% 28,288 484 0.426s
FT16 1.31 0.35% 914,432 4008 11.361s
FT32 7.44 2.00% 29,335,552 32,464 880.716s

BC 0.66 0.18% 6922 369 0.203s
CG 1.53 0.41% 201,676 4648 2.280s
SL 1.97 0.53% 636,312 6521 7.100s

the sake of comparison), the overhead observed is negligible. We expect comparable pro-

cessing resource requirements for similar targets. From these estimates, we conclude that

FELIX introduces a practicable level of overhead on packet processing.

Pre-compute runtime

We also evaluate the time it takes for FELIX’s routing application (Algorithm 9) to

pre-compute the forwarding entries needed to handle the next possible failures, as shown

in Column “Runtime” of Table 5.3. FELIX’s one-more-failure algorithm scales polyno-

mially to the number of nodes and links in a network. For the selected WAN topologies,

FELIX took at most 7.1 seconds to compute all of the necessary entries. For the DCN

topologies, FELIX took up to about 15minutes for the largest network (FatTree32). This

represents a runtime of only about 50 milliseconds per failure scenario. We observe that

the algorithm takes longer to run on DCN topologies, when compared to WANs, due to

the higher number of possible paths between any pair of endpoints. We note that the

one-more-failure algorithm is embarrassingly parallel, which enables its runtime to be

substantially reduced by scaling up or out the computational resources assigned to the

routing application. Another way to reduce runtime for DCN topologies would be to

design an algorithm that exploits their regularity. We leave such design as future work.

Notification overhead

When a failure happens, the switches local to it send notifications to their respec-

tive neighbors. A neighbor switch propagates a notification packet to its own neighbors

whenever the notification processing resulted in a change of forwarding tactics. If the

processing does not result in a change of tactics, the neighbor does not propagate the

notification. As a result, the number of notifications exchanged within the network λ is

bound by λ ≤ (f +1) · 2m, where f is the number of links impacted by the failure and m

122

the total number of links in the network. In other words, a notification will be forwarded

back and forth at most once in each link of the network for each link being part of the

failure, which also means that the total collection of notifications is in essence uniformly

distributed across the network.

5.5 Related Work

Programmable data planes enable novel, remarkably efficient solutions to failure

recovery in communication networks. In this section, we highlight some of the existing

approaches related to FELIX and position it within the state-of-the-art.

Qiu et al. (2019) proposed two algorithms for efficient recovery path computa-

tion upon link failures. Their work seeks to minimize the time it takes to compute the

necessary updated forwarding entries to deal with a new failure, which accounts for the

majority of the recovery delay (as we have discussed previously in Sections 5.1 and 5.4).

In FELIX, we seek to take the computation delay out of the equation by pre-computing

alternative entries and caching them on data plane devices during normal network op-

eration, i.e., before failures happen. Inspired by (QIU et al., 2019), we designed new

algorithms that efficiently compute recovery paths for not only one single link failure, but

also for many links at a time and in shared-risk groups.

Pre-computing alternative forwarding entries can also require large amounts of

memory, if not carefully managed, which is especially troublesome for data plane devices

due to their limited memory resources. In view of that, some works have sought to mini-

mize the amount of memory that is necessary in the data plane to store forwarding entries.

For example, Plinko (STEPHENS; COX; RIXNER, 2016) was designed in the context of

OpenFlow (MCKEOWN et al., 2008) switches and proposes a forwarding table compres-

sion algorithm to minimize Ternary Content-Addressable Memory (TCAM) usage, a type

of memory that is both scarce and costly in existing hardware. Plinko’s design and ca-

pacity to minimize memory usage is limited by the flexibility of the OpenFlow protocol

and its forwarding model. In contrast, FELIX targets programmable data plane devices

(e.g., with P4 (BOSSHART et al., 2014)) allowing for greater flexibility in defining for-

warding model and table structures. Specifically, FELIX was designed to only use Static

Random-Access Memory (SRAM) for alternative entries, incurring in lower overheads

in terms of memory usage (since SRAM is available in larger amounts than TCAM) and

operation costs (since SRAM is also more energy-efficient than TCAM). Furthermore,

123

FELIX’s two-stage forwarding model enables it to minimize the usage of memory by only

storing an alternative entry for a given failure scenario when it differs from the normal

entry.

Similar to the division of responsibility between control and data planes in FELIX,

DDC (LIU et al., 2013a) proposes moving the responsibility for network connectivity to

the data plane. In a nutshell, DDC builds a Directed Acyclic Graph (DAG) for each desti-

nation and forwards packets based on this DAG and their incoming ports. Whenever fail-

ures strike the network, switches progressively recompute the DAG using a link-reversal

algorithm triggered by packets arriving on unexpected ports. DDC guarantees reachabil-

ity under any failure scenario as long as there exists a viable path. Alternative paths are

computed in reaction to failures and there is no guarantee that these will be the shortest

paths within the network. In contrast, in FELIX, the control plane is recruited to compute

these paths ahead of time and can be given performance objectives for paths (such as us-

ing the shortest path). Moreover, data plane devices are programmed with a lightweight

protocol to enable direct coordination to reroute around failures.

Considering the taxonomy proposed by Chiesa et al. (2020), alternative path setup

in FELIX can be classified as pre-planned since the routing application plans for failure

scenarios in advance. The recovery scope is local since it provides the shortest-non-failed

paths around each of the network failures. Recovery resources are shared among primary

and alternative paths. In conclusion, FELIX pushes the boundaries of failure recovery in

three areas: (a) efficient planning ahead for many failure scenarios, (b) sensible use of data

plane resources to cache alternative forwarding entries, and (c) control-plane-independent

rerouting coordination in the data plane.

5.6 Additional Remarks

In this section, we discuss additional topics related to FELIX’s design and perfor-

mance.

Brown-Field Deployment

Can FELIX be deployed on SDN networks were not all switches are programmable?

The short answer is yes, FELIX can be deployed partially on such networks. However,

legacy OpenFlow-enabled switches restrict the space of failure scenarios that could be

dealt with in the most efficient way by FELIX, i.e., by data-plane coordination only. In

124

those deployment cases, the best approach would be to use a hybrid of FELIX and the Pre-

Compute SDN approach. The routing application can plan for failure scenarios normally

and cache all forwarding tactics in the control plane but only installs in the data plane

the tactics that can be implemented successfully without having to rely on the legacy

switches to take any rerouting action. Whenever the data plane cannot deal with a failure

independently, it will fallback to the control plane, which can promptly send the cached

alternative forwarding entries.

Minimal Memory Usage

In Section 5.4.3, we have shown that FELIX makes judicious use of data plane

device memory, using at most 2% of the SRAM currently available in programmable

hardware to fully protect a large network (i.e., with more than a thousand nodes and

sixteen thousand links). However, one might still ponder whether the memory overhead

could be further reduced. With that in mind, we sketch algorithms for forwarding entry

minimization and briefly discuss the overall gains they achieve and their associated costs.

Our main idea for reducing the number of entries is to group failure scenarios together

and have one single forwarding tactic to handle all failures in each group. The set of

feasible failure groups that can be formed in an arbitrary network is constrained by the

reachability in each failure scenario. More specifically, any pair of nodes that can reach

each other in any one of the scenarios in a group has also to be mutually reachable in the

group scenario. Given this constraint, a strawman solution to minimizing the number of

entries would be to analyze every possible combination of scenario groupings. However,

this solution is not feasible since the number of possible groupings is a permutation on all

of the possible failure scenarios in a network. Another solution would be to start with one

group for each single element failure and greedily merge pairs of groups (e.g., considering

the maximum decrease in number of entries) until no more groups can be joined (i.e., due

to the reachability constraint). Unfortunately, this solution is still costly for medium to

large topologies. Finally, we propose a probabilistic opportunistic merging procedure that

starts with one grouping for each single failure scenario and at each iteration randomly

picks two groups and merges them whenever the reachabiliity constraint is satisfied and

the number of entries is reduced. The procedure stops when no two groups can be merged

without violating the reachability guideline or doing so does not reduce the number of

necessary entries.

We implemented a prototype of the opportunistic merging (OM) procedure. Ta-

125

ble 5.4 summarizes our findings. Regarding memory usage, the OM procedure was able

to reduce the total number of forwarding entries in about 7% in the selected WAN topolo-

gies. For the DCN, OM savings start at around 64% for the smallest topology and quickly

grows as the topologies become larger. We observe that for both types of network evalu-

ated, more densely-connected topologies tend to yield higher savings, which is expected

since there are more alternative paths to use before reachability is violated.

Table 5.4: Summary of the results for the opportunistic merging memory-minimization
procedure.

Alt Entries Path
Network Total Savings Runtime Stretching

FT8 10133 64.18% 5.951s 1.0
FT16 244502 73.26% 251.991s 1.0
FT32 - - TLE -

BC 6452 6.79% 47.914s 1.9
CG 184434 8.55% 202.492s 1.4
SL 588902 7.45% 601.022s 1.1

We also observe that the total runtime to achieve these memory savings grows

substantially for larger and denser topologies. For example, The OM procedure did not

finish within a 2-hour time limit for FT32. We highlight here that the OM procedure

was designed seeking to gauge the amount of memory savings that could be expected

from such procedure and leave the exploration of more time-efficient procedures as future

work. Finally, any approach that seeks to group failure scenarios to reduce device memory

costs may introduce path stretching in the network. From our results, we find that path

stretching is independent of the network size. We observe, however, that DCN topologies

are subject to lower stretching due to the availability of many equal-cost paths. For all

networks, the OM procedure kept path stretching below 2 times in the median case.

5.7 On the Generality of the Strategy-Tactic Paradigm

In this chapter, we introduced the Strategy-Tactic (ST) paradigm for network op-

eration, which is a fruit of our lessons learned with designing FELIX. This new paradigm

plays on the strengths of the emerging software-defined networking architecture with pro-

grammable data planes. With FELIX, we instantiate one example application that shows

the benefits of the ST paradigm: data-plane timescale reactions with control-plane deci-

126

sions based on a global understanding of the network. In this section, we argue that this

paradigm could be applied to other network operation applications. We begin by briefly

revisiting and presenting the Strategy-Tactic paradigm by way of Figure 5.8, which illus-

trates the main components of this paradigm. In the control plane, the Strategy Algorithm

uses the available compute capacity to consider different potential network operations

scenarios. More importantly, this algorithm can create operation tactics, each to handle a

specific scenario in the best possible way, i.e., satisfying the network operation policies.

Furthermore, the control plane servers also have ample storage capacity, enabling them

to cache a large number of these tactics, which are handled by the Tactic Deployment

Manager. In the data plane, programmable forwarding devices can be programmed with

Alternative Forwarding Tables, which are populated by the control plane to implement

the pre-computed operation tactics. Moreover, a set of simple yet powerful mechanisms

and protocols enables these devices: (i) to detect whenever the network and traffic transi-

tion between different operation scenarios (Detection Mechanism); (ii) to quickly move to

the appropriate tactic upon detection (Tactic Transitioning Mechanism); and (iii) to keep

the active tactic consistent across the entire network (Coordination Mechanism). All of

these mechanisms make use of the new constructs (e.g., match+action tables, metadata,

registers, custom headers and parsing) made available with the emergence of data plane

programmability. Next, we discuss the main challenges and design decisions faced when

instantiating these types of applications according to the Strategy-Tactic paradigm.

