
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ANTONIO AUGUSTO DA FONTOURA

Design Automation for Avionic
Reconfiguration Schemes and

Schedulability Analysis

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Advisor: Prof. Dr. Edison Pignaton de Freitas

Porto Alegre
May 2022

CIP — CATALOGING-IN-PUBLICATION

da Fontoura, Antonio Augusto

Design Automation for Avionic Reconfiguration Schemes
and Schedulability Analysis / Antonio Augusto da Fontoura. –
Porto Alegre: PPGC da UFRGS, 2022.

81 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2022. Advisor: Edison Pignaton de Freitas.

1. Reconfiguration. 2. Avionic Systems. 3. Distributed Real
Time Embedded Systems. 4. Schedulability Analysis. 5. Model
Checking. 6. Design Automation. I. Pignaton de Freitas, Edison.
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Luck Is What Happens When Preparation

Meets Opportunity.”

— SENECA

AGRADECIMENTOS

Meus sinceros agradecimentos a todos que de alguma forma contribuíram para o

desenvolvimento deste trabalho e que contribuíram com o meu crescimento profissional e

pessoal durante esses anos dedicados ao mestrado.

Ao meu orientador, Prof. Dr. Edison Pignaton de Freitas, pela oportunidade e

pela confiança depositada em mim. Agradeço pela disponibilidade em responder meus

questionamentos, pela paciência, pela troca de experiências e a dedicação em ensinar de

forma clara e didática contribuíram muito para meu aprendizado e crescimento.

Aos coatores do artigo previamente publicado, Francisco Assis Moreira do Nasci-

mento e Simin Nadjm-Tehrani, que trouxeram valiosas contribuições ao trabalho.

À universidade por fornecer meios para que alunos que já estão no mercado de

trabalho possam realizar seus estudos.

À minha família, em especial à minha esposa, por me apoiar e me incentivar sem-

pre.

ABSTRACT

Reconfigurable avionics systems can tolerate faults by moving functionalities from failed

components to another available system component. This work proposes a distributed re-

configurable architecture for application migration from failed modules to working ones.

The feasible system reconfiguration states are determined off-line to provide the expected

configuration in foreseen situations. Scheduling analysis is used to determine feasible

configurations evaluating specific temporal properties. A case study is used to show the

application of the presented approach as a proof of concept. Finally a design automa-

tion framework proof-of-concept is implemented and a thoroughly analysis on different

algorithms is performed to demonstrate its functionality and flexibility.

Keywords: Reconfiguration. Avionic Systems. Distributed Real Time Embedded Sys-

tems. Schedulability Analysis. Model Checking. Design Automation.

Automação de Projeto para Esquemas de Reconfiguração de Aviônicos e Análise de

Escalonabilidade

RESUMO

Os sistemas aviônicos reconfiguráveis podem tolerar falhas movendo funcionalidades de

componentes com falha para outro componente de sistema disponível. Este trabalho pro-

põe uma arquitetura reconfigurável distribuída para migração de aplicativos de módulos

com falha para módulos em funcionamento. Os estados viáveis de reconfiguração do

sistema são determinados de forma prévia, ainda na fase de design, para fornecer a con-

figuração necessária nas situações previstas. A análise de escalonabilidade é usada para

determinar se os estados provenientes das novas configurações são viáveis avaliando pro-

priedades temporais específicas. Um estudo de caso é usado para mostrar a aplicação da

abordagem apresentada como prova de conceito. Por fim, uma prova de conceito do fra-

mework de automação de design é implementada e uma análise com diferentes algoritmos

é realizada para demonstrar sua funcionalidade e flexibilidade.

Palavras-chave: Reconfiguração, Systemas Aviônicos, Systemas Embarcados de Tempo

Real Distribuídos, Análise de Escalonabilidade, Model Checking, Automação de Design.

LIST OF ABBREVIATIONS AND ACRONYMS

AADL Architecture Analysis and Design Language

AMP Asymmetric Multi-Processing

APEX Application Executive

ARINC Aeronautical Radio, Incorporated

DAL Design assurance level

EDF Earliest Deadline First

EMF Eclipse Modeling Framework

FAA Federal Aviation Administration

FDAL Function design assurance level

FHA Function Hazard Analysis

FIFO First in First Out

FPS Fixed Priority Scheduling

GRM Global Resource Manager

HDG Hierarchical Dependency Graph

HMI Human Machine Interface

IDAL Item design assurance level

IMA Integrated Modular Avionics

KPI Key performance indicators

LRM Local resource manager

LTA Labeled Timed Automata

MRO Maintenance, Repair and Overhaul

PDI Parameter Data Item

PDIRM PDI Resource Manager

PPS Priority preemptive scheduling

QoS Quality of Service

RMC Resource Manager Client

RMU Resource Manager Unit

RSD Reconfiguration States Diagram

RTOS Real-Time Operating System

SAE Society of Automotive Engineers

SLOC Software lines of code

WCET Worst-case execution time

OS Operating System

LIST OF FIGURES

Figure 3.1 Reconfigurable System Architecture ...21
Figure 3.2 Design Flow Overview ..24
Figure 3.3 Platform Meta-model...25
Figure 3.4 A Platform in AADL ...26
Figure 3.5 An Application in AADL ..28
Figure 3.6 Example of Hierarchical Dependency Graph ..29
Figure 3.7 An Example of Reconfiguration States Diagram ..32
Figure 3.8 Initial System Dependencies ...48
Figure 3.9 Allocation of functions to nodes within the platform....................................49
Figure 3.10 HDG for case study ...50
Figure 3.11 RSD for case study ..51

Figure 4.1 Framework Input Output ...52
Figure 4.2 Framework Process..53
Figure 4.3 Framework Use Case Diagram..56
Figure 4.4 Platform Class Diagram...57
Figure 4.5 Allocation Algorithms Class Diagram ..58
Figure 4.6 Base Allocation Algorithms Flow Diagram ..58
Figure 4.7 Schedulability Analysis Class Diagram ..59
Figure 4.8 Reconfiguration (System) States Class Diagram...59
Figure 4.9 Framework Sequence Diagram..60

Figure 5.1 Average Remaining Failure Rate Budget ..67
Figure 5.2 Reconfiguration Graph - AHP with no balance mechanism..........................68
Figure 5.3 Reconfiguration Graph - PA-LBIMM..69
Figure 5.4 Balance Ratio...69
Figure 5.5 Failure rate budget comparison for PA-LBIMM balanced and unbalanced ..70
Figure 5.6 Reconfiguration Graph - AHP Based With Resource Aware Balance

Strategy ...70
Figure 5.7 Reconfiguration Graph - AHP Based With Round Robin Balance Strategy.71
Figure 5.8 Reconfiguration Graph - Initial Algorithm..71

LIST OF TABLES

Table 3.1 Partition durations (in ms)...27
Table 3.2 Threads properties for application...28
Table 3.3 Allocation matrix (partial)...34
Table 3.4 Function Hazard Analysis (Continue on the next pages)39
Table 3.5 Software items properties for case study...47
Table 3.6 Case study platform properties..48

Table 4.1 Numerical saaty preferences ...65

Table 5.1 Output System - Functions Failure Rate ...67

CONTENTS

1 INTRODUCTION...12
2 CONCEPTS AND RELATED WORKS...15
2.1 Concepts...15
2.1.1 Schedulability Analysis ...15
2.1.2 Formal verification and model checking..15
2.1.3 Mixed Criticality systems ..15
2.1.4 Integrated Modular Avionics and ARINC653 ...16
2.1.5 Failure Conditions and Severity Classification ..16
2.1.6 Terms..17
2.2 Related Works ...17
3 SYSTEM RECONFIGURATION APPROACH..21
3.1 Reconfigurable System Architecture...21
3.2 Reconfiguration Approach ...23
3.2.1 Design Flow ...24
3.2.2 Avionics System Specification...25
3.2.2.1 Platform...25
3.2.2.2 Application..27
3.2.2.3 Properties ..28
3.2.3 Implementation Modeling..30
3.2.4 Design Constraints ...30
3.2.5 Formal Verification ..30
3.2.6 Reconfiguration States Diagram ..31
3.2.7 Deployment Model ..33
3.2.8 Design Automation Algorithms...33
3.2.8.1 Mapping, Allocation, and Scheduling ..33
3.2.8.2 Build the Reconfiguration States Diagram ...35
3.3 CASE STUDY ...36
4 RESOURCE ALLOCATION AND SYSTEM RECONFIGURATION FRAME-

WORK ...52
4.1 Output Analysis...54
4.2 Allocation Algorithms...55
4.3 Software Design...56
4.4 Schedulability Analysis Tools...60
4.5 Allocation Algorithms...61
4.5.1 PA-LBIMM Algorithm Adaptations..62
4.5.2 AHP Algorithm..63
5 RESULTS...66
6 CONCLUSION ...73
REFERENCES...75
APPENDIX A — RESUMO EXPANDIDO ..79

12

1 INTRODUCTION

Reconfiguration of distributed real-time embedded systems consists of changing

or modifying subsystems and/or subsystem configurations to better serve a certain pur-

pose (JÖZWIAK; NEDJAH, 2009). In an avionics system, mode changes are naturally

used to adapt to changing operational flight conditions. While modes are predetermined,

their realization can be through reconfigurations. Reconfiguration can be applied to toler-

ate faults that could cause the loss of a certain critical function in response to an external

environmental change or under the request of a system user or even to a timed event in an

application. The survey by Löfwenmark et al. (LÖFWENMARK; NADJM-TEHRANI,

2018) shows that fault-tolerant architectures continue to be an important area of research,

and combining fault tolerance with timing guarantees is still unresolved, e.g. in presence

of multicore architectures.

When a system component fails, a reconfigurable avionics platform moves the

functionalities, which were allocated previously in the failed component, into another

available system component. Such a reconfiguration scheme, in addition to enhancing

reliability, can also be beneficial in terms of evolution capability throughout the aircraft

life cycle.

The lifespan of commercial aircraft has been increasing from the end of the 20th

century to the present 21st-century (JIANG, 2013) and has now reached stability. Addi-

tionally, the Maintenance, Repair, and Overhaul (MRO) market is expected to produce a

strong future demand as worldwide military Air Forces decide to upgrade legacy aircraft

rather than procuring new platforms (BALIS; BERENSON; JOVOVIC, 2013), which

gives military fleets an increased service life. In Brazil, for instance, a recent overhaul

has brought a 70s vintage fleet the ability to extend its service life beyond 2020 (Airforce

Technology, 2009).

Aircraft projects, either new platforms or overhauled, have increased the develop-

ment time and thereby the costs substantially in recent years. Avionics technology obso-

lescence occurring earlier than the aircraft airframe lifespan is also a cause of the MRO

market trend. The reconfiguration flexibility can partially alleviate such problems. Early

deliveries with basic capabilities can be performed and more advanced functionalities can

be incorporated into the system by changing the configuration.

Given the above-described landscape, this work proposes a distributed reconfig-

urable architecture in which a global agent and local agents cooperate to oversee that

13

applications transition from failed modules to working ones. The feasible reconfigura-

tions determined offline are stored in the system to be used by the agents, which then

keep the computers in a previously defined configuration in a foreseen situation.

The reconfiguration of one subsystem does not affect the rest of the system in any

way. In other words, the original specified real-time constraints would still be satisfied.

The sequence of necessary steps for the completion of a reconfiguration must be atomic,

in the sense that they should entirely succeed or be discarded. In the case where a recon-

figuration is aborted, the avionics system operation must not be affected in any way. In

either case, it is important to highlight that we assume that the failures occur one at a time.

Having a successful transition to reconfigured state due to a failure does not guar-

antee the feasibility of such a state. Therefore is clear the need for final verification to

assess the correctness of the real-time systems set to perform the desired function. For

that purpose, the schedulability analysis is used to check if every task in the system will

meet its timing constraints.

Different approaches can be used to perform that verification. Model checking

(BAIER; KATOEN, 2008) can be used to determine the feasible reconfigurations, taking

into account all possible sequences of necessary steps. From a specification, provided

in Architecture Analysis and Design Language (AADL) (FEILER; GLUCH, 2012), one

of the proposed approaches includes the creation of a network of automata (LARSEN;

PETTERSSON; YI, 1997), representing the timing aspects of an avionics system, to per-

form schedulability analysis of each possible reconfiguration. This is done by evaluating

specific temporal logic properties on the timed trace of the avionics system tasks and ob-

serving their deadlines. Alternatively, the scheduling simulation approach is also used by

applying the scheduling algorithms during a period to compute the schedule of the system

(SINGHOFF et al., 2009).

The schedulability analysis ensures the predictability of the system after each re-

configuration and facilitates airworthiness approval by the certification authorities.

