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“If I have seen farther than others,

it is because I stood on the shoulders of giants.”

— SIR ISAAC NEWTON



RESUMO

Esta dissertação apresenta duas técnicas para o registro de nuvens de pontos 3D que são

robustas a ruído e a nuvens de pontos parciais. Nossas técnicas abordam o registro rígido

e o não rígido e exploram as vantagens do uso de aprendizado profundo para a estimativa

de correspondência densa entre pontos. Para ambos os tipos de registro, nós propomos

uma única rede neural. Nossa rede usa um mecanismo de atenção recentemente proposto

e considera explicitamente a falta de correspondências entre os pontos, o que é crítico

para a sua performance. Além disso, nós aplicamos avanços recentes em modelagem

probabilística para refinar as correspondências criadas por nossa rede durante o registro

não rígido. Tal combinação de aprendizado profundo e modelagem probabilística pro-

duz sensibilidade a contextos e também gera uma deformação coerente dos pontos, o que

torna nossa abordagem resiliente a ruído e a perda de informação. Nós demonstramos

a efetividade das nossas técnicas ao compará-las com métodos no estado da arte. Nos-

sas comparações usam bases de dados com ruído e nuvens de pontos parciais ou com

amostragem irregular. Os experimentos mostram que em geral, nós obtemos resultados

superiores. Por exemplo, nossas abordagens alcançam um erro até 45% menor que outras

técnicas no registro não rígido de nuvens de pontos parciais, ou até 49% menor no registro

rígido. Nós também discutimos alguns aspectos extras da nossa técnica como a robustez

a níveis diferentes de ruído e a números diferentes de amostras nas nuvens de pontos. Por

último, nós abordamos a falta de bases de dados que forneçam o registro correto entre as

nuvens de pontos. Essas bases são críticas no treinamento supervisionado de modelos de

registro não rígido. Para resolver essa escassez, nós propomos uma estratégia de autoa-

prendizado baseada em deformações randômicas.

Palavras-chave: Registro de nuvens de pontos. registro rígido. registro não-rígido. cor-

respondência densa de pontos.



ABSTRACT

This thesis presents techniques for 3D point-cloud registration that are robust to outliers

and missing regions. They tackle non-rigid and rigid registration and exploit the advan-

tages of deep learning for dense point matching. This is done by proposing a single new

neural network to solve both registration types. Our network uses a recently proposed

attention mechanism and explicitly accounts for missing correspondences, which is key

to its performance. Additionally, we use recent advances in probabilistic modeling to

further refine the correspondences created by our network during non-rigid registration.

Such a combination of deep learning and probabilistic modeling produces context aware-

ness and enforces motion coherence, which makes our approach resilient to outliers and

missing information. We demonstrate the effectiveness of our techniques by comparing

them to state-of-the-art methods. Our comparisons use datasets containing noise, partial

point clouds, and irregular sampling. The experiments show that our techniques obtain

superior results in general. For example, our approaches achieve a registration error up to

45% smaller than other techniques in partial point clouds for non-rigid registration, and

up to 49% smaller on rigid registration. We also discuss additional aspects of our tech-

niques such as robustness to different levels of noise, and different numbers of samples in

the point clouds. Finally, we tackle the lack of datasets with ground truth for supervised

training of non-rigid registration models by presenting a self-supervised strategy based on

random deformations.

Keywords: Point-cloud registration, rigid registration, non-rigid registration ,dense point

matching.
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1 INTRODUCTION

The recent popularization of 3D scanners and LIDARs has led to a growing in-

terest on the manipulation and processing of 3D point clouds. A fundamental task when

processing point clouds is registration, which aims at aligning different sets of samples.

It is a basic block for applications such as SLAM (BRESSON et al., 2017), scene/object

reconstruction (NASEER; KHAN; PORIKLI, 2018; BERGER et al., 2017), automated

driving (WANG; WU; NIU, 2019), motion estimation (LIU et al., 2020), among others.

In rigid registration, two point clouds to be aligned typically only differ by a rota-

tion and/or a translation, although scaling is also often treated under this class. ICP (BESL;

MCKAY, 1992) and its variants are perhaps the most widely used solutions for this prob-

lem. In non-rigid registration portions from a source point cloud can be deformed inde-

pendently from others, such as in articulated or organic figures. Furthermore, the registra-

tion can also be isometric, thus preserving the distances between the points in the cloud.

Here, we assume the more general problem of non-isometric transformation between the

clouds. In this case, one seeks for an as-close-as-possible alignment between the two

point clouds. The registration problem becomes considerably harder in the presence of

noise, and when portions of the point clouds to be aligned are missing. Approaching these

challenges is key for having a robust registration, able to deal with real-world scenarios.

Recently, deep learning techniques targeted at rigid registration have obtained im-

pressive results (FENG et al., 2021). However, little work has been done on non-rigid

registration. State-of-art works (FENG et al., 2021; EISENBERGER et al., 2021) still

lack resilience to critical cases, e.g., when dealing with noisy point clouds and/or when

there are only partial matches between them. This is mostly due to the difficulty of es-

tablishing correspondences among the available parts. The same observation applies to

state-of-the-art non-learning-based methods, such as BCPD (HIROSE, 2020b).

We present robust techniques for performing non-rigid as well as rigid registration

of point clouds. Our techniques combine the advantages of deep learning models for

obtaining dense point correspondences with recent advances in probabilistic modeling

(Fig. D.1). They achieve state-of-the-art results for challenging scenarios involving noisy

and missing regions, leading to better and faster registration. We also present a self-

supervised training approach for non-rigid registration with on-par results to supervised

training.

Figure D.1 illustrates the use of our technique, trained using self-supervision, for
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Figure 1.1: Non-rigid registrations produced by our method for challenging scenarios.
We present the results after each stage of our pipeline. The source clouds are in orange
and the target ones are in blue. Points without correspondence in the target are shown in
magenta.

Learning-based
Correspondence

Cropped 

Input         
Point Clouds

Holes

Outlier

Cropped 
+ Outlier 

Probabilistic 
Refinement

Source: The Authors

non-rigid registration of point clouds under multiple difficult situations. It shows the

results produced by the steps of our method for scenarios including: (i) missing a large

portion of one of the point clouds (Cropped - first row); (ii) several holes across one

point cloud (Holes - second row); (iii) noisy point cloud (Outliers - third row); (iv) a

combination of missing large portions and noise (Cropped + Outlier - fourth row). Note

how our method consistently achieves good results across all these situations, properly

handling points without correspondences (shown in pink).

1.1 Thesis Statement

Non-rigid registration of a pair of 3D point clouds can be significantly improved

by breaking the problem in two steps. The first one is a forward pass through a neural

network that produces a correspondence matrix between points from the different clouds.

The second is a probabilistic optimization, which from the initial correspondences pro-

duces the final registration. Additionally, applying the same neural network can yield

state-of-art results on rigid registration of pairs of 3D point clouds. In this case, the net-
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work can improve robustness to noise and partial clouds when employed iteratively with

cyclic consistency.

1.2 Thesis Demonstration

In order to demonstrate our statement, we treat the two registration types sepa-

rately. In the non-rigid case, we use a modified SuperGlue neural network (SARLIN et

al., 2020) to generate the correspondence matrix. This is followed by an adapted ver-

sion of the BCPD algorithm (HIROSE, 2020b), which produces the final registration.

When dealing with partial or noisy point clouds this strategy produces better alignments.

Additionally, it allows classifying points from the source point clouds as having corre-

spondences or not in the target. In the rigid case, we adopt the framework proposed by

RGM (FU et al., 2021) which instead of using the correspondence matrix directly, applies

a refinement with Hungarian algorithm over the correspondences. The final registration

uses the SVD method to estimate the rigid-transformation matrix.

1.3 Contributions

The contributions of this dissertation include:

• Learning-based techniques for non-rigid (Section 3.1) and rigid (Section 5.1) regis-

tration of point clouds that are robust to large missing portions, as well as to noise.

Both techniques outperform previous approaches in these challenging scenarios;

• An adaptation of the SuperGlue network to produce correspondences between pairs

of 3D point clouds (Chapter 4);

• A self-supervised training strategy for robust non-rigid registration of point clouds

(Section 6.1.3).

1.4 Structure of this Thesis

The remaining of this dissertation is split into six chapters and a set of appen-

dices. Chapter 2 introduces the notion of rigid and non-rigid registration and reviews

works related to our approach. For the ones we directly compare with, we present a de-

tailed explanation. Chapter 3 presents how we adapted an existing technique to create
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our solution for non-rigid registration. In the same chapter, we describe how our solution

interacts with the proposed neural network. In Chapter 4, we explain our network, and

how it relates to and differs from other learning-based models. Chapter 5 shows how

we solve rigid registration by having an existing framework to use our proposed neural

network. Chapter 6 reports quantitative and qualitative registration results of the pro-

posed technique compared to state-of-art approaches with noisy and partial point clouds.

We further experiment with different configurations of our algorithms and types of point

clouds. Finally, Chapter 7 discusses the existing limitations of our technique and future

directions to explore. There are three appendices, the first offers additional qualitative

results comparing the alignment of the proposed work to others. The last two investigate

improvements over the non-rigid registration algorithm and its input parameters.
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2 BACKGROUND ON POINT CLOUD REGISTRATION AND RELATED WORKS

This chapter has three sections. The first briefly introduces the problems tackled

in this thesis. The remaining two discuss the techniques mostly related to our work. The

related works are classified as either rigid or non-rigid, and as traditional or learning-based

approaches. We also address in more details works that we directly compare against ours.

2.1 Rigid and Non-Rigid Registration

Rigid registration of point clouds aims at aligning a point cloud Y = {ym},

ym ∈ RD, m ∈ 1, ..,M by typically a rotation and a translation towards a target cloud

X = {xn}, xn ∈ RD, n ∈ 1, .., N . ym and xn are the spatial coordinates of the points in

the corresponding clouds, M and N are the number of such points, and D is the dimen-

sion of the space in which they are located. Non-rigid registration of point clouds aims

at deforming a point cloud Y by a transformation T towards a target cloud X , where Y

and X follow the presented definition. The deformation is pointwise and the resulting

displacement can be given v = T (y) − y. Regarding the point-cloud dimentionality, in

this work we approach the 3D case so D = 3.

2.2 Related Works on Rigid Registration

Traditional Approaches: ICP (BESL; MCKAY, 1992) is one of the most popular ap-

proaches for rigid registration, and several improvements have been proposed to solve it,

including optimizations for estimating correspondences (Tr-ICP (FITZGIBBON, 2003)),

and modeling using maximum likelihood estimation (EM-ICP (GRANGER; PENNEC,

2002)). Probabilistic approaches like CPD (MYRONENKO; SONG, 2010), FilterReg (GAO;

TEDRAKE, 2019), GMM-Tree (ECKART; KIM; KAUTZ, 2018), and Branch-and-Bound-

based methods, such as Go-ICP(YANG et al., 2015), have shown improved results. In

another direction, FGR (ZHOU; PARK; KOLTUN, 2016) optimizes the transformation

given by the correspondences over a non-convex objective function. Feature match-

ing (TOMBARI; SALTI; STEFANO, 2010) followed by RANSAC is largely used to

better prune the correspondences. In general, these approaches rely on iterative optimiza-

tion, which becomes expensive when dealing with challenging scenarios, such as reg-
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istration under partial correspondences. For an in-depth discussion of these techniques,

see (POMERLEAU; COLAS; SIEGWART, 2015).

Learning-Based Models: Recently, neural networks have been used to address the lim-

itations of traditional approaches. Interestingly, new works tend to build on concepts

from traditional ones to achieve state-of-art results. DCP (WANG; SOLOMON, 2019)

takes the correspondence and transformation estimation from ICP with dense matching

of deep-learned features followed by a differential SVD layer. RPM-Net (YEW; LEE,

2020) builds on it by having an iterative process but with a differential Sinkhorn layer

solving an optimal transport (OT) problem, which explicitly accounts for partial clouds.

Deep-GMR (YUAN et al., 2020) presents a neural network to solve an expectation-

maximization (EM) problem on a small number of Gaussian Mixture Models (GMM)

which are estimated by the network. Works using deep feature descriptors typically fol-

lowed by RANSAC include Predator (HUANG et al., 2021), which uses an attention

mechanism on features from KPConv convolutions (THOMAS et al., 2019). Other works

on this direction include D3Feat (BAI et al., 2020) and FCGF (CHOY; PARK; KOLTUN,

2019). Finally, RGM (FU et al., 2021) employs a graph matching network to estimate

the correspondences and binary-assignment loss function, instead of directly outputting a

rigid transformation.

2.2.1 Rigid Registration based on Correspondence and SVD

In this section we detail the SVD formulation to solve the rigid alignment origi-

nally proposed by Arun et al. (ARUN; HUANG; BLOSTEIN, 1987). This is not only used

by our rigid registration technique, but also used by ICP implementations and adapted by

BCPD, RGM, and others.

Given a set of corresponding points Y = {yj} ∈ Y and X = {xj} ∈ X , with J

being the total number of correspondences, the objective is to optimally align them in a

least square sense

(R, t) = argmin
R∈SO(D),t∈RD

J∑
j=1

wj‖(Ryj + t)− xj‖2, (2.1)

where wj ≥ 0 are weights for each pair. SO(D) is the subgroup of orthogonal matrices

with determinant +1 which also represents all rotation matrices.
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2.2.1.1 Translation

Assuming R is fixed and having F (t) =
∑J

j=1 wj‖(Ryj + t)− xj‖2, we can find

the optimal translation by taking the derivative of F w.r.t. t and finding its roots,

0 =
∂F

∂t
= 2

J∑
j=1

wj(Ryj + t− xj) = 2t
J∑
j=1

wj + 2R
J∑
j=1

wjyj − 2
J∑
j=1

wjxj. (2.2)

Considering ȳ =
∑J

j=1 wjyj∑J
j=1 wj

and x̄ =
∑J

j=1 wjxj∑J
j=1 wj

, the optimal translation is t = x̄−Rȳ. By

plugging this result back into Eq. (2.1) we obtain a formulation independent of translation:

(R, t) = argmin
R∈SO(D),t∈R

∑J
j=1wj‖R(yj − ȳ) − (xj − x̄)‖2. This allows us to break the

problem into a translation followed by a rotation. In the remaining of this section we will

refer to yj, xj as if they have already been translated by t.

2.2.1.2 Rotation

The next step is to minimize ‖Ryj − xj‖2, and this expression can be rewritten as

yTj yj−2yTj Rxj +xTj xj since the rotations in the first term cancel each other. Substituting

it back to Eq. (2.1)

R = argmin
R∈SO(D)

J∑
j=1

wj(y
T
j yj − 2yTj Rxj + xTj xj) = argmin

R∈SO(D)

J∑
j=1

−2(wjy
T
j Rxj) (2.3)

= argmax
R∈SO(D)

J∑
j=1

wjy
T
j Rxj, (2.4)

where the first equality is valid because the first and last terms do not depend on R,

so minimizing the expression will lead them to zero. Next we can have the resulting

sum written in a matrix form as tr(WYTRX ), where Y ,X ∈ RD×J , R ∈ RD×D, and

W = diag(wj) is a Rj×j matrix whose diagonal are the weights. Finally, tr is the trace

of a matrix.

The objective becomes finding a rotation maximizing tr(WYTRX ). Using the

trace property tr(AB) = tr(BA) we have tr(RXWYT ), which by having S = XWYT

and decomposing it by SVD we get the cost expression as

R = argmax
R∈SO(D)

tr(RΦS′ΨT ) = argmin
R∈SO(D)

tr(S′ΨTRΦ). (2.5)
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Note that since R is by definition an orthogonal matrix as are Φ,ΨT , by SVD properties,

we have M = ΨTRΦ being an orthogonal matrix as well. This means that the columns

µd in M are orthonormal vectors with µTd µd = 1 and all entries µd,d of M are≤ 1. By also

considering S′ a diagonal matrix of non-negative numbers whose elements are {σd} ≥ 0,

we have that

tr(S′M) =
D∑
d=1

σdµd,d ≤
D∑
d=1

σd. (2.6)

This means that the expression is maximized if µdd = 1. As M is also an orthogonal

matrix, in order to maximize the resulting value M has to be the identity matrix, ID. The

resulting optimal rotation matrix can then be computed by

ID = M = ΨTRΦ⇒ Ψ = RΦ⇒ R = ΨΦT . (2.7)

2.2.1.3 Orientation Rectification

The process described previously finds an optimal orthogonal matrix that could

contain reflections in addition to rotations. A reflection matrix has the same properties

as a rotation, however, its determinant is −1. Therefore, if det(ΨΦT ) = +1 the result

is a rotation, otherwise it contains reflections. Assuming det(ΨΦT ) = −1, this means

we could not find a rotation maximizing tr(S′M). In this case, it is necessary to build

an approximation of M such that R is a rotation. This can be obtained by flipping the

signal of the smallest singular value of S′. For more details, we direct the reader to

the original work (ARUN; HUANG; BLOSTEIN, 1987) and the notes by Sorkine and

Rabinovich (SORKINE-HORNUNG; RABINOVICH, 2017). The resulting computation

can be written in a single expression

R = Ψ


1

1

...

|ΨΦT |

ΦT ⇒ R = Ψdiag(1, ..., 1, |ΨΦT |)ΦT . (2.8)

2.2.2 DCP

DCP (WANG; SOLOMON, 2019) stands for Deep Closest Point and it tackles the

rigid-registration of 3D point clouds. It revisits parts of the ICP algorithm through the
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perspective of deep learning by having a model that can be split into three parts, each

responsible for:

• Map the input clouds (source and target) to permutation/rigid invariant features;

• Enrich the features with an attention based module;

• Predict the rigid transformation with a differentiable SVD layer.