Figure 5.8: Main components of the Strategy-Tactic paradigm.

Control Plane

Data Plane

Network
Operation
Policies

CPU Storage

Custom
Headers

Match+Action
Tables

Metadata &
Registers

2. Notifying of
scenario changes

1. Caching (in/out)
operation tactics

Strategy Algorithm Tactic Deployment
Manager

Detection
Mechanism

Coordination
Mechanism

Alternative
Forwarding

Tables

Tactic
Transitioning
Mechanism

127

Design Challenges

The first challenge in instantiating a network operation task in the ST paradigm is

that of exploring the space of possible operation scenarios. Given an arbitrary network

management task, there are usually many network and traffic operation scenarios that

need to be considered and catered to. For example, as mentioned earlier in the chapter, in

the case of FELIX, the total number of possible failure scenarios is given by
∑n

i=1

(
n
i

)
=

2n − 1, where n is the number of elements in the network subject to a failure (e.g., links

and switches). Consequently, new algorithms may need to be designed to explore the

space of possible scenarios in a clever way, in the best case, preparing for a scenario just

in time to handle it but before it actually comes to fruition. This is important to avoid

both wasting compute power to plan for highly improbable scenarios as well as saturating

resources to store the resulting tactics. In FELIX, based on the observed behavior of

failures in recent measurement studies, the strategic application plans for the scenarios

with one more failure than the current one, efficiently constraining the scenario search

space at any given point.

Comparable to the previous challenge, another is that of computing many tactics

efficiently. In the traditional implementation, for most operation tasks like failure rerout-

ing, the control plane only computes one “tactic” at a time. In other words, the control

plane only computes the forwarding entries necessary to handle the traffic given the cur-

rent state of the network. When instantiating applications to run these tasks in the ST

paradigm, many tactics need to be pre-computed at a time. In view of that, it becomes

important to design algorithms that can compute multiple tactics in parallel to minimize

the pre-planning runtime. In the context of FELIX, multiple instances of Algorithm 8,

which plans for a single failure scenario, can be run in parallel.

After computing the tactics, a related challenge is that of efficiently caching these

tactics in the data plane devices. Modern programmable forwarding devices have limited

memory to implement match-action tables, thus, they may not have enough space to cache

all of the necessary tactics. This challenge calls for the compression of tactics. There are

two types of compression for a set of operation tactics. The first is that of minimizing

the space required by each tactic independently. In FELIX, this is done in Algorithm 8

by storing only those forwarding entries that differ from the ones in the normal operation

scenario. This type of compression is lossless since each tactic remains the same, and

may be sufficient by itself to meet memory constraints, as observed in Section 5.4.3. The

second type is that of tactic grouping, where multiple compatible tactics are combined

128

into one, minimizing the number of distinct tactics and forwarding entries. This type of

compression can create side effects (such as path stretching, §5.6) due to the merging of

tactics and is usually more time consuming than the first type.

Moving to challenges related to the runtime of the application, a natural challenge

is that of detecting changes in the network. Since forwarding devices compose the data

plane of a network and are responsible for handling traffic, they are in a prime position to

detect when there is a change in the operation scenario. With the proposal of programming

languages such as P4, the idea is for programs to have access to metadata and counters

regarding the underlying hardware and the packets (along with their respective flows)

being processed. However, the necessary information for a particular monitoring task

may no be readily available and require some preprocessing. Furthermore, the type of

computation enabled on these devices is still constrained (e.g., no support for division,

floating-point operations), limiting the scope of detection mechanisms that can be devised.

In the case of FELIX, the port_status field is not currently available as standard metadata

in our evaluated platforms, so additional work was required to make such information

available to our P4 programs.

Another aspect to be considered in that context is when to transition between tac-

tics, or in other words, in which type of network event to focus on. This is necessary since

even a single operation task may have multiple distinct events related to it. For example,

when dealing with failures, there are events such as links going down (or coming back up),

devices going offline (or coming back online), links flapping up between states, etc. As an

example, in the design of FELIX, for simplicity, we focused the detection mechanism on

the type of events that are clearly observable by forwarding devices, i.e., port down and

port up events, leaving more involved events to appropriate device-operation-level mech-

anisms. Our experiments confirmed our expectation that this simplification is reasonable

and effective in minimizing packet losses due to equipment failures. A similarly limited

scope may need to be found for different operation tasks to keep mechanisms simple and

effective.

One final important design decision to discuss is that of how to coordinate reac-

tion to scenario changes across forwarding devices in the network. More specifically,

there is the need to identify which subset of network devices need to be aware of a certain

scenario change and which subset is necessary to implement the respective tactic. De-

pending on these subsets, different coordination patterns may be applied. In the case of

FELIX, for each individual failure scenario, not all devices are involved in implementing

129

the necessary detours. However, any and all devices in the network, to be able to transi-

tion to the appropriate tactic upon locally observed failure, need to be aware of all other

ongoing failures. Consequently, the designed coordination protocol broadcasts failure no-

tifications to all forwarding devices, implementing what is effectively one network-wide

tactic. We note, nevertheless, that there may exist situations where not all devices need to

be aware of a certain event and multiple tactics (applied selectively to a subset of flows)

may be in use at the same time. Figuring out what is the most appropriate coordination

model is, thus, one of the challenges involved in instantiating an operation task to the

ST paradigm. To continue our discussion, in the following, we present a case study of

instantiating an operation task in the Strategy-Tactic paradigm.

Case Study

In this case study, we return our focus to performance impairing events (i.e., con-

tentions) as previously described in Chapter 4 and seek to reroute traffic to avoid these

events. Consider a network serving flows of interest with associated SLOs (along with

other flows). Each flow of interest has an assigned primary path inside the network, i.e.,

the best path out of the ones meeting operator-defined routing policies. With that in mind,

whenever ongoing contentions in the primary path of a flow of interest cause its SLO to

be violated, it may be desirable for the flow to take an alternative path that avoids such

contentions. Next, we start by describing a system (henceforth referred to as INTRE-

ACT) modeled after the Strategy-Tactic paradigm to perform SLO- and contention-aware

rerouting at data-plane timescales. Afterwards, we contrast INTREACT’s design with that

of FELIX, describing the different decisions made to deal with the aforementioned instan-

tiation challenges.

To further define the objective of INTREACT, we present an example scenario

shown in Figure 5.9, in which a Red flow between endpoints A and D has an associ-

ated bandwidth SLO. Figure 5.9a depicts the primary path for the flow. Regarding this

path, there are three possible points of contention that may impact the performance of the

Red flow, namely the hops from N1 to N3, from N3 to N5, and from N5 to N7. Further-

more, alternative paths for the Red flow are shown in Figure 5.9b, along with the primary

path (Path 0). Path 1 (right-side detour through nodes N2 and N4) enables the flow of in-

terest to avoid contentions in either nodes N1 or N3, while Path 2 (left-side detour through

node N6) enables it to avoid contentions leaving in N5. Finally, Path 3 (zigzag detour)

enables the Red flow to bypass contentions in all the hops in the primary path. Given

130

Figure 5.9: Steps to reroute around a shared-risk failure.

C

D

N1

N3

N5

N2

N4

N6

N7

A

B

(a)

C

D

N1

N3

N5

N2

N4

N6

N7

A

B

Path 0
Path 1
Path 2
Path 3

(b)

C

D

N1

N3

N5

N2

N4

N6

N7

A

B

Violation!
Path: 0
CPs: N3

(c)

C

D

N1

N3

N5

N2

N4

N6

N7

A

B

Employ
Path 1

(d)

this scenario, the main objective of INTREACT is to, at any given point in time, forward

packets of the Red flow via a path that avoids all ongoing contentions.

INTREACT is designed in the following way, in line with the architecture in Fig-

ure 5.8. First, the Strategy Algorithm in the control plane computes the alternative paths

avoiding possible points of contention for the flows of interest. In our example scenario,

this algorithm would compute Paths 0 through 3 in Figure 5.9b. The alternative paths de-

fine distinct forwarding tactics to deal with contentions wherever they arise in the primary

path of the Red flow. These paths are cached in the data plane by the Tactic Deployment

Manager. During the normal operation of the network (i.e., no contentions) Red packets

are forwarded normally via the primary path (Tactic Zero). Furthermore, INTREACT em-

ploys INTSIGHT to detect SLO violations and contention points in the path of the flow.

In Figure 5.9c, a concurrent Blue flow is shown to cause a contention in the link between

nodes N3 and N5 and consequently leads to an SLO violation for the Red flow.

Whenever a violation is detected by INTREACT (via INTSIGHT), one of the al-

ternative tactics is put in practice to circumvent contentions and restore adequate perfor-

mance. Figures 5.9c and 5.9d exemplify this transition procedure. First, the egress node

N7 detects the violation and sends a notification to the ingress node for the flow, in this

case node N1 (Fig. 5.9c). This notification includes the PathID (i.e., path identifier)

and ContentionPts (i.e., contention points) for the flow as monitored by INTSIGHT

(among other information). Second, with the notification in hand, node N1 decides (us-

ing a custom match+action table) on the appropriate tactic to use considering the detected

contention points in the path (Fig. 5.9d). In the case of this example, Path 1 is chosen since

it avoids the saturated link between N3 and N5. From this point, node N1 will mark the

flow’s packets (using an extra field in the INTSIGHT telemetry header) such that devices

131

down the path know to use Path 1. Finally, besides that, node N1 will also periodically (at

the beginning of each INTSIGHT epoch) send query packets via the primary path to check

whether the contention has ended, in which case it can transition the Red flow back to the

primary path.

Next, we contrast INTREACT with FELIX. Both systems have a similar high-level

goal: they seek to route traffic via paths that avoid troubled network elements. Still, there

are differences between their events of interest, in the manner that these events happen,

and how they are best handled that elicit distinct design decisions. First, events of inter-

est in FELIX constitute failures and those need to be avoided at all costs to stop packet

loss, while in INTREACT the events are contentions and they should be avoided only if

they cause SLO violations and there are alternative paths that provide the adequate per-

formance. This results in necessary adjusts having to be made to the Strategy Algorithm.

In FELIX, elements are removed from the network representation graph to compute alter-

native paths, whereas in INTREACT one should adjust the weight of the affected elements

to signal that its use is undesirable but still leave it as an option for the case of no other ap-

propriate path being found. We believe that exploring the space of possible scenarios can

be simplified since, from our experience with the REPETITA dataset (GAY; SCHAUS;

VISSICCHIO, 2017), paths tend to have an average length of around 5 hops, restricting

the number of possible contention scenarios for each flow. Furthermore, the generally

low connectivity degree of nodes imposes further constraints on the number of available

alternative paths. This restriction would also enable naturally compressing forwarding

tables since a single path may be used to circumvent many contention points at once.

As a second example of distinct design decisions, the Detection Mechanisms for

INTREACT and FELIX are naturally different since they deal with distinct events. IN-

TREACT employs INTSIGHT to detect violations and contentions. Third, and for the

same reason, the Tactic Transition Mechanism in INTREACT considers the current path

and contention points of the flow to transition, instead of the port status. Finally, con-

tention events are generally more frequent and ephemeral than failures. Contentions may

last a short time, impact flows unevenly, and even cause other contentions. Consequently,

it is hard to keep a single current tactic consistent across the network. INTREACT applies

flow-aware tagging-based forwarding, enabling it to have multiple tactics in use at the

same time. Devices forward packets based on how they are marked by the ingress node,

making tactic coordination part of the forwarding procedure.

