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ABSTRACT

Nature is exuberant in visual patterns: spots on mammals, veins on leaves, maze-like
structures in fishes, and many others. Computer Graphics has achieved success in model-
ing and rendering many of these patterns. Nevertheless, a fundamental problem remains:
how to validate the results beyond visual comparison. Here we propose a set of quanti-
tative descriptors tailored to describe visual biological patterns found in many species of
mammals and fishes. We are interested in analyzing the most common pattern structures:
spots, labyrinths, and stripes. First, we compute a set of metrics from a dataset of real pat-
terns — curated from scratch from publicly available repositories — and synthetic images
generated using reaction-diffusion simulations. We calculate our first four descriptors as
ratios of “global” measures. The last eight descriptors are the standard deviation of the
average measure of pattern region features, giving us twelve descriptors. We validate the
descriptors through two machine learning tasks on an augmented dataset with real and
synthetic patterns. First, the descriptors are used as features of a supervised classifier
with an overall accuracy of 98.4%, a result better than that obtained with a general state-
of-the-art convolutional classification network. Second, we tested the descriptors in an
unsupervised clustering task, differentiating natural from artificial patterns and identify-
ing species studied in the natural pattern set. Clustering was also used for unsupervised

detection of regions of biologic patterns over larger images.

Keywords: Quantitative descriptor. image processing. pattern generation. pattern evalu-

ation.



RESUMO

A natureza é exuberante em padroes visuais: padroes de manchas em mamiferos, veias
em folhas, estruturas labirinticas em peixes e muitos outros. A Computacdo Grdfica al-
cancou sucesso na modelagem e renderizacdo de muitos desses padroes. No entanto,
um problema fundamental permanece: como validar os resultados além da comparagdo
visual. Neste trabalho, é proposto um conjunto de descritores quantitativos adaptados
para descrever padroes biologicos visuais encontrados em vdrias espécies de mamife-
ros e peixes. Foram analisadas as estruturas de padroes mais comuns, como padroes
de manchas, labirintos e listras. Primeiro, é calculado um conjunto de métricas para
uma base de imagens de padroes reais — selecionadas de repositorios disponiveis publi-
camente — junto com imagens sintéticas, geradas usando simulagées de reacdo-difusdo
(reaction-diffusion). Os quatro primeiros descritores sdo calculados a partir de razoes
entre medidas “globais”. Os oito descritores restantes sdo definidos como o desvio pa-
drdo da média das métricas obtidas a partir das caracteristicas das regioes do padrao,
totalizando doze descritores. Estes descritores sdo validados em duas tarefas de apren-
dizado de mdquina em um conjunto de dados com padrées reais e sintéticos. Primeiro,
os descritores sdo usados como entradas para um classificador supervisionado, obtendo
uma precisdo geral de 98,4%, um resultado melhor do que o obtido em rede de classi-
ficagcdo convolucional de propdsito geral de iiltima geracdo. Para a segunda validagado,
os descritores sdo testados em uma tarefa de agrupamento (clustering) ndo supervisi-
onado, sendo capaz de diferenciar padroes naturais de artificiais e também identificar
espécies estudadas no conjunto de padroes naturais. O agrupamento também foi usado

para deteccdo ndo supervisionada de regioes de padroes biolégicos em imagens maiores.

Palavras-chave: Descritores quantitativos, processamento de imagens, geracdo de pa-

drdes, avaliagdo de padrdes.
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1 INTRODUCTION

Nature (BALL, 2016) has a huge diversity of patterns. This characteristic at-
tracted the attention of Computer Graphics research from the very beginnings of the field
(SPRINGMEYER, 1988; FOURNIER, 1989). A particular challenge within the model-
ing of Natural Phenomena is validating results: how to assess the output quality compared
to the real phenomenon being simulated. Most works present empirical, qualitative meth-
ods, comparing their results visually with the target natural ones, making these evaluations
subjective and not as precise (SADEGHI et al., 2012; WANG et al., 2018; GALIN et al.,
2019). The Mathematical Biology field (MURRAY, 2001) also increasingly needs better
quantitative tools to assess natural pattern results (KONDOQO; SHIROTA, 2009; KIM et al.,
2020). Therefore, the need for a quantitative approach is perceived.

Among the many natural phenomena already addressed in Computer Graphics be-
fore, pigmentation patterns have received much attention, spanning 30 years of research,
from the seminal work of Turk (1991) and Witkin and Kass (1991) to state-of-the-art re-
sults of Malheiros, Fensterseifer and Walter (2020). In those works, many patterns are
spot-based. Although these patterns are defined on a 3D object, they are expressed on
the skin or surface of animals. Therefore, despite perspective distortions, they can be
analyzed in 2D.

In this work, based on the careful study of a range of spot, labyrinthine, and stripe
patterns, we first define a set of descriptors suited to capture their main characteristics. For
this work, the term descriptor is used in the same sense as in content-based image retrieval
(CBIR) systems, that is, as a general scalar measurement that captures a particular type
of image structure. Such descriptors would facilitate the evaluation of results, resulting
in a better understanding of the pattern structure, bringing consistency to the Computer
Graphics field. We then explore and validate this set through three machine learning
tasks: supervised pattern classification, unsupervised image clustering, and parameter
estimation for a mathematical model using a regression method.

For the studied topologies (spotted, labyrinthine, and striped patterns), we defined
a limited set of natural and synthetic patterns, using only regular patterns with two distinct
colors, so that the pattern structure may be easily obtained and analyzed. Thus, for this
work we create a set of descriptors focusing only on the pattern structure, not taking into
account features such as color or frequency domain measures.

Although there are powerful classification methods using neural networks today,
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such as NASNet (ZOPH et al., 2018) and EfficientNetV2 (TAN; LE, 2021), these are gen-
eral solutions that do not provide explicit measures to compare and understand pigmenta-
tion patterns, being black box models. With straightforward descriptors as proposed in our

work, future procedural biological-based engines for pattern formation can be improved.

1.1 Justification

As stated before, most works synthesizing natural patterns evaluate their results
using qualitative methods due to a lack of quantitative methods for synthetic pattern eval-
uation. When present, they are usually either too general or too context-specific and,
therefore, are not capable of describing common features in nature, such as spotted and
striped patterns. There is also a lack of work focusing on analyzing the structure of natural
patterns, and with this, useful quantitative descriptors for pattern evaluation.

We focused on the design and evaluation of descriptors for natural and synthetic
patterns. The availability of such descriptors helps the evaluation of other research by
giving quantitative measures. The target patterns were the most frequent animal patterns:
regular spots, stripes, and labyrinthine patterns. These are straightforwardly generated
with mathematical models, such as reaction-diffusion, and encompass a large portion of
existing natural patterns. Examples of synthetic patterns we generated with a reaction-

diffusion model are shown in Figure 1.1, illustrating common pattern topologies.

1.2 Objectives

Our main goal is to design a set of descriptors to evaluate natural and synthetic
visual patterns, focusing on the description of the patterns structure. The target patterns
are regular spots, stripes, and labyrinthine patterns. These simple patterns and their com-
binations account for diverse visual patterns in the animal kingdom. We want to propose
quantitative descriptors that enable the separate measurement of specific characteristics
of a given pattern, such as the size of elements, spatial distribution, among others. With
these descriptors, we expect to be able to evaluate both the topology and regularity of pat-
terns. Besides, our descriptors may be used on various applications, such as identification

of animal species.
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Figure 1.1: Example of synthetic (a) spotted, (b) striped, and (c) labyrinthine patterns
generated through reaction-diffusion simulations, and two animals whose patterns were
used in this work.

>

(b) Synthetic stripes (c) Synthetic labyrinth

LY
N AR

(d) Cheetah, phot by Mukul2u (Wikimedia, S . ; ' A\
CCBY 3.0) (e) Zebra, photo by Gusjer (Flickr, CC BY 2.0)

1.3 Organization

This dissertation is organized as follows. The next chapter first explains reaction-
diffusion systems, followed by a review of related works, divided into two categories:
Mathematical Biology and Computer Science. Chapter 3 presents the methodology, de-
scribing how the descriptors were designed, the pipeline used for their computation, and
the individual descriptor definitions. Then, Chapter 4 presents the results obtained through
the validation methods, explaining the datasets used for these tests and the different test
setups executed. Concluding, we present final remarks and comments on possible future

works.
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2 BACKGROUND AND RELATED WORK

In this chapter, we first present background material on Reaction-Diffusion (RD),
a paradigm first proposed by Alan Turing Turing (1952) and then followed by many oth-
ers (MEINHARDT, 1982; MURRAY, 2001). RD is used in many fields, including mod-
eling of biologic pigmentation patterns (BARD; LAUDER, 1974), seashells (FOWLER;
MEINHARDT; PRUSINKIEWICZ, 1992), animal coat patterns (TURK, 1991) (WITKIN;
KASS, 1991) MALHEIROS; FENSTERSEIFER; WALTER, 2020), fruit decay (JR; RAJA;
BADLER, 2011) and flower pigmentation patterns (RINGHAM et al., 2021). Modeling,
simulation, and rendering of visual patterns are addressed not only by Computer Graphics
but also by other fields such as Mathematical Biology. Considering this, we review related
work from both fields, focusing on individual animal identification, pattern generation au-
tomation based on input images, and limited attempts at quantitative pattern analysis and

feature extraction, among others.

2.1 Reaction-diffusion

A reaction-diffusion system is defined by a system of partial differential equations
(PDEs) used for chemical and biological simulations. Such a system describes the inter-
actions between two reagents in space and time, where one reagent works as an activator,
accelerating the reagent production, and the other as an inhibitor that slows it down.

Turing (1952) first proposed a reaction-diffusion model for pattern formation in
1952, which was later explored by Bard and Lauder (1974). This model is described
by Equations 2.1 and 2.2 that describe the behavior of two reagents a and b, where the
term with S, describes the reaction process while the term with Laplacian operator V2

describes the diffusion process.

Oa

i S,(16 — ab) + D,V?a 2.1)
0b 2
3 = Splab—b— ) + DV (2.2)

A simplification of this model was proposed by Malheiros, Fensterseifer and Wal-

ter (2020), featuring a reparameterization of the original model, as seen in Equations 2.3
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and 2.4.
0
2L~ 16— ab + rsV%a 2.3)
ot
0b
— =ab—b—12+sV? (2.4)
ot
From the original equations, the variables S, and /3 have their values set as 1 and
12, respectively, and D, and D, are replaced by a ratio r and scale s, where rr = ID)—‘; and

s = Dy.

As for applications, Prum and Williamson (2002) use a reaction-diffusion model
to simulate the pigmentation patterns found on feathers, also simulating a pigmentation
pattern transition phenomena observed in nature. The work of Jr, Raja and Badler (2011)
uses the biological nature of reaction-diffusion simulations to emulate fruit decay, simu-
lating the growth of fungal and bacterial infections and how bacterial growth and nutrient
depletion interact with the fungal spread. Ringham et al. (2021) simulate a range of flower
patterns directly on geometric models of the flower species studied, using different mathe-
matical models to simulate these patterns, including some variations of reaction-diffusion

models.