ICP approaches the registration problem by alternating between estimating correspon-

dences among points from source and target clouds (Y = {ym}, ym ∈ RD,m ∈ 1, ..,M ,

X = {xn}, xn ∈ RD, n ∈ 1, .., N ), and applying a rigid transformation (that is typically

estimated with SVD, Section 2.2.1). DCP employs a learned model to recover the final

registration in a single forward pass to the network, such that no iterative refinement is

necessary.

DCP selects between two possible approaches to select the network to estimate the

deep features, Dynamic Graph CNN (DGCNN) (WANG et al., 2019) and PointNet (QI

et al., 2017), where first consistently reports the best results. DGCNN builds a graph

given the KNN of each point in the cloud, applies non-linearity to the values of each

edge, and vertex-wise aggregate the values (more details at Section 4.1). These features

only account for local information given a nearest neighborhood. Furthermore, the fea-

tures from source and target point clouds are independent of each other since they are

applied separately to the network. To remedy these two points, DCP applies the attention

module proposed by Point Transformer (VASWANI et al., 2017). This attention module

comes from the natural language processing (NLP) domain where it was designed for

word matching. It enriches a feature of a given point or word by taking similar features

from not only the current point cloud, for example the source, but from the target one as

well.

Differently from ICP, the correspondences between points are substituted for matches

across the resulting attention features, named fYm, f
X
n for source and target clouds respec-

tively. In addition, DCP relies on soft-assignment correspondences given by a probability

matrix. This means the assignment/correspondence certainty works as a probability, thus

the sum of matching probabilities cannot be greater than 1. This matrix is estimated by

P̃m,n = softmax(fYm(fXn )T ), (2.9)

where the softmax guarantees the soft-assignment requirements. Finally, by using this

matrix to project the target points (called back-projection), we create a permutated target
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Figure 2.1: Examples of registration using DCP on pairs of clouds from the ModelNet40
dataset (WU et al., 2015). The input row has source clouds in blue and target ones in
green. Output rows have the registered clouds in orange.

Source: Wang and Solomon (2019)

that matches the source according to the learned-feature similarities

X̂ = XT P̃m,n. (2.10)

This results in a one-to-one set of correspondences which is fed into a fully-differentiable

SVD module. Finally, DCP employs supervised learning which directly compares the

final estimated rotation and translation to the ground truths,

Loss = ‖RT
GTR− 1‖+ ‖tGT − t‖. (2.11)

Figure 2.1 show results using DCP on the ModelNet40 dataset, which consists of

point clouds from CAD models of objects. The results have examples on mostly complete

point clouds, but we highlight that DCP report results with partial point clouds. This in-

dicates that the network can in some degree adapt to this challenge. On the other hand, it

lacks any component directly dealing with missing correspondences between points (nei-

ther the loss function nor the network has parts considering this). Consequently, tech-

niques such as RGM and Predator have better performance than DCP because they ad-

dress registration of partial clouds.
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Figure 2.2: Diagram of the neural network and framework for rigid registration of 3D
point clouds proposed by RGM.

Source: Fu et al. (2021)

2.2.3 RGM

RGM (FU et al., 2021) stands for Robust Point Cloud Registration Framework

Based on Deep Graph Matching and it rigidly registers 3D point clouds. RGM does not

propose an end-to-end neural network to produce the registration matrix as DCP does.

Instead, it concentrates on generating the correspondence matrix, C̃, that is fed into SVD

to estimate the rigid transformation. Furthermore, it uses cycle consistency and multiple

iterations to better refine the assignment and the registration matrix. The entire process is

presented in Figure 2.2.

The main idea of RGM is to solve the matching of points adapting the architecture

originally proposed for deep graph matching named LCE (WANG; YAN; YANG, 2019).

To estimate the vertices of each graph, RGM uses a DGCNN (WANG et al., 2019) net-

work that for each point produces a feature invariant to translation and rotation as it is

done by DCP. For the edges, EY and EX , the features produced by the Point Transformer

network (VASWANI et al., 2017), fYm and fXm , are independently used as

EY = softmax(fYm(fYm)T ). (2.12)

The next steps consist of two independent but similar calls to what in Fig. 2.2 is named

Graph Feature Extractor & AIS Module. The first call computes a self-correlation feature,

Fselfxi
and Fselfyi

, meaning deep features from the source cloud do not consider target-cloud

information. These features are used to produce an affinity matrix, Aij , which is the first
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version of the correspondence matrix

Aij = Fselfxi
WFselfyi

. (2.13)

Finally, the affinity matrix is made into a valid probability matrix by using the Sinkhorn

operator (SINKHORN; KNOPP, 1967; MENA et al., 2018). The second call as displayed

in Fig. 2.2 applies the new found permutation matrix to back-project the target cloud

features FX . Which in turn produces a cross-correlation feature that is used to produce

the final soft correspondence matrix C̃.

The network is trained by only comparing the correspondence matrix to a ground

truth, instead of the registration results. This can be seen as a classification problem as

well, given that a source point can have a label/target point associated. As a result, RGM

uses the cross-entropy loss function that is common in classification tasks,

Loss = −
N∑
i

M∑
j

(CGT
i,j log C̃i,j + (1−CGT

i,j ) log(1− C̃i,j)). (2.14)

RGM remedies issues from DCP, as its loss function and the Sinkhorn operator

directly target partial correspondences between points. However, the two passes on the

Graph Feature Extractor Module have independent features and result in a network twice

the size of our proposed model and DCP. This results in a runtime time two times higher

but with worse performance when compared to our proposed network (see Section 6.1.7).

2.2.4 Predator

Predator (HUANG et al., 2021) focuses on solving the rigid-registration problem

on point clouds with low overlap. It tackles this problem by proposing a neural network

that produces four outputs. Two of them are sets of point-wise features and are used in

RANSAC to compute the rigid registration matrix. The third is a point-wise overlapping

score that indicates the probability of a point to belong to an overlapping region. The

last one is a point-wise matchability score telling the probability of a point to be correctly

matched given the target cloud. The network can be broken into three main modules:

• Encoding module, that generates the sets of superpoints and corresponding deep

features from the input point clouds;

• Overlapping attention module, that produces features dependent of both point clouds,
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in addition to scores indicating how much each point and its correspondence belong

to the overlapping region.

• Decoding module, that from the features and scores produced before generates

pointwise descriptiors and overlap/matchability scores.

The first module uses a series of residual blocks with KPConv convolutions

(THOMAS et al., 2019). This use the original points to create superpoints and the associ-

ated features. The resulting features are taken to the attention module which first enriches

the features by a self-attention layer using the aggregation proposed by DGCNN. This

layer can be summarized by:

xk+1
n = max

j:(n,j)
hk+1
θ ({xkn, xkj − xkn}) ∀j ∈ Nn, x

self
n = hselfθ ({x0n, x1n, x2n}), (2.15)

where hk+1
θ is a linear layer, and in the case of x0n, x

1
n, x

2
n, the linear tranformation is fol-

lowed by an instance normalization, and LeakyReLU. Nn are the k-nearest neighbor of

each point xn whose deep features are xkn. The next step is to account for the other point-

cloud features, this constitutes the cross-attention module. Predator adapts the Trans-

former network (VASWANI et al., 2017), which results in the features fYm, f
X
n . For details

about this module, we direct the user to the original paper and for Section 4.2 where a

similar approach is taken.

Predator is trained end-to-end with a loss function composed of three terms, one

per network output type,

Loss = λcLossc + λoLosso + λmLossm. (2.16)

Lossc is the circle loss function (SUN et al., 2020) and it takes the clouds aligned by the

ground truth. Given each point position, it enforces points that are close in the Cartesian

coordinates to similarly near in the deep-feature space. Losso uses a cross-entropy loss

function since this score classifies whether each source and target point is in the overlap-

ping region. Lossm also uses a cross-entropy loss function and as the matchability score it

tells if a source point has a correspondence in the aligned target cloud. Finally, λc, λo, λm

are the weights of each loss term.

Figure 2.3 presents registrations using the Predator network on the ModelNet40

dataset. We notice the alignment in the last column is precise even though the estimation

of the scores has problems. This is a drawback of the multiple-term loss function instead

of the single one used by RGM. In Predator, a well-defined and meaningful set of features



29

Figure 2.3: Examples of registration using Predator on pairs of clouds from the Model-
Net40 dataset (WU et al., 2015). All columns have source clouds in blue and target ones
in orange. The overlap and matchability scores are demonstrated as shades of each color.
This means that points with a higher score have more saturated colors.

Source: Huang et al. (2021)

estimated by the network will not necessarily translate into good overlap scores, for ex-

ample. Furthermore, tunning the different weights in the loss function or the parameters

of the circle loss term, Lossc, includes extra complexity to the training process compared

to RGM and our loss function (Section 4.4).

2.3 Related Works on Non-Rigid Registration

Traditional Approaches: Non-rigid ICP (AMBERG; ROMDHANI; VETTER, 2007)

expands the original algorithm to this domain, and recent extensions include (YAO et al.,

2020). CPD (MYRONENKO; SONG, 2010) models the problem as a GMM where the

target points are generated by Gaussian distributions induced by source points. The align-

ment is estimated by solving a maximum likelihood problem through EM. GLTP (GE;

FAN; DING, 2014; GE; FAN, 2015) expands on CPD by including an extra term to deal

with highly-articulated models. Cao et al. (CAO et al., 2014) also build on CPD by clas-

sifying the aligned points as reliable or not. To register the remaining points, it optimizes

over a cost function regularized to ensure coherent motion of adjacent points. GMM-

Reg (JIAN; VEMURI, 2010) presents a framework for rigid and non-rigid registration

to support large amounts of noise. It represents both clouds as GMM’s and minimizes

the statistical discrepancy between them. Ma et al. presented a series of papers on the
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topic. Ma et al. (MA; ZHAO; YUILLE, 2015) use a GMM similar to CPD, but on top

of the global cloud alignment, they employ descriptor matching as initial correspondence

probabilities. MR-RPM (MA et al., 2017; MA et al., 2018) builds on the set of correspon-

dences by learning a transformation under manifold regularization using EM. Recently,

BCPD (HIROSE, 2020b; HIROSE, 2020a) extended CPD using variational Bayesian in-

ference and Nyström acceleration, instead of EM. It presents a superior performance and

runtime compared to previous methods, while simplifying the CPD parameter selection.

Learning-Based Models: Techniques focusing on non-rigid 3D deformations have tar-

geted mostly scene flow, and they typically consider point clouds from LIDARs. In this

domain, clouds can be projected into 2.5D images (2D images with a depth channel), and

deformations are usually semi-rigid objects moving in a scene, e.g., cars and bicycles.

This deformation type is considerably simpler than the more general ones handled by

non-rigid registration methods, which focus on single objects.

The seminal work of FlowNet3D (LIU; QI; GUIBAS, 2019) on scene flow uses

a cost volume to learn the flow in an end-to-end fashion. This was followed by exten-

sions covering non-supervised learning (MITTAL; OKORN; HELD, 2020), Tishchenko

et al. (TISHCHENKO et al., 2020), pyramid refinement with an improved cost volume

(PointPWC-Net) (WU et al., 2020), and recurrent networks (FlowStep3D) (KITTEN-

PLON; ELDAR; RAVIV, 2021). FLOT (PUY; BOULCH; MARLET, 2020) estimates

the scene flow modeling it as an OT problem using deep features. Ouyang and Ra-

viv (OUYANG; RAVIV, 2021) expanded PointPWC to explicitly account for occlusions

in the clouds by considering them in the cost volume and in the loss function. Although

these works present impressive results on LIDAR point clouds, the cost-volume layer has

issues learning large deformations as it uses nearest-neighbors similarities.

Focusing on non-rigid registration, CPD-Net (WANG et al., 2019b) predicts the

complete deformation using PointNet (QI et al., 2017) features and an unsupervised

Chamfer distance loss function. PR-Net (WANG et al., 2019a) expands on TPS (BOOK-

STEIN, 1989) by learning the shape correlation based on features of the voxelized point

clouds. Recently, RMANet (FENG et al., 2021) presented an unsupervised learning ap-

proach based on a recurrent model which learns weights and rigid transformations at each

iteration. It offers superior results to CPD-Net and PR-Net, and can be directly applied

to rigid registration. These works do not tackle directly partial point clouds, or propose

ways how to do it.

A related problem is shape correspondence (SAHILLIOĞLU, 2020), whose goal
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is finding correspondences between pairs of mesh vertices while keeping the existing

edges. State-of-the-art learning-based works include CorrNet3D and NeuroMorph which

are based on point-clouds correspondence and can be extended to the registration case.

CorrNet3D (ZENG et al., 2021) presents an unsupervised approach based on estimating

dense correspondences obtained using a correlation matrix estimated from DGCNN (WANG

et al., 2019) features. The unsupervised loss function uses mirrored transformations by

having the deformed source as similar as possible to the target cloud and vice-versa. Neu-

roMorph (EISENBERGER et al., 2021) also tackles mesh interpolation. It presents a

similar unsupervised approach but builds on DGCNN by including a global max-pooling

when estimating the features. Its unsupervised learning function considers registration,

geodesic distance, and as-rigid-as-possible deformation. Similar to previously mentioned

works, both approaches do not account for partial correspondences, when training or ap-

plying their models.

2.3.1 Bayesian Coherent Point Drift

To solve the non-rigid registration problem BCPD (HIROSE, 2020b) models it in a

probabilistic fashion, so Y is assumed to define a probability distribution that generatesX .

This leads to solving the registration problem being equivalent to finding the distribution

parameters that maximize the probability of the target points being sampled from said

distribution. Under this modeling, four assumptions are made:

1 A target point xn is either a point of the deformed Y or an outlier generated with a

probability of ω;

2 If xn is an outlier, it was generated by a distribution given by pout(xn);

3 If xn belongs to the deformed Y , an index m ∈ 1, ...,M indicating that xn corre-

sponds to ym is sampled with probability αm;

4 In addition, xn is generated from a multivariate normal distribution whose mean

vector is T (ym) and the covariance matrix is σ2ID;

5 X is generated by repeating the previous steps for each xn.

The listed assumptions imply multiple probability distributions, forming a full joint one.

These are controlled by variables whose values are expected to be inferred given the ob-

served xn and are deemed latent variables, represented by θ. The full joint distribution

takes the form p(X, Y, θ). This means θ controls the probability distribution that mod-

els the generation of each xn by all y. Below we present how BCPD defines the joint



32

Figure 2.4: (a) Source point cloud in red and target in blue. The variable cn ∈ {0, 1}
indicates whether xn is an outlier. Variable en ∈ {1, ...,M} speficies the index of a point
ym that correspond to xn. Target points x1, x2, and x3 represent the point that correspond
to ym, a non-outlier that does not correspond to any point, and an outlier. (b) Example
combining rigid and non-rigid registration. Each rows displays the two possible directions
when aligning the point-clouds.

(a)
(b)

Source: Hirose et al. (2020)

probability equation using conditional probabilities over θ.

BCPD models the transformation not only by a non-rigid displacement vector, but

a rigid transformation too. This results in a deformed source given by Ŷ = T (ym+vm) =

sR(ym + vm) + t, where s, R, t are respectively a scale factor, rotation matrix and a

translation vector. Following item 4, the target is generated by a Gaussian Mixture Model

(GMM), so if xn corresponds to ym the probability distribution of xn is

φ(xn;T (ym + vm), σ2ID) = |2πσ2ID|−
1
2 exp{− 1

2σ2
‖xn − T (ym + vm)‖}. (2.17)

The final GMM expands on the normal distribution (item 4) by considering how xn can

be an outlier (item 1 and 2), and how it can correspond to a source point ym (item 3):

p(xn, en, cn|y,v, α, s,R, t, σ2) = {ωpout(xn)}1−cn{(1− ω)ΠM
m=1(αmφmn)δm(en)}cn .

(2.18)

We highlight two points. First, cn indicates a Bernoulli distribution, so if cn = 1, xn is

not an outlier; and if cn = 0, it is. Second, en implies a categorical distribution, which

generalizes Bernoulli to multiple categories. This is represented by δm(en), an indicator

function which is only equal to 1 when en = m, meaning the match is correct between

ym and xn. Figure 2.4a illustrates the role of these variables.