Taking into consideration that systems are getting exponentially more complex

every year (AVSI, 2009b). During the 1980s a typical airplane project had less than

1 million software lines of code (SLOC), while from the 2000s onwards that number

exploded. For instance, the reported SLOC for the F35 program was around 24 million

(AVSI, 2009a). This scenario urges for more abstractions and design automation during

development. Software applications engineers should be focused on their scope, as they

are not able to cope with the always increasing complexity of the underlying computer

14

systems and their design constraints. During this work, the proposed design automation

is implemented in a form of a framework proof-of-concept.

The main contributions of this work are:

• a modeling approach where fault models augmenting the AADL specifications are

combined with the reconfiguration logic to formally represent fault tolerance by

transitions in a reconfiguration state space;

• a method to evaluate alternative reconfiguration strategies to find suitable config-

urations that satisfy timing requirements and provide the highest degree of fault

tolerance in the considered space;

• Verification through schedulability analysis;

• Design automation framework proof-of-concept.

The structure of this work is as follows. Chapter 2 presents related work and

basic concepts. Chapter 3 the system reconfiguration approach and its underlying system

architecture. Additionally, a representative avionics case study is presented, including a

summary of how the design constraints are derived and preliminary reconfiguration results

using model checking as the schedulability analysis method. Chapter 4 presents a detailed

description of the proposed automation framework. Chapter 5 provides the result analysis

from the framework output considering the proposed case study. The conclusions are

reported in Chapter 6, providing also directions for future work.

15

2 CONCEPTS AND RELATED WORKS

2.1 Concepts

2.1.1 Schedulability Analysis

The schedulability analysis is a process to evaluate if the time requirements of a

real-time system are met. It checks if the tasks execution times and periodicity are not

violated in run-time.

Schedulability test and the theory foundations were introduced in the 1970s (LIU;

LAYLAND, 1973), and it brings several ways to perform the actual analyses, such as

feasibility test and scheduling simulations.

2.1.2 Formal verification and model checking

Formal verification means having a mathematical model of a system and a method

of proof to verify that the specified proprieties are satisfied (MCMILLAN, 1993). It is a

form of design verification and its goal is to avoid design revision and run-time failure by

identifying errors early in the design process.

Model checking is a subset of the formal verification. in this approach the system

model is expressed in a finite state machine, and specifications are written in a specialized

language call a propositional temporal logic. An efficient search procedure is used to

determine automatically if the specification are satisfied by the transition system. It can

be used for instance to perform schedulability tests of real-time systems.

2.1.3 Mixed Criticality systems

A Mixed-Criticality system is a system that can run different functions from dif-

ferent criticality levels, safety-critical or non-critical, in the same platform. For instance,

a brake system for cars and a media center for audio and navigation. One is much more

important (critical) than the other, however, the driver expects both of them to be fully

functional in his vehicle.

16

2.1.4 Integrated Modular Avionics and ARINC653

Integrated Modular Avionics (IMA) is a proposed architecture to simplify the de-

velopment and certification efforts for the software of avionics systems. The first reported

use of such an approach dates from the early 1990s (PRISAZNUK, 1992), first introduced

Boeing 777 project (MORGAN, 1991), and it is widely used in the aerospace industry,

for both, commercial and military aircraft.

The ARINC653 standard brings the software specification for space and time par-

titioning. It was first adopted in 1997 and rapidly accepted by the main players in the

industry (PRISAZNUK, 2008). It became the foundation to build mixed-criticality appli-

cations on top of the same processing unit by providing a common basis for testing and

qualifying each software item, besides specifying a standard interface called APplication

EXecutive (APEX), which decouples the operating systems to the applications.

In a system that applies ARINC653 and IMA approaches, the concept of partition

is introduced. A partition provides an isolated environment for software applications to

run. It contains its own memory space which can not be accessed directly by a different

partition. In addition, it has a dedicated time slot, so that any application running in

another partition overruns, it won’t affect other software applications time constraint.

2.1.5 Failure Conditions and Severity Classification

A condition affecting either the airplane or its occupants, which is caused by one

or more failures or errors (Federal Aviation Administration, 2011).

As defined by Advisory Circular 23.1309-1E from the Federal Aviation Adminis-

tration (FAA), failure conditions may be classified according to their severity as follows:

• No safety effect: Failure conditions that would not affect safety.

• Minor: Failure conditions that would not significantly reduce airplane safety and

involve crew actions that are within their capabilities. Some physical discomfort to

passengers or cabin crew

• Major: Failure conditions that would reduce the capability of the airplane or the

ability of the crew to cope with adverse operating conditions to the extent that there

would be a significant reduction in safety margins or functional capabilities. Possi-

bly including injuries.

17

• Hazardous: Failure conditions that would reduce the capability of the airplane or

the ability of the crew to cope with adverse operating conditions. Serious or fatal

injury to an occupant other than the flight crew.

• Catastrophic: Failure conditions that are expected to result in multiple fatalities

of the occupants, or incapacitation or fatal injury to a flight crewmember normally

with the loss of the airplane.

2.1.6 Terms

This section starts with the introduction of important terms used throughout this

work. Function is defined as an intended behavior of a product based on a defined set

of requirements regardless of implementation; Item as a hardware or software element

having bounded and well-defined interfaces; System as a combination of inter-related

items arranged to perform a specific function(s); and, Application as a software instance

of a function or a part of a function.

Following the D-178 standard (RTCA, 2012), software development terms are

used: Software Item as software component or module (a part of a complete “software

system”). Parameter Data Item (PDI) as a set of data that, when in the form of a Pa-

rameter Data Item File, influences the behavior of the software without modifying the

Executable Object Code and that is managed as a separate configuration item (examples

include databases and configuration tables); Partitioning as a technique for providing iso-

lation between software components to contain and/or isolate faults; and, Software Parti-

tion as the process of separating software components, usually with the express purpose

of isolating one or more attributes of the software, to prevent specific interactions and

cross-coupling interference.

2.2 Related Works

Housseyni et al. (HOUSSEYNI et al., 2018) propose a multi-agent reconfigura-

tion approach in a distributed real-time system with energy harvesting constraints. The

objective is to optimize global Quality of Service (QoS) measured in terms of deadline

success ratio, the degree of criticality, and energy harvesting.

Five different agents are defined, one global coordinator and four locals for each

18

subsystem. The local agents are responsible to assess the sub-system feasibility accord-

ing to the proposed reconfiguration. Such an approach makes possible independent local

reconfiguration as well as coordinated global ones. Three strategies are applied for tasks

adaptation depending on the reconfiguration environment and the task constraints: De-

composition, which decomposes software tasks and migrates their branches from a faulty

processor to a non-faulty one; degradation, which modifies scheduling mode; and re-

moval, which deletes branches or tasks.

The results showed a higher success ratio in meeting deadlines in comparison to

other non-multiagent approaches.

In an avionics environment, all failure modes are identified in the development

stage during the safety assessment process, therefore all possible reconfigurations can be

analyzed prior to the system implementation causing the multiagent solution to be simpli-

fied as fewer local agents are necessary However, the proposed strategy of decomposing

tasks is hard to achieve due to the high demands from aerospace software certification

processes such as the DO-178C (GIGANTE; PASCARELLA, 2012), especially in soft-

ware with the highest degree of criticality. Moreover, in an avionics environment, all

failure modes are usually identified in the development stage and analyzed in the safety

assessment process. Therefore, all possible reconfigurations can be analyzed before the

system implementation, making the multi-agent solution suitable for including fewer lo-

cal agents as needed. The work by Housseyni et al. (HOUSSEYNI et al., 2018) did not

address how the reconfiguration process affects time-critical tasks with hard deadlines as

our approach does.

Cui et al. (CUI; SHI; WANG, 2018) suggest a decentralized reconfiguration tech-

nique, applying a concept called backward reconfiguration. A global component is re-

sponsible to assess the system reconfiguration state. The decentralization causes the sys-

tem to adapt faster to the identified fault in a certain computer module or communication

bus, but it increases the complexity of every node in the system. The avionics software

development process dictates that unnecessary complexity is to be avoided due to the

high development cost implied for highly critical applications. Moreover, a local recon-

figuration can lead to effects encountered in heuristic algorithms such as hill climbing

(KLEINBERG; TARDOS, 2005). Also, local maxima (KLEINBERG; TARDOS, 2005)

could mean the system has recovered from a component fault but could end up in a failure

state if a less critical node fails, bringing the overall probability of failure to an undesirable

level.

19

Zhou et al. (ZHOU et al., 2013) propose a framework to support the reconfigura-

tion of avionic applications that adopt the distributed IMA architecture. In the proposed

framework, an action model conforming to the Behavioral Annex of AADL (FEILER;

GLUCH, 2012) is built to represent the sequence of all the steps required to perform a

given application reconfiguration, aiming at fault tolerance. This behavioral model in

AADL is then used to compute the total execution time required for the completion of

the reconfiguration, as a sum of the execution times required for each step. The work

does not include further steps linking this computed total time to application constraints

or schedulability analysis. In addition, the model assumes that all steps are performed in

sequence, when in fact, some steps can be executed in parallel. In our proposed approach,

schedulability analysis is used to determine the feasible reconfigurations, considering all

possible sequences of necessary steps.

Fohler et al. (FOHLER et al., 2018) describe a similar approach for a reconfig-

urable avionics system. Their work also includes more than one agent: a global, called

Global Resource Manager (GRM), and a local, called local resource manager (LRM).

The authors provide an independent local reconfiguration with no changes in other sys-

tem units whatsoever. However, the paper does not include an analysis showing that

erroneous outcomes of any reconfiguration attempt will not affect system timing.

Atitallah et al. (ATITALLAH et al., 2018) propose a converged unified environ-

ment for the simulation and test domains as well as the verification and validation of an

avionics system focusing on reconfigurable architectures. Field programmable gate ar-

rays (FPGAs) are used in the system under test and in the test benches to accomplish a

unified development environment to reduce cost and time-to-market. Design Constraints

were taking in consideration when exploiting the main criterias of reconfigurable circuits

in terms of performance, flexibility and dynamicity. The proposed approach in this work

also targets system verification supporting the design and verification phases of the prod-

uct development. However it explores in more details the timeliness assurance of the

system in all identified scenarios, taking in consideration the certification aspects.

Montano et al. (MONTANO; MCDERMID, 2008) present an approach to solving

the complex combinatorial problem of IMA reconfiguration in real-time whilst providing

support for the pilot’s involvement by employing automatic generation of explanations

of reconfiguration actions. The approach is based on Explanation-based Constraint Pro-

gramming. The paper bring a very interesting discussion on if and how the pilots should

be involved in the reconfiguration process. However it goes beyond the scope of this

20

work, taking additional inputs such as operational scenario, operational modes, mission

objectives.

Porcarelli et al. (PORCARELLI et al., 2004) describe a framework providing fault

tolerance of component-based applications by detecting failures through monitoring and

by recovering through system reconfiguration. The framework is based on Lira, a dis-

tributed agent infrastructure for remote control and reconfiguration, and a decision maker

for selecting suitable new configurations. The proposed solution is based on run-time

calculations using online evaluation of a stochastic dependability model which represents

the whole system. The model, created at run time, depends on a set of pre-specified re-

configuration policies, on the requirements of the application and on the system status at

the reconfiguration time. This strategy is hard to employ in avionics contexts with certifi-

cation, specially when events triggering the reconfiguration are unanticipated and the new

system state is evaluated in run time. This work focus on evaluating the possible failure

modes and valid reconfiguration, in which the real time constraints can be assessed within

a degrades system state.

Hollow et al. (HOLLOW; MCDERMID; NICHOLSON, 2000) focus on the real-

location problem and propose a fitness function to be applied in conjunction with a search

algorithm to find possible system states which can still fulfill the system requirements.

However, the proposed solution does not include the means to confirm whether the new

system schedule is still feasible. Our work proposes model checking of all possible results

to assure timeliness.

Annighofer et al. (ANNIGHOFER; THIELECKE, 2012), tackles the task map-

ping problem through a multi-objective mathematical optimization to perform software

and hardware mapping within a distributed IMA architecture while designing avionic sys-

tems. Resource allocation is a well-studied area in cloud computing also (GONG et al.,

2019). Where it deals mostly with proprieties such as bandwidth control and QoS. What

they miss is to evaluate how the such algorithm behaves when faced with a cascading set

of computer item failures.

21

3 SYSTEM RECONFIGURATION APPROACH

3.1 Reconfigurable System Architecture

Figure 3.1 illustrates the proposed reconfigurable architecture, where C1, C2, and

C3 represent processing units. They are the basic units in which faults are modeled. A

basic unit is called System Item, or just Item.

Figure 3.1 – Reconfigurable System Architecture
Source: author

To perform the reconfiguration, three main components are proposed in the recon-

figurable architecture:

• Resource Manager Unit (RMU): acts upon system items failure and triggers sys-

tem reconfiguration according to a previously offline determined reconfiguration

mapping;

• Resource Manager Client (RMC): assess reconfiguration request concerning erro-

neous item failure detection by the RMU and manages each processing unit’s re-

configuration state. It is present on every processor on the platform throughout the

system as part of our reconfiguration approach;

• PDI Resource Manager (PDIRM): contains the information about all processing

unit schedules in every system state possible during successive reconfiguration and

item failures.