2.2 Related Work

As stated before, there is a lack of works that use explicit quantitative methods.
We review in this section a group of papers that vary in focus but are related to the main
subject of our research: individual animal identification, pattern generation automation,
and limited attempts at quantitative pattern analysis and feature extraction.

First, we review Stoddard and Osorio (2019). This work uses the analogy that
color spaces can represent any color and introduces the idea of a low dimensional pat-
tern space, where any animal pattern could be described in this space by a few percep-
tual dimensions. The support for such space comes mainly from the conclusion that
animal patterns are not random but have a definite statistical structure (SIMONCELLI;
OLSHAUSEN, 2001). Figure 2.1 exemplifies an possible pattern space, where the pa-
rameters P, represented as axes, define the space.

Their work explores possibilities for creating pattern space, listing five steps:

bE Y

“Capturing an Image”, “Modeling Visual Acuity”, “Calculating Power Spectra and Image
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Figure 2.1: Representation of an hypothetical pattern space where each axis P, represents
a pattern parameter.

A B
With natural background

~

WP1

Grassland

Clade A

~ |/ Clade B

‘\ Forest

Whle body
W ROl

P6 P2

P3

P4
Source: Stoddard and Osorio (2019) (Figure 1)

P5

Statistic”, “Detecting Local Features and Objects”, and “Detecting Higher-Level Object”.
However, they do not define one.

Relating to the usage of quantitative descriptors or features, we reviewed two
works. McGuirl, Volkening and Sandstede (2020) recognize the difficulties in a purely
subjective assessment of results. Using a combination of topological data analysis (TDA)
and machine learning (ML) tools, they propose a method for quantifying self-organized
patterns applied to zebrafish skin patterns. They employ their technique on in silico ze-
brafish patterns, synthesized with a cell-based model previously defined by the same au-
thors (VOLKENING; SANDSTEDE, 2018). This model analyzes pigment cells as point
masses, tracking their spatial coordinates on a growing horizontally continuous 2D do-
main (continuous on the x axis), as shown in Figure 2.2A, while they move and interact,
also modeling cell death, birth, and transition between five different behavior types.

As stated before, the authors’ approach to quantifying patterns uses a combination
of TDA and ML. Both processes rely on their discrete cell-based model. The TDA tech-
nique used is known as persistent homology and is illustrated in Figure 2.2B. For this, a
ball of radius r is placed into each cell’s center and the analysis is made with the shapes
generated by the union between these balls and how it changes with each increment of
r. As for ML, they use a single-linkage clustering method to divide their agents (pig-
ment cells) into different classes trying to determine topology clusters for spots or stripes.

For this, the authors start with one cluster for each cell and then consecutively merge
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two clusters closer to each other until there are either one or a predetermined number of
clusters.
Figure 2.2: Visualizations of (A) the horizontal continuity, (B) persistent homology ap-

plied on the authors’ simulation, (C) the detection and measuring of stripes, and (D) an
example of spot measures.

roundess = 22.2
spot size = 242 cells

wild-type O

roundess = 2.6
spot size = 76 cells

Dhoesat P oo v ipiilas dfie i |

F— max stripe width ALD % increase

Source: McGuirl, Volkening and Sandstede (2020) (Figure 3)

This quantification is calculated by six pattern features: the number of spots and
stripes on the pattern, the width and straightness of the stripes, and the size, roundness,
alignment, and center width of the spots. They compute these features using TDA tools,
using points and clusters of points, and on their simulation scenario. Considering this,
some of these features may not be useful nor possible in different or general settings.

In addition, they also analyze pattern formation events, that is, an estimation of
the time at which specific features emerged, this, however, relying on their simulation and
not being useful on general scenarios.

Another work that uses quantitative features is the recent work of Glimm et al.
(2021), that shares many goals with our own, mainly the definition of quantitative methods
to analyze and describe pattern variation. They used 25 leopard geckos (Eublepharis
macularius) as a case study, analyzing seven distinct “regions of pattern” on the bodies
with four photos for each region, for a total of 175 regions of pattern and 700 images.
The process of acquisition of these images is shown in Figure 2.3, as well as the image
processing.

As the authors use flat 2D images that are photos taken from above the animal
samples, they divide the spots into edge spots, those partially cut off by the edges duo to
this flat representation, and interior spots, defined as all other spots. The authors use 14
indices for quantitative pattern description. From these, 6 are computed using all spots.
The first is named fraction of melanistic area, defined as the ratio between the area of the

black pixel by the total area (similar to R1 from Sun et al. (2017)). They also have two
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Figure 2.3: Flowchart from Glimm et al. (2021), showing the process of image acquisition
and processing.
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distance-based indices, the fist being called peak length, described as a “typical” distance
between spots or as a characteristic wavelength described by Miura, Komori and Shiota
(2000). The other distance index is the mean minimum distance (MD), computed as the
mean of the average distance between a spot centroid and the three closest spot centroids
for all spots. The last index computed using all spots is called spot intensity (SI), defined
as the average green value of the spots (considering the RGB values, each pixel ranging
from O to 255). They also measure the standard deviation of MD and SI as new indices,
where the MD standard deviation is measured using all the distances used to compute the
index, instead of using the averages.

The remaining eight indices are computed using only the interior spots. Two of
these indices are measure using the axes of an ellipse that has the same second moment
of the spots. One is named mean spot diameter (SS), being the average of all lengths of
the major axes of the ellipses. The other is called mean ellipticity (EE), calculated as the
mean ratio between major and minor axes of said ellipses. They also have a spot area
(SA) index, defined as the mean area of the spots (in cm?), and a mean spot elongation,
defined by the equation

area
EL =
2d?

(2.5)

where d is a number got by eroding the spots until they disappear, counting the number of
erosion steps needed to do so. The last four indices are computed as the standard deviation
of SS, EE, SA and EL.

Using these 14 indices they define a composite distance between two patterns and
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the pattern variation among distinct body parts using a standard Mahalanobis distance.
They also conclude how the patterns were established through the species body based on
the observation related to the presence of pigmentation patterns on these distinct body
parts.

Some attempts to describe patterns quantitatively address the problem of inverse
rendering, that is, given an input image, try to synthesize a visually similar pattern. Sun et
al. (2017) addresses this by defining a framework that, with an input image, infers the im-
age pattern topology and calculates the parameters for the reaction-diffusion model used
in their simulations. Their simulation results are divided into two categories: vascular
mesenchymal cells (VMCs), consisting of spotted, striped, and labyrinthine patterns, and
lung development, with “Normal branching pattern” and “Branching pattern without side
branching”.

The framework has three modules, as shown in Figure 2.4. The first module eval-
uates the reaction-diffusion model equations result and saves it as an image; the second
module extracts the pattern topology and quantitative features using two quantitative mea-
sures; the third module compares those measures with the ones of the target image (given
as input) to evaluate the model parameters. A feedback loop then uses this evaluation to
calculate new parameters.

Figure 2.4: Illustration of the framework, showing their three modules and an example of
input and output.
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Source: Sun et al. (2017) (Figure 1)

They use two ratio parameters to evaluate the model quantitatively. The first is the
ratio between the pattern area and the total area of the image, called R', used to determine
the pattern topology. The second, called R?, is the perimeter area ratio (PA ratio) for the

pattern, which describes the pattern scale. There is also a distance function between target
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pattern ratios and the obtained pattern ratios, defined as
fVMCS = [(Rl - Rl}ar)Q + (R2 - R?a'r)ﬂ * 105 (26)

and R?

tar

with R}

rar as the target ratios and the multiplication by 10° to approximate the

value to an integer.

Their experimentation consists of three VMC target patterns, from which they ob-
tain the starting R' and R? target values for the simulation and then the model parameters.
The result values obtained for spotted, striped, and labyrinthine target patterns are, respec-
tively, 0.22, 0.4, and 0.46 for R1 and 0.31, 0.56, and 0.67 for R2. The simulation results
are, respectively, 0.2017, 0.4145 and 0.4524 for R1 and 0.3044, 0.5469 and 0.6397 for
R2.

With a motivation similar to the work from Sun and colleagues presented ear-
lier, the work by Mordvintsev et al. (2021) also addressed the problem of synthesiz-
ing example-based reaction-diffusion textures, although not focusing on natural patterns.
They inspired their model on the Neural Cellular Automata (NCA) described by Niklas-
son et al. (2021). Based on the PDE

0b

T ¢V?x; + fo(zo, ... Tno1) (2.7)

where (xo, ..., 7,—1) represent the n reagents, ¢; are the diffusion coefficients, and fy is
the reaction function, they propose a new model defined by

P = 2 R e atd fola ) @8

n

where ¢; and 6 are Cellular Automata (CA) parameters that control the model behavior,
K4y is a 3x3 Laplacian convolution kernel, d = A;/A? and r = A, are parameters
that control the diffusion and reaction, and the function fy is a two layer neural network.
The authors use 32 reagents and 8320 neural network parameters. Their matrices start
with a number of scattered Gaussian blobs, each iteration updated using Euler method,
adding seed state injections periodically, so that the model does not forget how to develop
patterns from the seeds. The parameters are learned through a differentiable optimization
method, and as the work of Sun et al. (2017), the learned rules are not explicitly available
and therefore not general. Also, they validate their results using side-by-side comparison,

that is, using qualitative methods. Figure 2.5 shows some of these comparisons.



20

Figure 2.5: Results presented by Mordvintsev et al. (2021), with the first image of each
line as a target pattern and the three next are different RD learned model results with 5000

iterations.
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Source: Mordvintsev et al. (2021) (Figure 2)

We also reviewed two more works related to animal identification. Labhiri et al.
(2011) describe an algorithm for identification of individual animals based on their coat
patterns. Although their image dataset consists only of zebra images, the authors state
that the technique is applicable to different animals if they present some morphological
characteristics such as stripes. Their dataset was collected with the help of field ecologists
and has images of two species of zebras, each image associated with an animal identifier.
These images have their regions of interest (ROI) manually cropped with no restrictions
on body location, but assuming to be cropped “as consistently as possible”.

These cropped images are filtered into k horizontal bands, each band having a
summary row of pixels that keeps the mean value of a column. With this, for each row,
they create a sequence of n pairs of color and length values, calling this sequence a
StripeString. An ordered set of these StripeStrings creates a StripeCode for an image
in the dataset. With this, they can define the similarity of two images by calculating
the distance between two StripeCodes, defined as “the average of the distance between
corresponding StripeStrings”.