In this section, we discussed the generality of the Strategy-Tactic paradigm. We

132

also presented a case study that indicates its applicability to enable networks to react to

performance impairing events at data plane timescales. We leave the implementation of a

system according to INTREACT’s high-level design as future work.

5.8 Chapter Summary

In this chapter, we proposed FELIX, a novel approach for network resiliency to

link and device failures that builds on top of programmable network devices to operate

at data-plane speeds and uses optimal alternative paths. FELIX provides mechanisms to

enable data plane devices to handle failures locally, as well as a lightweight protocol that

allows these devices to coordinate network-wide rerouting around failures. As mentioned,

the data plane can reconfigure forwarding at the time of failure by itself, without the need

for control plane intervention, which significantly reduces network downtime and packet

drops. We also proposed the Strategy-Tactic paradigm, which seeks to generalize how

different operation tasks can be implemented to perform at data-plane timescales. We evi-

dence its generality by sketching INTREACT, a system for quickly and effectively reacting

to network contentions and SLO violations by migrating flows of interest to alternative

paths.

133

6 FINAL CONSIDERATIONS

In this chapter, we present the conclusions and contributions obtained from work

developed in the context of this thesis. We also outline directions for future work. We

conclude the chapter by presenting the achievements obtained during this research.

6.1 Conclusions

The work conducted throughout this thesis suggests that our hypothesis that “In-

band Network Telemetry (INT) along with Data Plane Programmability (DPP) can suc-

cessfully be applied to monitor and operate networks with per-packet granularity as well

as practicable overheads” is correct. As discussed next, the work provided us with satis-

factory answers to our research questions, namely: (1) how can INT collection actions be

orchestrated across devices in a network to maximize measurement quality while mini-

mizing network and traffic overheads?; (2) can monitoring data be pre-processed or con-

solidated by forwarding devices before being reported in a way to further reduce overhead

and with no loss to measurement quality?; and (3) can part of the analysis and reaction

logic (traditionally placed in the control plane) be offloaded to the data plane to enable

detecting and reacting to network problems in shorter timescales?

As the first piece of work toward improving network monitoring by leveraging the

flexibility introduced by data plane programmability, we explored strategies to orchestrate

network-wide In-band Network Telemetry (INT). We began our study by understanding

what are the main constraints that apply to INT, as well as what are the main performance

impacting factors associated with it. Next, we formalized the problem under research as

an optimization model, the In-band Network Telemetry Orchestration (INTO) problem.

We introduced two variations of the INTO problem (Concentrate and Balance) focusing

on different aspects of the optimization solution space. INTO Concentrates focuses on

minimizing the number of flows participating in INT actions. INTO Balance focuses on

minimizing the average telemetry load across flows. We presented mathematical pro-

gramming models to solve both of the optimization problems. We also proved that they

belong to the NP-Complete class of problems by way of polynomial computing time ver-

ifiers and the reduction of known NP-Complete problems. Through our evaluation using

realistic network setups, we confirmed that solving both variations of the problem takes

considerable time.

134

To address the scalability problem related to optimally solving the INTO problem,

we designed two polynomial-time heuristic algorithms. Through our evaluation, we ob-

served that the proposed heuristics produce close to optimal solutions up to three orders

of magnitude faster than mathematical programming models. Compared to the optimal

solution of each instance of the problem, the heuristic for INTO Concentrate (CH) pro-

duced solutions using at most 49 additional flows. The heuristic for INTO Balance (BH)

assigned at most five additional items to be transported by a flow. Thus, we observed that

both of the proposed heuristics generate high-quality solutions to the problem. Continu-

ing our evaluation, we also observed that CH performs best in minimizing the overhead

on forwarding devices and monitoring sinks, making it the most scalable of the strate-

gies and the most recommended for medium to large networks. In turn, BH achieves the

best distribution of the telemetry load among forwarding devices and links in a network,

making it the best option for monitoring networks serving traffic that is highly sensitive

to packet size changes.

Next, in view of the additional capabilities enabled by data plane programmabil-

ity, we designed and implemented INTSIGHT, a novel system for monitoring network

performance SLOs related to both bandwidth and end-to-end delay guarantees. As part

of this system, we devised efficient data plane procedures that gradually compute path-

wise metadata (including paths, contention points, end-to-end delays, and provided band-

width). Furthermore, we were also able to create mechanisms that take the aforemen-

tioned path-wise metadata into consideration to detect SLO violations directly in the data

plane. In our evaluation, all of these mechanisms integrated into INTSIGHT made it pos-

sible to detect SLO violations as well as other performance impairing events (e.g., mi-

crobusts) in a manner that is both fine-grained and timely. Our evaluation further showed

that INTSIGHT uses monitoring bandwidth sparingly, generating up to two orders of mag-

nitude fewer reports than the state-of-the-art approach, and requires practical amounts of

device memory, header space, and compute resources from the programmable forwarding

devices.

Continuing our investigation on the frontiers of programmable data plane capa-

bilities, we also developed FELIX, a system that quickly reroutes traffic in response to

network failure events. FELIX is composed of elements such as a just-in-time alternative

routing algorithm, a tactic-based packet forwarding pipeline, an event of interest (failure)

detection mechanism, and a tactic coordination protocol. As part of our work on FELIX,

we also proposed the Strategy-Tactic paradigm, which enables rerouting systems to react

135

to events of interest in data-plane timescales by following tactics pre-computed by control

plane (while taking networking policies into account). FELIX was shown, in our evalua-

tion, to substantially reduce the downtime observed by traffic due to equipment failures,

since it operates at such small timescales. When compared to existing SDN approaches,

FELIX presents average downtime that is several orders of magnitude lower, since the

existing approaches are slowed down by communication delays between control and data

planes. Moreover, we have shown that FELIX approach scales well with network size,

making judicious use of data plane resources (e.g., about 2% memory usage for the largest

evaluated network). Finally, by way of a case study, we showed that FELIX’s approach

to rerouting (the Strategy-Tactic paradigm) can be adapted to handle different events of

interest and with different deployment scopes. We discuss the challenges involved in this

adaptation process and the main necessary design decisions.

We conclude by highlighting that the contributions of this thesis touch both the-

oretical and practical aspects of network management. We mathematically formalized

problems and proposed architectural paradigms as well as designed heuristic algorithms

and monitoring and operation systems. Throughout, we give special focus to experimen-

tation by considering real world scenarios. Our hope is that with this transversal investi-

gation of the hypothesis, the research questions and their related challenges, we were able

to not only tackle important problems, but also sensibly inform future work in the area.

6.2 Directions for Future Research

We envision that this research can be extended in several ways in future investi-

gations. In the context of In-band Network Telemetry orchestration, it may be interesting

to explore other assignment and reporting modes as well as optimization goals and guar-

antees. Regarding the assignment mode, one interesting line of investigation is to allow

some redundancy in assignment, with multiple flows being assigned to the same teleme-

try item. This could improve the measurement granularity and accuracy at the cost of

higher bandwidth requirements. With regards to reporting mode, in our work, we con-

sidered the INT Embed Data operation mode, in which the telemetry data collected by

each packet is reported at most once. One could envision other modes to be used, such as,

for example, one where each packet collects telemetry data until it is full, reporting that

data, clears the telemetry header and goes back to collecting more data. One challenge

in this scenario is how to reconcile the multiple reports generated along the way of pack-

136

ets. Another clear potential area for future work is exploring other optimization goals and

algorithms for the assignment problem. With relation to exploring other goals, it could

enable achieving other compromises between coverage, telemetry load, flow usage, and

information correlation and freshness. Related to other algorithms, better or stricter guar-

antees on optimality (or closeness to it) could be given with approximation algorithms,

for example.

Another relevant research direction consists in further exploring other applica-

tions for the path-wise telemetry computation model in the data plane introduced with

INTSIGHT. More specifically, we believe this computation model could be adapted to im-

plement runtime verification of operator-defined network properties (or invariants), such

as reachability between end-points, waypointing, path preference and disjunction, and

loop freedom. We observe that INTSIGHT’s algorithm for path tracing naturally lends it-

self to the types of checking required to verify these properties. For example, a waypoint-

ing property can be verified by looking at the computed PathID field of the telemetry

header of packets. We are currently exploring this opportunity for extending INTSIGHT

as part of an ongoing master dissertation work.

Related to FELIX, we intend to investigate other operation and routing tasks that

could be modeled following the Strategy-Tactic (ST) paradigm. We discussed one such

modeling with the sketching of INTREACT, a system to respond to SLO violations by

rerouting the traffic of interest out of paths with contentions. As future work, we intend to

mature this initial concept of INTREACT by further considering the involved challenges,

introducing additional cases based on real world scenarios, and developing functional pro-

totypes. Furthermore, we also envision the ST paradigm could also be used to implement

the following additional operation tasks. Regarding network property verification, the

extension of INTSIGHT described in the previous paragraph (to detect network property

violations) could be applied to enable the network to respond appropriately to property vi-

olations. For example, it could trigger route adjustments or even packet dropping when a

waypointing violation represents a security breach. Another operation task could be con-

templated by designing a system to help mitigate Distributed Denial-of-Service (DDoS)

attacks via rerouting mechanisms. The idea would be for the traffic to be selectively

rerouted via additional inspection and mitigation systems whenever the network believes

it is under attack. In our research group, we have carried out work related to the detection

and mitigation of DDoS attacks (as listed in the next section) and have built mechanisms

running in the data plane that help with the detection process. In addition, and finally,

137

another interesting direction for future work is that of investigating the implementation

of machine learning models directly in the data plane that could be used instead of deep

packet inspection middleboxes, offloading as much of the DDoS attack response capa-

bility as possible to the data plane. We deem this line of work crucial to release the full

potential of data plane programmability.

6.3 Achievements

The work carried out in the context of this Ph.D. course has led to the publication

of the following peer-reviewed papers:

• Data Plane Programmability Beyond OpenFlow: Opportunities and Challenges

for Network and Service Operations and Management.

Weverton Luis da Costa Cordeiro, Jonatas Adilson Marques, and Luciano Paschoal

Gaspary.

Journal of Network and Systems Management (JNSM), 2017.

• Explorando Estratégias de Orquestração de Telemetria em Planos de Dados

Programáveis. (Best Paper Award)

Jonatas Adilson Marques and Luciano Paschoal Gaspary.

Brazilian Symposium on Computer Networks and Distributed Systems (SBRC),

2018.

• An optimization-based approach for efficient network monitoring using in-

band network telemetry.

Jonatas Adilson Marques, Marcelo Caggiani Luizelli, Roberto Irajá Tavares da

Costa Filho, and Luciano Paschoal Gaspary.

Journal of Internet Services and Applications (JISA), 2019.

• IntSight: Diagnosing SLO Violations with In-band Network Telemetry.

Jonatas Adilson Marques, Kirill Levchenko, and Luciano Paschoal Gaspary.

Proceedings of the 16th International Conference on Emerging Networking Exper-

iments and Technologies (CoNEXT), 2020.

In addition to the aforementioned primary outcomes of this work, we actively

contributed to and further coauthored other studies on correlated problems in the context

of Software-Defined Networking, Data Plane Programmability, and network monitoring

and operation. These publications are listed next.