The proposed reconfigurable architecture takes into consideration single core com-

puters (for instance, C1 and C2 in Figure 3.1) and Asymmetric Multi-Processing (AMP)

computers (for instance, C3 in Figure 3.1). For the AMP solution, every single core has

22

an RMC to provide health monitoring and reconfiguration execution.

A typical reconfiguration would be triggered by the RMU if it identifies a failure

in the system. Therefore, a system health monitoring mechanism should be implemented

within the RMU context. The need for the RMC is to prevent the loss of a critical system

function due to an erroneous RMU reconfiguration. An unnecessary state transition or

even a partial reconfiguration, could create a scenario where a critical software item is not

present in the new running system. For that reason, the RMC must evaluate if the reason

the reconfiguration was triggered is confirmed, by an additional health monitoring. With

the absence of the RMC, the RMU would be an evident system single point of failure.

Having that in mind, a few assumptions must be taken. A reconfiguration must be

atomic, the system is either completely in the new state or reject the trigger. To decrease

the reconfiguration complexity, it is assumed that all processing units in the system in-

volved in critical functions are synchronized at each partition. In case of reconfiguration,

the new system schedule is activated synchronously throughout the modules, avoiding

communication mismatches.

Both health monitoring, from RMU and RMC, are not subject of study of this

work.

Memory is not a critical resource in modern computers. On the other hand, mem-

ory access time management can pose a challenge in system timing analysis. The com-

munication bus is a time-constrained resource and should be well managed as it is shared

between several processing units.

The proposed architecture follows the basic DO-297 principles such as space and

temporal isolation. The partition within each computer or core is bounded to its resource

by the ARINC 653 compliant operating system. The Operating System (OS) guarantees a

certain partition in a certain computer to be run in a predefined time slot with no preemp-

tion even though there is no process assigned to it. All the processes inside the partition,

on the other hand, are subject to a preemptive policy, the rate monotonic in this study.

In a reconfiguration scenario, transmitting big blocks of data to be loaded in a re-

mote module at runtime saturates the communication bus and eventually affects function-

alities that were not directly affected by the triggering failure. Therefore, in the proposed

system architecture, all software items (for instance, executable object code) planned to

be allocated to a certain computer in any of the possible feasible reconfigurations previ-

ously determined are stored in the target memory in advance, instead of being transferred

at runtime as usually proposed in earlier works (BIEBER et al., 2009). In a typical AR-

23

INC 653 software, this is implemented by defining different schedules for each processing

unit.

The RMC manages the schedule selection. When a new reconfiguration is trig-

gered, the RMU sends the schedule that every processing unit must be configured to.

Every RMC impacted by the reconfiguration must first confirm the trigger and request the

health status of the failed component directly from the client associated with it, with no

RMU intervention. If the failure is not confirmed, the schedule change is aborted, and the

RMC keeps the processing unit in the latest state. However, if the failure is confirmed, a

new schedule is configured to be active in the next processing unit major cycle absorbing

the functionalities from failed components.

The applications must be designed to tolerate the worst case in which its status

remains in failure until it is reconfigured to a new processing unit.

The RMU’s responsibility is then to monitor the platform’s overall health status.

The failure modes identified in runtime are mapped to a certain transition in the reconfig-

uration state diagram stored in the PDIRM. The database gives the exact state to which

the system must be reconfigured and keep running as expected. The new indicated con-

figuration is sent to all involved processing units.

The communication bus is a deterministic Ethernet and a realization of the AR-

INC 664 part 7. The end systems include dedicated hardware to handle A664 traffic and

the network topology is set to comply with the latency requirements of each application.

Annighofer et al. (ANNIGHOEFER; REIF; THIELECK, 2014) propose an algorithm to

generate aircraft data and communication network topologies, taking into account mes-

sage flows and network component characteristics. The algorithm presented here could

be used to complement, in terms of data communication efficiency, the work presented

here.

3.2 Reconfiguration Approach

In the next subsections, the proposed reconfiguration approach is detailed, by pre-

senting the design flow, the meta-models to capture the avionics system specification, as

well as, the implementation and deployment information for the feasible reconfigurations.

The adopted algorithms are also described and illustrated.

24

3.2.1 Design Flow

Figure 3.2 shows the design flow of the proposed approach to system reconfig-

uration, which starts by modeling the platform, the application to be deployed on the

platform, and the properties, as design constraints to be satisfied by any valid implemen-

tation of the specified system. The main focus of this work is reconfiguration (highlighted

in Figure 3.2).

Figure 3.2 – Design Flow Overview
Source: author

For the platform, application, and properties modeling, AADL (FEILER; GLUCH,

2012) is adopted since it is already a well-studied format for the specification of avionics

systems (ZHANG; WANG; LIU, 2016). Next, it is shown how AADL resources are used

in the modeling process, which includes processors with partitions, representing a virtual

processor with a specific fixed time slack to perform some action, memories, buses, and

devices for the platform modeling; intercommunicating processes with threads inside and

interconnected utilizing ports for application modeling; and, property sets for the design

constraints modeling.

Using model transformations, an AADL specification is transformed into models

conforming to the proposed meta-models, described in the next subsections. On these

models, a mapping, allocation, and scheduling algorithm is applied, which determines

which software items will be mapped into each hardware item from the platform, allo-

25

cated to each available partition, and scheduled at specific time steps. All the information

generated by the design algorithms is annotated in the implementation, verification, and

design constraint models to be used by the reconfiguration algorithms, which produce

a deployment model with the necessary data to perform the system reconfigurations at

runtime.

3.2.2 Avionics System Specification

In this proposal, an avionics system is specified using Platform and Application

models, conforming to the meta-models described in the following. The meta-models

were created by using the EMF (Eclipse Modeling Framework) based modeling tool,

available in the Eclipse version 4.3.7a Oxygen. The AADL models were created using

the OSATE, version 2.3.5, modeling tool from CMU-SEI (OSATE,).

3.2.2.1 Platform

consists of hardware and software components, as well as, communication buses

(see Figure 3.3). A hardware component has one or more computers (mono or multi-

cores), and each computer can have many partitions.

Figure 3.3 – Platform Meta-model
Source: author

A software component can be an RMU or an RMC, which are responsible for the

26

reconfiguration actions in the avionics system. A software component can also be an OS,

a reusable library, a driver, or the source code for the implementation of a given system

function.

A communication bus can be modeled in AADL as shared memory when the com-

munication occurs inside the same partition of a computer; as an inter-virtual processor

messaging, when the communication is between two different partitions at the same pro-

cessor; or as an interprocessor messaging when the communication involves two different

computers in the platform. Figure 3.4 shows an example of a Platform in AADL contain-

ing four processors C1, C2, C3, and C4, each one with three, one, two, and four partitions,

respectively.

Figure 3.4 – A Platform in AADL
Source: author

Figure 3.4 shows an ARINC 664 compliant bus with six virtual links to implement

the communication between the computers, and memory components. Table 3.1 presents

27

the specified properties for the processing units in the example presented in Figure 3.4.

Table 3.1 – Partition durations (in ms)

C1 C2 C3 C4
M. frame: 20 ms M. frame: 10 ms M. frame: 10 ms M. frame: 20 ms
RAM: 256 Kb RAM: 256 Kb RAM: 256 Kb RAM: 256 Kb
Flash: 1 Mb Flash: 1 Mb Flash: 1 Mb Flash: 1 Mb

VP1 VP2 VP3 VP1 VP1 VP2 VP1 VP2 VP3 VP4
5 5 10 10 5 5 4 6 6 4

Source: author

As shown in Table 3.1, each computer has a major frame (in milliseconds), in-

dicating how much time all partition executions take, memory capacities, and the time

slot of each virtual processor (also in milliseconds). Other design properties can also be

specified in the AADL model, such as the latency of the virtual links, which were set as 1

ms in this example, the size and width of the memory components, etc.

3.2.2.2 Application

An application consist of one or more software item. It fulfills a system function

of part of a system function.

A software item can be a process, a thread, or a device, where a process is a group

of threads. For each thread, it is possible to have the source code of the program to be

executed. These concepts in the Application meta-model allow specifying an application

hierarchically. Figure 3.5 shows an example of an application in AADL, in which there

are three processes P1, P2, and P3, which have three, two, and five threads, respectively.

The data flow between the devices, processes, and threads is specified through

ports and connections between them and determines the dependencies between the soft-

ware items. Thus, in the example in Figure 3.5, the process P1 has threads P1T1, P1T2,

and P1T3, which have no dependencies between them and therefore can run concurrently.

Unlike the P3 process, where there are dependencies between the P3T3, P3T4, and P3T5,

which requires their sequential execution.

These dependencies are captured by a Directed Acyclic Graph (KLEINBERG;

TARDOS, 2005) that is called Hierarchical Dependency Graph (HDG), where the nodes

represent the software items and the edges represent data flow and also control flow depen-

dencies between the nodes. Figure 3.6 presents the HDG corresponding to the application

in Figure 3.5.

28

Figure 3.5 – An Application in AADL
Source: author

In the HDG in Figure 3.6, there are three nodes in the higher level representing

the processes in the application and ten nodes in the lower level of the hierarchy for the

threads. In the properties model, for each thread, the following is captured: the specified

period, deadline, worst-case execution time (WCET), and necessary memory, given by

the designer in the AADL modeling. Table 3.2 shows the specified properties for the

application in Figure 3.5.

Table 3.2 – Threads properties for application

Prop. P1 P2 P3
T1 T2 T3 T1 T2 T1 T2 T3 T4 T5

Period (ms) 20 20 20 20 20 30 30 40 40 40
Deadline (ms) 20 20 20 20 20 30 30 40 40 40
WCET (ms) 4 4 4 2 2 4 4 4 4 4
Memory (Kb) 90 50 30 40 70 90 80 60 50 95

Source: author

As shown in Table 3.2, thread T1 of process P1 has specified period, deadline,

WCET, and demanded memory given by 20ms, 20ms, 4 ms, and 90Kb, respectively.

3.2.2.3 Properties

Modelling properties allows capturing the design constraints specified by the de-

signer that must be satisfied by any valid implementation for the system. A Property can

29

Figure 3.6 – Example of Hierarchical Dependency Graph
Source: author

30

represent criticality, priority, period, deadline (soft and hard), and dissimilarity character-

istics of elements in the models, conforming to the proposed meta-models.

3.2.3 Implementation Modeling

The Implementation meta-model defines how to model the design decisions that

are taken during the execution of the design algorithms and by the designer. It captures

the mapping, allocation, and scheduling information that is produced by the design tools.

3.2.4 Design Constraints

The Design Constraint meta-model defines how to associate the properties of the

system specification to the properties in the implementation model, which is generated

by the design process. A Design Constraint associates a property to a given design item

or multiple items. For instance, it is possible to pre-allocate a specific software item to a

specific virtual processor and to specify the WCET of each thread.

3.2.5 Formal Verification

To perform model checking of some specific properties, specified as temporal

logic expressions, a network of timed automata must be generated from the system spec-

ification. The Verification meta-model defines how to model such network of timed au-

tomata as a Labeled Timed Automata (LTA) System (BAIER; KATOEN, 2008), which

can then be expressed as concepts introduced by the UPPAAL model checking tool (LARSEN;

PETTERSSON; YI, 1997). An LTA System consists of Declarations and one or more LTA

Templates, which represent the automata. The states are modeled as LTA locations and

the state transitions as LTA transitions, which are represented by LTA edge sources and

LTA edges targets. Each transition can be annotated with the guard, update, selection, and

synchronization expressions. The guard’s expression must be satisfied for the transition

to be enabled. When an enabled transition occurs the corresponding update expression is

executed, which can modify the values of some specified variables. The synchronization

expression allows two automata to synchronize and the transitions at both automata are

simultaneously triggered.

31

From the platform, application, and property models and the corresponding HDG,

the network of automata is automatically generated, based on the framework for schedu-

lability analysis proposed by David et al. (DAVID et al., 2009). According to this frame-

work, a resource automaton for each processor partition and a task automaton for each of

the process threads are instantiated.

Each one of the task automata starts in an initial state where it keeps waiting until

all other tasks that it depends on finish their execution and then sends a request to the

resource automaton, corresponding to the processor partition in which the task was allo-

cated. The resource automaton models some specified scheduling policy, that can be Ear-

liest Deadline First (EDF), Fixed Priority Scheduling (FPS), or First In First Out (FIFO),

by managing a tasks queue. When the task execution is concluded, the corresponding

resource automaton notifies it by a finished signal.

At each task automaton, there is a transition from the Ready state to an Error state

when the elapsed time is greater than the task deadline, which means that the specified

design constraint was not satisfied. Thus, to perform the schedulability analysis of the

system, the following temporal logic expression is checked on the generated network of

automata, using the UPPAAL model checker: A[] for all (i : t_id) not

Task(i).Error. This expression means that, for all possible execution paths, no task

automaton reaches the Error state.