They compared their results with two other animal recognition algorithms, Eigen-
face (TURK; PENTLAND, 1991) and an algorithm based on multi-resolution histograms
of differential image features (CO-1) (RAVELA; GAMBLE, 2004). These tests consisted
of, for /V unique animals, randomly selecting a number of images per animal (ipa, fixed as

1 for the tests) to create a database, choosing randomly an image of one of the N animals,
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and then ranking the animals in the database by the minimum distance to the selected
image.

Those tests used three evaluation metrics: the median rank of the correct animal,
the mean reciprocal rank (MRR), and the average query time. The results are presented
as three graphs shown in Figure 2.6, where the better results show lower values for the

median rank and higher values for MRR.

Figure 2.6: Comparison of results of different algorithms with the one proposed by Lahiri
et al. (2011).
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The last reviewed work is HotSpotter, presented by Crall (2013). HotSpotter is
an algorithm for individual animal identification, matching animal images with images
in a labeled dataset. The dataset has images of five different species of animals: giraffes,
jaguars, lionfish, plains zebras, and Grevy’s zebras. The paper focuses on the experiments
with zebras because there are more images of zebras in the databases.

They present two algorithms: the first, described as one-vs-one, and the second
described as one-vs-many, both with five steps: preprocessing, matching, image scoring,
spatial reranking, and label scoring. For the one-vs-one algorithm, every image in the
database and query image is cropped to a rectangular ROI and resized to a standard di-
mension with the same aspect ratio. After this, the image features and descriptors are
extracted and a small forest of k-d trees is built as a fast search data structure. Then
each image in the database receives an initial score. For the fifty top-scored images it is
computed a set of spatially consistent “inliers”. With these inliers is created a final corre-
spondence set, in which is applied a scoring function that defines the final scores. Using
these scores, the authors present two methods to score each label: the first selects the label
of the highest-scoring image, while the second combines the scores from all images with
the same label.

The one-vs-many algorithm preprocessing step creates a small forest of k-d trees

using one nearest neighbor data structure to index all database descriptors. Then, for each
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query image, the nearest neighbors are found by searching this forest, with scores being
calculated based on the distance to the query images. For this algorithm, they present
four scoring methods: difference in distances between nearest neighbors, a ratio score to
k nearest neighbors, a log-ratio score, and match counting. For the giraffe, jaguar, and
lionfish datasets, they achieved perfect results: 95% of correct top-ranked labels and 98%
top-five labels for the Grevy’s zebra dataset, and over 99% for the plain zebra dataset.
Furthermore, it is worth mentioning works on state-of-art deep learning classifi-
cation models. Wildchen and Méder (2018) reviews current deep learning approaches to
automated classification tasks. In Miao et al. (2019), the authors use convolutional neural
networks to classify twenty African wildlife species and, from a dataset of 111,467 im-
ages, obtained an accuracy of 87.5%, and the already mentioned Tan and Le (2021), that
provides a general classification model. These are generalist approaches, focusing on a

different objective than our work.

2.3 Discussion

As we show in the following sections, our work brings a more general study in
terms of target patterns and delivers explicit descriptors, useful for quantitative synthetic
pattern assessment. The reviewed works, when presenting quantitative descriptors, em-
ployed them on specific scenarios with a limited scope or focusing them as solution for
feature matching. Instead, we focus on a general approach for pattern description values,

outside of a black-box deep-learning context or a limited species description problem.
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3METHODOLOGY

In this chapter, we describe the steps needed for the descriptor extraction pro-
cess, which is schematically illustrated in Figure 3.1 and further explained in Section
3.2. Focusing on biological pigmentation patterns found in the skin of mammal and fish
species, and synthetic reaction-diffusion patterns, we limited our scope to spots, stripes,

and labyrinthine patterns.

Figure 3.1: Sequence of operations for descriptors computation: (A) conversion to
grayscale, (B) thresholding, (C) noise removal, (D) partial region removal, and (E) mea-
surement of individual regions. The step between (D) and (E) shows two patterns, the
upper image shows the pattern after the partial region removal while the bottom image
shows the pattern before. In this example, the zebra pattern is completely removed by this
operation, and because of this it is not done for this pattern. (1), (2), and (3) represent
where specific descriptors are computed within the sequence of operations, where: (1)
pattern area percentage and border perimeter ratio, (2) pattern loss percentage and border
pattern ratio, and (3) local descriptors.

@
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We assume that all these patterns are presented in uniformly colored regions that

Source: The author.

stand out from a distinct and single-colored background. Moreover, we assume that all
input images have already been cropped from a larger image, where elements such as a
background or other animal details are eliminated. We also define that the input images
have a square aspect ratio (1:1) but with an arbitrary resolution. Being square, we need
not be concerned with distortion between horizontal and vertical axes. However, as a
more general approach, such difference could be propagated to later steps, generating a
correction factor to measure areas and distances. We are interested in analyzing patterns
with no dependency on the overall scale or image resolution, so all local descriptors are
normalized, as described later.

The next section explains how the descriptors were designed and chosen. Then,
we describe the processes we use on the images for computing the descriptors, as well as

a brief explanation of thresholding and the experiments done to find the best parameters.
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The last two sections explain our descriptors, divided into two categories, global and local

descriptors, and how they are calculated.

3.1 Design of descriptors

We explored a series of measures that combined the simplicity of implementation,
generality, and robustness, tested against a dataset of biologic and synthetic patterns, de-
scribed in Section 4.2. We used a relevance validation process to determine which ones
were useful and which ones proved to be redundant, keeping only the most significant
descriptors for characterizing the pattern images. This process included the validation re-
sults obtained through our classification process, described in Section 4.3, and an analysis
of value consistency based on graphs plotted with the descriptor values for each dataset,
and groups of datasets with some common characteristics, such as whether the images
are synthetic or real, or whether they have the same topology. Mainly, we tested setups
of descriptors against a “current default setup”, keeping the setups that presented better
results for our validation methods, explained in Chapter 4, while discarding descriptors
that showed little relevance and worse results, and defining the default descriptor setup as
the setup that showed the best results overall.

Descriptors are grouped into two categories: global and local. Global descriptors
are calculated based on the whole image and are ratios of pixel counts. Global measures
cannot explain specific details of the images but showed to be very useful in indicating
the overall pattern structure. At the beginning of our process, we use global descriptors,
hinting at the pattern topology and overall structure. Local descriptors consider the shapes
and distribution of pattern details and are computed after the segmentation and labeling
of individual regions of the pattern.

Here, we search for solutions outside of the black box models presented by DL
models. We set this objective because we expect to obtain straightforward and general
scalar values capable of explicitly measuring and describing the studied patterns in a

“white box” solution.
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3.2 Image processing

Before computing our descriptors we process the input images as exemplified in
Figure 3.1. The first three operations are done for all descriptors. These operations are:
(A) converting the image to grayscale, (B) applying a thresholding algorithm to segment
the foreground (the pattern itself) and the background, and (C) filtering small regions
as to remove noise. The next operation is (D) the removal of partial regions, regions
that are partially cut by the images border. This operation is done exclusively to spotted
patterns, as stripped and labyrinthine patterns are left with almost no pattern or the pattern
is completely removed, as illustrated with the zebra pattern in Figure 3.1. The last step
(E), is the measurement of the features of individual pattern regions. In this process, each
region of the remaining pattern is segmented and has some features extracted, which are
then used to compute our local descriptors.

The threshold operation (step B) uses the adaptive Sauvola (SAUVOLA; PIETIKAI-
NEN, 2000) algorithm to cope with lighting variation. It defines a localized cutoff point
with a clear separation of boundaries between the pattern and the background. The algo-
rithms parameters, our experiments on them, as well as a short background on threshold-
ing are explained in Section 3.3.

After thresholding, we perform an image cleaning process to reduce artifacts aris-
ing from inadequate image capture, low resolution, or thresholding noise (step C). All
these artifacts directly affect the generation of descriptors, so we do a cleanup opera-
tion that applies to all descriptors. This operation is the elimination of small pixel groups,
defined as having a minimum area of 0.1% of the image area (e.g., an image with a resolu-
tion of 150x150 pixels has an area of 22,500 pixels, thus for this image we remove groups
with an area of less than 23 connected pixels). Any group smaller than this minimum area

is set to the background color.

3.3 Thresholding

A thresholding function is a process by which an image is converted from a gray-
scale range of [0, 255] into a binary O or 1 value. For this work, we define that, for the
binarized image, the pattern (the foreground) is set to 1 while the background is set to
0. These functions may be divided into six categories, according to Sezgin and Sankur

(2004), but we explore only two: global and local (or adaptive) methods.
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A global threshold method selects only one threshold value for the image. An ex-
ample of a global threshold method is Otsu (1979). This algorithm analyzes the histogram
of a given image and tries to find a threshold value ¢ that minimizes, or maximizes, its
within-class variance. All pixels with a value lower than ¢ are considered to be back-
ground and their value is set to 0, and all pixels with a value higher or equal to ¢ are set
to 1. Although these methods are faster and simple, they may present problems when
the background is not constant or if there is a contrast variation across the image (or over
image objects), for example with the variation of the illumination (ROGOWSKA, 2000).
Figure 3.2 shows two examples of this illumination problem.

Figure 3.2: Thresholding methods applied to a (a) cheetah and a (e) zebra patterns. Otsu’s
thresholding problem on (b) and (f) where the image presents a variation of illumination.

Local thresholding perform better, (c) and (g) using Niblack’s method, and (d) and (h)
using Sauvola’s algorithm.

(a) Cheetah crop (b) Otsu (c) Niblack (d) Sauvola

(NG

(e) Zebra crop (f) Otsu thresholding (g) Niblack (h) Sauvola

Souce: The author

Local threshold methods are computationally more expensive but do not present
these problems. For this, multiple threshold values are selected according to local features
for each image region. These methods may work in two ways: calculating a local thresh-
old for “sub-images” of an image or through analysis of near pixels intensities for each
pixel in the image. Niblack (1986) and Sauvola (2000) are examples of local methods
that calculate a threshold ¢ for each pixel on the image with a window centered on the

analyzed pixel. Niblack local threshold is calculated by

t =m(z,y) —k*s(z,y) 3.1
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and Sauvola is computed by
t=m(x,y)* (1+k*((s(z,y)/R) = 1)) 3.2)

For both equations, m(x, y) and s(x, y) are, respectively, the mean and standard deviation
of the pixels on the window centered in pixel (z,y), and k is a value defining the weight
of the standard deviation on the threshold equation. Exclusive to Sauvola, R defines the
maximum value for the standard deviation s(x, ).

Figure 3.2 exemplifies the cited local threshold techniques. For these examples,
both methods use £ = 0.2 and a window size of 30% of the image’s smallest dimension
rounded up. As stated before, the global method (3.2b and 3.2f) present a problem related
to the illumination variation on the original image, this problem not being present on the
local methods.