138

• Identificação de Fluxos Elefantes em Redes de Ponto Troca de Tráfego com

Suporte à Programabilidade P4.

Marcus Vinicius Brito da Silva, Jonatas Adilson Marques, Luciano Paschoal Gaspary,

and Lisandro Zambenedetti Granville.

Brazilian Symposium on Computer Network and Distributed Systems (SBRC),

2018.

• Offloading Real-time DDoS Attack Detection to Programmable Data Planes.

(Best Student Paper Award)

Ângelo Cardoso Lapolli, Jonatas Adilson Marques, and Luciano Paschoal Gaspary.

IFIP/IEEE International Symposium on Integrated Network Management (IM), 2019.

• Identifying Elephant Flows using Dynamic Thresholds in Programmable IXP

Networks.

Marcus Vinicius Brito da Silva, Jonatas Adilson Marques, Luciano Paschoal Gaspary,

and Lisandro Zambenedetti Granville.

Journal of Internet Services and Applications (JISA), 2020.

• Euclid: A Fully In-network, P4-based Approach for Real-time DDoS Attack

Detection and Mitigation.

Alexandre da Silveira Ilha, Ângelo Cardoso Lapolli, Jonatas Adilson Marques, and

Luciano Paschoal Gaspary.

IEEE Transactions on Network and Service Management (TNSM), 2020.

• BUNGEE: An Adaptive Pushback Mechanism for DDoS Detection and Miti-

gation in P4 Data Planes.

Libardo Andrey Quintero González, Lucas Castanheira, Jonatas Adilson Marques,

Alberto Schaeffer-Filho, and Luciano Paschoal Gaspary.

IFIP/IEEE International Symposium on Integrated Network Management (IM), 2021.

• A Systematic Review on Distributed Denial of Service Attack Defense Mecha-

nisms in Programmable networks.

Bruno L Dalmazo, Jonatas A Marques, Lucas R Costa, Michel S Bonfim, Ranyel-

son N Carvalho, Anderson S da Silva, Stenio Fernandes, Jacir L Bordim, Eduardo

Alchieri, Alberto Schaeffer-Filho, Luciano Paschoal Gaspary, Weverton Cordeiro.

International Journal of Network Management (IJNM), 2021.

139

REFERENCES

ALEXANDER, D. S. et al. The SwitchWare active network architecture. IEEE Network,
v. 12, n. 3, p. 29–36, May 1998. ISSN 0890-8044.

ALEXANDER, D. S. et al. Active bridging. In: Proceedings of the ACM SIGCOMM
’97 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication. New York, NY, USA: ACM, 1997. (SIGCOMM ’97), p.
101–111. ISBN 0-89791-905-X.

ALIZADEH, M. et al. Conga: Distributed congestion-aware load balancing for
datacenters. In: Proceedings of the 2014 Conference of the ACM Special
Interest Group on Data Communication. New York, NY, USA: ACM, 2014.
(SIGCOMM ’14), p. 503–514. ISBN 978-1-4503-2836-4. Available from Internet:
<http://doi.acm.org/10.1145/2619239.2626316>.

BALAKRISHNAN, H. Mind the app! SIGCOMM Lifetime Achievement Award
(SIGCOMM’21 Keynote). 2021. Available from Internet: <https://conferences.sigcomm.
org/sigcomm/2021/files/SIGCOMM-Award-Talk-2021.pdf>.

BALL, T.; LARUS, J. R. Efficient path profiling. In: Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 1996. (MICRO 29), p. 46–57. ISBN 0-8186-7641-8. Available
from Internet: <https://dl.acm.org/doi/10.5555/243846.243857>.

BAREFOOT NETWORKS. Tofino: World’s Fastest P4-Programmable Ethernet
Switch ASICs. 2020. Available from Internet: <https://barefootnetworks.com/products/
brief-tofino/>.

BOSSHART, P. et al. P4: Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., ACM, New York, NY, USA, v. 44,
n. 3, p. 87–95, jul. 2014. ISSN 0146-4833. Available from Internet: <http:
//doi.acm.org/10.1145/2656877.2656890>.

BOSSHART, P. et al. Forwarding metamorphosis: Fast programmable match-action
processing in hardware for sdn. In: Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM. New York, NY, USA: ACM, 2013. (SIGCOMM
’13), p. 99–110. ISBN 978-1-4503-2056-6. Available from Internet: <http:
//doi.acm.org/10.1145/2486001.2486011>.

BROCKNERS, F. et al. Requirements for In-situ OAM. [S.l.], 2017. Accessed
on May, 2022. Available from Internet: <https://datatracker.ietf.org/doc/html/
draft-brockners-inband-oam-requirements-03>.

BRUNNER, M.; STADLER, R. The impact of active networking technology on service
management in a telecom environment. In: Integrated Network Management VI.
Distributed Management for the Networked Millennium. Proceedings of the Sixth
IFIP/IEEE International Symposium on Integrated Network Management. (Cat.
No.99EX302). [S.l.: s.n.], 1999. p. 385–400.

CALVERT, K. L. et al. Directions in active networks. IEEE Communications
Magazine, v. 36, n. 10, p. 72–78, Oct 1998. ISSN 0163-6804.

http://doi.acm.org/10.1145/2619239.2626316
https://conferences.sigcomm.org/sigcomm/2021/files/SIGCOMM-Award-Talk-2021.pdf
https://conferences.sigcomm.org/sigcomm/2021/files/SIGCOMM-Award-Talk-2021.pdf
https://dl.acm.org/doi/10.5555/243846.243857
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
http://doi.acm.org/10.1145/2656877.2656890
http://doi.acm.org/10.1145/2656877.2656890
http://doi.acm.org/10.1145/2486001.2486011
http://doi.acm.org/10.1145/2486001.2486011
https://datatracker.ietf.org/doc/html/draft-brockners-inband-oam-requirements-03
https://datatracker.ietf.org/doc/html/draft-brockners-inband-oam-requirements-03

140

CASADO, M. et al. Ethane: Taking control of the enterprise. In: Proceedings of the
2007 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications. New York, NY, USA: ACM, 2007. (SIGCOMM ’07), p.
1–12. ISBN 978-1-59593-713-1.

CASADO, M. et al. Sane: A protection architecture for enterprise networks. In: Usenix
Security. [S.l.: s.n.], 2006.

CASCONE, C. et al. Fast failure detection and recovery in sdn with stateful data plane.
International Journal of Network Management, v. 27, n. 2, p. e1957, 2017. E1957
nem.1957. Available from Internet: <https://onlinelibrary.wiley.com/doi/abs/10.1002/
nem.1957>.

CASE, J. D. et al. Simple Network Management Protocol (SNMP). IETF,
1989. RFC 1098. (Request for Comments). Available from Internet: <https:
//tools.ietf.org/html/rfc1098>.

CHEN, X. et al. Fine-grained queue measurement in the data plane. In: Proceedings
of the 15th International Conference on Emerging Networking Experiments And
Technologies. New York, NY, USA: ACM, 2019. (CoNEXT ’19), p. 15–29. ISBN
9781450369985. Available from Internet: <https://doi.org/10.1145/3359989.3365408>.

CHENG, G.; YU, J. Adaptive sampling for openflow network measurement methods. In:
Proceedings of the International Conference on Future Internet Technologies. New
York, NY, USA: ACM, 2017. (CFI’17), p. 4:1–4:7. ISBN 978-1-4503-5332-8. Available
from Internet: <http://doi.acm.org/10.1145/3095786.3095790>.

CHIESA, M. et al. A survey of fast recovery mechanisms in the data plane. TechRxiv
Preprint, TechRxiv, 2020. Available from Internet: <https://www.techrxiv.org/articles/
preprint/Fast_Recovery_Mechanisms_in_the_Data_Plane/12367508>.

CHIESA, M. et al. Purr: A primitive for reconfigurable fast reroute: Hope for
the best and program for the worst. In: Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies. New York,
NY, USA: Association for Computing Machinery, 2019. (CoNEXT ’19), p. 1–14. ISBN
9781450369985. Available from Internet: <https://doi.org/10.1145/3359989.3365410>.

CHOLE, S. et al. drmt: Disaggregated programmable switching. In: Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. New York,
NY, USA: ACM, 2017. (SIGCOMM ’17), p. 1–14. ISBN 978-1-4503-4653-5.

CHOWDHURY, S. R. et al. Payless: A low cost network monitoring framework for
software defined networks. In: Proceedings of the IEEE Network Operations and
Management Symposium. [S.l.: s.n.], 2014. (NOMS’14), p. 1–9. ISSN 1542-1201.

CISCO. Cisco IOS NetFlow. 2005. Http://www.cisco.com/c/en/us/products/ios-nx-os-
software/ios-netflow/index.html.

CISCO. In-band OAM (iOAM). S.a. Accessed on May, 2022. Available from Internet:
<https://github.com/CiscoDevNet/iOAM>.

https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1957
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1957
https://tools.ietf.org/html/rfc1098
https://tools.ietf.org/html/rfc1098
https://doi.org/10.1145/3359989.3365408
http://doi.acm.org/10.1145/3095786.3095790
https://www.techrxiv.org/articles/preprint/Fast_Recovery_Mechanisms_in_the_Data_Plane/12367508
https://www.techrxiv.org/articles/preprint/Fast_Recovery_Mechanisms_in_the_Data_Plane/12367508
https://doi.org/10.1145/3359989.3365410
https://github.com/CiscoDevNet/iOAM

141

CLAISE, B.; TRAMMELL, B.; AITKEN, P. Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Information.
IETF, 2013. RFC 7011. (Request for Comments). Available from Internet:
<https://tools.ietf.org/html/rfc7011>.

CORDEIRO, W. L. d. C.; MARQUES, J. A.; GASPARY, L. P. Data plane
programmability beyond openflow: Opportunities and challenges for network and
service operations and management. Journal of Network and Systems Management,
v. 25, n. 4, p. 784–818, Oct 2017. ISSN 1573-7705. Available from Internet:
<https://doi.org/10.1007/s10922-017-9423-2>.

CORMODE, G. et al. Holistic aggregates in a networked world: Distributed
tracking of approximate quantiles. In: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data. New York, NY, USA: ACM,
2005. (SIGMOD ’05), p. 25–36. ISBN 1-59593-060-4. Available from Internet:
<http://doi.acm.org/10.1145/1066157.1066161>.

DABBAGH, M. et al. Software-defined networking security: pros and cons. IEEE
Communications Magazine, v. 53, n. 6, p. 73–79, June 2015. ISSN 0163-6804.

DANG, H. T. et al. Paxos made switch-y. SIGCOMM Comput. Commun. Rev., v. 46,
n. 2, p. 18–24, may 2016.

FEAMSTER, N. et al. The case for separating routing from routers. In: Proceedings of
the ACM SIGCOMM Workshop on Future Directions in Network Architecture.
New York, NY, USA: ACM, 2004. (FDNA ’04), p. 5–12. ISBN 1-58113-942-X.

FEAMSTER, N.; REXFORD, J.; ZEGURA, E. The Road to SDN: An intellectual
history of programmable networks. SIGCOMM Comput. Commun. Rev., ACM, New
York, NY, USA, v. 44, n. 2, p. 87–98, abr. 2014. ISSN 0146-4833.