When the model checker concludes that this property is valid, all the specified

deadline constraints are satisfied, i. e., it has found a feasible mapping, allocation, and

scheduling reconfiguration for the application on the given platform.

3.2.6 Reconfiguration States Diagram

The Reconfiguration States Diagram (RSD) represents the possible feasible recon-

figurations as states, and the state transitions as the valid transformation from a currently

feasible reconfiguration to a next feasible reconfiguration, which can tolerate some fault in

each system component, indicated as a label at the corresponding state transition. Figure

3.7 shows an example of a reconfiguration states diagram.

At the initial state S0, the system is operating normally, according to an initial

mapping, allocation, and scheduling algorithm, which considers the specified properties

of the system. The state transition from S0 to S1, labeled C1, indicates that when com-

ponent C1 fails, the system has a feasible reconfiguration, represented by the S1 state,

32

Figure 3.7 – An Example of Reconfiguration States Diagram
Source: author

33

which tolerates the fault. When in state S1 and component C2 fails, the system can be

reconfigured according to state S3. The system has no feasible reconfiguration from state

S3 when component C3 fails, which is represented by state transition from S3 to F (Fail

state), labeled with C3. The transitions from S0 to S2 and from S2 to F indicate that after

component C2 fails a fault in C1 cannot be tolerated by the system. Note that the ap-

pearance of two-component failures on one transition is a way of abbreviating the graph.

Failures happen one at a time and are dealt with through one reconfiguration, as stated in

Chapter 1.

3.2.7 Deployment Model

The Deployment meta-model defines how to capture the necessary information

to perform the reconfigurations of the system. Each configuration determines how each

design item will be deployed, associating elements of the system specification to elements

of the platform, as well as, all the necessary design information.

3.2.8 Design Automation Algorithms

The design automation process for the proposed reconfiguration approach includes

algorithms to build the Reconfiguration Diagram, perform mapping, allocation, and schedul-

ing, generate intermediate files for schedulability analysis, and generate the Deployment

Model for each given reconfiguration. The next subsections describe each of these algo-

rithms.

3.2.8.1 Mapping, Allocation, and Scheduling

The algorithms that build the implementation model and the deployed model are

given a current platform, system, and properties model as follows.

First, a list of tasks with their properties, for example, the period, the deadline,

and the WCET are created. Then, the hierarchical dependencies graph is generated from

the AADL application model. A list of available computers and their virtual processors

with corresponding properties are created from the platform and properties models.

By means of a depth-first traversal in the hierarchical dependency graph, starting

from the begin node, each task is visited and mapped into an available computer, and

34

allocated into one of their virtual processors, which should satisfy the specified design

constraints. This step produces an allocation matrix, containing the information to be

used by the algorithm for the schedulability analysis. It also instantiates a corresponding

deployment model to be used when building the reconfiguration states diagram, described

in the next subsection. Table 3.3 shows the allocation matrix produced from the platform

and the application models, shown in Figures 3.4 and 3.5, respectively, and platform and

application properties listed in Tables 3.1 and 3.2, respectively.

Table 3.3 – Allocation matrix (partial)

C1 C2 C3 C4
VPs VP1 VP2 VP3 VP1 VP1 VP2 VP1 VP2 VP3 VP4
None P1T1 P1T2 P1T3 P3T1 - - - - - -
fails P2T1 P3T2

P2T2 P3T4
P3T3 P3T5

C1 X X X P1T1 P1T3 P3T3 - - - -
fails P1T2 P2T1

P3T1 P2T2
P3T2 P3T5
P3T4

C2 P1T1 P1T2 P1T3 X P3T2 P3T1 - - - -
fails P2T1 P3T5 P3T4

P2T2
P3T3

C1, X X X X P2T1 P1T3 P1T1 P1T2 P3T2 P3T1
C2 P2T2 P3T3
fail P3T5 P3T4

C1, X X X P1T1 X X P1T3 P3T5 P2T1 P3T3
C3 P1T2 P2T2
fail P3T1

P3T2
P3T4

C2, X X X X P3T2 P3T1 P1T1 P1T2 P1T3 P2T1
C1 P3T3 P3T5 P3T4 P2T2
fail
...

Source: author

As shown in Table 3.3, when no computer fails, threads T1, T2, T3 of process P1,

threads T1 and T2 of process P2, and thread T3 of process P2 are mapped to the computer

C1 and allocated on its virtual processors VP1, VP2, VP3, which are the first ones avail-

35

able with enough time slot and memory resources to execute the corresponding threads.

When C1 fails, the threads from C1 can migrate to C2 and C3, which has available virtual

processors with enough time and resources. After that, if C2 fails, its threads can further

migrate to C3 and C4. However, when C3 fails, the threads P3T3, P3T4, and P3T5 in

VP2 of C3 cannot be mapped into any computer, and so there is no feasible reconfigura-

tion that could tolerate this fault in C3 at this point. Figure 3.7 shows the Reconfigurable

States Diagram that will be generated based on this allocation matrix.

3.2.8.2 Build the Reconfiguration States Diagram

represents all possible feasible reconfigurations, starting from the initial valid im-

plementation of a system and going to each possible feasible reconfiguration that can

mask the fault in each system component. The corresponding algorithm is shown in Al-

gorithm 1:

• At line 1, the generation of the initial deployment model consists of, for each ele-

ment from the application model, a mapping to an element from the platform model

determined by the design tool or by the system designer. This step will produce the

initial state S0 in the Reconfiguration States Diagram.

• In line 2, the algorithm starts from a source state (Ss) as the initial state S0.

• The entire algorithm (lines 3-38) will repeat until all existing states are marked, and

this occurs when all the created states were considered by the algorithm.

• At each iteration of the Algorithm 1, the possible failure of some computers Ci is

considered (lines 5-32) and for each possible feasible reconfiguration (schedulable,

according to the model checking verification), a new target state (St) is created and

a transition from Ss to St is created (lines 20-25), or

• If there is no feasible reconfiguration a transition from Ss to an error state (Serror)

is created (lines 27 and 30).

• A new Deployment model is built for each newly created target state (line 21),

according to the current mappings.

• At lines 8-10, a SwItemp is mapped into Cj if it is compatible with Cj, i.e., if

there is no SwItemq already mapped to Cj, which would conflict with SwItemp.

The conflict between software items can be specified in the Properties model by

the designer. A SwItemp can also be mapped into Cj if there is a free partition

available in Cj.

36

This algorithm produces a Reconfiguration States Diagram, where each state rep-

resents a feasible reconfiguration, and each transition, labeled Ci, from a state Ss to

St indicates that if the system is currently configured as determined by the Deployment

model associated with state Ss and the computer Ci fails then the system tolerates the

fault and goes to a new configuration given by the Deployment model associated to state

St. In the case where St is at a failure state, the entire system fails since the fault could

not be tolerated.

3.3 CASE STUDY

To evaluate the proposed approach for avionics systems development, a case study

is proposed bringing examples from the avionics industry. A top-down approach is chosen

as recommended by the ARP4754 (SAE, 2010), defining at first the system functions and

subsystem functions:

• Flight Control

• Flight Control

• Fuel Management

• Provide Auto Pilot

• Provide Navigation

• Guidance

• Route Control

• Provide Map

• Provide Charts

• Provide Human Machine Interaction (HMI)

• Screen Monitoring (display symbology)

• System Control

• Provide input for flight control

• Provide System monitoring

• Fuel Monitoring

• Engine Monitoring

37

The system functions are the highest level definitions in a system and specify its

basic functionalities. From this definition, the breakdown is performed for the system

realization.

In order to determine the criticality and therefore the certification efforts of the

bottom-level system items, the Function Hazard Analysis (FHA) is performed. The FHA

is a systematic, comprehensive examination of the airplane and system functions to iden-

tify potential minor, major, hazardous, and catastrophic failure conditions that may arise

as a result of a malfunction or a failure to function. The loss of, or undetected erroneous

flight control, for instance, can cause the loss of the aircraft giving the severity classifica-

tion as catastrophic. On the other hand, the loss of the Map provider functionality causes

a slight increase in crew workload which gives a Minor in the classification. Table 3.4

shows the complete analysis performed for this case study.

38

Data: Platform, Application, and Properties models
Result: Reconfiguration States Diagram

1 S0 = generate initial Deployment;
2 Ss = S0;
3 repeat
4 repeat
5 for each Ci in the current Deployment and Ci failed do
6 for each SwItem_p not yet mapped do
7 for each Cj in the current Deployment and Cj ̸= Ci do
8 if (is_compatible(Cj) or has_free_partition(Cj)) then
9 SwItemp is mapped to Cj;

10 end
11 if there is SwItemq in Cj which is not critical or it was

affected by the fault at Ci then
12 unmap SwItemq from Cj;
13 map SwItemp to Cj;
14 end
15 end
16 end
17 if there is no unmapped critical SwItemp then
18 build Verification model based on current mappings;
19 perform Model Checking on Verification model;
20 if schedulable then
21 St = generate a new Deployment model from current

mappings;
22 create a transition from Ss to St with label Ci;
23 if there is unmapped non-critical SwItemp then
24 Mark St as Degraded
25 Ss = St;
26 else
27 create transition from Ss to Serror with label Ci;
28 end
29 else
30 create a transition from Ss to Serror with label Ci;
31 end
32 end
33 until no new state St was created;
34 mark Ss as done;
35 if (there is any non-marked state Snm) then
36 Ss = Snm;
37 end
38 until all states are marked;

Algorithm 1: Build Reconfiguration States Diagram

39

Table 3.4 – Function Hazard Analysis (Continue on the next pages)

Function Sub Function
Failure

Condition

Flight

Phase
Effect

Failure

Condition

Severity

Classification

Function

Design

Assurance

Level

Loss of

Flight Control

Landing/

Take-off/

Flight

Aircraft Loss Catastrophic FDAL A

Flight

Control

Undetected

Erroneous

Flight Control

Landing/

Take-off/

Flight

Aircraft Loss Catastrophic FDAL A

Loss of

Fuel Management
Flight

Significant increase of

crew workload
Major FDAL C

Flight

Control Fuel

Management

Undetectable

Erroneous

Fuel Management

Flight

Mitigation: Fuel Monitoring

After Mitigation: Significant

increase of crew workload

Major FDAL C

Loss of Auto Pilot Landing
Significant increase of

crew workload
Major FDAL C

40

Provide

Auto Pilot

Provide

Auto Pilot

Undetectable

Erroneous

Auto Pilot

Landing Aircraft Loss Catastrophic FDAL A

Loss of Guidance

Landing/

Take-off/

Flight

Significant increase of

crew workload
Major FDAL C

Guidance
Undetectable

Erroneous

Guidance

Landing/

Take-off/

Flight

Higher workload such that the crew

could not be relied upon to perform

tasks accuratly

Hazardous FDAL B

Loss of

Route Control

Landing/

Flight

Significant increase of

crew workload
Major FDAL C

41

Provide

Navigation
Route Control

Undetectable

Erroneous

Route Control

Landing/

Flight

Mitigation: Guidance Functionality

can provide monitoring capability

for an eventual erroneous route

configuration

After Mitigation: Significant

reduction in safety margins

Significant increase of

crew workload

Major FDAL C

Loss of Map Source Flight Slight increase in crew workload Minor FDAL D

Provide Map
Undetectable

Erroneous

Map Information

Flight

Mitigation: Map not to be used

as the main navigation source

After mitigation: Slight increase

in crew workload

Minor FDAL D

Loss of

Charts Source

Landing/

Take-off/

Flight

Slight increase in crew workload Minor FDAL D

42Provide Human

Machine

Interaction Provide Charts
Undetectable

Erroneous

Provide Charts

Landing/

Take-off/

Flight

Mitigation: Chart not to be used

as the main approach guide

After mitigation: Slight increase

in crew workload

Minor FDAL D

Loss of Screen

Flight Critical

Data Monitoring

(display symbology)

Landing/

Take-off

Higher workload such that the crew

could not be relied upon to perform

tasks accuratly

Hazardous FDAL B

Screen Flight

Critical Data

Monitoring

(display symbology)

Undetectable

Erroneous

Flight Critical

Data Screen

Monitoring

(display symbology)

Landing/

Take-off
Aircraft Loss Catastrophic FDAL A

Loss of Screen

non-Critical

Data Monitoring

(display symbology)

Landing/

Take-off
Slight increase in crew workload Minor FDAL D

43

Screen

non-Critical

Data Monitoring

(display symbology)

Undetectable

Erroneous

non-Critical

Data Screen

Monitoring

(display symbology)

Landing/

Take-off
Slight increase in crew workload Minor FDAL D

Loss of

System Control

Landing/

Take-off

Higher workload such that the crew

could not be relied upon to perform

tasks accuratly

Hazardous FDAL B

System Control
Undetectable

Erroneous

System Control

Landing/

Take-off
Aircraft Loss Catastrophic FDAL A

Loss of input

for flight

control

Landing/

Take-off/

Flight

Aircraft Loss Catastrophic FDAL A

Provide input

for flight

control

Undetectable

Erroneous

input for flight control

Landing/

Take-off/

Flight

Aircraft Loss Catastrophic FDAL A

44

Loss of Fuel

Monitoring
Flight

Significant reduction in

safety margins

Significant increase of

crew workload

Major FDAL C

Fuel Monitoring
Undetectable

Erroneous

Fuel Monitoring

Flight

Large reduction in safety margins

Higher workload such that the crew

could not be relied upon to perform

tasks accuratly

Hazardous FDAL B

Loss of Engine

Monitoring

Landing/

Take-off

Large reduction in safety margins

Higher workload such that the crew

could not be relied upon to perform

tasks accurately

Hazardous FDAL B

45

Provide

System

monitoring Engine Monitoring
Undetectable

Erroneous

Engine Monitoring

Landing/

Take-off

Large reduction in safety margins

Higher workload such that the crew

could not be relied upon to perform

tasks accurately

Hazardous FDAL B

Source: author

46

The worst failure condition for Flight Control, for instance, is aircraft loss which

can be classified as catastrophic according to the ARP 4761 (SAE, 1996). Such classifica-

tion implies the function design assurance level (FDAL) to be A. This enforces the group

of items that realize the flight control to be developed at the highest level of assurance.