For our pipeline, as previously mentioned, we chose to use the Sauvola method.
The algorithm has two parameters. The first is the size of the window, usually defined
as 15% of the image resolution. In our tests, the 15% value resulted in hollow regions
for some images when the analyzed regions are larger than the window, as shown in
Figure 3.3b. Values smaller than 35% still present “holes” in some stripe regions, while
windows of 35% show the desired binarization. Thus, we defined the window size as a

35% percentage of the input image resolution, as exemplified in Figure 3.3c.

Figure 3.3: Pipeline using a window size of (b) 15%, resulting in hollow regions, and (c)
35% for Sauvola thresholding.

i/

(a) Original crop (b) window size = 15% (c) window size = 35%

Source: The author

The second parameter is the adjustment £ factor, which weights the standard de-
viation on the thresholds formula (Equation 3.2). For this parameter, we defined its value
as 0.2, as in Figure 3.4b. This value is commonly found on literature (BATAINEH et al.,

2011) and was chosen after experimentation as it showed consistent results; higher values
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created noisy regions, as shown in Figure 3.4d.

Figure 3.4: Example of variation for the k parameter.
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Source: The author

3.4 Global descriptors

The first descriptor is called pattern area percentage. It is calculated by the ratio
of pattern pixels (after the preprocessing) divided by the total number of pixels. We may

write this descriptor as
areapattern

(3.3)

aretimg
computed as the division of pattern area (the number of pixels with value 1) by the im-
age area (the total number of pixels of the image), as exemplified in Figure 3.5. This
measure is dimensionless, indicating the percentage of area covered by the pattern in the

foreground.

Figure 3.5: A cheetah crop (a) and its binarization (b), where the white pixels are the
analyzed pattern. From (b) we measure the pattern area (90,022 px) and the total area

(a) Original crop (b) Pattern borders

Source: The author.

In our reaction-diffusion experiments, using the model from Malheiros, Fenster-
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seifer and Walter (2020), we found that the proportionality between fore and background
is directly linked to the pattern topology. As the pattern evolves (adjusting the ratio
parameter from the RD model), the spot structure slowly transitions to a labyrinth, reach-
ing a proportion close to 50% between front and back. If we continue the process, the
pattern changes smoothly into inverse spots (dark spots on a light background), where
most pixels will be on a light background. Figure 3.6 show the graphs for our synthetic
reaction-diffusion datasets, with Figure 3.6a plotting the values for the spotted pattern
images, ranging from 0.255 to 0.287, and Figure 3.6b plotting the other topologies, with
values ranging from 0.393 to 0.438.

Figure 3.6: Graph plots of the descriptor pattern area percentage for our reaction-
diffusion Spots and Not Spots (Stripes and Labyrinths) datasets.
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Source: The author

This proportion is a good indicator of the topological structure of a pattern and a
good predictor for the ratio parameter of the reaction-diffusion model used. The pattern
area percentage measure had already been proposed by Sun ef al. (SUN et al., 2017)
as R'. In our results, this measure has been one of the most significant descriptors in
validation processes via automated classification.

The second global descriptor is called border pattern ratio, inspired on the R?
metric from Sun et al. (2017). We tested some variations, but the formulation that showed
to be most useful is the number of pixels on the foreground border, divided by the total
number of pixels in the foreground (pattern area given in pixels) after removing partial

pattern regions , represented in Figure 3.7a. This descriptor may be written as

border joan (3.4)

areédclean

with border .., being the number of pixels of the pattern border, as in Figure 3.7a, and
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area.eqn the pattern area, as in Figure 3.7b, both measured after removing partial regions.
This descriptor roughly indicates the level of fragmentation of the image’s details. It is
a helpful descriptor because it generates a distinct value for irregular structures and even

labyrinthine patterns when compared to the simpler borders of round spots.

Figure 3.7: Figure 3.5 after removing partial regions, with the white pixels in (a) being
the border area and in (b) the pattern area. In this example the border area is 6,726 px, the
pattern area is 74,144 px, and the ratio of these values gives us a border pattern ratio of
0.029

(a) Pattern borders (b) Pattern area

Source: The author

We also created another global descriptor based on border analysis called border
perimeter ratio. To define this descriptor, we experimented with different ratios. These
revolve mostly around using an approximated perimeter instead of the number of fore-
ground border pixels for the ratio numerator and/or experimentation with the ratio de-
nominator, changing it between the area (height * width) and the perimeter of the image.
This descriptor is calculated as the ratio between the number of pixels on the foreground
border (border area in pixels) and the image perimeter, also measured in pixels. It may be
written as

borderpattern

- 3.5
perimetering

where borderp.iern 18 the area, in pixels, of the pattern border without removing partial
regions and perimeter;y,, is the perimeter of the image computed as 2 * height + 2 x
width — 4. This descriptor is dimensionless and is not influenced by changes in image
resolution as the border pattern ratio.

Our last global descriptor is called pattern loss percentage, measuring the percent-
age of pattern area lost by removing all regions touching the image border. This descriptor
is computed as

areédciean

1— (3.6)

areapattern
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Figure 3.8: A (a) cheetah crop and (b) its pattern borders. Using (b) we compute the
number of white pixels (a border area of 8,117 px) and the perimeter of the image (530 x
rder perimeter ratio of 3.836.

(a) Original crop (b) Pattern borders

Source: The author.

where the ratio of the pattern area after removing the partial regions (areagq,) and the
pattern area before this operation (aredapqgtern) gives us a value ranging from O to 1. This
value represents the remaining pattern area, and by removing it from 1 (or 100%) we ob-
tain a percentage of pattern lost by removing partial regions. These areas are represented
in Figures 3.9a and 3.9b, and by subtracting the ratio of 3.9b and 3.9a from 100% we
obtain the pattern loss percentage descriptor, as exemplified by Figure 3.9.

Figure 3.9: The same binarized crop (a) before and (b) after the removal of partial regions.
From these images we compute an pattern area of 90,022 px for (a) and 74,144 px for (b).
The result for the ratio of these areas is 0.8236 (a remaining area of 82.36% after removing

partial regions), and with this value we obtain 1 - 0.8236 = 0.1764, which means that (a)
lost 17.64% of its pattern area by removing partial regions.

(b) Area after

Source: The author.

By analyzing dataset plots for this descriptor (Figure 3.10), we found that regular
spot patterns lose less than 42% of their pattern area with this process while other topolo-
gies lose at least 44% of their patterns. So, by calculating a simple mean, we define that if

the pattern loss percentage is less than 43%, the pattern may be defined as a regular spot
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pattern. This value, however, may vary with different thresholding parameters, but, for all
thresholding parameters tested, all images of striped and labyrinthine topologies present
a value of at least 44%. The largest value found for a spot pattern image was of 45.2%,
the second largest value being 42.3%, both using £ = 0.2 and ws = 0.4 for Sauvola
thresholding.

Figure 3.10: Graph plots of the descriptor pattern loss percentage for our Spots and Not
Spots (Stripes and Labyrinths) datasets, ranging from 2.2% (0.022) to 41.7% (0.417) for
spot patterns and from 44.7% (0.447) to 100% (1) for other topologies.

Spots - Pattern Loss Percentage Not Spots - Pattern Loss Percentage
1.0 1.0
0.8 0.8
@ 0.6 0.6
3
s
0.4 0.4
0.2 0.2
0.0 0 500 1000 1500 2000 200 0.0 0 500 1000 1500 2000 2500 3000 3500
Images Images
(a) Pattern loss for spots (b) Pattern loss for stripes and labyrinths

Source: The author

3.5 Local descriptors

We divide our local descriptors into two categories: pixel-based and centroid-
based descriptors. The first analyzes variation in some pattern region features related
to their shape. Our second category focuses on distances, taking into account only the
region centroids. All local measurements consider the specific extraction of metrics for
each segmented region. These individual measures are then condensed into an overall
measure to generate the descriptor.

As explained earlier, we perform a second cleaning operation for all of our local
descriptors when spot patterns are detected, eliminating any regions directly connected
to the edges of the image (partial spots). We do not perform this operation earlier as it
potentially may remove many regions of the pattern. However, after the spot structure is
found, this removal provides better precision for the local descriptors, as partial spots are

entirely removed.
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3.5.1 Pixel-based local descriptors

Each of these measurements starts from the segmentation and labeling of the re-
gions, extracting characteristics such as area, border area, equivalent-area circle radius,
and eccentricity of the ellipse that has the same second-moments as the region. The first
three measurements are given in pixels and their values are divided by the mean to avoid
dependence on the resolution. This causes the measure zero to remain at zero and the
average of the values to become 1. The eccentricity values are already measured in the
[0, 1) interval, with O being a circle.

We then calculate the population standard deviation of the individual pattern re-
gions values as a measure of dispersion. This procedure has proven to provide very robust
descriptors. Our focus is on having a single numerical value for each descriptor over a
given image. This yields the following descriptors: region area STD, region border STD,
region radius STD, and region eccentricity STD. Additionally, we simply compute the
mean of the region eccentricities as a new descriptor, region eccentricity mean, as it gives
an overall estimation of region shapes.

The features for the individual regions are computed based on the regions own
pixel count, with the exception of two measures: radius and eccentricity. The radius value
is computed based on the radius of a circle that has the same area as the region being
analyzed. The eccentricity value is measure using a ellipse that has the same second-
moments as the analyzed region, computed as the ratio of the distance between the focal
points over the major axis length, resulting in a value in the [0, 1) interval.

Although there is a direct relationship between area, border area, and radius for
circular spots, given the irregularity of the patterns, these three metrics were shown to
be statistically significant and not so much correlated in the experiments made. Thus all
three were kept. We also experimented with measures of orientation, but these measures
were discarded as they gave different values for a same pattern with different rotations,

which led to inconsistencies to the pattern analysis and validation results.

3.5.2 Centroid-based local descriptors

The remaining descriptors follows a more elaborate process, for which after the
regions are segmented, each region centroid is calculated. For the first descriptor a De-

launay triangulation is fitted over those centers. This triangulation may generate skewed
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triangles at the borders, and we use the method described by Ijiri et al. (2008) to discard
them, as shown in Figure 3.11. The sum of lengths of all edges in non-skewed triangles
gives a measure of the distance among all nearest neighbors. These distances are then
normalized by the mean, and the population standard deviation is extracted, producing
the region distance STD descriptor. All distances for the centroid-based descriptors are

computed using the Euclidean distance.

Figure 3.11: Sequence of operations for our distance descriptor.
i

(a) Centroids (b) Delauney (c) Non-skewed triangles

Source: The author

We also use two point pattern analysis (PPA) methods as descriptors (GIMOND,
2022). While other local descriptors are normalized by the mean, both PPA methods are
normalized by the average between the image height and width, as they result in a single
distance value measured in pixels and conditioned to the image size.