FOSTER, N. et al. Frenetic: A high-level language for openflow networks. In:
Proceedings of the Workshop on Programmable Routers for Extensible Services
of Tomorrow. New York, NY, USA: ACM, 2010. (PRESTO ’10), p. 6:1–6:6. ISBN
978-1-4503-0467-2.

GAREY, M. R.; JOHNSON, D. S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979. ISBN
0716710447.

GAY, S.; SCHAUS, P.; VISSICCHIO, S. REPETITA: repeatable experiments
for performance evaluation of traffic-engineering algorithms. arXiv preprint
arXiv:1710.08665, 2017.

GILL, P.; JAIN, N.; NAGAPPAN, N. Understanding network failures in data centers:
Measurement, analysis, and implications. In: Proceedings of the ACM SIGCOMM
2011 Conference. New York, NY, USA: Association for Computing Machinery,
2011. (SIGCOMM ’11), p. 350–361. ISBN 9781450307970. Available from Internet:
<https://doi.org/10.1145/2018436.2018477>.

https://tools.ietf.org/html/rfc7011
https://doi.org/10.1007/s10922-017-9423-2
http://doi.acm.org/10.1145/1066157.1066161
https://doi.org/10.1145/2018436.2018477

142

GOVINDAN, R. et al. Evolve or die: High-availability design principles drawn from
googles network infrastructure. In: Proceedings of the 2016 ACM SIGCOMM
Conference. New York, NY, USA: Association for Computing Machinery, 2016.
(SIGCOMM ’16), p. 58–72. ISBN 9781450341936. Available from Internet:
<https://doi.org/10.1145/2934872.2934891>.

GRAY, R. S. Agent tcl: A flexible and secure mobile-agent system. In: Proceedings of
the Fourth Annual USENIX Tcl/Tk Workshop. Berkeley, CA, USA: USENIX, 1996.
(Fourth Annual Tcl/Tk Workshop).

GREENBERG, A. et al. A clean slate 4d approach to network control and management.
SIGCOMM Comput. Commun. Rev., ACM, New York, NY, USA, v. 35, n. 5, p.
41–54, oct. 2005. ISSN 0146-4833.

GROUP, P. A. W. In-band Network Telemetry (INT) Dataplane Specification. [S.l.],
2018.

GUDE, N. et al. Nox: Towards an operating system for networks. SIGCOMM Comput.
Commun. Rev., ACM, New York, NY, USA, v. 38, n. 3, p. 105–110, jul. 2008. ISSN
0146-4833.

GUPTA, A. et al. Sonata: Query-driven streaming network telemetry. In: Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication.
New York, NY, USA: ACM, 2018. (SIGCOMM ’18), p. 357–371. ISBN 978-1-4503-
5567-4. Available from Internet: <http://doi.acm.org/10.1145/3230543.3230555>.

HANDIGOL, N. et al. I know what your packet did last hop: Using packet histories
to troubleshoot networks. In: Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation. Berkeley, CA, USA: USENIX
Association, 2014. (NSDI ’14), p. 71–85. ISBN 978-1-931971-09-6. Available from
Internet: <https://dl.acm.org/doi/10.5555/2616448.2616456>.

HE, K. et al. Presto: Edge-based load balancing for fast datacenter networks.
In: Proceedings of the 2015 Conference of the ACM Special Interest Group
on Data Communication. New York, NY, USA: ACM, 2015. (SIGCOMM
’15), p. 465–478. ISBN 978-1-4503-3542-3. Available from Internet: <http:
//doi.acm.org/10.1145/2785956.2787507>.

HEDAYAT, K. et al. A Two-Way Active Measurement Protocol (TWAMP). [S.l.],
2008. Available from Internet: <https://tools.ietf.org/html/rfc5357>.

HONG, C.-Y. et al. Achieving high utilization with software-driven wan. In: Proceedings
of the 2013 Conference of the ACM Special Interest Group on Data Communication.
New York, NY, USA: ACM, 2013. (SIGCOMM ’13), p. 15–26. ISBN 978-1-4503-2056-
6. Available from Internet: <http://doi.acm.org/10.1145/2486001.2486012>.

HSU, K.-F. et al. Contra: A programmable system for performance-aware routing. In:
17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). Santa Clara, CA: USENIX Association, 2020. p. 701–721. ISBN 978-1-
939133-13-7. Available from Internet: <https://www.usenix.org/conference/nsdi20/
presentation/hsu>.

https://doi.org/10.1145/2934872.2934891
http://doi.acm.org/10.1145/3230543.3230555
https://dl.acm.org/doi/10.5555/2616448.2616456
http://doi.acm.org/10.1145/2785956.2787507
http://doi.acm.org/10.1145/2785956.2787507
https://tools.ietf.org/html/rfc5357
http://doi.acm.org/10.1145/2486001.2486012
https://www.usenix.org/conference/nsdi20/presentation/hsu
https://www.usenix.org/conference/nsdi20/presentation/hsu

143

HUANG, D. Y.; YOCUM, K.; SNOEREN, A. C. High-fidelity switch models for
software-defined network emulation. In: Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking. New York, NY,
USA: Association for Computing Machinery, 2013. (HotSDN ’13), p. 43–48. ISBN
9781450321785. Available from Internet: <https://doi.org/10.1145/2491185.2491188>.

JAIN, S. et al. B4: Experience with a globally-deployed software defined wan. In:
Proceedings of the 2013 Conference of the ACM Special Interest Group on Data
Communication. New York, NY, USA: ACM, 2013. (SIGCOMM ’13), p. 3–14. ISBN
978-1-4503-2056-6. Available from Internet: <http://doi.acm.org/10.1145/2486001.
2486019>.

JEYAKUMAR, V. et al. Millions of little minions: Using packets for low latency
network programming and visibility. In: Proceedings of the 2014 Conference of the
ACM Special Interest Group on Data Communication. New York, NY, USA: ACM,
2014. (SIGCOMM ’14), p. 3–14. ISBN 978-1-4503-2836-4. Available from Internet:
<http://doi.acm.org/10.1145/2619239.2626292>.

JURCA, D.; STADLER, R. H-gap: estimating histograms of local variables with
accuracy objectives for distributed real-time monitoring. IEEE Transactions on
Network and Service Management, v. 7, n. 2, p. 83–95, June 2010. ISSN 1932-4537.

KATZ, D.; WARD, D. Bidirectional Forwarding Detection (BFD). IETF,
2010. RFC 5880. (Request for Comments). Available from Internet: <https:
//tools.ietf.org/html/rfc5880>.

KIM, C.; LEE, J. P4: Programming the Network Data Plane. 2016. ACM
SIGCOMM Tutorial. Accessed on May, 2022. Available from Internet: <http:
//conferences.sigcomm.org/sigcomm/2016/tutorial-p4.php>.

KIM, C. et al. In-band network telemetry via programmable dataplanes. In: Proceedings
of the 2015 ACM Symposium on SDN Research. New York, NY, USA: ACM, 2015.
(SOSR’15). Available from Internet: <http://git.io/sosr15-int-demo>.

KNIGHT, S. et al. The internet topology zoo. IEEE Journal on Selected Areas in
Communications, v. 29, n. 9, p. 1765–1775, October 2011. ISSN 0733-8716.

KUMAR, A. et al. Bwe: Flexible, hierarchical bandwidth allocation for wan
distributed computing. In: Proceedings of the 2015 Conference of the ACM
Special Interest Group on Data Communication. New York, NY, USA: ACM,
2015. (SIGCOMM ’15), p. 1–14. ISBN 978-1-4503-3542-3. Available from Internet:
<http://doi.acm.org/10.1145/2785956.2787478>.

KUŹNIAR, M.; PEREŠÍNI, P.; KOSTIĆ, D. What you need to know about sdn flow
tables. In: MIRKOVIC, J.; LIU, Y. (Ed.). Passive and Active Measurement. Cham:
Springer International Publishing, 2015. p. 347–359. ISBN 978-3-319-15509-8.

KVALBEIN, A. et al. Multiple routing configurations for fast ip network recovery.
IEEE/ACM Transactions on Networking, v. 17, n. 2, p. 473–486, 2009.

LAKSHMAN, T. et al. The softrouter architecture. In: CITESEER. Proc. ACM
SIGCOMM Workshop on Hot Topics in Networking. [S.l.], 2004. v. 2004.

https://doi.org/10.1145/2491185.2491188
http://doi.acm.org/10.1145/2486001.2486019
http://doi.acm.org/10.1145/2486001.2486019
http://doi.acm.org/10.1145/2619239.2626292
https://tools.ietf.org/html/rfc5880
https://tools.ietf.org/html/rfc5880
http://conferences.sigcomm.org/sigcomm/2016/tutorial-p4.php
http://conferences.sigcomm.org/sigcomm/2016/tutorial-p4.php
http://git.io/sosr15-int-demo
http://doi.acm.org/10.1145/2785956.2787478

144

LANTZ, B.; HELLER, B.; MCKEOWN, N. A network in a laptop: Rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks. New York, NY, USA: Association for Computing
Machinery, 2010. (Hotnets-IX). ISBN 9781450304092. Available from Internet:
<https://doi.org/10.1145/1868447.1868466>.

LAPOLLI, A. C.; MARQUES, J. A.; GASPARY, L. P. Offloading real-time ddos attack
detection to programmable data planes. In: 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). [S.l.: s.n.], 2019. p. 19–27.

LEE, M.; DUFFIELD, N.; KOMPELLA, R. R. Not all microseconds are equal: Fine-
grained per-flow measurements with reference latency interpolation. In: Proceedings
of the ACM SIGCOMM 2010 Conference. New York, NY, USA: ACM, 2010.
(SIGCOMM ’10), p. 27–38. ISBN 978-1-4503-0201-2. Available from Internet:
<http://doi.acm.org/10.1145/1851182.1851188>.

LEE, S. et al. Proactive vs reactive approaches to failure resilient routing. In: IEEE
INFOCOM 2004. [S.l.: s.n.], 2004. v. 1, p. 186.

LIU, J. et al. Ensuring connectivity via data plane mechanisms. In: 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13).
Lombard, IL: USENIX Association, 2013. p. 113–126. ISBN 978-1-931971-00-3.
Available from Internet: <https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/liu_junda>.

LIU, V. et al. F10: A fault-tolerant engineered network. In: 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13). Lombard, IL:
USENIX Association, 2013. p. 399–412. ISBN 978-1-931971-00-3. Available from
Internet: <https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/
liu_vincent>.

MACEDO, D. F. et al. Programmable networks: From software-defined radio to
software-defined networking. IEEE Communications Surveys Tutorials, v. 17, n. 2, p.
1102–1125, Secondquarter 2015. ISSN 1553-877X.

MARKOPOULOU, A. et al. Characterization of failures in an operational ip backbone
network. IEEE/ACM Transactions on Networking, v. 16, n. 4, p. 749–762, 2008.

MARQUES, J.; LEVCHENKO, K.; GASPARY, L. Intsight: Diagnosing slo violations
with in-band network telemetry. In: Proceedings of the 16th International Conference
on Emerging Networking EXperiments and Technologies. New York, NY, USA:
Association for Computing Machinery, 2020. (CoNEXT ’20), p. 421–434. ISBN
9781450379489. Available from Internet: <https://doi.org/10.1145/3386367.3431306>.

MARQUES, J.; LEVCHENKO, K.; GASPARY, L. IntSight Repository on GitHub.
2020. Available from Internet: <https://github.com/jonadmark/intsight-conext>.