While the functions related to minor events must comply at least to level D which is the

second lowest on a scale from E to A.

In parallel, the top-level system architecture with the corresponding software item

can be created. At this point, the architecture is still independent of the platform and

should be traced only to the top-level system functions. Figure 3.8 illustrates what are

the items dependencies which generates the HDG described in Chapter 3.2.2.2. The real

dependency diagram was created in AADL using annex ARINC653 and is not included

in this work due to its complexity and size. The complete model can be found in the

project repository in Github1. Each node identified in Table 3.5 is modeled in AADL as

a thread that includes besides the item interface, the descriptions of its properties. For

the dependency diagram, a system implementation model was created including all the

threads encapsulated in processes and their connections.

Figure 3.8 also partially shows how the system functions are realized by the soft-

ware items. The flight control for instance is realized by FlightStickHandler, Va_Control

and Vz_Control. The two latter components are based on an Open-Source Avionics and

Control Engineering case study (PAGETTI et al., 2014). The other items and their prop-

erties were created according to previous experiences of the authors and interactions in

the industry.

From the presented relation, together with the FHA, it is possible to infer the IDAL

as it can be seen in Table 3.5. For the flight control subsystem, it is possible to see the

assurance levels in the table as nodes (column 1) 12, 13, 14, 15, 16, and 17.

In the AADL model, the IDAL becomes an item property as described in Chapter

3.2.2.3. This particular property carries an important design constraint for the allocation

algorithm mentioned in Sections 3.2.4 and 3.2.8. The computer of the platform that will

accommodate a set of items must be developed following the assurance level of the most

critical item chosen to be allocated on that specific computer. This means if a certain

computer is developed to IDAL C, it will be ineligible to accommodate software items

developed to IDAL A. In addition, partitions can only hold items with the same design

assurance level. The Provide Map function demands a lower FDAL therefore a lower

1https://github.com/aafontoura/reconfigurationAvionicsCaseStudy.git

47

Table 3.5 – Software items properties for case study

Node # Software Item Per. WCET IDAL Redund.
0 SystemInputHandler 20 5 A Simple
1 MapServer 40 15 D None
2 Charts 640 12 D None
3 RouteCtrl 40 2 C Simple
4 EngineMon 20 1 B Simple
5 Guidance 20 4 B Simple
6 FuelMon 40 1 B Simple
7 AP Monitor 20 2 A Simple
8 AP 20 5 C Simple
9 FlightStickHandler 20 1 A Voter

10 DisplayMgr 20 6 A Simple
11 Altitude_Hold 20 1 A Simple
12 FuelConsumptionMgr 80 8 A None
13, Vz Control 20 1 A Dissimilar,
14 Voter
15, Va Control 20 1 A Dissimilar,
16 Voter
17 Flight Control Mgr 20 2 A Simple

18,19 DisplayX_Server 30 10 B Simple
20,21 ActuatorXControl 10 0.5 A Simple

Source: author

IDAL as shown in Table 3.5 (node 01 in the first column).

Table 3.5 also presents other important item properties that need to be taken into

consideration by the allocation algorithm, i.e., the WCET, the period, the IDAL, and the

general redundancy policy. The flight control items, Va_Control and Vz_Control are to be

implemented in a voter system, which brings the constraint of having two nodes for each

of them. Dissimilarity is also a requirement due to the criticality of their system function

and implies that the pair must run in different types of computers. The values for WCET

and period are synthetic but consistent with values used in real avionics systems projects,

which cannot be explicitly mentioned here due to non-disclosure agreements.

Figure 3.9 presents the platform node hardware in which all the previously de-

scribed software items will be allocated. Certain computers such as the ones placed in

the back of the aircraft are specialized, being able to interface with actuators (e.g. Rudder

control) and sensors besides the ability to communicate through the airplane data bus.

The different types of computer specializations also are taken into consideration during

the allocation process.

The computers will accommodate processing software items, such as the Fuel-

48

Figure 3.8 – Initial System Dependencies
Source: author

Table 3.6 – Case study platform properties
C1

MF: 20 ms
C2

MF: 10 ms
C3

MF: 10 ms
C4

MF: 20 ms
VP1 VP2 VP3 VP4 VP1 VP2 VP1 VP2 VP3 VP1 VP2 VP3 VP4
5 4 8 3 7 3 5 4 1 4 6 8 2

ConsuptionMgr, which is a software item responsible for running algorithms to enhance

the fuel consumption performance by the flight control. The specialized computer C5,

for instance, is attached to the main displays in the cockpit which have rendering engines

and can present critical information to the pilot. Therefore it is eligible to accommodate

the item DisplayX_Server which interprets commands from other computers and trans-

lates them into drawing commands for the rendering engine, generating the image. Such

restrictions are evaluated during the allocation algorithm at the compatibility check (line

8 of Algorithm 1). Table 3.6 specifies the computers properties of the platform shown in

Figure 3.9. The RMU and RMCs are embedded within the computers in this platform as

presented in Figure 3.1.

As previously presented in Chapter 3.2, the HDG is generated from the depen-

dency diagram created in AADL, shown in Figure 3.10. Here, the number on each node

refers to the node # in Table 3.5. The HDG is used as one of the inputs for the UPPAAL

model. Figure 3.11 shows the obtained diagram for the case study, after the execution

of Algorithm 1, where the timing constraints for the reconfiguration associated with each

state in the RSD are verified by applying the UPPAAL model checker. Each node is a

49

Figure 3.9 – Allocation of functions to nodes within the platform
Source: author

50

Figure 3.10 – HDG for case study
Source: author

location in the UPPAAL where a reconfiguration state is represented. The transitions are

the failure triggers and here they represent a complete failure of the computer.

To verify if the initial allocation, corresponding to state S0 in the RSD, was

schedulable, UPPAAL consumed 13,503 seconds (i.e., 225.05 minutes) running in a Mac

OS X system on an Intel i7 2,2GHz with 16Gb RAM. We used the option over approx-

imation, available in UPPAAL (utilizing parameter -A for the command verifyta),

which reduces the number of explored states by applying a convex-hull based approxima-

tion technique (DAVID et al., 2009). Even so, in this case, UPPAAL reached more than

62 million states.

51

Figure 3.11 – RSD for case study
Source: author

52

4 RESOURCE ALLOCATION AND SYSTEM RECONFIGURATION FRAMEWORK

A crucial phase of the design flow is resource allocation. Resource allocation is

the process of allocating a mixed-criticality task set to processing elements for execution

respecting predefined design constraints.

From the main failure modes of the system, several reconfiguration states are pos-

sible with a reduced number of resources. The process should be able to reallocate the

tasks which were impacted by the failure itself. In the end, the reconfiguration states set

and its transitions, which is the output of the process, must be in accordance with the

reliability requirements of the functions under consideration.

An avionics system has a limited and expensive set of resources therefore choosing

which processing resources are more suitable for a certain task set is crucial and a complex

problem.

The main key performance indicators (KPI) for such a process are the number of

required processing elements and the reliability figure of the overall system.

A framework is proposed and developed in this work to automate this phase of

the design flow. Though out the development phase and even during the life cycle of an

avionics system, requirements often change therefore a modular approach was chosen, so

different allocation algorithms and schedulability analysis methods can be implemented

and incorporated into the framework according to the system design decisions from sys-

tem architects. A typical algorithm can easily satisfy the minimum KPIs at the beginning

of a project, however with the demand for new functionalities a more sophisticated allo-

cation might have to be applied to keep up with the strict reliability budgets.

Figure 4.1 – Framework Input
Output

Source: author

The figure 4.1 depicts at a high level the reconfiguration process with its inputs

53

and outputs. The applications list is provided with their proprieties set which is taken as

constraints by the algorithms.

The platform set is described in the model of figure 3.3. It is important to note that

a few limitations are imposed at the design level by the system or software design engineer

responsible. For instance, the allocation algorithms do not decide upon the number of

partitions (VirtualProcessor in the model) and their proprieties, those are specified within

the platform model itself before the algorithm execution. Due to the intrinsic modular

philosophy and automation of the framework, the platform proprieties can be modified

until the best suitable solution is presented as a result.

Figure 4.2 shows an activity diagram with the high-level control flow of the frame-

work. The first activity at the start is the Perform Allocation which creates an initial allo-

cation of a set o given processes to a platform. At this stage, different algorithms can be

evaluated if necessary. This analysis is demonstrated in this work in chapter 4.5 with the

comparison of 3 different main algorithms.

Figure 4.2 – Framework Process

Source: author

54

The subsequent activity is the Analyse Schedulability where the proposed allo-

cation is checked for its schedulability. Here, also, different tools can be evaluated to

perform such tasks. More on the schedulability analysis tool selection in chapter 4.4. The

result is an input for the decision criteria to create the proposed allocation as a system

state in the final reconfiguration states.

In the following activity, the framework iterates over the next possible system

failure mode according to the previously given platform. For instance, with 4 processing

elements in the hardware set, the framework would trigger 4 different new allocation

attempts, one for each failed computer.

4.1 Output Analysis

From the generated reconfiguration states and the related state transitions, the

framework can calculate the resulting function failure rates by interpreting it as a reli-

ability block diagram (RBD).

The first step is to identify all the failure paths in which the function under con-

sideration, through the derived application, would result in a time constraint error. The

list of failure paths can be taken as simplified series blocks on the RBD theory and each

failure path can be considered a simple parallel Systems, thus can be calculated as follow:

Qp =
n∏

i=1

P (Xi) (4.1)

Being the P (Xj) the probability of failure of the ith computer in the failure path

and Qp the failure rate of the complete failure path.

The function failure rate is then calculated as:

Qf = MAX(Qp1, Qp2...Qpn) (4.2)

The result from equation 4.2 can then be compared to initial safety requirements

derived from the FHA. The framework output would be deemed acceptable if all calcu-

lated function failure rates are less than the required figures.

55

4.2 Allocation Algorithms

In addition to the algorithm presented in chapter ??, two additional algorithms

from that field were taken as a base for comparative analysis. Due to the fact the presented

case study in this work is applied to a different set of constraints and infrastructure, the

studied algorithms cannot be analyzed as is. Few adaptations were done to turn the results

into a valid allocation for an avionics systems scenario.

The main constraints for the resource allocation algorithm were already presented

in chapter 3.3, however, there are a few more that were introduced to create a working

design automation framework.

As a common practice when it is evaluating partitions WCET and computer load,

a jitter is calculated according to the used Real-Time Operation System (RTOS) resources

by the applications. Due to the fact, that the case study does not bring details into the ap-

plication implementation, a default jitter was used for every single application allocated to

a certain partition, which can be interpreted as the preemption jitter. Using this approach

creates a more realistic deployment prior to the schedulability analysis. During this study,

the value of 10us was chosen.

Another aspect is the partition timing proprieties adjustments in case of other

empty partitions. Commercial Operating Systems already brought improvements to im-

prove the efficiency in resource usage in an ARINC653 compliant system. For instance,

the VxWorks 653 by Wind River provides an option for priority preemptive scheduling

(PPS) of partitions which allows designated partitions to consume what would otherwise

be an idle time in the defined ARINC schedule (PARKINSON; KINNAN, 2015). How-

ever, this is not specifically defined in the standard and therefore cannot be taken as a

given in all different OS implementations.

As a rule, the framework will not keep a complete idle partition in the system

configuration. To optimize time and keep real-time proprieties of running processes intact,

the partition’s time slice initial delay is not changed. Instead, the partition duration is

increased in case the subsequent one is determined as completely idle (e.g. no process

allocated).