Figure 3.12: Visual representation of the ANN method, where the red points are the region
centroids and the blue arrows point to the nearest neighbor.
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(a) Cheetah spots (b) Reaction diffusion spots (c) Zebra stripes

Source: The author

The first methods is known as average nearest neighbors (ANN), where, for each
region centroid, we measure the distance to the nearest centroid and average these dis-

tances. This method is illustrated in Figure 3.12: in (a) a real spotted pattern, (b) a
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synthetic spotted pattern, and (c) an extrapolation of the idea applied to a striped pattern.

The second method is called standard distance, illustrated in Figure 3.13, a metric
obtained by measuring a “mean center” and calculating the variance between the distances
to this mean center. This method could also be divided into a standard deviational ellipse,
giving two center distance values, one for each ax. We tested these values with our vali-
dation methods and they show little to no improvement in our results, and consequently,

we discarded these measures.

Figure 3.13: Visual representation of the standard distance method, where the red points
are the region centroids, the blue point is the mean center, and the green circle radius is
the standard distance.
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(a) Cheetah spots (b) Reaction diffusion spots

Source: The author

3.6 Summary of descriptors

In summary, our 12 descriptors are presented in Table 3.1, presenting their names,

categories, and range of values for each.
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Table 3.1: Summary of our 12 descriptors, each one with its name, possible range of
values, and categorized into global, local (pixel) or local (centroid), as defined in Sections
3.4 and 3.5.

Name Category Value Range
1 Pattern Area Percentage Global [0, 1]
2 Border Pattern Ratio Global 0, +)
3 Border Perimeter Ratio Global [0, +)
4 Pattern Loss Percentage Global [0, 1]
5 Region Area STD Local (pixel) [0, 2]
6 Region Radius STD Local (pixel) [0, 2]
7 Region Border STD Local (pixel) [0, 2]
8 Region Eccentricity Mean Local (pixel) [0, 1)
9 Region Eccentricity STD Local (pixel) [0, 1)
10 Region Distance STD Local (centroid) [0, 2]
11 Standard Distance Local (centroid) [0, \/5]
12 | Average Nearest Neighbors | Local (centroid) [0, \/5]
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4 RESULTS

To validate our descriptors we propose four tasks: a supervised classifier, an un-
supervised clustering application, an unsupervised clustering-based bounding box detec-
tion, and a regressor that estimates the ratzo and scale reaction-diffusion parameters for a
given input image. We first explain the datasets we used, followed by the four validation

tasks.

4.1 Tools

The implementations of the following sections were written using the program-
ming language Python 3.9.6, with the usage of additional libraries for mathematical func-
tions, computer vision, and data processing and visualization. These libraries are: NumPy
1.23.0, Matplotlib 3.5.2, Scikit-learn 1.1.2, Scikit-image 0.19.3, and Pandas 1.4.3.

Additionally, the base features for our local descriptors were extracted using the
measure.regionprops function of the Scikit-image library. Our global descriptors were
computed mainly using NumPy count_nonzero function, with the usage of the Scikit-
image segmentation.clear_border and segmentation.find_boundaries functions when nec-

essary to compute the descriptor.

4.2 Datasets

For our first two validation tasks we created an input dataset containing a col-
lection of two types of images: cropped images of real animal patterns, and results of
reaction-diffusion simulations, illustrated in Figures 4.1 and 4.2. Both types are subdi-
vided into subgroups that afterward are used as labels for the validation tasks. These

subgroups are:

1. Real images of animal patterns: (i) cheetah (Acinonyx jubatus), (ii) leopard (Pan-
thera pardus), (ii1) rabbitfish (Plectorhinchus chaetodonoides), (iv) zebra (Equus
quaggal Equus grevyi/Equus zebra), and (v) tiger (Panthera tigris).

2. Reaction-diffusion images:(i) small spots, (ii) medium spots, (iii) large spots, (iv)
small stripes, (v) medium stripes, (vi) large stripes, (vii) small labyrinths, (viii)

medium labyrinths, and (ix) large labyrinths.
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These datasets may also be divided into three topologies: spotted, striped, and
labyrinthine patterns. Each topology has both real and synthetic datasets, except for
labyrinths, where we have no real animal pattern dataset. This is a rare animal pattern,

making it hard to keep consistent and same-sized samples for the required dataset size.

Figure 4.1: Examples of images in our real animal pattern dataset
v

(a) Cheetah (c) Rabbitfish

\'ll

(d) Zebra (e) Tiger

Source: The author

Figure 4.2: Examples of images in our reaction-diffusion dataset.
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Source: The author

For the real images, an initial raw set was downloaded from Google Images,

Flickr, and Pixabay using an automatic search for copyright-free images. From this raw
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set, we selected the images by analyzing their resolution and the animal’s orientation on
the image, searching for well-defined patterns. The final pattern images were manually
cropped with at least 150x150 pixels resolution. We tried to avoid distortions in the pat-
tern and background presence in this cropping process whenever possible. Our crops also
have the pattern regions visually detached from each other and cover as much of the image
as possible.

The reaction-diffusion images were computed using the pattern generation model
presented by Malheiros, Fensterseifer and Walter (2020), with a fixed ratio value for
images of the same topology, changing the scale parameter to obtain different pattern
sizes while keeping the same topology. All images were generated at 150x150 resolu-
tion. The spotted and labyrinthine patterns were created using an isotropic kernel with
different simulation parameters, while the stripped patterns used an anisotropic kernel, all
topologies using the resulting matrix @ as the dataset image, as explained in Section 4.2.1.

All of our images are two-colored “black™ patterns and “white”” backgrounds, ex-
cept for the leopard patterns, which have spots of two colors. We chose to keep a leopard
dataset duo to the thresholding process focusing only on the black part of the rosettes,
ignoring their brown-colored interior. Each subgroup has 150 images plus two downsam-
pled copies, one with 75% and the other with 50% of the original resolution, for a total
of 450 images for each subgroup (thus having 2,100 unique images, with a total of 6,300
images). The resized images are used to analyze the influence of a low input resolution

on the descriptors.

4.2.1 Synthetic patterns

For the simulation of our synthetic patterns, the RD reagents a and b are rep-
resented as two discrete matrices of the same size, one starting with all values set to a
fixed value and the other to a pseudo-random state based on a seed. We solve the PDEs

numerically with the Euler method, also known as forward Euler method, given by

Ynt1 = Yn + hf,(yna tn) (41)

where y,, is the PDE result at a given time ¢,, and with a step h (sometimes written as A;)
multiplied by its derivative f’. There are other more complex methods that obtain results

with increased precision, such as Runge Kutta methods (LINGE; LANGTANGEN, 2020),
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but we chose to use the Euler method due to presenting similar results in comparison to
other methods and having a simpler implementation.

The resolution of Equations 2.3 and 2.4 with Euler method gives us
(ni1 = Gy + h(16 — apb, +rsV7a,) 4.2)

and

bps1 = by + hanb, — b, — 12 + sV?b,) (4.3)
where a,, and b,, the current state of the matrices and a,, 1 and b,,, 1 are their next state.
Figure 4.3: Example of pattern change with the variation of ratio (r), going from 5.1 to

8.1 in the vertical axis, and scale (s), ranging from 2.1 to 5.1 in the horizontal axis, using
the kernel of Equation 4.4, and ~ = 0.0075 with 10000 iterations.
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As stated above, the diffusion rates are derived from the ratio and scale parame-
ters (rs for reagent a and s for b). The influence of these parameters on the final pattern is
exemplified in Figure 4.3, where a variation in ratio changes the overall topology while
a variation in scale influences the size of the pattern.

We obtain an approximation of the Laplacian VZa and V?b as a convolution of
the discrete matrices a,, and b,, by a given kernel. This kernel may be isotropic, with the
diffusion happening at the same rate in every direction, or anisotropic, where the diffusion

does not happen evenly. An isotropic kernel!, such as

1 4 1
1
Kisoz 6 4 =20 4], (44)
1 4 1

results on a regular spotted or labyrinthine pattern, while using an anisotropic kernel, for

example
0.135 0.249 0.135

Kaniso = 10539 —2.116 0.539] , 4.5)
0.135 0.249 0.135

results on a striped pattern, as shown in Figure 4.6.

Figure 4.4: Approximation of f(t) = —e™" solved with forward Euler compared to the
actual solution.

Approximate and Exact Solution for Simple ODE

—@ - Approximate
-1.0 —— Exact
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t

Source: Kong, Siauw and Bayen (2020)

The last parameter for the PDE resolution is the step A, a value directly linked to
the error on the approximation results, where smaller values represent smaller errors but

need a larger number of iterations the get to the desired solution. The graph presented in

'from (MALHEIROS; FENSTERSEIFER; WALTER, 2020)
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Figure 4.4 shows the difference between an approximation of f(¢) = —e™* using Euler
method with /o = 0.1 and the actual solution.

Figure 4.5: Simulation steps for the matrices of a reagent a and a reagent b, using ratio =
4.1, scale = 8.8, h = 0 01 up to 10000 iterations, and a isotropic kernel.
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Figure 4.6: Simulation steps for the matrices of a reagent a and a reagent b using an
anisotropic kernel (Equation 4.5) and & = 0.075 with up to 3000 iterations.
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(a) 1000 iterations, a  (b) 1500 iterations, a  (c) 2000 iterations, a  (d) 3000 iterations, a

A

(e) 1000 iterations, b (f) 1500 iterations, b  (g) 2000 iterations, b  (h) 3000 iterations, b

Source: The author

Figure 4.5 shows simulation steps for matrices a and b, up to 10000 iterations with
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step h = 0.01, with a ratio of 4.1, scale of 8.8, and using an isotropic kernel, generating
a spotted pattern. The end result is a grayscale interpretation, normalized to a [0, 255]
range, such as Figures 4.5d and 4.5h.

The simulation may use different conditions for diffusion on the matrix’s borders,
such as reflection on the borders or continuity on the z and y axes. Figure 4.7 shows
patterns created using these different border conditions, where Figures 4.7a and 4.7¢, and

Figures 4.7b and 4.7d are generated using the same parameters.

Figure 4.7: Example of the influence of the border conditions showing the end result of
matrix a.
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4.3 Classification

Our first validation method is a supervised classifier using our descriptors as fea-
tures for a Random Forest (HO, 1995) learning model. We created seven dataset test
setups with the image subsets of Section 4.2, classifying each image as part of one of
the subsets present on the setup, that is, each image receives a label. These setups are:
All images, Real patterns (animal patterns or non-synthetic patterns), Spotted animal pat-
terns (Real patterns setup excluding zebras and tigers), Spot patterns (Spotted animal
setup plus synthetic spotted patterns), Not spot patterns (striped and labyrinthine pat-
terns), Stripe patterns (zebras, tiger, and synthetic stripes) and Reaction-diffusion (RD)
patterns. They are summarized in Table 4.1, presenting each setup together with the im-
age subsets present on them, where the RD subsets present small, medium, and large scale
patterns. For our tests, the setup data was divided into training and test sets with 70% and
30% of the setup images, respectively. This division is done using a stratified sampling,
where each possible label has the number of images on the training and test set relative to

the total number of images of the label. In our case, all labels have the same number of
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images, due to all image subsets being the same size.