MARQUES, J. A.; GASPARY, L. Explorando estratégias de orquestração de
telemetria em planos de dados programáveis. In: Anais do XXXVI Simpósio
Brasileiro de Redes de Computadores e Sistemas Distribuídos. Porto Alegre,
RS, Brasil: SBC, 2018. p. 1299–1312. ISSN 2177-9384. Available from Internet:
<https://sol.sbc.org.br/index.php/sbrc/article/view/2495>.

https://doi.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1851182.1851188
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_vincent
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_vincent
https://doi.org/10.1145/3386367.3431306
https://github.com/jonadmark/intsight-conext
https://sol.sbc.org.br/index.php/sbrc/article/view/2495

145

MARQUES, J. A. et al. An optimization-based approach for efficient network
monitoring using in-band network telemetry. Journal of Internet Services and
Applications, Springer, v. 10, n. 1, p. 1–20, 2019. Available from Internet:
<https://doi.org/10.1186/s13174-019-0112-0>.

MCKEOWN, N. et al. Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., ACM, New York, NY, USA, v. 38,
n. 2, p. 69–74, mar. 2008. ISSN 0146-4833. Available from Internet: <http:
//doi.acm.org/10.1145/1355734.1355746>.

MCKEOWN, N.; APPENZELLER, G.; KESLASSY, I. Sizing router buffers (redux).
ACM SIGCOMM Computer Communication Review, ACM New York, NY, USA,
v. 49, n. 5, p. 69–74, 2019.

MOSHREF, M. et al. Dream: Dynamic resource allocation for software-defined
measurement. In: Proceedings of the 2014 ACM Conference on SIGCOMM. New
York, NY, USA: ACM, 2014. (SIGCOMM ’14), p. 419–430. ISBN 978-1-4503-2836-4.
Available from Internet: <http://doi.acm.org/10.1145/2619239.2626291>.

NELAKUDITI, S. et al. Fast local rerouting for handling transient link failures.
IEEE/ACM Transactions on Networking, v. 15, n. 2, p. 359–372, 2007.

ONF. ONF Technical Library. 2015. Accessed on May, 2022. Available from Internet:
<https://opennetworking.org/sdn-resources/technical-resources/>.

OZDAG, R. Intel® Ethernet Switch FM6000 Series-Software Defined Networking.
[S.l.], 2012. Available from Internet: <https://people.ucsc.edu/~warner/Bufs/
ethernet-switch-fm6000-sdn-paper.pdf>.

P4 ARCHITECTURE WORKING GROUP. P4_16 Portable Switch Architecture
(PSA). 2018. Accessed on May, 2022. Available from Internet: <https://p4.org/p4-spec/
docs/PSA-v1.1.0.html>.

P4 LANGUAGEM CONSORTIUM. Behavioral Model (BMv2). 2014. Accessed on
May, 2022. Available from Internet: <https://github.com/p4lang/behavioral-model>.

PRIETO, A. G.; STADLER, R. A-gap: An adaptive protocol for continuous network
monitoring with accuracy objectives. IEEE Transactions on Network and Service
Management, v. 4, n. 1, p. 2–12, June 2007. ISSN 1932-4537.

QIU, K. et al. Efficient recovery path computation for fast reroute in large-scale
software-defined networks. IEEE Journal on Selected Areas in Communications,
v. 37, n. 8, p. 1755–1768, 2019.

QUINN, P.; ELZUR, U.; PIGNATARO, C. Network Service Header (NSH). [S.l.],
2018. 1-39 p. Available from Internet: <https://tools.ietf.org/html/rfc8300>.

QUITTEK, J.; BRUNNER, M. Applying and evaluating active technologies in distributed
management. Journal of Network and Systems Management, v. 11, n. 2, p. 171–197,
2003. ISSN 1573-7705.

https://doi.org/10.1186/s13174-019-0112-0
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/2619239.2626291
https://opennetworking.org/sdn-resources/technical-resources/
https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf
https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://github.com/p4lang/behavioral-model
https://tools.ietf.org/html/rfc8300

146

RASLEY, J. et al. Planck: Millisecond-scale monitoring and control for commodity
networks. In: Proceedings of the 2014 Conference of the ACM Special
Interest Group on Data Communication. New York, NY, USA: ACM, 2014.
(SIGCOMM ’14), p. 407–418. ISBN 978-1-4503-2836-4. Available from Internet:
<http://doi.acm.org/10.1145/2619239.2626310>.

REKHTER, Y.; HARES, S.; LI, D. T. A Border Gateway Protocol 4 (BGP-4). RFC
Editor, 2006. RFC 4271. (Request for Comments, 4271). Available from Internet:
<https://www.rfc-editor.org/rfc/rfc4271.txt>.

ROUGHAN, M. Simplifying the synthesis of internet traffic matrices. SIGCOMM
Comput. Commun. Rev., ACM, New York, NY, USA, v. 35, n. 5, p. 93–96, oct.
2005. ISSN 0146-4833. Available from Internet: <http://doi.acm.org/10.1145/1096536.
1096551>.

SALIM, J. et al. Linux Netlink as an IP Services Protocol. RFC Editor, 2003. RFC
3549. (Request for Comments, 3549). Accessed on May, 2022. Available from Internet:
<https://www.rfc-editor.org/rfc/rfc3549.txt>.

SCHOENWAELDER, J.; QUITTEK, J. Script MIB Extensibility Protocol Version
1.1. RFC Editor, 2001. RFC 3179. (Request for Comments, 3179). Accessed on May,
2022. Available from Internet: <https://www.rfc-editor.org/rfc/rfc3179.txt>.

SHALUNOV, S. et al. A One-way Active Measurement Protocol (OWAMP). [S.l.],
2006. Available from Internet: <https://tools.ietf.org/html/rfc4656>.

SIVARAMAN, V. et al. Heavy-hitter detection entirely in the data plane. In: Proceedings
of the 2017 Conference of the ACM Symposium on SDN Research. New York, NY,
USA: ACM, 2017. (SOSR ’17), p. 164–176. ISBN 978-1-4503-4947-5. Available from
Internet: <http://doi.acm.org/10.1145/3050220.3063772>.

SMITH, J. M. et al. Activating networks: a progress report. Computer, v. 32, n. 4, p.
32–41, Apr 1999. ISSN 0018-9162.

SONCHACK, J. et al. Turboflow: Information rich flow record generation on
commodity switches. In: Proceedings of the Thirteenth EuroSys Conference. New
York, NY, USA: Association for Computing Machinery, 2018. (EuroSys ’18). ISBN
9781450355841. Available from Internet: <https://doi.org/10.1145/3190508.3190558>.

STEPHENS, B.; COX, A. L.; RIXNER, S. Scalable multi-failure fast failover via
forwarding table compression. In: Proceedings of the Symposium on SDN Research.
New York, NY, USA: Association for Computing Machinery, 2016. (SOSR ’16). ISBN
9781450342117. Available from Internet: <https://doi.org/10.1145/2890955.2890957>.

TAMMANA, P.; AGARWAL, R.; LEE, M. Distributed network monitoring and
debugging with switchpointer. In: Proceedings of the 15th USENIX Conference
on Networked Systems Design and Implementation. USA: USENIX Association,
2018. (NSDI ’18), p. 453–466. ISBN 9781931971430. Available from Internet:
<https://dl.acm.org/doi/10.5555/3307441.3307480>.

TANGARI, G. et al. Decentralized monitoring for large-scale software-defined networks.
In: Proceedings of the IFIP/IEEE Symposium on Integrated Network and Service
Management (IM). [S.l.: s.n.], 2017. p. 289–297.

http://doi.acm.org/10.1145/2619239.2626310
https://www.rfc-editor.org/rfc/rfc4271.txt
http://doi.acm.org/10.1145/1096536.1096551
http://doi.acm.org/10.1145/1096536.1096551
https://www.rfc-editor.org/rfc/rfc3549.txt
https://www.rfc-editor.org/rfc/rfc3179.txt
https://tools.ietf.org/html/rfc4656
http://doi.acm.org/10.1145/3050220.3063772
https://doi.org/10.1145/3190508.3190558
https://doi.org/10.1145/2890955.2890957
https://dl.acm.org/doi/10.5555/3307441.3307480

147

TENNENHOUSE, D. L. et al. A survey of active network research. IEEE
Communications Magazine, v. 35, n. 1, p. 80–86, Jan 1997. ISSN 0163-6804.

THOMAS, J.; LAUPKHOV, P. Tracking Packets’ Paths and La-
tency via INT (In-band Network Telemetry). 2016. 3rd P4 Workshop.
Available from Internet: <https://2016p4workshop.sched.com/event/6otq/
using-int-to-build-a-real-time-network-monitoring-system-scale>.

TILMANS, O. et al. Stroboscope: Declarative network monitoring on a budget. In:
Proceedings of the 15th USENIX Conference on Networked Systems Design and
Implementation. USA: USENIX Association, 2018. (NSDI ’18), p. 467–482. ISBN
978-1-939133-01-4. Available from Internet: <https://www.usenix.org/conference/
nsdi18/presentation/tilmans>.

TOOTOONCHIAN, A.; GANJALI, Y. Hyperflow: A distributed control plane for
openflow. In: Proceedings of the 2010 internet network management conference on
Research on enterprise networking. [S.l.: s.n.], 2010. p. 3–3.

TURNER, D. et al. On failure in managed enterprise networks. HP Labs HPL-2012-101,
Citeseer, 2012.

TURNER, D. et al. California fault lines: Understanding the causes and impact of network
failures. In: Proceedings of the ACM SIGCOMM 2010 Conference. New York, NY,
USA: Association for Computing Machinery, 2010. (SIGCOMM ’10), p. 315–326. ISBN
9781450302012. Available from Internet: <https://doi.org/10.1145/1851182.1851220>.

WETHERALL, D. Active network vision and reality: lessons from a capsule-based
system. In: Proceedings DARPA Active Networks Conference and Exposition. [S.l.:
s.n.], 2002. p. 25–40.

WETHERALL, D. J.; GUTTAG, J. V.; TENNENHOUSE, D. L. ANTS: a toolkit
for building and dynamically deploying network protocols. In: 1998 IEEE Open
Architectures and Network Programming. [S.l.: s.n.], 1998. p. 117–129.

WHITE, J. E. Telescript: The Foundation for the Electronic Marketplace. [S.l.],
1993.

YAN, H. et al. Tesseract: A 4d network control plane. In: NSDI. [S.l.: s.n.], 2007. v. 7, p.
27–27.

YANG, L. et al. Forwarding and Control Element Separation (ForCES) Framework.
RFC Editor, 2004. RFC 3746. (Request for Comments, 3746). Accessed on May, 2022.
Available from Internet: <https://www.rfc-editor.org/rfc/rfc3746.txt>.

YEGANEH, S. H.; TOOTOONCHIAN, A.; GANJALI, Y. On scalability of software-
defined networking. IEEE Communications Magazine, v. 51, n. 2, p. 136–141,
2013.