56

Figure 4.3 – Framework Use Case Diagram

Source: author

4.3 Software Design

In this chapter, the software design which implements the framework according to

figures 4.1 and 4.2 is described in details.

The framework use cases are depicted in the figure 4.3. The System Integrator

can choose an allocation algorithm from a library list. Due to the modular approach, new

algorithms can be added to the list if desired. In addition, the user can choose the schedu-

lability analysis tool from a supported list of tools. A wrapper must be implemented in

case a new tool is included in the framework. Finally, the System Integrator runs the

analysis and evaluates the results.

Four different class diagrams are presented to explain the main classes and their

relationship within the framework: Platform, Allocation Algorithm, Schedulability Anal-

ysis, and Reconfiguration States class diagrams.

The Platform Class Diagram (figure 4.4) shows the representation of applications,

partitions and computers. The structure is similar to the platform meta-model presented

in chapter 3.2.2.1. For a platform to be valid, it has to have at least one computer. The

same applies to the computer/partition relationship, as specified by ARINC 653. Initially,

the partitions do not have any application, but that changes after the initial allocation. In

the platform class, a couple of methods are worth mentioning as they are crucial through-

out the framework activities. The append_application_at_address method performs an

attempt allocating an application into the platform. It checks all the specified constraints

57

Figure 4.4 – Platform Class Diagram

Source: author

and it results in a fail if any of them is not met. The behavior is also dependent on the

address, which gives different levels of freedom whether it specifies strictly the partition

in which the application should be allocated, or if it directs only to an overall computer,

giving a more simple greedy choice of the partition.

The remove_computer method is part of the failure mode activity, which modifies

the platform to a degraded state as seen in the hardware fault tree analysis.

The allocation algorithm class diagram (figure 4.5), shows the base class and what

are the overloaded methods within the inherited classes.

The execution of the generic allocation algorithm is shown in figure 4.6. It allows

the child classes to overload only parts of the flow, which reduces the effort if a new

variant of the algorithm needs to be implemented. For instance, if a greedy allocation

is implemented initially, however, it is realized the need for a platform balance as the

following activity. In that scenario, the software engineer can create a new child class

inherited from the greedy allocation class and overload only the _post_run.

The base execution includes a retry mechanism which could cause the system state

to be in a degraded mode, but still be schedulable. In that situation, it is ensured that all

highly critical applications are allocated, however low critical ones might have been left

out. The system is not in a failure state, but with reduced functionality. For instance, the

chart visualization for the pilots is not crucial to a landing procedure and can be left out

of the system configuration in favor of the flight stick handler process.

The child classes algorithms are detailed in chapter 4.5.

The schedulability analysis class diagram (figure 4.7) shows what’s the bare mini-

mum for a new tool wrapper to be included in the framework. The is_schedulable method

58

Figure 4.5 – Allocation Algorithms Class Diagram

Source: author

Figure 4.6 – Base Allocation Algorithms Flow Diagram

Source: author

59

Figure 4.7 – Schedulability Analysis Class Diagram

Source: author

Figure 4.8 – Reconfiguration (System) States Class Diagram

Source: author

will be called during the Analyse Schedulability activity shown in figure 4.2.

The SchedulabilityAnalysis child class will be further described in chapter 4.4.

The reconfiguration states class diagram (figure 4.8) represents the structure to

build the framework output. A system state is composed of a schedulable platform with

allocated applications which is the result of the previous two activities. It contains the

status of the state (schedulable_degraded or schedulable) and the next_states which is

represented by a list of tuples : the failed computer that triggers the new state, and the

address of the actual new SystemState.

The SystemReconfigurationGraph is responsible to create a visual representation

of the complete set of possible system states taking into consideration the known failure

modes.

Finally, the framework sequence diagram (figure 5.8) describes the sequence calls

of methods from the aforementioned classes since the interface with the system integrator.

60

Figure 4.9 – Framework Sequence Diagram

Source: author

The framework was developed in python and the source code is available in GitLab
1.

4.4 Schedulability Analysis Tools

The results from the initial analysis and formal verification of the case study using

UPPAAL were not conclusive e extremely time-consuming especially due to the state

space explosion caused by the complex model used for this exercise. In addition, the

tool does not support parallel processing out-of-the-box which eliminates from the start

any possibility to seek more powerful computational systems to solve the time constraint.

Therefore, schedulability analysis tool alternatives were evaluated.

MAST (HARBOUR et al., 2001) is a set of software tools for schedulability anal-

ysis of real-time applications developed by the University of Cantabria, Spain. Similarly,

CHEDDAR (SINGHOFF et al., 2009) also provide means for checking tasks temporal

constraints of a real-time application and it was developed by the University of Brest in

France.

1https://gitlab.com/afontoura/pampaflie

61

Both support distributed architecture however the currently available MAST ver-

sion does not support partition scheduling and hierarchical schedulers. Even though im-

provements were planned and the required feature intended to be included in a second

iteration, no updates were made since 2014. Cheddar, on the other hand, is still active.

This can be noticed with recent publications ((DJIKA et al., 2021)) and continuous tool

development as shown by activities in the tool source code repository. Moreover, it sup-

ports the basic ARINC653 specification with temporal partitioning.

However, a few limitations are imposed by CHEDDAR. The dependencies be-

tween processes through periodic messages with different criticality level and different

periods are not well handled and causes several false positive for failed schedulability.

The robustness of applications against those scenarios is assumed to be taken as a strict

design constraint by the software designers and should not cause a critical failure. Ad-

ditionally, it is also assumed the usage of ARINC664 part 7 (also referenced as AFDX),

which defines the communication process between end systems where bandwidth and la-

tency are guaranteed, besides being deterministic by definition. With that in mind, the

dependencies between applications were not taken into consideration during the schedu-

lability analysis.

The ARINC653 standard defines a hierarchical scheduling scheme as described

in chapter 2.1, in which, besides a temporal partition, a second scheduler is applied

within the partition level. A constraint from most OS that applies the standard is that

only static scheduling for that level, which gives just a few possibilities of choice. This

is also reflected in the Schedulability Analysis tools available. To give more freedom to

the automation framework, the scheduler chosen for the partitions was the rate monotonic

algorithm.

4.5 Allocation Algorithms

To demonstrate the analysis capability of the framework, two additional allocation

algorithms were selected, making a total of three different results to be compared. A

modified classical min-min approach (CHEN et al., 2013) referred to as User-priority

awarded load balancing improved min-min scheduling algorithm (PA-LBIMM) and an

additional one using the analytical hierarchy process (GAWALI; SHINDE, 2018) as a

means to prioritize the tasks during the process. Both are from the cloud computing area

of research.

62

4.5.1 PA-LBIMM Algorithm Adaptations

The basis of PA-LBIMM is to take the min-min algorithm and improve upon its

weakness, as identified by (CHEN et al., 2013): load unbalance and user-priority demands

(VIP users). Considering it is coming from a different type of target architecture, a few

adaptations are necessary to be used by the framework.

At the start, the authors propose the tasks to be divided into two groups: Ordinary

and VIP. Naturally, such categorization does not exist in typical avionics systems, how-

ever, we can take the criticality of processes as a VIP level measurement. In this case, up

to 5 groups can be identified, one for each Design Assurance Level (DAL) level (e.g. A,

B, C, D, and E).

Then, taking the groups in order of priority, the algorithm selects the task that

cost the minimum execution time and assigns it to the resource that gives the minimum

expected completion time. In order to choose the task, the period and the WCET are used

to perform the execution time calculation (see equation 4.3). On top of that, taking the

assumption all processing elements in the case study platform perform the same, there

will be no difference in execution time between the resources, therefore this particular

part can be simplified to assign tasks to the next available resource.

Et = 1/(T ×WCET) (4.3)

Data: Applications, P latform
Result: NotAllocatedApplications, P latform

1 sort(Applications) based on Et;
2 sort(Applications) based on DAL_Level;
3 for every application in Applications do
4 allocate application to the next available partition;
5 if allocation failed then
6 populate Not Allocated Applications List;
7 end
8 end
9 for every allocated application in the Platform (sorted by partition load

ratio do
10 reallocate application into the partition that minimizes the Platform

Balance Ratio;
11 end

Algorithm 2: Adapted PA-LBIMM

To calculate the balance ratio, we first need to define the partition load ratio (lp

63

and Lp for a full set of partitions):

lp =

∑n
i=1Et(i) + j

mF
(4.4)

Being n the number of tasks to be allocated, j the preemption jitter, Et(n) the execution

time of the nth task assign to the partition, and mF the partition minor frame.

Then, the platform balance ratio can be defined by the coefficient of variation of

all partitions load ratios:

B = cv =
σ(Lp)

µ(Lp)
(4.5)

Being σ the standard deviation of all partitions load ratio and µ the average.

4.5.2 AHP Algorithm

The proposed heuristic (GAWALI; SHINDE, 2018) is based on the analytical hi-

erarchy process (SAATY, 1978) to better prioritize the applications before assigning them

to the hardware set.

In summary, the process comprises an extensive comparative analysis between a

pair of tasks based on the preference table 4.1. The comparison is based on the system

designer and/or system integrator’s judgment, and one of the criteria during this evaluation

was the task execution time. The result is a n × n matrix, being n the number of tasks.

That is an activity that should be performed by the engineers themselves, and cannot be

automated.

The matrix becomes the input for the AHP calculation which gives a ranking value

for every task under consideration (SAATY, 1978).

The list of tasks sorted by the ranking given by the AHP calculations becomes the

input for allocation.

The balancing algorithm is not well defined by the author, therefore a few common

approaches were chosen and will be compared during the analysis of the results (Chapter

5): Round-Robin (algorithm 3), Resource aware (algorithm 4) and finally the same as

applied on the PA-LBIMM resulting in algorithm 5.

64

Data: Applications, P latform
Result: NotAllocatedApplications, P latform

1 sort(Applications) based on AHP rankings;
2 for every application in Applications do
3 allocate application to the next partition iteratively;
4 if allocation failed then
5 populate Not Allocated Applications List;
6 end
7 end

Algorithm 3: Adapted AHP algorithm with Roundrobin balancing mecha-
nism

Data: Applications, P latform
Result: NotAllocatedApplications, P latform

1 sort(Applications) based on AHP rankings;
2 for every application in Applications do
3 allocate application to the least loaded partition available;
4 if allocation failed then
5 populate Not Allocated Applications List;
6 end
7 end

Algorithm 4: Adapted AHP algorithm

Data: Applications, P latform
Result: NotAllocatedApplications, P latform

1 sort(Applications) based on AHP rankings;
2 for every application in Applications do
3 allocate application to the next available partition;
4 if allocation failed then
5 populate Not Allocated Applications List;
6 end
7 end
8 balance(Platform)

Algorithm 5: Adapted AHP algorithm with post balance mechanism

65

Table 4.1 – Numerical saaty preferences

Numerical rating Judgment preference
9 Extremely preferred
8 Very strongly to extremely preferred
7 Very strongly preferred to preferred
6 Strongly to very strongly
5 Strongly preferred
4 Moderately to strongly preferred
3 Moderately preferred
2 Equally to moderately preferred
1 Equally preferred

Source: (SAATY, 1978)

66

5 RESULTS

The case study system described in chapter 3.3 was used to demonstrate the frame-

work and evaluate the chosen allocation algorithms. The table 3.6 shows the input plat-

form, and table 3.5 the set of applications, except for DisplayX_Server and ActuatorX-

Control, as they have their own set of specialized computers and hardware which are not

part of the evaluated platform.

According to the ARP4751 standard, the reliability requirements can be depicted

from the table 3.4. Function in which the severity condition was classified as Catas-

trophic, shall comply with a probability of failure per flight hour of 10−9. For Hazardous,

the requirement is 10−7, for Major, 10−5 and for Minor, 10−3. Taking these figures into

consideration, we can evaluate if the output from the framework is compliant with the

requirements.

The table 5.1 shows one of the outcomes of the framework, which is the calcu-

lated failure rates for every function within the system. As presented in chapter 3.3, the

requirements for failure rates per flight hour for HMI, System Monitoring, Flight Control,

Reconfiguration, Navigation and Auto Pilot are respectively 10−8, 10−8, 10−9, 10−9, 10−5

and 10−5.

For the HMI function, the initial algorithm and the adapted PA-LBIMM failed to

produce a compliant system. The output failure rate is 2 orders of magnitude behind the

actual desired value. For System Monitoring, the initial algorithm and the AHP with a

resource-aware balance mechanism failed to create a valid system. For the Flight Control

and Reconfiguration functions the result, the initial algorithm, PA-LBIMM, and the AHP

Resource Aware failed to find a possible solution. The algorithms didn’t have problems

complying with the Navigation and Auto Pilot function requirements.