Table 4.1: Summary of the test setups and the image subsets present in each one.

Setup Subsets (Labels)
All All subsets
Real Cheetah, Leopard, Rabbitfish, Zebra, Tiger
Real Spots Cheetah, Leopard, Rabbitfish

Spots Cheetah, Leopard, Rabbitfish, RD Spots
Not Spots | Zebra, Tiger, RD Stripes, RD Labyrinths
Stripes Zebra, Tiger, RD Stripes
RD RD Spots, RD Stripes, RD Labyrinths

Besides the Random Forest classifier, we also tested three other ML classification
methods: Support Vector Classifier (SVC), K-nearest Neighbors (KNN), and Decision
Trees. Table 4.2 shows the mean accuracy scores of 100 tests obtained for the All im-
ages setup for each method. These results show that the random forest method presents

consistently better results than other methods, further validating the choice of this method.

Table 4.2: Comparison of the mean accuracy score for 100 tests for each classification
method tested.

Method Accuracy | Accuracy (NC)

SvC 89.091% 81.056%
KNN 93.968% 91.148%
Decision Tree | 97.025% 94.313%

Random Forest | 98.524% 96.933%

After testing different descriptor combinations, we defined a default setup that
includes all the descriptors present in Table 3.1. This descriptor setup was chosen since
we obtained the overall best results for all test setups. All dataset setups were tested with
and without the downsampled copies. We then calculate three scores: f1, precision, and
accuracy. Table 4.3 shows the mean scores for 15 different training/test splits, with the
sets including the downsampled images. The results including them are shown in Table
4.4.

Based on the results obtained, our descriptors were shown to be capable of dif-
ferentiating between different pattern types and, despite not as efficiently, distinguishing
different real animal patterns. This may be conclude since the results for real patterns
are considerably lower than those mixing real and synthetic patterns or the RD setup.
The Real, Spots, and Spotted animals setups presented both the highest score drop when
removing the downsampled images and the overall lowest scores, maybe due to the simi-

larities between the patterns. Meanwhile, the Not Spots and Stripes setups show consistent



45

Table 4.3: Classifier mean scores of 15 tests, for each test setup, using our default de-
scriptors without the downsampled images.

Setup f1 precision | accuracy

All 96.983% | 96.984% | 97.040%

Real 91.965% | 91.970% | 92.144%
Spotted animal | 87.885% | 87.901% | 88.158%
Spots 94.071% | 94.074% | 94.238%

Not Spots 98.997% | 99.000% | 99.019%
Stripes 98.726% | 98.726% | 98.755%

RD 99.984% | 99.984% | 99.984%

Setup f1 precision | accuracy

All 98.414% | 98.413% | 98.447%

Real 96.476% | 96.474% | 96.546%
Spotted animal | 94.712% | 94.713% | 94.834%
Spots 97.009% | 97.008% | 97.095%

Not Spots 99.542% | 99.543% | 99.545%
Stripes 99.417% | 99.417% | 99.425%

RD 99.951% | 99.951% | 99.951%

Table 4.4: Classifier mean scores of 15 tests, for each test setup, using our default de-
scriptors setup including downsampled images.

high scores, which could be explained in the view of the differences between stripes and
labyrinths, and pattern differences inside the same topologies, for instance the difference
between tiger and zebra stripes.

We also compared our results with pre-trained general purpose deep learning (DL)
models available through Keras (CHOLLET et al., 2015). These models return a classi-
fication rank based on a confidence score, from which we considered the Top 1 labels.
For this comparison, we calculated the accuracy for a new setup created with the common
labels between our dataset and ImageNet. These labels are our real patterns datasets ex-
cluding the rabbitfish set, that is, cheetahs, leopards, zebras, and tigers. To obtain a “fair”
comparison we tested the DL models using the same images used for the classifier tests.

The tested models are: VGG16 and VGG19 (SIMONYAN; ZISSERMAN, 2014),
ResNet152V2 (HE et al., 2016), DenseNet121 and DenseNet201 (HUANG et al., 2017),
Xception (CHOLLET, 2017), InceptionResNetV2 (SZEGEDY et al., 2017), NASNet-
Large (ZOPH et al., 2018), and EfficientNetV2L (TAN; LE, 2021).

Table 4.5 shows the comparison between our classifier, with a mean accuracy of
500 tests, and the tested DL models. In this table, the column Accuracy display the re-
sults including the downsampled images, and the columns containing (NC) show results

without these images. As shown, for both scenarios our classifier obtained a better ac-
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curacy than the pre-trained general purpose DL models, even though the best DL. models

achieved similar results when removing the downsampled images.

Table 4.5: Comparison of some deep learning classifier models precision and the mean
accuracy of 500 tests for our results. The columns with (NC) present the results without
the downsampled images.

Model Accuracy | Accuracy (NC)

VGG16 60.556% 72.778%

VGG19 68.333% 78.889%
DenseNet121 69.444% 80.000%
DenseNet201 74.630% 81.667%

ResNet152V2 84.815% 83.333%
EfficientNetV2L 85.000% 93.889%

Xception 93.148% 90.556%
NASNetLarge 94.444% 94.444%
InceptionResNetV2 | 94.630% 94.444%

Random Forest 97.719% 94.997 %

Last, we measured our descriptors’ feature importance (Gini importance) for each
Random Forest classification setup. Table 4.6 shows our descriptors’ importance for one
test using the All images setup sorted from most to least important, without including the
downsampled images. To test the influence of resolution on our descriptors, Table 4.7
shows the score for the same test as Table 4.6 while including the downsampled images.

Table 4.6: Feature importance for one test using our All images setup, without the down-
sampled images, sorted by importance.

descriptor importance
border pattern ratio 19.87%
border perimeter ratio 17.51%
pattern area percentage 13.47%
region eccentricity mean 11.40%
pattern loss percentage 7.92%
ANN 7.75%
region border STD 5.17%
region area STD 4.81%
region radius STD 4.66%
region distance STD 2.90%
standard distance 2.75%
region eccentricity STD 1.79%

Noticeable differences are the border pattern ratio, dropping from 19.87% to
7.82%, since it is highly influenced by the image resolution as consequence of how it
is computed, dividing a measure of perimeter (given in px) by a measure of area (given in

px?). Another difference worth commenting is how the ANN descriptor went from a score
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Table 4.7: Feature importance for the same test as Table 4.6, including the downsampled
images, sorted by importance.

descriptor importance
border perimeter ratio 24.11%
pattern area percentage 14.27%
ANN 11.49%
region eccentricity mean 10.84%
pattern loss percentage 8.32%
border pattern ratio 7.82%
region border STD 5.09%
region area STD 4.96%
region radius STD 4.59%
standard distance 3.21%
region distance STD 2.95%
region eccentricity STD 2.36%

of 7.75% to 11.49%, likely due to it consistently measuring distances independently of
resolution.

Overall, the border perimeter ratio descriptor was the most relevant descriptor for
most of our tests, followed by the pattern area percentage and ANN descriptors. Our pat-
tern loss percentage descriptor was also appropriate when the test setup included spots
together with other topologies. The least relevant descriptors were the standard distance
and region eccentricity STD. However, even though these descriptors were the least rele-

vant, our tests got better results than those without them.

4.4 Clustering

The second validation method used unsupervised clustering. For these tests, we
used the Gaussian Mixture method (GERON, 2019) with our default descriptor setup as
training attributes, based on the results from the classifier. We created test setups for the
clustering application using the entire dataset and some subsets, similar to the classifier
setups (i.e., real images only or reaction-diffusion only) and a different number of clusters,
trying to achieve a good balance in the number of the clusters and their internal homo-
geneities, such as clusters of real and synthetic images, clusters of different individual
species, and clusters for different topologies.

After identifying the clusters, we found, for each cluster, its predominant dataset
and then calculated a percentage of error based on the number of other datasets in that

same cluster, making an ad-hoc measure of cluster homogeneity. Another metric used is
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a measure of completeness, calculated for each dataset present on a cluster and computed
as the percentage of images of the dataset present in the cluster. Both metrics give us a
measure of cluster consistency. The first relates to labeling consistency, that is, not mixing
different categories into the same cluster, while the measure of completeness offers an idea
of category consistency for each dataset present on the cluster, specifically, consistency in
grouping images of the same category together.

As an example, a cluster with a single image will always have 100% homogeneity
but has little completeness for the only dataset it includes, while a cluster with n complete
datasets will always have 100% completeness for all n sets but %0% homogeneity. A
“perfect cluster” would be the one scoring 100% homogeneity and completeness, that is,
a cluster of a single complete dataset. We also generated 2D and 3D scatter plots using
the most important descriptors for better visualization of the results.

Figure 4.8a shows the plot for a test where we divided the Real images test setup,
dividing it into two topologies clusters. In this test, we identified a “spots cluster” and a
“stripes cluster” containing all the images of their topology. Then we tested the same setup
with five clusters, one for each species (Figure 4.8b). For these tests we obtained good
results for the striped patterns, with a well-defined tiger cluster containing 318 images out
of 450 (93.53% homogeneity and 70.67% of completeness), and a zebra cluster containing
424 images out of the 450 total (78.08% homogeneity and 94.22% of completeness).
As for the spotted patterns, while we obtained a cheetah cluster and a leopard cluster
with high completeness (82.89% and 86.89%, respectively), both contained most of the
rabbitfish images, 310 images for the cheetah cluster and 102 for the leopard cluster. The
remaining 38 images were grouped into a last cluster, together with 31 leopard images,
28 cheetahs, 13 tigers, and 4 zebras.

Table 4.8 presents the results of a test using our “All images” setup with 14 clus-
ters. As seen, this test presents problems such as the zebra cluster, which has homogene-
ity of 46.91% due to the presence of 363 large reaction-diffusion stripes (40.83% of the
cluster and 80.67% of the dataset). Another notable problem is the fact that the small
reaction-diffusion spots dataset was split into two clusters, both with 100% homogeneity.
Nevertheless, we also achieved clusters with high homogeneity and completeness, that is,
clusters close to a perfect cluster, such as most synthetic pattern clusters (clusters 1, 3,
4,6, 7, 8, and 11) and the cheetah cluster (cluster 0). The results obtained without the
downsampled images are shown in Table 4.9, where is notable the presence of a small

cluster with 15 images total (cluster 7), where the tiger label presents a relatively high
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Figure 4.8: Our Real images setup divided into (a) two clusters, one for striped animals
and another for spotted animals, and (b) five clusters, one for each species.
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homogeneity but just 6% completeness.