The remaining latent variables are (vm, αm, s, R, t, σ2) and from them only

vm and αm are assumed to have prior distributions. This means that further constraints

modeling each respective parameter are only assumed to the non-rigid displacement field

and to the probability of correspondence between source to target points. vm is modeled
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by a Gaussian distribution which enforces motion coherence, meaning near points should

move similarly. The prior distribution of vm is given by:

p(v|y) = φ(v; 0, λ−1G), (2.19)

where the variance λG is composed of G, an M×M positive-definite matrix generated

by an RBF kernel, and β, a free parameter. p(α) is given by a Dirichlet distribution

p(α) = Dir(α|κ1M), where κ>0 and is an input parameter. The choice of such distri-

bution comes from BCPD using Bayesian inference to solve the estimation of θ. Given

α is the probability of a modeled categorical distribution, choosing Dirichlet simplifies

the updating equations of the adopted framework and it is the default selection in such

cases (BISHOP, 2006). The final joint distribution takes the following form

p(X, Y, θ) ∝ p(v|y)p(α)ΠN
n=1p(xn, en, cn|y,v, α, s,R, t, σ2). (2.20)

Given θ = (v, α, c, e, s, R, t, σ2) and the observed X and Y , the objective is

to find θ maximizing p(θ|X, Y ). The problem can also be interpreted as estimating the

expectation of θ over p(θ|X, Y ). An analytic form does not exist to solve this problem

because of the joint nature of Eq. (2.20). Furthermore, evaluating the expectation over

all possible combinations of θ is costly and cannot be used. To solve this issue, BCPD

applies Variational Bayesian Inference (VBI) which simplifies the problem by introduc-

ing a new distribution q(θ). This distribution has the property of having its expectation

easily computed. The problem than becomes finding q(θ) that more closely approximates

p(θ|X, Y ) instead of θ. This process is done iteratively by alternately updating factorized

formulations of q, i.e., qi(θi), where i is a component of θ. During the updates, the remain-

ing qj are kept fixed. For more details on how VBI is used to obtain the BCPD algorithm,

we direct the reader to the original paper, its supplemental material, and Chapter 10 of

Bishop (BISHOP, 2006).

The resulting Algorithm 1 consists of a loop that at each iteration estimates the

matching probability matrix, P = {pmn}, pmn ∈ RM×N , between all deformed source

and target points. This matrix can also be treated as a correspondence matrix because it

informs the probability of each possible correspondence between the point clouds. In the

next step, P informs the updates to the values of variance and rigid/non-rigid transfor-

mations. In Algorithm 1, 1Nc is a column vector consisting of N 1s, and 1Mr is a row

vector consisting of M 1s. Diag is the diagonal of a given matrix. σ2
m is the mth diago-
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nal element of Σ (defined in the algorithm). ψ is the digamma function (the logarithmic

derivative of the gamma function) and V is the volume of the bounding box of all points

in X . An example of registration produced by the BCPD algorithm is shown at Fig. 2.4b.

Inputs : X = {xn}, Y = {ym}, λ (motion coherence intensity parameter),
β (RBF kernel free parameter), γ (initial scaling of σ2),
τ (convergence tolerance), κ (Dirichlet shape parameter)

Outputs: Ŷ = sR(y + v) + t
1 αm = 1

M
, G = exp 1

2β2‖(y − y′)‖2, pout(xn) = 1/V , Ŷ = Y

2 σ2 = γ
MND

∑N
n=1

∑M
m=1‖xn − ym‖2, σ̂2 = 0

3 while ‖σ2 − σ̂2‖ > τ do
4 φmn = φ(xn; ŷm, σ

2ID)exp{− s2

2σ2Tr(σ
2
mID)}

5 pmn = (1−ω)αmφmn

ωpout(xn)+(1−ω)
∑

m′=1 αm′φm′n

6 ν = P1Nc , ν ′ = PT1Mr , N̂ = ν1Mr

7 X̂ = diag(ν)−1PX

8 Σ−1 = λG−1 + s2

σ2d(ν), v = s2

σ2 Σdiag(ν)(T−1(x̂)− y)

9 û = y + v, αm = exp{ψ(κ+ νm)− ψ(κM + N̂)}
10 x̄ = 1

N̂

∑M
m=1 νmx̂m, ū = 1

N̂

∑M
m=1 νmûm, σ̄2 = 1

N̂

∑M
m=1 νmσ

2
m

11 Sxu = 1

N̂

∑M
m=1 νm(x̂m − x̄)(ûm − ū)T

12 Suu = 1

N̂

∑M
m=1 νm(ûm − ū)(ûm − ū)T + σ̄2ID

13 ΦS′xuΨ
T = SVD(Sxu), R = Φdiag(1, ..., 1, |ΦΨT |)ΨT

14 s = tr(RSxu)/Tr(Suu), t = x̄− sRū, ŷ = T̂ (y + v̂)

15 σ̂2 = σ2, σ2 = 1

DN̂

(
xTdiag(ν ′)x− 2xTPT ŷ + ŷTdiag(ν)ŷ

)
+ s2σ̄2

16 end
Algorithm 1: BCPD Algorithm

2.3.2 RMANet

RMANet stands for Recurrent Multi-view Alignment Network for Unsupervised

Surface Registration and it solves the problems of rigid and non-rigid registration of 3D

point clouds with a deep neural network. To avoid dealing with ground truths, which are

hard to obtain for non-rigid registration, the authors proposed an unsupervised approach.

In addition, to enforce motion coherence among neighbor points, RMANet does not use a

pointwise deformation vectors, the more common choice. Instead, it builds the deformed

cloud by iteratively applying rigid transformations with skinning weights. This means,

that given source and target clouds, Y = {ym}, ym ∈ RD,m ∈ 1, ..,M , X = {xn},
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xn ∈ RD, n ∈ 1, .., N , the network estimates

Ŷ k =
K∑
r=1

wk
rψr, (2.21)

where wk ∈ RM is a set of skinning weights for each rigid transformation, ψr, and Ŷ k is

the registered cloud.

The number of variables to be estimated is considerably large, M×K plus 6×K,

for the weights and registration respectively, and this motivates a recurrent approach.

Differently from estimating all at once, at each step, a pair wk
r , ψr is computed given the

previous wk
r−1, ψr−1. The resulting updated registered cloud, Ŷ , is given by:

wk
r = (1−wk

k)w
k−1
r , (2.22)

ψk = RMANet(Ŷ k−1), (2.23)

Ŷ k = (1−wk
k)Ŷ

k−1 + wk
kψk. (2.24)

The neural network to estimate the weights and registration matrix consists of an

adaptation of the Gated Recurrent Units (GRU) (CHO et al., 2014), in a similar fashion

to works targeting optical flow (TEED; DENG, 2020). For details about network archi-

tecture, we direct the reader to the implementation, more even than the original paper.

Regarding the unsupervised training, RMANet avoids classic metrics such as

Chamfer and Earth Mover’s distance. Its main idea is to compare 2D depth maps of

both target and deformed point clouds. This means that each point cloud is projected into

multiple 2D planes, each with a different point of view. The resulting deformed source

and target are then compared. The loss function consists of

Lossk = Lossdepth + λmaskLossmask + λarapLossarap + λtranLosstran + λsparseLosssparse,

(2.25)

where λmask, λarap, λtran, λsparse weight each loss and are input parameters. Lossdepth

is the mentioned depth map comparison, Lossmask compares the binary maps given the

occupancy of each depth map pixel. Lossarap is a regularization term enforcing neigh-

bor points to move similarly, whereas Losstran limits the translations norm. Finally,

Losssparse limits the L1 norm of the skinning weights.

Figure 2.5 show examples of registration using the RMANEt network. In addition

to the final registered cloud, the figure shows the intermediary alignments at each step k.
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Figure 2.5: Examples of registration using RMANet on pairs of clouds from their pro-
posed dataset. Figures 1 to 7 show the partial registration at each step k.

Source: Feng et al. (2021)

Differently from mentioned rigid registration networks, there is no focus on partial clouds

or addressing the presence of any noise in the point clouds. This can be observed in the

loss function, where examples of outliers, for example, would hinder any learning. More-

over, fine tunning the weights λmask and the number of iterations k adds extra complexity

during training. We acknowledge these factors contributed to our failures when training

the model on different datasets to the one provided by the authors.

2.3.3 FLOT

FLOT is a deep learning technique originally intended for scene-flow scenarios.

These scenarios typically consist of a depth image or a point cloud generated by a LiDAR,

and the objective is to estimate the motion from source cloud, Y = {ym}, ym ∈ RD,m ∈

1, ..,M , to target cloud, X = {xn}, xn ∈ RD, n ∈ 1, .., N . FLOT tackles the scene-flow

problem by modeling it as

Y + V = PX,P ∈ {0, 1}, (2.26)

where P is a permutation matrix, and V is the flow. In this case, to estimate the flow,

FLOT focus on the permutation matrix. Computing this matrix is modeled as a optimal

transport problem. This means that given a set of source and target options, and a cost

matrix, FLOT wants to move mass (points) from one to another in the cheapest way

possible. The matrix solving this problem is called transport plan P′ ∈ RM×N , and in

this case each point in the source would have a mass of M−1 and in the target N−1. The
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overall modeling can be written as

P′ ∈ argmin
U∈RM×N

M,N∑
i,j

P̃ijUi,j subject to U1Nc = 1MrN
−1 and UT1Mr = 1NcM

−1, (2.27)

where P̃i,j ≥ 0 is the cost matrix from moving mass (a point in the scene flow context)

from a source to a target point. Ui,j are the estimated assignments to be optimized. The

remaining parts enforce that no mass is lost during the transport.

In an ideal world, all points in the source cloud would have a corresponding one in

the target. However, this is not the case, as there can exist partial clouds, for example. This

leads FLOT for a different formulation of the problem with a regularization (CHIZAT et

al., 2018) controlled by a parameter λ′. This is adjusted by the user and the larger the

value of λ′, the more strict to mass preservation the optimization becomes. This optimal

transport problem is solved with the iterative Sinkhorn algorithm (CUTURI, 2013).

Given this modeling, FLOT focus on training a neural network that is composed of

a deep feature estimation module, followed by a cost matrix computation that is fed into

an unrolled Sinkhorn module, and a residual refinement of the estimated flow. The first

module uses a variation of the PointNet++ network to produce the deep features, ym, xn.

The cost matrix is then defined as

P̃′i,j =

(
1− yTmxn
‖ym‖‖xn‖

)
. (2.28)

After the Sinkhorn algorithm is run for a specified number of iterations, the resulting

matrix, P′, is used to estimate the flow by f̃ = P̃X − Y . Finally, f̃ is refined by fest =

f̃ + h′(f̃), where the residual module, h′, uses the same architecture that computes the

deep features. We refer the reader to the FLOT author implementation for details about the

network architecture. Finally, FLOT is trained in a supervised fashion using L1 distance

to the ground truth as loss function.

Figure 2.6 presents results on the scene flow dataset from KITTI (GEIGER et al.,

2013), where FLOT offered state-of-art results. This domain consists mostly of complete

point clouds where the source and target clouds are sampled in a short time interval. As a

result, most cases in the dataset consist of different objects with almost independent rigid

motion. Regardless of this specific application, FLOT does consider the possibility of no

correspondences between points in its formulation of the optimal transport problem by

using residual refinement network. However, we notice that the flow refinement module
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Figure 2.6: Figure extracted from FLOT (PUY; BOULCH; MARLET, 2020). It
presents two examples of registration using FLOT on point clouds from the KITTI
dataset (GEIGER et al., 2013). Notice they use a different notation compared to the
adopted in this thesis, and we follow it solely in this respective section. Source cloud is
denoted by p and target by q.

Source: Puy, Boulch, and Marlet (2020)
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Figure 2.7: Diagram of the neural network for point-to-point correspondence and mesh
interpolation on 3D meshes proposed by NeuroMorph. In addition, examples of source
and target meshes, and the result interpolation.

Source: Eisenberger et al. (2021)

might not be enough to generalize to more challenging noise and deformation scenar-

ios. We attribute this to its architecture, the same used on feature estimation. Thus, the

refinement does not have additional elements to deal with these challenges.

2.3.4 NeuroMorph

NeuroMorph tackles two different but related problems: point-to-point correspon-

dences in a mesh and smooth interpolation between meshes. It proposes a single neural

network that is trained end-to-end on both tasks at once and in an unsupervised fashion.

The first problem aims at estimating a correspondence matrix P, which relates source

vertices Y to target ones X . The second problem has the objective of learning how to

produce intermediate deformed vertices Yk given a value k ∈ [0, 1] such that Yk is always

smooth. For example, if k = 0.5, one would expect Y0.5 to be half deformed into X .

The model proposed to solve the mentioned scenarios is presented in Fig. 2.7. The

feature extractor module is composed of two parts. The first, EdgeConv, was inspired by

DGCNN and focuses on the mesh edge connections. The second part does a maxpolling

over all features and aims at including global contextual information into the features.

The two modules can be respectively described by

xk+1
m = max

j:(m,j)
hkθ({xkm, xkm − xkj}) ∀j ∈ Em, xk+2

m = ({xk+1
m ,max xk+1

n }), (2.29)
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where hkθ are a small residual networks, {, } is the concatenation operator, and E are the

edges of each vertice xn whose feature is xm.

Neuromorph computes the correspondence matrix by taking the cosine similar-

ity of the resulting deep features ym, xn (similar to Eq. (2.28)). This is normalized by a

softmax operator and results in a soft-assignment matrix. However, to feed the interpo-

lation module the neural network concatenates the correspondence with the discrete time

interval resulting in Z = (Y,ΠX − Y, t).

Finally, for the unsupervised training, the number of time intervals to be interpo-

lated starts with a single one, k = 1, and it increases logarithmically. The loss function is

defined as

Loss = λregLossreg + λarapLossarap + λgeoLossgeo, (2.30)

where Lossreg is the unsupervised registration loss and it is given by ‖ΠX − Y1‖2, this

is the distance between the target vertices back projected by the soft-assignment matrix

and the final interpolation of the source vertices. Lossarap is used between interpolation

intervals Yk, Yk+1, and it penalizes motions that are not rigid transformations (SORKINE;

ALEXA, 2007). The last term tries to preserve the pairwise geodesic matrices, DY , DX ,

given the correspondence matrix Π by limiting ‖ΠDXΠT −DX‖2.

NeuroMorph offers impressive results on both tasks it approaches, vertice match-

ing and mesh interpolation. In addition, the usage of unsupervised training shows that

for well-behaved meshes, pointwise matching is not necessary. Similar to RMANet and

FLOT, we notice a lack of components focused in guaranteeing robustness. Furthermore,

the original paper does not have results targeting meshes/clouds with any noise. We ex-

perienced this limitation when generalizing to the more challenging cases when we could

not train our implementation (there is no publicly available implementation) on scenarios

with outliers or partial point clouds.

2.4 Summary

This chapter introduced the main concepts related to rigid and non-rigid registra-

tion in 3D point clouds. The first section gave a short and general description of them.

This showed how open the scope can be for possible solutions, which allows different

modeling strategies and consequently, largely distinct solutions. These where presented
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in the subsequent sections, which gave an overall view of the related and latest works.

In each of these sections, we presented a in-depth view of traditional approaches (Sec-

tion 2.2.1,Section 2.3.1) and learning-based ones (the remaining subsections). For these,

we highlight how recent works on rigid registration are designed to deal with partial point

clouds (Sections 2.2.2 to 2.2.4). On the other hand, learning based non-rigid ones have

focused on dealing with larger deformations (Sections 2.3.2 to 2.3.4) but not with partial

clouds. Furthermore, while traditional approaches can be robust to noise (Section 2.3.1),

learning-based ones also lack robustness, thus being restricted to well-behaved scenarios.
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3 ROBUST DENSE NON-RIGID REGISTRATION

This chapter presents our technique for registration of 3D point cloud. We refer to

it as robust dense registration (RDR) and it has two variations: one for rigid and one for

non-rigid registration. Since rigid registration can be framed as a special case of the non-

rigid one, we discuss non-rigid registration in this chapter, and cover rigid registration

in Chapter 5. Here, we show how we adapted the original BCPD (HIROSE, 2020b)

algorithm to work together with a neural network. We then show the RDR algorithm for

non-rigid registration and how it can work with cyclic consistency, or in an optimization

loop.

Figure 3.1: Examples of non-rigid registration after each step of RDR on partial point
cloud. The source cloud is in orange and the target one is in blue. Points without corre-
spondence in the target are shown in magenta.

Learning-based
Correspondence

Input         
Point Clouds

Probabilistic 
Refinement

Source: The Authors

3.1 Non-rigid Registration

Our non-rigid registration technique consists of two parts: learning-based corre-

spondences followed by probabilistic refinement (Fig. 3.1). To obtain correspondences

among the samples of the source and target point clouds, we modified the SuperGlue net-

work (SARLIN et al., 2020) (originally designed to establish matches among keypoints

in pairs of 2D images). The changes consist of adding a feature encoding to allow dense

match of 3D point clouds, and a new Optimal Transport module that improved the regis-

tration performance by 43% (Section 6.1.7). For the probabilistic refinement, we adapted

the BCPD algorithm to use the soft-correspondence assignments produced by the modi-

fied SuperGlue network, thus replacing BCPD’s point matching process by a more robust

alternative. Next, we briefly review the original BCPD algorithm, providing the context

required to understand our RDR technique for non-rigid registration, which is summa-
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Table 3.1: Main symbols used at Algorithm 2

Name Description

diag/Tr Diagonal matrix/Trace
λ Motion coherence intensity parameter
β RBF kernel free parameter
γ/τ Initial scaling of σ2/Convergence tolerance
G M×M matrix defining motion coherence over v
ν Number of target points matched to each source
ν ′ Probabilities that each target point is an outlier
X̂ M×3 target cloud permutated by P
σ2 Covariance of each GMM
σ̂2 Final residual-covariance matrix for a given P

Source: The Authors

rized by Algorithm 1.