Figure 5.1 brings the aggregated results for each evaluated algorithm. The y-axis

represents the average remaining failure rate budget between all functions. This data is

important due to the fact the current calculations take into consideration only the failures

related to the computer platform, as it is the main subject of analysis of this work. Any

other failure event (i.e loss of airspeed sensor for the flight control), would be added

to the next steps of the system design, for instance when the system fault tree is being

constructed. Therefore, a result with more remaining budget brings more flexibility to

the overall architecture, and as a consequence better chances to get to a fully compliant

system.

67

Table 5.1 – Output System - Functions Failure Rate
Functions

Algorithm HMI
System

Monitoring
Flight

Control Reconfiguration Navigation
Auto
Pilot

Initial
Algorithm 10−6 10−6 10−6 10−6 10−6 10−12

PA-LBIMM 10−6 10−12 10−6 10−6 10−6 10−6

AHP
(Not Balanced) 10−12 10−12 10−12 10−12 10−12 10−12

AHP
Roundrobin 10−12 10−12 10−12 10−12 10−6 10−6

AHP
Resource Aware 10−12 10−6 10−6 10−6 10−6 10−12

AHP
Post Balance 10−12 10−12 10−12 10−12 10−6 10−6

Source: author

Figure 5.1 – Average Remaining Failure Rate Budget

Source: author

68

Figure 5.2 – Reconfiguration Graph - AHP with no balance mechanism

Source: author

The AHP with no balancing mechanism is the best performer among all evaluated

algorithms. Figure 5.2 shows its RSD generated by the framework. Green circles mean

fully schedulable states, yellow circles mean degraded system states, and red circles mean

not schedulable states. The degraded status is assigned when some of the non-critical

applications were not possible to be allocated to the platform, however, all the critical

ones are still part of the system. One particular aspect of this diagram that shows partially

the reasons for a good result for the simpler version of the AHP, is the fact it finds fully

schedulable scenarios for all states generated after every single computer failure, while

all the other algorithms do not achieve a such solution.

The adapted PA-LBIMM is the worst performer of all, together with the initial

algorithm. The generated RSD (figure 5.3) shows that if C2 fails after the initial state, the

system would directly transition to a complete failure state, with critical components not

part of the platform allocation.

Another particular detail stands out from the remaining budget chart: the balance

mechanism. Especially the resource-aware (load dependent) variants, produce the worst

results. That can be explained by the design constraints that must be followed during a

system reconfiguration which is described in chapter 3.2.8. A critical application is not

allowed to be reallocated due to a computer failure if it was not already part of the failed

computer. That means a balanced system gives less flexibility to the algorithm to allocate

the remaining applications to the platform. Figure 5.4 shows the average balance ratio of

all states produced by each algorithm, where the bigger the value, the less the platform is

balanced. Especially in the degraded states, the results show that the more balanced the

69

Figure 5.3 – Reconfiguration Graph - PA-LBIMM

Source: author

Figure 5.4 – Balance Ratio

Source: author

platform is, the worst the final result.

In addition, a follow-up analysis was performed to get more details about this ef-

fect. A modified PA-LBIMM with no balancing mechanism was introduced to the frame-

work by simply building an inherited class from AlgorithmMinMin class (see class dia-

gram in figure 4.5) which overloads the _post_run method, removing the balance mecha-

nism. The result of the failure rate budget is in the figure 5.5 (where the bigger the value,

the less the platform is balanced), and it shows that the removal of the platform balancing

mechanism improves the overall result of the algorithm. However, in this particular case,

it did not change the outcome of the PA-LBIMM, which was still not compliant.

One characteristic of the AHP-based algorithm is the preference judgment of the

engineer responsible for the overall system. For this particular exercise, the criticality

70

Figure 5.5 – Failure rate budget comparison for PA-LBIMM balanced and unbalanced

Source: author

Figure 5.6 – Reconfiguration Graph - AHP Based With Resource Aware Balance Strategy

Source: author

was not the main source for the ranking, but a higher WCET of an application had a

bigger weight during the comparison scores evaluation. That led to an inverse behavior

if compared to the PA-LBIMM, where the processes with the least time cost would have

priority during the allocation. According to the results presented in the figure 5.1, it is

possible to conclude that algorithms that shift the priority to time costly applications and

do not perform any balance attempt tend to perform better when building a reconfigurable

system with the previously presented design constraints.

To present the entire solution space, the RSD for the initial algorithm, for the AHP

based algorithm with a resource aware balance mechanism and with round robin balance

strategy are shown in figure 5.8, 5.6 and 5.7

This exercise demonstrates the flexibility that the framework brings to the systems

integrator and responsible engineers. New algorithm variants were easily incorporated

71

Figure 5.7 – Reconfiguration Graph - AHP Based With Round Robin Balance Strategy

Source: author

Figure 5.8 – Reconfiguration Graph - Initial Algorithm

Source: author

72

to evaluate specific aspects of the initial set of results, and quick conclusions could be

drawn. A typical analysis performed during this work took around 8 minutes to give a

result. Most of that time is spent running the schedulability analysis, and it can vary

depending on the complexity of the system under development. For instance, using the

PA-LBIMM algorithm and CHEDDAR, the framework built an RSD with 7 schedulable

system states. To check the schedulability of the initial state (S0), which has 21 different

applications, 4 computers, and 13 partitions, the tool takes 62 seconds.

A hypothetical scenario was created to stress the framework’s capabilities and

evaluate its performance when run against a larger input. The input platform was in-

creased to 12 computers, 32 partitions, and 69 applications. The time needed by CHED-

DAR to evaluate the initial deployment (worst case) was 196 seconds. The number of

states generated by the design automation is close to 1000, which results in 50 hours of

execution in a 2018 laptop with 8th generation core i7 (i7-8550U @ 1.80GHz, 16GB of

ram).

Obviously, this is would not be acceptable in an agile environment, however, sev-

eral optimizations can be done and were not the scope of this work. Besides running

in a proper modern server machine, which would reduce the time significantly already,

the usage of parallel processing can be explored by running several instances of cheddar

for different possible system state candidates. In addition, the depth of the RSD was not

limited, giving an unrealistic tree structure of 9 levels.

73

6 CONCLUSION

In this work, a reconfiguration approach to deal with fault management and its

associated schedulability analysis is presented. While the model checking guarantees that

all foreseen situations are evaluated in determining that the design time timing constraints

are effectively satisfied, it proved itself a non-viable solution due to the rapid state explo-

ration leading to non-conclusive results more than often. On the other hand, scheduling

simulation is a more suitable tool to evaluate real-timing requirements in a dynamic de-

sign exploration environment compared to formal verification, as it can be easily iterated

over different inputs.

The proposed approach was illustrated using a synthetic example to explain its

algorithms. Then it was further applied in an avionic system case study to show that

reasonable problem sizes in terms of the number of nodes, dependencies, criticality con-

straints, and software/hardware mappings can be dealt with. It shows that the proposed

methodology provides a feasible design flow for avionics systems to be further evaluated

in industrial settings.

Moreover, the framework proof of concept for design automation created an ag-

ile foundation for system integrators and designers to evaluate different algorithms and

approaches and their results towards the initial requirements.

The state explosion problem in the model checker execution was an expected con-

cern, but it can be minimized considering the hierarchical and modular nature of AADL-

modeled applications. Applying model checking in a modular way to each process sep-

arately, then using the HDG to perform a global analysis based on the analysis of the

processes is a feasible strategy to handle this issue.

From the scheduling simulation point of view, some constraints brought by CHED-

DAR limited the correct evaluation of feasible states. However, the tool is actively being

improved and the limitations which were evident during this work were presented to the

developers which took the suggestion as an interesting feature to be added and are evaluat-

ing the impacts of such improvement in the tool. In case of a future release, the framework

could be changed, eliminating partially the limitations for application dependencies.

Another area that can be explored is the use of multi-core systems. Modern and

more powerful processing units rely on multi-core technology, and studies are showing

how to apply current standards to this scenario and adapt the IMA architecture. Those

aspects can be introduced in the framework as design constraints, creating another ab-

74

straction for system designers.

Several aspects must be further evaluated when implementing the proposed recon-

figuration architecture. One of the key functions is the health monitoring mechanism that

is necessary for the RMU and RMC to run as expected. The technical details of such

functionality can be explored further and experiments could bring valuable insights of the

reconfiguration system.

75

REFERENCES

Airforce Technology. Embraer completes first batch deliveries of F-5EM fighter to
Brazil. 2009. Accessed 2018-12-02. Disponível em: <https://www.airforce-technology.
com/news/newsembraer-upgraded-f-5em-tiger-fighter-brazil/>.

ANNIGHOEFER, B.; REIF, C.; THIELECK, F. Network topology optimization for dis-
tributed integrated modular avionics. AIAA/IEEE Digital Avionics Systems Conference
- Proceedings, IEEE, p. 4A11–4A112, 2014.

ANNIGHOFER, B.; THIELECKE, F. Multi-objective mapping optimization for dis-
tributed Integrated Modular Avionics. AIAA/IEEE Digital Avionics Systems Confer-
ence - Proceedings, p. 1–13, 2012.

ATITALLAH, R. B. et al. FPGA-Centric design process for avionic simulation and test.
IEEE Transactions on Aerospace and Electronic Systems, v. 54, n. 3, p. 1047–1065,
June 2018. ISSN 0018-9251.

AVSI. Motivation for Advancing the SAVI Program. 2009. Accessed 2022-05-17.
Disponível em: <https://savi.avsi.aero/about-savi/savi-motivation/>.

AVSI. Summary Final Report - Produced under the System Architecture Virtual
Integration (SAVI) Proof-Of-Concept Program AFE 58. [S.l.], 2009. v. 2009.

BAIER, C.; KATOEN, J. P. Principles of model checking. Cambridge, MA, USA: MIT
Press, 2008. ISBN 9780262026499.

BALIS, C.; BERENSON, D.; JOVOVIC, A. Top 5 trends in military aviation. The Euro-
pean Security and Defence Union, June 2013.

BIEBER, P. et al. Preliminary design of future reconfigurable IMA platforms. SIGBED
Rev., ACM, New York, NY, USA, v. 6, n. 3, p. 7:1–7:5, October 2009. ISSN 1551-3688.

CHEN, H. et al. User-priority guided min-min scheduling algorithm for load balancing in
cloud computing. In: 2013 National Conference on Parallel Computing Technologies
(PARCOMPTECH). [S.l.: s.n.], 2013. p. 1–8.

CUI, Y.; SHI, J.; WANG, Z. Backward reconfiguration management for modular avionic
reconfigurable systems. IEEE Systems Journal, v. 12, n. 1, p. 137–148, March 2018.
ISSN 1932-8184.

DAVID, A. et al. Model-based framework for schedulability analysis using UPPAAL 4.1.
p. 1–32, November 2009.

DJIKA, B. et al. Work-in-progress: Models and tools to detect real-time scheduling
anomalies. In: 2021 IEEE Real-Time Systems Symposium (RTSS). [S.l.: s.n.], 2021.
p. 540–543.

Federal Aviation Administration. AC - SYSTEM SAFETY ANALYSIS AND ASSESS-
MENT FOR PART 23 AIRPLANES. [S.l.], 2011.

https://www.airforce-technology.com/news/newsembraer-upgraded-f-5em-tiger-fighter-brazil/
https://www.airforce-technology.com/news/newsembraer-upgraded-f-5em-tiger-fighter-brazil/
https://savi.avsi.aero/about-savi/savi-motivation/

76

FEILER, P. H.; GLUCH, D. P. Model-Based Engineering with AADL: An Introduc-
tion to the SAE Architecture Analysis & Design Language. New York, NY, USA:
Addison-Wesley Professional, 2012. ISBN 9780321888945.

FOHLER, G. et al. Evaluation of dreams resource management solutions on a mixed-
critical demonstrator. 9th European Congress on Embedded Real Time Software and
Systems (ERTS), v. 12, n. 1, p. 1–10, January 2018.

GAWALI, M.; SHINDE, S. Task scheduling and resource allocation in cloud computing
using a heuristic approach. Journal of Cloud Computing, v. 7, 02 2018.

GIGANTE, G.; PASCARELLA, D. Formal methods in avionic software certification:
The DO-178C perspective. In: MARGARIA, T.; STEFFEN, B. (Ed.). Leveraging Ap-
plications of Formal Methods, Verification and Validation. Applications and Case
Studies. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. p. 205–215. ISBN 978-3-
642-34032-1.

GONG, S. et al. Adaptive multivariable control for multiple resource allocation of service-
based systems in cloud computing. IEEE Access, v. 7, p. 13817–13831, 2019.

HARBOUR, M. G. et al. Mast: Modeling and analysis suite for real time applications. In:
IEEE. Proceedings 13th Euromicro Conference on Real-Time Systems. [S.l.], 2001.
p. 125–134.

HOLLOW, P.; MCDERMID, J.; NICHOLSON, M. Approaches to certification of recon-
figurable IMA systems. the International Council on Systems, p. 1–8, 2000.