Table 4.8: All clusters obtained for the All images setup using 14 clusters, one for each
subset. The column size shows the total number of images in the cluster, label the predom-
inant subset of the cluster (represented as topology/topology subset), images displays the
number of images in the cluster that belong to label, and homogeneity and completeness
are the metrics defined at the start of the section.

Cluster | Size Label Images | Homogeneity | Completeness
0 426 Spots/Cheetah 385 90.38% 85.56%
1 385 Stripes/RD Medium 385 100.00% 85.56%
2 889 Stripes/Zebra 417 46.91% 92.67%
3 448 Spots/RD Large 448 100.00% 99.56%
4 449 Stripes/RD Small 449 100.00% 99.78%
5 304 Spots/Leopard 250 82.24% 55.56%
6 450 | Labyrinthine/RD Small 450 100.00% 100.00%
7 450 Spots/RD Medium 450 100.00% 100.00%
8 449 | Labyrinthine/RD Medium | 448 99.78% 99.56%
9 621 Spots/Rabbitfish 382 61.51% 84.89%
10 150 Spots/RD Small 150 100.00% 33.33%
11 522 | Labyrinthine/RD Large 443 84.87% 98.44%
12 457 Stripes/Tiger 355 77.68% 78.89%
13 300 Spots/RD Small 300 100.00% 66.67%

As for synthetic patterns, Figure 4.9a shows the plot where the RD setup was
divided into nine clusters, one for each topology and pattern region size. Of the nine
clusters, two clusters had less than 100% homogeneity: a large labyrinth cluster, with 466
correct images (96.13%) and 19 large stripes images (4.08%), and a large stripes cluster

with 414 correct images (99.52%) and two large labyrinth images (0.48%). Without the
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Table 4.9: Results for the same test setup as Table 4.8 without the downsampled images.

Cluster | Size Label Images | Homogeneity | Completeness
0 150 Spots/RD Medium 150 100.00% 100.00%
1 225 Spots/Rabbitfish 131 58.22% 87.33%
2 202 Stripes/Tiger 139 68.81% 92.67%
3 104 Spots/Leopard 86 82.69% 57.33%
4 197 | Labyrinthine/RD Large 148 75.13% 98.67%
5 150 Spots/RD Small 150 100.00% 100.00%
6 150 Stripes/RD Small 150 100.00% 100.00%
7 15 Stripes/Tiger 9 60.00% 6.00%
8 150 Spots/RD Large 150 100.00% 100.00%
9 150 | Labyrinthine/RD Small 150 100.00% 100.00%
10 210 Stripes/Zebra 105 50.00 % 70.00%
11 117 Spots/Cheetah 107 91.45% 71.33%
12 150 | Labyrinthine/RD Medium | 150 100.00% 100.00%
13 130 Stripes/RD Medium 130 100.00% 86.67%

downsamples, the large stripes cluster contained 142 correct images (99.3% homogene-
ity and 94.67% completeness) with one large labyrinth image, while the large labyrinth
cluster had 149 correct images (94.9% homogeneity and 99.33% completeness) and the
remaining 8 large stripes images. When grouped into three clusters, this setup divides the
spotted patterns into one cluster and the not-spotted patterns into the other two based on
pattern size rather than by topology, with one cluster for small stripes and labyrinths, and
another for large and medium patterns.

Figure 4.9: Our RD setup divided into (a) nine clusters, one for each topology and pattern

size, and (b) 3 clusters, one for spotted patterns, one with not-spotted small patterns, and
the last containing not-spotted medium and large patterns.
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Based on the tests, we believe that our descriptors can distinguish between real and
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synthetic patterns, between different topologies, and, to some extent, between different

subsets of real and synthetic patterns.

4.5 Bounding Box Detection

Another validation method also uses the idea of clusterization, but in a different
context, analyzing whole animal images instead of cropped patterns. For this applica-
tion, we divide an animal photo into a grid of ten sub-images in the smaller dimension
or in a way that these sub-images are at a resolution of at least 150x150 pixels each.
Then, we group these sub-images into three clusters using the same method as in Section
4.4. One cluster usually groups well-defined biologic patterns (our focus), another cluster
sub-images with little detail (usually the background), and a third, high frequency and
contrasting images with no discernible structure (everything else). We find the biologic
patterns cluster (target cluster) by defining it to be the same as the one from a given target

image.

Flgure 4.10: Example of images used for the boundlng box validation task.

(Va) Cheetah, photo by Bernard Dupont (Flickf; (b) abbitﬁshes, [‘)‘h'oto"by Jens Petersen (Wiki-
CC BY-SA 2.0) media, CC BY 2.5)

We obtain different results based on different descriptor setups, and testing out
default setups we obtained the clusters shown in Figure 4.11. By removing the ANN
descriptor we achieved satisfying results, as those from Figures 4.12 and 4.13.

Still, using this default setup excluding the ANN descriptor do not always gives
us the best results, as shown in Figure 4.14, where Figure 4.14b, not using the ANN
descriptor, presents more “wrong” sub-images grouped as biological pattern than Figure
4.14c, using all default descriptors. However, both descriptor setups share some wrong

sub-images, from which we may conclude that none is the optimal setup for this image.
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Figure 4.11: Results obtained using all descriptors as clustering features for the images
of Figure 4.10, where the shown sub-images are grouped as our target biologic pattern.
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Figure 4.12: Grid for Figure 4.10a showing the sub-images grouped as biologic patterns
using all descriptors except ANN.
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Based on these results, we believe that our descriptors are, at least to some extent,
able to distinguish between regular biologic and irregular background patterns. Still, some
sub-images that could be part of the pattern cluster were classified as background and, in
some tests, background patterns were grouped together with biological patterns. Also,
the arbitrary grid size influences the pattern present in the sub-images, therefore changes

in these values could improve the results. This process thus provides an unsupervised
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Figure 4.13: Grid for Figure 4.10b showing the sub-images grouped as biologic patterns
using all descriptors except ANN.
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bounding box detection that identifies regions of interest, which could be used for wildlife
monitoring or for automation of the cropping process. Nonetheless, this task may be

improved by finding optimal descriptor setups and parameters for the sub-image grid.

4.6 Parameter estimation

The last validation method we employed for our descriptors is parameter estima-
tion, similar to Sun et al. (2017). We used regression analysis with our descriptors as
inputs for a Random Forest algorithm and estimated the ratio and scale parameters of
the reaction-diffusion model presented in Malheiros, Fensterseifer and Walter (2020).

For these tests, we created a new dataset of reaction-diffusion images from spotted
patterns to “pre-labyrinthine” patterns, with three different images for each ratio and
scale pair, created using different seeds. This new dataset was created using simulations
as explained in Section 4.2.1, using the isotropic kernel shown in Equation 4.4, ratio
values ranging from 4.1 to 10.1, scale values ranging from 3.0 to 10.5. Each ratio-scale
pair was simulated three times with three different seeds that define the pseudo-random

starting condition of matrix 0. Additionally, all simulations used 15,000 iterations with a
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Figure 4.14: Example of a test where the best results use all default descriptors.

(b) Resulting clusters from (a) using the default
descriptors without ANN descriptors

step value of 0.01.

We totalize 11,649 images with 150x150 pixels resolution. Some images are re-
sults of non-convergent simulations, that is, parameter pairs that did not create a visual
pattern, such as the resulting images shown in Figure 4.15. By analyzing the number of
regions of the resulting images, we automatically eliminate the non-convergent ones, as
these images do not have pattern regions. The remaining images were divided into 70%
training images and 30% testing images.

To determine the efficiency of the model, we used three metrics: the first is a

coefficient of determination, usually referred to as R?, given by

2
R2 — (1 — Z(ytrue - ypred> 4.6
( Z(ytrue - gtrue)2) ( )

with a maximum value of 100% (values on a 0 to 1 range). The second metric is the
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Figure 4.15: Two examples of non-convergent resulting images.

(a) Ratio of 4.2 and scale of 9.5 (b) Ratio of 4.2 and scale of 15.0

Source: The author

mean score of a cross-validation scheme with five folds, calculating the mean squared

error (MSE), where O represents no error. This measure is given by

n

1 2
MSE = — ;(yz 7:) (4.7)

where n is the number of values, y; are the target values, and ¥, are the predicted values.
The last metric used to evaluate our descriptors is the feature importance (Gini impor-
tance), which presents a percentage of importance for each feature of a given set.

The model trained with our default descriptor setup as features obtained a R? score
of 99.29% and cross-validation mean MSE score of 0.019 (the scores for each fold were
0.016, 0.020, 0.017, 0.014, and 0.027). As for the feature importance, Table 4.10 shows

the importance scores obtained for each descriptor, sorted from most to least important.

Table 4.10: Feature importance for the random forest regressor model sorted by the im-
portance score.

descriptor importance
region radius STD 21.42%
border perimeter ratio 21.38%
region eccentricity mean 21.18%
pattern area percentage 17.42%
ANN 06.04%
region border STD 05.80%
region distance STD 04.24%
border pattern ratio 02.14%
pattern loss percentage 00.15%
region eccentricity STD 00.10%
standard distance 00.09%
region area STD 00.05%
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Similar to the importance given by the classifying task, the border perimeter ratio,
pattern area percentage, and region eccentricity mean descriptors show great relevance.
Nevertheless, the regressor feature importance presents the region radius STD descrip-
tor with the largest importance score, in contrast to the no more than 5% obtained for
the classifier importance, possibly due to the dataset being composed solely by synthetic
reaction-diffusion images while the classifier dataset contains real patterns images. Con-
sidering this, we expect different importance scores and descriptor ranking if a better,
more complete dataset was used.

Due to the limitations of the model used and the number of parameters, we limited
our scope to simple reaction-diffusion spotted and labyrinthine patterns. As an example
of limitations, we could not generate striped patterns, as we do not predict the diffusion

kernel that generates these patterns, as explained in Section 2.1.

Figure 4.16: Two examples of target image given as input and output pattern generated

using the regressor parameters.
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Figure 4.16 shows two examples of target images and the pattern obtained using

the parameters predicted by the regressor. For these tests, we calculate a MSE (Equation



57

4.7) using the descriptors computed for the target image and the ones obtained for the
image created with the predicted parameters. From Figure 4.16a, generated with ratio =
4.8 and scale = 3.1, we obtained ratio = 4.7 and scale = 3.17, resulting on Figure
4.16b and a MSE of 0.00029. From the labyrinthine pattern of Figure 4.16c, computed
with ratio = 9.8 and scale = 3.1, the regressor predicted ratio = 9.41 and scale = 3.27,
resulting on Figure 4.16d and a MSE of 0.012.

Figure 4.17: Example of a extrapolation of the model using a rabbitfish (Plectorhinchus
chaetodonoides) crop as input.