ZHANG, Q. et al. High-resolution measurement of data center microbursts. In:
Proceedings of the 2017 Internet Measurement Conference. New York, NY, USA:
ACM, 2017. (IMC ’17), p. 78–85. ISBN 9781450351188. Available from Internet:
<https://doi.org/10.1145/3131365.3131375>.

https://2016p4workshop.sched.com/event/6otq/using-int-to-build-a-real-time-network-monitoring-system-scale
https://2016p4workshop.sched.com/event/6otq/using-int-to-build-a-real-time-network-monitoring-system-scale
https://www.usenix.org/conference/nsdi18/presentation/tilmans
https://www.usenix.org/conference/nsdi18/presentation/tilmans
https://doi.org/10.1145/1851182.1851220
https://www.rfc-editor.org/rfc/rfc3746.txt
https://doi.org/10.1145/3131365.3131375

148

ZHONG, Z. et al. Failure inferencing based fast rerouting for handling transient link
and node failures. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. [S.l.: s.n.], 2005. v. 4, p. 2859–2863 vol. 4.

ZHU, Y. et al. Packet-level telemetry in large datacenter networks. ACM SIGCOMM
Computer Communication Review (CCR), ACM, New York, NY, USA,
v. 45, n. 4, p. 479–491, aug. 2015. ISSN 0146-4833. Available from Internet:
<http://doi.acm.org/10.1145/2829988.2787483>.

ZILBERMAN, N. et al. NetFPGA SUME: Toward 100 gbps as research commodity.
IEEE Micro, v. 34, n. 5, p. 32–41, 2014.

http://doi.acm.org/10.1145/2829988.2787483

149

APPENDIX A — SUMMARY IN PORTUGUESE

Nos dias atuais, redes de comunicação operam sob altas expectativas de desem-

penho (e.g., latência, largura de banda, disponibilidade), especialmente com o surgimento

e proliferação de novas aplicações (e.g., negociação algorítmica, telecirurgia e stream-

ing de vídeo de realidade virtual) com arquiteturas baseadas em componentes espalhados

por múltiplos nodos e hospedeiros (BALAKRISHNAN, 2021). Essas aplicações e seus

usuários demandam requisitos rígidos, que para serem atendidos exigem a definição de

metas claras de desempenho da rede, os chamados objetivos de nível de serviço (SLOs),

além da solução de problemas que podem impedir o alcance de tais metas. Infelizmente,

há uma infinidade de problemas que podem afetar a operação correta e eficiente de uma

rede, desde congestionamentos de tráfego até falhas de hardware. Nesse contexto, moni-

torar o estado, o comportamento e o desempenho dos dispositivos de rede e seu tráfego é

essencial para a operação das infraestruturas de rede atuais. No entanto, o monitoramento

de rede é uma tarefa inerentemente difícil, às vezes comparada a procurar uma agulha em

um palheiro (ZHU et al., 2015; GUPTA et al., 2018).

As ferramentas e técnicas existentes não são projetadas para monitorar redes e

solucionar seus problemas com o nível necessário de detalhes e precisão demandado. Por

exemplo, e em relação à coleta de metadados e estatísticas, as ferramentas tradicionais

de monitoramento passivo (e.g., SNMP (CASE et al., 1989) e NetFlow/IPFIX (CISCO,

2005; CLAISE; TRAMMELL; AITKEN, 2013)) operam em escalas de tempo longas

(dezenas de segundos ou mais) e, portanto, não oferecem a granularidade adequada para

detectar eventos como rajadas de tráfego de curta duração (e.g., microbursts) que podem

ser desastrosas para aplicações modernas. Técnicas de medição ativa (e.g., ping, tracer-

oute, OWAMP (SHALUNOV et al., 2006) e TWAMP (HEDAYAT et al., 2008)) também

não fornecem resolução de tempo satisfatória, e além disso, não há garantia de que a

rede roteará e priorizará os pacotes de medição da mesma forma que os pacotes de pro-

dução. O movimento consistente em direção à heterogeneidade no tratamento do tráfego

(JEYAKUMAR et al., 2014; HONG et al., 2013), roteamento multi-caminhos (JAIN et

al., 2013; KUMAR et al., 2015) e balanceamento de carga de flowlets (ALIZADEH et

al., 2014; HE et al., 2015) exacerba essa limitação. Como segundo exemplo, e em re-

lação à solução de problemas de violação de SLO, abordagens baseadas em mirroring de

pacotes (e.g., NetSight (HANDIGOL et al., 2014), Planck (RASLEY et al., 2014), Ev-

erflow (ZHU et al., 2015) e Stroboscope (TILMANS et al., 2018)) podem ajudar a dar

150

visibilidade para entender como os pacotes estão sendo processados na rede e encamin-

hados pelos dispositivos. Essas abordagens encontram seu principal desafio em manter

a sobrecarga de monitoramento (ou seja, largura de banda e processamento necessários

para este fim) em níveis razoáveis e ao mesmo tempo coletar dados com granularidade

fina (TILMANS et al., 2018). A amostragem de pacotes, o método mais comum para

enfrentar esse desafio, inerentemente leva essas abordagens a perder eventos importantes.

Isso, pois decidir o que e quando amostrar é difícil.

Outro desafio no atendimento aos SLOs nos tempos modernos é a dependência de

comunicação, e o atraso causado por esta, entre os mecanismos que detectam problemas

e os que encontram a solução para esses problemas. Considere, por exemplo, o caso de

falhas de equipamentos e seu impacto na disponibilidade da rede. As soluções existentes

dependem de algum tipo de computação no plano de controle no momento da falha e a

posterior reconfiguração das tabelas de encaminhamento. Calcular as novas entradas de

encaminhamento para dispositivos ou, em termos mais amplos, computar a solução do

problema pode levar um tempo considerável. Como o atraso na reação a falhas leva a

um número significativo de quedas de pacotes, no caso geral, o atraso causado pelo uso

de loops de controle para resolver problemas pode levar a uma queda substancial no de-

sempenho e a perdas financeiras. Idealmente, o plano de dados deve ser capaz de reagir

imediatamente no momento da falha. Notamos que as limitações e desvantagens apresen-

tadas pelas ferramentas e técnicas de monitoramento existentes resultam do baixo nível

de flexibilidade na definição de como os pacotes devem ser processados pelo plano de

dados em redes tradicionais. Mesmo com Rede Definida por Software (SDN) e Open-

Flow (MCKEOWN et al., 2008), há suporte apenas para protocolos padronizados; não há

liberdade para definir protocolos e procedimentos personalizados.

A.1 Definição do Problema

Como resultado do cenário apresentado, a comunidade de redes tem buscado

maior flexibilidade no plano de dados, o que culminou recentemente na proposta de

programabilidade do plano de dados (do inglês Data Plane Programmability – DPP)

(BOSSHART et al., 2013; CHOLE et al., 2017; OZDAG, 2012). O DPP remodela

o cenário das redes definidas por software (Software-Defined Networking – SDN), per-

mitindo que os operadores de rede reprogramem os seus dispositivos de encaminhamento

mesmo após sua instalação para implantar novos protocolos de comunicação, personalizar

151

o comportamento da rede e, consequentemente, desenvolver e oferecer suporte a apli-

cações serviços inovadores. Protocolos e procedimentos de processamento de pacotes,

neste novo paradigma, são definidos por meio de linguagens específicas de domínio –

por exemplo, P4 (BOSSHART et al., 2014) – com suporte a abstrações para especificar

cabeçalhos de protocolos, lógica de análise e tabelas de lookup personalizados, por ex-

emplo. Um conceito interessante que ganhou força com a introdução de planos de da-

dos programáveis é a Telemetria de Rede In-band (In-band Network Telemetry – INT)

(JEYAKUMAR et al., 2014; KIM et al., 2015; THOMAS; LAUPKHOV, 2016). Den-

tro desse conceito, os dispositivos de encaminhamento são programados para anotar os

pacotes de produção com metadados sobre o estado destes, seu comportamento e seu de-

sempenho (e.g., percentual de utilização de portas, regras de encaminhamento aplicadas

e tempo de atraso de encaminhamento). As informações anotadas são acumuladas em um

pacote ao longo de seu caminho e, em algum ponto da rede, extraídas e exportadas para

servidores analisadores. Esses servidores reúnem as informações recebidas (conforme

necessário) para construir uma visão global e precisa da rede, conforme o observado pelo

seu tráfego.

As técnicas baseadas em INT mostraram produzir dados de monitoramento com

um nível de precisão e granularidade sem precedentes (KIM et al., 2015; ZHANG et al.,

2017). Isso porque, em vez de depender de pacotes específicos para medição (método

ativo), que podem estar sujeitos a comportamentos de encaminhamento e roteamento

diferentes daqueles do tráfego de interesse, os próprios pacotes de produção podem ser us-

ados para investigar a rede. Além disso, a coleta de metadados pode ser feita precisamente

durante os instantes em que pacotes individuais de interesse estão sendo processados em

um dispositivo. Como consequência, o INT torna possível detectar e identificar eventos

de rede que antes eram imperceptíveis, como congestionamentos que duram microsse-

gundos.

Embora a DPP traga maior flexibilidade para o desenvolvimento de mecanismos

de monitoramento, para operar em linerate em links de alta velocidade, os programas de

plano de dados são sujeitos a restrições no tempo de execução (dezenas de nanossegun-

dos) e um espaço de memória limitado (por exemplo, centenas de megabits de SRAM

e dezenas de megabits de TCAM) (BOSSHART et al., 2013). Em relação ao INT, por

envolver a modificação de pacotes de produção que atravessam a rede, a quantidade de

metadados que podem ser coletados por um pacote é limitada pelo seu tamanho original

e pela unidade máxima de transmissão da rede (MTU). Além disso, algumas das ações

152

executadas podem aumentar a carga da rede e afetar o desempenho. Por exemplo, a incor-

poração de dados de telemetria em pacotes aumenta a carga nos links de rede e a geração

de pacotes de relatório aumenta a carga nos dispositivos de encaminhamento e canais de

controle. Nesta tese, é argumentado que essas restrições e fatores precisam ser cuida-

dosamente considerados para despertar todo o potencial da programabilidade do plano de

dados para a disciplina de monitoramento de rede.

A.2 Hipótese, Questões de Pesquisa e Contribuições

Esta tese busca preencher a lacuna de concretização das novas oportunidades de

monitoramento e operação de redes trazidas pela programabilidade de plano de dados

(DPP) e telemetria de rede in-band (INT). A sua hipótese é que INT juntamente com

DPP podem ser aplicados com sucesso para monitorar e operar redes com granularidade

por pacote ao mesmo tempo que mantendo os overheads praticáveis. Esta tese traz oito

contribuições valiosas que respondem a questões importantes sobre como gerenciar redes

de forma eficaz e eficiente neste novo paradigma. A Figura 1.1 resume este trabalho,

mostrando seus principais fundamentos originados do surgimento da DPP e INT, bem

como suas principais contribuições. Essas contribuições são posicionadas como resultado

de três questões de pesquisa que são descritos a seguir.

Figure A.1: Sumário da tese com suas principais contribuições e fundamentos.

Cabeçalhos
Personalisados

Memória
Persistente

Tabelas
Personalisadas

Operações
Matemáticas

Execução
Condicional

Data Plane Programmability

Replicação de
Pacotes

Coleta de
Metadados

Exportação de
Metadados

In-band Network Telemetry

INTO (Cap. 3) IntSight (Cap. 4) Felix (Cap. 5)

Formalização da
Orquestração de INT

Heurísticas para
Orquestração de INT

Consolidação de Metadados
Orientada a Caminhos

Mecanismo de Detecção
de Violações de SLO

Encaminhamento
Orientado a Táticas

Protocolo de Coordenação
de Recuperação de Falhas

Algoritmo de Roteamento
Alternativo Just-in-Time

Paradigma
Estratégia-Tática

Questão 1. Como devem as ações de coleta de Telemetria de Rede In-band ser

orquestradas entre os dispositivos em uma rede para maximizar a qualidade da medição

e minimizar as sobrecargas de rede e tráfego?