HOUSSEYNI, W. et al. Multiagent architecture for distributed adaptive scheduling of
reconfigurable real-time tasks with energy harvesting constraints. IEEE Access, v. 6, p.
2068–2084, 2018.

JIANG, H. Key findings on airplane economic life. Boing white paper, March 2013.
Disponível em: <https://aviation.report/view-resource.aspx?id=11>.

JÖZWIAK, L.; NEDJAH, N. Modern architectures for embedded reconfigurable system
- a survey. Journal of Circuits, Systems, and Computers, World Scientific Publishing,
v. 18, n. 2, p. 209–254, 2009.

KLEINBERG, J.; TARDOS, E. Algorithm Design. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2005. ISBN 0321295358.

LARSEN, K. G.; PETTERSSON, P.; YI, W. UPPAAL in a nutshell. International Jour-
nal on Software Tools for Technology Transfer, Springer Berlin / Heidelberg, v. 1,
n. 1-2, p. 1, March 1997. ISSN 1551-3793.

LIU, C.; LAYLAND, J. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. 1973.

LÖFWENMARK, A.; NADJM-TEHRANI, S. Fault and timing analysis in critical multi-
core systems: A survey with an avionics perspective. Journal of Systems Architecture,
v. 87, p. 1 – 11, 2018. ISSN 1383-7621.

https://aviation.report/view-resource.aspx?id=11

77

MCMILLAN, K. L. Symbolic Model Checking. [S.l.]: Springer New York, NY, 1993.
ISBN 9781461363996.

MONTANO, G.; MCDERMID, J. Human involvement in dynamic reconfiguration of In-
tegrated Modular Avionics. AIAA/IEEE Digital Avionics Systems Conference, n. 978,
p. 1–13, 2008.

MORGAN, M. Integrated modular avionics for next generation commercial airplanes.
IEEE Aerospace and Electronic Systems Magazine, v. 6, n. 8, p. 9–12, 1991.

OSATE. OSATE 2: Open Source AADL Tool Environment. Accessed 2018-12-02.
Disponível em: <https://wiki.sei.cmu.edu/aadl/>.

PAGETTI, C. et al. The ROSACE case study: From simulink specification to multi/many-
core execution. In: IEEE 19th Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS). [S.l.: s.n.], 2014. p. 309–318. ISSN 1545-3421.

PARKINSON, P.; KINNAN, L. Safety-critical software development for integrated mod-
ular avionics. 05 2015.

PORCARELLI, S. et al. A Framework for Reconfiguration-Based Fault-Tolerance in Dis-
tributed Systems. In: LEMOS, R. D.; GACEK, C.; ROMANOVSKY, A. (Ed.). Architect-
ing Dependable Systems. [S.l.]: Springer-Verlag, 2004. p. 167–190.

PRISAZNUK, P. Integrated modular avionics. In: Proceedings of the IEEE
1992 National Aerospace and Electronics Conference@mNAECON1992.[S.l. :
s.n.], 1992.p.39−−45vol.1.

PRISAZNUK, P. J. Arinc 653 role in integrated modular avionics (ima). In: 2008
IEEE/AIAA 27th Digital Avionics Systems Conference. [S.l.: s.n.], 2008. p. 1.E.5–
1–1.E.5–10.

RTCA. DO-178C - Software Considerations in Airborne Systems and Equipment
Certification. [S.l.], 2012. v. 2012.

SAATY, T. L. Modeling unstructured decision problems — the theory of analytical
hierarchies. Mathematics and Computers in Simulation, v. 20, n. 3, p. 147–158,
1978. ISSN 0378-4754. Disponível em: <https://www.sciencedirect.com/science/article/
pii/0378475478900642>.

SAE. ARP4761 - Guideline and Method for Conducting the Safety Assessment Pro-
cess on Civil Airborne Systems and Equipment. [S.l.], 1996. v. 1996.

SAE. ARP4754A - Guideline for Development of Civil Aircraft and Systems. [S.l.],
2010. v. 2010.

SINGHOFF, F. et al. Investigating the usability of real-time scheduling theory with the
cheddar project. Real-Time Systems, v. 43, p. 259–295, 11 2009.

ZHANG, Q.; WANG, S.; LIU, B. Approach for integrated modular avionics reconfigu-
ration modelling and reliability analysis based on AADL. IET Software, v. 10, n. 1, p.
18–25, 2016. ISSN 1751-8806.

https://wiki.sei.cmu.edu/aadl/
https://www.sciencedirect.com/science/article/pii/0378475478900642
https://www.sciencedirect.com/science/article/pii/0378475478900642

78

ZHOU, Q. et al. An AADL-based design for dynamic reconfiguration of DIMA. In:
IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). [S.l.: s.n.], 2013.
p. 4C1–1–4C1–8. ISSN 2155-7195.

79

APPENDIX A — RESUMO EXPANDIDO

A reconfiguração de sistemas embarcados distribuídos em tempo real consiste em

alterar ou modificar subsistemas e/ou configurações de subsistemas para melhor servir

um determinado propósito (JÖZWIAK; NEDJAH, 2009). Em um sistema de aviônicos,

as mudanças de modo do sistema são usadas para realizar adaptações às mudanças das

condições operacionais de voo. Enquanto os modos são predeterminados, sua realiza-

ção pode ser por meio de reconfigurações. A reconfiguração pode ser aplicada para tol-

erar falhas que podem causar a perda de uma determinada função crítica em resposta

a uma mudança externa ou a pedido de um usuário do sistema ou mesmo a um evento

temporizado em uma aplicação. A pesquisa de Löfwenmark et al. (LÖFWENMARK;

NADJM-TEHRANI, 2018) mostra que arquiteturas tolerantes a falhas continuam sendo

uma importante área de pesquisa, e a combinação de tolerância a falhas com garantias de

tempo ainda não foi resolvida, por exemplo, na presença de arquiteturas multicore.

Quando um componente do sistema falha, uma plataforma de aviônicos reconfig-

urável move as funcionalidades, que foram alocadas anteriormente no componente com

falha, para outro componente do sistema disponível. Tal esquema de reconfiguração,

além de aumentar a confiabilidade, também pode ser benéfico em termos de capacidade

de evolução ao longo do ciclo de vida da aeronave.

A vida útil das aeronaves comerciais vem aumentando desde o final do século 20

até o presente século 21 (JIANG, 2013) e agora atingiu uma certa estabilidade. Além

disso, espera-se que o mercado de Manutenção, Reparo e Revisão (MRO) produza uma

forte demanda futura, pois as Forças Aéreas militares em todo o mundo recorrentemente

decidem atualizar aeronaves legadas em vez de adquirir novas plataformas (BALIS; BEREN-

SON; JOVOVIC, 2013), o que dá às frotas militares um aumento de vida útil. No Brasil,

por exemplo, uma revisão recente trouxe a uma frota de aeronaves dos anos 70 a capaci-

dade de estender sua vida útil além de 2020 (Airforce Technology, 2009).

Projetos de aeronaves, sejam plataformas novas ou reformuladas, aumentaram o

tempo de desenvolvimento e, portanto, os custos substancialmente nos últimos anos. A

obsolescência da tecnologia aviônica que ocorre antes da vida útil da estrutura princi-

pal da aeronave também é uma causa da tendência do mercado de MRO. A flexibilidade

de reconfiguração pode aliviar parcialmente tais problemas. Entregas antecipadas com

recursos básicos podem ser realizadas e funcionalidades mais avançadas podem ser incor-

poradas ao sistema alterando a configuração.

80

Dado o cenário descrito acima, este trabalho propõe uma arquitetura reconfig-

urável distribuída na qual um agente global e agentes locais cooperam para supervisionar

a transição de aplicações de módulos com falha para módulos funcionais. As reconfigu-

rações viáveis determinadas em tempo de projeto são armazenadas no sistema para serem

utilizadas pelos agentes, que então mantêm os computadores em uma configuração previ-

amente definida em uma situação prevista.

A reconfiguração de um subsistema não afeta o resto do sistema de forma alguma.

Em outras palavras, as restrições de tempo real especificadas originalmente ainda seriam

satisfeitas. A sequência de passos necessários para a conclusão de uma reconfiguração

deve ser atômica, no sentido de que devem ser inteiramente bem-sucedidas ou descar-

tadas. No caso de uma reconfiguração ser abortada, a operação do sistema aviônico não

deve ser afetada de forma alguma. Em ambos os casos é importante destacar que assumi-

se que as falhas ocorrem uma de cada vez.

Ter uma transição bem-sucedida para o estado reconfigurado devido a uma falha

não garante a viabilidade de tal estado. Portanto, fica clara a necessidade de uma ver-

ificação final para avaliar a correção dos sistemas em tempo real configurados para de-

sempenhar a função desejada. Para isso, a análise de escalonabilidade é utilizada para

verificar se todas as tarefas do sistema atenderão às suas restrições de tempo.

Diferentes abordagens podem ser usadas para realizar essa verificação. A verifi-

cação de modelo (model checking) (BAIER; KATOEN, 2008) pode ser usada para deter-

minar as reconfigurações viáveis, levando em consideração todas as possíveis sequências

de etapas necessárias. A partir de uma especificação, fornecida por uma linguagem de

modelos voltada para análise de arquitetura, Architecture Analysis and Design Language

(AADL) (FEILER; GLUCH, 2012), uma das abordagens propostas inclui a criação de

uma rede de autômatos (LARSEN; PETTERSSON; YI, 1997), representando os aspectos

de temporização de um sistema aviônico , a fim de realizar a análise de escalonabilidade

de cada reconfiguração possível. Isso é feito avaliando propriedades lógicas temporais es-

pecíficas no rastreamento temporizado das tarefas do sistema aviônico e observando seus

prazos. Alternativamente, a abordagem de simulação de escalonamento também é usada

aplicando os algoritmos de escalonamento durante um período de tempo para calcular o

escalonamento do sistema (SINGHOFF et al., 2009).

A análise de escalonabilidade garante a previsibilidade do sistema após cada re-

configuração e facilita a aprovação da aeronavegabilidade pelas autoridades certificadoras.

Levando em consideração os sistemas estão ficando exponencialmente mais com-

81

plexos a cada ano (AVSI, 2009b). Durante a década de 1980, um projeto de avião típico

tinha menos de 1 milhão de linhas de código de software (SLOC), enquanto a partir de

2000 esse número explodiu. Por exemplo, o SLOC relatado para o programa F35 foi de

cerca de 24 milhões (AVSI, 2009a). Esse cenário exige mais abstrações e automação de

design durante o desenvolvimento. Os engenheiros de software devem se concentrar em

seu próprio escopo, pois não são capazes de lidar com a complexidade sempre crescente

dos sistemas de computador subjacentes e suas restrições de projeto. Durante este tra-

balho a automação de projeto proposta é implementada na forma de um framework de

prova de conceito.

A abordagem proposta foi ilustrada usando um exemplo sintético para explicar

seus algoritmos. Em seguida, foi aplicado em um estudo de caso de sistema aviônico para

mostrar que tamanhos de problemas razoáveis em termos de número de nós, dependên-

cias, restrições de criticidade e mapeamentos de software/hardware podem ser tratados.

Tambem mostra que a metodologia proposta fornece um process de desenvolvimento de

projeto viável para sistemas aviônicos a serem posteriormente avaliados em ambientes

industriais.

Além disso, a prova de conceito do framework para automação de projeto criou

uma base ágil para integradores e designers de sistemas avaliarem diferentes algoritmos e

abordagens e seus resultados em relação aos requisitos iniciais.

	Agradecimentos
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Concepts and Related Works
	2.1 Concepts
	2.1.1 Schedulability Analysis
	2.1.2 Formal verification and model checking
	2.1.3 Mixed Criticality systems
	2.1.4 Integrated Modular Avionics and ARINC653
	2.1.5 Failure Conditions and Severity Classification
	2.1.6 Terms

	2.2 Related Works

	3 System Reconfiguration Approach
	3.1 Reconfigurable System Architecture
	3.2 Reconfiguration Approach
	3.2.1 Design Flow
	3.2.2 Avionics System Specification
	3.2.2.1 Platform
	3.2.2.2 Application
	3.2.2.3 Properties

	3.2.3 Implementation Modeling
	3.2.4 Design Constraints
	3.2.5 Formal Verification
	3.2.6 Reconfiguration States Diagram
	3.2.7 Deployment Model
	3.2.8 Design Automation Algorithms
	3.2.8.1 Mapping, Allocation, and Scheduling
	3.2.8.2 Build the Reconfiguration States Diagram

	3.3 CASE STUDY

	4 Resource Allocation and System Reconfiguration Framework
	4.1 Output Analysis
	4.2 Allocation Algorithms
	4.3 Software Design
	4.4 Schedulability Analysis Tools
	4.5 Allocation Algorithms
	4.5.1 PA-LBIMM Algorithm Adaptations
	4.5.2 AHP Algorithm

	5 Results
	6 Conclusion
	References
	Appendix A — Resumo expandido