(a) Rabbitfish pattern (b) Predicted pattern

Source: The author

Figure 4.18: Example of a extrapolation of the model using a simpler rabbitfish (Ostracion
meleagris) crop as input. Rabbitfish photo by Brocken Inaglory (Wikimedia, CC BY-SA
4.0).

Source: The author

Our parameter estimation shows promising results for the limited scenario with
simple synthetic patterns. When extrapolating it to natural patterns, our regressor model
correctly predicted parameters for the given topology, as exemplified in Figure 4.17, from
which we computed an MSE of 0.026, even though the pattern scale was wrong. Figure

4.17b was generated with the predicted values of ratio = 4.92 and scale = 7.38 using a
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rabbitfish (Plectorhinchus chaetodonoides) crop as the target image. When estimating for
a simpler natural pattern, as shown in Figure 4.18, we obtained a resulting image similar
to the rabbitfish (Ostracion meleagris) pattern used as target, from which a ratio of 4.22
and a scale of 7.51 were estimated.

For more complex patterns, cheetahs as an example, the RD model still seems not
capable of producing the breadth of spot variations. We used a straightforward regressor
with a limited dataset. Possibly more complex results could be achieved by an implemen-
tation that estimates more parameters, such as the diffusion kernel, using a more extensive
and diverse dataset with multiple image and simulation resolutions, also allowing the idea
of matrix growth. Another possible result of these improvements is a better approach for

the inverse rendering problem, enabling the usage of non-synthetic images as input.
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5 CONCLUSION

In this work, we justified the need for quantitative descriptors to evaluate biologic
patterns comprised of spots, stripes, and labyrinths. We then proposed an automated
pipeline to extract such descriptors, quantitatively finding the best set of descriptors and
validating them in two different machine learning tasks, one supervised classification and
one unsupervised clustering, a cluster-based segmentation application, and a parameter
estimation model for a limited set of possible patterns.

Albeit we used a dataset with a few thousand images and a limited set of differ-
ent species, we believe the diversity already present among the images provided enough
challenge for a starting point. Besides, we achieved good results on our validation tasks
presented in Chapter 4. When comparing to state-of-art deep learning pre-trained models
we obtained better accuracy scores in a scenario containing downsampled images, 97.72%
compared to best DL results, 94.63%. When removing these downsamples, although our
results showed a significant accuracy drop (approximately 2.7%), we still obtained better
results than the DL models (around 0.5% better). These results, though, are obtained in a

limited and specific scenario, and as such, more tests are needed for better comparison.

5.1 Future Works

We worked with a limited set of patterns and species, and therefore we wish to
continue expanding the range of species in future work, thus including other topologies,
such as inverse spot patterns and irregular patterns.

We also plan to explore more precise image-to-image similarity metrics, such as
analyzing and comparing histograms based on individual pattern detail characteristics.
Another idea not explored is the use of different orders of the neighborhood for the ANN
descriptor, that is, the average n,;, nearest neighbor, which presents the possibility of
creating graphs of all neighborhood orders, where the curve may be used to examine the
relative spatial arrangement of points, that is, their position relative to one another. More
possible unexplored set of measures are color-based metrics, which could be computed
for both the pattern and the “background”, and measures related to frequency domain.
One last approach would be metric learning, either as means of obtaining new descriptors
or as to compare obtained metrics with our descriptors.

For further validation, we also plan to use transfer learning on the Deep Learning
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models tested in Section 4.3. Some potential improvements are related to our parameter
estimation task (Section 4.6), in which we could improve the dataset and model used, as
well as estimating more parameters, such as the diffusion kernel, allowing exploring more

pattern structures and topologies, and, possibly, natural patterns.
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APPENDIX A — RESUMO EXPANDIDO

Descritores quantitativos para uma variedade de padroes visuais de pigmentacao
biologica e sintética
Gabriel Henrique Moro, Marcelo Walter
Instituto de Informatica — Universidade Federal do Rio Grande do Sul (UFRGS)

Palavras-chave: Descritores quantitativos; processamento de imagens; geracdo de padrdes; avali-
acdo de padrdes

Introducao

A grande diversidade de padrbes presentes na natureza atrai a aten¢ao do campo de
pesquisa em computagdo grafica. Um dos desafios encontrados na drea de modelagem
de fendmenos naturais € a avaliacdo da qualidade dos modelos simulados em comparagdo
com a contraparte natural. Diversos trabalhos apresentam avaliagdes qualitativas (em-
piricas), realizando comparagdes visuais dos seus resultados com os padrdes naturais de-
sejados, resultando em uma avaliacdo subjetiva e potencialmente imprecisa. O campo
da biomatemdtica também precisa cada vez mais de melhores ferramentas quantitativas
para a avaliacdo de padrOes naturais. Portanto, percebe-se a necessidade de uma abor-
dagem quantitativa. Neste trabalho é definido um conjunto de descritores adequados para
capturar as principais caracteristicas dos padrdes analisados, isto €, padrdes naturais e sin-
téticos regulares de manchas, listras e labirintos. Tais descritores facilitam a avaliacdo dos
padrdes avaliados, resultando em um melhor entendimento de suas estruturas e trazendo
consisténcia ao campo. Para este trabalho o termo “descritor” € definido no mesmo con-
texto de técnicas de content-based image retrieval (CBIR), isto é, como medidas escalares
que capturam alguma caracteristica ou estrutura particular da imagem analisada.
Metodologia

Foram propostos doze descritores divididos entre descritores globais e descritores locais.
Descritores globais s@o calculados medindo razdes de propriedades do padrao e expres-
sam caracteristicas gerais da estrutura do padrao, enquanto descritores locais medem car-
acteristicas referentes as regides individuais do padrdao. Para o cdlculo dos descritores,
foi definido uma sequéncia de operacOes para o processamento das imagens. As trés
primeiras operacdes sdo realizadas para todos os descritores, a primeira sendo a con-
versao da imagem para escala de cinza, seguido por uma operagdo de limiarizag¢do para a
segmentacdo do padrdo, e entdo uma operagdo de remocao de ruido. Apds estas operagdes

sdo calculados dois descritores: pattern area percentage, que apresenta o percentual de
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area de padrdo na imagem, e border perimeter ratio, a razao entre perimetro do padrao
e perimetro da imagem. Os préximos dois descritores sdo calculados com uma operagao
adicional ndo executada para padrdes de listras e labirintos: a remog¢ao de regides parci-
ais, isto €, remocao de regides que tocam as bordas da imagem. Estes descritores também
sdo calculados para os padrdes de listras e labirintos, apesar de ndo ser realizada a oper-
acdo. Estes descritores sdo: pattern loss percentage, representando o percentual de perda
de area do padrio apds a remocgdo de regides que tocam as bordas da imagem, e border
pattern ratio, a razao entre o perimetro do padrdo e a drea do padrdo. A dltima operagao
€ a segmentacao das regides individuais e o célculo de caracteristicas destas regides, re-
alizada para o cdlculo dos descritores locais. Os descritores locais podem ser divididos
em duas categorias: baseados em pixel (ou em drea) e baseados em centroides (ou em
distancias). A primeira categoria possui descritores calculados como desvios padrdes de
determinadas caracteristicas das regides do padrdo, sendo estas a variagdo das areas, dos
perimetros, dos raios de circulos de drea equivalente, e das excentricidade de elipses com
segundo momento. Adicionalmente, também € calculado a média para a excentricidade.
Os ultimos descritores locais, baseados em centroides, sdo calculados como relacdes de
distancias dos centroides das regides individuais segmentadas. O primeiro segue a ldgica
dos anteriores, sendo o desvio padrao das distancias dos centroides apds um precesso de
triangularizac@o de Delaunay. Os dois tltimos sdo técnicas de andlise de pontos, conheci-
dos como Average Nearest Neighbor (ANN), calculado como a média das distancias mais
proximas, e Standard Distance, calculado como a média do desvio padrao das regides
para um centroide médio.

Resultados

Os descritores foram validados com conjuntos de imagens de padrdes reais e sintéticos,
através de trés métodos de aprendizado de mdquina em quatro aplicagdes: um classifi-
cador supervisionado, um método de agrupamento nao supervisionado (clusterizador),
uma aplicagdo de identificacdo de regides de interesse baseada na tarefa de clusterizagao,
e uma tarefa de regressao para a estimacao de parametros de um modelo matematico. A
primeira aplicagdo utilizou os descritores em um classificador supervisionado e apresen-
tou uma precisdo média de 98.4%, também sendo medida o indice Gini para determinar a
relevancia dos descritores nos contextos testados. Por fim, foram feitas comparagdes com
modelos pré-treinados de aprendizado profundo, observando-se que o modelo de classi-
ficacdo supervisionado, para o contexto deste trabalho, apresentou resultados superiores

aos modelos pré-treinados de aprendizado profundo. A segunda aplicacdo buscou, de
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maneira nao supervisionada, agrupar conjuntos de imagens a partir dos descritores calcu-
lados, conseguindo separar grupos de imagens reais e sintéticas, divididas por topologia
e, até certo ponto, diferenciar animais por espécie. A terceira aplicagdo utiliza o mesmo
método presente na segunda aplicacdo, porém classificando regides de uma imagem de
animais entre regides de interesse e plano de fundo. Nesta aplicagcdo foram obtidos resul-
tados variados, vendo-se uma necessidade na realizacdo de melhoras na implementacdo e
realizacdo de mais testes. O dltimo método de validac@o foi uma aplicagdo de regressao
com o objetivo de, a partir dos descritores calculados com uma imagem de entrada, obter-
se os parametros de um modelo matemaético de reacao-difusdo que gerem uma imagem
similar. Foram observados bons resultados quando utilizados padrdes sintéticos simples,
porém, devido a limita¢des da implementacdo, ndo foi possivel obter resultados satis-
fatdrios para padrdes mais complexos.

Conclusao

Em conclusao, foram obtidos bons resultados dentro das limitagdes apresentadas, com
resultados de classificacdo superiores a modelos pré-treinados de aprendizado profundo
no contexto definido para o trabalho e resultados esperados para as demais aplicagdes
apresentadas. Observam-se também possiveis trabalhos futuros, como a expansao da var-
iedade de padrdes estudados, podendo-se incluir padrdes irregulares e padrdes inversos.
Outra possibilidade € a proposic@o de novos descritores, como o uso de diferentes ordens
de vizinhanga para o descritor ANN ou descritores baseados em cores ou em dominio de
frequéncia. Uma udltima possibilidade referente aos descritores seria explorar técnicas de
metric learning (aprendizado de métricas), seja para a obten¢do de novos descritores ou
para comparacao com os ja existentes. Por fim, hd também a possibilidade de melhora nos
métodos de validacdo, como aprimorar a comparacdo da aplicacdo de classificagdo com o
uso de técnicas de transfer learning para a comparagao com os modelos de aprendizado
profundo, ou ainda um aprimoramento para o modelo de regressdo com a resolugdo de

certas limitagOes apresentadas.
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