BCPD models the registration problem using a GMM. It iteratively optimizes

σ2, s,R, t,v, which are, respectively, the single variance of all 3D Gaussian distribu-

tions in the GMM (one Gaussian per source point), the scale, the rotation, the translation,

and the non-rigid deformation vectors required for the matching. Notice that differently

from the Algorithm 1, but following the BCPD implementation we do not use the term

σ̄2 which accounts for the variance of the estimated v. The final registration is given by

Ŷ = sR(ym + vm) + t, where Y = {ym},ym ∈ R3,m ∈ 1, ..,M is the source point

cloud to be aligned to a target cloud X = {xn}, xn ∈ R3, n ∈ 1, .., N . ym and xn are the

coordinates of the points in the corresponding clouds, and M and N are the number of

such points. xn may not have a corresponding ym ∈ Y , and can also be an outlier with

some given probability.

A Gaussian distribution prior enforces motion coherence over the non-rigid defor-

mation vectors, meaning that near points should move similarly. For this, BCPD assumes

the prior to have variance λG, where G is an M×M positive-definite matrix generated

by a RBF kernel and λ is a free parameter. The algorithm iteratively estimates a matching

probability matrix P between all deformed source and target points. P is used to update

the values of variance, rigid and non-rigid transformations. While BCPD produces good

registration results, it does not handle large deformations.

Our technique uses the soft assignments produced by our adapted SuperGlue net-

work as an approximation to BCPD’s matrix P. BCPD assumes that the probabilities in

P came from a GMM. Although this is not the case for the soft assignments, we argue

that it is feasible to use them as BCPD’s P matrix encodes correspondence and outlier
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information as matching probabilities. The critical aspect for our technique is then to it-

eratively update σ2, s,R, t, and v from P as well as update P from these variables. To

achieve this, we split the BCPD original loop into two nested ones. The outer loop up-

dates P based on the latest variable values. The inner one optimizes the five variables

given the estimate of P. This setup reduced the registration error for partial clouds on

our Custom Dataset (Section 6.1.3) by 22% on average, when compared to (the origi-

nal) BCPD. In our experiments, we use a single outer loop iteration, and we show this is

enough to achieve state-of-the-art results. Section 6.1.8 presents further analysis on these

loop options and results with cycle consistency on P. Algorithm 1 summarizes our robust

non-rigid registration technique, where 1Nc is a column vector consisting of N 1s, and

1Mr is a row vector consisting of M 1s. For estimating P in line 4, we refer to a generic

Neural Network Model, as this framework can be used with other models. In practice,

we found that our adapted SuperGlue network produces good results and was used in all

experiments and examples reported in the paper.

3.2 Summary

This chapter introduced our algorithm for non-rigid registration. Our technique

builds on BCPD by substituting their original dense correspondence estimation between

source and target clouds with a matrix generated by a deep-learning model. Even though

this violates BCPD’s assumption of the probabilities coming from a GMM, we argue that

this is still a valid option. Another difference in the algorithm is the inner and outer loops,

which also motivates splitting the optimization of σ2. The result is an algorithm that can

work with one or multiple iterations of the outer loop.
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Inputs : X = {xn}, Y = {ym}, λ, β, γ, τ , outer_max, inner_max
Outputs: Ŷ = T (y + v) = sR(y + v) + t

1 G = exp− 1
2β2‖(y − y′)‖2, Ŷ = Y

2 σ2 = γ
MN3

∑N
n=1

∑M
m=1‖xn − ym‖2, σ̂2 = σ̃2 = 0, τ̃ = τ̂ = σ2

// loop for multiple correspondence estimation with our model

3 while i < outer_max and τ̂ > τ do
4 P = Neural Network Model(Ŷ , X) ; // call trained neural

network

5 ν = P1Nc , ν ′ = PT1Mr , N̂ = ν1Mr

6 X̂ = diag(ν)−1PX ; // permutate the target cloud based on

the correspondences

// nested loop to avoid variances instability

7 while j < inner_max and τ̃ > τ do
8 G′ = λσ2

s2
diag(ν−1) + G

9 r = G′−1(T−1(x̂)− y), v = Gr, û = Y + v ; // infer motion

coherence for low confidence correspondences

10 x̄ = 1

N̂

∑M
m=1 νmx̂m, ū = 1

N̂

∑M
m=1 νmûm

11 Sxu = 1

N̂

∑M
m=1 νm(x̂m − x̄)(ûm − ū)T

12 Suu = 1

N̂

∑M
m=1 νm(ûm − ū)(ûm − ū)T

13 ΦS′xuΨ
T = SVD(Sxu)

// rigid transformation and scale estimation

14 R = Φdiag(1, ..., 1, |ΦΨ|)ΨT

15 s = tr(RSxu)/Tr(Suu)

16 t = x̄− sRū, ŷ = T̂ (y + v)

17 σ̃2 = 1

3N̂

(
xTdiag(ν ′)x− 2xTPT ŷ + ŷTdiag(ν)ŷ

)
; // optimize

over variance, the weighted average distance to target

18 τ̃ = |σ2 − σ̃2|, σ2 = σ̃2, j++
19 end
20 τ̂ = |σ2 − σ̂2|,σ̂2 = σ2, i++
21 end
Algorithm 2: RDR Non-Rigid Registration of 3D Point Clouds Algorithm
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4 LEARNING-BASED CORRESPONDENCE NETWORK

This chapter describes how we adapted the SuperGlue network (SARLIN et al.,

2020) to learn the probability matrix P , which indicates the dense soft correspondences

between point clouds Y and X . The original SuperGlue network estimates correspon-

dences of sparse keypoints in pair of 2D images, and has three main modules. The first,

feature embedding, learns keypoint features while considering their RGB and positional

information. This is followed by an attention module to propagate knowledge within

keypoints in the same image (self ), and across different images (cross). Finally, in the

Sinkhorn operator with dustbins module, the matrix representing the similarity between

descriptors is obtained as the product fY (fX)T of the extracted features. To account for

visibility, this score matrix is refined with a Sinkhorn operator (MENA et al., 2018). Next,

we discuss the changes we made to the feature embedding and optimal transport mod-

ules to adapt the original SuperGlue network for defining correspondences between point

clouds. Additionally, we describe in details the attention module and the loss function we

used for training. The adapted network is shown at Fig. 5.1.

4.1 Feature Embedding

Differently from SuperGlue, we densely estimate the initial point-cloud features

using the DCP approach (WANG; SOLOMON, 2019). This is based on the DGCNN (WANG

et al., 2019) network and aims to account for local geometry information. The embed-

dings for the different layers, l, are given by:

x0m = maxj:(m,j)h
0
θ({xm, xj}) ∀j ∈ Nm,

xlm = maxj:(m,j)h
l
θ(h

l−1
θ ),

xfinalm = hlθ({xl−1m , ..., x0m}),

(4.1)

where Nm are the k nearest neighbors of xm, and {, } is the concatenation operator. hlθ is

a non-linear function consisting of a multi-layer perceptron (MLP: 2D Convolution with

kernel size of 1 + Batch Normalization + ReLU) which is followed by maxpolling across

the neighbors. We use five layers (Fig. 5.1); the first computes the embedding from the

point cloud coordinates (x0m). The next three layers iteratively refine the embedding (xlm).

The last one takes the concatenation of all previous four layers and does not max-pool
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Figure 4.1: Adapted SuperGlue network for learning-based correspondences. Non-rigid
registration uses a single iteration of the brown modules, producing a soft-assignment
matrix P as output.
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(xfinalm ).

4.2 Attention Module

We directly use the attention mechanism of SuperGlue to include more contextual

information in the deep features. Differently from NeuroMorph’s global max-pooling,

we consider not only information about the current point cloud, but across clouds as well.

As a result, the deep feature xn receives contributions from X (self ) and Y (cross). In

the context of point-cloud registration, DCP was the first to use attention by adapting the

work of Vaswani et al. (VASWANI et al., 2017). In our case, attention enhances the dense

estimated features by alternatively applying multiple independent layers of self and cross

modules in a residual manner

xl+1
n = xln + δlxn , δ

l
xn =

attention(xln, x
l
n), if self,

attention(xln, y
l
m), if cross,

(4.2)

where xln is the current feature values and attention is the actual module.

The attention function is a neural network that aggregates features from one of

its inputs, xln or ylm, based on a learned similarity between this same input and the queried
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one, xln in this case. The same is done to ylm and we apply alternately self and cross

L times, resulting in fYm, f
X
n (Fig. 5.1). The module consists of a leaner version of the

Transformer network (VASWANI et al., 2017). Its residual increments, δlxn , come from

an MLP (3×: Linear Layer + Batch Normalization + ReLU) whose last layer only does

the convolution. The main objective of this perceptron is to join the current feature with

the message, mn. This message is the value vm weighted by how similar are queries

qn, and keys km. The term qn is the result of a linear layer applied to the first attention

input. km and vm use the same layer type but with the second input. Thus the attention

module learns how to take into account information across all points from source and

target clouds, as they interchangeably provide the update message. The overall updates in

a cross setup are given by

δlxn = MLPl({xn,mn}), mn = hlmn

(
softmax(qnk

T
m)vm√

256

)
, where (4.3)

qn = hlqxn, km = hlkym, vm = hlvym. (4.4)

In these equations,
√

256 is the square root of the number of dimensions in the final

feature, and it was proposed by the original Transformer network(VASWANI et al., 2017)

for more stability. In addition, hl are linear layers and they together with MLPl have

independent weights for each iteration l ∈ L.

4.3 Sinkhorn Operator with Dustbins

Given the refined descriptors, a direct way to establish correspondences is through

scores given by the dot products P̃m,n = 〈fYm, fXn 〉, where fYm, f
X
n are 1×256 feature vectors

corresponding to the rows of the tensors fY and fX . This is also how DCP, CorrNet3D,

and NeuroMorph establish their matching scores. Although this produces good results

for one-to-one correspondences, it is unable to directly account for points without cor-

respondences. In addition, the dot product by itself does not produce a valid probability

matrix, which in our case should be a relaxed doubly stochastic matrix. This means the

sum of the probabilities in the rows and columns should be less or equal to one. To tackle

this situation, we follow RPM-Net (YEW; LEE, 2020) on using the Sinkhorn operator

proposed by Mena et al. (MENA et al., 2018), which builds on the Sinkhorn and Knopp

theorem (SINKHORN; KNOPP, 1967). The possible lack of correspondences is handled

by an extra possibility of assignment in both sets of descriptors, called dustbins (Fig. 5.1).



49

The resulting Sinkhorn operator can be defined as

P0
M+1,N+1 = {{exp(P̃),0Mr},0Nc+1}, (4.5)

Po
M+1,N+1 = {Po−1

M,N+1∅(Po−1
M,N+11Nc+11

T
Nc+1),P

o−1
m,: }, (4.6)

Po+1
M+1,N+1 = {Po

M+1,N∅(1Mr+11
T
Mr+1P

o
M+1,N),Po

:,n}, (4.7)

P = Po+1
M,N . (4.8)

This operator is iterative and it converges to the desired probability matrix in the limit,

o → ∞. Initially we append P̃ with an extra column and row where all elements are 0,

0Mr ,0Nc+1. These are called dustbins and are considered another correspondence possi-

bility. Differently from SuperGlue, we do not append to all dustbins a single learnable

parameter or define an expected number of matches for them. ∅ denotes the element-wise

division, and {, } is the concatenation parameter. We notice that the updates , Po
M+1,N+1

and Po+1
M+1,N+1, consist on alternately normalizing rows and columns to sum to 1. How-

ever, when updating the rows, we leave the dustbin for columns out (the last row, Po−1
m,: )

and vice-versa for columns. This guarantees they are not bound to the constraint of sum-

ming to 1 since they could be matched by any number of points.

4.4 Loss Function

We introduce a new term to the cross-entropy loss used by RGM to compare the

estimated matrix P and the ground truth P̄ (a hard-assignment matrix). This is inspired

by loss functions proposed by Ouyang and Raviv (OUYANG; RAVIV, 2021) and Preda-

tor (HUANG et al., 2021), and it aims at classifying if a source point ym ∈ Y has a

correspondence to any target point xn ∈ X . The new loss term compares the sum of the

matching probabilities associated with each source point, ν = P1Nc , to the ground truth

ν̄ = P̄1Nc . Even though this new term is indirectly covered by the original loss function,

we justify it because we want to minimize the occurrence of false matches. False matches

tend to create artifacts as the whole neighborhood around each incorrectly matched points



50

is deformed as well. The complete loss function is given by:

Loss = −
N∑
n=1

M∑
m=1

(P̄m,n log Pmn + (1− P̄m,n) log(1−Pm,n))

−
M∑
m=1

(ν̄m log νm + (1− ν̄m) log(1− νm)).

(4.9)

4.5 Summary

This chapter presented our neural network used by the two registration algo-

rithms Chapters 3 and 5. It modifies SuperGlue (SARLIN et al., 2020) in three main

aspects. The first is DGCNN as the feature encoding. This is followed by replacing the

layer used to produce the final correspondence matrix. Instead of modeling this part as

an optimal transport problem and solving it with Sinkhorn algorithm (CUTURI, 2013),

we employ the Sinkhorn operator with dustbins. Finally, we include an extra term to the

cross-entropy loss function that is focused on reducing false positive correspondences.

The resulting network still uses the Superglue sequence of modules: feature estimation +

attention module + refinement with dustbins. However, our proposed changes are vital for

good performance in 3D point clouds.
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5 ROBUST DENSE RIGID REGISTRATION

This chapter presents a variation of our robust dense registration (RDR) tech-

nique for rigid point cloud registration. The framework used is similar to the proposed by

RGM (FU et al., 2021) but with our neural network instead of their proposed one (Fig-

ure 5.1). It applies cyclic consistency to estimate a consolidated set of correspondences

that produce the final registration. Moreover, in each direction of the cycle, we have mul-

tiple iterations over the network to refine the partial matches. In all our examples and

experiments we adopt a default of two iterations.

Figure 5.1: Adapted SuperGlue network for learning-based correspondences. For rigid
registration, the network in Fig. 4.1 has the extra blue modules, and performs two itera-
tions, producing a hard assignment matrix Sfinal as output.
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5.1 Rigid Registration

Our rigid registration model aims to minimize the following error function

E =
N∑
n=1

M∑
m=1

cn‖Rym + t− xn‖2, (5.1)

where cn ∈ {0, 1}. cn = 1 if the adapted SuperGlue network is confident that xn has

some correspondence in the source point cloud; cn = 0, otherwise. Since this problem

is simpler compared to non-rigid registration, our model only uses learning-based corre-
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spondence, dropping the probabilistic refinement step. In this case, the adapted SuperGlue

network is slightly modified with respect to the version used for non-rigid registration,

and iterates twice (as opposed to a single iteration used for the non-rigid case). This is

illustrated in Fig. 5.1 by the blue modules (Hungarian and SVD) and lines at the right

portion of the network. During the first iteration, the Hungarian algorithm converts the

soft-assignment matrix P into a hard assignment matrix S, which undergoes an SVD de-

composition to estimate the parameters R and t of a rigid transformation that maps Y into

X (this same SVD based algorithm is used internally in Algorithm 2, lines 10-16). R and

t are used to obtain a transformed version of the source point cloud Y for the second itera-

tion. The output of the second iteration is a hard assignment matrix Sfinal = Sfront S
T
back,

where Sfront is the output of the Hungarian module at the second iteration. STback is the

transpose of a similar matrix produced by a mirrored version of the network shown in

Fig. 5.1, obtained swapping the roles of point clouds Y and X . The final R and t are

estimated applying SVD to Sfinal.

5.2 Summary

This chapter presented a variation of our RDR algorithm for rigid registration. We

apply cyclic consistency and multiple calls to our neural network together with the SVD

method to estimate rigid registration from a set of correspondences. Differently from the

soft-assignment matrix used in the non-rigid case, here, we estimate the transformation

from a hard-assignment correspondence matrix.
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6 RESULTS

This chapter presents quantitative and qualitative results on non-rigid and rigid

registration. Regarding non-rigid, we introduce the compared approaches, their parame-

ters, and the datasets used in the comparisons (Sections 6.1.1 and 6.1.2). The next sec-

tions explain our proposed self-supervised training (Section 6.1.3) and the adopted met-

rics (Section 6.1.4). In terms of actual results and comparisons, we start by showing and

discussing the registrations with full-body point clouds. These clouds have larger defor-

mations than the finer-grained details of the subsequent section, which concerns datasets

focused on faces (Sections 6.1.5 and 6.1.6). Finally, we present a set of auxiliary experi-

ments. The first is an sensitivity and ablation study that justifies our choice of architecture

and parameters for the proposed neural network (Section 6.1.7). The following sections

discuss the use of multiple outer-loop iterations and cyclic consistency, the selection of

BCPD parameters, training with mixed types of noises, and generalization to a different

number of points during training and evaluation (Sections 6.1.8 to 6.1.11).