Uma análise inicial sobre a Telemetria de Rede In-band (INT) mostrou que quando

tal conceito é aplicado de forma não sistemática para coletar metadados de cada um dos

dispositivos visitados e por cada um dos pacotes de tráfego que atravessam a rede, um

153

encargo substancial é imposto sobre o tráfego, os recursos de rede e os servidores de

análise. A sobrecarga imposta por essa tarefa pode chegar ao ponto de interromper a

operação da rede ou seu efetivo monitoramento.

No Capítulo 3, como a primeira contribuição desta tese, é formalizado o prob-

lema de orchestração de telemetria de rede in-band (do inglês, In-band Network Telemetry

Orchestration – INTO) por meio de programação linear inteira. O objetivo final do prob-

lema INTO é minimizar a sobrecarga de monitoramento, mas ainda assim obter dados

de alta qualidade. São formalizadas duas variações do problema INTO como modelos

de programação matemática, cada uma delas focando na otimização do uso de um re-

curso específico: a capacidade de processamento de pacotes dos dispositivos e a largura

de banda dos links, respectivamente. Ambas as variações do problema de orquestração

são provadas como pertencendo a classe de problemas NP-Completos. Através de uma

extensa avaliação usando topologias de rede reais, é confirmado que a geração de soluções

ótimas leva um tempo proibitivo.

Como segunda contribuição, também no Capítulo 3, é abordada a limitação de

escalabilidade dos modelos de programação matemática projetando algoritmos heurísti-

cos. Esses algoritmos são capazes de computar soluções de alta qualidade em tempo de

computação polinomial para as duas variações do problema INTO. Através de uma avali-

ação, observa-se que as heurísticas propostas são capazes de gerar soluções próximas do

ótimo para todas as topologias consideradas em menos de um segundo. Também é avali-

ada a qualidade e os custos associados às heurísticas propostas sob diferentes aspectos e

comparados os seus resultados para identificar quais tipos de redes cada heurística é mais

adequada para monitorar.

Na parte seguinte desta tese, continua-se este estudo sobre INT, colocando a DPP

em foco e respondendo à seguinte pergunta intrigante.

Questão 2. Dada a flexibilidade no processamento de pacotes fornecida pela Pro-

gramabilidade do Plano de Dados, podem os dados de monitoramento ser pré-processados

ou consolidados por dispositivos de encaminhamento antes de serem exportados ao plano

de controle para reduzir ainda mais a sobrecarga e sem perda (ou mesmo melhoria) na

qualidade da medição?

Uma das observações resultantes do estudo de orquestração de INT é que os planos

de dados programáveis têm recursos que podem permitir ações de monitoramento mais

além da coleta de metadados brutos. A partir desta observação, no Capítulo 4, apresenta-

se o INTSIGHT, um sistema que explora totalmente as capacidades de programação de

154

rede (BOSSHART et al., 2013; BOSSHART et al., 2014) para monitorar SLOs relaciona-

dos ao atraso fim-a-fim e a garantias de largura de banda. Em poucas palavras, INTSIGHT

discretiza o tempo em janelas de duração fixa na ordem de subsegundos, chamadas aqui

de épocas. O tráfego de rede e dos fluxos de interesse são monitorados pacote-a-pacote

pelo plano de dados para observar seu estado, comportamento e desempenho (e.g., rotea-

mento, contenção, atraso, quedas de pacotes e largura de banda fornecida). Cada pacote

de produção é instrumentado para transportar informações essenciais (em um cabeçalho

de telemetria), que tem seus valores atualizados sistematicamente (por meio de com-

putação na rede) à medida que o pacote se move em direção ao destino. O dispositivo

de encaminhamento de egresso de cada pacote consolida essas informações temporaria-

mente em sua memória. Ao final de cada época, as informações consolidadas mantidas

para cada fluxo de interesse permitem detectar e diagnosticar eventos de violação de SLO,

suas causas, vítimas e culpados. Como uma terceira contribuição desta tese, foram pro-

jetados e implementados procedimentos eficientes no plano de dados para computar grad-

ualmente metadados relacionados aos caminhos, pontos de contenção, atrasos fim-a-fim

e largura de banda fornecida. Através de uma avaliação aprofundada, demonstra-se os

benefícios (em relação à funcionalidade, desempenho e demanda de recursos) da teleme-

tria de rede in-band orientada a caminhos em comparação com abordagens do estado da

arte.

A resposta positiva à segunda pergunta – ou seja, o sucesso no pré-processamento

e consolidação dos dados de monitoramento diretamente no plano de dados – motiva a

terceira e última pergunta.

Questão 3. Pode parte da lógica de análise e reação (tradicionalmente posi-

cionada no plano de controle) ser transferida para o plano de dados para permitir detec-

tar e reagir a problemas de rede em mais rapidamente?

A seguir, são descritos casos onde indentificou-se que a resposta para este per-

gunta é positiva. Primeiro, como mencionado brevemente, as informações consolidadas

armazenadas em dispositivos de encaminhamento em INTSIGHT permitem detectar e di-

agnosticar eventos de violação de SLO. Durante o projeto do INTSIGHT, observou-se que

a forma como as informações são consolidadas permitiria que os próprios dispositivos de

encaminhamento detectassem épocas em que ocorreram violações de SLO. Como resul-

tado, a quarta contribuição desta tesa é um mecanismo de rede, distribuído e orientado

a caminhos para monitorar o tráfego de rede capaz de detectar violações de SLO e outros

problemas que afetam o desempenho dos fluxos de interesse (e.g., microbursts). No Capí-

155

tulo 4, ao apresentar o INTSIGHT, descreve-se como, no final de cada época, os desvios

do que é esperado da rede (e.g., violações de SLO) são detectados pelos dispositivos de

encaminhamento de egresso, o que aciona a geração de relatórios. Os servidores do plano

de controle recebem e analisam os relatórios gerados para identificar o tráfego culpado

que tem afetado a operação normal da rede. Na avaliação do INTSIGHT, sua abordagem

para geração de relatórios de dados de telemetria mostrou-se fazer o uso sensato da largura

de banda do plano de controle e dos recursos dos servidores de análise sem perda signi-

ficativa de precisão e nível de detalhes.

Seguindo o trabalho sobre o INTSIGHT, no Capítulo 5, é apresentado um passo

adicional dado para responder à Questão 3. Move-se o foco do estudo para falhas de

equipamentos de rede e são investigadas formas de redirecionamento de tráfego mais efi-

ciente e resiliente, isto para atender aos SLOs relacionados à disponibilidade de serviço

que surgem no contexto de SDN com planos de dados programáveis. Propõe-se FELIX,

um novo sistema que calcula proativamente táticas de encaminhamento de pacotes tanto

para o estado normal da rede bem como para cenários de falha, e programa essas táticas

em dispositivos de plano de dados junto com um protocolo de coordenação leve para rea-

gir imediatamente a falhas. De certa forma, o plano de controle atua como um estrategista

que cria táticas de recuperação para lidar com falhas, enquanto o plano de dados executa

a tática apropriada quando necessário. Essa abordagem para a solução do problema elim-

ina a necessidade de esperar que o plano de controle calcule e instale novas regras de

encaminha no momento em que uma falha ocorre, e ao mesmo tempo permite o uso dos

melhores caminhos alternativos para contornar falhas. São feitas quatro contribuições

principais com o projeto do FELIX. Como quinta contribuição desta tese, desenvolve-se

um pipeline de processamento de pacotes com tabelas match-action personalizadas que

encaminham os pacotes de acordo com o estado atual da rede. A sexta contribuição é

o projeto de um protocolo leve rodando no fastpath dos switches para permitir a coorde-

nação da recuperação de falhas inteiramente no plano de dados. A sétima contribuição

é o desenvolvimento de algoritmos que calculam e instalam regras de encaminhamento

alternativas bem a tempo de lidar com falhas possivelmente iminentes. Através de uma

extensa avaliação do FELIX, observou-se que este reduz consideravelmente o tempo de

reação a falhas ao mesmo tempo que este faz uso sensato da memória nos dispositivos do

plano de dados. A oitava, e última, contribuição desta tese é a proposta do paradigma

Estratégia-Tática. Esse paradigma abstrai os elementos de FELIX para formar uma ar-

quitetura geral que pode ser instanciada para executar outras tarefas de operação da rede.

156

Exemplificamos a generalidade desse paradigma combinando as lições aprendidas com

FELIX e INTSIGHT para esboçar INTREACT, um sistema para reencaminhamento em

escalas de tempo de plano de dados orientado a SLOs.

	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Hypothesis, Research Questions, and Contributions
	1.3 Organization

	2 Background
	2.1 Network Programmability
	2.2 Programmable Data Planes and P4
	2.3 In-Band Network Telemetry

	3 Orchestrating In-Band Network Telemetry
	3.1 Motivation
	3.2 INTO
	3.3 Problem Variations
	3.3.1 INTO Concentrate
	3.3.2 INTO Balance

	3.4 Heuristic Algorithms to Solve the INTO Problems
	3.4.1 Concentrate Heuristic Algorithm
	3.4.2 Balance Heuristic Algorithm

	3.5 Evaluation
	3.5.1 Mathematical Programming Models and Heuristic Algorithms
	3.5.2 Comparison of the INTO problem variations

	3.6 Related Work
	3.7 Chapter Summary

	4 Diagnosing SLO Violations with In-Band Network Telemetry
	4.1 Motivation
	4.2 IntSight
	4.2.1 IntSight Data Plane
	4.2.2 IntSight Control Plane

	4.3 Design and Implementation
	4.3.1 Correlating Events in Time
	4.3.2 Storing Traffic Metadata Persistently
	4.3.3 Tracing Packet Paths
	4.3.4 Encoding Paths
	4.3.5 Pinpointing Contentions and Suspects
	4.3.6 Monitoring SLO Compliance

	4.4 Evaluation
	4.4.1 Experimental Setup
	4.4.2 Functional Evaluation
	4.4.3 Performance Evaluation

	4.5 Related Work
	4.6 Additional Remarks
	4.7 Chapter Summary

	5 Responding to Network Failures at Data-plane Speeds
	5.1 Motivation
	5.2 Felix
	5.3 Design and Implementation
	5.3.1 Forwarding Packets in the Data Plane
	5.3.2 Handling Local Failures
	5.3.3 Coordinating Network-Wide Rerouting
	5.3.4 Planning for Failure Scenarios

	5.4 Evaluation
	5.4.1 Experimental Setup
	5.4.2 Performance
	5.4.3 Scalability

	5.5 Related Work
	5.6 Additional Remarks
	5.7 On the Generality of the Strategy-Tactic Paradigm
	5.8 Chapter Summary

	6 Final Considerations
	6.1 Conclusions
	6.2 Directions for Future Research
	6.3 Achievements

	References
	Appendix A — Summary in Portuguese
	A.1 Definição do Problema
	A.2 Hipótese, Questões de Pesquisa e Contribuições