On rigid registration, we initially present the approaches compared to ours, the

dataset used in the experiments, and the different noise scenarios (Section 6.2). Next, we

introduce the adopted metrics and discuss the qualitative and quantitative results (Sec-

tions 6.2.1 and 6.2.2). Finally, we focus on an sensitivity study regarding the number of

iterations of the rigid algorithm (Section 6.2.3).

We implemented our models using PyTorch and Python and used them to register a

large number of point clouds under challenging configurations. All reported experiments

were performed on a 3.2 GHz PC with 32 GB of memory and an Nvidia GTX 1070 GPU

with 8 GB of memory.

6.1 Non-Rigid Registration

The experiments included four types of point clouds: (i) Clean, containing no

noise; (ii) Cropped, where contiguous regions covering 30% of the points were removed;

(iii) Outliers, where 20% of target points consist of random uniformly distributed points

inside the target bounding box; and (iv) Holes, where 25% of the points in the target point

cloud were removed creating random holes around seeds. For experiments involving

Cropped point clouds, we argue that it is important to classify regions in the source cloud

with no correspondences to target.
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Figure D.1 illustrates the results produced by our method for challenging scenar-

ios. It consistently produced good registration for all these cases, which include signif-

icant amount noise, and points without correspondences (shown in pink). We compare

our approach to five others designed, or adapted by us, to perform non-rigid registra-

tion of point clouds: RMANet (FENG et al., 2021), a variant of our method based on

RGM’s P matrix (FU et al., 2021), a variant of our method based on NeuroMorph’s P

matrix (EISENBERGER et al., 2021), FLOT (PUY; BOULCH; MARLET, 2020), and

BCPD (HIROSE, 2020b). RMANet is a recurrent network which presents state-of-the-art

results. RGM explicitly learns a matrix P and applies it to rigid registration. We adapted

Algorithm 2 to use RGM’s P matrix and refer to this variant of our method as Ours-RGM.

NeuroMorph was proposed for mesh correspondences and interpolation. Since it has no

publicly available implementation, we implemented it and adapted its correspondence

module to use with point clouds, producing a P matrix. Similar to RGM, we also adapted

Algorithm 2 to use NeuroMorph’s P matrix and refer to this variant of our method as

Ours-Neuro. We include these comparisons to show that the P matrix generated by our

adapted SuperGlue network (Fig. 5.1) leads to superior results compared to the ones ob-

tained using RGM’s and NeuroMorph’s P matrices. FLOT is a scene-flow technique that

can be applied to non-rigid deformation. BCPD is a state-of-the-art method for non-rigid

registration based on iterative optimization.

The P matrices generated by our method, RGM, and NeuroMorph can be used to

obtain the deformed cloud using a projection operation defined as Ŷ = PX . RMANet and

FLOT directly generate the deformed point clouds. In Table 6.1, we indicate the results

obtained by each model on Clean point clouds, either with the projection operation (P) or

with the direct generation (D), in the column P/D.

6.1.1 Parameters and Training Details

We used the following parameters when performing the comparisons. Techniques

and parameters not mentioned had their default values used:

• Our Neural Network Model: neighborhood size = 20, 20 Sinkhorn iterations (O =

20);

• Ours, Ours-RGM, Ours-Neuro Probabilistic Refinement: λ = 2, γ = 3, β = 2,

K = 100, inner_max=50, outer_max=1, and τ = 0.001;

• NeuroMorph: Adam optimizer and learning rate of 0.00025;
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• BCPD (HIROSE, 2020a): λ = 20, γ = 3, β = 1, ω = 0.1, K = 300, max.iter. =

300, and τ = 0.0001.

The exception is the Clean setup, where β = 0.5 for Ours, Ours-RGM, and Ours-Neuro.

K controls the Nystrom sampling used to accelerate the probabilistic module (HIROSE,

2020b). For our probabilistic refinement and BCPD parameters, we selected values based

only on minimizing the end-to-end point error in the Cropped scenario for the RMANet

dataset. The exception is the choice of β, because the value of 2 is a compromise between

lowering the error and inferring the registration of missing parts (Section 6.1.9). We

highlight we could achieve even better results with a more advanced strategy to select

the parameter values of our probabilistic refinement. Furthermore, we could benefit from

using an iterative sweep strategy to select our neural network hyperparameters.

We trained all compared works for 25, 75, and 40 epochs, or until they stopped

learning in the RMANet, Custom, and CoMA datasets. For the ModelNet40 dataset, our

approach was trained for 165 epochs. Every training and evaluation used a batch size of

8. The training required 14 hours for the RMANet dataset, 16 hours for Custom, and 10

hours for CoMA. For the ModelNet40 dataset, training took 16 hours.

6.1.2 Dataset Details

We used three datasets for training and testing. The first one is the dataset pro-

posed by RMANet. From it we selected 20,000 pairs of clouds for training and 2,000

pairs for evaluation. We compiled the second dataset (referred to as Custom) and it con-

tains point clouds sampled from three other datasets: ModelNet40 (WU et al., 2015),

TOSCA (BRONSTEIN; BRONSTEIN; KIMMEL, 2008) and HumanMotion (VLASIC

et al., 2008). The first group has pairs generated from ModelNet40 point clouds deformed

by the same self-training strategy described in Section 5.1.1 of the main paper. The pa-

rameter ρ was chosen randomly between [5, 30]. To generate the second group, we used

the technique proposed by RMANet (FENG et al., 2021) over clouds from TOSCA. The

last group of point clouds is from HumanMotion. They are distributed in the following

way:

• Training: 4,000 pairs from ModelNet40 (first 32 categories), 2,400 pairs from

TOSCA (cat and dog), and 2,400 pairs from HumanMotion (sequences squat2,

samba, handstand, and jumping);

• Validation: 375 pairs from the ModelNet40, 250 from TOSCA, 250 from Human-
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Motion, all using the same training set categories;

• Evaluation: 1100 pairs from ModelNet40 (last 8 categories), 475 from TOSCA (horse),

and 500 from HumanMotion (march sequence).

The third dataset was compiled from the face meshes proposed by CoMA (RANJAN

et al., 2018) joined with the already mentioned Custom dataset. CoMA generates face

meshes using learned autoencoders. In our case, we sampled vertices from their training

meshes. The meshes consist of 12 subjects doing 12 different poses each: moving lips,

opening mouths, showing teeth, etc. Ten poses from 10 subjects were sampled to the

training dataset, whereas the remaining two poses and subjects were used for evaluation.

We highlight that the original meshes contain the entire head (Fig. 6.2a). However, we

selected for training and validation only points relative to faces (Fig. 6.4a). On the other

hand, for validation, we consider both options (referred to as Head and Face respectively.

More details in Section 6.1.6). The final distribution of clouds was:

• Training: 8,000 pairs of clouds from the Custom dataset joined with 2,500 pairs

of clouds selected across 10 subjects from CoMA, whereas for each subject we

sampled from 10 of 12 possible poses.

• Validation: 300 pairs from the same training CoMA meshes joined with 800 clouds

fro Custom.

• Evaluation: 2,000 random pairs from the previously unconsidered meshes.

6.1.3 Self-Supervised Learning and Training

An existing problem when training networks on non-rigid deformation is creat-

ing datasets. Rigid-transformation approaches can randomly sample rotations, transla-

tions, and crops for example. Learning-based non-rigid techniques, on the other hand,

currently rely on non-supervised learning, using loss functions based on Chamfer and

Earth-Moving distance for point clouds, or geodesic distance for meshes. However, these

are unable to explicitly account for points with no correspondences. To address this issue,

we trained our model adding noise to point clouds, and mainly using the artificial defor-

mation method proposed by Hirose (HIROSE, 2020a) to generate dense correspondences,

given by

X = X + VΛJ|J ∈ N (0, 1); Λ,V = eig(ρ−1G), (6.1)
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Figure 6.1: Results on Cropped, Holes, and Outliers types of point clouds on top of the
RMANet dataset. Source cloud is in orange and target is in blue. Source points classified
as having no matches are shown in magenta.
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where Λ and V are respectively the eigenvalues and eigenvectors of the covariance matrix

G (defined in Algorithm 2). ρ is a parameter controlling the deformation level, and J

are 3D points sampled from the normal distribution. We refer to this dataset as self-

supervised.

For RMANet and Custom datasets, we trained all learning based methods in a

supervised fashion. The exception is RMANet on Custom dataset. There, we used its

pre-trained model, as any further fine-tuning or training with the Custom dataset worsened

its performance. We also trained our model (adapted SuperGlue network) with the self-

learning strategy (Ours-Self ). Ours, Ours-RGM, and FLOT were trained using Cropped

(more challenging) point clouds. NeuroMorph could not learn in this setup, so it was

trained with Clean point clouds. We trained our model using SGD and learning rate of

0.001 for 25 epochs (RMANet dataset) and for 60 epochs (Custom dataset).

For the CoMA dataset, we followed the same strategy of training with Cropped

point clouds. The difference lies in fine-tuning the models trained on Custom with the

self-supervised learning strategy applied to the CoMA point clouds. In this case, instead

of Ours-Self, we have Ours-GT which refers to our model using the ground-truth pairs.

Finally, the restrictions on NeuroMorph and RMANet are still valid. We trained our model

using SGD and a learning rate of 0.0005 for 40 epochs.

6.1.4 Metrics

The main metric used to assess the registration quality of the evaluated algorithms

is the end-to-end point error (EPE), which computes the mean Euclidean distance between

the deformed points and their correspondences. For experiments involving Cropped point

clouds, we argue that it is important to classify regions in the source cloud with no cor-

respondences to target. Thus, we report Precision and Recall for the classification of

existence of correspondence. EPE is reported for points with matches.

Precision and Recall of points classified as not having correspondences in Sec. 5.1

are given by

Precision =
(ν̃ ◦ ν̄)1Mr

ν̃1Mr

, Recall =
(ν̃ ◦ ν̄)1Mr

ν̄1Mr

ν̃ = ¬S1Nc , ν̄ = ¬P̄1Nc ,

(6.2)

where ◦ is the Hadamard product, 1Nc is a column vector consisting of N 1s, and 1Mr is
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a row vector consisting of M 1s. S is the hard assignment matrix obtained from P after

applying the Hungarian algorithm, similar to what is done for rigid registration (Sec. 3.2 of

the main paper). P̄ is the ground truth assignment matrix, that is also used when training

the model. The part of the numerator shared by both metrics, (ν̃ ◦ ν̄)1Mr , is the number of

source points correctly predicted. The denominators are the number of predicted points

without any matches, used in the computation of Precision, and its ground truth value,

used for computing the Recall.

Table 6.1: Performance comparison using EPE as well as Precision and Recall metrics
for several methods on different datasets. Columns refer to the RMANet dataset with
the point cloud types described in Section 6.1. BCPD indicates the errors after BCPD
post-processing. Cropped variations also report Precision and Recall when classifying if
source points have no correspondences. (7) means the technique did not handle the given
dataset, (-) means the comparison is not applicable. The best results are shown in bold.

Method
Clean Outliers Holes Cropped

P/D BCPD Prec. Recall

Ours 0.020 0.020 0.023 0.028 0.018 0.98 0.98
Ours-Self 0.026 0.020 0.026 0.029 0.020 0.93 0.98
Ours-RGM 0.027 0.021 0.027 0.033 0.021 0.92 0.94
Ours-Neuro 0.008 0.023 0.160 0.042 0.140 0.46 0.22
RMANet 0.012 - 0.101 0.149 7 7 7

FLOT 0.043 - 0.053 0.042 0.045 - -
BCPD - 0.042 0.045 0.057 7 7 7

Source: The Authors

6.1.5 Evaluation on RMANet and Custom datasets

Figure 6.1 compares several techniques considering point clouds of type Cropped

(rows 1 and 2), Holes (rows 3 and 4) and Outliers (rows 5 and 6). For each type, the

source and target (Original) point clouds are shown on the top left. These are followed

by the results produced by: our method (Ours), our method trained using self learning

(Ours-Self), Ours-RGM, Ours-Neuro, RMANet, FLOT, and BCPD.

For the Cropped example, our method and its variants are able to map source

points without correspondences in the target cloud to plausible locations. FLOT pro-

duces a reasonable result, although one observes misalignment in the head, arms and

legs. RMANet does a good job for the upper body, but the legs are off. BCPD was unable

to map points without correspondences.
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Table 6.2: Performance comparison using EPE as well as Precision and Recall metrics
for several methods on different datasets. Columns refer to the Custom dataset with the
point cloud types described in Section 6.1. BCPD indicates the errors after BCPD post-
processing. Cropped variations also report Precision and Recall when classifying if source
points have no correspondences. (7) means the technique did not handle the given dataset,
(-) means the comparison is not applicable. The best results are shown in bold.

Method
Clean Outliers Holes Cropped

P/D BCPD Prec. Recall

Ours 0.060 0.036 0.060 0.078 0.040 0.90 0.92
Ours-Self 0.052 0.035 0.069 0.058 0.037 0.90 0.94
Ours-RGM 0.084 0.047 0.092 0.076 0.073 0.84 0.85
Ours-Neuro 0.019 0.038 0.147 0.064 0.206 0.52 0.32
RMANet 0.131 - 0.201 0.222 7 7 7

FLOT 0.111 - 0.141 0.102 0.110 - -
BCPD - 0.159 0.130 0.180 7 7 7

Source: The Authors

For the Holes example, RMANet, followed by FLOT, are the ones for which mis-

alignment is most noticeable. The Outlier test case also illustrates the effectiveness of our

method and its variants Ours-Self and Ours-RGM. Ours-Neuro did not produce a satis-

factory result, indicating that the P matrix generated by NeuroMorph does define reliable

correspondences in the presence of noise. Both RMANet and FLOT produced unsatis-

factory results, while BCPD achieved good registration. These results highlight the fact

that our method is consistently robust across a range of challenging scenarios. It also

shows that the P matrix generated by our model leads to better results than RGM’s (see

Fig. 6.1l) and NeuroMorph’s (see Fig. 6.1u). Moreover, it shows that although BCPD

nicely complements our model, it cannot, just by itself, handle difficult cases involving

large missing regions (Fig. 6.1h). We report addition qualitative results in Appendix A.

Tables 6.1 and 6.2 summarizes the results comparing the different approaches with

Clean, Cropped, Holes, and Outlier configurations in the two datasets. Our method (our

learning model with the BCPD refinement) yields the best general results when consider-

ing all point cloud types. The use of self-learning leads to comparable results with respect

to supervised learning, especially in the Custom dataset. For Clean point clouds, our im-

plementation of NeuroMorph obtained the best scores. However, NeuroMorph cannot

handle missing parts, and could not be trained with such datasets.

The second closest to ours is Ours-RGM followed by BCPD. BCPD obtained

scores close to ours in the RMANet dataset, but could not handle Cropped clouds. We

also highlight how the BCPD-based probabilitic refinement step improves the results of
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Table 6.3: End-to-End Point Error metric computed for multiple scenarios
(Cropped/Outliers/Holes) and different ratios, obtained using our model on the RMANet
dataset.

Method
Cropped Outliers Holes

BCPD Prec./Recall BCPD BCPD
C

ro
p

90
%

O
ut

lie
r2

0%
H

ol
es

25
% Ours 0.021 0.90/0.94 0.023 0.028

Ours Self 0.022 0.84/0.95 0.027 0.029
Ours RGM 0.029 0.84/0.84 0.027 0.033

C
ro

p
70

%
O

ut
lie

r4
0%

H
ol

es
40

% Ours 0.018 0.98/0.98 0.028 0.031
Ours Self 0.020 0.93/0.98 0.036 0.037
Ours RGM 0.021 0.92/0.94 0.043 0.041

C
ro

p
50

%
O

ut
lie

r6
0%

H
ol

es
50

% Ours 0.038 0.94/0.84 0.039 0.044
Ours Self 0.059 0.91/0.70 0.050 0.058
Ours RGM 0.182 0.69/0.92 0.080 0.055

Source: The Authors

ours and RGM’s network, as can be observed in the Clean column under the Custom

dataset (Table 6.2). Finally, on Outliers and Holes in the same table, we notice that even

with the proposed network, the precision is significantly affected. We attribute this to the

more challenging scenarios compared to Table 6.1. Improving precision is explored at

Section 6.1.10 by training with different noise types.

Table 6.3 report results of our model with supervised and self-supervised training,

as well as with supervised RGM for various ratios of cropped/outliers/holes. The largest

difference in performance as expected happen when moving to the more challenging sce-

narios (last partition of the table). In general, our approach metrics holds better compared

to supervised RGM, which deteriorates considerably, even in the self-supervised case.

6.1.6 Evaluation on CoMA and TOSCA datasets

Figures 6.2 and 6.3 compare results among different techniques similarly to Fig. 6.1.

The main difference is that all works fine-tuned their models (originally trained on the

Custom dataset) on the CoMA dataset with self-supervised training. The exception is

Ours-GT, which uses supervised training. The clouds used from the CoMA dataset were

sampled from the entire original mesh which included not only the face but the entire

head. For the Cropped examples, Ours, Ours-GT, and Ours-RGM correctly classified

the missing parts. While Ours-GT had issues keeping the head shape of the cropped re-

gion, Ours-RGM misclassified some points around the mouth. Even though the three best
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Figure 6.2: Results on Cropped, Holes, and Outlier types of point clouds on top of the
CoMA Head dataset. Source cloud is in orange and target is in blue. Source points
classified as having no matches are shown in magenta.
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ed

(a) Original Clouds (b) Ours (c) Ours GT (d) Ours-RGM

(e) Ours-Neuro (f) RMANet (g) FLOT (h) BCPD

H
ol

es

(i) Original Clouds (j) Ours (k) Ours GT (l) Ours-RGM

(m) Ours-Neuro (n) RMANet (o) FLOT (p) BCPD

Source: The Authors
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works did not fail dramatically as the others, none of them were able to perfectly deform

the mouth. For the Holes case, the same three approaches had the best results. FLOT was

also able to register, but it deformed the source point cloud to produce similar holes to the

found in the target. The Outliers tests show the importance of the probabilistic module

together with dustbins (Section 4.3), as the three approaches with the best results used the

module (Ours, Ours-GT, and Ours-RGM). FLOT again was able to deal with most of the

outliers, however, the registration still had artifacts. In general RMANet, Ours-Neuro and

BCPD failed in all these examples.

Figure 6.3: Results on the Outlier type of point clouds on top of the CoMA Head dataset.
Source cloud is in orange and target is in blue. Source points classified as having no
matches are shown in magenta.
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ut

lie
rs

(a) Original Clouds (b) Ours (c) Ours Self (d) Ours-RGM

(e) Ours-Neuro (f) RMANet (g) FLOT (h) BCPD

Source: The Authors

Table 6.4 summarizes the results comparing the different approaches with the sce-

narios similar to Tables 6.1 and 6.2. The two variations of Our method, trained with

self-supervised and supervised learning, created the best results in general. For Clean

point clouds, NeuroMorph had the best results. However, as shown by the other results,

it could not handle missing regions or outliers. Outliers had the largest difference when

using ground-truth instead of self-supervised training. In this case, the improvement with

the supervision was noticeable and Ours-RGM had similar results to Ours.

Figure 6.4 present qualitative results comparing different approaches with Cropped,

Holes, and Outlier. Differently from Fig. 6.2, we sample points from only the face region

and we did not include BCPD, Ours-Neuro, and RMANet because they had the worst
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Figure 6.4: Results on Cropped, Holes, and Outlier types of point clouds on top of the
CoMA Face dataset. Source cloud is in orange and target is in blue. Source points classi-
fied as having no matches are shown in magenta.

(a) Input Clouds (b) Ours (c) Ours GT (d) Ours-RGM (e) FLOT

(f) Input Clouds (g) Ours (h) Ours GT (i) Ours-RGM (j) FLOT

(k) Input Clouds (l) Ours (m) Ours GT (n) Ours-RGM (o) FLOT

Source: The Authors

Figure 6.5: Registering facial expressions using source (a) and target (b) point clouds.
Registration results produced by our model trained on: the Custom dataset (c), fine tuning
the weights on faces (d), and fine-tuning on faces plus some clouds from Custom (e). The
latter keeps the original performance while better dealing with faces.

(a) Source (b) Target (c) Pre-trained (d) Only-Faces (e) Mixed

Source: The Authors
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Table 6.4: Performance comparison using EPE as well as Precision and Recall metrics
for several methods on different datasets. Columns refer to the CoMA Head dataset with
the point cloud types described in Section 6.1. BCPD indicates the errors after BCPD
post-processing. Cropped variations also report Precision and Recall when classifying if
source points have no correspondences. (7) means the technique did not handle the given
dataset, (-) means the comparison is not applicable. The best results are shown in bold.

Method
Clean Outliers Holes Cropped

P/D BCPD Prec. Recall

Ours 0.029 0.013 0.019 0.029 0.014 0.93 0.97
Ours-GT 0.028 0.014 0.016 0.028 0.014 0.94 0.97
Ours-RGM 0.028 0.018 0.018 0.038 0.017 0.91 0.94
Ours-Neuro 0.003 0.020 0.035 0.085 0.049 0.50 0.59
RMANet 0.040 - 0.115 0.160 7 7 7

FLOT 0.009 - 0.031 0.137 0.032 - -
BCPD - 0.043 0.038 0.061 7 7 7

Source: The Authors

results in the previous comparisons. For the Cropped scenario, Ours, Ours-GT and Ours-

RGM were able to correctly classify the missing region, but only Ours-GT preserved the

shape of it. In addition, as it happened to the Head cases, points around the mouth were

wrongly classified by RGM. In terms of registration for the points with correspondences,

FLOT presented the best results by correctly deforming the lower lip.

For Holes, Ours and Ours-RGM could deal with the small missing parts and de-

formed the jaw. However, they failed to close the mouth. This is a typical issue in scenar-

ios with a change in the topology of the original mesh and it is an open challenge for our

work. FLOT (Fig. 6.4j) was able to close the mouth, but, it could not keep the lip shapes

and created holes in the source cloud to exactly match the target.

Finally, in terms of Outliers, FLOT had issues because it deformed the points

toward the outliers. RGM, on the other hand, translated the face down in order to fit the

bottom part which took the forehead away from the target. The best results were from

Ours and Ours-GT, although they failed to keep the upper lip position.

As in Table 6.4, we compared different approaches in Table 6.5 but only focusing

on the face region. Differently from considering the entire head, Ours-RGM with self-

supervised training yielded the best results alongside Ours-GT. Since the original training

dataset for all works only considered the face region, Ours with self supervised started to

overfit sooner than RGM.

Overfitting does not result from our proposed self-supervision but from the inter-

action between the network and the CoMA dataset. This conclusion follows from the
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following observations: first, RGM got results on par with Ours-GT while using the self-

supervising training. In addition, we obtained results on par with Ours-GT by training

our neural network from scratch with self-supervision. For example, our registrations

had an EPE of 0.018 on Outliers, and of 0.015 on Cropped with Precision/Recall reach-

ing 0.84/0.90. These lower errors show that the overfitting comes from the network, the

dataset, and the training strategy. Finally, this problem alongside the issues regarding

varying topology (Fig. 6.4h) and fine-grained details (Fig. 6.4b) have the most space for

improvements.

Table 6.5: Performance comparison using EPE as well as Precision and Recall metrics
for several methods on different datasets. Columns refer to the CoMA Face dataset with
the point cloud types described in Section 6.1. BCPD indicates the errors after BCPD
post-processing. Cropped variations also report Precision and Recall when classifying if
source points have no correspondences. (7) means the technique did not handle the given
dataset, (-) means the comparison is not applicable. The best results are shown in bold.

Method
Clean Outliers Holes Cropped

P/D BCPD Prec. Recall

Ours 0.030 0.015 0.021 0.022 0.017 0.78 0.85
Ours-GT 0.023 0.015 0.018 0.018 0.015 0.90 0.94
Ours-RGM 0.032 0.015 0.018 0.018 0.015 0.80 0.92
Ours-Neuro 0.005 0.020 0.026 0.020 0.036 0.40 0.52
FLOT 0.009 - 0.019 0.088 0.012 - -

Source: The Authors

Fig. 6.5 shows registration results on a real dataset of different facial expressions

from TOSCA (BRONSTEIN; BRONSTEIN; KIMMEL, 2007). Starting from only 7

pairs of scanned faces, we generated 1,000 face pairs using self-supervised learning. In

Fig. 6.5c we used the model pre-trained with the Custom dataset, which can handle the

registration but misses details mostly in the mouth and around eyes. We attribute this to

the lack of instances of faces (or similar) in the dataset. To improve the results we fine-

tuned our model using the Face dataset (Fig. 6.5d). We also fine-tuned it using the Face

dataset plus some clouds from the Custom dataset (Fig. 6.5e). Although they produce

similar results, the latter maintains its performance on the Custom dataset. This shows

how the proposed model can be fine-tuned without becoming too specialized on the new

dataset.
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Table 6.6: Sensitivity and ablation study using setups trained with the self-learning and
evaluated with Clean and Cropped clouds from the RMANet dataset. The evaluation of
the Loss used the Custom dataset.

Method
Clean Cropped Time(s)

BCPD BCPD Prec./Recall 1K/8K

Ours L=4,O=20 0.020 0.020 0.93/0.98 0.053/0.395
Ours L=4,O=5 0.020 0.020 0.88/0.96 0.045/0.344
Ours L=4,O=35 0.020 0.020 0.94/0.98 0.060/0.448
Ours L=0,O=20 0.020 0.063 0.78/0.52 0.027/0.180
Ours L=2,O=20 0.020 0.020 0.92/0.97 0.036/0.331
Ours L=6,O=20 0.019 0.019 0.94/0.98 0.067/0.478
SuperGlue OT 0.020 0.035 0.90/0.79 0.044/0.305
Linear (SUN et al., 2021) 0.020 0.024 0.78/0.83 0.043/0.323
Point Transformer (ZHAO et al., 2021) a 0.031 0.046 0.84/0.79 0.075/0.483
Our Loss a 0.035 0.037 0.90/0.94 -/- b

RGM Loss a 0.040 0.059 0.84/0.90 -/- b

a Custom Dataset.
b Same architecture and time of Ours L=4,O=20.

Source: The Authors

6.1.7 Sensitivity and Ablation Study

We report results with different configurations of the proposed model in Table 6.6.

We show the contributions of each module plus the effect of using different approaches in

these modules. The first group of results show how the number of Sinkhorn iterations (O)

and attention layers (L) affect error, matching classification, and runtime. Increasing their

values directly affect runtime, but beyond the used values not as much the registration

quality. We also stress how the attention layers are vital for Cropped, as all variations of

L and O achieved similar precision on Clean. Replacing the SuperGlue attention module

with a linear one reduces performance in our application.

Although the SuperGlue Sinkhorn algorithm (SuperGlue OT) and the linear at-

tention module (SUN et al., 2021) produce impressive results in 2D images, they did not

perform so well for our application. We also change the feature embedding layers from

DGCNN to Point Transformer (ZHAO et al., 2021), although it performs well in the Clean

scenario, it has issues with partial clouds and it has a worse evaluation runtime. The last

group of experiments shows that our loss function outperforms RGM cross-entropy loss.
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Table 6.7: Comparison of different non-rigid registration techniques trained on Cropped
clouds from the Custom dataset. The evaluations use the same parameters as the main
paper’s experiments. Last column reports times for clouds with 1,000 and 8,000 points.

Method
Clean Cropped Time(s)

BCPD BCPD Prec./Recall 1K/8K

Ours 0.036 0.040 0.90/0.92 0.054/0.336
Ours Cycle 0.034 0.031 0.87/0.89 0.092/0.621
Ours Loop 0.024 0.031 0.88/0.91 0.092/0.834
Ours Self 0.035 0.037 0.90/0.94 0.054/0.336
Ours Self Cycle 0.035 0.033 0.89/0.92 0.092/0.621
Ours Self Loop 0.024 0.029 0.91/0.94 0.092/0.834
Ours-RGM 0.047 0.073 0.84/0.85 0.111/0.637
Ours-RGM Cycle 0.038 0.038 0.82/0.83 0.208/1.210
Ours-RGM Loop 0.025 0.054 0.83/0.86 0.263/2.316

Source: The Authors

6.1.8 Non-Rigid Registration with Multiple Iterations and Cyclic-Consistency

Table 6.7 reports results comparing our approach with and without self-learning,

and Ours-RGM using cyclic consistency and loop over neural network estimations. The

models were trained and evaluated on the Custom Dataset. Loop refers to using outter_max

= 10 as mentioned at Algorithm 1, resulting in estimating P at each outer iteration. Cyclic

consistency refers to having in the final soft assignment matrix only correspondences valid

on matching source to target and vice-versa. This is achieved by the following expression

Pfinal = PfrontP
T
back. We note in the original paper this was already used by rigid regis-

tration at the end of the second iteration. In this non-rigid case, we use a single iteration

to produce Pfront and PT
back. We refer to this variant by Cycle in our experiments.

Both Loop and Cycle improve EPE in all cases with our approach consistently

outperforming Ours-RGM. Loop is most effective with Clean point clouds, when the

correspondence estimation is easier given there are no partial clouds, or points without

correspondences. Therefore, the algorithm can converge to a correct and more precise

result without accumulating errors during the process. Cycle, on the other hand, benefits

dealing with partial inputs. This is the result of cyclic consistency improving wrong

estimated correspondences created by the partial clouds.

A downside of both Loop and Cycle is a worse classification of points without cor-

respondences in Cropped point clouds. We attribute this to the fact that for Cropped point

clouds the algorithm may accumulate matching errors across multiple calls to the model.
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Figure 6.6: Examples of improvement given by cyclic consistency (Cycle) for non-rigid
registration of the Stanford Armadillo point clouds. The source cloud is shown in orange
while target in blue. Points classified as having no matches are shown in magenta.

(a) Original (b) Ours Self (c) Ours Self Cycle

Source: The Authors

Even with Cycle, which improves EPE, Precision and Recall worsen. The improvements

are due to the use of Cycle reducing the number of false-positive matches (points that

should not have correspondences, but received a match nonetheless). These false posi-

tives tend to create artifacts as the regions around these points will be deformed incor-

rectly. However, Cycle still accumulates false negatives (points that should have a corre-

spondence, but none were found). For example, if a point p in Pfront was assigned no

correspondence, the resulting Pfinal for this point will have lower matching probabilities

even if PT
back correctly finds a match to p.

Figure 6.6 presents an example of improvements given by Cycle. In this case,

Ours-Self cannot correctly register the cropped armadillo with one pass, but by using an

additional pass (Cycle), our method offers a better registration at a faster time compared

to Ours-RGM using a single pass (Table 6.7).

6.1.9 Effects of β and λ on Non-Rigid Registration

Parameters β and λ are from BCPD and control, respectively, the variation of de-

formation among neighbor points, and the overall intensity of the deformation. Figure 6.7

shows the effects on registration of varying these parameter values, whereas Figure 1 of

the main paper has the results obtained with the default values (β = 2 and λ = 2). Larger

values of β or λ lead to less deformation. However, lowering the value of β or λ makes

the registration more sensitive to outliers and partial clouds.
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Figure 6.7: Non-rigid registration of Clean (top) and Cropped (bottom) clouds with our
self-learning model for several values of the β and λ parameters. The input point clouds
are shown in Figure A.1 (a) and Figure A.2 (a), respectively. Results with the default
parameter values (β = 2 and λ = 2) are shown in Figure 1 of the main paper. The source
cloud is shown in orange while target in blue. Points classified as having no matches are
shown in magenta.

(a) λ=0.5, β=2 (b) λ=200, β=2 (c) λ=2,β = 0.5 (d) λ=2,β=20

(e) λ=0.5, β=2 (f) λ=200, β=2 (g) λ=2,β = 0.5 (h) λ=2,β=20

Source: The Authors

6.1.10 Training on Mixed Noises

For this experiment, we reimplemented our neural network to support training

with batches made of point clouds of different number of points. Thus, the performance

of the model trained and evaluated on 1,024 points differs from the previous experiments.

This experiment was motivated by the quantitative results with the Custom dataset in

Table 6.2 and we report the same metrics in Table 6.8. In them, there is a significant

drop of performance on Outliers and Holes. To solve this problem, during training, for

each pair of clouds, we randomly selected among Outliers, Holes, and Cropped (we refer

to this strategy by Mixed). The first three rows refer to training and evaluating on the

Custom dataset, whereas the last rows were trained (where indicated) and evaluated with

the CoMA dataset, similar to Table 6.4. In all cases, we used self-supervised learning

with the first training step taking 60 epochs and the remaining taking 40 epochs.

Training from scratch on the Custom dataset with Mixed resulted in improved

results for Outlier and Holes. However, it compromised the Cropped clouds. This is

solved by fine-tuning the model trained on Cropped using Mixed, achieving then the best

of both. For the CoMA dataset case, the improvements were not as noticeable for outliers

and holes by having mixed noises during training, although, the results still improved. It

is important to notice that having only Mixed on CoMA degrades the results. This shows
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Table 6.8: Performance comparison using EPE as well as Precision and Recall metrics
for several methods on different datasets. Columns refer to the Custom dataset with the
point cloud types described in Section 6.1. BCPD indicates the errors after BCPD post-
processing. Cropped variations also report Precision and Recall when classifying if source
points have no correspondences. (7) means the technique did not handle the given dataset,
(-) means the comparison is not applicable. The best results are shown in bold.

Method
Clean Outliers Holes Cropped

P/D BCPD Prec. Recall

Cropped 0.064 0.029 0.061 0.053 0.034 0.90 0.95
Mixed 0.042 0.025 0.031 0.043 0.065 0.76 0.77
Cropped + Mixed 0.066 0.025 0.032 0.040 0.031 0.93 0.95
Cropped + Cropped (CoMA) 0.028 0.011 0.019 0.025 0.13 0.93 0.97
Cropped + Mixed
+Mixed (CoMA) 0.027 0.015 0.017 0.048 0.023 0.82 0.75

Cropped + Cropped (CoMA)
+Mixed (CoMA) 0.027 0.013 0.015 0.023 0.013 0.94 0.97

Source: The Authors

the same sequence of Cropped + Mixed is the best approach for better generalization.

6.1.11 Generalization to Different Number of Points

Table 6.9: Performance comparison using EPE and Precision and Recall metrics for our
proposed technique. The network was trained with self-supervision on Custom and fine-
tuned on COMA Head dataset, and evaluated on Cropped clouds with different number
of points. EPE 3D indicates the error for points with correspondence, and Precision and
Recall refers to classifying if source points have no correspondences. The best results for
each number of points are shown in bold.

Method
Trained on 512 Trained on 1024 Trained on 2048

EPE 3D Prec./Recall EPE 3D Prec./Recall EPE 3D Prec./Recall

256 pts 0.015 0.92/0.96 0.055 0.81/0.69 0.086 0.55/0.65
512 pts 0.013 0.92/0.97 0.023 0.91/0.92 0.035 0.80/0.83
1,024 pts 0.014 0.92/0.96 0.015 0.92/0.96 0.019 0.86/0.88
2,048 pts 0.015 0.89/0.95 0.015 0.90/0.96 0.017 0.88/0.93
4,096 pts 0.017 0.79/0.81 0.018 0.80/0.90 0.019 0.84/0.92

Source: The Authors

Tables 6.9 and 6.10 report results comparing our proposed model trained and eval-

uated on the same setup of Table 6.4, with the CoMA dataset and self-supervised training.

In these cases, we trained and evaluated on a variable number of points and the tables show



72

Table 6.10: Performance comparison using EPE and Precision and Recall metrics for our
proposed technique. The network was trained with self-supervision on Custom and fine-
tuned on COMA Head dataset, and evaluated on Outlier and Holes clouds with different
number of points. The best results for each number of points are shown in bold.

Method
Trained on 512 Trained on 1024 Trained on 2048

Outlier Holes Outlier Holes Outlier Holes

256 pts 0.021 0.032 0.046 0.046 0.033 0.042
512 pts 0.019 0.028 0.022 0.027 0.026 0.029
1,024 pts 0.020 0.028 0.017 0.026 0.019 0.031
2,048 pts 0.024 0.028 0.020 0.028 0.019 0.032
4,096 pts 0.034 0.038 0.025 0.038 0.021 0.034

Source: The Authors

how this variation affects the performance when registering point clouds.

For 256 and 512 points, the model trained with 512 points dominates over the

others, showing that applying models to less points indeed negatively affects the results. It

also indicates that training with more points leads the network to become more dependent

on the extra context that larger point clouds give. Following this, it would be expected

that for upsampling, the model trained with 512 points would have results on par to 2,048

points, since it learned to rely on less. However, we notice that training with less points

result in a model less sensitive to small details on clouds. This can be seen by the lower

EPE on models trained with more points, on Outliers and Holes starting at 2,048 and

continuing at 4,096.

However, for Cropped the model with better EPE on larger clouds was trained on

512 points, even though for 4,096 the classification of points with no matches has better

results on the model trained with 2,048. This might be counterintuitive as the model

trained on 512 has worse precision and recall metrics on points with correspondences

(0.77/0.76 against 0.82/0.80). However, it is worth mentioning that since we enforce

motion coherence, an entire neighborhood can be wrongly deformed by false positives

with high confidence. We attribute the best precision of the first model to this.

6.2 Rigid Registration

For the rigid registration experiments, we used the ModelNet40 (WU et al., 2015)

dataset which consists of 12,311 point clouds from 40 categories of CAD models. From

each cloud, we used 1,024 points to train the models on half of the categories while
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evaluating them on the other half. This follows the testing strategy used by the compared

works RPMNet (YEW; LEE, 2020), RGM (FU et al., 2021), and Predator (HUANG

et al., 2021). All clouds were randomly rotated by up to 45◦around all axes and also

translated by some random amount in the interval [-0.5, 0.5] along all three axes during

training and evaluation. The set of point clouds with these random transformations is

called Clean. The experiments also include a set of Jitter point clouds, obtained by adding

random Gaussian noise sampled from N (0,0.01) and clipped to [-0.05, 0.05] to Clean

point clouds. The last set of point clouds, Crop-Noise, builds on Crop-Noise by keeping

only a percentage of the source and target points. All works were trained with the most

challenging scenario Crop-Noise (keeping 70% of the samples). This evaluates how they

generalize to Clean and Jitter as well. We compare our results against three state-of-the-

art methods: Predator, RGM, and RPM-Net. We do not further compare to other methods

as these ones have shown to outperform the others. We use SGD to train our network with

a 0.001 learning rate.

6.2.1 Metrics

To evaluate rigid registration we adopt the mean isotropic error (MIE) (YEW;

LEE, 2020) and the mean anisotropic error (MAE) (WANG; SOLOMON, 2019). These

are given respectively by

MIE(R) = ∠(R−1GTR), MIE(t) = ‖tGT − t‖, (6.3)

MAE(R) =
1

3

∑
|Reul

GT −Reul|, MAE(t) =
1

3

∑
|tGT − t|, (6.4)

where the MIE(R) and MAE(R) are in degrees, and ∠(R) = arccos
(
tr(R)−1

2

)
. R is the

estimated rotation matrix, t is the estimated translation vector, and Reul is R expressed as

a triple of Euler angles. RGT , tGT ,R
eul
GT are their respective ground truths values.

6.2.2 Evaluation on ModelNet40 dataset

Figure 6.8 compares the results produced by our method, Predator, RPMNet, and

RGM for the rigid alignment of incomplete point clouds with partial overlap. For this ex-
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Figure 6.8: Rigid registration produced by various models.

(a) Original Clouds (b) Ours (c) Predator (d) RPMNet (e) RGM

Source: The Authors

Figure 6.9: Rotation errors in degrees, MIE and MAE, comparing different approaches
for rigid registration on ModelNet40 dataset on Clean, Jitter, and different percentages of
samples kept for Crop-Noise.
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(b) Mean Anisotropic Rotation Error (MAE)

Source: The Authors

ample, our method produces better registration of the vase and plant, while other methods

cause the partial clouds to cross each other. Fig. 6.9 compares the rotation errors in all

test cases for Predator, RPMNet, and RGM. It shows that our method has smaller errors

for all tested cropping levels.

Table 6.11 compares results with Clean clouds where our model and RPMNet

have the best results for translations. Except for Predator, all works present a low rotation

error, close to 0.1◦. On Jitter ( Table 6.12), RGM has the lead, closely followed by

ours. Again, Predator presents larger errors than the others. Finally, for Crop-Noise point

clouds with Gaussian noise (Table 6.13), our model is the only one to achieve less than one

degree of error at MIE(R) and it has the best overall results. These experiments highlights

our model’s robustness, as it consistently obtains good results across the different types

of point clouds.
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Table 6.11: Rigid-body registration results on clouds without noise (Clean). Isotropic and
anisotropic mean errors for rotation (R) and translation (t). The best results are shown in
bold.

Method MIE (R) MIE (t) MAE (R) MAE (t)

Ours 0.130 0.0007 0.060 0.0003
Predator 1.620 0.0100 0.850 0.0070
RGM 0.150 0.0008 0.060 0.0004
RPMNet 0.072 0.0007 0.036 0.0003

Source: The Authors

Table 6.12: Rigid-body registration results on clouds with Gaussian noise. Isotropic and
anisotropic mean errors for rotation (R) and translation (t). The best results are shown in
bold.

Method MIE (R) MIE (t) MAE (R) MAE (t)

Ours 0.210 0.0020 0.110 0.0010
Predator 1.580 0.0150 0.830 0.0070
RGM 0.140 0.0013 0.077 0.0006
RPMNet 0.574 0.0050 0.291 0.0020

Source: The Authors

Table 6.13: Rigid-body registration results on clouds with Gaussian noise and random
crop preserving 70% of the points. Isotropic and anisotropic mean errors for rotation (R)
and translation (t). The best results are shown in bold.

Method MIE (R) MIE (t) MAE (R) MAE (t)

Ours 0.770 0.0060 0.410 0.0030
Predator 1.880 0.0190 0.980 0.0090
RGM 1.550 0.0150 0.810 0.0070
RPMNet 1.712 0.0180 0.890 0.0080

Source: The Authors
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6.2.3 Sensitivity Study

Table 6.14 reports results on the mentioned scenarios with different number of

iterations and the previously described cyclic consistency (Section 5.1). Instead of the

two iterations used by RGM, we tested more and fewer repetitions. The Clean scenarios

benefit the most from more iterations, as all metrics consistently improve. This is due to

the absence of noises that could impact the convergence, so the errors keep reducing. Jitter

has no benefit with more iterations which shows that the network cannot produce better

correspondences, independently of how much aligned the clouds are. Finally, Crop-Noise

reaches the same plateau in the third iteration, meaning that the model cannot deal better

with the noise and partial correspondences.

Table 6.14: Rigid-body registration results on clouds on Clean, Jitter and Crop-Noise.
Isotropic and anisotropic mean errors for rotation (R) and translation (t). The best results
are shown in bold.

Method MIE (R) MIE (t) MAE (R) MAE (t)

Ours Clean 0.130 0.0007 0.060 0.0003
Ours Iter 3 0.036 0.0002 0.014 0.0001
Ours Iter 4 0.012 0.0000 0.001 0.0000
Ours Iter 1 0.966 0.0064 0.468 0.0031

Ours Jitter 0.210 0.0020 0.110 0.0010
Ours Iter 3 0.204 0.0019 0.112 0.0010
Ours Iter 4 0.206 0.0020 0.113 0.0010
Ours Iter 1 0.684 0.0053 0.346 0.0026

Ours Crop-Noise 0.770 0.0060 0.410 0.0030
Ours Iter 3 0.583 0.0048 0.308 0.0024
Ours Iter 4 0.591 0.0051 0.313 0.0025
Ours Iter 1 2.640 0.0220 1.364 0.0108

Source: The Authors

6.3 Limitations

Our method for non-rigid registration does not handle very large deformations.

Figure 6.10 illustrates this limitation with an example from the FAUST dataset proposed

by NeuroMorph (EISENBERGER et al., 2021). This dataset originally focuses on corre-

spondences of meshes, all of them representing people in different poses and with bigger

deformations than the ones found in the Custom and RMANet datasets. This shows that
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Figure 6.10: Results in the FAUST dataset comparing NeuroMorph to our approach. Even
though our algorithm improves performance on noise cases, when there are large deforma-
tions and complete point clouds, the inner-product-based NeuroMorph has better results.
If we consider Outlier and Holes though, NeuroMorph as well as ours cannot properly
register the clouds.

(a) Original (b) Neuro Clean (c) Neuro Outlier (d) Neuro Holes

(e) Ours Clean (f) Ours Outlier (g) Ours Holes

Source: The Authors

the Sinkhorn module with dustbins and probability model may not handle well correspon-

dences between largely deformed clouds. Our model may not immediately generalize to

different point clouds. Currently, this problem is addressed by fine-tuning the model in

a self-learning manner with examples of point clouds from the non-handled classes. The

other main limitation concerns varied topology between source and target and matching

fine details. Examples of these are the problems dealing with opening and closing mouths

at Fig. 6.4 or the expressions at Fig. 6.5.

6.4 Summary

This chapter reported experiments validating the overall advantages of our pro-

posed registration methods over the compared approaches. In datasets with larger move-

ments and details such as limbs, RMANet and Custom, we achieved on average superior

performance. Even though we trained RDR only with Cropped point clouds, it could di-

rectly tackle other scenarios (as in the RAMNet dataset case). In situations where it could

not generalize so well, as with Outlier and Holes in Section 6.1.10, fine-tuning to other
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noise types improved the registrations.

The experiments also showed that different RDR configurations work better for

some scenarios. For example, cyclic consistency tends to improve results on partial point

clouds, whereas more complete clouds benefit from multiple loop iterations. Moreover,

there are advantages to training for a specific number of points. Thus, if it is possible to

predict the size of clouds during evaluation time, one should train on this number. Finally,

in the rigid case, a total of 3 iterations yields the best results across all noise types.

The experiments also indicated RDR still fails in fine-detailed scenarios, even

though it was better than the other compared approaches on average. In the datasets fo-

cusing on faces, we notice problems dealing with finer details. Our approach tends to deal

poorly with changes in the topology of the original triangular mesh, such as mouth open-

ing or closing. Another example from the CoMA Face dataset was in the classification

of points without correspondences, where it overfitted (poor results on Cropped Preci-

sion/Recall). The last open point for improvements is in the probabilistic post-processing,

where parameters, λ, and β, directly affect the final registration (Section 6.1.9).
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7 CONCLUSION

We presented a learning-based model for both non-rigid and rigid registration of

3D point clouds while being robust to noise and missing portions. We accomplish this

by adapting and improving a neural network designed to match sparse features in 2D im-

ages to densely match features in 3D point clouds. This is a considerably harder problem

performed on unstructured data, as opposed to on a regular image grid. Our main im-

provements in the network are a new feature encoding module, and a different approach

to handle missing correspondences and to create a valid probability matrix as the network

output.

In addition, our technique combines the advantages of deep learning and proba-

bilistic modeling for non-rigid registration. To the best of our knowledge, this is the first

time such a combination is explored in the context of non-rigid registration of 3D point

clouds. To solve rigid registration, we used our neural network in a framework that uses

cyclic consistency and multiple iterations. This achieved state-of-art results on both non-

rigid and rigid registration with superior performance on noisy and partial point clouds.

Our experiments showed that our models outperformed previous techniques in

terms of robustness in three challenging datasets for non-rigid registration, and one for

rigid. In all cases, we tested with partial point clouds and different kinds of noise. Fur-

thermore, we addressed the lack of datasets with ground truth for non-rigid registration by

proposing a self-supervised training strategy, which can be combined with random gen-

eration of noisy point clouds. This can create fully synthetic datasets that produce robust

learning-based models.

We further discussed various aspects of our non-rigid registration method. The

first was showing how gracefully it degrades with increasing levels of noise. This was

followed by discussing how integrating the calls to our neural network in an optimization

loop could improve registration on complete point clouds, and how cyclic consistency

could help on partial point clouds. Thirdly, we showed that it is possible to improve

our initially reported registration results by training our model simultaneously with point

clouds containing missing regions, outliers, and holes. Finally, our experiments show that

having similar number of samples in the point clouds used for training and evaluation

reduces the registration error.

The results of this work covering rigid and non-rigid registration were reported

in an article entitled Robust Point-Cloud Registration based on Dense Point Matching
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and Probabilistic Modeling published in the The Visual Computer journal (volume 38,

pages3217–3230, 2022).

7.1 Future Work

The main directions for future exploration are to target the limitations of the pro-

posed approach. We narrow the constraints into two: problems handling large deforma-

tions, and dealing with finer details. A first direction to explore is a better integration

of our deep-learning model with the BCPD algorithm. Currently, they are separate and

independent steps, so having BCPD able to inform the neural network with more than

the input clouds when doing multiple iterations of the network could improve perfor-

mance. We also tested stagewise training approach for a tighter integration but it did

not offer improvements in the CoMA dataset. In this strategy, we fine tuned our model

while considering the probabilistic refinement operations. So, instead of comparing the

correspodence matrix (Section 4.4), we used the L1 distance between the registered point

cloud (produced by our refinement) and the ground truth.

Another direction is to explore delegating to the network the understanding of

motion-coherence. This is done in networks like FlowNet3D (LIU; QI; GUIBAS, 2019)

and PointPWC (WU et al., 2020) by using cost-volumes and further investigation could

lead to a similar behavior for non-rigid registration. Finally, further developments of the

BCPD algorithm could improve results, examples of efforts are presented at Appendices B

and C. In these chapters, even though we could not achieve improvements, we regard our

trials as initial steps to a better BCPD.
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APPENDIX A — FURTHER QUALITATIVE RESULTS

We present additional results at Figures A.1 to A.9 comparing techniques using

point clouds from the RMANet and ModelNet40 datasets. Source clouds are in orange

and target ones in blue. Source points classified as not having matches are shown in

magenta. All cases used the same parameters used in the main paper, with no Loop or

Cycle.

Figures A.1 to A.8 show examples of non-rigid registration. From them, one can

note that our method and its self-learning variation produces the best alignments. This is

highlighted for the Cropped point clouds. Although Ours-RGM can also deal with partial

clouds, it is not as precise as our SuperGlue-based model. Figure A.2d is an interesting

example where the RGM network has issues indicating points with no matches. This leads

to the refinement based on BCPD to not infer the missing part (in magenta) as well as the

examples that use our learning model (Figures A.2 (b) and (c)). Furthermore, Figures A.1

and A.5 have results with complete clouds and all works except FLOT produce good

results. We notice RMANet on the other hand, can only present good results in this

scenario (Figures A.1 (f) and A.5 (f)). This is expected since RMANet was trained with

Clean clouds (it could not learn with Cropped). Figures A.6 to A.8 highlight the benefits

of the probabilistic refinement, as techniques that use such refinement produce better

results than the ones that do not use it (RMANet and FLOT). The benefits are not only

when inferring the registration of missing parts in Cropped point clouds, but also when

fixing incorrect correspondences in noisy point clouds (Outliers) or in point clouds with

Holes.

Figure A.9 provides an example of rigid registration and shows a challenging sce-

nario from the ModelNet40 dataset. In this case, the clouds represent a flower and both

were cropped. Since the upper part is not as descriptive, only the tip of one leaf indicates

the correct alignment. Only our model and Predator consider this detail and produce cor-

rect registration. RGM and RPMNet assume the leaf to be the stem which completely

changes the final result.
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Figure A.1: Comparing various techniques for non-rigid registration on Clean point
clouds from the RMANet dataset. Our method, its variants and RMANet perform well.
FLOT and BCPD miss the tail.

(a) Original Clouds (b) Ours (c) Ours Self (d) Ours-RGM

(e) Ours-Neuro (f) RMANet (g) FLOT (h) BCPD

Source: The Authors

Figure A.2: Comparing various techniques for non-rigid registration on Cropped point
clouds from the RMANet dataset. Only Ours and Ours-Self obtain good results. Ours-
Neuro and BCPD can align the points with correspondences, but are unable to deal with
points without matches.

(a) Original Clouds (b) Ours (c) Ours Self (d) Ours-RGM

(e) Ours-Neuro (f) RMANet (g) FLOT (h) BCPD

Source: The Authors
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Figure A.3: Comparing various techniques for non-rigid registration on noisy (Outlier)
point clouds from the RMANet dataset. Ours, Ours-RGM and BCPD achieve good re-
sults. Ours-Neuro and RMANet have issues dealing with wrong correspondences. Since
they could not train with Cropped point clouds and used Clean instead, they cannot deal
with target points meant to not be matched.

(a) Original Clouds (b) Ours (c) Ours Self (d) Ours-RGM

(e) Ours-Neuro (f) RMANet (g) FLOT (h) BCPD

Source: The Authors

Figure A.4: Comparing various techniques for non-rigid registration on point clouds con-
taining Holes. Ours, Ours-RGM and Ours-Neuro present the best results.

(a) Original Clouds (b) Ours (c) Ours Self (d) Ours-RGM

(e) Ours-Neuro (f) RMANet (g) FLOT (h) BCPD

Source: The Authors
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Figure A.5: Another example comparing various techniques for non-rigid registration on
Clean point clouds from the RMANet dataset. We noticed how most works perform well,
except FLOT and BCPD, which misses the feet.

(a) Original Clouds (b) Ours (c) Ours Self (d) Ours-RGM

(e) Ours-Neuro (f) RMANet (g) FLOT (h) BCPD

Source: The Authors



90

Figure A.6: Comparing various techniques for non-rigid registration on point clouds
Holes. Techniques that use the proposed probabilistic refinement step properly handle
this scenario. Even though BCPD correctly aligns the upper body, it misses the feet.

(a) Original Clouds (b) Ours (c) Ours Self (d) Ours-RGM

(e) Ours-Neuro (f) RMANet (g) FLOT (h) BCPD

Source: The Authors

Figure A.7: Comparing various techniques for non-rigid registration on Cropped point
clouds from the RMANet dataset. Only Ours, Ours-Self, and Ours-RGM achieved good
results, with Ours and Ours-Self achieving the best results. Ours-Neuro and BCPD can
align the points with correspondences but are unable to deal with points without matches.

(a) Original Clouds (b) Ours (c) Ours Self (d) Ours-RGM

(e) Ours-Neuro (f) RMANet (g) FLOT (h) BCPD

Source: The Authors
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Figure A.8: Comparing various techniques for non-rigid registration on noisy (Outlier)
point clouds from the RMANet dataset. Ours, Ours-Self, Ours-RGM and BCPD achieve
good results. Ours-Neuro and RMANet have issues dealing with wrong correspondences.

(a) Original Clouds (b) Ours (c) Ours Self (d) Ours-RGM

(e) Ours-Neuro (f) RMANet (g) FLOT (h) BCPD

Source: The Authors

Figure A.9: Crop-Noise clouds from the ModelNet40 dataset. Differently from the non-
rigid pairs, both clouds were cropped and only the tip of one leaf offers a context to align
the upper part. Ours and Predator can deal with this challenge, whereas RPMNet and
RGM align the plant stem instead.

(a) Original Clouds (b) Ours (c) RGM (d) RPMNet (e) Predator

Source: The Authors
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APPENDIX B — RESTRICTIONS TO POINTWISE σ2

This appendix describes some initial effort to improve the BCPD algorith. More

specifically, it aims at having a point-wise optimization of the variance, σ2. We notice the

original formulation has a unique value for all GMM components. In this case, we tried

to modify the formulation to support possible different value for each component. This

means that in addition to considering each source point as the mean value of a Gaussian

during optimization, we would also account for individual variances. This did not improve

the original results compared to the single-value formulation. Nevertheless, we describe

the attempted formulation. We expect this can contribute to different approaches that

could yield positive results. All symbols used here follow the notation from Section 2.3.1

and Section 3.1.

The BCPD algorithm can be broken down into three parts (supplemental material

of BCPD (HIROSE, 2020b)). The first two focus on optimizing the non-rigid deforma-

tion, and only use σ2. They are not affected in their formulas by this change. The last

part, which computes the value of σ2, requires an update. Our proposed update is a new

equation tha replaces Equation 4 in the BCPD’s supplemental material:

log q3 = E(x, y, θ) =
N∑
n=1

M∑
m=1

cnδm(en)ln|2πσ2
mID|−

1
2−

1

2

M∑
m=1

1

σ2
m

N∑
n=1

cnδm(en)‖xn − T (ym)‖2.

(B.1)

Following the original formulation, increasing the above function value with respect to

σ2
m maximizes the lower bound and, consequently, the full joint probability. So, in order

to find the maximum value of the above function, we take the derivative w.r.t. σ2
m and

then set it to zero,

∂ log q3
∂σ2

m

=
N∑
n=1

M∑
m=1

−1

2
cnδm(en)Tr(σ2

mID)−1+

1

2

M∑
m=1

1

(σ2
m)2

N∑
n=1

cnδm(en)‖xn − T (ym)‖2.

(B.2)

For the derivative the following property was used: ∂|Y|
∂x

= |Y|Tr(Y−1 ∂Y
∂x

), where |.| is the
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determinant of the given matrix. By setting it to zero we obtain:

D

N∑
n=1

M∑
m=1

cnδm(en)(σ2
m)−1 =

M∑
m=1

1

(σ2
m)2

N∑
n=1

cnδm(en)‖xn − T (ym)‖2. (B.3)

In this part, we adopt the same definitions of BCPD, so we have
∑N

n=1 cnδm(en) = νm

and cnδm(en) = pmn, which results in

M∑
m=1

νm
σ2
m

=
M∑
m=1

1

D(σ2
m)2

N∑
n=1

pmn‖xn − T (ym)‖2.

Finally, by isolating σ2 we obtain an expression for estimating σ2
m at each step of the

algorithm

σ2
m =

1

Dνm

N∑
n=1

pmn‖xn − T (ym)‖2.

Our implementation with individual values of σ2 did not present satisfactory results. We

consider it a topic for future investigation.
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APPENDIX C — RESTRICTIONS TO OPTIMIZE λ

From Algorithm 2 and Table 3.1, we highlight a series of input parameters that

are meant to be tuned (λ, β, γ). In this appendix, we present an effort to optimize λ. This

parameter was chosen because it is the simplest to obtain the update equations. Optimiz-

ing β, for example, would require equations based on how the motion coherence term G

is built. This would be more complex than λ, which is directly used when estimating the

deformation vectors, v. Nevertheless, we could not optimize λ.

By inspecting Algorithm 2, we notice a lack of metrics showing the quality of

the registration. This is understandable since one-to-one correspondences might not exist

between points, and this is also a task to be optimized by the algorithm. Therefore, it

becomes impossible to have a clear loss function comparing points from source and target

point clouds. The closest approximation to this is σ2, which can be interpreted as the

average distance from source to target clouds weighted by the confidence we have on

each match. This means that a large distance from a source point ym to a target one xn,

will be weighted by a small value of Pmn. Moreover, BCPD already uses σ2 as the stop

condition for the probabilistic optimization.

Given the role of σ2 in the algorithm, we search for a value of λ that minimizes

σ2, thus resulting in a better registration. To compute this, we take the derivative of σ2

w.r.t. λ, given by the expression at (line 17 in Algorithm 2) and set it to zero.

It is important to mention that we assume σ2 to be pointwise, as we in Appendix B

for σ2
m. Furthermore, the obtained λ is pointwise as well. This was motivated by the

simpler equations we obtain when deriving a matrix producing function w.r.t. to a matrix

variable. This becomes more critical when using the chain rule in the derivatives, which

in our case used the matrix producing function ŷ. In the original equations with scalars

σ2 and λ, the chain rule would require deriving a scalar by a matrix, followed by a matrix

by a scalar. This is avoided with our choices and we always deal with matrices in the

optimization.

The original equation in the line 17 of Algorithm 2 is

σ̃2 =
1

3N̂

(
xTdiag(ν ′)x− 2xTPT ŷ + ŷTdiag(ν)ŷ

)
, (C.1)
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and the obtained equation is given by

σ2
m =

1

3νm

N∑
n=1

pmn
(
xnx

T
n − 2xnŷ

T
m + ŷmŷ

T
m

)
, derivative w.r.t. λ and in matrix form

(C.2)

∂σ2
m

∂λ
= (PX − diag(ν)ŷ)

∂ŷ

∂λ
, by the chain rule

∂σ2
m

∂ŷ

∂ŷ

∂λ

(C.3)

0 = PX − diag(ν)ŷ, after equating it to 0 (C.4)

0 = PX − diag(ν)(s(R(Y + v)T )T + t), where ŷ = s(R(Y + v)T )T + t

(C.5)

PX − diag(ν)t = diag(ν)s(Y + v)RT (C.6)

s−1(diag(ν)−1PX − t)R = Y + v, by algebric manipulation

(C.7)

Xb = s−1(diag(ν)−1PX − t)R, first part named Xb (C.8)

Xb = Y + G(
λσ2

s2
diag(ν)−1 + G)−1(T−1(x̂)− Y ), expanding v given Algorithm 2

(C.9)

G−1(Xb− Y ) = (
λσ2

s2
diag(ν)−1 + G)−1(T−1(x̂)− Y ) (C.10)

(
λσ2

s2
diag(ν)−1 + G)G−1(Xb− Y ) = Re, where Re = T−1(x̂)− Y

(C.11)

Xb− Y +
λσ2

s2
diag(ν)−1G−1(Xb− Y ) = Re (C.12)

Xb− Y = Gdiag(ν)
s2

σ2
λ−1(Re−Xb+ Y ) (C.13)

Xb− Y = Gλ−1diag(ν)
s2

σ2
(Re−Xb+ Y ) . (C.14)

Notice the final equation has in both sides M×3 matrices. G and λ−1 on the other hand

are M×M matrix, where λ−1 is a diagonal matrix in this case. Estimating λ given this

scenario require two steps. The first step is to invert G, and the second is a pointwise

division on both side:

G−1(Xb− Y ) = λ−1diag(ν)
s2

σ2
(Re−Xb+ Y ), (C.15)

λ−1 =
G−1(Xb− Y )

diag(ν) s2

σ2 (Re−Xb+ Y )
. (C.16)



96

The main issue found is on inverting G. Radial basis function or other tested kernels do

not guarantee the existence of an inverse. In most cases, the matrix is ill-conditioned,

which creates numerical instability and unexpected results. We leave solving this equa-

tion, and mainly not depending on inverting G as an open topic for future investigations.
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APPENDIX D — RESUMO ESTENDIDO

Esta dissertação apresenta duas técnicas para o registro de nuvens de pontos 3D

que são robustas a ruído e a nuvens de pontos parciais. Nossas técnicas abordam o registro

rígido e o não rígido e exploram as vantagens do uso de aprendizado profundo para a

estimativa de correspondência densa entre pontos.

A Figura D.1 mostra resultados produzidos por cada passo da nossa técnica (Cor-

respondências por Aprendizado de Máquina e Refinamento Probabilístico) para o reg-

istro não rígido em diferentes cenários. Esses incluem: (i) uma das nuvens sendo parcial

(Cropped - primeira linha). (ii) vários buracos em uma das nuvens de pontos (Holes - se-

gunda linha); (iii) uma das nuvens de pontos com ruído (Outliers - terceira linha); (iv) uma

combinação de nuvem parcial e com ruído (Cropped + Outliers - quarta linha). Perceba

como nosso método consistentemente alcança bons resultados em todos os casos, sendo

capaz de lidar com pontos sem correspondências de forma apropriada (em magenta).

Figure D.1: Registro não rígido produzido por nosso método em cenários desafiadores.
Nós apresentamos os resultados após cada estágio do nosso fluxo. As nuvens iniciais
estão em laranja e as de destino estão em azul. Pontos sem correspondências na nuvem
de destino são mostradas em magenta.

Learning-based
Correspondence

Cropped 

Input         
Point Clouds

Holes

Outlier

Cropped 
+ Outlier 

Probabilistic 
Refinement

Fonte: Os Autores

Considerando os resultados mostrados, essa dissertação inclui as seguintes con-

tribuições:



98

• Técnicas baseadas em aprendizado de máquina para registros não rígidos (Capí-

tulo 3) e rígidos (Capítulo 5) de nuvens de pontos que são robustas a nuvens parci-

ais e a ruído. Ambas as técnicas têm desempenhos superiores a outras abordagens

nesses cenários desafiadores;

• Uma adaptação da rede neural SuperGlue para estimar correspondências entre pares

de nuvens de pontos 3D (Capítulo 4);

• Uma estratégia de treinamento autosupervisionado para o registro não rígido e ro-

busto de nuvens de pontos (Seção 6.1.3).

Para ambos os tipos de registro, nós propomos uma única rede neural para estimar

a correspondência densa entre os pontos. Ela se baseia na rede SuperGlue (SARLIN et

al., 2020), mas a modifica em três pontos principais. O primeiro é usando a rede neural

DGCNN (WANG et al., 2019) para aprender a estimar descritores iniciais de cada ponto

das nuvens. Isso é seguido por uma nova camada para gerar a matriz de correspondên-

cias final. Ao invés de modelar essa parte como um problema de transporte ótimo e

o resolver com o algoritmo de Sinkhorn (CUTURI, 2013), nós usamos o operador de

Sinkhorn (MENA et al., 2018) com alternativas extras de correspondências. Por fim, nós

incluímos um termo extra na função de perda com entropia cruzada usada no treinamento

da rede neural. Esse termo novo foca em reduzir o número de falsos positivos nas corre-

spondências. A rede neural resultante ainda usa a mesma sequência de módulos propostos

por SuperGlue: estimativa de descritores + módulo de atenção + refinamento com alter-

nativas extras. Todavia, nossas mudanças são cruciais para o bom desempenho do modelo

em nuvens de pontos 3D.

Além disso, nós aplicamos avanços recentes em modelagem probabilística para

refinar as correspondências criadas por nossa rede durante o registro não rígido. Tal

combinação de aprendizado profundo e modelagem probabilística produz sensibilidade

a contextos e também gera uma deformação coerente dos pontos. Como consequência,

nossa abordagem é resiliente a ruído e a perda de informação.

Nosso refinamento é baseado no BCPD (HIROSE, 2020b) e substitui a estimativa

densa de correspondências entre as nuvens de pontos iniciais e de destino pela matriz ger-

ada pela nossa rede neural. Mesmo que essa troca viole as suposições feitas por BCPD

de que as probabilidades vêm de uma mistura de distribuições Gaussianas, nós argumen-

tamos que essa opção ainda assim é válida tendo em vista os resultados obtidos. Outra

diferença no algoritmo de refinamento são os laços interno e externo que são consequên-

cias da otimização do registro em dois estágios. O resultado é um algoritmo que pode
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trabalhar com uma ou múltiplas iterações do laço externo.

Já para o registro rígido, nossa técnica aplica consistência cíclica e múltiplas

chamadas para a rede neural proposta. Esses passos são seguidos pela estimativa da matriz

de transformação rígida usando o método clássico com SVD. Diferentemente do caso não

rígido em que usamos uma matriz fracionária, aqui nós convertemos as correspondências

em valores binários e inteiros.

Demonstramos a efetividade das nossas técnicas ao compará-las com métodos no

estado da arte. Essas comparações usam bases de dados com ruído e nuvens de pontos

parciais ou com amostragem irregular. As nuvens consideradas têm movimentos acen-

tuados e detalhes como membros se movendo em direções diferentes, ou rostos fazendo

diversas expressões. Os experimentos mostram que, em geral, nós obtemos resultados su-

periores às técnicas no estado da arte. Por exemplo, nossas abordagens alcançam um erro

até 45% menor que outras técnicas no registro não rígido de nuvens de pontos parciais,

ou até 49% menor no registro rígido.

Nós também discutimos alguns aspectos extras da nossa técnica como a robustez a

níveis diferentes de ruído e a números diversos de amostras nas nuvens de pontos. Por úl-

timo, abordamos a falta de bases de dados que forneçam o registro correto entre as nuvens

de pontos. Essas bases são críticas no treinamento supervisionado de modelos de registro

não rígido. Para resolver essa escassez, nós propomos uma estratégia de autoaprendizado

baseada em deformações randômicas.

Finalmente, salientamos que ainda há espaço para melhorias nas nossas técnicas,

em especial para o registro não rígido. Um primeiro ponto seria no tratamento de defor-

mações muito grandes ou nuvens com escalas diferentes. Outro aspecto seria em ter uma

rede neural produzindo diretamente o registro, ou seja, sem a necessidade de um refina-

mento posterior. Essa é a tarefa futura mais desafiadora, mas é a que promete os maiores

avanços.
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